Linux Audio

Check our new training course

Loading...
v6.8
  1/* SPDX-License-Identifier: GPL-2.0-or-later */
  2/*
  3 * Cryptographic API for algorithms (i.e., low-level API).
  4 *
  5 * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
  6 */
  7#ifndef _CRYPTO_ALGAPI_H
  8#define _CRYPTO_ALGAPI_H
  9
 10#include <crypto/utils.h>
 11#include <linux/align.h>
 12#include <linux/cache.h>
 13#include <linux/crypto.h>
 
 
 14#include <linux/types.h>
 15#include <linux/workqueue.h>
 
 16
 17/*
 18 * Maximum values for blocksize and alignmask, used to allocate
 19 * static buffers that are big enough for any combination of
 20 * algs and architectures. Ciphers have a lower maximum size.
 21 */
 22#define MAX_ALGAPI_BLOCKSIZE		160
 23#define MAX_ALGAPI_ALIGNMASK		127
 24#define MAX_CIPHER_BLOCKSIZE		16
 25#define MAX_CIPHER_ALIGNMASK		15
 26
 27#ifdef ARCH_DMA_MINALIGN
 28#define CRYPTO_DMA_ALIGN ARCH_DMA_MINALIGN
 29#else
 30#define CRYPTO_DMA_ALIGN CRYPTO_MINALIGN
 31#endif
 32
 33#define CRYPTO_DMA_PADDING ((CRYPTO_DMA_ALIGN - 1) & ~(CRYPTO_MINALIGN - 1))
 34
 35/*
 36 * Autoloaded crypto modules should only use a prefixed name to avoid allowing
 37 * arbitrary modules to be loaded. Loading from userspace may still need the
 38 * unprefixed names, so retains those aliases as well.
 39 * This uses __MODULE_INFO directly instead of MODULE_ALIAS because pre-4.3
 40 * gcc (e.g. avr32 toolchain) uses __LINE__ for uniqueness, and this macro
 41 * expands twice on the same line. Instead, use a separate base name for the
 42 * alias.
 43 */
 44#define MODULE_ALIAS_CRYPTO(name)	\
 45		__MODULE_INFO(alias, alias_userspace, name);	\
 46		__MODULE_INFO(alias, alias_crypto, "crypto-" name)
 47
 48struct crypto_aead;
 49struct crypto_instance;
 50struct module;
 51struct notifier_block;
 52struct rtattr;
 53struct scatterlist;
 54struct seq_file;
 55struct sk_buff;
 56
 57struct crypto_type {
 58	unsigned int (*ctxsize)(struct crypto_alg *alg, u32 type, u32 mask);
 59	unsigned int (*extsize)(struct crypto_alg *alg);
 
 60	int (*init_tfm)(struct crypto_tfm *tfm);
 61	void (*show)(struct seq_file *m, struct crypto_alg *alg);
 62	int (*report)(struct sk_buff *skb, struct crypto_alg *alg);
 63	void (*free)(struct crypto_instance *inst);
 64#ifdef CONFIG_CRYPTO_STATS
 65	int (*report_stat)(struct sk_buff *skb, struct crypto_alg *alg);
 66#endif
 67
 68	unsigned int type;
 69	unsigned int maskclear;
 70	unsigned int maskset;
 71	unsigned int tfmsize;
 72};
 73
 74struct crypto_instance {
 75	struct crypto_alg alg;
 76
 77	struct crypto_template *tmpl;
 78
 79	union {
 80		/* Node in list of instances after registration. */
 81		struct hlist_node list;
 82		/* List of attached spawns before registration. */
 83		struct crypto_spawn *spawns;
 84	};
 85
 86	struct work_struct free_work;
 87
 88	void *__ctx[] CRYPTO_MINALIGN_ATTR;
 89};
 90
 91struct crypto_template {
 92	struct list_head list;
 93	struct hlist_head instances;
 94	struct module *module;
 95
 96	int (*create)(struct crypto_template *tmpl, struct rtattr **tb);
 97
 98	char name[CRYPTO_MAX_ALG_NAME];
 99};
100
101struct crypto_spawn {
102	struct list_head list;
103	struct crypto_alg *alg;
104	union {
105		/* Back pointer to instance after registration.*/
106		struct crypto_instance *inst;
107		/* Spawn list pointer prior to registration. */
108		struct crypto_spawn *next;
109	};
110	const struct crypto_type *frontend;
111	u32 mask;
112	bool dead;
113	bool registered;
114};
115
116struct crypto_queue {
117	struct list_head list;
118	struct list_head *backlog;
119
120	unsigned int qlen;
121	unsigned int max_qlen;
122};
123
124struct scatter_walk {
125	struct scatterlist *sg;
126	unsigned int offset;
127};
128
129struct crypto_attr_alg {
130	char name[CRYPTO_MAX_ALG_NAME];
131};
132
133struct crypto_attr_type {
134	u32 type;
135	u32 mask;
136};
137
138/*
139 * Algorithm registration interface.
140 */
141int crypto_register_alg(struct crypto_alg *alg);
142void crypto_unregister_alg(struct crypto_alg *alg);
143int crypto_register_algs(struct crypto_alg *algs, int count);
144void crypto_unregister_algs(struct crypto_alg *algs, int count);
145
146void crypto_mod_put(struct crypto_alg *alg);
147
148int crypto_register_template(struct crypto_template *tmpl);
149int crypto_register_templates(struct crypto_template *tmpls, int count);
150void crypto_unregister_template(struct crypto_template *tmpl);
151void crypto_unregister_templates(struct crypto_template *tmpls, int count);
152struct crypto_template *crypto_lookup_template(const char *name);
153
154int crypto_register_instance(struct crypto_template *tmpl,
155			     struct crypto_instance *inst);
156void crypto_unregister_instance(struct crypto_instance *inst);
157
158int crypto_grab_spawn(struct crypto_spawn *spawn, struct crypto_instance *inst,
159		      const char *name, u32 type, u32 mask);
160void crypto_drop_spawn(struct crypto_spawn *spawn);
161struct crypto_tfm *crypto_spawn_tfm(struct crypto_spawn *spawn, u32 type,
162				    u32 mask);
163void *crypto_spawn_tfm2(struct crypto_spawn *spawn);
164
165struct crypto_attr_type *crypto_get_attr_type(struct rtattr **tb);
166int crypto_check_attr_type(struct rtattr **tb, u32 type, u32 *mask_ret);
167const char *crypto_attr_alg_name(struct rtattr *rta);
168int crypto_inst_setname(struct crypto_instance *inst, const char *name,
169			struct crypto_alg *alg);
170
171void crypto_init_queue(struct crypto_queue *queue, unsigned int max_qlen);
172int crypto_enqueue_request(struct crypto_queue *queue,
173			   struct crypto_async_request *request);
174void crypto_enqueue_request_head(struct crypto_queue *queue,
175				 struct crypto_async_request *request);
176struct crypto_async_request *crypto_dequeue_request(struct crypto_queue *queue);
177static inline unsigned int crypto_queue_len(struct crypto_queue *queue)
178{
179	return queue->qlen;
180}
181
182void crypto_inc(u8 *a, unsigned int size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
183
184static inline void *crypto_tfm_ctx(struct crypto_tfm *tfm)
185{
186	return tfm->__crt_ctx;
187}
188
189static inline void *crypto_tfm_ctx_align(struct crypto_tfm *tfm,
190					 unsigned int align)
191{
192	if (align <= crypto_tfm_ctx_alignment())
193		align = 1;
194
195	return PTR_ALIGN(crypto_tfm_ctx(tfm), align);
196}
197
 
 
 
 
 
198static inline unsigned int crypto_dma_align(void)
199{
200	return CRYPTO_DMA_ALIGN;
201}
202
203static inline unsigned int crypto_dma_padding(void)
204{
205	return (crypto_dma_align() - 1) & ~(crypto_tfm_ctx_alignment() - 1);
206}
207
208static inline void *crypto_tfm_ctx_dma(struct crypto_tfm *tfm)
209{
210	return crypto_tfm_ctx_align(tfm, crypto_dma_align());
211}
212
213static inline struct crypto_instance *crypto_tfm_alg_instance(
214	struct crypto_tfm *tfm)
215{
216	return container_of(tfm->__crt_alg, struct crypto_instance, alg);
217}
218
219static inline void *crypto_instance_ctx(struct crypto_instance *inst)
220{
221	return inst->__ctx;
222}
223
224static inline struct crypto_async_request *crypto_get_backlog(
225	struct crypto_queue *queue)
226{
227	return queue->backlog == &queue->list ? NULL :
228	       container_of(queue->backlog, struct crypto_async_request, list);
229}
230
231static inline u32 crypto_requires_off(struct crypto_attr_type *algt, u32 off)
232{
233	return (algt->type ^ off) & algt->mask & off;
234}
235
236/*
237 * When an algorithm uses another algorithm (e.g., if it's an instance of a
238 * template), these are the flags that should always be set on the "outer"
239 * algorithm if any "inner" algorithm has them set.
240 */
241#define CRYPTO_ALG_INHERITED_FLAGS	\
242	(CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK |	\
243	 CRYPTO_ALG_ALLOCATES_MEMORY)
244
245/*
246 * Given the type and mask that specify the flags restrictions on a template
247 * instance being created, return the mask that should be passed to
248 * crypto_grab_*() (along with type=0) to honor any request the user made to
249 * have any of the CRYPTO_ALG_INHERITED_FLAGS clear.
250 */
251static inline u32 crypto_algt_inherited_mask(struct crypto_attr_type *algt)
252{
253	return crypto_requires_off(algt, CRYPTO_ALG_INHERITED_FLAGS);
254}
255
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
256int crypto_register_notifier(struct notifier_block *nb);
257int crypto_unregister_notifier(struct notifier_block *nb);
258
259/* Crypto notification events. */
260enum {
261	CRYPTO_MSG_ALG_REQUEST,
262	CRYPTO_MSG_ALG_REGISTER,
263	CRYPTO_MSG_ALG_LOADED,
264};
265
266static inline void crypto_request_complete(struct crypto_async_request *req,
267					   int err)
268{
269	req->complete(req->data, err);
270}
271
272static inline u32 crypto_tfm_alg_type(struct crypto_tfm *tfm)
273{
274	return tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK;
275}
276
277#endif	/* _CRYPTO_ALGAPI_H */
v6.2
  1/* SPDX-License-Identifier: GPL-2.0-or-later */
  2/*
  3 * Cryptographic API for algorithms (i.e., low-level API).
  4 *
  5 * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
  6 */
  7#ifndef _CRYPTO_ALGAPI_H
  8#define _CRYPTO_ALGAPI_H
  9
 
 10#include <linux/align.h>
 11#include <linux/cache.h>
 12#include <linux/crypto.h>
 13#include <linux/kconfig.h>
 14#include <linux/list.h>
 15#include <linux/types.h>
 16
 17#include <asm/unaligned.h>
 18
 19/*
 20 * Maximum values for blocksize and alignmask, used to allocate
 21 * static buffers that are big enough for any combination of
 22 * algs and architectures. Ciphers have a lower maximum size.
 23 */
 24#define MAX_ALGAPI_BLOCKSIZE		160
 25#define MAX_ALGAPI_ALIGNMASK		127
 26#define MAX_CIPHER_BLOCKSIZE		16
 27#define MAX_CIPHER_ALIGNMASK		15
 28
 29#ifdef ARCH_DMA_MINALIGN
 30#define CRYPTO_DMA_ALIGN ARCH_DMA_MINALIGN
 31#else
 32#define CRYPTO_DMA_ALIGN CRYPTO_MINALIGN
 33#endif
 34
 35#define CRYPTO_DMA_PADDING ((CRYPTO_DMA_ALIGN - 1) & ~(CRYPTO_MINALIGN - 1))
 36
 
 
 
 
 
 
 
 
 
 
 
 
 
 37struct crypto_aead;
 38struct crypto_instance;
 39struct module;
 40struct notifier_block;
 41struct rtattr;
 
 42struct seq_file;
 43struct sk_buff;
 44
 45struct crypto_type {
 46	unsigned int (*ctxsize)(struct crypto_alg *alg, u32 type, u32 mask);
 47	unsigned int (*extsize)(struct crypto_alg *alg);
 48	int (*init)(struct crypto_tfm *tfm, u32 type, u32 mask);
 49	int (*init_tfm)(struct crypto_tfm *tfm);
 50	void (*show)(struct seq_file *m, struct crypto_alg *alg);
 51	int (*report)(struct sk_buff *skb, struct crypto_alg *alg);
 52	void (*free)(struct crypto_instance *inst);
 
 
 
 53
 54	unsigned int type;
 55	unsigned int maskclear;
 56	unsigned int maskset;
 57	unsigned int tfmsize;
 58};
 59
 60struct crypto_instance {
 61	struct crypto_alg alg;
 62
 63	struct crypto_template *tmpl;
 64
 65	union {
 66		/* Node in list of instances after registration. */
 67		struct hlist_node list;
 68		/* List of attached spawns before registration. */
 69		struct crypto_spawn *spawns;
 70	};
 71
 
 
 72	void *__ctx[] CRYPTO_MINALIGN_ATTR;
 73};
 74
 75struct crypto_template {
 76	struct list_head list;
 77	struct hlist_head instances;
 78	struct module *module;
 79
 80	int (*create)(struct crypto_template *tmpl, struct rtattr **tb);
 81
 82	char name[CRYPTO_MAX_ALG_NAME];
 83};
 84
 85struct crypto_spawn {
 86	struct list_head list;
 87	struct crypto_alg *alg;
 88	union {
 89		/* Back pointer to instance after registration.*/
 90		struct crypto_instance *inst;
 91		/* Spawn list pointer prior to registration. */
 92		struct crypto_spawn *next;
 93	};
 94	const struct crypto_type *frontend;
 95	u32 mask;
 96	bool dead;
 97	bool registered;
 98};
 99
100struct crypto_queue {
101	struct list_head list;
102	struct list_head *backlog;
103
104	unsigned int qlen;
105	unsigned int max_qlen;
106};
107
108struct scatter_walk {
109	struct scatterlist *sg;
110	unsigned int offset;
111};
112
113struct crypto_attr_alg {
114	char name[CRYPTO_MAX_ALG_NAME];
115};
116
117struct crypto_attr_type {
118	u32 type;
119	u32 mask;
120};
121
 
 
 
 
 
 
 
 
122void crypto_mod_put(struct crypto_alg *alg);
123
124int crypto_register_template(struct crypto_template *tmpl);
125int crypto_register_templates(struct crypto_template *tmpls, int count);
126void crypto_unregister_template(struct crypto_template *tmpl);
127void crypto_unregister_templates(struct crypto_template *tmpls, int count);
128struct crypto_template *crypto_lookup_template(const char *name);
129
130int crypto_register_instance(struct crypto_template *tmpl,
131			     struct crypto_instance *inst);
132void crypto_unregister_instance(struct crypto_instance *inst);
133
134int crypto_grab_spawn(struct crypto_spawn *spawn, struct crypto_instance *inst,
135		      const char *name, u32 type, u32 mask);
136void crypto_drop_spawn(struct crypto_spawn *spawn);
137struct crypto_tfm *crypto_spawn_tfm(struct crypto_spawn *spawn, u32 type,
138				    u32 mask);
139void *crypto_spawn_tfm2(struct crypto_spawn *spawn);
140
141struct crypto_attr_type *crypto_get_attr_type(struct rtattr **tb);
142int crypto_check_attr_type(struct rtattr **tb, u32 type, u32 *mask_ret);
143const char *crypto_attr_alg_name(struct rtattr *rta);
144int crypto_inst_setname(struct crypto_instance *inst, const char *name,
145			struct crypto_alg *alg);
146
147void crypto_init_queue(struct crypto_queue *queue, unsigned int max_qlen);
148int crypto_enqueue_request(struct crypto_queue *queue,
149			   struct crypto_async_request *request);
150void crypto_enqueue_request_head(struct crypto_queue *queue,
151				 struct crypto_async_request *request);
152struct crypto_async_request *crypto_dequeue_request(struct crypto_queue *queue);
153static inline unsigned int crypto_queue_len(struct crypto_queue *queue)
154{
155	return queue->qlen;
156}
157
158void crypto_inc(u8 *a, unsigned int size);
159void __crypto_xor(u8 *dst, const u8 *src1, const u8 *src2, unsigned int size);
160
161static inline void crypto_xor(u8 *dst, const u8 *src, unsigned int size)
162{
163	if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) &&
164	    __builtin_constant_p(size) &&
165	    (size % sizeof(unsigned long)) == 0) {
166		unsigned long *d = (unsigned long *)dst;
167		unsigned long *s = (unsigned long *)src;
168		unsigned long l;
169
170		while (size > 0) {
171			l = get_unaligned(d) ^ get_unaligned(s++);
172			put_unaligned(l, d++);
173			size -= sizeof(unsigned long);
174		}
175	} else {
176		__crypto_xor(dst, dst, src, size);
177	}
178}
179
180static inline void crypto_xor_cpy(u8 *dst, const u8 *src1, const u8 *src2,
181				  unsigned int size)
182{
183	if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) &&
184	    __builtin_constant_p(size) &&
185	    (size % sizeof(unsigned long)) == 0) {
186		unsigned long *d = (unsigned long *)dst;
187		unsigned long *s1 = (unsigned long *)src1;
188		unsigned long *s2 = (unsigned long *)src2;
189		unsigned long l;
190
191		while (size > 0) {
192			l = get_unaligned(s1++) ^ get_unaligned(s2++);
193			put_unaligned(l, d++);
194			size -= sizeof(unsigned long);
195		}
196	} else {
197		__crypto_xor(dst, src1, src2, size);
198	}
199}
200
201static inline void *crypto_tfm_ctx(struct crypto_tfm *tfm)
202{
203	return tfm->__crt_ctx;
204}
205
206static inline void *crypto_tfm_ctx_align(struct crypto_tfm *tfm,
207					 unsigned int align)
208{
209	if (align <= crypto_tfm_ctx_alignment())
210		align = 1;
211
212	return PTR_ALIGN(crypto_tfm_ctx(tfm), align);
213}
214
215static inline void *crypto_tfm_ctx_aligned(struct crypto_tfm *tfm)
216{
217	return crypto_tfm_ctx_align(tfm, crypto_tfm_alg_alignmask(tfm) + 1);
218}
219
220static inline unsigned int crypto_dma_align(void)
221{
222	return CRYPTO_DMA_ALIGN;
223}
224
225static inline unsigned int crypto_dma_padding(void)
226{
227	return (crypto_dma_align() - 1) & ~(crypto_tfm_ctx_alignment() - 1);
228}
229
230static inline void *crypto_tfm_ctx_dma(struct crypto_tfm *tfm)
231{
232	return crypto_tfm_ctx_align(tfm, crypto_dma_align());
233}
234
235static inline struct crypto_instance *crypto_tfm_alg_instance(
236	struct crypto_tfm *tfm)
237{
238	return container_of(tfm->__crt_alg, struct crypto_instance, alg);
239}
240
241static inline void *crypto_instance_ctx(struct crypto_instance *inst)
242{
243	return inst->__ctx;
244}
245
246static inline struct crypto_async_request *crypto_get_backlog(
247	struct crypto_queue *queue)
248{
249	return queue->backlog == &queue->list ? NULL :
250	       container_of(queue->backlog, struct crypto_async_request, list);
251}
252
253static inline u32 crypto_requires_off(struct crypto_attr_type *algt, u32 off)
254{
255	return (algt->type ^ off) & algt->mask & off;
256}
257
258/*
259 * When an algorithm uses another algorithm (e.g., if it's an instance of a
260 * template), these are the flags that should always be set on the "outer"
261 * algorithm if any "inner" algorithm has them set.
262 */
263#define CRYPTO_ALG_INHERITED_FLAGS	\
264	(CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK |	\
265	 CRYPTO_ALG_ALLOCATES_MEMORY)
266
267/*
268 * Given the type and mask that specify the flags restrictions on a template
269 * instance being created, return the mask that should be passed to
270 * crypto_grab_*() (along with type=0) to honor any request the user made to
271 * have any of the CRYPTO_ALG_INHERITED_FLAGS clear.
272 */
273static inline u32 crypto_algt_inherited_mask(struct crypto_attr_type *algt)
274{
275	return crypto_requires_off(algt, CRYPTO_ALG_INHERITED_FLAGS);
276}
277
278noinline unsigned long __crypto_memneq(const void *a, const void *b, size_t size);
279
280/**
281 * crypto_memneq - Compare two areas of memory without leaking
282 *		   timing information.
283 *
284 * @a: One area of memory
285 * @b: Another area of memory
286 * @size: The size of the area.
287 *
288 * Returns 0 when data is equal, 1 otherwise.
289 */
290static inline int crypto_memneq(const void *a, const void *b, size_t size)
291{
292	return __crypto_memneq(a, b, size) != 0UL ? 1 : 0;
293}
294
295int crypto_register_notifier(struct notifier_block *nb);
296int crypto_unregister_notifier(struct notifier_block *nb);
297
298/* Crypto notification events. */
299enum {
300	CRYPTO_MSG_ALG_REQUEST,
301	CRYPTO_MSG_ALG_REGISTER,
302	CRYPTO_MSG_ALG_LOADED,
303};
 
 
 
 
 
 
 
 
 
 
 
304
305#endif	/* _CRYPTO_ALGAPI_H */