Linux Audio

Check our new training course

Loading...
v6.8
  1/* SPDX-License-Identifier: GPL-2.0-or-later */
  2/*
  3 * Cryptographic API for algorithms (i.e., low-level API).
  4 *
  5 * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
  6 */
  7#ifndef _CRYPTO_ALGAPI_H
  8#define _CRYPTO_ALGAPI_H
  9
 10#include <crypto/utils.h>
 11#include <linux/align.h>
 12#include <linux/cache.h>
 13#include <linux/crypto.h>
 14#include <linux/types.h>
 15#include <linux/workqueue.h>
 
 16
 17/*
 18 * Maximum values for blocksize and alignmask, used to allocate
 19 * static buffers that are big enough for any combination of
 20 * algs and architectures. Ciphers have a lower maximum size.
 21 */
 22#define MAX_ALGAPI_BLOCKSIZE		160
 23#define MAX_ALGAPI_ALIGNMASK		127
 24#define MAX_CIPHER_BLOCKSIZE		16
 25#define MAX_CIPHER_ALIGNMASK		15
 26
 27#ifdef ARCH_DMA_MINALIGN
 28#define CRYPTO_DMA_ALIGN ARCH_DMA_MINALIGN
 29#else
 30#define CRYPTO_DMA_ALIGN CRYPTO_MINALIGN
 31#endif
 32
 33#define CRYPTO_DMA_PADDING ((CRYPTO_DMA_ALIGN - 1) & ~(CRYPTO_MINALIGN - 1))
 34
 35/*
 36 * Autoloaded crypto modules should only use a prefixed name to avoid allowing
 37 * arbitrary modules to be loaded. Loading from userspace may still need the
 38 * unprefixed names, so retains those aliases as well.
 39 * This uses __MODULE_INFO directly instead of MODULE_ALIAS because pre-4.3
 40 * gcc (e.g. avr32 toolchain) uses __LINE__ for uniqueness, and this macro
 41 * expands twice on the same line. Instead, use a separate base name for the
 42 * alias.
 43 */
 44#define MODULE_ALIAS_CRYPTO(name)	\
 45		__MODULE_INFO(alias, alias_userspace, name);	\
 46		__MODULE_INFO(alias, alias_crypto, "crypto-" name)
 47
 48struct crypto_aead;
 49struct crypto_instance;
 50struct module;
 51struct notifier_block;
 52struct rtattr;
 53struct scatterlist;
 54struct seq_file;
 55struct sk_buff;
 56
 57struct crypto_type {
 58	unsigned int (*ctxsize)(struct crypto_alg *alg, u32 type, u32 mask);
 59	unsigned int (*extsize)(struct crypto_alg *alg);
 
 60	int (*init_tfm)(struct crypto_tfm *tfm);
 61	void (*show)(struct seq_file *m, struct crypto_alg *alg);
 62	int (*report)(struct sk_buff *skb, struct crypto_alg *alg);
 63	void (*free)(struct crypto_instance *inst);
 64#ifdef CONFIG_CRYPTO_STATS
 65	int (*report_stat)(struct sk_buff *skb, struct crypto_alg *alg);
 66#endif
 67
 68	unsigned int type;
 69	unsigned int maskclear;
 70	unsigned int maskset;
 71	unsigned int tfmsize;
 72};
 73
 74struct crypto_instance {
 75	struct crypto_alg alg;
 76
 77	struct crypto_template *tmpl;
 78
 79	union {
 80		/* Node in list of instances after registration. */
 81		struct hlist_node list;
 82		/* List of attached spawns before registration. */
 83		struct crypto_spawn *spawns;
 84	};
 85
 86	struct work_struct free_work;
 87
 88	void *__ctx[] CRYPTO_MINALIGN_ATTR;
 89};
 90
 91struct crypto_template {
 92	struct list_head list;
 93	struct hlist_head instances;
 94	struct module *module;
 95
 96	int (*create)(struct crypto_template *tmpl, struct rtattr **tb);
 97
 98	char name[CRYPTO_MAX_ALG_NAME];
 99};
100
101struct crypto_spawn {
102	struct list_head list;
103	struct crypto_alg *alg;
104	union {
105		/* Back pointer to instance after registration.*/
106		struct crypto_instance *inst;
107		/* Spawn list pointer prior to registration. */
108		struct crypto_spawn *next;
109	};
110	const struct crypto_type *frontend;
111	u32 mask;
112	bool dead;
113	bool registered;
114};
115
116struct crypto_queue {
117	struct list_head list;
118	struct list_head *backlog;
119
120	unsigned int qlen;
121	unsigned int max_qlen;
122};
123
124struct scatter_walk {
125	struct scatterlist *sg;
126	unsigned int offset;
127};
128
129struct crypto_attr_alg {
130	char name[CRYPTO_MAX_ALG_NAME];
131};
132
133struct crypto_attr_type {
134	u32 type;
135	u32 mask;
136};
137
138/*
139 * Algorithm registration interface.
140 */
141int crypto_register_alg(struct crypto_alg *alg);
142void crypto_unregister_alg(struct crypto_alg *alg);
143int crypto_register_algs(struct crypto_alg *algs, int count);
144void crypto_unregister_algs(struct crypto_alg *algs, int count);
145
146void crypto_mod_put(struct crypto_alg *alg);
147
148int crypto_register_template(struct crypto_template *tmpl);
149int crypto_register_templates(struct crypto_template *tmpls, int count);
150void crypto_unregister_template(struct crypto_template *tmpl);
151void crypto_unregister_templates(struct crypto_template *tmpls, int count);
152struct crypto_template *crypto_lookup_template(const char *name);
153
154int crypto_register_instance(struct crypto_template *tmpl,
155			     struct crypto_instance *inst);
156void crypto_unregister_instance(struct crypto_instance *inst);
157
158int crypto_grab_spawn(struct crypto_spawn *spawn, struct crypto_instance *inst,
159		      const char *name, u32 type, u32 mask);
160void crypto_drop_spawn(struct crypto_spawn *spawn);
161struct crypto_tfm *crypto_spawn_tfm(struct crypto_spawn *spawn, u32 type,
162				    u32 mask);
163void *crypto_spawn_tfm2(struct crypto_spawn *spawn);
164
165struct crypto_attr_type *crypto_get_attr_type(struct rtattr **tb);
166int crypto_check_attr_type(struct rtattr **tb, u32 type, u32 *mask_ret);
167const char *crypto_attr_alg_name(struct rtattr *rta);
 
168int crypto_inst_setname(struct crypto_instance *inst, const char *name,
169			struct crypto_alg *alg);
170
171void crypto_init_queue(struct crypto_queue *queue, unsigned int max_qlen);
172int crypto_enqueue_request(struct crypto_queue *queue,
173			   struct crypto_async_request *request);
174void crypto_enqueue_request_head(struct crypto_queue *queue,
175				 struct crypto_async_request *request);
176struct crypto_async_request *crypto_dequeue_request(struct crypto_queue *queue);
177static inline unsigned int crypto_queue_len(struct crypto_queue *queue)
178{
179	return queue->qlen;
180}
181
182void crypto_inc(u8 *a, unsigned int size);
 
183
184static inline void *crypto_tfm_ctx(struct crypto_tfm *tfm)
185{
186	return tfm->__crt_ctx;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
187}
188
189static inline void *crypto_tfm_ctx_align(struct crypto_tfm *tfm,
190					 unsigned int align)
191{
192	if (align <= crypto_tfm_ctx_alignment())
193		align = 1;
 
194
195	return PTR_ALIGN(crypto_tfm_ctx(tfm), align);
 
 
 
196}
197
198static inline unsigned int crypto_dma_align(void)
199{
200	return CRYPTO_DMA_ALIGN;
201}
202
203static inline unsigned int crypto_dma_padding(void)
 
 
 
 
 
 
204{
205	return (crypto_dma_align() - 1) & ~(crypto_tfm_ctx_alignment() - 1);
 
 
 
206}
207
208static inline void *crypto_tfm_ctx_dma(struct crypto_tfm *tfm)
209{
210	return crypto_tfm_ctx_align(tfm, crypto_dma_align());
211}
212
213static inline struct crypto_instance *crypto_tfm_alg_instance(
214	struct crypto_tfm *tfm)
215{
216	return container_of(tfm->__crt_alg, struct crypto_instance, alg);
217}
218
219static inline void *crypto_instance_ctx(struct crypto_instance *inst)
 
220{
221	return inst->__ctx;
 
 
 
 
 
 
 
 
222}
223
224static inline struct crypto_async_request *crypto_get_backlog(
225	struct crypto_queue *queue)
226{
227	return queue->backlog == &queue->list ? NULL :
228	       container_of(queue->backlog, struct crypto_async_request, list);
229}
230
231static inline u32 crypto_requires_off(struct crypto_attr_type *algt, u32 off)
232{
233	return (algt->type ^ off) & algt->mask & off;
234}
235
236/*
237 * When an algorithm uses another algorithm (e.g., if it's an instance of a
238 * template), these are the flags that should always be set on the "outer"
239 * algorithm if any "inner" algorithm has them set.
240 */
241#define CRYPTO_ALG_INHERITED_FLAGS	\
242	(CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK |	\
243	 CRYPTO_ALG_ALLOCATES_MEMORY)
244
245/*
246 * Given the type and mask that specify the flags restrictions on a template
247 * instance being created, return the mask that should be passed to
248 * crypto_grab_*() (along with type=0) to honor any request the user made to
249 * have any of the CRYPTO_ALG_INHERITED_FLAGS clear.
250 */
251static inline u32 crypto_algt_inherited_mask(struct crypto_attr_type *algt)
252{
253	return crypto_requires_off(algt, CRYPTO_ALG_INHERITED_FLAGS);
254}
255
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
256int crypto_register_notifier(struct notifier_block *nb);
257int crypto_unregister_notifier(struct notifier_block *nb);
258
259/* Crypto notification events. */
260enum {
261	CRYPTO_MSG_ALG_REQUEST,
262	CRYPTO_MSG_ALG_REGISTER,
263	CRYPTO_MSG_ALG_LOADED,
264};
265
266static inline void crypto_request_complete(struct crypto_async_request *req,
267					   int err)
268{
269	req->complete(req->data, err);
270}
271
272static inline u32 crypto_tfm_alg_type(struct crypto_tfm *tfm)
273{
274	return tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK;
275}
276
277#endif	/* _CRYPTO_ALGAPI_H */
v5.9
  1/* SPDX-License-Identifier: GPL-2.0-or-later */
  2/*
  3 * Cryptographic API for algorithms (i.e., low-level API).
  4 *
  5 * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
  6 */
  7#ifndef _CRYPTO_ALGAPI_H
  8#define _CRYPTO_ALGAPI_H
  9
 
 
 
 10#include <linux/crypto.h>
 11#include <linux/list.h>
 12#include <linux/kernel.h>
 13#include <linux/skbuff.h>
 14
 15/*
 16 * Maximum values for blocksize and alignmask, used to allocate
 17 * static buffers that are big enough for any combination of
 18 * algs and architectures. Ciphers have a lower maximum size.
 19 */
 20#define MAX_ALGAPI_BLOCKSIZE		160
 21#define MAX_ALGAPI_ALIGNMASK		63
 22#define MAX_CIPHER_BLOCKSIZE		16
 23#define MAX_CIPHER_ALIGNMASK		15
 24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 25struct crypto_aead;
 26struct crypto_instance;
 27struct module;
 
 28struct rtattr;
 
 29struct seq_file;
 
 30
 31struct crypto_type {
 32	unsigned int (*ctxsize)(struct crypto_alg *alg, u32 type, u32 mask);
 33	unsigned int (*extsize)(struct crypto_alg *alg);
 34	int (*init)(struct crypto_tfm *tfm, u32 type, u32 mask);
 35	int (*init_tfm)(struct crypto_tfm *tfm);
 36	void (*show)(struct seq_file *m, struct crypto_alg *alg);
 37	int (*report)(struct sk_buff *skb, struct crypto_alg *alg);
 38	void (*free)(struct crypto_instance *inst);
 
 
 
 39
 40	unsigned int type;
 41	unsigned int maskclear;
 42	unsigned int maskset;
 43	unsigned int tfmsize;
 44};
 45
 46struct crypto_instance {
 47	struct crypto_alg alg;
 48
 49	struct crypto_template *tmpl;
 50
 51	union {
 52		/* Node in list of instances after registration. */
 53		struct hlist_node list;
 54		/* List of attached spawns before registration. */
 55		struct crypto_spawn *spawns;
 56	};
 57
 
 
 58	void *__ctx[] CRYPTO_MINALIGN_ATTR;
 59};
 60
 61struct crypto_template {
 62	struct list_head list;
 63	struct hlist_head instances;
 64	struct module *module;
 65
 66	int (*create)(struct crypto_template *tmpl, struct rtattr **tb);
 67
 68	char name[CRYPTO_MAX_ALG_NAME];
 69};
 70
 71struct crypto_spawn {
 72	struct list_head list;
 73	struct crypto_alg *alg;
 74	union {
 75		/* Back pointer to instance after registration.*/
 76		struct crypto_instance *inst;
 77		/* Spawn list pointer prior to registration. */
 78		struct crypto_spawn *next;
 79	};
 80	const struct crypto_type *frontend;
 81	u32 mask;
 82	bool dead;
 83	bool registered;
 84};
 85
 86struct crypto_queue {
 87	struct list_head list;
 88	struct list_head *backlog;
 89
 90	unsigned int qlen;
 91	unsigned int max_qlen;
 92};
 93
 94struct scatter_walk {
 95	struct scatterlist *sg;
 96	unsigned int offset;
 97};
 98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 99void crypto_mod_put(struct crypto_alg *alg);
100
101int crypto_register_template(struct crypto_template *tmpl);
102int crypto_register_templates(struct crypto_template *tmpls, int count);
103void crypto_unregister_template(struct crypto_template *tmpl);
104void crypto_unregister_templates(struct crypto_template *tmpls, int count);
105struct crypto_template *crypto_lookup_template(const char *name);
106
107int crypto_register_instance(struct crypto_template *tmpl,
108			     struct crypto_instance *inst);
109void crypto_unregister_instance(struct crypto_instance *inst);
110
111int crypto_grab_spawn(struct crypto_spawn *spawn, struct crypto_instance *inst,
112		      const char *name, u32 type, u32 mask);
113void crypto_drop_spawn(struct crypto_spawn *spawn);
114struct crypto_tfm *crypto_spawn_tfm(struct crypto_spawn *spawn, u32 type,
115				    u32 mask);
116void *crypto_spawn_tfm2(struct crypto_spawn *spawn);
117
118struct crypto_attr_type *crypto_get_attr_type(struct rtattr **tb);
119int crypto_check_attr_type(struct rtattr **tb, u32 type, u32 *mask_ret);
120const char *crypto_attr_alg_name(struct rtattr *rta);
121int crypto_attr_u32(struct rtattr *rta, u32 *num);
122int crypto_inst_setname(struct crypto_instance *inst, const char *name,
123			struct crypto_alg *alg);
124
125void crypto_init_queue(struct crypto_queue *queue, unsigned int max_qlen);
126int crypto_enqueue_request(struct crypto_queue *queue,
127			   struct crypto_async_request *request);
128void crypto_enqueue_request_head(struct crypto_queue *queue,
129				 struct crypto_async_request *request);
130struct crypto_async_request *crypto_dequeue_request(struct crypto_queue *queue);
131static inline unsigned int crypto_queue_len(struct crypto_queue *queue)
132{
133	return queue->qlen;
134}
135
136void crypto_inc(u8 *a, unsigned int size);
137void __crypto_xor(u8 *dst, const u8 *src1, const u8 *src2, unsigned int size);
138
139static inline void crypto_xor(u8 *dst, const u8 *src, unsigned int size)
140{
141	if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) &&
142	    __builtin_constant_p(size) &&
143	    (size % sizeof(unsigned long)) == 0) {
144		unsigned long *d = (unsigned long *)dst;
145		unsigned long *s = (unsigned long *)src;
146
147		while (size > 0) {
148			*d++ ^= *s++;
149			size -= sizeof(unsigned long);
150		}
151	} else {
152		__crypto_xor(dst, dst, src, size);
153	}
154}
155
156static inline void crypto_xor_cpy(u8 *dst, const u8 *src1, const u8 *src2,
157				  unsigned int size)
158{
159	if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) &&
160	    __builtin_constant_p(size) &&
161	    (size % sizeof(unsigned long)) == 0) {
162		unsigned long *d = (unsigned long *)dst;
163		unsigned long *s1 = (unsigned long *)src1;
164		unsigned long *s2 = (unsigned long *)src2;
165
166		while (size > 0) {
167			*d++ = *s1++ ^ *s2++;
168			size -= sizeof(unsigned long);
169		}
170	} else {
171		__crypto_xor(dst, src1, src2, size);
172	}
173}
174
175static inline void *crypto_tfm_ctx_aligned(struct crypto_tfm *tfm)
 
176{
177	return PTR_ALIGN(crypto_tfm_ctx(tfm),
178			 crypto_tfm_alg_alignmask(tfm) + 1);
179}
180
181static inline struct crypto_instance *crypto_tfm_alg_instance(
182	struct crypto_tfm *tfm)
183{
184	return container_of(tfm->__crt_alg, struct crypto_instance, alg);
185}
186
187static inline void *crypto_instance_ctx(struct crypto_instance *inst)
188{
189	return inst->__ctx;
190}
191
192struct crypto_cipher_spawn {
193	struct crypto_spawn base;
194};
195
196static inline int crypto_grab_cipher(struct crypto_cipher_spawn *spawn,
197				     struct crypto_instance *inst,
198				     const char *name, u32 type, u32 mask)
199{
200	type &= ~CRYPTO_ALG_TYPE_MASK;
201	type |= CRYPTO_ALG_TYPE_CIPHER;
202	mask |= CRYPTO_ALG_TYPE_MASK;
203	return crypto_grab_spawn(&spawn->base, inst, name, type, mask);
204}
205
206static inline void crypto_drop_cipher(struct crypto_cipher_spawn *spawn)
207{
208	crypto_drop_spawn(&spawn->base);
209}
210
211static inline struct crypto_alg *crypto_spawn_cipher_alg(
212	struct crypto_cipher_spawn *spawn)
213{
214	return spawn->base.alg;
215}
216
217static inline struct crypto_cipher *crypto_spawn_cipher(
218	struct crypto_cipher_spawn *spawn)
219{
220	u32 type = CRYPTO_ALG_TYPE_CIPHER;
221	u32 mask = CRYPTO_ALG_TYPE_MASK;
222
223	return __crypto_cipher_cast(crypto_spawn_tfm(&spawn->base, type, mask));
224}
225
226static inline struct cipher_alg *crypto_cipher_alg(struct crypto_cipher *tfm)
227{
228	return &crypto_cipher_tfm(tfm)->__crt_alg->cra_cipher;
229}
230
231static inline struct crypto_async_request *crypto_get_backlog(
232	struct crypto_queue *queue)
233{
234	return queue->backlog == &queue->list ? NULL :
235	       container_of(queue->backlog, struct crypto_async_request, list);
236}
237
238static inline u32 crypto_requires_off(struct crypto_attr_type *algt, u32 off)
239{
240	return (algt->type ^ off) & algt->mask & off;
241}
242
243/*
244 * When an algorithm uses another algorithm (e.g., if it's an instance of a
245 * template), these are the flags that should always be set on the "outer"
246 * algorithm if any "inner" algorithm has them set.
247 */
248#define CRYPTO_ALG_INHERITED_FLAGS	\
249	(CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK |	\
250	 CRYPTO_ALG_ALLOCATES_MEMORY)
251
252/*
253 * Given the type and mask that specify the flags restrictions on a template
254 * instance being created, return the mask that should be passed to
255 * crypto_grab_*() (along with type=0) to honor any request the user made to
256 * have any of the CRYPTO_ALG_INHERITED_FLAGS clear.
257 */
258static inline u32 crypto_algt_inherited_mask(struct crypto_attr_type *algt)
259{
260	return crypto_requires_off(algt, CRYPTO_ALG_INHERITED_FLAGS);
261}
262
263noinline unsigned long __crypto_memneq(const void *a, const void *b, size_t size);
264
265/**
266 * crypto_memneq - Compare two areas of memory without leaking
267 *		   timing information.
268 *
269 * @a: One area of memory
270 * @b: Another area of memory
271 * @size: The size of the area.
272 *
273 * Returns 0 when data is equal, 1 otherwise.
274 */
275static inline int crypto_memneq(const void *a, const void *b, size_t size)
276{
277	return __crypto_memneq(a, b, size) != 0UL ? 1 : 0;
278}
279
280static inline void crypto_yield(u32 flags)
281{
282	if (flags & CRYPTO_TFM_REQ_MAY_SLEEP)
283		cond_resched();
284}
285
286int crypto_register_notifier(struct notifier_block *nb);
287int crypto_unregister_notifier(struct notifier_block *nb);
288
289/* Crypto notification events. */
290enum {
291	CRYPTO_MSG_ALG_REQUEST,
292	CRYPTO_MSG_ALG_REGISTER,
293	CRYPTO_MSG_ALG_LOADED,
294};
 
 
 
 
 
 
 
 
 
 
 
295
296#endif	/* _CRYPTO_ALGAPI_H */