Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * NILFS module and super block management.
   4 *
   5 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
   6 *
   7 * Written by Ryusuke Konishi.
   8 */
   9/*
  10 *  linux/fs/ext2/super.c
  11 *
  12 * Copyright (C) 1992, 1993, 1994, 1995
  13 * Remy Card (card@masi.ibp.fr)
  14 * Laboratoire MASI - Institut Blaise Pascal
  15 * Universite Pierre et Marie Curie (Paris VI)
  16 *
  17 *  from
  18 *
  19 *  linux/fs/minix/inode.c
  20 *
  21 *  Copyright (C) 1991, 1992  Linus Torvalds
  22 *
  23 *  Big-endian to little-endian byte-swapping/bitmaps by
  24 *        David S. Miller (davem@caip.rutgers.edu), 1995
  25 */
  26
  27#include <linux/module.h>
  28#include <linux/string.h>
  29#include <linux/slab.h>
  30#include <linux/init.h>
  31#include <linux/blkdev.h>
  32#include <linux/parser.h>
  33#include <linux/crc32.h>
  34#include <linux/vfs.h>
  35#include <linux/writeback.h>
  36#include <linux/seq_file.h>
  37#include <linux/mount.h>
  38#include <linux/fs_context.h>
  39#include "nilfs.h"
  40#include "export.h"
  41#include "mdt.h"
  42#include "alloc.h"
  43#include "btree.h"
  44#include "btnode.h"
  45#include "page.h"
  46#include "cpfile.h"
  47#include "sufile.h" /* nilfs_sufile_resize(), nilfs_sufile_set_alloc_range() */
  48#include "ifile.h"
  49#include "dat.h"
  50#include "segment.h"
  51#include "segbuf.h"
  52
  53MODULE_AUTHOR("NTT Corp.");
  54MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
  55		   "(NILFS)");
  56MODULE_LICENSE("GPL");
  57
  58static struct kmem_cache *nilfs_inode_cachep;
  59struct kmem_cache *nilfs_transaction_cachep;
  60struct kmem_cache *nilfs_segbuf_cachep;
  61struct kmem_cache *nilfs_btree_path_cache;
  62
  63static int nilfs_setup_super(struct super_block *sb, int is_mount);
  64static int nilfs_remount(struct super_block *sb, int *flags, char *data);
  65
  66void __nilfs_msg(struct super_block *sb, const char *fmt, ...)
  67{
  68	struct va_format vaf;
  69	va_list args;
  70	int level;
  71
  72	va_start(args, fmt);
  73
  74	level = printk_get_level(fmt);
  75	vaf.fmt = printk_skip_level(fmt);
  76	vaf.va = &args;
  77
  78	if (sb)
  79		printk("%c%cNILFS (%s): %pV\n",
  80		       KERN_SOH_ASCII, level, sb->s_id, &vaf);
  81	else
  82		printk("%c%cNILFS: %pV\n",
  83		       KERN_SOH_ASCII, level, &vaf);
  84
  85	va_end(args);
  86}
  87
  88static void nilfs_set_error(struct super_block *sb)
  89{
  90	struct the_nilfs *nilfs = sb->s_fs_info;
  91	struct nilfs_super_block **sbp;
  92
  93	down_write(&nilfs->ns_sem);
  94	if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
  95		nilfs->ns_mount_state |= NILFS_ERROR_FS;
  96		sbp = nilfs_prepare_super(sb, 0);
  97		if (likely(sbp)) {
  98			sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
  99			if (sbp[1])
 100				sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
 101			nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
 102		}
 103	}
 104	up_write(&nilfs->ns_sem);
 105}
 106
 107/**
 108 * __nilfs_error() - report failure condition on a filesystem
 109 *
 110 * __nilfs_error() sets an ERROR_FS flag on the superblock as well as
 111 * reporting an error message.  This function should be called when
 112 * NILFS detects incoherences or defects of meta data on disk.
 113 *
 114 * This implements the body of nilfs_error() macro.  Normally,
 115 * nilfs_error() should be used.  As for sustainable errors such as a
 116 * single-shot I/O error, nilfs_err() should be used instead.
 117 *
 118 * Callers should not add a trailing newline since this will do it.
 119 */
 120void __nilfs_error(struct super_block *sb, const char *function,
 121		   const char *fmt, ...)
 122{
 123	struct the_nilfs *nilfs = sb->s_fs_info;
 124	struct va_format vaf;
 125	va_list args;
 126
 127	va_start(args, fmt);
 128
 129	vaf.fmt = fmt;
 130	vaf.va = &args;
 131
 132	printk(KERN_CRIT "NILFS error (device %s): %s: %pV\n",
 133	       sb->s_id, function, &vaf);
 134
 135	va_end(args);
 136
 137	if (!sb_rdonly(sb)) {
 138		nilfs_set_error(sb);
 139
 140		if (nilfs_test_opt(nilfs, ERRORS_RO)) {
 141			printk(KERN_CRIT "Remounting filesystem read-only\n");
 142			sb->s_flags |= SB_RDONLY;
 143		}
 144	}
 145
 146	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
 147		panic("NILFS (device %s): panic forced after error\n",
 148		      sb->s_id);
 149}
 150
 151struct inode *nilfs_alloc_inode(struct super_block *sb)
 152{
 153	struct nilfs_inode_info *ii;
 154
 155	ii = alloc_inode_sb(sb, nilfs_inode_cachep, GFP_NOFS);
 156	if (!ii)
 157		return NULL;
 158	ii->i_bh = NULL;
 159	ii->i_state = 0;
 160	ii->i_cno = 0;
 161	ii->i_assoc_inode = NULL;
 162	ii->i_bmap = &ii->i_bmap_data;
 163	return &ii->vfs_inode;
 164}
 165
 166static void nilfs_free_inode(struct inode *inode)
 167{
 168	if (nilfs_is_metadata_file_inode(inode))
 169		nilfs_mdt_destroy(inode);
 170
 171	kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
 172}
 173
 174static int nilfs_sync_super(struct super_block *sb, int flag)
 175{
 176	struct the_nilfs *nilfs = sb->s_fs_info;
 177	int err;
 178
 179 retry:
 180	set_buffer_dirty(nilfs->ns_sbh[0]);
 181	if (nilfs_test_opt(nilfs, BARRIER)) {
 182		err = __sync_dirty_buffer(nilfs->ns_sbh[0],
 183					  REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
 184	} else {
 185		err = sync_dirty_buffer(nilfs->ns_sbh[0]);
 186	}
 187
 188	if (unlikely(err)) {
 189		nilfs_err(sb, "unable to write superblock: err=%d", err);
 190		if (err == -EIO && nilfs->ns_sbh[1]) {
 191			/*
 192			 * sbp[0] points to newer log than sbp[1],
 193			 * so copy sbp[0] to sbp[1] to take over sbp[0].
 194			 */
 195			memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0],
 196			       nilfs->ns_sbsize);
 197			nilfs_fall_back_super_block(nilfs);
 198			goto retry;
 199		}
 200	} else {
 201		struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
 202
 203		nilfs->ns_sbwcount++;
 204
 205		/*
 206		 * The latest segment becomes trailable from the position
 207		 * written in superblock.
 208		 */
 209		clear_nilfs_discontinued(nilfs);
 210
 211		/* update GC protection for recent segments */
 212		if (nilfs->ns_sbh[1]) {
 213			if (flag == NILFS_SB_COMMIT_ALL) {
 214				set_buffer_dirty(nilfs->ns_sbh[1]);
 215				if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0)
 216					goto out;
 217			}
 218			if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) <
 219			    le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno))
 220				sbp = nilfs->ns_sbp[1];
 221		}
 222
 223		spin_lock(&nilfs->ns_last_segment_lock);
 224		nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
 225		spin_unlock(&nilfs->ns_last_segment_lock);
 226	}
 227 out:
 228	return err;
 229}
 230
 231void nilfs_set_log_cursor(struct nilfs_super_block *sbp,
 232			  struct the_nilfs *nilfs)
 233{
 234	sector_t nfreeblocks;
 235
 236	/* nilfs->ns_sem must be locked by the caller. */
 237	nilfs_count_free_blocks(nilfs, &nfreeblocks);
 238	sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks);
 239
 240	spin_lock(&nilfs->ns_last_segment_lock);
 241	sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
 242	sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
 243	sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
 244	spin_unlock(&nilfs->ns_last_segment_lock);
 245}
 246
 247struct nilfs_super_block **nilfs_prepare_super(struct super_block *sb,
 248					       int flip)
 249{
 250	struct the_nilfs *nilfs = sb->s_fs_info;
 251	struct nilfs_super_block **sbp = nilfs->ns_sbp;
 252
 253	/* nilfs->ns_sem must be locked by the caller. */
 254	if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
 255		if (sbp[1] &&
 256		    sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) {
 257			memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
 258		} else {
 259			nilfs_crit(sb, "superblock broke");
 260			return NULL;
 261		}
 262	} else if (sbp[1] &&
 263		   sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
 264		memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
 265	}
 266
 267	if (flip && sbp[1])
 268		nilfs_swap_super_block(nilfs);
 269
 270	return sbp;
 271}
 272
 273int nilfs_commit_super(struct super_block *sb, int flag)
 274{
 275	struct the_nilfs *nilfs = sb->s_fs_info;
 276	struct nilfs_super_block **sbp = nilfs->ns_sbp;
 277	time64_t t;
 278
 279	/* nilfs->ns_sem must be locked by the caller. */
 280	t = ktime_get_real_seconds();
 281	nilfs->ns_sbwtime = t;
 282	sbp[0]->s_wtime = cpu_to_le64(t);
 283	sbp[0]->s_sum = 0;
 284	sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
 285					     (unsigned char *)sbp[0],
 286					     nilfs->ns_sbsize));
 287	if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) {
 288		sbp[1]->s_wtime = sbp[0]->s_wtime;
 289		sbp[1]->s_sum = 0;
 290		sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
 291					    (unsigned char *)sbp[1],
 292					    nilfs->ns_sbsize));
 293	}
 294	clear_nilfs_sb_dirty(nilfs);
 295	nilfs->ns_flushed_device = 1;
 296	/* make sure store to ns_flushed_device cannot be reordered */
 297	smp_wmb();
 298	return nilfs_sync_super(sb, flag);
 299}
 300
 301/**
 302 * nilfs_cleanup_super() - write filesystem state for cleanup
 303 * @sb: super block instance to be unmounted or degraded to read-only
 304 *
 305 * This function restores state flags in the on-disk super block.
 306 * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the
 307 * filesystem was not clean previously.
 308 */
 309int nilfs_cleanup_super(struct super_block *sb)
 310{
 311	struct the_nilfs *nilfs = sb->s_fs_info;
 312	struct nilfs_super_block **sbp;
 313	int flag = NILFS_SB_COMMIT;
 314	int ret = -EIO;
 315
 316	sbp = nilfs_prepare_super(sb, 0);
 317	if (sbp) {
 318		sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
 319		nilfs_set_log_cursor(sbp[0], nilfs);
 320		if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) {
 321			/*
 322			 * make the "clean" flag also to the opposite
 323			 * super block if both super blocks point to
 324			 * the same checkpoint.
 325			 */
 326			sbp[1]->s_state = sbp[0]->s_state;
 327			flag = NILFS_SB_COMMIT_ALL;
 328		}
 329		ret = nilfs_commit_super(sb, flag);
 330	}
 331	return ret;
 332}
 333
 334/**
 335 * nilfs_move_2nd_super - relocate secondary super block
 336 * @sb: super block instance
 337 * @sb2off: new offset of the secondary super block (in bytes)
 338 */
 339static int nilfs_move_2nd_super(struct super_block *sb, loff_t sb2off)
 340{
 341	struct the_nilfs *nilfs = sb->s_fs_info;
 342	struct buffer_head *nsbh;
 343	struct nilfs_super_block *nsbp;
 344	sector_t blocknr, newblocknr;
 345	unsigned long offset;
 346	int sb2i;  /* array index of the secondary superblock */
 347	int ret = 0;
 348
 349	/* nilfs->ns_sem must be locked by the caller. */
 350	if (nilfs->ns_sbh[1] &&
 351	    nilfs->ns_sbh[1]->b_blocknr > nilfs->ns_first_data_block) {
 352		sb2i = 1;
 353		blocknr = nilfs->ns_sbh[1]->b_blocknr;
 354	} else if (nilfs->ns_sbh[0]->b_blocknr > nilfs->ns_first_data_block) {
 355		sb2i = 0;
 356		blocknr = nilfs->ns_sbh[0]->b_blocknr;
 357	} else {
 358		sb2i = -1;
 359		blocknr = 0;
 360	}
 361	if (sb2i >= 0 && (u64)blocknr << nilfs->ns_blocksize_bits == sb2off)
 362		goto out;  /* super block location is unchanged */
 363
 364	/* Get new super block buffer */
 365	newblocknr = sb2off >> nilfs->ns_blocksize_bits;
 366	offset = sb2off & (nilfs->ns_blocksize - 1);
 367	nsbh = sb_getblk(sb, newblocknr);
 368	if (!nsbh) {
 369		nilfs_warn(sb,
 370			   "unable to move secondary superblock to block %llu",
 371			   (unsigned long long)newblocknr);
 372		ret = -EIO;
 373		goto out;
 374	}
 375	nsbp = (void *)nsbh->b_data + offset;
 
 376
 377	lock_buffer(nsbh);
 378	if (sb2i >= 0) {
 379		/*
 380		 * The position of the second superblock only changes by 4KiB,
 381		 * which is larger than the maximum superblock data size
 382		 * (= 1KiB), so there is no need to use memmove() to allow
 383		 * overlap between source and destination.
 384		 */
 385		memcpy(nsbp, nilfs->ns_sbp[sb2i], nilfs->ns_sbsize);
 386
 387		/*
 388		 * Zero fill after copy to avoid overwriting in case of move
 389		 * within the same block.
 390		 */
 391		memset(nsbh->b_data, 0, offset);
 392		memset((void *)nsbp + nilfs->ns_sbsize, 0,
 393		       nsbh->b_size - offset - nilfs->ns_sbsize);
 394	} else {
 395		memset(nsbh->b_data, 0, nsbh->b_size);
 396	}
 397	set_buffer_uptodate(nsbh);
 398	unlock_buffer(nsbh);
 399
 400	if (sb2i >= 0) {
 401		brelse(nilfs->ns_sbh[sb2i]);
 402		nilfs->ns_sbh[sb2i] = nsbh;
 403		nilfs->ns_sbp[sb2i] = nsbp;
 404	} else if (nilfs->ns_sbh[0]->b_blocknr < nilfs->ns_first_data_block) {
 405		/* secondary super block will be restored to index 1 */
 406		nilfs->ns_sbh[1] = nsbh;
 407		nilfs->ns_sbp[1] = nsbp;
 408	} else {
 409		brelse(nsbh);
 410	}
 411out:
 412	return ret;
 413}
 414
 415/**
 416 * nilfs_resize_fs - resize the filesystem
 417 * @sb: super block instance
 418 * @newsize: new size of the filesystem (in bytes)
 419 */
 420int nilfs_resize_fs(struct super_block *sb, __u64 newsize)
 421{
 422	struct the_nilfs *nilfs = sb->s_fs_info;
 423	struct nilfs_super_block **sbp;
 424	__u64 devsize, newnsegs;
 425	loff_t sb2off;
 426	int ret;
 427
 428	ret = -ERANGE;
 429	devsize = bdev_nr_bytes(sb->s_bdev);
 430	if (newsize > devsize)
 431		goto out;
 432
 433	/*
 434	 * Prevent underflow in second superblock position calculation.
 435	 * The exact minimum size check is done in nilfs_sufile_resize().
 436	 */
 437	if (newsize < 4096) {
 438		ret = -ENOSPC;
 439		goto out;
 440	}
 441
 442	/*
 443	 * Write lock is required to protect some functions depending
 444	 * on the number of segments, the number of reserved segments,
 445	 * and so forth.
 446	 */
 447	down_write(&nilfs->ns_segctor_sem);
 448
 449	sb2off = NILFS_SB2_OFFSET_BYTES(newsize);
 450	newnsegs = sb2off >> nilfs->ns_blocksize_bits;
 451	do_div(newnsegs, nilfs->ns_blocks_per_segment);
 452
 453	ret = nilfs_sufile_resize(nilfs->ns_sufile, newnsegs);
 454	up_write(&nilfs->ns_segctor_sem);
 455	if (ret < 0)
 456		goto out;
 457
 458	ret = nilfs_construct_segment(sb);
 459	if (ret < 0)
 460		goto out;
 461
 462	down_write(&nilfs->ns_sem);
 463	nilfs_move_2nd_super(sb, sb2off);
 464	ret = -EIO;
 465	sbp = nilfs_prepare_super(sb, 0);
 466	if (likely(sbp)) {
 467		nilfs_set_log_cursor(sbp[0], nilfs);
 468		/*
 469		 * Drop NILFS_RESIZE_FS flag for compatibility with
 470		 * mount-time resize which may be implemented in a
 471		 * future release.
 472		 */
 473		sbp[0]->s_state = cpu_to_le16(le16_to_cpu(sbp[0]->s_state) &
 474					      ~NILFS_RESIZE_FS);
 475		sbp[0]->s_dev_size = cpu_to_le64(newsize);
 476		sbp[0]->s_nsegments = cpu_to_le64(nilfs->ns_nsegments);
 477		if (sbp[1])
 478			memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
 479		ret = nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
 480	}
 481	up_write(&nilfs->ns_sem);
 482
 483	/*
 484	 * Reset the range of allocatable segments last.  This order
 485	 * is important in the case of expansion because the secondary
 486	 * superblock must be protected from log write until migration
 487	 * completes.
 488	 */
 489	if (!ret)
 490		nilfs_sufile_set_alloc_range(nilfs->ns_sufile, 0, newnsegs - 1);
 491out:
 492	return ret;
 493}
 494
 495static void nilfs_put_super(struct super_block *sb)
 496{
 497	struct the_nilfs *nilfs = sb->s_fs_info;
 498
 499	nilfs_detach_log_writer(sb);
 500
 501	if (!sb_rdonly(sb)) {
 502		down_write(&nilfs->ns_sem);
 503		nilfs_cleanup_super(sb);
 504		up_write(&nilfs->ns_sem);
 505	}
 506
 507	nilfs_sysfs_delete_device_group(nilfs);
 508	iput(nilfs->ns_sufile);
 509	iput(nilfs->ns_cpfile);
 510	iput(nilfs->ns_dat);
 511
 512	destroy_nilfs(nilfs);
 513	sb->s_fs_info = NULL;
 514}
 515
 516static int nilfs_sync_fs(struct super_block *sb, int wait)
 517{
 518	struct the_nilfs *nilfs = sb->s_fs_info;
 519	struct nilfs_super_block **sbp;
 520	int err = 0;
 521
 522	/* This function is called when super block should be written back */
 523	if (wait)
 524		err = nilfs_construct_segment(sb);
 525
 526	down_write(&nilfs->ns_sem);
 527	if (nilfs_sb_dirty(nilfs)) {
 528		sbp = nilfs_prepare_super(sb, nilfs_sb_will_flip(nilfs));
 529		if (likely(sbp)) {
 530			nilfs_set_log_cursor(sbp[0], nilfs);
 531			nilfs_commit_super(sb, NILFS_SB_COMMIT);
 532		}
 533	}
 534	up_write(&nilfs->ns_sem);
 535
 536	if (!err)
 537		err = nilfs_flush_device(nilfs);
 538
 539	return err;
 540}
 541
 542int nilfs_attach_checkpoint(struct super_block *sb, __u64 cno, int curr_mnt,
 543			    struct nilfs_root **rootp)
 544{
 545	struct the_nilfs *nilfs = sb->s_fs_info;
 546	struct nilfs_root *root;
 547	struct nilfs_checkpoint *raw_cp;
 548	struct buffer_head *bh_cp;
 549	int err = -ENOMEM;
 550
 551	root = nilfs_find_or_create_root(
 552		nilfs, curr_mnt ? NILFS_CPTREE_CURRENT_CNO : cno);
 553	if (!root)
 554		return err;
 555
 556	if (root->ifile)
 557		goto reuse; /* already attached checkpoint */
 558
 559	down_read(&nilfs->ns_segctor_sem);
 560	err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
 561					  &bh_cp);
 562	up_read(&nilfs->ns_segctor_sem);
 563	if (unlikely(err)) {
 564		if (err == -ENOENT || err == -EINVAL) {
 565			nilfs_err(sb,
 566				  "Invalid checkpoint (checkpoint number=%llu)",
 567				  (unsigned long long)cno);
 568			err = -EINVAL;
 569		}
 570		goto failed;
 571	}
 572
 573	err = nilfs_ifile_read(sb, root, nilfs->ns_inode_size,
 574			       &raw_cp->cp_ifile_inode, &root->ifile);
 575	if (err)
 576		goto failed_bh;
 577
 578	atomic64_set(&root->inodes_count,
 579			le64_to_cpu(raw_cp->cp_inodes_count));
 580	atomic64_set(&root->blocks_count,
 581			le64_to_cpu(raw_cp->cp_blocks_count));
 582
 583	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
 584
 585 reuse:
 586	*rootp = root;
 587	return 0;
 588
 589 failed_bh:
 590	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
 591 failed:
 592	nilfs_put_root(root);
 593
 594	return err;
 595}
 596
 597static int nilfs_freeze(struct super_block *sb)
 598{
 599	struct the_nilfs *nilfs = sb->s_fs_info;
 600	int err;
 601
 602	if (sb_rdonly(sb))
 603		return 0;
 604
 605	/* Mark super block clean */
 606	down_write(&nilfs->ns_sem);
 607	err = nilfs_cleanup_super(sb);
 608	up_write(&nilfs->ns_sem);
 609	return err;
 610}
 611
 612static int nilfs_unfreeze(struct super_block *sb)
 613{
 614	struct the_nilfs *nilfs = sb->s_fs_info;
 615
 616	if (sb_rdonly(sb))
 617		return 0;
 618
 619	down_write(&nilfs->ns_sem);
 620	nilfs_setup_super(sb, false);
 621	up_write(&nilfs->ns_sem);
 622	return 0;
 623}
 624
 625static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
 626{
 627	struct super_block *sb = dentry->d_sb;
 628	struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
 629	struct the_nilfs *nilfs = root->nilfs;
 630	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
 631	unsigned long long blocks;
 632	unsigned long overhead;
 633	unsigned long nrsvblocks;
 634	sector_t nfreeblocks;
 635	u64 nmaxinodes, nfreeinodes;
 636	int err;
 637
 638	/*
 639	 * Compute all of the segment blocks
 640	 *
 641	 * The blocks before first segment and after last segment
 642	 * are excluded.
 643	 */
 644	blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
 645		- nilfs->ns_first_data_block;
 646	nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
 647
 648	/*
 649	 * Compute the overhead
 650	 *
 651	 * When distributing meta data blocks outside segment structure,
 652	 * We must count them as the overhead.
 653	 */
 654	overhead = 0;
 655
 656	err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
 657	if (unlikely(err))
 658		return err;
 659
 660	err = nilfs_ifile_count_free_inodes(root->ifile,
 661					    &nmaxinodes, &nfreeinodes);
 662	if (unlikely(err)) {
 663		nilfs_warn(sb, "failed to count free inodes: err=%d", err);
 664		if (err == -ERANGE) {
 665			/*
 666			 * If nilfs_palloc_count_max_entries() returns
 667			 * -ERANGE error code then we simply treat
 668			 * curent inodes count as maximum possible and
 669			 * zero as free inodes value.
 670			 */
 671			nmaxinodes = atomic64_read(&root->inodes_count);
 672			nfreeinodes = 0;
 673			err = 0;
 674		} else
 675			return err;
 676	}
 677
 678	buf->f_type = NILFS_SUPER_MAGIC;
 679	buf->f_bsize = sb->s_blocksize;
 680	buf->f_blocks = blocks - overhead;
 681	buf->f_bfree = nfreeblocks;
 682	buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
 683		(buf->f_bfree - nrsvblocks) : 0;
 684	buf->f_files = nmaxinodes;
 685	buf->f_ffree = nfreeinodes;
 686	buf->f_namelen = NILFS_NAME_LEN;
 687	buf->f_fsid = u64_to_fsid(id);
 688
 689	return 0;
 690}
 691
 692static int nilfs_show_options(struct seq_file *seq, struct dentry *dentry)
 693{
 694	struct super_block *sb = dentry->d_sb;
 695	struct the_nilfs *nilfs = sb->s_fs_info;
 696	struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
 697
 698	if (!nilfs_test_opt(nilfs, BARRIER))
 699		seq_puts(seq, ",nobarrier");
 700	if (root->cno != NILFS_CPTREE_CURRENT_CNO)
 701		seq_printf(seq, ",cp=%llu", (unsigned long long)root->cno);
 702	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
 703		seq_puts(seq, ",errors=panic");
 704	if (nilfs_test_opt(nilfs, ERRORS_CONT))
 705		seq_puts(seq, ",errors=continue");
 706	if (nilfs_test_opt(nilfs, STRICT_ORDER))
 707		seq_puts(seq, ",order=strict");
 708	if (nilfs_test_opt(nilfs, NORECOVERY))
 709		seq_puts(seq, ",norecovery");
 710	if (nilfs_test_opt(nilfs, DISCARD))
 711		seq_puts(seq, ",discard");
 712
 713	return 0;
 714}
 715
 716static const struct super_operations nilfs_sops = {
 717	.alloc_inode    = nilfs_alloc_inode,
 718	.free_inode     = nilfs_free_inode,
 719	.dirty_inode    = nilfs_dirty_inode,
 720	.evict_inode    = nilfs_evict_inode,
 721	.put_super      = nilfs_put_super,
 722	.sync_fs        = nilfs_sync_fs,
 723	.freeze_fs	= nilfs_freeze,
 724	.unfreeze_fs	= nilfs_unfreeze,
 725	.statfs         = nilfs_statfs,
 726	.remount_fs     = nilfs_remount,
 727	.show_options = nilfs_show_options
 728};
 729
 730enum {
 731	Opt_err_cont, Opt_err_panic, Opt_err_ro,
 732	Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery,
 733	Opt_discard, Opt_nodiscard, Opt_err,
 734};
 735
 736static match_table_t tokens = {
 737	{Opt_err_cont, "errors=continue"},
 738	{Opt_err_panic, "errors=panic"},
 739	{Opt_err_ro, "errors=remount-ro"},
 740	{Opt_barrier, "barrier"},
 741	{Opt_nobarrier, "nobarrier"},
 742	{Opt_snapshot, "cp=%u"},
 743	{Opt_order, "order=%s"},
 744	{Opt_norecovery, "norecovery"},
 745	{Opt_discard, "discard"},
 746	{Opt_nodiscard, "nodiscard"},
 747	{Opt_err, NULL}
 748};
 749
 750static int parse_options(char *options, struct super_block *sb, int is_remount)
 751{
 752	struct the_nilfs *nilfs = sb->s_fs_info;
 753	char *p;
 754	substring_t args[MAX_OPT_ARGS];
 755
 756	if (!options)
 757		return 1;
 758
 759	while ((p = strsep(&options, ",")) != NULL) {
 760		int token;
 761
 762		if (!*p)
 763			continue;
 764
 765		token = match_token(p, tokens, args);
 766		switch (token) {
 767		case Opt_barrier:
 768			nilfs_set_opt(nilfs, BARRIER);
 769			break;
 770		case Opt_nobarrier:
 771			nilfs_clear_opt(nilfs, BARRIER);
 772			break;
 773		case Opt_order:
 774			if (strcmp(args[0].from, "relaxed") == 0)
 775				/* Ordered data semantics */
 776				nilfs_clear_opt(nilfs, STRICT_ORDER);
 777			else if (strcmp(args[0].from, "strict") == 0)
 778				/* Strict in-order semantics */
 779				nilfs_set_opt(nilfs, STRICT_ORDER);
 780			else
 781				return 0;
 782			break;
 783		case Opt_err_panic:
 784			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_PANIC);
 785			break;
 786		case Opt_err_ro:
 787			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_RO);
 788			break;
 789		case Opt_err_cont:
 790			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_CONT);
 791			break;
 792		case Opt_snapshot:
 793			if (is_remount) {
 794				nilfs_err(sb,
 795					  "\"%s\" option is invalid for remount",
 796					  p);
 797				return 0;
 798			}
 799			break;
 800		case Opt_norecovery:
 801			nilfs_set_opt(nilfs, NORECOVERY);
 802			break;
 803		case Opt_discard:
 804			nilfs_set_opt(nilfs, DISCARD);
 805			break;
 806		case Opt_nodiscard:
 807			nilfs_clear_opt(nilfs, DISCARD);
 808			break;
 809		default:
 810			nilfs_err(sb, "unrecognized mount option \"%s\"", p);
 811			return 0;
 812		}
 813	}
 814	return 1;
 815}
 816
 817static inline void
 818nilfs_set_default_options(struct super_block *sb,
 819			  struct nilfs_super_block *sbp)
 820{
 821	struct the_nilfs *nilfs = sb->s_fs_info;
 822
 823	nilfs->ns_mount_opt =
 824		NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER;
 825}
 826
 827static int nilfs_setup_super(struct super_block *sb, int is_mount)
 828{
 829	struct the_nilfs *nilfs = sb->s_fs_info;
 830	struct nilfs_super_block **sbp;
 831	int max_mnt_count;
 832	int mnt_count;
 833
 834	/* nilfs->ns_sem must be locked by the caller. */
 835	sbp = nilfs_prepare_super(sb, 0);
 836	if (!sbp)
 837		return -EIO;
 838
 839	if (!is_mount)
 840		goto skip_mount_setup;
 841
 842	max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count);
 843	mnt_count = le16_to_cpu(sbp[0]->s_mnt_count);
 844
 845	if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
 846		nilfs_warn(sb, "mounting fs with errors");
 847#if 0
 848	} else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
 849		nilfs_warn(sb, "maximal mount count reached");
 850#endif
 851	}
 852	if (!max_mnt_count)
 853		sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
 854
 855	sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1);
 856	sbp[0]->s_mtime = cpu_to_le64(ktime_get_real_seconds());
 857
 858skip_mount_setup:
 859	sbp[0]->s_state =
 860		cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS);
 861	/* synchronize sbp[1] with sbp[0] */
 862	if (sbp[1])
 863		memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
 864	return nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
 865}
 866
 867struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
 868						 u64 pos, int blocksize,
 869						 struct buffer_head **pbh)
 870{
 871	unsigned long long sb_index = pos;
 872	unsigned long offset;
 873
 874	offset = do_div(sb_index, blocksize);
 875	*pbh = sb_bread(sb, sb_index);
 876	if (!*pbh)
 877		return NULL;
 878	return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
 879}
 880
 881int nilfs_store_magic_and_option(struct super_block *sb,
 882				 struct nilfs_super_block *sbp,
 883				 char *data)
 884{
 885	struct the_nilfs *nilfs = sb->s_fs_info;
 886
 887	sb->s_magic = le16_to_cpu(sbp->s_magic);
 888
 889	/* FS independent flags */
 890#ifdef NILFS_ATIME_DISABLE
 891	sb->s_flags |= SB_NOATIME;
 892#endif
 893
 894	nilfs_set_default_options(sb, sbp);
 895
 896	nilfs->ns_resuid = le16_to_cpu(sbp->s_def_resuid);
 897	nilfs->ns_resgid = le16_to_cpu(sbp->s_def_resgid);
 898	nilfs->ns_interval = le32_to_cpu(sbp->s_c_interval);
 899	nilfs->ns_watermark = le32_to_cpu(sbp->s_c_block_max);
 900
 901	return !parse_options(data, sb, 0) ? -EINVAL : 0;
 902}
 903
 904int nilfs_check_feature_compatibility(struct super_block *sb,
 905				      struct nilfs_super_block *sbp)
 906{
 907	__u64 features;
 908
 909	features = le64_to_cpu(sbp->s_feature_incompat) &
 910		~NILFS_FEATURE_INCOMPAT_SUPP;
 911	if (features) {
 912		nilfs_err(sb,
 913			  "couldn't mount because of unsupported optional features (%llx)",
 914			  (unsigned long long)features);
 915		return -EINVAL;
 916	}
 917	features = le64_to_cpu(sbp->s_feature_compat_ro) &
 918		~NILFS_FEATURE_COMPAT_RO_SUPP;
 919	if (!sb_rdonly(sb) && features) {
 920		nilfs_err(sb,
 921			  "couldn't mount RDWR because of unsupported optional features (%llx)",
 922			  (unsigned long long)features);
 923		return -EINVAL;
 924	}
 925	return 0;
 926}
 927
 928static int nilfs_get_root_dentry(struct super_block *sb,
 929				 struct nilfs_root *root,
 930				 struct dentry **root_dentry)
 931{
 932	struct inode *inode;
 933	struct dentry *dentry;
 934	int ret = 0;
 935
 936	inode = nilfs_iget(sb, root, NILFS_ROOT_INO);
 937	if (IS_ERR(inode)) {
 938		ret = PTR_ERR(inode);
 939		nilfs_err(sb, "error %d getting root inode", ret);
 940		goto out;
 941	}
 942	if (!S_ISDIR(inode->i_mode) || !inode->i_blocks || !inode->i_size) {
 943		iput(inode);
 944		nilfs_err(sb, "corrupt root inode");
 945		ret = -EINVAL;
 946		goto out;
 947	}
 948
 949	if (root->cno == NILFS_CPTREE_CURRENT_CNO) {
 950		dentry = d_find_alias(inode);
 951		if (!dentry) {
 952			dentry = d_make_root(inode);
 953			if (!dentry) {
 954				ret = -ENOMEM;
 955				goto failed_dentry;
 956			}
 957		} else {
 958			iput(inode);
 959		}
 960	} else {
 961		dentry = d_obtain_root(inode);
 962		if (IS_ERR(dentry)) {
 963			ret = PTR_ERR(dentry);
 964			goto failed_dentry;
 965		}
 966	}
 967	*root_dentry = dentry;
 968 out:
 969	return ret;
 970
 971 failed_dentry:
 972	nilfs_err(sb, "error %d getting root dentry", ret);
 973	goto out;
 974}
 975
 976static int nilfs_attach_snapshot(struct super_block *s, __u64 cno,
 977				 struct dentry **root_dentry)
 978{
 979	struct the_nilfs *nilfs = s->s_fs_info;
 980	struct nilfs_root *root;
 981	int ret;
 982
 983	mutex_lock(&nilfs->ns_snapshot_mount_mutex);
 984
 985	down_read(&nilfs->ns_segctor_sem);
 986	ret = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile, cno);
 987	up_read(&nilfs->ns_segctor_sem);
 988	if (ret < 0) {
 989		ret = (ret == -ENOENT) ? -EINVAL : ret;
 990		goto out;
 991	} else if (!ret) {
 992		nilfs_err(s,
 993			  "The specified checkpoint is not a snapshot (checkpoint number=%llu)",
 994			  (unsigned long long)cno);
 995		ret = -EINVAL;
 996		goto out;
 997	}
 998
 999	ret = nilfs_attach_checkpoint(s, cno, false, &root);
1000	if (ret) {
1001		nilfs_err(s,
1002			  "error %d while loading snapshot (checkpoint number=%llu)",
1003			  ret, (unsigned long long)cno);
1004		goto out;
1005	}
1006	ret = nilfs_get_root_dentry(s, root, root_dentry);
1007	nilfs_put_root(root);
1008 out:
1009	mutex_unlock(&nilfs->ns_snapshot_mount_mutex);
1010	return ret;
1011}
1012
1013/**
1014 * nilfs_tree_is_busy() - try to shrink dentries of a checkpoint
1015 * @root_dentry: root dentry of the tree to be shrunk
1016 *
1017 * This function returns true if the tree was in-use.
1018 */
1019static bool nilfs_tree_is_busy(struct dentry *root_dentry)
1020{
1021	shrink_dcache_parent(root_dentry);
1022	return d_count(root_dentry) > 1;
1023}
1024
1025int nilfs_checkpoint_is_mounted(struct super_block *sb, __u64 cno)
1026{
1027	struct the_nilfs *nilfs = sb->s_fs_info;
1028	struct nilfs_root *root;
1029	struct inode *inode;
1030	struct dentry *dentry;
1031	int ret;
1032
1033	if (cno > nilfs->ns_cno)
1034		return false;
1035
1036	if (cno >= nilfs_last_cno(nilfs))
1037		return true;	/* protect recent checkpoints */
1038
1039	ret = false;
1040	root = nilfs_lookup_root(nilfs, cno);
1041	if (root) {
1042		inode = nilfs_ilookup(sb, root, NILFS_ROOT_INO);
1043		if (inode) {
1044			dentry = d_find_alias(inode);
1045			if (dentry) {
1046				ret = nilfs_tree_is_busy(dentry);
1047				dput(dentry);
1048			}
1049			iput(inode);
1050		}
1051		nilfs_put_root(root);
1052	}
1053	return ret;
1054}
1055
1056/**
1057 * nilfs_fill_super() - initialize a super block instance
1058 * @sb: super_block
1059 * @data: mount options
1060 * @silent: silent mode flag
1061 *
1062 * This function is called exclusively by nilfs->ns_mount_mutex.
1063 * So, the recovery process is protected from other simultaneous mounts.
1064 */
1065static int
1066nilfs_fill_super(struct super_block *sb, void *data, int silent)
1067{
1068	struct the_nilfs *nilfs;
1069	struct nilfs_root *fsroot;
1070	__u64 cno;
1071	int err;
1072
1073	nilfs = alloc_nilfs(sb);
1074	if (!nilfs)
1075		return -ENOMEM;
1076
1077	sb->s_fs_info = nilfs;
1078
1079	err = init_nilfs(nilfs, sb, (char *)data);
1080	if (err)
1081		goto failed_nilfs;
1082
1083	sb->s_op = &nilfs_sops;
1084	sb->s_export_op = &nilfs_export_ops;
1085	sb->s_root = NULL;
1086	sb->s_time_gran = 1;
1087	sb->s_max_links = NILFS_LINK_MAX;
1088
1089	sb->s_bdi = bdi_get(sb->s_bdev->bd_disk->bdi);
1090
1091	err = load_nilfs(nilfs, sb);
1092	if (err)
1093		goto failed_nilfs;
1094
1095	cno = nilfs_last_cno(nilfs);
1096	err = nilfs_attach_checkpoint(sb, cno, true, &fsroot);
1097	if (err) {
1098		nilfs_err(sb,
1099			  "error %d while loading last checkpoint (checkpoint number=%llu)",
1100			  err, (unsigned long long)cno);
1101		goto failed_unload;
1102	}
1103
1104	if (!sb_rdonly(sb)) {
1105		err = nilfs_attach_log_writer(sb, fsroot);
1106		if (err)
1107			goto failed_checkpoint;
1108	}
1109
1110	err = nilfs_get_root_dentry(sb, fsroot, &sb->s_root);
1111	if (err)
1112		goto failed_segctor;
1113
1114	nilfs_put_root(fsroot);
1115
1116	if (!sb_rdonly(sb)) {
1117		down_write(&nilfs->ns_sem);
1118		nilfs_setup_super(sb, true);
1119		up_write(&nilfs->ns_sem);
1120	}
1121
1122	return 0;
1123
1124 failed_segctor:
1125	nilfs_detach_log_writer(sb);
1126
1127 failed_checkpoint:
1128	nilfs_put_root(fsroot);
1129
1130 failed_unload:
1131	nilfs_sysfs_delete_device_group(nilfs);
1132	iput(nilfs->ns_sufile);
1133	iput(nilfs->ns_cpfile);
1134	iput(nilfs->ns_dat);
1135
1136 failed_nilfs:
1137	destroy_nilfs(nilfs);
1138	return err;
1139}
1140
1141static int nilfs_remount(struct super_block *sb, int *flags, char *data)
1142{
1143	struct the_nilfs *nilfs = sb->s_fs_info;
1144	unsigned long old_sb_flags;
1145	unsigned long old_mount_opt;
1146	int err;
1147
1148	sync_filesystem(sb);
1149	old_sb_flags = sb->s_flags;
1150	old_mount_opt = nilfs->ns_mount_opt;
1151
1152	if (!parse_options(data, sb, 1)) {
1153		err = -EINVAL;
1154		goto restore_opts;
1155	}
1156	sb->s_flags = (sb->s_flags & ~SB_POSIXACL);
1157
1158	err = -EINVAL;
1159
1160	if (!nilfs_valid_fs(nilfs)) {
1161		nilfs_warn(sb,
1162			   "couldn't remount because the filesystem is in an incomplete recovery state");
1163		goto restore_opts;
1164	}
1165
1166	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
1167		goto out;
1168	if (*flags & SB_RDONLY) {
1169		sb->s_flags |= SB_RDONLY;
1170
1171		/*
1172		 * Remounting a valid RW partition RDONLY, so set
1173		 * the RDONLY flag and then mark the partition as valid again.
1174		 */
1175		down_write(&nilfs->ns_sem);
1176		nilfs_cleanup_super(sb);
1177		up_write(&nilfs->ns_sem);
1178	} else {
1179		__u64 features;
1180		struct nilfs_root *root;
1181
1182		/*
1183		 * Mounting a RDONLY partition read-write, so reread and
1184		 * store the current valid flag.  (It may have been changed
1185		 * by fsck since we originally mounted the partition.)
1186		 */
1187		down_read(&nilfs->ns_sem);
1188		features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) &
1189			~NILFS_FEATURE_COMPAT_RO_SUPP;
1190		up_read(&nilfs->ns_sem);
1191		if (features) {
1192			nilfs_warn(sb,
1193				   "couldn't remount RDWR because of unsupported optional features (%llx)",
1194				   (unsigned long long)features);
1195			err = -EROFS;
1196			goto restore_opts;
1197		}
1198
1199		sb->s_flags &= ~SB_RDONLY;
1200
1201		root = NILFS_I(d_inode(sb->s_root))->i_root;
1202		err = nilfs_attach_log_writer(sb, root);
1203		if (err)
1204			goto restore_opts;
1205
1206		down_write(&nilfs->ns_sem);
1207		nilfs_setup_super(sb, true);
1208		up_write(&nilfs->ns_sem);
1209	}
1210 out:
1211	return 0;
1212
1213 restore_opts:
1214	sb->s_flags = old_sb_flags;
1215	nilfs->ns_mount_opt = old_mount_opt;
1216	return err;
1217}
1218
1219struct nilfs_super_data {
 
1220	__u64 cno;
1221	int flags;
1222};
1223
1224static int nilfs_parse_snapshot_option(const char *option,
1225				       const substring_t *arg,
1226				       struct nilfs_super_data *sd)
1227{
1228	unsigned long long val;
1229	const char *msg = NULL;
1230	int err;
1231
1232	if (!(sd->flags & SB_RDONLY)) {
1233		msg = "read-only option is not specified";
1234		goto parse_error;
1235	}
1236
1237	err = kstrtoull(arg->from, 0, &val);
1238	if (err) {
1239		if (err == -ERANGE)
1240			msg = "too large checkpoint number";
1241		else
1242			msg = "malformed argument";
1243		goto parse_error;
1244	} else if (val == 0) {
1245		msg = "invalid checkpoint number 0";
1246		goto parse_error;
1247	}
1248	sd->cno = val;
1249	return 0;
1250
1251parse_error:
1252	nilfs_err(NULL, "invalid option \"%s\": %s", option, msg);
1253	return 1;
1254}
1255
1256/**
1257 * nilfs_identify - pre-read mount options needed to identify mount instance
1258 * @data: mount options
1259 * @sd: nilfs_super_data
1260 */
1261static int nilfs_identify(char *data, struct nilfs_super_data *sd)
1262{
1263	char *p, *options = data;
1264	substring_t args[MAX_OPT_ARGS];
1265	int token;
1266	int ret = 0;
1267
1268	do {
1269		p = strsep(&options, ",");
1270		if (p != NULL && *p) {
1271			token = match_token(p, tokens, args);
1272			if (token == Opt_snapshot)
1273				ret = nilfs_parse_snapshot_option(p, &args[0],
1274								  sd);
1275		}
1276		if (!options)
1277			break;
1278		BUG_ON(options == data);
1279		*(options - 1) = ',';
1280	} while (!ret);
1281	return ret;
1282}
1283
1284static int nilfs_set_bdev_super(struct super_block *s, void *data)
1285{
1286	s->s_dev = *(dev_t *)data;
 
1287	return 0;
1288}
1289
1290static int nilfs_test_bdev_super(struct super_block *s, void *data)
1291{
1292	return !(s->s_iflags & SB_I_RETIRED) && s->s_dev == *(dev_t *)data;
1293}
1294
1295static struct dentry *
1296nilfs_mount(struct file_system_type *fs_type, int flags,
1297	     const char *dev_name, void *data)
1298{
1299	struct nilfs_super_data sd = { .flags = flags };
1300	struct super_block *s;
1301	dev_t dev;
1302	int err;
1303
1304	if (nilfs_identify(data, &sd))
1305		return ERR_PTR(-EINVAL);
1306
1307	err = lookup_bdev(dev_name, &dev);
1308	if (err)
1309		return ERR_PTR(err);
 
 
 
 
 
 
 
 
1310
 
 
 
 
 
 
 
 
 
 
 
1311	s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, flags,
1312		 &dev);
1313	if (IS_ERR(s))
1314		return ERR_CAST(s);
 
 
 
1315
1316	if (!s->s_root) {
1317		err = setup_bdev_super(s, flags, NULL);
1318		if (!err)
1319			err = nilfs_fill_super(s, data,
1320					       flags & SB_SILENT ? 1 : 0);
 
 
 
 
1321		if (err)
1322			goto failed_super;
1323
1324		s->s_flags |= SB_ACTIVE;
1325	} else if (!sd.cno) {
1326		if (nilfs_tree_is_busy(s->s_root)) {
1327			if ((flags ^ s->s_flags) & SB_RDONLY) {
1328				nilfs_err(s,
1329					  "the device already has a %s mount.",
1330					  sb_rdonly(s) ? "read-only" : "read/write");
1331				err = -EBUSY;
1332				goto failed_super;
1333			}
1334		} else {
1335			/*
1336			 * Try remount to setup mount states if the current
1337			 * tree is not mounted and only snapshots use this sb.
1338			 */
1339			err = nilfs_remount(s, &flags, data);
1340			if (err)
1341				goto failed_super;
1342		}
1343	}
1344
1345	if (sd.cno) {
1346		struct dentry *root_dentry;
1347
1348		err = nilfs_attach_snapshot(s, sd.cno, &root_dentry);
1349		if (err)
1350			goto failed_super;
1351		return root_dentry;
 
1352	}
1353
1354	return dget(s->s_root);
 
 
 
1355
1356 failed_super:
1357	deactivate_locked_super(s);
 
 
 
 
1358	return ERR_PTR(err);
1359}
1360
1361struct file_system_type nilfs_fs_type = {
1362	.owner    = THIS_MODULE,
1363	.name     = "nilfs2",
1364	.mount    = nilfs_mount,
1365	.kill_sb  = kill_block_super,
1366	.fs_flags = FS_REQUIRES_DEV,
1367};
1368MODULE_ALIAS_FS("nilfs2");
1369
1370static void nilfs_inode_init_once(void *obj)
1371{
1372	struct nilfs_inode_info *ii = obj;
1373
1374	INIT_LIST_HEAD(&ii->i_dirty);
1375#ifdef CONFIG_NILFS_XATTR
1376	init_rwsem(&ii->xattr_sem);
1377#endif
1378	inode_init_once(&ii->vfs_inode);
1379}
1380
1381static void nilfs_segbuf_init_once(void *obj)
1382{
1383	memset(obj, 0, sizeof(struct nilfs_segment_buffer));
1384}
1385
1386static void nilfs_destroy_cachep(void)
1387{
1388	/*
1389	 * Make sure all delayed rcu free inodes are flushed before we
1390	 * destroy cache.
1391	 */
1392	rcu_barrier();
1393
1394	kmem_cache_destroy(nilfs_inode_cachep);
1395	kmem_cache_destroy(nilfs_transaction_cachep);
1396	kmem_cache_destroy(nilfs_segbuf_cachep);
1397	kmem_cache_destroy(nilfs_btree_path_cache);
1398}
1399
1400static int __init nilfs_init_cachep(void)
1401{
1402	nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
1403			sizeof(struct nilfs_inode_info), 0,
1404			SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT,
1405			nilfs_inode_init_once);
1406	if (!nilfs_inode_cachep)
1407		goto fail;
1408
1409	nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache",
1410			sizeof(struct nilfs_transaction_info), 0,
1411			SLAB_RECLAIM_ACCOUNT, NULL);
1412	if (!nilfs_transaction_cachep)
1413		goto fail;
1414
1415	nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache",
1416			sizeof(struct nilfs_segment_buffer), 0,
1417			SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once);
1418	if (!nilfs_segbuf_cachep)
1419		goto fail;
1420
1421	nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache",
1422			sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX,
1423			0, 0, NULL);
1424	if (!nilfs_btree_path_cache)
1425		goto fail;
1426
1427	return 0;
1428
1429fail:
1430	nilfs_destroy_cachep();
1431	return -ENOMEM;
1432}
1433
1434static int __init init_nilfs_fs(void)
1435{
1436	int err;
1437
1438	err = nilfs_init_cachep();
1439	if (err)
1440		goto fail;
1441
1442	err = nilfs_sysfs_init();
1443	if (err)
1444		goto free_cachep;
1445
1446	err = register_filesystem(&nilfs_fs_type);
1447	if (err)
1448		goto deinit_sysfs_entry;
1449
1450	printk(KERN_INFO "NILFS version 2 loaded\n");
1451	return 0;
1452
1453deinit_sysfs_entry:
1454	nilfs_sysfs_exit();
1455free_cachep:
1456	nilfs_destroy_cachep();
1457fail:
1458	return err;
1459}
1460
1461static void __exit exit_nilfs_fs(void)
1462{
1463	nilfs_destroy_cachep();
1464	nilfs_sysfs_exit();
1465	unregister_filesystem(&nilfs_fs_type);
1466}
1467
1468module_init(init_nilfs_fs)
1469module_exit(exit_nilfs_fs)
v6.2
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * NILFS module and super block management.
   4 *
   5 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
   6 *
   7 * Written by Ryusuke Konishi.
   8 */
   9/*
  10 *  linux/fs/ext2/super.c
  11 *
  12 * Copyright (C) 1992, 1993, 1994, 1995
  13 * Remy Card (card@masi.ibp.fr)
  14 * Laboratoire MASI - Institut Blaise Pascal
  15 * Universite Pierre et Marie Curie (Paris VI)
  16 *
  17 *  from
  18 *
  19 *  linux/fs/minix/inode.c
  20 *
  21 *  Copyright (C) 1991, 1992  Linus Torvalds
  22 *
  23 *  Big-endian to little-endian byte-swapping/bitmaps by
  24 *        David S. Miller (davem@caip.rutgers.edu), 1995
  25 */
  26
  27#include <linux/module.h>
  28#include <linux/string.h>
  29#include <linux/slab.h>
  30#include <linux/init.h>
  31#include <linux/blkdev.h>
  32#include <linux/parser.h>
  33#include <linux/crc32.h>
  34#include <linux/vfs.h>
  35#include <linux/writeback.h>
  36#include <linux/seq_file.h>
  37#include <linux/mount.h>
 
  38#include "nilfs.h"
  39#include "export.h"
  40#include "mdt.h"
  41#include "alloc.h"
  42#include "btree.h"
  43#include "btnode.h"
  44#include "page.h"
  45#include "cpfile.h"
  46#include "sufile.h" /* nilfs_sufile_resize(), nilfs_sufile_set_alloc_range() */
  47#include "ifile.h"
  48#include "dat.h"
  49#include "segment.h"
  50#include "segbuf.h"
  51
  52MODULE_AUTHOR("NTT Corp.");
  53MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
  54		   "(NILFS)");
  55MODULE_LICENSE("GPL");
  56
  57static struct kmem_cache *nilfs_inode_cachep;
  58struct kmem_cache *nilfs_transaction_cachep;
  59struct kmem_cache *nilfs_segbuf_cachep;
  60struct kmem_cache *nilfs_btree_path_cache;
  61
  62static int nilfs_setup_super(struct super_block *sb, int is_mount);
  63static int nilfs_remount(struct super_block *sb, int *flags, char *data);
  64
  65void __nilfs_msg(struct super_block *sb, const char *fmt, ...)
  66{
  67	struct va_format vaf;
  68	va_list args;
  69	int level;
  70
  71	va_start(args, fmt);
  72
  73	level = printk_get_level(fmt);
  74	vaf.fmt = printk_skip_level(fmt);
  75	vaf.va = &args;
  76
  77	if (sb)
  78		printk("%c%cNILFS (%s): %pV\n",
  79		       KERN_SOH_ASCII, level, sb->s_id, &vaf);
  80	else
  81		printk("%c%cNILFS: %pV\n",
  82		       KERN_SOH_ASCII, level, &vaf);
  83
  84	va_end(args);
  85}
  86
  87static void nilfs_set_error(struct super_block *sb)
  88{
  89	struct the_nilfs *nilfs = sb->s_fs_info;
  90	struct nilfs_super_block **sbp;
  91
  92	down_write(&nilfs->ns_sem);
  93	if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
  94		nilfs->ns_mount_state |= NILFS_ERROR_FS;
  95		sbp = nilfs_prepare_super(sb, 0);
  96		if (likely(sbp)) {
  97			sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
  98			if (sbp[1])
  99				sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
 100			nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
 101		}
 102	}
 103	up_write(&nilfs->ns_sem);
 104}
 105
 106/**
 107 * __nilfs_error() - report failure condition on a filesystem
 108 *
 109 * __nilfs_error() sets an ERROR_FS flag on the superblock as well as
 110 * reporting an error message.  This function should be called when
 111 * NILFS detects incoherences or defects of meta data on disk.
 112 *
 113 * This implements the body of nilfs_error() macro.  Normally,
 114 * nilfs_error() should be used.  As for sustainable errors such as a
 115 * single-shot I/O error, nilfs_err() should be used instead.
 116 *
 117 * Callers should not add a trailing newline since this will do it.
 118 */
 119void __nilfs_error(struct super_block *sb, const char *function,
 120		   const char *fmt, ...)
 121{
 122	struct the_nilfs *nilfs = sb->s_fs_info;
 123	struct va_format vaf;
 124	va_list args;
 125
 126	va_start(args, fmt);
 127
 128	vaf.fmt = fmt;
 129	vaf.va = &args;
 130
 131	printk(KERN_CRIT "NILFS error (device %s): %s: %pV\n",
 132	       sb->s_id, function, &vaf);
 133
 134	va_end(args);
 135
 136	if (!sb_rdonly(sb)) {
 137		nilfs_set_error(sb);
 138
 139		if (nilfs_test_opt(nilfs, ERRORS_RO)) {
 140			printk(KERN_CRIT "Remounting filesystem read-only\n");
 141			sb->s_flags |= SB_RDONLY;
 142		}
 143	}
 144
 145	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
 146		panic("NILFS (device %s): panic forced after error\n",
 147		      sb->s_id);
 148}
 149
 150struct inode *nilfs_alloc_inode(struct super_block *sb)
 151{
 152	struct nilfs_inode_info *ii;
 153
 154	ii = alloc_inode_sb(sb, nilfs_inode_cachep, GFP_NOFS);
 155	if (!ii)
 156		return NULL;
 157	ii->i_bh = NULL;
 158	ii->i_state = 0;
 159	ii->i_cno = 0;
 160	ii->i_assoc_inode = NULL;
 161	ii->i_bmap = &ii->i_bmap_data;
 162	return &ii->vfs_inode;
 163}
 164
 165static void nilfs_free_inode(struct inode *inode)
 166{
 167	if (nilfs_is_metadata_file_inode(inode))
 168		nilfs_mdt_destroy(inode);
 169
 170	kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
 171}
 172
 173static int nilfs_sync_super(struct super_block *sb, int flag)
 174{
 175	struct the_nilfs *nilfs = sb->s_fs_info;
 176	int err;
 177
 178 retry:
 179	set_buffer_dirty(nilfs->ns_sbh[0]);
 180	if (nilfs_test_opt(nilfs, BARRIER)) {
 181		err = __sync_dirty_buffer(nilfs->ns_sbh[0],
 182					  REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
 183	} else {
 184		err = sync_dirty_buffer(nilfs->ns_sbh[0]);
 185	}
 186
 187	if (unlikely(err)) {
 188		nilfs_err(sb, "unable to write superblock: err=%d", err);
 189		if (err == -EIO && nilfs->ns_sbh[1]) {
 190			/*
 191			 * sbp[0] points to newer log than sbp[1],
 192			 * so copy sbp[0] to sbp[1] to take over sbp[0].
 193			 */
 194			memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0],
 195			       nilfs->ns_sbsize);
 196			nilfs_fall_back_super_block(nilfs);
 197			goto retry;
 198		}
 199	} else {
 200		struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
 201
 202		nilfs->ns_sbwcount++;
 203
 204		/*
 205		 * The latest segment becomes trailable from the position
 206		 * written in superblock.
 207		 */
 208		clear_nilfs_discontinued(nilfs);
 209
 210		/* update GC protection for recent segments */
 211		if (nilfs->ns_sbh[1]) {
 212			if (flag == NILFS_SB_COMMIT_ALL) {
 213				set_buffer_dirty(nilfs->ns_sbh[1]);
 214				if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0)
 215					goto out;
 216			}
 217			if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) <
 218			    le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno))
 219				sbp = nilfs->ns_sbp[1];
 220		}
 221
 222		spin_lock(&nilfs->ns_last_segment_lock);
 223		nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
 224		spin_unlock(&nilfs->ns_last_segment_lock);
 225	}
 226 out:
 227	return err;
 228}
 229
 230void nilfs_set_log_cursor(struct nilfs_super_block *sbp,
 231			  struct the_nilfs *nilfs)
 232{
 233	sector_t nfreeblocks;
 234
 235	/* nilfs->ns_sem must be locked by the caller. */
 236	nilfs_count_free_blocks(nilfs, &nfreeblocks);
 237	sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks);
 238
 239	spin_lock(&nilfs->ns_last_segment_lock);
 240	sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
 241	sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
 242	sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
 243	spin_unlock(&nilfs->ns_last_segment_lock);
 244}
 245
 246struct nilfs_super_block **nilfs_prepare_super(struct super_block *sb,
 247					       int flip)
 248{
 249	struct the_nilfs *nilfs = sb->s_fs_info;
 250	struct nilfs_super_block **sbp = nilfs->ns_sbp;
 251
 252	/* nilfs->ns_sem must be locked by the caller. */
 253	if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
 254		if (sbp[1] &&
 255		    sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) {
 256			memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
 257		} else {
 258			nilfs_crit(sb, "superblock broke");
 259			return NULL;
 260		}
 261	} else if (sbp[1] &&
 262		   sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
 263		memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
 264	}
 265
 266	if (flip && sbp[1])
 267		nilfs_swap_super_block(nilfs);
 268
 269	return sbp;
 270}
 271
 272int nilfs_commit_super(struct super_block *sb, int flag)
 273{
 274	struct the_nilfs *nilfs = sb->s_fs_info;
 275	struct nilfs_super_block **sbp = nilfs->ns_sbp;
 276	time64_t t;
 277
 278	/* nilfs->ns_sem must be locked by the caller. */
 279	t = ktime_get_real_seconds();
 280	nilfs->ns_sbwtime = t;
 281	sbp[0]->s_wtime = cpu_to_le64(t);
 282	sbp[0]->s_sum = 0;
 283	sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
 284					     (unsigned char *)sbp[0],
 285					     nilfs->ns_sbsize));
 286	if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) {
 287		sbp[1]->s_wtime = sbp[0]->s_wtime;
 288		sbp[1]->s_sum = 0;
 289		sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
 290					    (unsigned char *)sbp[1],
 291					    nilfs->ns_sbsize));
 292	}
 293	clear_nilfs_sb_dirty(nilfs);
 294	nilfs->ns_flushed_device = 1;
 295	/* make sure store to ns_flushed_device cannot be reordered */
 296	smp_wmb();
 297	return nilfs_sync_super(sb, flag);
 298}
 299
 300/**
 301 * nilfs_cleanup_super() - write filesystem state for cleanup
 302 * @sb: super block instance to be unmounted or degraded to read-only
 303 *
 304 * This function restores state flags in the on-disk super block.
 305 * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the
 306 * filesystem was not clean previously.
 307 */
 308int nilfs_cleanup_super(struct super_block *sb)
 309{
 310	struct the_nilfs *nilfs = sb->s_fs_info;
 311	struct nilfs_super_block **sbp;
 312	int flag = NILFS_SB_COMMIT;
 313	int ret = -EIO;
 314
 315	sbp = nilfs_prepare_super(sb, 0);
 316	if (sbp) {
 317		sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
 318		nilfs_set_log_cursor(sbp[0], nilfs);
 319		if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) {
 320			/*
 321			 * make the "clean" flag also to the opposite
 322			 * super block if both super blocks point to
 323			 * the same checkpoint.
 324			 */
 325			sbp[1]->s_state = sbp[0]->s_state;
 326			flag = NILFS_SB_COMMIT_ALL;
 327		}
 328		ret = nilfs_commit_super(sb, flag);
 329	}
 330	return ret;
 331}
 332
 333/**
 334 * nilfs_move_2nd_super - relocate secondary super block
 335 * @sb: super block instance
 336 * @sb2off: new offset of the secondary super block (in bytes)
 337 */
 338static int nilfs_move_2nd_super(struct super_block *sb, loff_t sb2off)
 339{
 340	struct the_nilfs *nilfs = sb->s_fs_info;
 341	struct buffer_head *nsbh;
 342	struct nilfs_super_block *nsbp;
 343	sector_t blocknr, newblocknr;
 344	unsigned long offset;
 345	int sb2i;  /* array index of the secondary superblock */
 346	int ret = 0;
 347
 348	/* nilfs->ns_sem must be locked by the caller. */
 349	if (nilfs->ns_sbh[1] &&
 350	    nilfs->ns_sbh[1]->b_blocknr > nilfs->ns_first_data_block) {
 351		sb2i = 1;
 352		blocknr = nilfs->ns_sbh[1]->b_blocknr;
 353	} else if (nilfs->ns_sbh[0]->b_blocknr > nilfs->ns_first_data_block) {
 354		sb2i = 0;
 355		blocknr = nilfs->ns_sbh[0]->b_blocknr;
 356	} else {
 357		sb2i = -1;
 358		blocknr = 0;
 359	}
 360	if (sb2i >= 0 && (u64)blocknr << nilfs->ns_blocksize_bits == sb2off)
 361		goto out;  /* super block location is unchanged */
 362
 363	/* Get new super block buffer */
 364	newblocknr = sb2off >> nilfs->ns_blocksize_bits;
 365	offset = sb2off & (nilfs->ns_blocksize - 1);
 366	nsbh = sb_getblk(sb, newblocknr);
 367	if (!nsbh) {
 368		nilfs_warn(sb,
 369			   "unable to move secondary superblock to block %llu",
 370			   (unsigned long long)newblocknr);
 371		ret = -EIO;
 372		goto out;
 373	}
 374	nsbp = (void *)nsbh->b_data + offset;
 375	memset(nsbp, 0, nilfs->ns_blocksize);
 376
 
 377	if (sb2i >= 0) {
 
 
 
 
 
 
 378		memcpy(nsbp, nilfs->ns_sbp[sb2i], nilfs->ns_sbsize);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 379		brelse(nilfs->ns_sbh[sb2i]);
 380		nilfs->ns_sbh[sb2i] = nsbh;
 381		nilfs->ns_sbp[sb2i] = nsbp;
 382	} else if (nilfs->ns_sbh[0]->b_blocknr < nilfs->ns_first_data_block) {
 383		/* secondary super block will be restored to index 1 */
 384		nilfs->ns_sbh[1] = nsbh;
 385		nilfs->ns_sbp[1] = nsbp;
 386	} else {
 387		brelse(nsbh);
 388	}
 389out:
 390	return ret;
 391}
 392
 393/**
 394 * nilfs_resize_fs - resize the filesystem
 395 * @sb: super block instance
 396 * @newsize: new size of the filesystem (in bytes)
 397 */
 398int nilfs_resize_fs(struct super_block *sb, __u64 newsize)
 399{
 400	struct the_nilfs *nilfs = sb->s_fs_info;
 401	struct nilfs_super_block **sbp;
 402	__u64 devsize, newnsegs;
 403	loff_t sb2off;
 404	int ret;
 405
 406	ret = -ERANGE;
 407	devsize = bdev_nr_bytes(sb->s_bdev);
 408	if (newsize > devsize)
 409		goto out;
 410
 411	/*
 412	 * Prevent underflow in second superblock position calculation.
 413	 * The exact minimum size check is done in nilfs_sufile_resize().
 414	 */
 415	if (newsize < 4096) {
 416		ret = -ENOSPC;
 417		goto out;
 418	}
 419
 420	/*
 421	 * Write lock is required to protect some functions depending
 422	 * on the number of segments, the number of reserved segments,
 423	 * and so forth.
 424	 */
 425	down_write(&nilfs->ns_segctor_sem);
 426
 427	sb2off = NILFS_SB2_OFFSET_BYTES(newsize);
 428	newnsegs = sb2off >> nilfs->ns_blocksize_bits;
 429	do_div(newnsegs, nilfs->ns_blocks_per_segment);
 430
 431	ret = nilfs_sufile_resize(nilfs->ns_sufile, newnsegs);
 432	up_write(&nilfs->ns_segctor_sem);
 433	if (ret < 0)
 434		goto out;
 435
 436	ret = nilfs_construct_segment(sb);
 437	if (ret < 0)
 438		goto out;
 439
 440	down_write(&nilfs->ns_sem);
 441	nilfs_move_2nd_super(sb, sb2off);
 442	ret = -EIO;
 443	sbp = nilfs_prepare_super(sb, 0);
 444	if (likely(sbp)) {
 445		nilfs_set_log_cursor(sbp[0], nilfs);
 446		/*
 447		 * Drop NILFS_RESIZE_FS flag for compatibility with
 448		 * mount-time resize which may be implemented in a
 449		 * future release.
 450		 */
 451		sbp[0]->s_state = cpu_to_le16(le16_to_cpu(sbp[0]->s_state) &
 452					      ~NILFS_RESIZE_FS);
 453		sbp[0]->s_dev_size = cpu_to_le64(newsize);
 454		sbp[0]->s_nsegments = cpu_to_le64(nilfs->ns_nsegments);
 455		if (sbp[1])
 456			memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
 457		ret = nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
 458	}
 459	up_write(&nilfs->ns_sem);
 460
 461	/*
 462	 * Reset the range of allocatable segments last.  This order
 463	 * is important in the case of expansion because the secondary
 464	 * superblock must be protected from log write until migration
 465	 * completes.
 466	 */
 467	if (!ret)
 468		nilfs_sufile_set_alloc_range(nilfs->ns_sufile, 0, newnsegs - 1);
 469out:
 470	return ret;
 471}
 472
 473static void nilfs_put_super(struct super_block *sb)
 474{
 475	struct the_nilfs *nilfs = sb->s_fs_info;
 476
 477	nilfs_detach_log_writer(sb);
 478
 479	if (!sb_rdonly(sb)) {
 480		down_write(&nilfs->ns_sem);
 481		nilfs_cleanup_super(sb);
 482		up_write(&nilfs->ns_sem);
 483	}
 484
 
 485	iput(nilfs->ns_sufile);
 486	iput(nilfs->ns_cpfile);
 487	iput(nilfs->ns_dat);
 488
 489	destroy_nilfs(nilfs);
 490	sb->s_fs_info = NULL;
 491}
 492
 493static int nilfs_sync_fs(struct super_block *sb, int wait)
 494{
 495	struct the_nilfs *nilfs = sb->s_fs_info;
 496	struct nilfs_super_block **sbp;
 497	int err = 0;
 498
 499	/* This function is called when super block should be written back */
 500	if (wait)
 501		err = nilfs_construct_segment(sb);
 502
 503	down_write(&nilfs->ns_sem);
 504	if (nilfs_sb_dirty(nilfs)) {
 505		sbp = nilfs_prepare_super(sb, nilfs_sb_will_flip(nilfs));
 506		if (likely(sbp)) {
 507			nilfs_set_log_cursor(sbp[0], nilfs);
 508			nilfs_commit_super(sb, NILFS_SB_COMMIT);
 509		}
 510	}
 511	up_write(&nilfs->ns_sem);
 512
 513	if (!err)
 514		err = nilfs_flush_device(nilfs);
 515
 516	return err;
 517}
 518
 519int nilfs_attach_checkpoint(struct super_block *sb, __u64 cno, int curr_mnt,
 520			    struct nilfs_root **rootp)
 521{
 522	struct the_nilfs *nilfs = sb->s_fs_info;
 523	struct nilfs_root *root;
 524	struct nilfs_checkpoint *raw_cp;
 525	struct buffer_head *bh_cp;
 526	int err = -ENOMEM;
 527
 528	root = nilfs_find_or_create_root(
 529		nilfs, curr_mnt ? NILFS_CPTREE_CURRENT_CNO : cno);
 530	if (!root)
 531		return err;
 532
 533	if (root->ifile)
 534		goto reuse; /* already attached checkpoint */
 535
 536	down_read(&nilfs->ns_segctor_sem);
 537	err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
 538					  &bh_cp);
 539	up_read(&nilfs->ns_segctor_sem);
 540	if (unlikely(err)) {
 541		if (err == -ENOENT || err == -EINVAL) {
 542			nilfs_err(sb,
 543				  "Invalid checkpoint (checkpoint number=%llu)",
 544				  (unsigned long long)cno);
 545			err = -EINVAL;
 546		}
 547		goto failed;
 548	}
 549
 550	err = nilfs_ifile_read(sb, root, nilfs->ns_inode_size,
 551			       &raw_cp->cp_ifile_inode, &root->ifile);
 552	if (err)
 553		goto failed_bh;
 554
 555	atomic64_set(&root->inodes_count,
 556			le64_to_cpu(raw_cp->cp_inodes_count));
 557	atomic64_set(&root->blocks_count,
 558			le64_to_cpu(raw_cp->cp_blocks_count));
 559
 560	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
 561
 562 reuse:
 563	*rootp = root;
 564	return 0;
 565
 566 failed_bh:
 567	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
 568 failed:
 569	nilfs_put_root(root);
 570
 571	return err;
 572}
 573
 574static int nilfs_freeze(struct super_block *sb)
 575{
 576	struct the_nilfs *nilfs = sb->s_fs_info;
 577	int err;
 578
 579	if (sb_rdonly(sb))
 580		return 0;
 581
 582	/* Mark super block clean */
 583	down_write(&nilfs->ns_sem);
 584	err = nilfs_cleanup_super(sb);
 585	up_write(&nilfs->ns_sem);
 586	return err;
 587}
 588
 589static int nilfs_unfreeze(struct super_block *sb)
 590{
 591	struct the_nilfs *nilfs = sb->s_fs_info;
 592
 593	if (sb_rdonly(sb))
 594		return 0;
 595
 596	down_write(&nilfs->ns_sem);
 597	nilfs_setup_super(sb, false);
 598	up_write(&nilfs->ns_sem);
 599	return 0;
 600}
 601
 602static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
 603{
 604	struct super_block *sb = dentry->d_sb;
 605	struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
 606	struct the_nilfs *nilfs = root->nilfs;
 607	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
 608	unsigned long long blocks;
 609	unsigned long overhead;
 610	unsigned long nrsvblocks;
 611	sector_t nfreeblocks;
 612	u64 nmaxinodes, nfreeinodes;
 613	int err;
 614
 615	/*
 616	 * Compute all of the segment blocks
 617	 *
 618	 * The blocks before first segment and after last segment
 619	 * are excluded.
 620	 */
 621	blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
 622		- nilfs->ns_first_data_block;
 623	nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
 624
 625	/*
 626	 * Compute the overhead
 627	 *
 628	 * When distributing meta data blocks outside segment structure,
 629	 * We must count them as the overhead.
 630	 */
 631	overhead = 0;
 632
 633	err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
 634	if (unlikely(err))
 635		return err;
 636
 637	err = nilfs_ifile_count_free_inodes(root->ifile,
 638					    &nmaxinodes, &nfreeinodes);
 639	if (unlikely(err)) {
 640		nilfs_warn(sb, "failed to count free inodes: err=%d", err);
 641		if (err == -ERANGE) {
 642			/*
 643			 * If nilfs_palloc_count_max_entries() returns
 644			 * -ERANGE error code then we simply treat
 645			 * curent inodes count as maximum possible and
 646			 * zero as free inodes value.
 647			 */
 648			nmaxinodes = atomic64_read(&root->inodes_count);
 649			nfreeinodes = 0;
 650			err = 0;
 651		} else
 652			return err;
 653	}
 654
 655	buf->f_type = NILFS_SUPER_MAGIC;
 656	buf->f_bsize = sb->s_blocksize;
 657	buf->f_blocks = blocks - overhead;
 658	buf->f_bfree = nfreeblocks;
 659	buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
 660		(buf->f_bfree - nrsvblocks) : 0;
 661	buf->f_files = nmaxinodes;
 662	buf->f_ffree = nfreeinodes;
 663	buf->f_namelen = NILFS_NAME_LEN;
 664	buf->f_fsid = u64_to_fsid(id);
 665
 666	return 0;
 667}
 668
 669static int nilfs_show_options(struct seq_file *seq, struct dentry *dentry)
 670{
 671	struct super_block *sb = dentry->d_sb;
 672	struct the_nilfs *nilfs = sb->s_fs_info;
 673	struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
 674
 675	if (!nilfs_test_opt(nilfs, BARRIER))
 676		seq_puts(seq, ",nobarrier");
 677	if (root->cno != NILFS_CPTREE_CURRENT_CNO)
 678		seq_printf(seq, ",cp=%llu", (unsigned long long)root->cno);
 679	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
 680		seq_puts(seq, ",errors=panic");
 681	if (nilfs_test_opt(nilfs, ERRORS_CONT))
 682		seq_puts(seq, ",errors=continue");
 683	if (nilfs_test_opt(nilfs, STRICT_ORDER))
 684		seq_puts(seq, ",order=strict");
 685	if (nilfs_test_opt(nilfs, NORECOVERY))
 686		seq_puts(seq, ",norecovery");
 687	if (nilfs_test_opt(nilfs, DISCARD))
 688		seq_puts(seq, ",discard");
 689
 690	return 0;
 691}
 692
 693static const struct super_operations nilfs_sops = {
 694	.alloc_inode    = nilfs_alloc_inode,
 695	.free_inode     = nilfs_free_inode,
 696	.dirty_inode    = nilfs_dirty_inode,
 697	.evict_inode    = nilfs_evict_inode,
 698	.put_super      = nilfs_put_super,
 699	.sync_fs        = nilfs_sync_fs,
 700	.freeze_fs	= nilfs_freeze,
 701	.unfreeze_fs	= nilfs_unfreeze,
 702	.statfs         = nilfs_statfs,
 703	.remount_fs     = nilfs_remount,
 704	.show_options = nilfs_show_options
 705};
 706
 707enum {
 708	Opt_err_cont, Opt_err_panic, Opt_err_ro,
 709	Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery,
 710	Opt_discard, Opt_nodiscard, Opt_err,
 711};
 712
 713static match_table_t tokens = {
 714	{Opt_err_cont, "errors=continue"},
 715	{Opt_err_panic, "errors=panic"},
 716	{Opt_err_ro, "errors=remount-ro"},
 717	{Opt_barrier, "barrier"},
 718	{Opt_nobarrier, "nobarrier"},
 719	{Opt_snapshot, "cp=%u"},
 720	{Opt_order, "order=%s"},
 721	{Opt_norecovery, "norecovery"},
 722	{Opt_discard, "discard"},
 723	{Opt_nodiscard, "nodiscard"},
 724	{Opt_err, NULL}
 725};
 726
 727static int parse_options(char *options, struct super_block *sb, int is_remount)
 728{
 729	struct the_nilfs *nilfs = sb->s_fs_info;
 730	char *p;
 731	substring_t args[MAX_OPT_ARGS];
 732
 733	if (!options)
 734		return 1;
 735
 736	while ((p = strsep(&options, ",")) != NULL) {
 737		int token;
 738
 739		if (!*p)
 740			continue;
 741
 742		token = match_token(p, tokens, args);
 743		switch (token) {
 744		case Opt_barrier:
 745			nilfs_set_opt(nilfs, BARRIER);
 746			break;
 747		case Opt_nobarrier:
 748			nilfs_clear_opt(nilfs, BARRIER);
 749			break;
 750		case Opt_order:
 751			if (strcmp(args[0].from, "relaxed") == 0)
 752				/* Ordered data semantics */
 753				nilfs_clear_opt(nilfs, STRICT_ORDER);
 754			else if (strcmp(args[0].from, "strict") == 0)
 755				/* Strict in-order semantics */
 756				nilfs_set_opt(nilfs, STRICT_ORDER);
 757			else
 758				return 0;
 759			break;
 760		case Opt_err_panic:
 761			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_PANIC);
 762			break;
 763		case Opt_err_ro:
 764			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_RO);
 765			break;
 766		case Opt_err_cont:
 767			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_CONT);
 768			break;
 769		case Opt_snapshot:
 770			if (is_remount) {
 771				nilfs_err(sb,
 772					  "\"%s\" option is invalid for remount",
 773					  p);
 774				return 0;
 775			}
 776			break;
 777		case Opt_norecovery:
 778			nilfs_set_opt(nilfs, NORECOVERY);
 779			break;
 780		case Opt_discard:
 781			nilfs_set_opt(nilfs, DISCARD);
 782			break;
 783		case Opt_nodiscard:
 784			nilfs_clear_opt(nilfs, DISCARD);
 785			break;
 786		default:
 787			nilfs_err(sb, "unrecognized mount option \"%s\"", p);
 788			return 0;
 789		}
 790	}
 791	return 1;
 792}
 793
 794static inline void
 795nilfs_set_default_options(struct super_block *sb,
 796			  struct nilfs_super_block *sbp)
 797{
 798	struct the_nilfs *nilfs = sb->s_fs_info;
 799
 800	nilfs->ns_mount_opt =
 801		NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER;
 802}
 803
 804static int nilfs_setup_super(struct super_block *sb, int is_mount)
 805{
 806	struct the_nilfs *nilfs = sb->s_fs_info;
 807	struct nilfs_super_block **sbp;
 808	int max_mnt_count;
 809	int mnt_count;
 810
 811	/* nilfs->ns_sem must be locked by the caller. */
 812	sbp = nilfs_prepare_super(sb, 0);
 813	if (!sbp)
 814		return -EIO;
 815
 816	if (!is_mount)
 817		goto skip_mount_setup;
 818
 819	max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count);
 820	mnt_count = le16_to_cpu(sbp[0]->s_mnt_count);
 821
 822	if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
 823		nilfs_warn(sb, "mounting fs with errors");
 824#if 0
 825	} else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
 826		nilfs_warn(sb, "maximal mount count reached");
 827#endif
 828	}
 829	if (!max_mnt_count)
 830		sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
 831
 832	sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1);
 833	sbp[0]->s_mtime = cpu_to_le64(ktime_get_real_seconds());
 834
 835skip_mount_setup:
 836	sbp[0]->s_state =
 837		cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS);
 838	/* synchronize sbp[1] with sbp[0] */
 839	if (sbp[1])
 840		memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
 841	return nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
 842}
 843
 844struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
 845						 u64 pos, int blocksize,
 846						 struct buffer_head **pbh)
 847{
 848	unsigned long long sb_index = pos;
 849	unsigned long offset;
 850
 851	offset = do_div(sb_index, blocksize);
 852	*pbh = sb_bread(sb, sb_index);
 853	if (!*pbh)
 854		return NULL;
 855	return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
 856}
 857
 858int nilfs_store_magic_and_option(struct super_block *sb,
 859				 struct nilfs_super_block *sbp,
 860				 char *data)
 861{
 862	struct the_nilfs *nilfs = sb->s_fs_info;
 863
 864	sb->s_magic = le16_to_cpu(sbp->s_magic);
 865
 866	/* FS independent flags */
 867#ifdef NILFS_ATIME_DISABLE
 868	sb->s_flags |= SB_NOATIME;
 869#endif
 870
 871	nilfs_set_default_options(sb, sbp);
 872
 873	nilfs->ns_resuid = le16_to_cpu(sbp->s_def_resuid);
 874	nilfs->ns_resgid = le16_to_cpu(sbp->s_def_resgid);
 875	nilfs->ns_interval = le32_to_cpu(sbp->s_c_interval);
 876	nilfs->ns_watermark = le32_to_cpu(sbp->s_c_block_max);
 877
 878	return !parse_options(data, sb, 0) ? -EINVAL : 0;
 879}
 880
 881int nilfs_check_feature_compatibility(struct super_block *sb,
 882				      struct nilfs_super_block *sbp)
 883{
 884	__u64 features;
 885
 886	features = le64_to_cpu(sbp->s_feature_incompat) &
 887		~NILFS_FEATURE_INCOMPAT_SUPP;
 888	if (features) {
 889		nilfs_err(sb,
 890			  "couldn't mount because of unsupported optional features (%llx)",
 891			  (unsigned long long)features);
 892		return -EINVAL;
 893	}
 894	features = le64_to_cpu(sbp->s_feature_compat_ro) &
 895		~NILFS_FEATURE_COMPAT_RO_SUPP;
 896	if (!sb_rdonly(sb) && features) {
 897		nilfs_err(sb,
 898			  "couldn't mount RDWR because of unsupported optional features (%llx)",
 899			  (unsigned long long)features);
 900		return -EINVAL;
 901	}
 902	return 0;
 903}
 904
 905static int nilfs_get_root_dentry(struct super_block *sb,
 906				 struct nilfs_root *root,
 907				 struct dentry **root_dentry)
 908{
 909	struct inode *inode;
 910	struct dentry *dentry;
 911	int ret = 0;
 912
 913	inode = nilfs_iget(sb, root, NILFS_ROOT_INO);
 914	if (IS_ERR(inode)) {
 915		ret = PTR_ERR(inode);
 916		nilfs_err(sb, "error %d getting root inode", ret);
 917		goto out;
 918	}
 919	if (!S_ISDIR(inode->i_mode) || !inode->i_blocks || !inode->i_size) {
 920		iput(inode);
 921		nilfs_err(sb, "corrupt root inode");
 922		ret = -EINVAL;
 923		goto out;
 924	}
 925
 926	if (root->cno == NILFS_CPTREE_CURRENT_CNO) {
 927		dentry = d_find_alias(inode);
 928		if (!dentry) {
 929			dentry = d_make_root(inode);
 930			if (!dentry) {
 931				ret = -ENOMEM;
 932				goto failed_dentry;
 933			}
 934		} else {
 935			iput(inode);
 936		}
 937	} else {
 938		dentry = d_obtain_root(inode);
 939		if (IS_ERR(dentry)) {
 940			ret = PTR_ERR(dentry);
 941			goto failed_dentry;
 942		}
 943	}
 944	*root_dentry = dentry;
 945 out:
 946	return ret;
 947
 948 failed_dentry:
 949	nilfs_err(sb, "error %d getting root dentry", ret);
 950	goto out;
 951}
 952
 953static int nilfs_attach_snapshot(struct super_block *s, __u64 cno,
 954				 struct dentry **root_dentry)
 955{
 956	struct the_nilfs *nilfs = s->s_fs_info;
 957	struct nilfs_root *root;
 958	int ret;
 959
 960	mutex_lock(&nilfs->ns_snapshot_mount_mutex);
 961
 962	down_read(&nilfs->ns_segctor_sem);
 963	ret = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile, cno);
 964	up_read(&nilfs->ns_segctor_sem);
 965	if (ret < 0) {
 966		ret = (ret == -ENOENT) ? -EINVAL : ret;
 967		goto out;
 968	} else if (!ret) {
 969		nilfs_err(s,
 970			  "The specified checkpoint is not a snapshot (checkpoint number=%llu)",
 971			  (unsigned long long)cno);
 972		ret = -EINVAL;
 973		goto out;
 974	}
 975
 976	ret = nilfs_attach_checkpoint(s, cno, false, &root);
 977	if (ret) {
 978		nilfs_err(s,
 979			  "error %d while loading snapshot (checkpoint number=%llu)",
 980			  ret, (unsigned long long)cno);
 981		goto out;
 982	}
 983	ret = nilfs_get_root_dentry(s, root, root_dentry);
 984	nilfs_put_root(root);
 985 out:
 986	mutex_unlock(&nilfs->ns_snapshot_mount_mutex);
 987	return ret;
 988}
 989
 990/**
 991 * nilfs_tree_is_busy() - try to shrink dentries of a checkpoint
 992 * @root_dentry: root dentry of the tree to be shrunk
 993 *
 994 * This function returns true if the tree was in-use.
 995 */
 996static bool nilfs_tree_is_busy(struct dentry *root_dentry)
 997{
 998	shrink_dcache_parent(root_dentry);
 999	return d_count(root_dentry) > 1;
1000}
1001
1002int nilfs_checkpoint_is_mounted(struct super_block *sb, __u64 cno)
1003{
1004	struct the_nilfs *nilfs = sb->s_fs_info;
1005	struct nilfs_root *root;
1006	struct inode *inode;
1007	struct dentry *dentry;
1008	int ret;
1009
1010	if (cno > nilfs->ns_cno)
1011		return false;
1012
1013	if (cno >= nilfs_last_cno(nilfs))
1014		return true;	/* protect recent checkpoints */
1015
1016	ret = false;
1017	root = nilfs_lookup_root(nilfs, cno);
1018	if (root) {
1019		inode = nilfs_ilookup(sb, root, NILFS_ROOT_INO);
1020		if (inode) {
1021			dentry = d_find_alias(inode);
1022			if (dentry) {
1023				ret = nilfs_tree_is_busy(dentry);
1024				dput(dentry);
1025			}
1026			iput(inode);
1027		}
1028		nilfs_put_root(root);
1029	}
1030	return ret;
1031}
1032
1033/**
1034 * nilfs_fill_super() - initialize a super block instance
1035 * @sb: super_block
1036 * @data: mount options
1037 * @silent: silent mode flag
1038 *
1039 * This function is called exclusively by nilfs->ns_mount_mutex.
1040 * So, the recovery process is protected from other simultaneous mounts.
1041 */
1042static int
1043nilfs_fill_super(struct super_block *sb, void *data, int silent)
1044{
1045	struct the_nilfs *nilfs;
1046	struct nilfs_root *fsroot;
1047	__u64 cno;
1048	int err;
1049
1050	nilfs = alloc_nilfs(sb);
1051	if (!nilfs)
1052		return -ENOMEM;
1053
1054	sb->s_fs_info = nilfs;
1055
1056	err = init_nilfs(nilfs, sb, (char *)data);
1057	if (err)
1058		goto failed_nilfs;
1059
1060	sb->s_op = &nilfs_sops;
1061	sb->s_export_op = &nilfs_export_ops;
1062	sb->s_root = NULL;
1063	sb->s_time_gran = 1;
1064	sb->s_max_links = NILFS_LINK_MAX;
1065
1066	sb->s_bdi = bdi_get(sb->s_bdev->bd_disk->bdi);
1067
1068	err = load_nilfs(nilfs, sb);
1069	if (err)
1070		goto failed_nilfs;
1071
1072	cno = nilfs_last_cno(nilfs);
1073	err = nilfs_attach_checkpoint(sb, cno, true, &fsroot);
1074	if (err) {
1075		nilfs_err(sb,
1076			  "error %d while loading last checkpoint (checkpoint number=%llu)",
1077			  err, (unsigned long long)cno);
1078		goto failed_unload;
1079	}
1080
1081	if (!sb_rdonly(sb)) {
1082		err = nilfs_attach_log_writer(sb, fsroot);
1083		if (err)
1084			goto failed_checkpoint;
1085	}
1086
1087	err = nilfs_get_root_dentry(sb, fsroot, &sb->s_root);
1088	if (err)
1089		goto failed_segctor;
1090
1091	nilfs_put_root(fsroot);
1092
1093	if (!sb_rdonly(sb)) {
1094		down_write(&nilfs->ns_sem);
1095		nilfs_setup_super(sb, true);
1096		up_write(&nilfs->ns_sem);
1097	}
1098
1099	return 0;
1100
1101 failed_segctor:
1102	nilfs_detach_log_writer(sb);
1103
1104 failed_checkpoint:
1105	nilfs_put_root(fsroot);
1106
1107 failed_unload:
 
1108	iput(nilfs->ns_sufile);
1109	iput(nilfs->ns_cpfile);
1110	iput(nilfs->ns_dat);
1111
1112 failed_nilfs:
1113	destroy_nilfs(nilfs);
1114	return err;
1115}
1116
1117static int nilfs_remount(struct super_block *sb, int *flags, char *data)
1118{
1119	struct the_nilfs *nilfs = sb->s_fs_info;
1120	unsigned long old_sb_flags;
1121	unsigned long old_mount_opt;
1122	int err;
1123
1124	sync_filesystem(sb);
1125	old_sb_flags = sb->s_flags;
1126	old_mount_opt = nilfs->ns_mount_opt;
1127
1128	if (!parse_options(data, sb, 1)) {
1129		err = -EINVAL;
1130		goto restore_opts;
1131	}
1132	sb->s_flags = (sb->s_flags & ~SB_POSIXACL);
1133
1134	err = -EINVAL;
1135
1136	if (!nilfs_valid_fs(nilfs)) {
1137		nilfs_warn(sb,
1138			   "couldn't remount because the filesystem is in an incomplete recovery state");
1139		goto restore_opts;
1140	}
1141
1142	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
1143		goto out;
1144	if (*flags & SB_RDONLY) {
1145		sb->s_flags |= SB_RDONLY;
1146
1147		/*
1148		 * Remounting a valid RW partition RDONLY, so set
1149		 * the RDONLY flag and then mark the partition as valid again.
1150		 */
1151		down_write(&nilfs->ns_sem);
1152		nilfs_cleanup_super(sb);
1153		up_write(&nilfs->ns_sem);
1154	} else {
1155		__u64 features;
1156		struct nilfs_root *root;
1157
1158		/*
1159		 * Mounting a RDONLY partition read-write, so reread and
1160		 * store the current valid flag.  (It may have been changed
1161		 * by fsck since we originally mounted the partition.)
1162		 */
1163		down_read(&nilfs->ns_sem);
1164		features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) &
1165			~NILFS_FEATURE_COMPAT_RO_SUPP;
1166		up_read(&nilfs->ns_sem);
1167		if (features) {
1168			nilfs_warn(sb,
1169				   "couldn't remount RDWR because of unsupported optional features (%llx)",
1170				   (unsigned long long)features);
1171			err = -EROFS;
1172			goto restore_opts;
1173		}
1174
1175		sb->s_flags &= ~SB_RDONLY;
1176
1177		root = NILFS_I(d_inode(sb->s_root))->i_root;
1178		err = nilfs_attach_log_writer(sb, root);
1179		if (err)
1180			goto restore_opts;
1181
1182		down_write(&nilfs->ns_sem);
1183		nilfs_setup_super(sb, true);
1184		up_write(&nilfs->ns_sem);
1185	}
1186 out:
1187	return 0;
1188
1189 restore_opts:
1190	sb->s_flags = old_sb_flags;
1191	nilfs->ns_mount_opt = old_mount_opt;
1192	return err;
1193}
1194
1195struct nilfs_super_data {
1196	struct block_device *bdev;
1197	__u64 cno;
1198	int flags;
1199};
1200
1201static int nilfs_parse_snapshot_option(const char *option,
1202				       const substring_t *arg,
1203				       struct nilfs_super_data *sd)
1204{
1205	unsigned long long val;
1206	const char *msg = NULL;
1207	int err;
1208
1209	if (!(sd->flags & SB_RDONLY)) {
1210		msg = "read-only option is not specified";
1211		goto parse_error;
1212	}
1213
1214	err = kstrtoull(arg->from, 0, &val);
1215	if (err) {
1216		if (err == -ERANGE)
1217			msg = "too large checkpoint number";
1218		else
1219			msg = "malformed argument";
1220		goto parse_error;
1221	} else if (val == 0) {
1222		msg = "invalid checkpoint number 0";
1223		goto parse_error;
1224	}
1225	sd->cno = val;
1226	return 0;
1227
1228parse_error:
1229	nilfs_err(NULL, "invalid option \"%s\": %s", option, msg);
1230	return 1;
1231}
1232
1233/**
1234 * nilfs_identify - pre-read mount options needed to identify mount instance
1235 * @data: mount options
1236 * @sd: nilfs_super_data
1237 */
1238static int nilfs_identify(char *data, struct nilfs_super_data *sd)
1239{
1240	char *p, *options = data;
1241	substring_t args[MAX_OPT_ARGS];
1242	int token;
1243	int ret = 0;
1244
1245	do {
1246		p = strsep(&options, ",");
1247		if (p != NULL && *p) {
1248			token = match_token(p, tokens, args);
1249			if (token == Opt_snapshot)
1250				ret = nilfs_parse_snapshot_option(p, &args[0],
1251								  sd);
1252		}
1253		if (!options)
1254			break;
1255		BUG_ON(options == data);
1256		*(options - 1) = ',';
1257	} while (!ret);
1258	return ret;
1259}
1260
1261static int nilfs_set_bdev_super(struct super_block *s, void *data)
1262{
1263	s->s_bdev = data;
1264	s->s_dev = s->s_bdev->bd_dev;
1265	return 0;
1266}
1267
1268static int nilfs_test_bdev_super(struct super_block *s, void *data)
1269{
1270	return (void *)s->s_bdev == data;
1271}
1272
1273static struct dentry *
1274nilfs_mount(struct file_system_type *fs_type, int flags,
1275	     const char *dev_name, void *data)
1276{
1277	struct nilfs_super_data sd;
1278	struct super_block *s;
1279	fmode_t mode = FMODE_READ | FMODE_EXCL;
1280	struct dentry *root_dentry;
1281	int err, s_new = false;
1282
1283	if (!(flags & SB_RDONLY))
1284		mode |= FMODE_WRITE;
1285
1286	sd.bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1287	if (IS_ERR(sd.bdev))
1288		return ERR_CAST(sd.bdev);
1289
1290	sd.cno = 0;
1291	sd.flags = flags;
1292	if (nilfs_identify((char *)data, &sd)) {
1293		err = -EINVAL;
1294		goto failed;
1295	}
1296
1297	/*
1298	 * once the super is inserted into the list by sget, s_umount
1299	 * will protect the lockfs code from trying to start a snapshot
1300	 * while we are mounting
1301	 */
1302	mutex_lock(&sd.bdev->bd_fsfreeze_mutex);
1303	if (sd.bdev->bd_fsfreeze_count > 0) {
1304		mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1305		err = -EBUSY;
1306		goto failed;
1307	}
1308	s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, flags,
1309		 sd.bdev);
1310	mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1311	if (IS_ERR(s)) {
1312		err = PTR_ERR(s);
1313		goto failed;
1314	}
1315
1316	if (!s->s_root) {
1317		s_new = true;
1318
1319		/* New superblock instance created */
1320		s->s_mode = mode;
1321		snprintf(s->s_id, sizeof(s->s_id), "%pg", sd.bdev);
1322		sb_set_blocksize(s, block_size(sd.bdev));
1323
1324		err = nilfs_fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1325		if (err)
1326			goto failed_super;
1327
1328		s->s_flags |= SB_ACTIVE;
1329	} else if (!sd.cno) {
1330		if (nilfs_tree_is_busy(s->s_root)) {
1331			if ((flags ^ s->s_flags) & SB_RDONLY) {
1332				nilfs_err(s,
1333					  "the device already has a %s mount.",
1334					  sb_rdonly(s) ? "read-only" : "read/write");
1335				err = -EBUSY;
1336				goto failed_super;
1337			}
1338		} else {
1339			/*
1340			 * Try remount to setup mount states if the current
1341			 * tree is not mounted and only snapshots use this sb.
1342			 */
1343			err = nilfs_remount(s, &flags, data);
1344			if (err)
1345				goto failed_super;
1346		}
1347	}
1348
1349	if (sd.cno) {
 
 
1350		err = nilfs_attach_snapshot(s, sd.cno, &root_dentry);
1351		if (err)
1352			goto failed_super;
1353	} else {
1354		root_dentry = dget(s->s_root);
1355	}
1356
1357	if (!s_new)
1358		blkdev_put(sd.bdev, mode);
1359
1360	return root_dentry;
1361
1362 failed_super:
1363	deactivate_locked_super(s);
1364
1365 failed:
1366	if (!s_new)
1367		blkdev_put(sd.bdev, mode);
1368	return ERR_PTR(err);
1369}
1370
1371struct file_system_type nilfs_fs_type = {
1372	.owner    = THIS_MODULE,
1373	.name     = "nilfs2",
1374	.mount    = nilfs_mount,
1375	.kill_sb  = kill_block_super,
1376	.fs_flags = FS_REQUIRES_DEV,
1377};
1378MODULE_ALIAS_FS("nilfs2");
1379
1380static void nilfs_inode_init_once(void *obj)
1381{
1382	struct nilfs_inode_info *ii = obj;
1383
1384	INIT_LIST_HEAD(&ii->i_dirty);
1385#ifdef CONFIG_NILFS_XATTR
1386	init_rwsem(&ii->xattr_sem);
1387#endif
1388	inode_init_once(&ii->vfs_inode);
1389}
1390
1391static void nilfs_segbuf_init_once(void *obj)
1392{
1393	memset(obj, 0, sizeof(struct nilfs_segment_buffer));
1394}
1395
1396static void nilfs_destroy_cachep(void)
1397{
1398	/*
1399	 * Make sure all delayed rcu free inodes are flushed before we
1400	 * destroy cache.
1401	 */
1402	rcu_barrier();
1403
1404	kmem_cache_destroy(nilfs_inode_cachep);
1405	kmem_cache_destroy(nilfs_transaction_cachep);
1406	kmem_cache_destroy(nilfs_segbuf_cachep);
1407	kmem_cache_destroy(nilfs_btree_path_cache);
1408}
1409
1410static int __init nilfs_init_cachep(void)
1411{
1412	nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
1413			sizeof(struct nilfs_inode_info), 0,
1414			SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT,
1415			nilfs_inode_init_once);
1416	if (!nilfs_inode_cachep)
1417		goto fail;
1418
1419	nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache",
1420			sizeof(struct nilfs_transaction_info), 0,
1421			SLAB_RECLAIM_ACCOUNT, NULL);
1422	if (!nilfs_transaction_cachep)
1423		goto fail;
1424
1425	nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache",
1426			sizeof(struct nilfs_segment_buffer), 0,
1427			SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once);
1428	if (!nilfs_segbuf_cachep)
1429		goto fail;
1430
1431	nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache",
1432			sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX,
1433			0, 0, NULL);
1434	if (!nilfs_btree_path_cache)
1435		goto fail;
1436
1437	return 0;
1438
1439fail:
1440	nilfs_destroy_cachep();
1441	return -ENOMEM;
1442}
1443
1444static int __init init_nilfs_fs(void)
1445{
1446	int err;
1447
1448	err = nilfs_init_cachep();
1449	if (err)
1450		goto fail;
1451
1452	err = nilfs_sysfs_init();
1453	if (err)
1454		goto free_cachep;
1455
1456	err = register_filesystem(&nilfs_fs_type);
1457	if (err)
1458		goto deinit_sysfs_entry;
1459
1460	printk(KERN_INFO "NILFS version 2 loaded\n");
1461	return 0;
1462
1463deinit_sysfs_entry:
1464	nilfs_sysfs_exit();
1465free_cachep:
1466	nilfs_destroy_cachep();
1467fail:
1468	return err;
1469}
1470
1471static void __exit exit_nilfs_fs(void)
1472{
1473	nilfs_destroy_cachep();
1474	nilfs_sysfs_exit();
1475	unregister_filesystem(&nilfs_fs_type);
1476}
1477
1478module_init(init_nilfs_fs)
1479module_exit(exit_nilfs_fs)