Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * NILFS module and super block management.
   4 *
   5 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
   6 *
   7 * Written by Ryusuke Konishi.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   8 */
   9/*
  10 *  linux/fs/ext2/super.c
  11 *
  12 * Copyright (C) 1992, 1993, 1994, 1995
  13 * Remy Card (card@masi.ibp.fr)
  14 * Laboratoire MASI - Institut Blaise Pascal
  15 * Universite Pierre et Marie Curie (Paris VI)
  16 *
  17 *  from
  18 *
  19 *  linux/fs/minix/inode.c
  20 *
  21 *  Copyright (C) 1991, 1992  Linus Torvalds
  22 *
  23 *  Big-endian to little-endian byte-swapping/bitmaps by
  24 *        David S. Miller (davem@caip.rutgers.edu), 1995
  25 */
  26
  27#include <linux/module.h>
  28#include <linux/string.h>
  29#include <linux/slab.h>
  30#include <linux/init.h>
  31#include <linux/blkdev.h>
  32#include <linux/parser.h>
  33#include <linux/crc32.h>
  34#include <linux/vfs.h>
  35#include <linux/writeback.h>
  36#include <linux/seq_file.h>
  37#include <linux/mount.h>
  38#include <linux/fs_context.h>
  39#include "nilfs.h"
  40#include "export.h"
  41#include "mdt.h"
  42#include "alloc.h"
  43#include "btree.h"
  44#include "btnode.h"
  45#include "page.h"
  46#include "cpfile.h"
  47#include "sufile.h" /* nilfs_sufile_resize(), nilfs_sufile_set_alloc_range() */
  48#include "ifile.h"
  49#include "dat.h"
  50#include "segment.h"
  51#include "segbuf.h"
  52
  53MODULE_AUTHOR("NTT Corp.");
  54MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
  55		   "(NILFS)");
  56MODULE_LICENSE("GPL");
  57
  58static struct kmem_cache *nilfs_inode_cachep;
  59struct kmem_cache *nilfs_transaction_cachep;
  60struct kmem_cache *nilfs_segbuf_cachep;
  61struct kmem_cache *nilfs_btree_path_cache;
  62
  63static int nilfs_setup_super(struct super_block *sb, int is_mount);
  64static int nilfs_remount(struct super_block *sb, int *flags, char *data);
  65
  66void __nilfs_msg(struct super_block *sb, const char *fmt, ...)
  67{
  68	struct va_format vaf;
  69	va_list args;
  70	int level;
  71
  72	va_start(args, fmt);
  73
  74	level = printk_get_level(fmt);
  75	vaf.fmt = printk_skip_level(fmt);
  76	vaf.va = &args;
  77
  78	if (sb)
  79		printk("%c%cNILFS (%s): %pV\n",
  80		       KERN_SOH_ASCII, level, sb->s_id, &vaf);
  81	else
  82		printk("%c%cNILFS: %pV\n",
  83		       KERN_SOH_ASCII, level, &vaf);
  84
  85	va_end(args);
  86}
  87
  88static void nilfs_set_error(struct super_block *sb)
  89{
  90	struct the_nilfs *nilfs = sb->s_fs_info;
  91	struct nilfs_super_block **sbp;
  92
  93	down_write(&nilfs->ns_sem);
  94	if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
  95		nilfs->ns_mount_state |= NILFS_ERROR_FS;
  96		sbp = nilfs_prepare_super(sb, 0);
  97		if (likely(sbp)) {
  98			sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
  99			if (sbp[1])
 100				sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
 101			nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
 102		}
 103	}
 104	up_write(&nilfs->ns_sem);
 105}
 106
 107/**
 108 * __nilfs_error() - report failure condition on a filesystem
 109 *
 110 * __nilfs_error() sets an ERROR_FS flag on the superblock as well as
 111 * reporting an error message.  This function should be called when
 112 * NILFS detects incoherences or defects of meta data on disk.
 
 
 113 *
 114 * This implements the body of nilfs_error() macro.  Normally,
 115 * nilfs_error() should be used.  As for sustainable errors such as a
 116 * single-shot I/O error, nilfs_err() should be used instead.
 117 *
 118 * Callers should not add a trailing newline since this will do it.
 119 */
 120void __nilfs_error(struct super_block *sb, const char *function,
 121		   const char *fmt, ...)
 122{
 123	struct the_nilfs *nilfs = sb->s_fs_info;
 124	struct va_format vaf;
 125	va_list args;
 126
 127	va_start(args, fmt);
 128
 129	vaf.fmt = fmt;
 130	vaf.va = &args;
 131
 132	printk(KERN_CRIT "NILFS error (device %s): %s: %pV\n",
 133	       sb->s_id, function, &vaf);
 134
 135	va_end(args);
 136
 137	if (!sb_rdonly(sb)) {
 138		nilfs_set_error(sb);
 139
 140		if (nilfs_test_opt(nilfs, ERRORS_RO)) {
 141			printk(KERN_CRIT "Remounting filesystem read-only\n");
 142			sb->s_flags |= SB_RDONLY;
 143		}
 144	}
 145
 146	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
 147		panic("NILFS (device %s): panic forced after error\n",
 148		      sb->s_id);
 149}
 150
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 151struct inode *nilfs_alloc_inode(struct super_block *sb)
 152{
 153	struct nilfs_inode_info *ii;
 154
 155	ii = alloc_inode_sb(sb, nilfs_inode_cachep, GFP_NOFS);
 156	if (!ii)
 157		return NULL;
 158	ii->i_bh = NULL;
 159	ii->i_state = 0;
 160	ii->i_cno = 0;
 161	ii->i_assoc_inode = NULL;
 162	ii->i_bmap = &ii->i_bmap_data;
 163	return &ii->vfs_inode;
 164}
 165
 166static void nilfs_free_inode(struct inode *inode)
 167{
 168	if (nilfs_is_metadata_file_inode(inode))
 169		nilfs_mdt_destroy(inode);
 170
 
 
 
 
 171	kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
 172}
 173
 
 
 
 
 
 174static int nilfs_sync_super(struct super_block *sb, int flag)
 175{
 176	struct the_nilfs *nilfs = sb->s_fs_info;
 177	int err;
 178
 179 retry:
 180	set_buffer_dirty(nilfs->ns_sbh[0]);
 181	if (nilfs_test_opt(nilfs, BARRIER)) {
 182		err = __sync_dirty_buffer(nilfs->ns_sbh[0],
 183					  REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
 184	} else {
 185		err = sync_dirty_buffer(nilfs->ns_sbh[0]);
 186	}
 187
 188	if (unlikely(err)) {
 189		nilfs_err(sb, "unable to write superblock: err=%d", err);
 
 190		if (err == -EIO && nilfs->ns_sbh[1]) {
 191			/*
 192			 * sbp[0] points to newer log than sbp[1],
 193			 * so copy sbp[0] to sbp[1] to take over sbp[0].
 194			 */
 195			memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0],
 196			       nilfs->ns_sbsize);
 197			nilfs_fall_back_super_block(nilfs);
 198			goto retry;
 199		}
 200	} else {
 201		struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
 202
 203		nilfs->ns_sbwcount++;
 204
 205		/*
 206		 * The latest segment becomes trailable from the position
 207		 * written in superblock.
 208		 */
 209		clear_nilfs_discontinued(nilfs);
 210
 211		/* update GC protection for recent segments */
 212		if (nilfs->ns_sbh[1]) {
 213			if (flag == NILFS_SB_COMMIT_ALL) {
 214				set_buffer_dirty(nilfs->ns_sbh[1]);
 215				if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0)
 216					goto out;
 217			}
 218			if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) <
 219			    le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno))
 220				sbp = nilfs->ns_sbp[1];
 221		}
 222
 223		spin_lock(&nilfs->ns_last_segment_lock);
 224		nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
 225		spin_unlock(&nilfs->ns_last_segment_lock);
 226	}
 227 out:
 228	return err;
 229}
 230
 231void nilfs_set_log_cursor(struct nilfs_super_block *sbp,
 232			  struct the_nilfs *nilfs)
 233{
 234	sector_t nfreeblocks;
 235
 236	/* nilfs->ns_sem must be locked by the caller. */
 237	nilfs_count_free_blocks(nilfs, &nfreeblocks);
 238	sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks);
 239
 240	spin_lock(&nilfs->ns_last_segment_lock);
 241	sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
 242	sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
 243	sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
 244	spin_unlock(&nilfs->ns_last_segment_lock);
 245}
 246
 247struct nilfs_super_block **nilfs_prepare_super(struct super_block *sb,
 248					       int flip)
 249{
 250	struct the_nilfs *nilfs = sb->s_fs_info;
 251	struct nilfs_super_block **sbp = nilfs->ns_sbp;
 252
 253	/* nilfs->ns_sem must be locked by the caller. */
 254	if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
 255		if (sbp[1] &&
 256		    sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) {
 257			memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
 258		} else {
 259			nilfs_crit(sb, "superblock broke");
 
 260			return NULL;
 261		}
 262	} else if (sbp[1] &&
 263		   sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
 264		memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
 265	}
 266
 267	if (flip && sbp[1])
 268		nilfs_swap_super_block(nilfs);
 269
 270	return sbp;
 271}
 272
 273int nilfs_commit_super(struct super_block *sb, int flag)
 274{
 275	struct the_nilfs *nilfs = sb->s_fs_info;
 276	struct nilfs_super_block **sbp = nilfs->ns_sbp;
 277	time64_t t;
 278
 279	/* nilfs->ns_sem must be locked by the caller. */
 280	t = ktime_get_real_seconds();
 281	nilfs->ns_sbwtime = t;
 282	sbp[0]->s_wtime = cpu_to_le64(t);
 283	sbp[0]->s_sum = 0;
 284	sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
 285					     (unsigned char *)sbp[0],
 286					     nilfs->ns_sbsize));
 287	if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) {
 288		sbp[1]->s_wtime = sbp[0]->s_wtime;
 289		sbp[1]->s_sum = 0;
 290		sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
 291					    (unsigned char *)sbp[1],
 292					    nilfs->ns_sbsize));
 293	}
 294	clear_nilfs_sb_dirty(nilfs);
 295	nilfs->ns_flushed_device = 1;
 296	/* make sure store to ns_flushed_device cannot be reordered */
 297	smp_wmb();
 298	return nilfs_sync_super(sb, flag);
 299}
 300
 301/**
 302 * nilfs_cleanup_super() - write filesystem state for cleanup
 303 * @sb: super block instance to be unmounted or degraded to read-only
 304 *
 305 * This function restores state flags in the on-disk super block.
 306 * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the
 307 * filesystem was not clean previously.
 308 */
 309int nilfs_cleanup_super(struct super_block *sb)
 310{
 311	struct the_nilfs *nilfs = sb->s_fs_info;
 312	struct nilfs_super_block **sbp;
 313	int flag = NILFS_SB_COMMIT;
 314	int ret = -EIO;
 315
 316	sbp = nilfs_prepare_super(sb, 0);
 317	if (sbp) {
 318		sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
 319		nilfs_set_log_cursor(sbp[0], nilfs);
 320		if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) {
 321			/*
 322			 * make the "clean" flag also to the opposite
 323			 * super block if both super blocks point to
 324			 * the same checkpoint.
 325			 */
 326			sbp[1]->s_state = sbp[0]->s_state;
 327			flag = NILFS_SB_COMMIT_ALL;
 328		}
 329		ret = nilfs_commit_super(sb, flag);
 330	}
 331	return ret;
 332}
 333
 334/**
 335 * nilfs_move_2nd_super - relocate secondary super block
 336 * @sb: super block instance
 337 * @sb2off: new offset of the secondary super block (in bytes)
 338 */
 339static int nilfs_move_2nd_super(struct super_block *sb, loff_t sb2off)
 340{
 341	struct the_nilfs *nilfs = sb->s_fs_info;
 342	struct buffer_head *nsbh;
 343	struct nilfs_super_block *nsbp;
 344	sector_t blocknr, newblocknr;
 345	unsigned long offset;
 346	int sb2i;  /* array index of the secondary superblock */
 347	int ret = 0;
 348
 349	/* nilfs->ns_sem must be locked by the caller. */
 350	if (nilfs->ns_sbh[1] &&
 351	    nilfs->ns_sbh[1]->b_blocknr > nilfs->ns_first_data_block) {
 352		sb2i = 1;
 353		blocknr = nilfs->ns_sbh[1]->b_blocknr;
 354	} else if (nilfs->ns_sbh[0]->b_blocknr > nilfs->ns_first_data_block) {
 355		sb2i = 0;
 356		blocknr = nilfs->ns_sbh[0]->b_blocknr;
 357	} else {
 358		sb2i = -1;
 359		blocknr = 0;
 360	}
 361	if (sb2i >= 0 && (u64)blocknr << nilfs->ns_blocksize_bits == sb2off)
 362		goto out;  /* super block location is unchanged */
 363
 364	/* Get new super block buffer */
 365	newblocknr = sb2off >> nilfs->ns_blocksize_bits;
 366	offset = sb2off & (nilfs->ns_blocksize - 1);
 367	nsbh = sb_getblk(sb, newblocknr);
 368	if (!nsbh) {
 369		nilfs_warn(sb,
 370			   "unable to move secondary superblock to block %llu",
 371			   (unsigned long long)newblocknr);
 372		ret = -EIO;
 373		goto out;
 374	}
 375	nsbp = (void *)nsbh->b_data + offset;
 
 376
 377	lock_buffer(nsbh);
 378	if (sb2i >= 0) {
 379		/*
 380		 * The position of the second superblock only changes by 4KiB,
 381		 * which is larger than the maximum superblock data size
 382		 * (= 1KiB), so there is no need to use memmove() to allow
 383		 * overlap between source and destination.
 384		 */
 385		memcpy(nsbp, nilfs->ns_sbp[sb2i], nilfs->ns_sbsize);
 386
 387		/*
 388		 * Zero fill after copy to avoid overwriting in case of move
 389		 * within the same block.
 390		 */
 391		memset(nsbh->b_data, 0, offset);
 392		memset((void *)nsbp + nilfs->ns_sbsize, 0,
 393		       nsbh->b_size - offset - nilfs->ns_sbsize);
 394	} else {
 395		memset(nsbh->b_data, 0, nsbh->b_size);
 396	}
 397	set_buffer_uptodate(nsbh);
 398	unlock_buffer(nsbh);
 399
 400	if (sb2i >= 0) {
 401		brelse(nilfs->ns_sbh[sb2i]);
 402		nilfs->ns_sbh[sb2i] = nsbh;
 403		nilfs->ns_sbp[sb2i] = nsbp;
 404	} else if (nilfs->ns_sbh[0]->b_blocknr < nilfs->ns_first_data_block) {
 405		/* secondary super block will be restored to index 1 */
 406		nilfs->ns_sbh[1] = nsbh;
 407		nilfs->ns_sbp[1] = nsbp;
 408	} else {
 409		brelse(nsbh);
 410	}
 411out:
 412	return ret;
 413}
 414
 415/**
 416 * nilfs_resize_fs - resize the filesystem
 417 * @sb: super block instance
 418 * @newsize: new size of the filesystem (in bytes)
 419 */
 420int nilfs_resize_fs(struct super_block *sb, __u64 newsize)
 421{
 422	struct the_nilfs *nilfs = sb->s_fs_info;
 423	struct nilfs_super_block **sbp;
 424	__u64 devsize, newnsegs;
 425	loff_t sb2off;
 426	int ret;
 427
 428	ret = -ERANGE;
 429	devsize = bdev_nr_bytes(sb->s_bdev);
 430	if (newsize > devsize)
 431		goto out;
 432
 433	/*
 434	 * Prevent underflow in second superblock position calculation.
 435	 * The exact minimum size check is done in nilfs_sufile_resize().
 436	 */
 437	if (newsize < 4096) {
 438		ret = -ENOSPC;
 439		goto out;
 440	}
 441
 442	/*
 443	 * Write lock is required to protect some functions depending
 444	 * on the number of segments, the number of reserved segments,
 445	 * and so forth.
 446	 */
 447	down_write(&nilfs->ns_segctor_sem);
 448
 449	sb2off = NILFS_SB2_OFFSET_BYTES(newsize);
 450	newnsegs = sb2off >> nilfs->ns_blocksize_bits;
 451	do_div(newnsegs, nilfs->ns_blocks_per_segment);
 452
 453	ret = nilfs_sufile_resize(nilfs->ns_sufile, newnsegs);
 454	up_write(&nilfs->ns_segctor_sem);
 455	if (ret < 0)
 456		goto out;
 457
 458	ret = nilfs_construct_segment(sb);
 459	if (ret < 0)
 460		goto out;
 461
 462	down_write(&nilfs->ns_sem);
 463	nilfs_move_2nd_super(sb, sb2off);
 464	ret = -EIO;
 465	sbp = nilfs_prepare_super(sb, 0);
 466	if (likely(sbp)) {
 467		nilfs_set_log_cursor(sbp[0], nilfs);
 468		/*
 469		 * Drop NILFS_RESIZE_FS flag for compatibility with
 470		 * mount-time resize which may be implemented in a
 471		 * future release.
 472		 */
 473		sbp[0]->s_state = cpu_to_le16(le16_to_cpu(sbp[0]->s_state) &
 474					      ~NILFS_RESIZE_FS);
 475		sbp[0]->s_dev_size = cpu_to_le64(newsize);
 476		sbp[0]->s_nsegments = cpu_to_le64(nilfs->ns_nsegments);
 477		if (sbp[1])
 478			memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
 479		ret = nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
 480	}
 481	up_write(&nilfs->ns_sem);
 482
 483	/*
 484	 * Reset the range of allocatable segments last.  This order
 485	 * is important in the case of expansion because the secondary
 486	 * superblock must be protected from log write until migration
 487	 * completes.
 488	 */
 489	if (!ret)
 490		nilfs_sufile_set_alloc_range(nilfs->ns_sufile, 0, newnsegs - 1);
 491out:
 492	return ret;
 493}
 494
 495static void nilfs_put_super(struct super_block *sb)
 496{
 497	struct the_nilfs *nilfs = sb->s_fs_info;
 498
 499	nilfs_detach_log_writer(sb);
 500
 501	if (!sb_rdonly(sb)) {
 502		down_write(&nilfs->ns_sem);
 503		nilfs_cleanup_super(sb);
 504		up_write(&nilfs->ns_sem);
 505	}
 506
 507	nilfs_sysfs_delete_device_group(nilfs);
 508	iput(nilfs->ns_sufile);
 509	iput(nilfs->ns_cpfile);
 510	iput(nilfs->ns_dat);
 511
 512	destroy_nilfs(nilfs);
 513	sb->s_fs_info = NULL;
 514}
 515
 516static int nilfs_sync_fs(struct super_block *sb, int wait)
 517{
 518	struct the_nilfs *nilfs = sb->s_fs_info;
 519	struct nilfs_super_block **sbp;
 520	int err = 0;
 521
 522	/* This function is called when super block should be written back */
 523	if (wait)
 524		err = nilfs_construct_segment(sb);
 525
 526	down_write(&nilfs->ns_sem);
 527	if (nilfs_sb_dirty(nilfs)) {
 528		sbp = nilfs_prepare_super(sb, nilfs_sb_will_flip(nilfs));
 529		if (likely(sbp)) {
 530			nilfs_set_log_cursor(sbp[0], nilfs);
 531			nilfs_commit_super(sb, NILFS_SB_COMMIT);
 532		}
 533	}
 534	up_write(&nilfs->ns_sem);
 535
 536	if (!err)
 537		err = nilfs_flush_device(nilfs);
 538
 539	return err;
 540}
 541
 542int nilfs_attach_checkpoint(struct super_block *sb, __u64 cno, int curr_mnt,
 543			    struct nilfs_root **rootp)
 544{
 545	struct the_nilfs *nilfs = sb->s_fs_info;
 546	struct nilfs_root *root;
 547	struct nilfs_checkpoint *raw_cp;
 548	struct buffer_head *bh_cp;
 549	int err = -ENOMEM;
 550
 551	root = nilfs_find_or_create_root(
 552		nilfs, curr_mnt ? NILFS_CPTREE_CURRENT_CNO : cno);
 553	if (!root)
 554		return err;
 555
 556	if (root->ifile)
 557		goto reuse; /* already attached checkpoint */
 558
 559	down_read(&nilfs->ns_segctor_sem);
 560	err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
 561					  &bh_cp);
 562	up_read(&nilfs->ns_segctor_sem);
 563	if (unlikely(err)) {
 564		if (err == -ENOENT || err == -EINVAL) {
 565			nilfs_err(sb,
 566				  "Invalid checkpoint (checkpoint number=%llu)",
 567				  (unsigned long long)cno);
 
 568			err = -EINVAL;
 569		}
 570		goto failed;
 571	}
 572
 573	err = nilfs_ifile_read(sb, root, nilfs->ns_inode_size,
 574			       &raw_cp->cp_ifile_inode, &root->ifile);
 575	if (err)
 576		goto failed_bh;
 577
 578	atomic64_set(&root->inodes_count,
 579			le64_to_cpu(raw_cp->cp_inodes_count));
 580	atomic64_set(&root->blocks_count,
 581			le64_to_cpu(raw_cp->cp_blocks_count));
 582
 583	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
 584
 585 reuse:
 586	*rootp = root;
 587	return 0;
 588
 589 failed_bh:
 590	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
 591 failed:
 592	nilfs_put_root(root);
 593
 594	return err;
 595}
 596
 597static int nilfs_freeze(struct super_block *sb)
 598{
 599	struct the_nilfs *nilfs = sb->s_fs_info;
 600	int err;
 601
 602	if (sb_rdonly(sb))
 603		return 0;
 604
 605	/* Mark super block clean */
 606	down_write(&nilfs->ns_sem);
 607	err = nilfs_cleanup_super(sb);
 608	up_write(&nilfs->ns_sem);
 609	return err;
 610}
 611
 612static int nilfs_unfreeze(struct super_block *sb)
 613{
 614	struct the_nilfs *nilfs = sb->s_fs_info;
 615
 616	if (sb_rdonly(sb))
 617		return 0;
 618
 619	down_write(&nilfs->ns_sem);
 620	nilfs_setup_super(sb, false);
 621	up_write(&nilfs->ns_sem);
 622	return 0;
 623}
 624
 625static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
 626{
 627	struct super_block *sb = dentry->d_sb;
 628	struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
 629	struct the_nilfs *nilfs = root->nilfs;
 630	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
 631	unsigned long long blocks;
 632	unsigned long overhead;
 633	unsigned long nrsvblocks;
 634	sector_t nfreeblocks;
 635	u64 nmaxinodes, nfreeinodes;
 636	int err;
 637
 638	/*
 639	 * Compute all of the segment blocks
 640	 *
 641	 * The blocks before first segment and after last segment
 642	 * are excluded.
 643	 */
 644	blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
 645		- nilfs->ns_first_data_block;
 646	nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
 647
 648	/*
 649	 * Compute the overhead
 650	 *
 651	 * When distributing meta data blocks outside segment structure,
 652	 * We must count them as the overhead.
 653	 */
 654	overhead = 0;
 655
 656	err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
 657	if (unlikely(err))
 658		return err;
 659
 660	err = nilfs_ifile_count_free_inodes(root->ifile,
 661					    &nmaxinodes, &nfreeinodes);
 662	if (unlikely(err)) {
 663		nilfs_warn(sb, "failed to count free inodes: err=%d", err);
 
 
 664		if (err == -ERANGE) {
 665			/*
 666			 * If nilfs_palloc_count_max_entries() returns
 667			 * -ERANGE error code then we simply treat
 668			 * curent inodes count as maximum possible and
 669			 * zero as free inodes value.
 670			 */
 671			nmaxinodes = atomic64_read(&root->inodes_count);
 672			nfreeinodes = 0;
 673			err = 0;
 674		} else
 675			return err;
 676	}
 677
 678	buf->f_type = NILFS_SUPER_MAGIC;
 679	buf->f_bsize = sb->s_blocksize;
 680	buf->f_blocks = blocks - overhead;
 681	buf->f_bfree = nfreeblocks;
 682	buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
 683		(buf->f_bfree - nrsvblocks) : 0;
 684	buf->f_files = nmaxinodes;
 685	buf->f_ffree = nfreeinodes;
 686	buf->f_namelen = NILFS_NAME_LEN;
 687	buf->f_fsid = u64_to_fsid(id);
 
 688
 689	return 0;
 690}
 691
 692static int nilfs_show_options(struct seq_file *seq, struct dentry *dentry)
 693{
 694	struct super_block *sb = dentry->d_sb;
 695	struct the_nilfs *nilfs = sb->s_fs_info;
 696	struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
 697
 698	if (!nilfs_test_opt(nilfs, BARRIER))
 699		seq_puts(seq, ",nobarrier");
 700	if (root->cno != NILFS_CPTREE_CURRENT_CNO)
 701		seq_printf(seq, ",cp=%llu", (unsigned long long)root->cno);
 702	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
 703		seq_puts(seq, ",errors=panic");
 704	if (nilfs_test_opt(nilfs, ERRORS_CONT))
 705		seq_puts(seq, ",errors=continue");
 706	if (nilfs_test_opt(nilfs, STRICT_ORDER))
 707		seq_puts(seq, ",order=strict");
 708	if (nilfs_test_opt(nilfs, NORECOVERY))
 709		seq_puts(seq, ",norecovery");
 710	if (nilfs_test_opt(nilfs, DISCARD))
 711		seq_puts(seq, ",discard");
 712
 713	return 0;
 714}
 715
 716static const struct super_operations nilfs_sops = {
 717	.alloc_inode    = nilfs_alloc_inode,
 718	.free_inode     = nilfs_free_inode,
 719	.dirty_inode    = nilfs_dirty_inode,
 720	.evict_inode    = nilfs_evict_inode,
 721	.put_super      = nilfs_put_super,
 722	.sync_fs        = nilfs_sync_fs,
 723	.freeze_fs	= nilfs_freeze,
 724	.unfreeze_fs	= nilfs_unfreeze,
 725	.statfs         = nilfs_statfs,
 726	.remount_fs     = nilfs_remount,
 727	.show_options = nilfs_show_options
 728};
 729
 730enum {
 731	Opt_err_cont, Opt_err_panic, Opt_err_ro,
 732	Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery,
 733	Opt_discard, Opt_nodiscard, Opt_err,
 734};
 735
 736static match_table_t tokens = {
 737	{Opt_err_cont, "errors=continue"},
 738	{Opt_err_panic, "errors=panic"},
 739	{Opt_err_ro, "errors=remount-ro"},
 740	{Opt_barrier, "barrier"},
 741	{Opt_nobarrier, "nobarrier"},
 742	{Opt_snapshot, "cp=%u"},
 743	{Opt_order, "order=%s"},
 744	{Opt_norecovery, "norecovery"},
 745	{Opt_discard, "discard"},
 746	{Opt_nodiscard, "nodiscard"},
 747	{Opt_err, NULL}
 748};
 749
 750static int parse_options(char *options, struct super_block *sb, int is_remount)
 751{
 752	struct the_nilfs *nilfs = sb->s_fs_info;
 753	char *p;
 754	substring_t args[MAX_OPT_ARGS];
 755
 756	if (!options)
 757		return 1;
 758
 759	while ((p = strsep(&options, ",")) != NULL) {
 760		int token;
 761
 762		if (!*p)
 763			continue;
 764
 765		token = match_token(p, tokens, args);
 766		switch (token) {
 767		case Opt_barrier:
 768			nilfs_set_opt(nilfs, BARRIER);
 769			break;
 770		case Opt_nobarrier:
 771			nilfs_clear_opt(nilfs, BARRIER);
 772			break;
 773		case Opt_order:
 774			if (strcmp(args[0].from, "relaxed") == 0)
 775				/* Ordered data semantics */
 776				nilfs_clear_opt(nilfs, STRICT_ORDER);
 777			else if (strcmp(args[0].from, "strict") == 0)
 778				/* Strict in-order semantics */
 779				nilfs_set_opt(nilfs, STRICT_ORDER);
 780			else
 781				return 0;
 782			break;
 783		case Opt_err_panic:
 784			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_PANIC);
 785			break;
 786		case Opt_err_ro:
 787			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_RO);
 788			break;
 789		case Opt_err_cont:
 790			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_CONT);
 791			break;
 792		case Opt_snapshot:
 793			if (is_remount) {
 794				nilfs_err(sb,
 795					  "\"%s\" option is invalid for remount",
 796					  p);
 797				return 0;
 798			}
 799			break;
 800		case Opt_norecovery:
 801			nilfs_set_opt(nilfs, NORECOVERY);
 802			break;
 803		case Opt_discard:
 804			nilfs_set_opt(nilfs, DISCARD);
 805			break;
 806		case Opt_nodiscard:
 807			nilfs_clear_opt(nilfs, DISCARD);
 808			break;
 809		default:
 810			nilfs_err(sb, "unrecognized mount option \"%s\"", p);
 
 811			return 0;
 812		}
 813	}
 814	return 1;
 815}
 816
 817static inline void
 818nilfs_set_default_options(struct super_block *sb,
 819			  struct nilfs_super_block *sbp)
 820{
 821	struct the_nilfs *nilfs = sb->s_fs_info;
 822
 823	nilfs->ns_mount_opt =
 824		NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER;
 825}
 826
 827static int nilfs_setup_super(struct super_block *sb, int is_mount)
 828{
 829	struct the_nilfs *nilfs = sb->s_fs_info;
 830	struct nilfs_super_block **sbp;
 831	int max_mnt_count;
 832	int mnt_count;
 833
 834	/* nilfs->ns_sem must be locked by the caller. */
 835	sbp = nilfs_prepare_super(sb, 0);
 836	if (!sbp)
 837		return -EIO;
 838
 839	if (!is_mount)
 840		goto skip_mount_setup;
 841
 842	max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count);
 843	mnt_count = le16_to_cpu(sbp[0]->s_mnt_count);
 844
 845	if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
 846		nilfs_warn(sb, "mounting fs with errors");
 
 847#if 0
 848	} else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
 849		nilfs_warn(sb, "maximal mount count reached");
 
 850#endif
 851	}
 852	if (!max_mnt_count)
 853		sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
 854
 855	sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1);
 856	sbp[0]->s_mtime = cpu_to_le64(ktime_get_real_seconds());
 857
 858skip_mount_setup:
 859	sbp[0]->s_state =
 860		cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS);
 861	/* synchronize sbp[1] with sbp[0] */
 862	if (sbp[1])
 863		memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
 864	return nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
 865}
 866
 867struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
 868						 u64 pos, int blocksize,
 869						 struct buffer_head **pbh)
 870{
 871	unsigned long long sb_index = pos;
 872	unsigned long offset;
 873
 874	offset = do_div(sb_index, blocksize);
 875	*pbh = sb_bread(sb, sb_index);
 876	if (!*pbh)
 877		return NULL;
 878	return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
 879}
 880
 881int nilfs_store_magic_and_option(struct super_block *sb,
 882				 struct nilfs_super_block *sbp,
 883				 char *data)
 884{
 885	struct the_nilfs *nilfs = sb->s_fs_info;
 886
 887	sb->s_magic = le16_to_cpu(sbp->s_magic);
 888
 889	/* FS independent flags */
 890#ifdef NILFS_ATIME_DISABLE
 891	sb->s_flags |= SB_NOATIME;
 892#endif
 893
 894	nilfs_set_default_options(sb, sbp);
 895
 896	nilfs->ns_resuid = le16_to_cpu(sbp->s_def_resuid);
 897	nilfs->ns_resgid = le16_to_cpu(sbp->s_def_resgid);
 898	nilfs->ns_interval = le32_to_cpu(sbp->s_c_interval);
 899	nilfs->ns_watermark = le32_to_cpu(sbp->s_c_block_max);
 900
 901	return !parse_options(data, sb, 0) ? -EINVAL : 0;
 902}
 903
 904int nilfs_check_feature_compatibility(struct super_block *sb,
 905				      struct nilfs_super_block *sbp)
 906{
 907	__u64 features;
 908
 909	features = le64_to_cpu(sbp->s_feature_incompat) &
 910		~NILFS_FEATURE_INCOMPAT_SUPP;
 911	if (features) {
 912		nilfs_err(sb,
 913			  "couldn't mount because of unsupported optional features (%llx)",
 914			  (unsigned long long)features);
 915		return -EINVAL;
 916	}
 917	features = le64_to_cpu(sbp->s_feature_compat_ro) &
 918		~NILFS_FEATURE_COMPAT_RO_SUPP;
 919	if (!sb_rdonly(sb) && features) {
 920		nilfs_err(sb,
 921			  "couldn't mount RDWR because of unsupported optional features (%llx)",
 922			  (unsigned long long)features);
 923		return -EINVAL;
 924	}
 925	return 0;
 926}
 927
 928static int nilfs_get_root_dentry(struct super_block *sb,
 929				 struct nilfs_root *root,
 930				 struct dentry **root_dentry)
 931{
 932	struct inode *inode;
 933	struct dentry *dentry;
 934	int ret = 0;
 935
 936	inode = nilfs_iget(sb, root, NILFS_ROOT_INO);
 937	if (IS_ERR(inode)) {
 
 938		ret = PTR_ERR(inode);
 939		nilfs_err(sb, "error %d getting root inode", ret);
 940		goto out;
 941	}
 942	if (!S_ISDIR(inode->i_mode) || !inode->i_blocks || !inode->i_size) {
 943		iput(inode);
 944		nilfs_err(sb, "corrupt root inode");
 945		ret = -EINVAL;
 946		goto out;
 947	}
 948
 949	if (root->cno == NILFS_CPTREE_CURRENT_CNO) {
 950		dentry = d_find_alias(inode);
 951		if (!dentry) {
 952			dentry = d_make_root(inode);
 953			if (!dentry) {
 954				ret = -ENOMEM;
 955				goto failed_dentry;
 956			}
 957		} else {
 958			iput(inode);
 959		}
 960	} else {
 961		dentry = d_obtain_root(inode);
 962		if (IS_ERR(dentry)) {
 963			ret = PTR_ERR(dentry);
 964			goto failed_dentry;
 965		}
 966	}
 967	*root_dentry = dentry;
 968 out:
 969	return ret;
 970
 971 failed_dentry:
 972	nilfs_err(sb, "error %d getting root dentry", ret);
 973	goto out;
 974}
 975
 976static int nilfs_attach_snapshot(struct super_block *s, __u64 cno,
 977				 struct dentry **root_dentry)
 978{
 979	struct the_nilfs *nilfs = s->s_fs_info;
 980	struct nilfs_root *root;
 981	int ret;
 982
 983	mutex_lock(&nilfs->ns_snapshot_mount_mutex);
 984
 985	down_read(&nilfs->ns_segctor_sem);
 986	ret = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile, cno);
 987	up_read(&nilfs->ns_segctor_sem);
 988	if (ret < 0) {
 989		ret = (ret == -ENOENT) ? -EINVAL : ret;
 990		goto out;
 991	} else if (!ret) {
 992		nilfs_err(s,
 993			  "The specified checkpoint is not a snapshot (checkpoint number=%llu)",
 994			  (unsigned long long)cno);
 995		ret = -EINVAL;
 996		goto out;
 997	}
 998
 999	ret = nilfs_attach_checkpoint(s, cno, false, &root);
1000	if (ret) {
1001		nilfs_err(s,
1002			  "error %d while loading snapshot (checkpoint number=%llu)",
1003			  ret, (unsigned long long)cno);
1004		goto out;
1005	}
1006	ret = nilfs_get_root_dentry(s, root, root_dentry);
1007	nilfs_put_root(root);
1008 out:
1009	mutex_unlock(&nilfs->ns_snapshot_mount_mutex);
1010	return ret;
1011}
1012
1013/**
1014 * nilfs_tree_is_busy() - try to shrink dentries of a checkpoint
1015 * @root_dentry: root dentry of the tree to be shrunk
1016 *
1017 * This function returns true if the tree was in-use.
1018 */
1019static bool nilfs_tree_is_busy(struct dentry *root_dentry)
1020{
1021	shrink_dcache_parent(root_dentry);
1022	return d_count(root_dentry) > 1;
1023}
1024
1025int nilfs_checkpoint_is_mounted(struct super_block *sb, __u64 cno)
1026{
1027	struct the_nilfs *nilfs = sb->s_fs_info;
1028	struct nilfs_root *root;
1029	struct inode *inode;
1030	struct dentry *dentry;
1031	int ret;
1032
1033	if (cno > nilfs->ns_cno)
1034		return false;
1035
1036	if (cno >= nilfs_last_cno(nilfs))
1037		return true;	/* protect recent checkpoints */
1038
1039	ret = false;
1040	root = nilfs_lookup_root(nilfs, cno);
1041	if (root) {
1042		inode = nilfs_ilookup(sb, root, NILFS_ROOT_INO);
1043		if (inode) {
1044			dentry = d_find_alias(inode);
1045			if (dentry) {
1046				ret = nilfs_tree_is_busy(dentry);
1047				dput(dentry);
1048			}
1049			iput(inode);
1050		}
1051		nilfs_put_root(root);
1052	}
1053	return ret;
1054}
1055
1056/**
1057 * nilfs_fill_super() - initialize a super block instance
1058 * @sb: super_block
1059 * @data: mount options
1060 * @silent: silent mode flag
1061 *
1062 * This function is called exclusively by nilfs->ns_mount_mutex.
1063 * So, the recovery process is protected from other simultaneous mounts.
1064 */
1065static int
1066nilfs_fill_super(struct super_block *sb, void *data, int silent)
1067{
1068	struct the_nilfs *nilfs;
1069	struct nilfs_root *fsroot;
1070	__u64 cno;
1071	int err;
1072
1073	nilfs = alloc_nilfs(sb);
1074	if (!nilfs)
1075		return -ENOMEM;
1076
1077	sb->s_fs_info = nilfs;
1078
1079	err = init_nilfs(nilfs, sb, (char *)data);
1080	if (err)
1081		goto failed_nilfs;
1082
1083	sb->s_op = &nilfs_sops;
1084	sb->s_export_op = &nilfs_export_ops;
1085	sb->s_root = NULL;
1086	sb->s_time_gran = 1;
1087	sb->s_max_links = NILFS_LINK_MAX;
1088
1089	sb->s_bdi = bdi_get(sb->s_bdev->bd_disk->bdi);
1090
1091	err = load_nilfs(nilfs, sb);
1092	if (err)
1093		goto failed_nilfs;
1094
1095	cno = nilfs_last_cno(nilfs);
1096	err = nilfs_attach_checkpoint(sb, cno, true, &fsroot);
1097	if (err) {
1098		nilfs_err(sb,
1099			  "error %d while loading last checkpoint (checkpoint number=%llu)",
1100			  err, (unsigned long long)cno);
1101		goto failed_unload;
1102	}
1103
1104	if (!sb_rdonly(sb)) {
1105		err = nilfs_attach_log_writer(sb, fsroot);
1106		if (err)
1107			goto failed_checkpoint;
1108	}
1109
1110	err = nilfs_get_root_dentry(sb, fsroot, &sb->s_root);
1111	if (err)
1112		goto failed_segctor;
1113
1114	nilfs_put_root(fsroot);
1115
1116	if (!sb_rdonly(sb)) {
1117		down_write(&nilfs->ns_sem);
1118		nilfs_setup_super(sb, true);
1119		up_write(&nilfs->ns_sem);
1120	}
1121
1122	return 0;
1123
1124 failed_segctor:
1125	nilfs_detach_log_writer(sb);
1126
1127 failed_checkpoint:
1128	nilfs_put_root(fsroot);
1129
1130 failed_unload:
1131	nilfs_sysfs_delete_device_group(nilfs);
1132	iput(nilfs->ns_sufile);
1133	iput(nilfs->ns_cpfile);
1134	iput(nilfs->ns_dat);
1135
1136 failed_nilfs:
1137	destroy_nilfs(nilfs);
1138	return err;
1139}
1140
1141static int nilfs_remount(struct super_block *sb, int *flags, char *data)
1142{
1143	struct the_nilfs *nilfs = sb->s_fs_info;
1144	unsigned long old_sb_flags;
1145	unsigned long old_mount_opt;
1146	int err;
1147
1148	sync_filesystem(sb);
1149	old_sb_flags = sb->s_flags;
1150	old_mount_opt = nilfs->ns_mount_opt;
1151
1152	if (!parse_options(data, sb, 1)) {
1153		err = -EINVAL;
1154		goto restore_opts;
1155	}
1156	sb->s_flags = (sb->s_flags & ~SB_POSIXACL);
1157
1158	err = -EINVAL;
1159
1160	if (!nilfs_valid_fs(nilfs)) {
1161		nilfs_warn(sb,
1162			   "couldn't remount because the filesystem is in an incomplete recovery state");
 
1163		goto restore_opts;
1164	}
1165
1166	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
1167		goto out;
1168	if (*flags & SB_RDONLY) {
1169		sb->s_flags |= SB_RDONLY;
 
 
1170
1171		/*
1172		 * Remounting a valid RW partition RDONLY, so set
1173		 * the RDONLY flag and then mark the partition as valid again.
1174		 */
1175		down_write(&nilfs->ns_sem);
1176		nilfs_cleanup_super(sb);
1177		up_write(&nilfs->ns_sem);
1178	} else {
1179		__u64 features;
1180		struct nilfs_root *root;
1181
1182		/*
1183		 * Mounting a RDONLY partition read-write, so reread and
1184		 * store the current valid flag.  (It may have been changed
1185		 * by fsck since we originally mounted the partition.)
1186		 */
1187		down_read(&nilfs->ns_sem);
1188		features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) &
1189			~NILFS_FEATURE_COMPAT_RO_SUPP;
1190		up_read(&nilfs->ns_sem);
1191		if (features) {
1192			nilfs_warn(sb,
1193				   "couldn't remount RDWR because of unsupported optional features (%llx)",
1194				   (unsigned long long)features);
 
1195			err = -EROFS;
1196			goto restore_opts;
1197		}
1198
1199		sb->s_flags &= ~SB_RDONLY;
1200
1201		root = NILFS_I(d_inode(sb->s_root))->i_root;
1202		err = nilfs_attach_log_writer(sb, root);
1203		if (err)
1204			goto restore_opts;
1205
1206		down_write(&nilfs->ns_sem);
1207		nilfs_setup_super(sb, true);
1208		up_write(&nilfs->ns_sem);
1209	}
1210 out:
1211	return 0;
1212
1213 restore_opts:
1214	sb->s_flags = old_sb_flags;
1215	nilfs->ns_mount_opt = old_mount_opt;
1216	return err;
1217}
1218
1219struct nilfs_super_data {
 
1220	__u64 cno;
1221	int flags;
1222};
1223
1224static int nilfs_parse_snapshot_option(const char *option,
1225				       const substring_t *arg,
1226				       struct nilfs_super_data *sd)
1227{
1228	unsigned long long val;
1229	const char *msg = NULL;
1230	int err;
1231
1232	if (!(sd->flags & SB_RDONLY)) {
1233		msg = "read-only option is not specified";
1234		goto parse_error;
1235	}
1236
1237	err = kstrtoull(arg->from, 0, &val);
1238	if (err) {
1239		if (err == -ERANGE)
1240			msg = "too large checkpoint number";
1241		else
1242			msg = "malformed argument";
1243		goto parse_error;
1244	} else if (val == 0) {
1245		msg = "invalid checkpoint number 0";
1246		goto parse_error;
1247	}
1248	sd->cno = val;
1249	return 0;
1250
1251parse_error:
1252	nilfs_err(NULL, "invalid option \"%s\": %s", option, msg);
1253	return 1;
1254}
1255
1256/**
1257 * nilfs_identify - pre-read mount options needed to identify mount instance
1258 * @data: mount options
1259 * @sd: nilfs_super_data
1260 */
1261static int nilfs_identify(char *data, struct nilfs_super_data *sd)
1262{
1263	char *p, *options = data;
1264	substring_t args[MAX_OPT_ARGS];
1265	int token;
1266	int ret = 0;
1267
1268	do {
1269		p = strsep(&options, ",");
1270		if (p != NULL && *p) {
1271			token = match_token(p, tokens, args);
1272			if (token == Opt_snapshot)
1273				ret = nilfs_parse_snapshot_option(p, &args[0],
1274								  sd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1275		}
1276		if (!options)
1277			break;
1278		BUG_ON(options == data);
1279		*(options - 1) = ',';
1280	} while (!ret);
1281	return ret;
1282}
1283
1284static int nilfs_set_bdev_super(struct super_block *s, void *data)
1285{
1286	s->s_dev = *(dev_t *)data;
 
1287	return 0;
1288}
1289
1290static int nilfs_test_bdev_super(struct super_block *s, void *data)
1291{
1292	return !(s->s_iflags & SB_I_RETIRED) && s->s_dev == *(dev_t *)data;
1293}
1294
1295static struct dentry *
1296nilfs_mount(struct file_system_type *fs_type, int flags,
1297	     const char *dev_name, void *data)
1298{
1299	struct nilfs_super_data sd = { .flags = flags };
1300	struct super_block *s;
1301	dev_t dev;
1302	int err;
1303
1304	if (nilfs_identify(data, &sd))
1305		return ERR_PTR(-EINVAL);
1306
1307	err = lookup_bdev(dev_name, &dev);
1308	if (err)
1309		return ERR_PTR(err);
 
 
 
 
 
 
 
 
1310
 
 
 
 
 
 
 
 
 
 
 
1311	s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, flags,
1312		 &dev);
1313	if (IS_ERR(s))
1314		return ERR_CAST(s);
 
 
 
1315
1316	if (!s->s_root) {
1317		err = setup_bdev_super(s, flags, NULL);
1318		if (!err)
1319			err = nilfs_fill_super(s, data,
1320					       flags & SB_SILENT ? 1 : 0);
 
 
 
 
1321		if (err)
1322			goto failed_super;
1323
1324		s->s_flags |= SB_ACTIVE;
1325	} else if (!sd.cno) {
1326		if (nilfs_tree_is_busy(s->s_root)) {
1327			if ((flags ^ s->s_flags) & SB_RDONLY) {
1328				nilfs_err(s,
1329					  "the device already has a %s mount.",
1330					  sb_rdonly(s) ? "read-only" : "read/write");
 
1331				err = -EBUSY;
1332				goto failed_super;
1333			}
1334		} else {
1335			/*
1336			 * Try remount to setup mount states if the current
1337			 * tree is not mounted and only snapshots use this sb.
1338			 */
1339			err = nilfs_remount(s, &flags, data);
1340			if (err)
1341				goto failed_super;
1342		}
1343	}
1344
1345	if (sd.cno) {
1346		struct dentry *root_dentry;
1347
1348		err = nilfs_attach_snapshot(s, sd.cno, &root_dentry);
1349		if (err)
1350			goto failed_super;
1351		return root_dentry;
 
1352	}
1353
1354	return dget(s->s_root);
 
 
 
1355
1356 failed_super:
1357	deactivate_locked_super(s);
 
 
 
 
1358	return ERR_PTR(err);
1359}
1360
1361struct file_system_type nilfs_fs_type = {
1362	.owner    = THIS_MODULE,
1363	.name     = "nilfs2",
1364	.mount    = nilfs_mount,
1365	.kill_sb  = kill_block_super,
1366	.fs_flags = FS_REQUIRES_DEV,
1367};
1368MODULE_ALIAS_FS("nilfs2");
1369
1370static void nilfs_inode_init_once(void *obj)
1371{
1372	struct nilfs_inode_info *ii = obj;
1373
1374	INIT_LIST_HEAD(&ii->i_dirty);
1375#ifdef CONFIG_NILFS_XATTR
1376	init_rwsem(&ii->xattr_sem);
1377#endif
 
 
1378	inode_init_once(&ii->vfs_inode);
1379}
1380
1381static void nilfs_segbuf_init_once(void *obj)
1382{
1383	memset(obj, 0, sizeof(struct nilfs_segment_buffer));
1384}
1385
1386static void nilfs_destroy_cachep(void)
1387{
1388	/*
1389	 * Make sure all delayed rcu free inodes are flushed before we
1390	 * destroy cache.
1391	 */
1392	rcu_barrier();
1393
1394	kmem_cache_destroy(nilfs_inode_cachep);
1395	kmem_cache_destroy(nilfs_transaction_cachep);
1396	kmem_cache_destroy(nilfs_segbuf_cachep);
1397	kmem_cache_destroy(nilfs_btree_path_cache);
1398}
1399
1400static int __init nilfs_init_cachep(void)
1401{
1402	nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
1403			sizeof(struct nilfs_inode_info), 0,
1404			SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT,
1405			nilfs_inode_init_once);
1406	if (!nilfs_inode_cachep)
1407		goto fail;
1408
1409	nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache",
1410			sizeof(struct nilfs_transaction_info), 0,
1411			SLAB_RECLAIM_ACCOUNT, NULL);
1412	if (!nilfs_transaction_cachep)
1413		goto fail;
1414
1415	nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache",
1416			sizeof(struct nilfs_segment_buffer), 0,
1417			SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once);
1418	if (!nilfs_segbuf_cachep)
1419		goto fail;
1420
1421	nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache",
1422			sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX,
1423			0, 0, NULL);
1424	if (!nilfs_btree_path_cache)
1425		goto fail;
1426
1427	return 0;
1428
1429fail:
1430	nilfs_destroy_cachep();
1431	return -ENOMEM;
1432}
1433
1434static int __init init_nilfs_fs(void)
1435{
1436	int err;
1437
1438	err = nilfs_init_cachep();
1439	if (err)
1440		goto fail;
1441
1442	err = nilfs_sysfs_init();
1443	if (err)
1444		goto free_cachep;
1445
1446	err = register_filesystem(&nilfs_fs_type);
1447	if (err)
1448		goto deinit_sysfs_entry;
1449
1450	printk(KERN_INFO "NILFS version 2 loaded\n");
1451	return 0;
1452
1453deinit_sysfs_entry:
1454	nilfs_sysfs_exit();
1455free_cachep:
1456	nilfs_destroy_cachep();
1457fail:
1458	return err;
1459}
1460
1461static void __exit exit_nilfs_fs(void)
1462{
1463	nilfs_destroy_cachep();
1464	nilfs_sysfs_exit();
1465	unregister_filesystem(&nilfs_fs_type);
1466}
1467
1468module_init(init_nilfs_fs)
1469module_exit(exit_nilfs_fs)
v4.6
 
   1/*
   2 * super.c - NILFS module and super block management.
   3 *
   4 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, write to the Free Software
  18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  19 *
  20 * Written by Ryusuke Konishi <ryusuke@osrg.net>
  21 */
  22/*
  23 *  linux/fs/ext2/super.c
  24 *
  25 * Copyright (C) 1992, 1993, 1994, 1995
  26 * Remy Card (card@masi.ibp.fr)
  27 * Laboratoire MASI - Institut Blaise Pascal
  28 * Universite Pierre et Marie Curie (Paris VI)
  29 *
  30 *  from
  31 *
  32 *  linux/fs/minix/inode.c
  33 *
  34 *  Copyright (C) 1991, 1992  Linus Torvalds
  35 *
  36 *  Big-endian to little-endian byte-swapping/bitmaps by
  37 *        David S. Miller (davem@caip.rutgers.edu), 1995
  38 */
  39
  40#include <linux/module.h>
  41#include <linux/string.h>
  42#include <linux/slab.h>
  43#include <linux/init.h>
  44#include <linux/blkdev.h>
  45#include <linux/parser.h>
  46#include <linux/crc32.h>
  47#include <linux/vfs.h>
  48#include <linux/writeback.h>
  49#include <linux/seq_file.h>
  50#include <linux/mount.h>
 
  51#include "nilfs.h"
  52#include "export.h"
  53#include "mdt.h"
  54#include "alloc.h"
  55#include "btree.h"
  56#include "btnode.h"
  57#include "page.h"
  58#include "cpfile.h"
  59#include "sufile.h" /* nilfs_sufile_resize(), nilfs_sufile_set_alloc_range() */
  60#include "ifile.h"
  61#include "dat.h"
  62#include "segment.h"
  63#include "segbuf.h"
  64
  65MODULE_AUTHOR("NTT Corp.");
  66MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
  67		   "(NILFS)");
  68MODULE_LICENSE("GPL");
  69
  70static struct kmem_cache *nilfs_inode_cachep;
  71struct kmem_cache *nilfs_transaction_cachep;
  72struct kmem_cache *nilfs_segbuf_cachep;
  73struct kmem_cache *nilfs_btree_path_cache;
  74
  75static int nilfs_setup_super(struct super_block *sb, int is_mount);
  76static int nilfs_remount(struct super_block *sb, int *flags, char *data);
  77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  78static void nilfs_set_error(struct super_block *sb)
  79{
  80	struct the_nilfs *nilfs = sb->s_fs_info;
  81	struct nilfs_super_block **sbp;
  82
  83	down_write(&nilfs->ns_sem);
  84	if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
  85		nilfs->ns_mount_state |= NILFS_ERROR_FS;
  86		sbp = nilfs_prepare_super(sb, 0);
  87		if (likely(sbp)) {
  88			sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
  89			if (sbp[1])
  90				sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
  91			nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
  92		}
  93	}
  94	up_write(&nilfs->ns_sem);
  95}
  96
  97/**
  98 * nilfs_error() - report failure condition on a filesystem
  99 *
 100 * nilfs_error() sets an ERROR_FS flag on the superblock as well as
 101 * reporting an error message.  It should be called when NILFS detects
 102 * incoherences or defects of meta data on disk.  As for sustainable
 103 * errors such as a single-shot I/O error, nilfs_warning() or the printk()
 104 * function should be used instead.
 105 *
 106 * The segment constructor must not call this function because it can
 107 * kill itself.
 
 
 
 108 */
 109void nilfs_error(struct super_block *sb, const char *function,
 110		 const char *fmt, ...)
 111{
 112	struct the_nilfs *nilfs = sb->s_fs_info;
 113	struct va_format vaf;
 114	va_list args;
 115
 116	va_start(args, fmt);
 117
 118	vaf.fmt = fmt;
 119	vaf.va = &args;
 120
 121	printk(KERN_CRIT "NILFS error (device %s): %s: %pV\n",
 122	       sb->s_id, function, &vaf);
 123
 124	va_end(args);
 125
 126	if (!(sb->s_flags & MS_RDONLY)) {
 127		nilfs_set_error(sb);
 128
 129		if (nilfs_test_opt(nilfs, ERRORS_RO)) {
 130			printk(KERN_CRIT "Remounting filesystem read-only\n");
 131			sb->s_flags |= MS_RDONLY;
 132		}
 133	}
 134
 135	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
 136		panic("NILFS (device %s): panic forced after error\n",
 137		      sb->s_id);
 138}
 139
 140void nilfs_warning(struct super_block *sb, const char *function,
 141		   const char *fmt, ...)
 142{
 143	struct va_format vaf;
 144	va_list args;
 145
 146	va_start(args, fmt);
 147
 148	vaf.fmt = fmt;
 149	vaf.va = &args;
 150
 151	printk(KERN_WARNING "NILFS warning (device %s): %s: %pV\n",
 152	       sb->s_id, function, &vaf);
 153
 154	va_end(args);
 155}
 156
 157
 158struct inode *nilfs_alloc_inode(struct super_block *sb)
 159{
 160	struct nilfs_inode_info *ii;
 161
 162	ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS);
 163	if (!ii)
 164		return NULL;
 165	ii->i_bh = NULL;
 166	ii->i_state = 0;
 167	ii->i_cno = 0;
 168	ii->vfs_inode.i_version = 1;
 169	nilfs_mapping_init(&ii->i_btnode_cache, &ii->vfs_inode);
 170	return &ii->vfs_inode;
 171}
 172
 173static void nilfs_i_callback(struct rcu_head *head)
 174{
 175	struct inode *inode = container_of(head, struct inode, i_rcu);
 176	struct nilfs_mdt_info *mdi = NILFS_MDT(inode);
 177
 178	if (mdi) {
 179		kfree(mdi->mi_bgl); /* kfree(NULL) is safe */
 180		kfree(mdi);
 181	}
 182	kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
 183}
 184
 185void nilfs_destroy_inode(struct inode *inode)
 186{
 187	call_rcu(&inode->i_rcu, nilfs_i_callback);
 188}
 189
 190static int nilfs_sync_super(struct super_block *sb, int flag)
 191{
 192	struct the_nilfs *nilfs = sb->s_fs_info;
 193	int err;
 194
 195 retry:
 196	set_buffer_dirty(nilfs->ns_sbh[0]);
 197	if (nilfs_test_opt(nilfs, BARRIER)) {
 198		err = __sync_dirty_buffer(nilfs->ns_sbh[0],
 199					  WRITE_SYNC | WRITE_FLUSH_FUA);
 200	} else {
 201		err = sync_dirty_buffer(nilfs->ns_sbh[0]);
 202	}
 203
 204	if (unlikely(err)) {
 205		printk(KERN_ERR
 206		       "NILFS: unable to write superblock (err=%d)\n", err);
 207		if (err == -EIO && nilfs->ns_sbh[1]) {
 208			/*
 209			 * sbp[0] points to newer log than sbp[1],
 210			 * so copy sbp[0] to sbp[1] to take over sbp[0].
 211			 */
 212			memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0],
 213			       nilfs->ns_sbsize);
 214			nilfs_fall_back_super_block(nilfs);
 215			goto retry;
 216		}
 217	} else {
 218		struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
 219
 220		nilfs->ns_sbwcount++;
 221
 222		/*
 223		 * The latest segment becomes trailable from the position
 224		 * written in superblock.
 225		 */
 226		clear_nilfs_discontinued(nilfs);
 227
 228		/* update GC protection for recent segments */
 229		if (nilfs->ns_sbh[1]) {
 230			if (flag == NILFS_SB_COMMIT_ALL) {
 231				set_buffer_dirty(nilfs->ns_sbh[1]);
 232				if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0)
 233					goto out;
 234			}
 235			if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) <
 236			    le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno))
 237				sbp = nilfs->ns_sbp[1];
 238		}
 239
 240		spin_lock(&nilfs->ns_last_segment_lock);
 241		nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
 242		spin_unlock(&nilfs->ns_last_segment_lock);
 243	}
 244 out:
 245	return err;
 246}
 247
 248void nilfs_set_log_cursor(struct nilfs_super_block *sbp,
 249			  struct the_nilfs *nilfs)
 250{
 251	sector_t nfreeblocks;
 252
 253	/* nilfs->ns_sem must be locked by the caller. */
 254	nilfs_count_free_blocks(nilfs, &nfreeblocks);
 255	sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks);
 256
 257	spin_lock(&nilfs->ns_last_segment_lock);
 258	sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
 259	sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
 260	sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
 261	spin_unlock(&nilfs->ns_last_segment_lock);
 262}
 263
 264struct nilfs_super_block **nilfs_prepare_super(struct super_block *sb,
 265					       int flip)
 266{
 267	struct the_nilfs *nilfs = sb->s_fs_info;
 268	struct nilfs_super_block **sbp = nilfs->ns_sbp;
 269
 270	/* nilfs->ns_sem must be locked by the caller. */
 271	if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
 272		if (sbp[1] &&
 273		    sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) {
 274			memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
 275		} else {
 276			printk(KERN_CRIT "NILFS: superblock broke on dev %s\n",
 277			       sb->s_id);
 278			return NULL;
 279		}
 280	} else if (sbp[1] &&
 281		   sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
 282			memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
 283	}
 284
 285	if (flip && sbp[1])
 286		nilfs_swap_super_block(nilfs);
 287
 288	return sbp;
 289}
 290
 291int nilfs_commit_super(struct super_block *sb, int flag)
 292{
 293	struct the_nilfs *nilfs = sb->s_fs_info;
 294	struct nilfs_super_block **sbp = nilfs->ns_sbp;
 295	time_t t;
 296
 297	/* nilfs->ns_sem must be locked by the caller. */
 298	t = get_seconds();
 299	nilfs->ns_sbwtime = t;
 300	sbp[0]->s_wtime = cpu_to_le64(t);
 301	sbp[0]->s_sum = 0;
 302	sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
 303					     (unsigned char *)sbp[0],
 304					     nilfs->ns_sbsize));
 305	if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) {
 306		sbp[1]->s_wtime = sbp[0]->s_wtime;
 307		sbp[1]->s_sum = 0;
 308		sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
 309					    (unsigned char *)sbp[1],
 310					    nilfs->ns_sbsize));
 311	}
 312	clear_nilfs_sb_dirty(nilfs);
 313	nilfs->ns_flushed_device = 1;
 314	/* make sure store to ns_flushed_device cannot be reordered */
 315	smp_wmb();
 316	return nilfs_sync_super(sb, flag);
 317}
 318
 319/**
 320 * nilfs_cleanup_super() - write filesystem state for cleanup
 321 * @sb: super block instance to be unmounted or degraded to read-only
 322 *
 323 * This function restores state flags in the on-disk super block.
 324 * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the
 325 * filesystem was not clean previously.
 326 */
 327int nilfs_cleanup_super(struct super_block *sb)
 328{
 329	struct the_nilfs *nilfs = sb->s_fs_info;
 330	struct nilfs_super_block **sbp;
 331	int flag = NILFS_SB_COMMIT;
 332	int ret = -EIO;
 333
 334	sbp = nilfs_prepare_super(sb, 0);
 335	if (sbp) {
 336		sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
 337		nilfs_set_log_cursor(sbp[0], nilfs);
 338		if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) {
 339			/*
 340			 * make the "clean" flag also to the opposite
 341			 * super block if both super blocks point to
 342			 * the same checkpoint.
 343			 */
 344			sbp[1]->s_state = sbp[0]->s_state;
 345			flag = NILFS_SB_COMMIT_ALL;
 346		}
 347		ret = nilfs_commit_super(sb, flag);
 348	}
 349	return ret;
 350}
 351
 352/**
 353 * nilfs_move_2nd_super - relocate secondary super block
 354 * @sb: super block instance
 355 * @sb2off: new offset of the secondary super block (in bytes)
 356 */
 357static int nilfs_move_2nd_super(struct super_block *sb, loff_t sb2off)
 358{
 359	struct the_nilfs *nilfs = sb->s_fs_info;
 360	struct buffer_head *nsbh;
 361	struct nilfs_super_block *nsbp;
 362	sector_t blocknr, newblocknr;
 363	unsigned long offset;
 364	int sb2i;  /* array index of the secondary superblock */
 365	int ret = 0;
 366
 367	/* nilfs->ns_sem must be locked by the caller. */
 368	if (nilfs->ns_sbh[1] &&
 369	    nilfs->ns_sbh[1]->b_blocknr > nilfs->ns_first_data_block) {
 370		sb2i = 1;
 371		blocknr = nilfs->ns_sbh[1]->b_blocknr;
 372	} else if (nilfs->ns_sbh[0]->b_blocknr > nilfs->ns_first_data_block) {
 373		sb2i = 0;
 374		blocknr = nilfs->ns_sbh[0]->b_blocknr;
 375	} else {
 376		sb2i = -1;
 377		blocknr = 0;
 378	}
 379	if (sb2i >= 0 && (u64)blocknr << nilfs->ns_blocksize_bits == sb2off)
 380		goto out;  /* super block location is unchanged */
 381
 382	/* Get new super block buffer */
 383	newblocknr = sb2off >> nilfs->ns_blocksize_bits;
 384	offset = sb2off & (nilfs->ns_blocksize - 1);
 385	nsbh = sb_getblk(sb, newblocknr);
 386	if (!nsbh) {
 387		printk(KERN_WARNING
 388		       "NILFS warning: unable to move secondary superblock "
 389		       "to block %llu\n", (unsigned long long)newblocknr);
 390		ret = -EIO;
 391		goto out;
 392	}
 393	nsbp = (void *)nsbh->b_data + offset;
 394	memset(nsbp, 0, nilfs->ns_blocksize);
 395
 
 396	if (sb2i >= 0) {
 
 
 
 
 
 
 397		memcpy(nsbp, nilfs->ns_sbp[sb2i], nilfs->ns_sbsize);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 398		brelse(nilfs->ns_sbh[sb2i]);
 399		nilfs->ns_sbh[sb2i] = nsbh;
 400		nilfs->ns_sbp[sb2i] = nsbp;
 401	} else if (nilfs->ns_sbh[0]->b_blocknr < nilfs->ns_first_data_block) {
 402		/* secondary super block will be restored to index 1 */
 403		nilfs->ns_sbh[1] = nsbh;
 404		nilfs->ns_sbp[1] = nsbp;
 405	} else {
 406		brelse(nsbh);
 407	}
 408out:
 409	return ret;
 410}
 411
 412/**
 413 * nilfs_resize_fs - resize the filesystem
 414 * @sb: super block instance
 415 * @newsize: new size of the filesystem (in bytes)
 416 */
 417int nilfs_resize_fs(struct super_block *sb, __u64 newsize)
 418{
 419	struct the_nilfs *nilfs = sb->s_fs_info;
 420	struct nilfs_super_block **sbp;
 421	__u64 devsize, newnsegs;
 422	loff_t sb2off;
 423	int ret;
 424
 425	ret = -ERANGE;
 426	devsize = i_size_read(sb->s_bdev->bd_inode);
 427	if (newsize > devsize)
 428		goto out;
 429
 430	/*
 
 
 
 
 
 
 
 
 
 431	 * Write lock is required to protect some functions depending
 432	 * on the number of segments, the number of reserved segments,
 433	 * and so forth.
 434	 */
 435	down_write(&nilfs->ns_segctor_sem);
 436
 437	sb2off = NILFS_SB2_OFFSET_BYTES(newsize);
 438	newnsegs = sb2off >> nilfs->ns_blocksize_bits;
 439	do_div(newnsegs, nilfs->ns_blocks_per_segment);
 440
 441	ret = nilfs_sufile_resize(nilfs->ns_sufile, newnsegs);
 442	up_write(&nilfs->ns_segctor_sem);
 443	if (ret < 0)
 444		goto out;
 445
 446	ret = nilfs_construct_segment(sb);
 447	if (ret < 0)
 448		goto out;
 449
 450	down_write(&nilfs->ns_sem);
 451	nilfs_move_2nd_super(sb, sb2off);
 452	ret = -EIO;
 453	sbp = nilfs_prepare_super(sb, 0);
 454	if (likely(sbp)) {
 455		nilfs_set_log_cursor(sbp[0], nilfs);
 456		/*
 457		 * Drop NILFS_RESIZE_FS flag for compatibility with
 458		 * mount-time resize which may be implemented in a
 459		 * future release.
 460		 */
 461		sbp[0]->s_state = cpu_to_le16(le16_to_cpu(sbp[0]->s_state) &
 462					      ~NILFS_RESIZE_FS);
 463		sbp[0]->s_dev_size = cpu_to_le64(newsize);
 464		sbp[0]->s_nsegments = cpu_to_le64(nilfs->ns_nsegments);
 465		if (sbp[1])
 466			memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
 467		ret = nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
 468	}
 469	up_write(&nilfs->ns_sem);
 470
 471	/*
 472	 * Reset the range of allocatable segments last.  This order
 473	 * is important in the case of expansion because the secondary
 474	 * superblock must be protected from log write until migration
 475	 * completes.
 476	 */
 477	if (!ret)
 478		nilfs_sufile_set_alloc_range(nilfs->ns_sufile, 0, newnsegs - 1);
 479out:
 480	return ret;
 481}
 482
 483static void nilfs_put_super(struct super_block *sb)
 484{
 485	struct the_nilfs *nilfs = sb->s_fs_info;
 486
 487	nilfs_detach_log_writer(sb);
 488
 489	if (!(sb->s_flags & MS_RDONLY)) {
 490		down_write(&nilfs->ns_sem);
 491		nilfs_cleanup_super(sb);
 492		up_write(&nilfs->ns_sem);
 493	}
 494
 
 495	iput(nilfs->ns_sufile);
 496	iput(nilfs->ns_cpfile);
 497	iput(nilfs->ns_dat);
 498
 499	destroy_nilfs(nilfs);
 500	sb->s_fs_info = NULL;
 501}
 502
 503static int nilfs_sync_fs(struct super_block *sb, int wait)
 504{
 505	struct the_nilfs *nilfs = sb->s_fs_info;
 506	struct nilfs_super_block **sbp;
 507	int err = 0;
 508
 509	/* This function is called when super block should be written back */
 510	if (wait)
 511		err = nilfs_construct_segment(sb);
 512
 513	down_write(&nilfs->ns_sem);
 514	if (nilfs_sb_dirty(nilfs)) {
 515		sbp = nilfs_prepare_super(sb, nilfs_sb_will_flip(nilfs));
 516		if (likely(sbp)) {
 517			nilfs_set_log_cursor(sbp[0], nilfs);
 518			nilfs_commit_super(sb, NILFS_SB_COMMIT);
 519		}
 520	}
 521	up_write(&nilfs->ns_sem);
 522
 523	if (!err)
 524		err = nilfs_flush_device(nilfs);
 525
 526	return err;
 527}
 528
 529int nilfs_attach_checkpoint(struct super_block *sb, __u64 cno, int curr_mnt,
 530			    struct nilfs_root **rootp)
 531{
 532	struct the_nilfs *nilfs = sb->s_fs_info;
 533	struct nilfs_root *root;
 534	struct nilfs_checkpoint *raw_cp;
 535	struct buffer_head *bh_cp;
 536	int err = -ENOMEM;
 537
 538	root = nilfs_find_or_create_root(
 539		nilfs, curr_mnt ? NILFS_CPTREE_CURRENT_CNO : cno);
 540	if (!root)
 541		return err;
 542
 543	if (root->ifile)
 544		goto reuse; /* already attached checkpoint */
 545
 546	down_read(&nilfs->ns_segctor_sem);
 547	err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
 548					  &bh_cp);
 549	up_read(&nilfs->ns_segctor_sem);
 550	if (unlikely(err)) {
 551		if (err == -ENOENT || err == -EINVAL) {
 552			printk(KERN_ERR
 553			       "NILFS: Invalid checkpoint "
 554			       "(checkpoint number=%llu)\n",
 555			       (unsigned long long)cno);
 556			err = -EINVAL;
 557		}
 558		goto failed;
 559	}
 560
 561	err = nilfs_ifile_read(sb, root, nilfs->ns_inode_size,
 562			       &raw_cp->cp_ifile_inode, &root->ifile);
 563	if (err)
 564		goto failed_bh;
 565
 566	atomic64_set(&root->inodes_count,
 567			le64_to_cpu(raw_cp->cp_inodes_count));
 568	atomic64_set(&root->blocks_count,
 569			le64_to_cpu(raw_cp->cp_blocks_count));
 570
 571	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
 572
 573 reuse:
 574	*rootp = root;
 575	return 0;
 576
 577 failed_bh:
 578	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
 579 failed:
 580	nilfs_put_root(root);
 581
 582	return err;
 583}
 584
 585static int nilfs_freeze(struct super_block *sb)
 586{
 587	struct the_nilfs *nilfs = sb->s_fs_info;
 588	int err;
 589
 590	if (sb->s_flags & MS_RDONLY)
 591		return 0;
 592
 593	/* Mark super block clean */
 594	down_write(&nilfs->ns_sem);
 595	err = nilfs_cleanup_super(sb);
 596	up_write(&nilfs->ns_sem);
 597	return err;
 598}
 599
 600static int nilfs_unfreeze(struct super_block *sb)
 601{
 602	struct the_nilfs *nilfs = sb->s_fs_info;
 603
 604	if (sb->s_flags & MS_RDONLY)
 605		return 0;
 606
 607	down_write(&nilfs->ns_sem);
 608	nilfs_setup_super(sb, false);
 609	up_write(&nilfs->ns_sem);
 610	return 0;
 611}
 612
 613static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
 614{
 615	struct super_block *sb = dentry->d_sb;
 616	struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
 617	struct the_nilfs *nilfs = root->nilfs;
 618	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
 619	unsigned long long blocks;
 620	unsigned long overhead;
 621	unsigned long nrsvblocks;
 622	sector_t nfreeblocks;
 623	u64 nmaxinodes, nfreeinodes;
 624	int err;
 625
 626	/*
 627	 * Compute all of the segment blocks
 628	 *
 629	 * The blocks before first segment and after last segment
 630	 * are excluded.
 631	 */
 632	blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
 633		- nilfs->ns_first_data_block;
 634	nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
 635
 636	/*
 637	 * Compute the overhead
 638	 *
 639	 * When distributing meta data blocks outside segment structure,
 640	 * We must count them as the overhead.
 641	 */
 642	overhead = 0;
 643
 644	err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
 645	if (unlikely(err))
 646		return err;
 647
 648	err = nilfs_ifile_count_free_inodes(root->ifile,
 649					    &nmaxinodes, &nfreeinodes);
 650	if (unlikely(err)) {
 651		printk(KERN_WARNING
 652			"NILFS warning: fail to count free inodes: err %d.\n",
 653			err);
 654		if (err == -ERANGE) {
 655			/*
 656			 * If nilfs_palloc_count_max_entries() returns
 657			 * -ERANGE error code then we simply treat
 658			 * curent inodes count as maximum possible and
 659			 * zero as free inodes value.
 660			 */
 661			nmaxinodes = atomic64_read(&root->inodes_count);
 662			nfreeinodes = 0;
 663			err = 0;
 664		} else
 665			return err;
 666	}
 667
 668	buf->f_type = NILFS_SUPER_MAGIC;
 669	buf->f_bsize = sb->s_blocksize;
 670	buf->f_blocks = blocks - overhead;
 671	buf->f_bfree = nfreeblocks;
 672	buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
 673		(buf->f_bfree - nrsvblocks) : 0;
 674	buf->f_files = nmaxinodes;
 675	buf->f_ffree = nfreeinodes;
 676	buf->f_namelen = NILFS_NAME_LEN;
 677	buf->f_fsid.val[0] = (u32)id;
 678	buf->f_fsid.val[1] = (u32)(id >> 32);
 679
 680	return 0;
 681}
 682
 683static int nilfs_show_options(struct seq_file *seq, struct dentry *dentry)
 684{
 685	struct super_block *sb = dentry->d_sb;
 686	struct the_nilfs *nilfs = sb->s_fs_info;
 687	struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
 688
 689	if (!nilfs_test_opt(nilfs, BARRIER))
 690		seq_puts(seq, ",nobarrier");
 691	if (root->cno != NILFS_CPTREE_CURRENT_CNO)
 692		seq_printf(seq, ",cp=%llu", (unsigned long long)root->cno);
 693	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
 694		seq_puts(seq, ",errors=panic");
 695	if (nilfs_test_opt(nilfs, ERRORS_CONT))
 696		seq_puts(seq, ",errors=continue");
 697	if (nilfs_test_opt(nilfs, STRICT_ORDER))
 698		seq_puts(seq, ",order=strict");
 699	if (nilfs_test_opt(nilfs, NORECOVERY))
 700		seq_puts(seq, ",norecovery");
 701	if (nilfs_test_opt(nilfs, DISCARD))
 702		seq_puts(seq, ",discard");
 703
 704	return 0;
 705}
 706
 707static const struct super_operations nilfs_sops = {
 708	.alloc_inode    = nilfs_alloc_inode,
 709	.destroy_inode  = nilfs_destroy_inode,
 710	.dirty_inode    = nilfs_dirty_inode,
 711	.evict_inode    = nilfs_evict_inode,
 712	.put_super      = nilfs_put_super,
 713	.sync_fs        = nilfs_sync_fs,
 714	.freeze_fs	= nilfs_freeze,
 715	.unfreeze_fs	= nilfs_unfreeze,
 716	.statfs         = nilfs_statfs,
 717	.remount_fs     = nilfs_remount,
 718	.show_options = nilfs_show_options
 719};
 720
 721enum {
 722	Opt_err_cont, Opt_err_panic, Opt_err_ro,
 723	Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery,
 724	Opt_discard, Opt_nodiscard, Opt_err,
 725};
 726
 727static match_table_t tokens = {
 728	{Opt_err_cont, "errors=continue"},
 729	{Opt_err_panic, "errors=panic"},
 730	{Opt_err_ro, "errors=remount-ro"},
 731	{Opt_barrier, "barrier"},
 732	{Opt_nobarrier, "nobarrier"},
 733	{Opt_snapshot, "cp=%u"},
 734	{Opt_order, "order=%s"},
 735	{Opt_norecovery, "norecovery"},
 736	{Opt_discard, "discard"},
 737	{Opt_nodiscard, "nodiscard"},
 738	{Opt_err, NULL}
 739};
 740
 741static int parse_options(char *options, struct super_block *sb, int is_remount)
 742{
 743	struct the_nilfs *nilfs = sb->s_fs_info;
 744	char *p;
 745	substring_t args[MAX_OPT_ARGS];
 746
 747	if (!options)
 748		return 1;
 749
 750	while ((p = strsep(&options, ",")) != NULL) {
 751		int token;
 
 752		if (!*p)
 753			continue;
 754
 755		token = match_token(p, tokens, args);
 756		switch (token) {
 757		case Opt_barrier:
 758			nilfs_set_opt(nilfs, BARRIER);
 759			break;
 760		case Opt_nobarrier:
 761			nilfs_clear_opt(nilfs, BARRIER);
 762			break;
 763		case Opt_order:
 764			if (strcmp(args[0].from, "relaxed") == 0)
 765				/* Ordered data semantics */
 766				nilfs_clear_opt(nilfs, STRICT_ORDER);
 767			else if (strcmp(args[0].from, "strict") == 0)
 768				/* Strict in-order semantics */
 769				nilfs_set_opt(nilfs, STRICT_ORDER);
 770			else
 771				return 0;
 772			break;
 773		case Opt_err_panic:
 774			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_PANIC);
 775			break;
 776		case Opt_err_ro:
 777			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_RO);
 778			break;
 779		case Opt_err_cont:
 780			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_CONT);
 781			break;
 782		case Opt_snapshot:
 783			if (is_remount) {
 784				printk(KERN_ERR
 785				       "NILFS: \"%s\" option is invalid "
 786				       "for remount.\n", p);
 787				return 0;
 788			}
 789			break;
 790		case Opt_norecovery:
 791			nilfs_set_opt(nilfs, NORECOVERY);
 792			break;
 793		case Opt_discard:
 794			nilfs_set_opt(nilfs, DISCARD);
 795			break;
 796		case Opt_nodiscard:
 797			nilfs_clear_opt(nilfs, DISCARD);
 798			break;
 799		default:
 800			printk(KERN_ERR
 801			       "NILFS: Unrecognized mount option \"%s\"\n", p);
 802			return 0;
 803		}
 804	}
 805	return 1;
 806}
 807
 808static inline void
 809nilfs_set_default_options(struct super_block *sb,
 810			  struct nilfs_super_block *sbp)
 811{
 812	struct the_nilfs *nilfs = sb->s_fs_info;
 813
 814	nilfs->ns_mount_opt =
 815		NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER;
 816}
 817
 818static int nilfs_setup_super(struct super_block *sb, int is_mount)
 819{
 820	struct the_nilfs *nilfs = sb->s_fs_info;
 821	struct nilfs_super_block **sbp;
 822	int max_mnt_count;
 823	int mnt_count;
 824
 825	/* nilfs->ns_sem must be locked by the caller. */
 826	sbp = nilfs_prepare_super(sb, 0);
 827	if (!sbp)
 828		return -EIO;
 829
 830	if (!is_mount)
 831		goto skip_mount_setup;
 832
 833	max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count);
 834	mnt_count = le16_to_cpu(sbp[0]->s_mnt_count);
 835
 836	if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
 837		printk(KERN_WARNING
 838		       "NILFS warning: mounting fs with errors\n");
 839#if 0
 840	} else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
 841		printk(KERN_WARNING
 842		       "NILFS warning: maximal mount count reached\n");
 843#endif
 844	}
 845	if (!max_mnt_count)
 846		sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
 847
 848	sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1);
 849	sbp[0]->s_mtime = cpu_to_le64(get_seconds());
 850
 851skip_mount_setup:
 852	sbp[0]->s_state =
 853		cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS);
 854	/* synchronize sbp[1] with sbp[0] */
 855	if (sbp[1])
 856		memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
 857	return nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
 858}
 859
 860struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
 861						 u64 pos, int blocksize,
 862						 struct buffer_head **pbh)
 863{
 864	unsigned long long sb_index = pos;
 865	unsigned long offset;
 866
 867	offset = do_div(sb_index, blocksize);
 868	*pbh = sb_bread(sb, sb_index);
 869	if (!*pbh)
 870		return NULL;
 871	return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
 872}
 873
 874int nilfs_store_magic_and_option(struct super_block *sb,
 875				 struct nilfs_super_block *sbp,
 876				 char *data)
 877{
 878	struct the_nilfs *nilfs = sb->s_fs_info;
 879
 880	sb->s_magic = le16_to_cpu(sbp->s_magic);
 881
 882	/* FS independent flags */
 883#ifdef NILFS_ATIME_DISABLE
 884	sb->s_flags |= MS_NOATIME;
 885#endif
 886
 887	nilfs_set_default_options(sb, sbp);
 888
 889	nilfs->ns_resuid = le16_to_cpu(sbp->s_def_resuid);
 890	nilfs->ns_resgid = le16_to_cpu(sbp->s_def_resgid);
 891	nilfs->ns_interval = le32_to_cpu(sbp->s_c_interval);
 892	nilfs->ns_watermark = le32_to_cpu(sbp->s_c_block_max);
 893
 894	return !parse_options(data, sb, 0) ? -EINVAL : 0 ;
 895}
 896
 897int nilfs_check_feature_compatibility(struct super_block *sb,
 898				      struct nilfs_super_block *sbp)
 899{
 900	__u64 features;
 901
 902	features = le64_to_cpu(sbp->s_feature_incompat) &
 903		~NILFS_FEATURE_INCOMPAT_SUPP;
 904	if (features) {
 905		printk(KERN_ERR "NILFS: couldn't mount because of unsupported "
 906		       "optional features (%llx)\n",
 907		       (unsigned long long)features);
 908		return -EINVAL;
 909	}
 910	features = le64_to_cpu(sbp->s_feature_compat_ro) &
 911		~NILFS_FEATURE_COMPAT_RO_SUPP;
 912	if (!(sb->s_flags & MS_RDONLY) && features) {
 913		printk(KERN_ERR "NILFS: couldn't mount RDWR because of "
 914		       "unsupported optional features (%llx)\n",
 915		       (unsigned long long)features);
 916		return -EINVAL;
 917	}
 918	return 0;
 919}
 920
 921static int nilfs_get_root_dentry(struct super_block *sb,
 922				 struct nilfs_root *root,
 923				 struct dentry **root_dentry)
 924{
 925	struct inode *inode;
 926	struct dentry *dentry;
 927	int ret = 0;
 928
 929	inode = nilfs_iget(sb, root, NILFS_ROOT_INO);
 930	if (IS_ERR(inode)) {
 931		printk(KERN_ERR "NILFS: get root inode failed\n");
 932		ret = PTR_ERR(inode);
 
 933		goto out;
 934	}
 935	if (!S_ISDIR(inode->i_mode) || !inode->i_blocks || !inode->i_size) {
 936		iput(inode);
 937		printk(KERN_ERR "NILFS: corrupt root inode.\n");
 938		ret = -EINVAL;
 939		goto out;
 940	}
 941
 942	if (root->cno == NILFS_CPTREE_CURRENT_CNO) {
 943		dentry = d_find_alias(inode);
 944		if (!dentry) {
 945			dentry = d_make_root(inode);
 946			if (!dentry) {
 947				ret = -ENOMEM;
 948				goto failed_dentry;
 949			}
 950		} else {
 951			iput(inode);
 952		}
 953	} else {
 954		dentry = d_obtain_root(inode);
 955		if (IS_ERR(dentry)) {
 956			ret = PTR_ERR(dentry);
 957			goto failed_dentry;
 958		}
 959	}
 960	*root_dentry = dentry;
 961 out:
 962	return ret;
 963
 964 failed_dentry:
 965	printk(KERN_ERR "NILFS: get root dentry failed\n");
 966	goto out;
 967}
 968
 969static int nilfs_attach_snapshot(struct super_block *s, __u64 cno,
 970				 struct dentry **root_dentry)
 971{
 972	struct the_nilfs *nilfs = s->s_fs_info;
 973	struct nilfs_root *root;
 974	int ret;
 975
 976	mutex_lock(&nilfs->ns_snapshot_mount_mutex);
 977
 978	down_read(&nilfs->ns_segctor_sem);
 979	ret = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile, cno);
 980	up_read(&nilfs->ns_segctor_sem);
 981	if (ret < 0) {
 982		ret = (ret == -ENOENT) ? -EINVAL : ret;
 983		goto out;
 984	} else if (!ret) {
 985		printk(KERN_ERR "NILFS: The specified checkpoint is "
 986		       "not a snapshot (checkpoint number=%llu).\n",
 987		       (unsigned long long)cno);
 988		ret = -EINVAL;
 989		goto out;
 990	}
 991
 992	ret = nilfs_attach_checkpoint(s, cno, false, &root);
 993	if (ret) {
 994		printk(KERN_ERR "NILFS: error loading snapshot "
 995		       "(checkpoint number=%llu).\n",
 996	       (unsigned long long)cno);
 997		goto out;
 998	}
 999	ret = nilfs_get_root_dentry(s, root, root_dentry);
1000	nilfs_put_root(root);
1001 out:
1002	mutex_unlock(&nilfs->ns_snapshot_mount_mutex);
1003	return ret;
1004}
1005
1006/**
1007 * nilfs_tree_is_busy() - try to shrink dentries of a checkpoint
1008 * @root_dentry: root dentry of the tree to be shrunk
1009 *
1010 * This function returns true if the tree was in-use.
1011 */
1012static bool nilfs_tree_is_busy(struct dentry *root_dentry)
1013{
1014	shrink_dcache_parent(root_dentry);
1015	return d_count(root_dentry) > 1;
1016}
1017
1018int nilfs_checkpoint_is_mounted(struct super_block *sb, __u64 cno)
1019{
1020	struct the_nilfs *nilfs = sb->s_fs_info;
1021	struct nilfs_root *root;
1022	struct inode *inode;
1023	struct dentry *dentry;
1024	int ret;
1025
1026	if (cno > nilfs->ns_cno)
1027		return false;
1028
1029	if (cno >= nilfs_last_cno(nilfs))
1030		return true;	/* protect recent checkpoints */
1031
1032	ret = false;
1033	root = nilfs_lookup_root(nilfs, cno);
1034	if (root) {
1035		inode = nilfs_ilookup(sb, root, NILFS_ROOT_INO);
1036		if (inode) {
1037			dentry = d_find_alias(inode);
1038			if (dentry) {
1039				ret = nilfs_tree_is_busy(dentry);
1040				dput(dentry);
1041			}
1042			iput(inode);
1043		}
1044		nilfs_put_root(root);
1045	}
1046	return ret;
1047}
1048
1049/**
1050 * nilfs_fill_super() - initialize a super block instance
1051 * @sb: super_block
1052 * @data: mount options
1053 * @silent: silent mode flag
1054 *
1055 * This function is called exclusively by nilfs->ns_mount_mutex.
1056 * So, the recovery process is protected from other simultaneous mounts.
1057 */
1058static int
1059nilfs_fill_super(struct super_block *sb, void *data, int silent)
1060{
1061	struct the_nilfs *nilfs;
1062	struct nilfs_root *fsroot;
1063	__u64 cno;
1064	int err;
1065
1066	nilfs = alloc_nilfs(sb->s_bdev);
1067	if (!nilfs)
1068		return -ENOMEM;
1069
1070	sb->s_fs_info = nilfs;
1071
1072	err = init_nilfs(nilfs, sb, (char *)data);
1073	if (err)
1074		goto failed_nilfs;
1075
1076	sb->s_op = &nilfs_sops;
1077	sb->s_export_op = &nilfs_export_ops;
1078	sb->s_root = NULL;
1079	sb->s_time_gran = 1;
1080	sb->s_max_links = NILFS_LINK_MAX;
1081
1082	sb->s_bdi = &bdev_get_queue(sb->s_bdev)->backing_dev_info;
1083
1084	err = load_nilfs(nilfs, sb);
1085	if (err)
1086		goto failed_nilfs;
1087
1088	cno = nilfs_last_cno(nilfs);
1089	err = nilfs_attach_checkpoint(sb, cno, true, &fsroot);
1090	if (err) {
1091		printk(KERN_ERR "NILFS: error loading last checkpoint "
1092		       "(checkpoint number=%llu).\n", (unsigned long long)cno);
 
1093		goto failed_unload;
1094	}
1095
1096	if (!(sb->s_flags & MS_RDONLY)) {
1097		err = nilfs_attach_log_writer(sb, fsroot);
1098		if (err)
1099			goto failed_checkpoint;
1100	}
1101
1102	err = nilfs_get_root_dentry(sb, fsroot, &sb->s_root);
1103	if (err)
1104		goto failed_segctor;
1105
1106	nilfs_put_root(fsroot);
1107
1108	if (!(sb->s_flags & MS_RDONLY)) {
1109		down_write(&nilfs->ns_sem);
1110		nilfs_setup_super(sb, true);
1111		up_write(&nilfs->ns_sem);
1112	}
1113
1114	return 0;
1115
1116 failed_segctor:
1117	nilfs_detach_log_writer(sb);
1118
1119 failed_checkpoint:
1120	nilfs_put_root(fsroot);
1121
1122 failed_unload:
 
1123	iput(nilfs->ns_sufile);
1124	iput(nilfs->ns_cpfile);
1125	iput(nilfs->ns_dat);
1126
1127 failed_nilfs:
1128	destroy_nilfs(nilfs);
1129	return err;
1130}
1131
1132static int nilfs_remount(struct super_block *sb, int *flags, char *data)
1133{
1134	struct the_nilfs *nilfs = sb->s_fs_info;
1135	unsigned long old_sb_flags;
1136	unsigned long old_mount_opt;
1137	int err;
1138
1139	sync_filesystem(sb);
1140	old_sb_flags = sb->s_flags;
1141	old_mount_opt = nilfs->ns_mount_opt;
1142
1143	if (!parse_options(data, sb, 1)) {
1144		err = -EINVAL;
1145		goto restore_opts;
1146	}
1147	sb->s_flags = (sb->s_flags & ~MS_POSIXACL);
1148
1149	err = -EINVAL;
1150
1151	if (!nilfs_valid_fs(nilfs)) {
1152		printk(KERN_WARNING "NILFS (device %s): couldn't "
1153		       "remount because the filesystem is in an "
1154		       "incomplete recovery state.\n", sb->s_id);
1155		goto restore_opts;
1156	}
1157
1158	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1159		goto out;
1160	if (*flags & MS_RDONLY) {
1161		/* Shutting down log writer */
1162		nilfs_detach_log_writer(sb);
1163		sb->s_flags |= MS_RDONLY;
1164
1165		/*
1166		 * Remounting a valid RW partition RDONLY, so set
1167		 * the RDONLY flag and then mark the partition as valid again.
1168		 */
1169		down_write(&nilfs->ns_sem);
1170		nilfs_cleanup_super(sb);
1171		up_write(&nilfs->ns_sem);
1172	} else {
1173		__u64 features;
1174		struct nilfs_root *root;
1175
1176		/*
1177		 * Mounting a RDONLY partition read-write, so reread and
1178		 * store the current valid flag.  (It may have been changed
1179		 * by fsck since we originally mounted the partition.)
1180		 */
1181		down_read(&nilfs->ns_sem);
1182		features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) &
1183			~NILFS_FEATURE_COMPAT_RO_SUPP;
1184		up_read(&nilfs->ns_sem);
1185		if (features) {
1186			printk(KERN_WARNING "NILFS (device %s): couldn't "
1187			       "remount RDWR because of unsupported optional "
1188			       "features (%llx)\n",
1189			       sb->s_id, (unsigned long long)features);
1190			err = -EROFS;
1191			goto restore_opts;
1192		}
1193
1194		sb->s_flags &= ~MS_RDONLY;
1195
1196		root = NILFS_I(d_inode(sb->s_root))->i_root;
1197		err = nilfs_attach_log_writer(sb, root);
1198		if (err)
1199			goto restore_opts;
1200
1201		down_write(&nilfs->ns_sem);
1202		nilfs_setup_super(sb, true);
1203		up_write(&nilfs->ns_sem);
1204	}
1205 out:
1206	return 0;
1207
1208 restore_opts:
1209	sb->s_flags = old_sb_flags;
1210	nilfs->ns_mount_opt = old_mount_opt;
1211	return err;
1212}
1213
1214struct nilfs_super_data {
1215	struct block_device *bdev;
1216	__u64 cno;
1217	int flags;
1218};
1219
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1220/**
1221 * nilfs_identify - pre-read mount options needed to identify mount instance
1222 * @data: mount options
1223 * @sd: nilfs_super_data
1224 */
1225static int nilfs_identify(char *data, struct nilfs_super_data *sd)
1226{
1227	char *p, *options = data;
1228	substring_t args[MAX_OPT_ARGS];
1229	int token;
1230	int ret = 0;
1231
1232	do {
1233		p = strsep(&options, ",");
1234		if (p != NULL && *p) {
1235			token = match_token(p, tokens, args);
1236			if (token == Opt_snapshot) {
1237				if (!(sd->flags & MS_RDONLY)) {
1238					ret++;
1239				} else {
1240					sd->cno = simple_strtoull(args[0].from,
1241								  NULL, 0);
1242					/*
1243					 * No need to see the end pointer;
1244					 * match_token() has done syntax
1245					 * checking.
1246					 */
1247					if (sd->cno == 0)
1248						ret++;
1249				}
1250			}
1251			if (ret)
1252				printk(KERN_ERR
1253				       "NILFS: invalid mount option: %s\n", p);
1254		}
1255		if (!options)
1256			break;
1257		BUG_ON(options == data);
1258		*(options - 1) = ',';
1259	} while (!ret);
1260	return ret;
1261}
1262
1263static int nilfs_set_bdev_super(struct super_block *s, void *data)
1264{
1265	s->s_bdev = data;
1266	s->s_dev = s->s_bdev->bd_dev;
1267	return 0;
1268}
1269
1270static int nilfs_test_bdev_super(struct super_block *s, void *data)
1271{
1272	return (void *)s->s_bdev == data;
1273}
1274
1275static struct dentry *
1276nilfs_mount(struct file_system_type *fs_type, int flags,
1277	     const char *dev_name, void *data)
1278{
1279	struct nilfs_super_data sd;
1280	struct super_block *s;
1281	fmode_t mode = FMODE_READ | FMODE_EXCL;
1282	struct dentry *root_dentry;
1283	int err, s_new = false;
1284
1285	if (!(flags & MS_RDONLY))
1286		mode |= FMODE_WRITE;
1287
1288	sd.bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1289	if (IS_ERR(sd.bdev))
1290		return ERR_CAST(sd.bdev);
1291
1292	sd.cno = 0;
1293	sd.flags = flags;
1294	if (nilfs_identify((char *)data, &sd)) {
1295		err = -EINVAL;
1296		goto failed;
1297	}
1298
1299	/*
1300	 * once the super is inserted into the list by sget, s_umount
1301	 * will protect the lockfs code from trying to start a snapshot
1302	 * while we are mounting
1303	 */
1304	mutex_lock(&sd.bdev->bd_fsfreeze_mutex);
1305	if (sd.bdev->bd_fsfreeze_count > 0) {
1306		mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1307		err = -EBUSY;
1308		goto failed;
1309	}
1310	s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, flags,
1311		 sd.bdev);
1312	mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1313	if (IS_ERR(s)) {
1314		err = PTR_ERR(s);
1315		goto failed;
1316	}
1317
1318	if (!s->s_root) {
1319 		s_new = true;
1320
1321		/* New superblock instance created */
1322		s->s_mode = mode;
1323		snprintf(s->s_id, sizeof(s->s_id), "%pg", sd.bdev);
1324		sb_set_blocksize(s, block_size(sd.bdev));
1325
1326		err = nilfs_fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1327		if (err)
1328			goto failed_super;
1329
1330		s->s_flags |= MS_ACTIVE;
1331	} else if (!sd.cno) {
1332		if (nilfs_tree_is_busy(s->s_root)) {
1333			if ((flags ^ s->s_flags) & MS_RDONLY) {
1334				printk(KERN_ERR "NILFS: the device already "
1335				       "has a %s mount.\n",
1336				       (s->s_flags & MS_RDONLY) ?
1337				       "read-only" : "read/write");
1338				err = -EBUSY;
1339				goto failed_super;
1340			}
1341		} else {
1342			/*
1343			 * Try remount to setup mount states if the current
1344			 * tree is not mounted and only snapshots use this sb.
1345			 */
1346			err = nilfs_remount(s, &flags, data);
1347			if (err)
1348				goto failed_super;
1349		}
1350	}
1351
1352	if (sd.cno) {
 
 
1353		err = nilfs_attach_snapshot(s, sd.cno, &root_dentry);
1354		if (err)
1355			goto failed_super;
1356	} else {
1357		root_dentry = dget(s->s_root);
1358	}
1359
1360	if (!s_new)
1361		blkdev_put(sd.bdev, mode);
1362
1363	return root_dentry;
1364
1365 failed_super:
1366	deactivate_locked_super(s);
1367
1368 failed:
1369	if (!s_new)
1370		blkdev_put(sd.bdev, mode);
1371	return ERR_PTR(err);
1372}
1373
1374struct file_system_type nilfs_fs_type = {
1375	.owner    = THIS_MODULE,
1376	.name     = "nilfs2",
1377	.mount    = nilfs_mount,
1378	.kill_sb  = kill_block_super,
1379	.fs_flags = FS_REQUIRES_DEV,
1380};
1381MODULE_ALIAS_FS("nilfs2");
1382
1383static void nilfs_inode_init_once(void *obj)
1384{
1385	struct nilfs_inode_info *ii = obj;
1386
1387	INIT_LIST_HEAD(&ii->i_dirty);
1388#ifdef CONFIG_NILFS_XATTR
1389	init_rwsem(&ii->xattr_sem);
1390#endif
1391	address_space_init_once(&ii->i_btnode_cache);
1392	ii->i_bmap = &ii->i_bmap_data;
1393	inode_init_once(&ii->vfs_inode);
1394}
1395
1396static void nilfs_segbuf_init_once(void *obj)
1397{
1398	memset(obj, 0, sizeof(struct nilfs_segment_buffer));
1399}
1400
1401static void nilfs_destroy_cachep(void)
1402{
1403	/*
1404	 * Make sure all delayed rcu free inodes are flushed before we
1405	 * destroy cache.
1406	 */
1407	rcu_barrier();
1408
1409	kmem_cache_destroy(nilfs_inode_cachep);
1410	kmem_cache_destroy(nilfs_transaction_cachep);
1411	kmem_cache_destroy(nilfs_segbuf_cachep);
1412	kmem_cache_destroy(nilfs_btree_path_cache);
1413}
1414
1415static int __init nilfs_init_cachep(void)
1416{
1417	nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
1418			sizeof(struct nilfs_inode_info), 0,
1419			SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT,
1420			nilfs_inode_init_once);
1421	if (!nilfs_inode_cachep)
1422		goto fail;
1423
1424	nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache",
1425			sizeof(struct nilfs_transaction_info), 0,
1426			SLAB_RECLAIM_ACCOUNT, NULL);
1427	if (!nilfs_transaction_cachep)
1428		goto fail;
1429
1430	nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache",
1431			sizeof(struct nilfs_segment_buffer), 0,
1432			SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once);
1433	if (!nilfs_segbuf_cachep)
1434		goto fail;
1435
1436	nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache",
1437			sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX,
1438			0, 0, NULL);
1439	if (!nilfs_btree_path_cache)
1440		goto fail;
1441
1442	return 0;
1443
1444fail:
1445	nilfs_destroy_cachep();
1446	return -ENOMEM;
1447}
1448
1449static int __init init_nilfs_fs(void)
1450{
1451	int err;
1452
1453	err = nilfs_init_cachep();
1454	if (err)
1455		goto fail;
1456
1457	err = nilfs_sysfs_init();
1458	if (err)
1459		goto free_cachep;
1460
1461	err = register_filesystem(&nilfs_fs_type);
1462	if (err)
1463		goto deinit_sysfs_entry;
1464
1465	printk(KERN_INFO "NILFS version 2 loaded\n");
1466	return 0;
1467
1468deinit_sysfs_entry:
1469	nilfs_sysfs_exit();
1470free_cachep:
1471	nilfs_destroy_cachep();
1472fail:
1473	return err;
1474}
1475
1476static void __exit exit_nilfs_fs(void)
1477{
1478	nilfs_destroy_cachep();
1479	nilfs_sysfs_exit();
1480	unregister_filesystem(&nilfs_fs_type);
1481}
1482
1483module_init(init_nilfs_fs)
1484module_exit(exit_nilfs_fs)