Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * zs.c: Serial port driver for IOASIC DECstations.
   4 *
   5 * Derived from drivers/sbus/char/sunserial.c by Paul Mackerras.
   6 * Derived from drivers/macintosh/macserial.c by Harald Koerfgen.
   7 *
   8 * DECstation changes
   9 * Copyright (C) 1998-2000 Harald Koerfgen
  10 * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
  11 *
  12 * For the rest of the code the original Copyright applies:
  13 * Copyright (C) 1996 Paul Mackerras (Paul.Mackerras@cs.anu.edu.au)
  14 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
  15 *
  16 *
  17 * Note: for IOASIC systems the wiring is as follows:
  18 *
  19 * mouse/keyboard:
  20 * DIN-7 MJ-4  signal        SCC
  21 * 2     1     TxD       <-  A.TxD
  22 * 3     4     RxD       ->  A.RxD
  23 *
  24 * EIA-232/EIA-423:
  25 * DB-25 MMJ-6 signal        SCC
  26 * 2     2     TxD       <-  B.TxD
  27 * 3     5     RxD       ->  B.RxD
  28 * 4           RTS       <- ~A.RTS
  29 * 5           CTS       -> ~B.CTS
  30 * 6     6     DSR       -> ~A.SYNC
  31 * 8           CD        -> ~B.DCD
  32 * 12          DSRS(DCE) -> ~A.CTS  (*)
  33 * 15          TxC       ->  B.TxC
  34 * 17          RxC       ->  B.RxC
  35 * 20    1     DTR       <- ~A.DTR
  36 * 22          RI        -> ~A.DCD
  37 * 23          DSRS(DTE) <- ~B.RTS
  38 *
  39 * (*) EIA-232 defines the signal at this pin to be SCD, while DSRS(DCE)
  40 *     is shared with DSRS(DTE) at pin 23.
  41 *
  42 * As you can immediately notice the wiring of the RTS, DTR and DSR signals
  43 * is a bit odd.  This makes the handling of port B unnecessarily
  44 * complicated and prevents the use of some automatic modes of operation.
  45 */
  46
  47#include <linux/bug.h>
  48#include <linux/console.h>
  49#include <linux/delay.h>
  50#include <linux/errno.h>
  51#include <linux/init.h>
  52#include <linux/interrupt.h>
  53#include <linux/io.h>
  54#include <linux/ioport.h>
  55#include <linux/irqflags.h>
  56#include <linux/kernel.h>
  57#include <linux/module.h>
  58#include <linux/major.h>
  59#include <linux/serial.h>
  60#include <linux/serial_core.h>
  61#include <linux/spinlock.h>
  62#include <linux/sysrq.h>
  63#include <linux/tty.h>
  64#include <linux/tty_flip.h>
  65#include <linux/types.h>
  66
  67#include <linux/atomic.h>
  68
  69#include <asm/dec/interrupts.h>
  70#include <asm/dec/ioasic_addrs.h>
  71#include <asm/dec/system.h>
  72
  73#include "zs.h"
  74
  75
  76MODULE_AUTHOR("Maciej W. Rozycki <macro@linux-mips.org>");
  77MODULE_DESCRIPTION("DECstation Z85C30 serial driver");
  78MODULE_LICENSE("GPL");
  79
  80
  81static char zs_name[] __initdata = "DECstation Z85C30 serial driver version ";
  82static char zs_version[] __initdata = "0.10";
  83
  84/*
  85 * It would be nice to dynamically allocate everything that
  86 * depends on ZS_NUM_SCCS, so we could support any number of
  87 * Z85C30s, but for now...
  88 */
  89#define ZS_NUM_SCCS	2		/* Max # of ZS chips supported.  */
  90#define ZS_NUM_CHAN	2		/* 2 channels per chip.  */
  91#define ZS_CHAN_A	0		/* Index of the channel A.  */
  92#define ZS_CHAN_B	1		/* Index of the channel B.  */
  93#define ZS_CHAN_IO_SIZE 8		/* IOMEM space size.  */
  94#define ZS_CHAN_IO_STRIDE 4		/* Register alignment.  */
  95#define ZS_CHAN_IO_OFFSET 1		/* The SCC resides on the high byte
  96					   of the 16-bit IOBUS.  */
  97#define ZS_CLOCK        7372800 	/* Z85C30 PCLK input clock rate.  */
  98
  99#define to_zport(uport) container_of(uport, struct zs_port, port)
 100
 101struct zs_parms {
 102	resource_size_t scc[ZS_NUM_SCCS];
 103	int irq[ZS_NUM_SCCS];
 104};
 105
 106static struct zs_scc zs_sccs[ZS_NUM_SCCS];
 107
 108static u8 zs_init_regs[ZS_NUM_REGS] __initdata = {
 109	0,				/* write 0 */
 110	PAR_SPEC,			/* write 1 */
 111	0,				/* write 2 */
 112	0,				/* write 3 */
 113	X16CLK | SB1,			/* write 4 */
 114	0,				/* write 5 */
 115	0, 0, 0,			/* write 6, 7, 8 */
 116	MIE | DLC | NV,			/* write 9 */
 117	NRZ,				/* write 10 */
 118	TCBR | RCBR,			/* write 11 */
 119	0, 0,				/* BRG time constant, write 12 + 13 */
 120	BRSRC | BRENABL,		/* write 14 */
 121	0,				/* write 15 */
 122};
 123
 124/*
 125 * Debugging.
 126 */
 127#undef ZS_DEBUG_REGS
 128
 129
 130/*
 131 * Reading and writing Z85C30 registers.
 132 */
 133static void recovery_delay(void)
 134{
 135	udelay(2);
 136}
 137
 138static u8 read_zsreg(struct zs_port *zport, int reg)
 139{
 140	void __iomem *control = zport->port.membase + ZS_CHAN_IO_OFFSET;
 141	u8 retval;
 142
 143	if (reg != 0) {
 144		writeb(reg & 0xf, control);
 145		fast_iob();
 146		recovery_delay();
 147	}
 148	retval = readb(control);
 149	recovery_delay();
 150	return retval;
 151}
 152
 153static void write_zsreg(struct zs_port *zport, int reg, u8 value)
 154{
 155	void __iomem *control = zport->port.membase + ZS_CHAN_IO_OFFSET;
 156
 157	if (reg != 0) {
 158		writeb(reg & 0xf, control);
 159		fast_iob(); recovery_delay();
 160	}
 161	writeb(value, control);
 162	fast_iob();
 163	recovery_delay();
 164	return;
 165}
 166
 167static u8 read_zsdata(struct zs_port *zport)
 168{
 169	void __iomem *data = zport->port.membase +
 170			     ZS_CHAN_IO_STRIDE + ZS_CHAN_IO_OFFSET;
 171	u8 retval;
 172
 173	retval = readb(data);
 174	recovery_delay();
 175	return retval;
 176}
 177
 178static void write_zsdata(struct zs_port *zport, u8 value)
 179{
 180	void __iomem *data = zport->port.membase +
 181			     ZS_CHAN_IO_STRIDE + ZS_CHAN_IO_OFFSET;
 182
 183	writeb(value, data);
 184	fast_iob();
 185	recovery_delay();
 186	return;
 187}
 188
 189#ifdef ZS_DEBUG_REGS
 190void zs_dump(void)
 191{
 192	struct zs_port *zport;
 193	int i, j;
 194
 195	for (i = 0; i < ZS_NUM_SCCS * ZS_NUM_CHAN; i++) {
 196		zport = &zs_sccs[i / ZS_NUM_CHAN].zport[i % ZS_NUM_CHAN];
 197
 198		if (!zport->scc)
 199			continue;
 200
 201		for (j = 0; j < 16; j++)
 202			printk("W%-2d = 0x%02x\t", j, zport->regs[j]);
 203		printk("\n");
 204		for (j = 0; j < 16; j++)
 205			printk("R%-2d = 0x%02x\t", j, read_zsreg(zport, j));
 206		printk("\n\n");
 207	}
 208}
 209#endif
 210
 211
 212static void zs_spin_lock_cond_irq(spinlock_t *lock, int irq)
 213{
 214	if (irq)
 215		spin_lock_irq(lock);
 216	else
 217		spin_lock(lock);
 218}
 219
 220static void zs_spin_unlock_cond_irq(spinlock_t *lock, int irq)
 221{
 222	if (irq)
 223		spin_unlock_irq(lock);
 224	else
 225		spin_unlock(lock);
 226}
 227
 228static int zs_receive_drain(struct zs_port *zport)
 229{
 230	int loops = 10000;
 231
 232	while ((read_zsreg(zport, R0) & Rx_CH_AV) && --loops)
 233		read_zsdata(zport);
 234	return loops;
 235}
 236
 237static int zs_transmit_drain(struct zs_port *zport, int irq)
 238{
 239	struct zs_scc *scc = zport->scc;
 240	int loops = 10000;
 241
 242	while (!(read_zsreg(zport, R0) & Tx_BUF_EMP) && --loops) {
 243		zs_spin_unlock_cond_irq(&scc->zlock, irq);
 244		udelay(2);
 245		zs_spin_lock_cond_irq(&scc->zlock, irq);
 246	}
 247	return loops;
 248}
 249
 250static int zs_line_drain(struct zs_port *zport, int irq)
 251{
 252	struct zs_scc *scc = zport->scc;
 253	int loops = 10000;
 254
 255	while (!(read_zsreg(zport, R1) & ALL_SNT) && --loops) {
 256		zs_spin_unlock_cond_irq(&scc->zlock, irq);
 257		udelay(2);
 258		zs_spin_lock_cond_irq(&scc->zlock, irq);
 259	}
 260	return loops;
 261}
 262
 263
 264static void load_zsregs(struct zs_port *zport, u8 *regs, int irq)
 265{
 266	/* Let the current transmission finish.  */
 267	zs_line_drain(zport, irq);
 268	/* Load 'em up.  */
 269	write_zsreg(zport, R3, regs[3] & ~RxENABLE);
 270	write_zsreg(zport, R5, regs[5] & ~TxENAB);
 271	write_zsreg(zport, R4, regs[4]);
 272	write_zsreg(zport, R9, regs[9]);
 273	write_zsreg(zport, R1, regs[1]);
 274	write_zsreg(zport, R2, regs[2]);
 275	write_zsreg(zport, R10, regs[10]);
 276	write_zsreg(zport, R14, regs[14] & ~BRENABL);
 277	write_zsreg(zport, R11, regs[11]);
 278	write_zsreg(zport, R12, regs[12]);
 279	write_zsreg(zport, R13, regs[13]);
 280	write_zsreg(zport, R14, regs[14]);
 281	write_zsreg(zport, R15, regs[15]);
 282	if (regs[3] & RxENABLE)
 283		write_zsreg(zport, R3, regs[3]);
 284	if (regs[5] & TxENAB)
 285		write_zsreg(zport, R5, regs[5]);
 286	return;
 287}
 288
 289
 290/*
 291 * Status handling routines.
 292 */
 293
 294/*
 295 * zs_tx_empty() -- get the transmitter empty status
 296 *
 297 * Purpose: Let user call ioctl() to get info when the UART physically
 298 * 	    is emptied.  On bus types like RS485, the transmitter must
 299 * 	    release the bus after transmitting.  This must be done when
 300 * 	    the transmit shift register is empty, not be done when the
 301 * 	    transmit holding register is empty.  This functionality
 302 * 	    allows an RS485 driver to be written in user space.
 303 */
 304static unsigned int zs_tx_empty(struct uart_port *uport)
 305{
 306	struct zs_port *zport = to_zport(uport);
 307	struct zs_scc *scc = zport->scc;
 308	unsigned long flags;
 309	u8 status;
 310
 311	spin_lock_irqsave(&scc->zlock, flags);
 312	status = read_zsreg(zport, R1);
 313	spin_unlock_irqrestore(&scc->zlock, flags);
 314
 315	return status & ALL_SNT ? TIOCSER_TEMT : 0;
 316}
 317
 318static unsigned int zs_raw_get_ab_mctrl(struct zs_port *zport_a,
 319					struct zs_port *zport_b)
 320{
 321	u8 status_a, status_b;
 322	unsigned int mctrl;
 323
 324	status_a = read_zsreg(zport_a, R0);
 325	status_b = read_zsreg(zport_b, R0);
 326
 327	mctrl = ((status_b & CTS) ? TIOCM_CTS : 0) |
 328		((status_b & DCD) ? TIOCM_CAR : 0) |
 329		((status_a & DCD) ? TIOCM_RNG : 0) |
 330		((status_a & SYNC_HUNT) ? TIOCM_DSR : 0);
 331
 332	return mctrl;
 333}
 334
 335static unsigned int zs_raw_get_mctrl(struct zs_port *zport)
 336{
 337	struct zs_port *zport_a = &zport->scc->zport[ZS_CHAN_A];
 338
 339	return zport != zport_a ? zs_raw_get_ab_mctrl(zport_a, zport) : 0;
 340}
 341
 342static unsigned int zs_raw_xor_mctrl(struct zs_port *zport)
 343{
 344	struct zs_port *zport_a = &zport->scc->zport[ZS_CHAN_A];
 345	unsigned int mmask, mctrl, delta;
 346	u8 mask_a, mask_b;
 347
 348	if (zport == zport_a)
 349		return 0;
 350
 351	mask_a = zport_a->regs[15];
 352	mask_b = zport->regs[15];
 353
 354	mmask = ((mask_b & CTSIE) ? TIOCM_CTS : 0) |
 355		((mask_b & DCDIE) ? TIOCM_CAR : 0) |
 356		((mask_a & DCDIE) ? TIOCM_RNG : 0) |
 357		((mask_a & SYNCIE) ? TIOCM_DSR : 0);
 358
 359	mctrl = zport->mctrl;
 360	if (mmask) {
 361		mctrl &= ~mmask;
 362		mctrl |= zs_raw_get_ab_mctrl(zport_a, zport) & mmask;
 363	}
 364
 365	delta = mctrl ^ zport->mctrl;
 366	if (delta)
 367		zport->mctrl = mctrl;
 368
 369	return delta;
 370}
 371
 372static unsigned int zs_get_mctrl(struct uart_port *uport)
 373{
 374	struct zs_port *zport = to_zport(uport);
 375	struct zs_scc *scc = zport->scc;
 376	unsigned int mctrl;
 377
 378	spin_lock(&scc->zlock);
 379	mctrl = zs_raw_get_mctrl(zport);
 380	spin_unlock(&scc->zlock);
 381
 382	return mctrl;
 383}
 384
 385static void zs_set_mctrl(struct uart_port *uport, unsigned int mctrl)
 386{
 387	struct zs_port *zport = to_zport(uport);
 388	struct zs_scc *scc = zport->scc;
 389	struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
 390	u8 oldloop, newloop;
 391
 392	spin_lock(&scc->zlock);
 393	if (zport != zport_a) {
 394		if (mctrl & TIOCM_DTR)
 395			zport_a->regs[5] |= DTR;
 396		else
 397			zport_a->regs[5] &= ~DTR;
 398		if (mctrl & TIOCM_RTS)
 399			zport_a->regs[5] |= RTS;
 400		else
 401			zport_a->regs[5] &= ~RTS;
 402		write_zsreg(zport_a, R5, zport_a->regs[5]);
 403	}
 404
 405	/* Rarely modified, so don't poke at hardware unless necessary. */
 406	oldloop = zport->regs[14];
 407	newloop = oldloop;
 408	if (mctrl & TIOCM_LOOP)
 409		newloop |= LOOPBAK;
 410	else
 411		newloop &= ~LOOPBAK;
 412	if (newloop != oldloop) {
 413		zport->regs[14] = newloop;
 414		write_zsreg(zport, R14, zport->regs[14]);
 415	}
 416	spin_unlock(&scc->zlock);
 417}
 418
 419static void zs_raw_stop_tx(struct zs_port *zport)
 420{
 421	write_zsreg(zport, R0, RES_Tx_P);
 422	zport->tx_stopped = 1;
 423}
 424
 425static void zs_stop_tx(struct uart_port *uport)
 426{
 427	struct zs_port *zport = to_zport(uport);
 428	struct zs_scc *scc = zport->scc;
 429
 430	spin_lock(&scc->zlock);
 431	zs_raw_stop_tx(zport);
 432	spin_unlock(&scc->zlock);
 433}
 434
 435static void zs_raw_transmit_chars(struct zs_port *);
 436
 437static void zs_start_tx(struct uart_port *uport)
 438{
 439	struct zs_port *zport = to_zport(uport);
 440	struct zs_scc *scc = zport->scc;
 441
 442	spin_lock(&scc->zlock);
 443	if (zport->tx_stopped) {
 444		zs_transmit_drain(zport, 0);
 445		zport->tx_stopped = 0;
 446		zs_raw_transmit_chars(zport);
 447	}
 448	spin_unlock(&scc->zlock);
 449}
 450
 451static void zs_stop_rx(struct uart_port *uport)
 452{
 453	struct zs_port *zport = to_zport(uport);
 454	struct zs_scc *scc = zport->scc;
 455	struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
 456
 457	spin_lock(&scc->zlock);
 458	zport->regs[15] &= ~BRKIE;
 459	zport->regs[1] &= ~(RxINT_MASK | TxINT_ENAB);
 460	zport->regs[1] |= RxINT_DISAB;
 461
 462	if (zport != zport_a) {
 463		/* A-side DCD tracks RI and SYNC tracks DSR.  */
 464		zport_a->regs[15] &= ~(DCDIE | SYNCIE);
 465		write_zsreg(zport_a, R15, zport_a->regs[15]);
 466		if (!(zport_a->regs[15] & BRKIE)) {
 467			zport_a->regs[1] &= ~EXT_INT_ENAB;
 468			write_zsreg(zport_a, R1, zport_a->regs[1]);
 469		}
 470
 471		/* This-side DCD tracks DCD and CTS tracks CTS.  */
 472		zport->regs[15] &= ~(DCDIE | CTSIE);
 473		zport->regs[1] &= ~EXT_INT_ENAB;
 474	} else {
 475		/* DCD tracks RI and SYNC tracks DSR for the B side.  */
 476		if (!(zport->regs[15] & (DCDIE | SYNCIE)))
 477			zport->regs[1] &= ~EXT_INT_ENAB;
 478	}
 479
 480	write_zsreg(zport, R15, zport->regs[15]);
 481	write_zsreg(zport, R1, zport->regs[1]);
 482	spin_unlock(&scc->zlock);
 483}
 484
 485static void zs_enable_ms(struct uart_port *uport)
 486{
 487	struct zs_port *zport = to_zport(uport);
 488	struct zs_scc *scc = zport->scc;
 489	struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
 490
 491	if (zport == zport_a)
 492		return;
 493
 494	spin_lock(&scc->zlock);
 495
 496	/* Clear Ext interrupts if not being handled already.  */
 497	if (!(zport_a->regs[1] & EXT_INT_ENAB))
 498		write_zsreg(zport_a, R0, RES_EXT_INT);
 499
 500	/* A-side DCD tracks RI and SYNC tracks DSR.  */
 501	zport_a->regs[1] |= EXT_INT_ENAB;
 502	zport_a->regs[15] |= DCDIE | SYNCIE;
 503
 504	/* This-side DCD tracks DCD and CTS tracks CTS.  */
 505	zport->regs[15] |= DCDIE | CTSIE;
 506
 507	zs_raw_xor_mctrl(zport);
 508
 509	write_zsreg(zport_a, R1, zport_a->regs[1]);
 510	write_zsreg(zport_a, R15, zport_a->regs[15]);
 511	write_zsreg(zport, R15, zport->regs[15]);
 512	spin_unlock(&scc->zlock);
 513}
 514
 515static void zs_break_ctl(struct uart_port *uport, int break_state)
 516{
 517	struct zs_port *zport = to_zport(uport);
 518	struct zs_scc *scc = zport->scc;
 519	unsigned long flags;
 520
 521	spin_lock_irqsave(&scc->zlock, flags);
 522	if (break_state == -1)
 523		zport->regs[5] |= SND_BRK;
 524	else
 525		zport->regs[5] &= ~SND_BRK;
 526	write_zsreg(zport, R5, zport->regs[5]);
 527	spin_unlock_irqrestore(&scc->zlock, flags);
 528}
 529
 530
 531/*
 532 * Interrupt handling routines.
 533 */
 534#define Rx_BRK 0x0100			/* BREAK event software flag.  */
 535#define Rx_SYS 0x0200			/* SysRq event software flag.  */
 536
 537static void zs_receive_chars(struct zs_port *zport)
 538{
 539	struct uart_port *uport = &zport->port;
 540	struct zs_scc *scc = zport->scc;
 541	struct uart_icount *icount;
 542	unsigned int avail, status;
 543	int count;
 544	u8 ch, flag;
 545
 546	for (count = 16; count; count--) {
 547		spin_lock(&scc->zlock);
 548		avail = read_zsreg(zport, R0) & Rx_CH_AV;
 549		spin_unlock(&scc->zlock);
 550		if (!avail)
 551			break;
 552
 553		spin_lock(&scc->zlock);
 554		status = read_zsreg(zport, R1) & (Rx_OVR | FRM_ERR | PAR_ERR);
 555		ch = read_zsdata(zport);
 556		spin_unlock(&scc->zlock);
 557
 558		flag = TTY_NORMAL;
 559
 560		icount = &uport->icount;
 561		icount->rx++;
 562
 563		/* Handle the null char got when BREAK is removed.  */
 564		if (!ch)
 565			status |= zport->tty_break;
 566		if (unlikely(status &
 567			     (Rx_OVR | FRM_ERR | PAR_ERR | Rx_SYS | Rx_BRK))) {
 568			zport->tty_break = 0;
 569
 570			/* Reset the error indication.  */
 571			if (status & (Rx_OVR | FRM_ERR | PAR_ERR)) {
 572				spin_lock(&scc->zlock);
 573				write_zsreg(zport, R0, ERR_RES);
 574				spin_unlock(&scc->zlock);
 575			}
 576
 577			if (status & (Rx_SYS | Rx_BRK)) {
 578				icount->brk++;
 579				/* SysRq discards the null char.  */
 580				if (status & Rx_SYS)
 581					continue;
 582			} else if (status & FRM_ERR)
 583				icount->frame++;
 584			else if (status & PAR_ERR)
 585				icount->parity++;
 586			if (status & Rx_OVR)
 587				icount->overrun++;
 588
 589			status &= uport->read_status_mask;
 590			if (status & Rx_BRK)
 591				flag = TTY_BREAK;
 592			else if (status & FRM_ERR)
 593				flag = TTY_FRAME;
 594			else if (status & PAR_ERR)
 595				flag = TTY_PARITY;
 596		}
 597
 598		if (uart_handle_sysrq_char(uport, ch))
 599			continue;
 600
 601		uart_insert_char(uport, status, Rx_OVR, ch, flag);
 602	}
 603
 604	tty_flip_buffer_push(&uport->state->port);
 605}
 606
 607static void zs_raw_transmit_chars(struct zs_port *zport)
 608{
 609	struct circ_buf *xmit = &zport->port.state->xmit;
 610
 611	/* XON/XOFF chars.  */
 612	if (zport->port.x_char) {
 613		write_zsdata(zport, zport->port.x_char);
 614		zport->port.icount.tx++;
 615		zport->port.x_char = 0;
 616		return;
 617	}
 618
 619	/* If nothing to do or stopped or hardware stopped.  */
 620	if (uart_circ_empty(xmit) || uart_tx_stopped(&zport->port)) {
 621		zs_raw_stop_tx(zport);
 622		return;
 623	}
 624
 625	/* Send char.  */
 626	write_zsdata(zport, xmit->buf[xmit->tail]);
 627	uart_xmit_advance(&zport->port, 1);
 628
 629	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
 630		uart_write_wakeup(&zport->port);
 631
 632	/* Are we are done?  */
 633	if (uart_circ_empty(xmit))
 634		zs_raw_stop_tx(zport);
 635}
 636
 637static void zs_transmit_chars(struct zs_port *zport)
 638{
 639	struct zs_scc *scc = zport->scc;
 640
 641	spin_lock(&scc->zlock);
 642	zs_raw_transmit_chars(zport);
 643	spin_unlock(&scc->zlock);
 644}
 645
 646static void zs_status_handle(struct zs_port *zport, struct zs_port *zport_a)
 647{
 648	struct uart_port *uport = &zport->port;
 649	struct zs_scc *scc = zport->scc;
 650	unsigned int delta;
 651	u8 status, brk;
 652
 653	spin_lock(&scc->zlock);
 654
 655	/* Get status from Read Register 0.  */
 656	status = read_zsreg(zport, R0);
 657
 658	if (zport->regs[15] & BRKIE) {
 659		brk = status & BRK_ABRT;
 660		if (brk && !zport->brk) {
 661			spin_unlock(&scc->zlock);
 662			if (uart_handle_break(uport))
 663				zport->tty_break = Rx_SYS;
 664			else
 665				zport->tty_break = Rx_BRK;
 666			spin_lock(&scc->zlock);
 667		}
 668		zport->brk = brk;
 669	}
 670
 671	if (zport != zport_a) {
 672		delta = zs_raw_xor_mctrl(zport);
 673		spin_unlock(&scc->zlock);
 674
 675		if (delta & TIOCM_CTS)
 676			uart_handle_cts_change(uport,
 677					       zport->mctrl & TIOCM_CTS);
 678		if (delta & TIOCM_CAR)
 679			uart_handle_dcd_change(uport,
 680					       zport->mctrl & TIOCM_CAR);
 681		if (delta & TIOCM_RNG)
 682			uport->icount.dsr++;
 683		if (delta & TIOCM_DSR)
 684			uport->icount.rng++;
 685
 686		if (delta)
 687			wake_up_interruptible(&uport->state->port.delta_msr_wait);
 688
 689		spin_lock(&scc->zlock);
 690	}
 691
 692	/* Clear the status condition...  */
 693	write_zsreg(zport, R0, RES_EXT_INT);
 694
 695	spin_unlock(&scc->zlock);
 696}
 697
 698/*
 699 * This is the Z85C30 driver's generic interrupt routine.
 700 */
 701static irqreturn_t zs_interrupt(int irq, void *dev_id)
 702{
 703	struct zs_scc *scc = dev_id;
 704	struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
 705	struct zs_port *zport_b = &scc->zport[ZS_CHAN_B];
 706	irqreturn_t status = IRQ_NONE;
 707	u8 zs_intreg;
 708	int count;
 709
 710	/*
 711	 * NOTE: The read register 3, which holds the irq status,
 712	 *       does so for both channels on each chip.  Although
 713	 *       the status value itself must be read from the A
 714	 *       channel and is only valid when read from channel A.
 715	 *       Yes... broken hardware...
 716	 */
 717	for (count = 16; count; count--) {
 718		spin_lock(&scc->zlock);
 719		zs_intreg = read_zsreg(zport_a, R3);
 720		spin_unlock(&scc->zlock);
 721		if (!zs_intreg)
 722			break;
 723
 724		/*
 725		 * We do not like losing characters, so we prioritise
 726		 * interrupt sources a little bit differently than
 727		 * the SCC would, was it allowed to.
 728		 */
 729		if (zs_intreg & CHBRxIP)
 730			zs_receive_chars(zport_b);
 731		if (zs_intreg & CHARxIP)
 732			zs_receive_chars(zport_a);
 733		if (zs_intreg & CHBEXT)
 734			zs_status_handle(zport_b, zport_a);
 735		if (zs_intreg & CHAEXT)
 736			zs_status_handle(zport_a, zport_a);
 737		if (zs_intreg & CHBTxIP)
 738			zs_transmit_chars(zport_b);
 739		if (zs_intreg & CHATxIP)
 740			zs_transmit_chars(zport_a);
 741
 742		status = IRQ_HANDLED;
 743	}
 744
 745	return status;
 746}
 747
 748
 749/*
 750 * Finally, routines used to initialize the serial port.
 751 */
 752static int zs_startup(struct uart_port *uport)
 753{
 754	struct zs_port *zport = to_zport(uport);
 755	struct zs_scc *scc = zport->scc;
 756	unsigned long flags;
 757	int irq_guard;
 758	int ret;
 759
 760	irq_guard = atomic_add_return(1, &scc->irq_guard);
 761	if (irq_guard == 1) {
 762		ret = request_irq(zport->port.irq, zs_interrupt,
 763				  IRQF_SHARED, "scc", scc);
 764		if (ret) {
 765			atomic_add(-1, &scc->irq_guard);
 766			printk(KERN_ERR "zs: can't get irq %d\n",
 767			       zport->port.irq);
 768			return ret;
 769		}
 770	}
 771
 772	spin_lock_irqsave(&scc->zlock, flags);
 773
 774	/* Clear the receive FIFO.  */
 775	zs_receive_drain(zport);
 776
 777	/* Clear the interrupt registers.  */
 778	write_zsreg(zport, R0, ERR_RES);
 779	write_zsreg(zport, R0, RES_Tx_P);
 780	/* But Ext only if not being handled already.  */
 781	if (!(zport->regs[1] & EXT_INT_ENAB))
 782		write_zsreg(zport, R0, RES_EXT_INT);
 783
 784	/* Finally, enable sequencing and interrupts.  */
 785	zport->regs[1] &= ~RxINT_MASK;
 786	zport->regs[1] |= RxINT_ALL | TxINT_ENAB | EXT_INT_ENAB;
 787	zport->regs[3] |= RxENABLE;
 788	zport->regs[15] |= BRKIE;
 789	write_zsreg(zport, R1, zport->regs[1]);
 790	write_zsreg(zport, R3, zport->regs[3]);
 791	write_zsreg(zport, R5, zport->regs[5]);
 792	write_zsreg(zport, R15, zport->regs[15]);
 793
 794	/* Record the current state of RR0.  */
 795	zport->mctrl = zs_raw_get_mctrl(zport);
 796	zport->brk = read_zsreg(zport, R0) & BRK_ABRT;
 797
 798	zport->tx_stopped = 1;
 799
 800	spin_unlock_irqrestore(&scc->zlock, flags);
 801
 802	return 0;
 803}
 804
 805static void zs_shutdown(struct uart_port *uport)
 806{
 807	struct zs_port *zport = to_zport(uport);
 808	struct zs_scc *scc = zport->scc;
 809	unsigned long flags;
 810	int irq_guard;
 811
 812	spin_lock_irqsave(&scc->zlock, flags);
 813
 814	zport->regs[3] &= ~RxENABLE;
 815	write_zsreg(zport, R5, zport->regs[5]);
 816	write_zsreg(zport, R3, zport->regs[3]);
 817
 818	spin_unlock_irqrestore(&scc->zlock, flags);
 819
 820	irq_guard = atomic_add_return(-1, &scc->irq_guard);
 821	if (!irq_guard)
 822		free_irq(zport->port.irq, scc);
 823}
 824
 825
 826static void zs_reset(struct zs_port *zport)
 827{
 828	struct zs_scc *scc = zport->scc;
 829	int irq;
 830	unsigned long flags;
 831
 832	spin_lock_irqsave(&scc->zlock, flags);
 833	irq = !irqs_disabled_flags(flags);
 834	if (!scc->initialised) {
 835		/* Reset the pointer first, just in case...  */
 836		read_zsreg(zport, R0);
 837		/* And let the current transmission finish.  */
 838		zs_line_drain(zport, irq);
 839		write_zsreg(zport, R9, FHWRES);
 840		udelay(10);
 841		write_zsreg(zport, R9, 0);
 842		scc->initialised = 1;
 843	}
 844	load_zsregs(zport, zport->regs, irq);
 845	spin_unlock_irqrestore(&scc->zlock, flags);
 846}
 847
 848static void zs_set_termios(struct uart_port *uport, struct ktermios *termios,
 849			   const struct ktermios *old_termios)
 850{
 851	struct zs_port *zport = to_zport(uport);
 852	struct zs_scc *scc = zport->scc;
 853	struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
 854	int irq;
 855	unsigned int baud, brg;
 856	unsigned long flags;
 857
 858	spin_lock_irqsave(&scc->zlock, flags);
 859	irq = !irqs_disabled_flags(flags);
 860
 861	/* Byte size.  */
 862	zport->regs[3] &= ~RxNBITS_MASK;
 863	zport->regs[5] &= ~TxNBITS_MASK;
 864	switch (termios->c_cflag & CSIZE) {
 865	case CS5:
 866		zport->regs[3] |= Rx5;
 867		zport->regs[5] |= Tx5;
 868		break;
 869	case CS6:
 870		zport->regs[3] |= Rx6;
 871		zport->regs[5] |= Tx6;
 872		break;
 873	case CS7:
 874		zport->regs[3] |= Rx7;
 875		zport->regs[5] |= Tx7;
 876		break;
 877	case CS8:
 878	default:
 879		zport->regs[3] |= Rx8;
 880		zport->regs[5] |= Tx8;
 881		break;
 882	}
 883
 884	/* Parity and stop bits.  */
 885	zport->regs[4] &= ~(XCLK_MASK | SB_MASK | PAR_ENA | PAR_EVEN);
 886	if (termios->c_cflag & CSTOPB)
 887		zport->regs[4] |= SB2;
 888	else
 889		zport->regs[4] |= SB1;
 890	if (termios->c_cflag & PARENB)
 891		zport->regs[4] |= PAR_ENA;
 892	if (!(termios->c_cflag & PARODD))
 893		zport->regs[4] |= PAR_EVEN;
 894	switch (zport->clk_mode) {
 895	case 64:
 896		zport->regs[4] |= X64CLK;
 897		break;
 898	case 32:
 899		zport->regs[4] |= X32CLK;
 900		break;
 901	case 16:
 902		zport->regs[4] |= X16CLK;
 903		break;
 904	case 1:
 905		zport->regs[4] |= X1CLK;
 906		break;
 907	default:
 908		BUG();
 909	}
 910
 911	baud = uart_get_baud_rate(uport, termios, old_termios, 0,
 912				  uport->uartclk / zport->clk_mode / 4);
 913
 914	brg = ZS_BPS_TO_BRG(baud, uport->uartclk / zport->clk_mode);
 915	zport->regs[12] = brg & 0xff;
 916	zport->regs[13] = (brg >> 8) & 0xff;
 917
 918	uart_update_timeout(uport, termios->c_cflag, baud);
 919
 920	uport->read_status_mask = Rx_OVR;
 921	if (termios->c_iflag & INPCK)
 922		uport->read_status_mask |= FRM_ERR | PAR_ERR;
 923	if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
 924		uport->read_status_mask |= Rx_BRK;
 925
 926	uport->ignore_status_mask = 0;
 927	if (termios->c_iflag & IGNPAR)
 928		uport->ignore_status_mask |= FRM_ERR | PAR_ERR;
 929	if (termios->c_iflag & IGNBRK) {
 930		uport->ignore_status_mask |= Rx_BRK;
 931		if (termios->c_iflag & IGNPAR)
 932			uport->ignore_status_mask |= Rx_OVR;
 933	}
 934
 935	if (termios->c_cflag & CREAD)
 936		zport->regs[3] |= RxENABLE;
 937	else
 938		zport->regs[3] &= ~RxENABLE;
 939
 940	if (zport != zport_a) {
 941		if (!(termios->c_cflag & CLOCAL)) {
 942			zport->regs[15] |= DCDIE;
 943		} else
 944			zport->regs[15] &= ~DCDIE;
 945		if (termios->c_cflag & CRTSCTS) {
 946			zport->regs[15] |= CTSIE;
 947		} else
 948			zport->regs[15] &= ~CTSIE;
 949		zs_raw_xor_mctrl(zport);
 950	}
 951
 952	/* Load up the new values.  */
 953	load_zsregs(zport, zport->regs, irq);
 954
 955	spin_unlock_irqrestore(&scc->zlock, flags);
 956}
 957
 958/*
 959 * Hack alert!
 960 * Required solely so that the initial PROM-based console
 961 * works undisturbed in parallel with this one.
 962 */
 963static void zs_pm(struct uart_port *uport, unsigned int state,
 964		  unsigned int oldstate)
 965{
 966	struct zs_port *zport = to_zport(uport);
 967
 968	if (state < 3)
 969		zport->regs[5] |= TxENAB;
 970	else
 971		zport->regs[5] &= ~TxENAB;
 972	write_zsreg(zport, R5, zport->regs[5]);
 973}
 974
 975
 976static const char *zs_type(struct uart_port *uport)
 977{
 978	return "Z85C30 SCC";
 979}
 980
 981static void zs_release_port(struct uart_port *uport)
 982{
 983	iounmap(uport->membase);
 984	uport->membase = NULL;
 985	release_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE);
 986}
 987
 988static int zs_map_port(struct uart_port *uport)
 989{
 990	if (!uport->membase)
 991		uport->membase = ioremap(uport->mapbase,
 992						 ZS_CHAN_IO_SIZE);
 993	if (!uport->membase) {
 994		printk(KERN_ERR "zs: Cannot map MMIO\n");
 995		return -ENOMEM;
 996	}
 997	return 0;
 998}
 999
1000static int zs_request_port(struct uart_port *uport)
1001{
1002	int ret;
1003
1004	if (!request_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE, "scc")) {
1005		printk(KERN_ERR "zs: Unable to reserve MMIO resource\n");
1006		return -EBUSY;
1007	}
1008	ret = zs_map_port(uport);
1009	if (ret) {
1010		release_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE);
1011		return ret;
1012	}
1013	return 0;
1014}
1015
1016static void zs_config_port(struct uart_port *uport, int flags)
1017{
1018	struct zs_port *zport = to_zport(uport);
1019
1020	if (flags & UART_CONFIG_TYPE) {
1021		if (zs_request_port(uport))
1022			return;
1023
1024		uport->type = PORT_ZS;
1025
1026		zs_reset(zport);
1027	}
1028}
1029
1030static int zs_verify_port(struct uart_port *uport, struct serial_struct *ser)
1031{
1032	struct zs_port *zport = to_zport(uport);
1033	int ret = 0;
1034
1035	if (ser->type != PORT_UNKNOWN && ser->type != PORT_ZS)
1036		ret = -EINVAL;
1037	if (ser->irq != uport->irq)
1038		ret = -EINVAL;
1039	if (ser->baud_base != uport->uartclk / zport->clk_mode / 4)
1040		ret = -EINVAL;
1041	return ret;
1042}
1043
1044
1045static const struct uart_ops zs_ops = {
1046	.tx_empty	= zs_tx_empty,
1047	.set_mctrl	= zs_set_mctrl,
1048	.get_mctrl	= zs_get_mctrl,
1049	.stop_tx	= zs_stop_tx,
1050	.start_tx	= zs_start_tx,
1051	.stop_rx	= zs_stop_rx,
1052	.enable_ms	= zs_enable_ms,
1053	.break_ctl	= zs_break_ctl,
1054	.startup	= zs_startup,
1055	.shutdown	= zs_shutdown,
1056	.set_termios	= zs_set_termios,
1057	.pm		= zs_pm,
1058	.type		= zs_type,
1059	.release_port	= zs_release_port,
1060	.request_port	= zs_request_port,
1061	.config_port	= zs_config_port,
1062	.verify_port	= zs_verify_port,
1063};
1064
1065/*
1066 * Initialize Z85C30 port structures.
1067 */
1068static int __init zs_probe_sccs(void)
1069{
1070	static int probed;
1071	struct zs_parms zs_parms;
1072	int chip, side, irq;
1073	int n_chips = 0;
1074	int i;
1075
1076	if (probed)
1077		return 0;
1078
1079	irq = dec_interrupt[DEC_IRQ_SCC0];
1080	if (irq >= 0) {
1081		zs_parms.scc[n_chips] = IOASIC_SCC0;
1082		zs_parms.irq[n_chips] = dec_interrupt[DEC_IRQ_SCC0];
1083		n_chips++;
1084	}
1085	irq = dec_interrupt[DEC_IRQ_SCC1];
1086	if (irq >= 0) {
1087		zs_parms.scc[n_chips] = IOASIC_SCC1;
1088		zs_parms.irq[n_chips] = dec_interrupt[DEC_IRQ_SCC1];
1089		n_chips++;
1090	}
1091	if (!n_chips)
1092		return -ENXIO;
1093
1094	probed = 1;
1095
1096	for (chip = 0; chip < n_chips; chip++) {
1097		spin_lock_init(&zs_sccs[chip].zlock);
1098		for (side = 0; side < ZS_NUM_CHAN; side++) {
1099			struct zs_port *zport = &zs_sccs[chip].zport[side];
1100			struct uart_port *uport = &zport->port;
1101
1102			zport->scc	= &zs_sccs[chip];
1103			zport->clk_mode	= 16;
1104
1105			uport->has_sysrq = IS_ENABLED(CONFIG_SERIAL_ZS_CONSOLE);
1106			uport->irq	= zs_parms.irq[chip];
1107			uport->uartclk	= ZS_CLOCK;
1108			uport->fifosize	= 1;
1109			uport->iotype	= UPIO_MEM;
1110			uport->flags	= UPF_BOOT_AUTOCONF;
1111			uport->ops	= &zs_ops;
1112			uport->line	= chip * ZS_NUM_CHAN + side;
1113			uport->mapbase	= dec_kn_slot_base +
1114					  zs_parms.scc[chip] +
1115					  (side ^ ZS_CHAN_B) * ZS_CHAN_IO_SIZE;
1116
1117			for (i = 0; i < ZS_NUM_REGS; i++)
1118				zport->regs[i] = zs_init_regs[i];
1119		}
1120	}
1121
1122	return 0;
1123}
1124
1125
1126#ifdef CONFIG_SERIAL_ZS_CONSOLE
1127static void zs_console_putchar(struct uart_port *uport, unsigned char ch)
1128{
1129	struct zs_port *zport = to_zport(uport);
1130	struct zs_scc *scc = zport->scc;
1131	int irq;
1132	unsigned long flags;
1133
1134	spin_lock_irqsave(&scc->zlock, flags);
1135	irq = !irqs_disabled_flags(flags);
1136	if (zs_transmit_drain(zport, irq))
1137		write_zsdata(zport, ch);
1138	spin_unlock_irqrestore(&scc->zlock, flags);
1139}
1140
1141/*
1142 * Print a string to the serial port trying not to disturb
1143 * any possible real use of the port...
1144 */
1145static void zs_console_write(struct console *co, const char *s,
1146			     unsigned int count)
1147{
1148	int chip = co->index / ZS_NUM_CHAN, side = co->index % ZS_NUM_CHAN;
1149	struct zs_port *zport = &zs_sccs[chip].zport[side];
1150	struct zs_scc *scc = zport->scc;
1151	unsigned long flags;
1152	u8 txint, txenb;
1153	int irq;
1154
1155	/* Disable transmit interrupts and enable the transmitter. */
1156	spin_lock_irqsave(&scc->zlock, flags);
1157	txint = zport->regs[1];
1158	txenb = zport->regs[5];
1159	if (txint & TxINT_ENAB) {
1160		zport->regs[1] = txint & ~TxINT_ENAB;
1161		write_zsreg(zport, R1, zport->regs[1]);
1162	}
1163	if (!(txenb & TxENAB)) {
1164		zport->regs[5] = txenb | TxENAB;
1165		write_zsreg(zport, R5, zport->regs[5]);
1166	}
1167	spin_unlock_irqrestore(&scc->zlock, flags);
1168
1169	uart_console_write(&zport->port, s, count, zs_console_putchar);
1170
1171	/* Restore transmit interrupts and the transmitter enable. */
1172	spin_lock_irqsave(&scc->zlock, flags);
1173	irq = !irqs_disabled_flags(flags);
1174	zs_line_drain(zport, irq);
1175	if (!(txenb & TxENAB)) {
1176		zport->regs[5] &= ~TxENAB;
1177		write_zsreg(zport, R5, zport->regs[5]);
1178	}
1179	if (txint & TxINT_ENAB) {
1180		zport->regs[1] |= TxINT_ENAB;
1181		write_zsreg(zport, R1, zport->regs[1]);
1182
1183		/* Resume any transmission as the TxIP bit won't be set.  */
1184		if (!zport->tx_stopped)
1185			zs_raw_transmit_chars(zport);
1186	}
1187	spin_unlock_irqrestore(&scc->zlock, flags);
1188}
1189
1190/*
1191 * Setup serial console baud/bits/parity.  We do two things here:
1192 * - construct a cflag setting for the first uart_open()
1193 * - initialise the serial port
1194 * Return non-zero if we didn't find a serial port.
1195 */
1196static int __init zs_console_setup(struct console *co, char *options)
1197{
1198	int chip = co->index / ZS_NUM_CHAN, side = co->index % ZS_NUM_CHAN;
1199	struct zs_port *zport = &zs_sccs[chip].zport[side];
1200	struct uart_port *uport = &zport->port;
1201	int baud = 9600;
1202	int bits = 8;
1203	int parity = 'n';
1204	int flow = 'n';
1205	int ret;
1206
1207	ret = zs_map_port(uport);
1208	if (ret)
1209		return ret;
1210
1211	zs_reset(zport);
1212	zs_pm(uport, 0, -1);
1213
1214	if (options)
1215		uart_parse_options(options, &baud, &parity, &bits, &flow);
1216	return uart_set_options(uport, co, baud, parity, bits, flow);
1217}
1218
1219static struct uart_driver zs_reg;
1220static struct console zs_console = {
1221	.name	= "ttyS",
1222	.write	= zs_console_write,
1223	.device	= uart_console_device,
1224	.setup	= zs_console_setup,
1225	.flags	= CON_PRINTBUFFER,
1226	.index	= -1,
1227	.data	= &zs_reg,
1228};
1229
1230/*
1231 *	Register console.
1232 */
1233static int __init zs_serial_console_init(void)
1234{
1235	int ret;
1236
1237	ret = zs_probe_sccs();
1238	if (ret)
1239		return ret;
1240	register_console(&zs_console);
1241
1242	return 0;
1243}
1244
1245console_initcall(zs_serial_console_init);
1246
1247#define SERIAL_ZS_CONSOLE	&zs_console
1248#else
1249#define SERIAL_ZS_CONSOLE	NULL
1250#endif /* CONFIG_SERIAL_ZS_CONSOLE */
1251
1252static struct uart_driver zs_reg = {
1253	.owner			= THIS_MODULE,
1254	.driver_name		= "serial",
1255	.dev_name		= "ttyS",
1256	.major			= TTY_MAJOR,
1257	.minor			= 64,
1258	.nr			= ZS_NUM_SCCS * ZS_NUM_CHAN,
1259	.cons			= SERIAL_ZS_CONSOLE,
1260};
1261
1262/* zs_init inits the driver. */
1263static int __init zs_init(void)
1264{
1265	int i, ret;
1266
1267	pr_info("%s%s\n", zs_name, zs_version);
1268
1269	/* Find out how many Z85C30 SCCs we have.  */
1270	ret = zs_probe_sccs();
1271	if (ret)
1272		return ret;
1273
1274	ret = uart_register_driver(&zs_reg);
1275	if (ret)
1276		return ret;
1277
1278	for (i = 0; i < ZS_NUM_SCCS * ZS_NUM_CHAN; i++) {
1279		struct zs_scc *scc = &zs_sccs[i / ZS_NUM_CHAN];
1280		struct zs_port *zport = &scc->zport[i % ZS_NUM_CHAN];
1281		struct uart_port *uport = &zport->port;
1282
1283		if (zport->scc)
1284			uart_add_one_port(&zs_reg, uport);
1285	}
1286
1287	return 0;
1288}
1289
1290static void __exit zs_exit(void)
1291{
1292	int i;
1293
1294	for (i = ZS_NUM_SCCS * ZS_NUM_CHAN - 1; i >= 0; i--) {
1295		struct zs_scc *scc = &zs_sccs[i / ZS_NUM_CHAN];
1296		struct zs_port *zport = &scc->zport[i % ZS_NUM_CHAN];
1297		struct uart_port *uport = &zport->port;
1298
1299		if (zport->scc)
1300			uart_remove_one_port(&zs_reg, uport);
1301	}
1302
1303	uart_unregister_driver(&zs_reg);
1304}
1305
1306module_init(zs_init);
1307module_exit(zs_exit);
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * zs.c: Serial port driver for IOASIC DECstations.
   4 *
   5 * Derived from drivers/sbus/char/sunserial.c by Paul Mackerras.
   6 * Derived from drivers/macintosh/macserial.c by Harald Koerfgen.
   7 *
   8 * DECstation changes
   9 * Copyright (C) 1998-2000 Harald Koerfgen
  10 * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
  11 *
  12 * For the rest of the code the original Copyright applies:
  13 * Copyright (C) 1996 Paul Mackerras (Paul.Mackerras@cs.anu.edu.au)
  14 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
  15 *
  16 *
  17 * Note: for IOASIC systems the wiring is as follows:
  18 *
  19 * mouse/keyboard:
  20 * DIN-7 MJ-4  signal        SCC
  21 * 2     1     TxD       <-  A.TxD
  22 * 3     4     RxD       ->  A.RxD
  23 *
  24 * EIA-232/EIA-423:
  25 * DB-25 MMJ-6 signal        SCC
  26 * 2     2     TxD       <-  B.TxD
  27 * 3     5     RxD       ->  B.RxD
  28 * 4           RTS       <- ~A.RTS
  29 * 5           CTS       -> ~B.CTS
  30 * 6     6     DSR       -> ~A.SYNC
  31 * 8           CD        -> ~B.DCD
  32 * 12          DSRS(DCE) -> ~A.CTS  (*)
  33 * 15          TxC       ->  B.TxC
  34 * 17          RxC       ->  B.RxC
  35 * 20    1     DTR       <- ~A.DTR
  36 * 22          RI        -> ~A.DCD
  37 * 23          DSRS(DTE) <- ~B.RTS
  38 *
  39 * (*) EIA-232 defines the signal at this pin to be SCD, while DSRS(DCE)
  40 *     is shared with DSRS(DTE) at pin 23.
  41 *
  42 * As you can immediately notice the wiring of the RTS, DTR and DSR signals
  43 * is a bit odd.  This makes the handling of port B unnecessarily
  44 * complicated and prevents the use of some automatic modes of operation.
  45 */
  46
  47#include <linux/bug.h>
  48#include <linux/console.h>
  49#include <linux/delay.h>
  50#include <linux/errno.h>
  51#include <linux/init.h>
  52#include <linux/interrupt.h>
  53#include <linux/io.h>
  54#include <linux/ioport.h>
  55#include <linux/irqflags.h>
  56#include <linux/kernel.h>
  57#include <linux/module.h>
  58#include <linux/major.h>
  59#include <linux/serial.h>
  60#include <linux/serial_core.h>
  61#include <linux/spinlock.h>
  62#include <linux/sysrq.h>
  63#include <linux/tty.h>
  64#include <linux/tty_flip.h>
  65#include <linux/types.h>
  66
  67#include <linux/atomic.h>
  68
  69#include <asm/dec/interrupts.h>
  70#include <asm/dec/ioasic_addrs.h>
  71#include <asm/dec/system.h>
  72
  73#include "zs.h"
  74
  75
  76MODULE_AUTHOR("Maciej W. Rozycki <macro@linux-mips.org>");
  77MODULE_DESCRIPTION("DECstation Z85C30 serial driver");
  78MODULE_LICENSE("GPL");
  79
  80
  81static char zs_name[] __initdata = "DECstation Z85C30 serial driver version ";
  82static char zs_version[] __initdata = "0.10";
  83
  84/*
  85 * It would be nice to dynamically allocate everything that
  86 * depends on ZS_NUM_SCCS, so we could support any number of
  87 * Z85C30s, but for now...
  88 */
  89#define ZS_NUM_SCCS	2		/* Max # of ZS chips supported.  */
  90#define ZS_NUM_CHAN	2		/* 2 channels per chip.  */
  91#define ZS_CHAN_A	0		/* Index of the channel A.  */
  92#define ZS_CHAN_B	1		/* Index of the channel B.  */
  93#define ZS_CHAN_IO_SIZE 8		/* IOMEM space size.  */
  94#define ZS_CHAN_IO_STRIDE 4		/* Register alignment.  */
  95#define ZS_CHAN_IO_OFFSET 1		/* The SCC resides on the high byte
  96					   of the 16-bit IOBUS.  */
  97#define ZS_CLOCK        7372800 	/* Z85C30 PCLK input clock rate.  */
  98
  99#define to_zport(uport) container_of(uport, struct zs_port, port)
 100
 101struct zs_parms {
 102	resource_size_t scc[ZS_NUM_SCCS];
 103	int irq[ZS_NUM_SCCS];
 104};
 105
 106static struct zs_scc zs_sccs[ZS_NUM_SCCS];
 107
 108static u8 zs_init_regs[ZS_NUM_REGS] __initdata = {
 109	0,				/* write 0 */
 110	PAR_SPEC,			/* write 1 */
 111	0,				/* write 2 */
 112	0,				/* write 3 */
 113	X16CLK | SB1,			/* write 4 */
 114	0,				/* write 5 */
 115	0, 0, 0,			/* write 6, 7, 8 */
 116	MIE | DLC | NV,			/* write 9 */
 117	NRZ,				/* write 10 */
 118	TCBR | RCBR,			/* write 11 */
 119	0, 0,				/* BRG time constant, write 12 + 13 */
 120	BRSRC | BRENABL,		/* write 14 */
 121	0,				/* write 15 */
 122};
 123
 124/*
 125 * Debugging.
 126 */
 127#undef ZS_DEBUG_REGS
 128
 129
 130/*
 131 * Reading and writing Z85C30 registers.
 132 */
 133static void recovery_delay(void)
 134{
 135	udelay(2);
 136}
 137
 138static u8 read_zsreg(struct zs_port *zport, int reg)
 139{
 140	void __iomem *control = zport->port.membase + ZS_CHAN_IO_OFFSET;
 141	u8 retval;
 142
 143	if (reg != 0) {
 144		writeb(reg & 0xf, control);
 145		fast_iob();
 146		recovery_delay();
 147	}
 148	retval = readb(control);
 149	recovery_delay();
 150	return retval;
 151}
 152
 153static void write_zsreg(struct zs_port *zport, int reg, u8 value)
 154{
 155	void __iomem *control = zport->port.membase + ZS_CHAN_IO_OFFSET;
 156
 157	if (reg != 0) {
 158		writeb(reg & 0xf, control);
 159		fast_iob(); recovery_delay();
 160	}
 161	writeb(value, control);
 162	fast_iob();
 163	recovery_delay();
 164	return;
 165}
 166
 167static u8 read_zsdata(struct zs_port *zport)
 168{
 169	void __iomem *data = zport->port.membase +
 170			     ZS_CHAN_IO_STRIDE + ZS_CHAN_IO_OFFSET;
 171	u8 retval;
 172
 173	retval = readb(data);
 174	recovery_delay();
 175	return retval;
 176}
 177
 178static void write_zsdata(struct zs_port *zport, u8 value)
 179{
 180	void __iomem *data = zport->port.membase +
 181			     ZS_CHAN_IO_STRIDE + ZS_CHAN_IO_OFFSET;
 182
 183	writeb(value, data);
 184	fast_iob();
 185	recovery_delay();
 186	return;
 187}
 188
 189#ifdef ZS_DEBUG_REGS
 190void zs_dump(void)
 191{
 192	struct zs_port *zport;
 193	int i, j;
 194
 195	for (i = 0; i < ZS_NUM_SCCS * ZS_NUM_CHAN; i++) {
 196		zport = &zs_sccs[i / ZS_NUM_CHAN].zport[i % ZS_NUM_CHAN];
 197
 198		if (!zport->scc)
 199			continue;
 200
 201		for (j = 0; j < 16; j++)
 202			printk("W%-2d = 0x%02x\t", j, zport->regs[j]);
 203		printk("\n");
 204		for (j = 0; j < 16; j++)
 205			printk("R%-2d = 0x%02x\t", j, read_zsreg(zport, j));
 206		printk("\n\n");
 207	}
 208}
 209#endif
 210
 211
 212static void zs_spin_lock_cond_irq(spinlock_t *lock, int irq)
 213{
 214	if (irq)
 215		spin_lock_irq(lock);
 216	else
 217		spin_lock(lock);
 218}
 219
 220static void zs_spin_unlock_cond_irq(spinlock_t *lock, int irq)
 221{
 222	if (irq)
 223		spin_unlock_irq(lock);
 224	else
 225		spin_unlock(lock);
 226}
 227
 228static int zs_receive_drain(struct zs_port *zport)
 229{
 230	int loops = 10000;
 231
 232	while ((read_zsreg(zport, R0) & Rx_CH_AV) && --loops)
 233		read_zsdata(zport);
 234	return loops;
 235}
 236
 237static int zs_transmit_drain(struct zs_port *zport, int irq)
 238{
 239	struct zs_scc *scc = zport->scc;
 240	int loops = 10000;
 241
 242	while (!(read_zsreg(zport, R0) & Tx_BUF_EMP) && --loops) {
 243		zs_spin_unlock_cond_irq(&scc->zlock, irq);
 244		udelay(2);
 245		zs_spin_lock_cond_irq(&scc->zlock, irq);
 246	}
 247	return loops;
 248}
 249
 250static int zs_line_drain(struct zs_port *zport, int irq)
 251{
 252	struct zs_scc *scc = zport->scc;
 253	int loops = 10000;
 254
 255	while (!(read_zsreg(zport, R1) & ALL_SNT) && --loops) {
 256		zs_spin_unlock_cond_irq(&scc->zlock, irq);
 257		udelay(2);
 258		zs_spin_lock_cond_irq(&scc->zlock, irq);
 259	}
 260	return loops;
 261}
 262
 263
 264static void load_zsregs(struct zs_port *zport, u8 *regs, int irq)
 265{
 266	/* Let the current transmission finish.  */
 267	zs_line_drain(zport, irq);
 268	/* Load 'em up.  */
 269	write_zsreg(zport, R3, regs[3] & ~RxENABLE);
 270	write_zsreg(zport, R5, regs[5] & ~TxENAB);
 271	write_zsreg(zport, R4, regs[4]);
 272	write_zsreg(zport, R9, regs[9]);
 273	write_zsreg(zport, R1, regs[1]);
 274	write_zsreg(zport, R2, regs[2]);
 275	write_zsreg(zport, R10, regs[10]);
 276	write_zsreg(zport, R14, regs[14] & ~BRENABL);
 277	write_zsreg(zport, R11, regs[11]);
 278	write_zsreg(zport, R12, regs[12]);
 279	write_zsreg(zport, R13, regs[13]);
 280	write_zsreg(zport, R14, regs[14]);
 281	write_zsreg(zport, R15, regs[15]);
 282	if (regs[3] & RxENABLE)
 283		write_zsreg(zport, R3, regs[3]);
 284	if (regs[5] & TxENAB)
 285		write_zsreg(zport, R5, regs[5]);
 286	return;
 287}
 288
 289
 290/*
 291 * Status handling routines.
 292 */
 293
 294/*
 295 * zs_tx_empty() -- get the transmitter empty status
 296 *
 297 * Purpose: Let user call ioctl() to get info when the UART physically
 298 * 	    is emptied.  On bus types like RS485, the transmitter must
 299 * 	    release the bus after transmitting.  This must be done when
 300 * 	    the transmit shift register is empty, not be done when the
 301 * 	    transmit holding register is empty.  This functionality
 302 * 	    allows an RS485 driver to be written in user space.
 303 */
 304static unsigned int zs_tx_empty(struct uart_port *uport)
 305{
 306	struct zs_port *zport = to_zport(uport);
 307	struct zs_scc *scc = zport->scc;
 308	unsigned long flags;
 309	u8 status;
 310
 311	spin_lock_irqsave(&scc->zlock, flags);
 312	status = read_zsreg(zport, R1);
 313	spin_unlock_irqrestore(&scc->zlock, flags);
 314
 315	return status & ALL_SNT ? TIOCSER_TEMT : 0;
 316}
 317
 318static unsigned int zs_raw_get_ab_mctrl(struct zs_port *zport_a,
 319					struct zs_port *zport_b)
 320{
 321	u8 status_a, status_b;
 322	unsigned int mctrl;
 323
 324	status_a = read_zsreg(zport_a, R0);
 325	status_b = read_zsreg(zport_b, R0);
 326
 327	mctrl = ((status_b & CTS) ? TIOCM_CTS : 0) |
 328		((status_b & DCD) ? TIOCM_CAR : 0) |
 329		((status_a & DCD) ? TIOCM_RNG : 0) |
 330		((status_a & SYNC_HUNT) ? TIOCM_DSR : 0);
 331
 332	return mctrl;
 333}
 334
 335static unsigned int zs_raw_get_mctrl(struct zs_port *zport)
 336{
 337	struct zs_port *zport_a = &zport->scc->zport[ZS_CHAN_A];
 338
 339	return zport != zport_a ? zs_raw_get_ab_mctrl(zport_a, zport) : 0;
 340}
 341
 342static unsigned int zs_raw_xor_mctrl(struct zs_port *zport)
 343{
 344	struct zs_port *zport_a = &zport->scc->zport[ZS_CHAN_A];
 345	unsigned int mmask, mctrl, delta;
 346	u8 mask_a, mask_b;
 347
 348	if (zport == zport_a)
 349		return 0;
 350
 351	mask_a = zport_a->regs[15];
 352	mask_b = zport->regs[15];
 353
 354	mmask = ((mask_b & CTSIE) ? TIOCM_CTS : 0) |
 355		((mask_b & DCDIE) ? TIOCM_CAR : 0) |
 356		((mask_a & DCDIE) ? TIOCM_RNG : 0) |
 357		((mask_a & SYNCIE) ? TIOCM_DSR : 0);
 358
 359	mctrl = zport->mctrl;
 360	if (mmask) {
 361		mctrl &= ~mmask;
 362		mctrl |= zs_raw_get_ab_mctrl(zport_a, zport) & mmask;
 363	}
 364
 365	delta = mctrl ^ zport->mctrl;
 366	if (delta)
 367		zport->mctrl = mctrl;
 368
 369	return delta;
 370}
 371
 372static unsigned int zs_get_mctrl(struct uart_port *uport)
 373{
 374	struct zs_port *zport = to_zport(uport);
 375	struct zs_scc *scc = zport->scc;
 376	unsigned int mctrl;
 377
 378	spin_lock(&scc->zlock);
 379	mctrl = zs_raw_get_mctrl(zport);
 380	spin_unlock(&scc->zlock);
 381
 382	return mctrl;
 383}
 384
 385static void zs_set_mctrl(struct uart_port *uport, unsigned int mctrl)
 386{
 387	struct zs_port *zport = to_zport(uport);
 388	struct zs_scc *scc = zport->scc;
 389	struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
 390	u8 oldloop, newloop;
 391
 392	spin_lock(&scc->zlock);
 393	if (zport != zport_a) {
 394		if (mctrl & TIOCM_DTR)
 395			zport_a->regs[5] |= DTR;
 396		else
 397			zport_a->regs[5] &= ~DTR;
 398		if (mctrl & TIOCM_RTS)
 399			zport_a->regs[5] |= RTS;
 400		else
 401			zport_a->regs[5] &= ~RTS;
 402		write_zsreg(zport_a, R5, zport_a->regs[5]);
 403	}
 404
 405	/* Rarely modified, so don't poke at hardware unless necessary. */
 406	oldloop = zport->regs[14];
 407	newloop = oldloop;
 408	if (mctrl & TIOCM_LOOP)
 409		newloop |= LOOPBAK;
 410	else
 411		newloop &= ~LOOPBAK;
 412	if (newloop != oldloop) {
 413		zport->regs[14] = newloop;
 414		write_zsreg(zport, R14, zport->regs[14]);
 415	}
 416	spin_unlock(&scc->zlock);
 417}
 418
 419static void zs_raw_stop_tx(struct zs_port *zport)
 420{
 421	write_zsreg(zport, R0, RES_Tx_P);
 422	zport->tx_stopped = 1;
 423}
 424
 425static void zs_stop_tx(struct uart_port *uport)
 426{
 427	struct zs_port *zport = to_zport(uport);
 428	struct zs_scc *scc = zport->scc;
 429
 430	spin_lock(&scc->zlock);
 431	zs_raw_stop_tx(zport);
 432	spin_unlock(&scc->zlock);
 433}
 434
 435static void zs_raw_transmit_chars(struct zs_port *);
 436
 437static void zs_start_tx(struct uart_port *uport)
 438{
 439	struct zs_port *zport = to_zport(uport);
 440	struct zs_scc *scc = zport->scc;
 441
 442	spin_lock(&scc->zlock);
 443	if (zport->tx_stopped) {
 444		zs_transmit_drain(zport, 0);
 445		zport->tx_stopped = 0;
 446		zs_raw_transmit_chars(zport);
 447	}
 448	spin_unlock(&scc->zlock);
 449}
 450
 451static void zs_stop_rx(struct uart_port *uport)
 452{
 453	struct zs_port *zport = to_zport(uport);
 454	struct zs_scc *scc = zport->scc;
 455	struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
 456
 457	spin_lock(&scc->zlock);
 458	zport->regs[15] &= ~BRKIE;
 459	zport->regs[1] &= ~(RxINT_MASK | TxINT_ENAB);
 460	zport->regs[1] |= RxINT_DISAB;
 461
 462	if (zport != zport_a) {
 463		/* A-side DCD tracks RI and SYNC tracks DSR.  */
 464		zport_a->regs[15] &= ~(DCDIE | SYNCIE);
 465		write_zsreg(zport_a, R15, zport_a->regs[15]);
 466		if (!(zport_a->regs[15] & BRKIE)) {
 467			zport_a->regs[1] &= ~EXT_INT_ENAB;
 468			write_zsreg(zport_a, R1, zport_a->regs[1]);
 469		}
 470
 471		/* This-side DCD tracks DCD and CTS tracks CTS.  */
 472		zport->regs[15] &= ~(DCDIE | CTSIE);
 473		zport->regs[1] &= ~EXT_INT_ENAB;
 474	} else {
 475		/* DCD tracks RI and SYNC tracks DSR for the B side.  */
 476		if (!(zport->regs[15] & (DCDIE | SYNCIE)))
 477			zport->regs[1] &= ~EXT_INT_ENAB;
 478	}
 479
 480	write_zsreg(zport, R15, zport->regs[15]);
 481	write_zsreg(zport, R1, zport->regs[1]);
 482	spin_unlock(&scc->zlock);
 483}
 484
 485static void zs_enable_ms(struct uart_port *uport)
 486{
 487	struct zs_port *zport = to_zport(uport);
 488	struct zs_scc *scc = zport->scc;
 489	struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
 490
 491	if (zport == zport_a)
 492		return;
 493
 494	spin_lock(&scc->zlock);
 495
 496	/* Clear Ext interrupts if not being handled already.  */
 497	if (!(zport_a->regs[1] & EXT_INT_ENAB))
 498		write_zsreg(zport_a, R0, RES_EXT_INT);
 499
 500	/* A-side DCD tracks RI and SYNC tracks DSR.  */
 501	zport_a->regs[1] |= EXT_INT_ENAB;
 502	zport_a->regs[15] |= DCDIE | SYNCIE;
 503
 504	/* This-side DCD tracks DCD and CTS tracks CTS.  */
 505	zport->regs[15] |= DCDIE | CTSIE;
 506
 507	zs_raw_xor_mctrl(zport);
 508
 509	write_zsreg(zport_a, R1, zport_a->regs[1]);
 510	write_zsreg(zport_a, R15, zport_a->regs[15]);
 511	write_zsreg(zport, R15, zport->regs[15]);
 512	spin_unlock(&scc->zlock);
 513}
 514
 515static void zs_break_ctl(struct uart_port *uport, int break_state)
 516{
 517	struct zs_port *zport = to_zport(uport);
 518	struct zs_scc *scc = zport->scc;
 519	unsigned long flags;
 520
 521	spin_lock_irqsave(&scc->zlock, flags);
 522	if (break_state == -1)
 523		zport->regs[5] |= SND_BRK;
 524	else
 525		zport->regs[5] &= ~SND_BRK;
 526	write_zsreg(zport, R5, zport->regs[5]);
 527	spin_unlock_irqrestore(&scc->zlock, flags);
 528}
 529
 530
 531/*
 532 * Interrupt handling routines.
 533 */
 534#define Rx_BRK 0x0100			/* BREAK event software flag.  */
 535#define Rx_SYS 0x0200			/* SysRq event software flag.  */
 536
 537static void zs_receive_chars(struct zs_port *zport)
 538{
 539	struct uart_port *uport = &zport->port;
 540	struct zs_scc *scc = zport->scc;
 541	struct uart_icount *icount;
 542	unsigned int avail, status, ch, flag;
 543	int count;
 
 544
 545	for (count = 16; count; count--) {
 546		spin_lock(&scc->zlock);
 547		avail = read_zsreg(zport, R0) & Rx_CH_AV;
 548		spin_unlock(&scc->zlock);
 549		if (!avail)
 550			break;
 551
 552		spin_lock(&scc->zlock);
 553		status = read_zsreg(zport, R1) & (Rx_OVR | FRM_ERR | PAR_ERR);
 554		ch = read_zsdata(zport);
 555		spin_unlock(&scc->zlock);
 556
 557		flag = TTY_NORMAL;
 558
 559		icount = &uport->icount;
 560		icount->rx++;
 561
 562		/* Handle the null char got when BREAK is removed.  */
 563		if (!ch)
 564			status |= zport->tty_break;
 565		if (unlikely(status &
 566			     (Rx_OVR | FRM_ERR | PAR_ERR | Rx_SYS | Rx_BRK))) {
 567			zport->tty_break = 0;
 568
 569			/* Reset the error indication.  */
 570			if (status & (Rx_OVR | FRM_ERR | PAR_ERR)) {
 571				spin_lock(&scc->zlock);
 572				write_zsreg(zport, R0, ERR_RES);
 573				spin_unlock(&scc->zlock);
 574			}
 575
 576			if (status & (Rx_SYS | Rx_BRK)) {
 577				icount->brk++;
 578				/* SysRq discards the null char.  */
 579				if (status & Rx_SYS)
 580					continue;
 581			} else if (status & FRM_ERR)
 582				icount->frame++;
 583			else if (status & PAR_ERR)
 584				icount->parity++;
 585			if (status & Rx_OVR)
 586				icount->overrun++;
 587
 588			status &= uport->read_status_mask;
 589			if (status & Rx_BRK)
 590				flag = TTY_BREAK;
 591			else if (status & FRM_ERR)
 592				flag = TTY_FRAME;
 593			else if (status & PAR_ERR)
 594				flag = TTY_PARITY;
 595		}
 596
 597		if (uart_handle_sysrq_char(uport, ch))
 598			continue;
 599
 600		uart_insert_char(uport, status, Rx_OVR, ch, flag);
 601	}
 602
 603	tty_flip_buffer_push(&uport->state->port);
 604}
 605
 606static void zs_raw_transmit_chars(struct zs_port *zport)
 607{
 608	struct circ_buf *xmit = &zport->port.state->xmit;
 609
 610	/* XON/XOFF chars.  */
 611	if (zport->port.x_char) {
 612		write_zsdata(zport, zport->port.x_char);
 613		zport->port.icount.tx++;
 614		zport->port.x_char = 0;
 615		return;
 616	}
 617
 618	/* If nothing to do or stopped or hardware stopped.  */
 619	if (uart_circ_empty(xmit) || uart_tx_stopped(&zport->port)) {
 620		zs_raw_stop_tx(zport);
 621		return;
 622	}
 623
 624	/* Send char.  */
 625	write_zsdata(zport, xmit->buf[xmit->tail]);
 626	uart_xmit_advance(&zport->port, 1);
 627
 628	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
 629		uart_write_wakeup(&zport->port);
 630
 631	/* Are we are done?  */
 632	if (uart_circ_empty(xmit))
 633		zs_raw_stop_tx(zport);
 634}
 635
 636static void zs_transmit_chars(struct zs_port *zport)
 637{
 638	struct zs_scc *scc = zport->scc;
 639
 640	spin_lock(&scc->zlock);
 641	zs_raw_transmit_chars(zport);
 642	spin_unlock(&scc->zlock);
 643}
 644
 645static void zs_status_handle(struct zs_port *zport, struct zs_port *zport_a)
 646{
 647	struct uart_port *uport = &zport->port;
 648	struct zs_scc *scc = zport->scc;
 649	unsigned int delta;
 650	u8 status, brk;
 651
 652	spin_lock(&scc->zlock);
 653
 654	/* Get status from Read Register 0.  */
 655	status = read_zsreg(zport, R0);
 656
 657	if (zport->regs[15] & BRKIE) {
 658		brk = status & BRK_ABRT;
 659		if (brk && !zport->brk) {
 660			spin_unlock(&scc->zlock);
 661			if (uart_handle_break(uport))
 662				zport->tty_break = Rx_SYS;
 663			else
 664				zport->tty_break = Rx_BRK;
 665			spin_lock(&scc->zlock);
 666		}
 667		zport->brk = brk;
 668	}
 669
 670	if (zport != zport_a) {
 671		delta = zs_raw_xor_mctrl(zport);
 672		spin_unlock(&scc->zlock);
 673
 674		if (delta & TIOCM_CTS)
 675			uart_handle_cts_change(uport,
 676					       zport->mctrl & TIOCM_CTS);
 677		if (delta & TIOCM_CAR)
 678			uart_handle_dcd_change(uport,
 679					       zport->mctrl & TIOCM_CAR);
 680		if (delta & TIOCM_RNG)
 681			uport->icount.dsr++;
 682		if (delta & TIOCM_DSR)
 683			uport->icount.rng++;
 684
 685		if (delta)
 686			wake_up_interruptible(&uport->state->port.delta_msr_wait);
 687
 688		spin_lock(&scc->zlock);
 689	}
 690
 691	/* Clear the status condition...  */
 692	write_zsreg(zport, R0, RES_EXT_INT);
 693
 694	spin_unlock(&scc->zlock);
 695}
 696
 697/*
 698 * This is the Z85C30 driver's generic interrupt routine.
 699 */
 700static irqreturn_t zs_interrupt(int irq, void *dev_id)
 701{
 702	struct zs_scc *scc = dev_id;
 703	struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
 704	struct zs_port *zport_b = &scc->zport[ZS_CHAN_B];
 705	irqreturn_t status = IRQ_NONE;
 706	u8 zs_intreg;
 707	int count;
 708
 709	/*
 710	 * NOTE: The read register 3, which holds the irq status,
 711	 *       does so for both channels on each chip.  Although
 712	 *       the status value itself must be read from the A
 713	 *       channel and is only valid when read from channel A.
 714	 *       Yes... broken hardware...
 715	 */
 716	for (count = 16; count; count--) {
 717		spin_lock(&scc->zlock);
 718		zs_intreg = read_zsreg(zport_a, R3);
 719		spin_unlock(&scc->zlock);
 720		if (!zs_intreg)
 721			break;
 722
 723		/*
 724		 * We do not like losing characters, so we prioritise
 725		 * interrupt sources a little bit differently than
 726		 * the SCC would, was it allowed to.
 727		 */
 728		if (zs_intreg & CHBRxIP)
 729			zs_receive_chars(zport_b);
 730		if (zs_intreg & CHARxIP)
 731			zs_receive_chars(zport_a);
 732		if (zs_intreg & CHBEXT)
 733			zs_status_handle(zport_b, zport_a);
 734		if (zs_intreg & CHAEXT)
 735			zs_status_handle(zport_a, zport_a);
 736		if (zs_intreg & CHBTxIP)
 737			zs_transmit_chars(zport_b);
 738		if (zs_intreg & CHATxIP)
 739			zs_transmit_chars(zport_a);
 740
 741		status = IRQ_HANDLED;
 742	}
 743
 744	return status;
 745}
 746
 747
 748/*
 749 * Finally, routines used to initialize the serial port.
 750 */
 751static int zs_startup(struct uart_port *uport)
 752{
 753	struct zs_port *zport = to_zport(uport);
 754	struct zs_scc *scc = zport->scc;
 755	unsigned long flags;
 756	int irq_guard;
 757	int ret;
 758
 759	irq_guard = atomic_add_return(1, &scc->irq_guard);
 760	if (irq_guard == 1) {
 761		ret = request_irq(zport->port.irq, zs_interrupt,
 762				  IRQF_SHARED, "scc", scc);
 763		if (ret) {
 764			atomic_add(-1, &scc->irq_guard);
 765			printk(KERN_ERR "zs: can't get irq %d\n",
 766			       zport->port.irq);
 767			return ret;
 768		}
 769	}
 770
 771	spin_lock_irqsave(&scc->zlock, flags);
 772
 773	/* Clear the receive FIFO.  */
 774	zs_receive_drain(zport);
 775
 776	/* Clear the interrupt registers.  */
 777	write_zsreg(zport, R0, ERR_RES);
 778	write_zsreg(zport, R0, RES_Tx_P);
 779	/* But Ext only if not being handled already.  */
 780	if (!(zport->regs[1] & EXT_INT_ENAB))
 781		write_zsreg(zport, R0, RES_EXT_INT);
 782
 783	/* Finally, enable sequencing and interrupts.  */
 784	zport->regs[1] &= ~RxINT_MASK;
 785	zport->regs[1] |= RxINT_ALL | TxINT_ENAB | EXT_INT_ENAB;
 786	zport->regs[3] |= RxENABLE;
 787	zport->regs[15] |= BRKIE;
 788	write_zsreg(zport, R1, zport->regs[1]);
 789	write_zsreg(zport, R3, zport->regs[3]);
 790	write_zsreg(zport, R5, zport->regs[5]);
 791	write_zsreg(zport, R15, zport->regs[15]);
 792
 793	/* Record the current state of RR0.  */
 794	zport->mctrl = zs_raw_get_mctrl(zport);
 795	zport->brk = read_zsreg(zport, R0) & BRK_ABRT;
 796
 797	zport->tx_stopped = 1;
 798
 799	spin_unlock_irqrestore(&scc->zlock, flags);
 800
 801	return 0;
 802}
 803
 804static void zs_shutdown(struct uart_port *uport)
 805{
 806	struct zs_port *zport = to_zport(uport);
 807	struct zs_scc *scc = zport->scc;
 808	unsigned long flags;
 809	int irq_guard;
 810
 811	spin_lock_irqsave(&scc->zlock, flags);
 812
 813	zport->regs[3] &= ~RxENABLE;
 814	write_zsreg(zport, R5, zport->regs[5]);
 815	write_zsreg(zport, R3, zport->regs[3]);
 816
 817	spin_unlock_irqrestore(&scc->zlock, flags);
 818
 819	irq_guard = atomic_add_return(-1, &scc->irq_guard);
 820	if (!irq_guard)
 821		free_irq(zport->port.irq, scc);
 822}
 823
 824
 825static void zs_reset(struct zs_port *zport)
 826{
 827	struct zs_scc *scc = zport->scc;
 828	int irq;
 829	unsigned long flags;
 830
 831	spin_lock_irqsave(&scc->zlock, flags);
 832	irq = !irqs_disabled_flags(flags);
 833	if (!scc->initialised) {
 834		/* Reset the pointer first, just in case...  */
 835		read_zsreg(zport, R0);
 836		/* And let the current transmission finish.  */
 837		zs_line_drain(zport, irq);
 838		write_zsreg(zport, R9, FHWRES);
 839		udelay(10);
 840		write_zsreg(zport, R9, 0);
 841		scc->initialised = 1;
 842	}
 843	load_zsregs(zport, zport->regs, irq);
 844	spin_unlock_irqrestore(&scc->zlock, flags);
 845}
 846
 847static void zs_set_termios(struct uart_port *uport, struct ktermios *termios,
 848			   const struct ktermios *old_termios)
 849{
 850	struct zs_port *zport = to_zport(uport);
 851	struct zs_scc *scc = zport->scc;
 852	struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
 853	int irq;
 854	unsigned int baud, brg;
 855	unsigned long flags;
 856
 857	spin_lock_irqsave(&scc->zlock, flags);
 858	irq = !irqs_disabled_flags(flags);
 859
 860	/* Byte size.  */
 861	zport->regs[3] &= ~RxNBITS_MASK;
 862	zport->regs[5] &= ~TxNBITS_MASK;
 863	switch (termios->c_cflag & CSIZE) {
 864	case CS5:
 865		zport->regs[3] |= Rx5;
 866		zport->regs[5] |= Tx5;
 867		break;
 868	case CS6:
 869		zport->regs[3] |= Rx6;
 870		zport->regs[5] |= Tx6;
 871		break;
 872	case CS7:
 873		zport->regs[3] |= Rx7;
 874		zport->regs[5] |= Tx7;
 875		break;
 876	case CS8:
 877	default:
 878		zport->regs[3] |= Rx8;
 879		zport->regs[5] |= Tx8;
 880		break;
 881	}
 882
 883	/* Parity and stop bits.  */
 884	zport->regs[4] &= ~(XCLK_MASK | SB_MASK | PAR_ENA | PAR_EVEN);
 885	if (termios->c_cflag & CSTOPB)
 886		zport->regs[4] |= SB2;
 887	else
 888		zport->regs[4] |= SB1;
 889	if (termios->c_cflag & PARENB)
 890		zport->regs[4] |= PAR_ENA;
 891	if (!(termios->c_cflag & PARODD))
 892		zport->regs[4] |= PAR_EVEN;
 893	switch (zport->clk_mode) {
 894	case 64:
 895		zport->regs[4] |= X64CLK;
 896		break;
 897	case 32:
 898		zport->regs[4] |= X32CLK;
 899		break;
 900	case 16:
 901		zport->regs[4] |= X16CLK;
 902		break;
 903	case 1:
 904		zport->regs[4] |= X1CLK;
 905		break;
 906	default:
 907		BUG();
 908	}
 909
 910	baud = uart_get_baud_rate(uport, termios, old_termios, 0,
 911				  uport->uartclk / zport->clk_mode / 4);
 912
 913	brg = ZS_BPS_TO_BRG(baud, uport->uartclk / zport->clk_mode);
 914	zport->regs[12] = brg & 0xff;
 915	zport->regs[13] = (brg >> 8) & 0xff;
 916
 917	uart_update_timeout(uport, termios->c_cflag, baud);
 918
 919	uport->read_status_mask = Rx_OVR;
 920	if (termios->c_iflag & INPCK)
 921		uport->read_status_mask |= FRM_ERR | PAR_ERR;
 922	if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
 923		uport->read_status_mask |= Rx_BRK;
 924
 925	uport->ignore_status_mask = 0;
 926	if (termios->c_iflag & IGNPAR)
 927		uport->ignore_status_mask |= FRM_ERR | PAR_ERR;
 928	if (termios->c_iflag & IGNBRK) {
 929		uport->ignore_status_mask |= Rx_BRK;
 930		if (termios->c_iflag & IGNPAR)
 931			uport->ignore_status_mask |= Rx_OVR;
 932	}
 933
 934	if (termios->c_cflag & CREAD)
 935		zport->regs[3] |= RxENABLE;
 936	else
 937		zport->regs[3] &= ~RxENABLE;
 938
 939	if (zport != zport_a) {
 940		if (!(termios->c_cflag & CLOCAL)) {
 941			zport->regs[15] |= DCDIE;
 942		} else
 943			zport->regs[15] &= ~DCDIE;
 944		if (termios->c_cflag & CRTSCTS) {
 945			zport->regs[15] |= CTSIE;
 946		} else
 947			zport->regs[15] &= ~CTSIE;
 948		zs_raw_xor_mctrl(zport);
 949	}
 950
 951	/* Load up the new values.  */
 952	load_zsregs(zport, zport->regs, irq);
 953
 954	spin_unlock_irqrestore(&scc->zlock, flags);
 955}
 956
 957/*
 958 * Hack alert!
 959 * Required solely so that the initial PROM-based console
 960 * works undisturbed in parallel with this one.
 961 */
 962static void zs_pm(struct uart_port *uport, unsigned int state,
 963		  unsigned int oldstate)
 964{
 965	struct zs_port *zport = to_zport(uport);
 966
 967	if (state < 3)
 968		zport->regs[5] |= TxENAB;
 969	else
 970		zport->regs[5] &= ~TxENAB;
 971	write_zsreg(zport, R5, zport->regs[5]);
 972}
 973
 974
 975static const char *zs_type(struct uart_port *uport)
 976{
 977	return "Z85C30 SCC";
 978}
 979
 980static void zs_release_port(struct uart_port *uport)
 981{
 982	iounmap(uport->membase);
 983	uport->membase = NULL;
 984	release_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE);
 985}
 986
 987static int zs_map_port(struct uart_port *uport)
 988{
 989	if (!uport->membase)
 990		uport->membase = ioremap(uport->mapbase,
 991						 ZS_CHAN_IO_SIZE);
 992	if (!uport->membase) {
 993		printk(KERN_ERR "zs: Cannot map MMIO\n");
 994		return -ENOMEM;
 995	}
 996	return 0;
 997}
 998
 999static int zs_request_port(struct uart_port *uport)
1000{
1001	int ret;
1002
1003	if (!request_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE, "scc")) {
1004		printk(KERN_ERR "zs: Unable to reserve MMIO resource\n");
1005		return -EBUSY;
1006	}
1007	ret = zs_map_port(uport);
1008	if (ret) {
1009		release_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE);
1010		return ret;
1011	}
1012	return 0;
1013}
1014
1015static void zs_config_port(struct uart_port *uport, int flags)
1016{
1017	struct zs_port *zport = to_zport(uport);
1018
1019	if (flags & UART_CONFIG_TYPE) {
1020		if (zs_request_port(uport))
1021			return;
1022
1023		uport->type = PORT_ZS;
1024
1025		zs_reset(zport);
1026	}
1027}
1028
1029static int zs_verify_port(struct uart_port *uport, struct serial_struct *ser)
1030{
1031	struct zs_port *zport = to_zport(uport);
1032	int ret = 0;
1033
1034	if (ser->type != PORT_UNKNOWN && ser->type != PORT_ZS)
1035		ret = -EINVAL;
1036	if (ser->irq != uport->irq)
1037		ret = -EINVAL;
1038	if (ser->baud_base != uport->uartclk / zport->clk_mode / 4)
1039		ret = -EINVAL;
1040	return ret;
1041}
1042
1043
1044static const struct uart_ops zs_ops = {
1045	.tx_empty	= zs_tx_empty,
1046	.set_mctrl	= zs_set_mctrl,
1047	.get_mctrl	= zs_get_mctrl,
1048	.stop_tx	= zs_stop_tx,
1049	.start_tx	= zs_start_tx,
1050	.stop_rx	= zs_stop_rx,
1051	.enable_ms	= zs_enable_ms,
1052	.break_ctl	= zs_break_ctl,
1053	.startup	= zs_startup,
1054	.shutdown	= zs_shutdown,
1055	.set_termios	= zs_set_termios,
1056	.pm		= zs_pm,
1057	.type		= zs_type,
1058	.release_port	= zs_release_port,
1059	.request_port	= zs_request_port,
1060	.config_port	= zs_config_port,
1061	.verify_port	= zs_verify_port,
1062};
1063
1064/*
1065 * Initialize Z85C30 port structures.
1066 */
1067static int __init zs_probe_sccs(void)
1068{
1069	static int probed;
1070	struct zs_parms zs_parms;
1071	int chip, side, irq;
1072	int n_chips = 0;
1073	int i;
1074
1075	if (probed)
1076		return 0;
1077
1078	irq = dec_interrupt[DEC_IRQ_SCC0];
1079	if (irq >= 0) {
1080		zs_parms.scc[n_chips] = IOASIC_SCC0;
1081		zs_parms.irq[n_chips] = dec_interrupt[DEC_IRQ_SCC0];
1082		n_chips++;
1083	}
1084	irq = dec_interrupt[DEC_IRQ_SCC1];
1085	if (irq >= 0) {
1086		zs_parms.scc[n_chips] = IOASIC_SCC1;
1087		zs_parms.irq[n_chips] = dec_interrupt[DEC_IRQ_SCC1];
1088		n_chips++;
1089	}
1090	if (!n_chips)
1091		return -ENXIO;
1092
1093	probed = 1;
1094
1095	for (chip = 0; chip < n_chips; chip++) {
1096		spin_lock_init(&zs_sccs[chip].zlock);
1097		for (side = 0; side < ZS_NUM_CHAN; side++) {
1098			struct zs_port *zport = &zs_sccs[chip].zport[side];
1099			struct uart_port *uport = &zport->port;
1100
1101			zport->scc	= &zs_sccs[chip];
1102			zport->clk_mode	= 16;
1103
1104			uport->has_sysrq = IS_ENABLED(CONFIG_SERIAL_ZS_CONSOLE);
1105			uport->irq	= zs_parms.irq[chip];
1106			uport->uartclk	= ZS_CLOCK;
1107			uport->fifosize	= 1;
1108			uport->iotype	= UPIO_MEM;
1109			uport->flags	= UPF_BOOT_AUTOCONF;
1110			uport->ops	= &zs_ops;
1111			uport->line	= chip * ZS_NUM_CHAN + side;
1112			uport->mapbase	= dec_kn_slot_base +
1113					  zs_parms.scc[chip] +
1114					  (side ^ ZS_CHAN_B) * ZS_CHAN_IO_SIZE;
1115
1116			for (i = 0; i < ZS_NUM_REGS; i++)
1117				zport->regs[i] = zs_init_regs[i];
1118		}
1119	}
1120
1121	return 0;
1122}
1123
1124
1125#ifdef CONFIG_SERIAL_ZS_CONSOLE
1126static void zs_console_putchar(struct uart_port *uport, unsigned char ch)
1127{
1128	struct zs_port *zport = to_zport(uport);
1129	struct zs_scc *scc = zport->scc;
1130	int irq;
1131	unsigned long flags;
1132
1133	spin_lock_irqsave(&scc->zlock, flags);
1134	irq = !irqs_disabled_flags(flags);
1135	if (zs_transmit_drain(zport, irq))
1136		write_zsdata(zport, ch);
1137	spin_unlock_irqrestore(&scc->zlock, flags);
1138}
1139
1140/*
1141 * Print a string to the serial port trying not to disturb
1142 * any possible real use of the port...
1143 */
1144static void zs_console_write(struct console *co, const char *s,
1145			     unsigned int count)
1146{
1147	int chip = co->index / ZS_NUM_CHAN, side = co->index % ZS_NUM_CHAN;
1148	struct zs_port *zport = &zs_sccs[chip].zport[side];
1149	struct zs_scc *scc = zport->scc;
1150	unsigned long flags;
1151	u8 txint, txenb;
1152	int irq;
1153
1154	/* Disable transmit interrupts and enable the transmitter. */
1155	spin_lock_irqsave(&scc->zlock, flags);
1156	txint = zport->regs[1];
1157	txenb = zport->regs[5];
1158	if (txint & TxINT_ENAB) {
1159		zport->regs[1] = txint & ~TxINT_ENAB;
1160		write_zsreg(zport, R1, zport->regs[1]);
1161	}
1162	if (!(txenb & TxENAB)) {
1163		zport->regs[5] = txenb | TxENAB;
1164		write_zsreg(zport, R5, zport->regs[5]);
1165	}
1166	spin_unlock_irqrestore(&scc->zlock, flags);
1167
1168	uart_console_write(&zport->port, s, count, zs_console_putchar);
1169
1170	/* Restore transmit interrupts and the transmitter enable. */
1171	spin_lock_irqsave(&scc->zlock, flags);
1172	irq = !irqs_disabled_flags(flags);
1173	zs_line_drain(zport, irq);
1174	if (!(txenb & TxENAB)) {
1175		zport->regs[5] &= ~TxENAB;
1176		write_zsreg(zport, R5, zport->regs[5]);
1177	}
1178	if (txint & TxINT_ENAB) {
1179		zport->regs[1] |= TxINT_ENAB;
1180		write_zsreg(zport, R1, zport->regs[1]);
1181
1182		/* Resume any transmission as the TxIP bit won't be set.  */
1183		if (!zport->tx_stopped)
1184			zs_raw_transmit_chars(zport);
1185	}
1186	spin_unlock_irqrestore(&scc->zlock, flags);
1187}
1188
1189/*
1190 * Setup serial console baud/bits/parity.  We do two things here:
1191 * - construct a cflag setting for the first uart_open()
1192 * - initialise the serial port
1193 * Return non-zero if we didn't find a serial port.
1194 */
1195static int __init zs_console_setup(struct console *co, char *options)
1196{
1197	int chip = co->index / ZS_NUM_CHAN, side = co->index % ZS_NUM_CHAN;
1198	struct zs_port *zport = &zs_sccs[chip].zport[side];
1199	struct uart_port *uport = &zport->port;
1200	int baud = 9600;
1201	int bits = 8;
1202	int parity = 'n';
1203	int flow = 'n';
1204	int ret;
1205
1206	ret = zs_map_port(uport);
1207	if (ret)
1208		return ret;
1209
1210	zs_reset(zport);
1211	zs_pm(uport, 0, -1);
1212
1213	if (options)
1214		uart_parse_options(options, &baud, &parity, &bits, &flow);
1215	return uart_set_options(uport, co, baud, parity, bits, flow);
1216}
1217
1218static struct uart_driver zs_reg;
1219static struct console zs_console = {
1220	.name	= "ttyS",
1221	.write	= zs_console_write,
1222	.device	= uart_console_device,
1223	.setup	= zs_console_setup,
1224	.flags	= CON_PRINTBUFFER,
1225	.index	= -1,
1226	.data	= &zs_reg,
1227};
1228
1229/*
1230 *	Register console.
1231 */
1232static int __init zs_serial_console_init(void)
1233{
1234	int ret;
1235
1236	ret = zs_probe_sccs();
1237	if (ret)
1238		return ret;
1239	register_console(&zs_console);
1240
1241	return 0;
1242}
1243
1244console_initcall(zs_serial_console_init);
1245
1246#define SERIAL_ZS_CONSOLE	&zs_console
1247#else
1248#define SERIAL_ZS_CONSOLE	NULL
1249#endif /* CONFIG_SERIAL_ZS_CONSOLE */
1250
1251static struct uart_driver zs_reg = {
1252	.owner			= THIS_MODULE,
1253	.driver_name		= "serial",
1254	.dev_name		= "ttyS",
1255	.major			= TTY_MAJOR,
1256	.minor			= 64,
1257	.nr			= ZS_NUM_SCCS * ZS_NUM_CHAN,
1258	.cons			= SERIAL_ZS_CONSOLE,
1259};
1260
1261/* zs_init inits the driver. */
1262static int __init zs_init(void)
1263{
1264	int i, ret;
1265
1266	pr_info("%s%s\n", zs_name, zs_version);
1267
1268	/* Find out how many Z85C30 SCCs we have.  */
1269	ret = zs_probe_sccs();
1270	if (ret)
1271		return ret;
1272
1273	ret = uart_register_driver(&zs_reg);
1274	if (ret)
1275		return ret;
1276
1277	for (i = 0; i < ZS_NUM_SCCS * ZS_NUM_CHAN; i++) {
1278		struct zs_scc *scc = &zs_sccs[i / ZS_NUM_CHAN];
1279		struct zs_port *zport = &scc->zport[i % ZS_NUM_CHAN];
1280		struct uart_port *uport = &zport->port;
1281
1282		if (zport->scc)
1283			uart_add_one_port(&zs_reg, uport);
1284	}
1285
1286	return 0;
1287}
1288
1289static void __exit zs_exit(void)
1290{
1291	int i;
1292
1293	for (i = ZS_NUM_SCCS * ZS_NUM_CHAN - 1; i >= 0; i--) {
1294		struct zs_scc *scc = &zs_sccs[i / ZS_NUM_CHAN];
1295		struct zs_port *zport = &scc->zport[i % ZS_NUM_CHAN];
1296		struct uart_port *uport = &zport->port;
1297
1298		if (zport->scc)
1299			uart_remove_one_port(&zs_reg, uport);
1300	}
1301
1302	uart_unregister_driver(&zs_reg);
1303}
1304
1305module_init(zs_init);
1306module_exit(zs_exit);