Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * SuperH MSIOF SPI Controller Interface
   4 *
   5 * Copyright (c) 2009 Magnus Damm
   6 * Copyright (C) 2014 Renesas Electronics Corporation
   7 * Copyright (C) 2014-2017 Glider bvba
   8 */
   9
  10#include <linux/bitmap.h>
  11#include <linux/clk.h>
  12#include <linux/completion.h>
  13#include <linux/delay.h>
  14#include <linux/dma-mapping.h>
  15#include <linux/dmaengine.h>
  16#include <linux/err.h>
  17#include <linux/interrupt.h>
  18#include <linux/io.h>
  19#include <linux/iopoll.h>
  20#include <linux/kernel.h>
  21#include <linux/module.h>
  22#include <linux/of.h>
 
  23#include <linux/platform_device.h>
  24#include <linux/pm_runtime.h>
  25#include <linux/sh_dma.h>
  26
  27#include <linux/spi/sh_msiof.h>
  28#include <linux/spi/spi.h>
  29
  30#include <asm/unaligned.h>
  31
  32#define SH_MSIOF_FLAG_FIXED_DTDL_200	BIT(0)
  33
  34struct sh_msiof_chipdata {
  35	u32 bits_per_word_mask;
  36	u16 tx_fifo_size;
  37	u16 rx_fifo_size;
  38	u16 ctlr_flags;
  39	u16 min_div_pow;
  40	u32 flags;
  41};
  42
  43struct sh_msiof_spi_priv {
  44	struct spi_controller *ctlr;
  45	void __iomem *mapbase;
  46	struct clk *clk;
  47	struct platform_device *pdev;
  48	struct sh_msiof_spi_info *info;
  49	struct completion done;
  50	struct completion done_txdma;
  51	unsigned int tx_fifo_size;
  52	unsigned int rx_fifo_size;
  53	unsigned int min_div_pow;
  54	void *tx_dma_page;
  55	void *rx_dma_page;
  56	dma_addr_t tx_dma_addr;
  57	dma_addr_t rx_dma_addr;
  58	bool native_cs_inited;
  59	bool native_cs_high;
  60	bool target_aborted;
  61};
  62
  63#define MAX_SS	3	/* Maximum number of native chip selects */
  64
  65#define SITMDR1	0x00	/* Transmit Mode Register 1 */
  66#define SITMDR2	0x04	/* Transmit Mode Register 2 */
  67#define SITMDR3	0x08	/* Transmit Mode Register 3 */
  68#define SIRMDR1	0x10	/* Receive Mode Register 1 */
  69#define SIRMDR2	0x14	/* Receive Mode Register 2 */
  70#define SIRMDR3	0x18	/* Receive Mode Register 3 */
  71#define SITSCR	0x20	/* Transmit Clock Select Register */
  72#define SIRSCR	0x22	/* Receive Clock Select Register (SH, A1, APE6) */
  73#define SICTR	0x28	/* Control Register */
  74#define SIFCTR	0x30	/* FIFO Control Register */
  75#define SISTR	0x40	/* Status Register */
  76#define SIIER	0x44	/* Interrupt Enable Register */
  77#define SITDR1	0x48	/* Transmit Control Data Register 1 (SH, A1) */
  78#define SITDR2	0x4c	/* Transmit Control Data Register 2 (SH, A1) */
  79#define SITFDR	0x50	/* Transmit FIFO Data Register */
  80#define SIRDR1	0x58	/* Receive Control Data Register 1 (SH, A1) */
  81#define SIRDR2	0x5c	/* Receive Control Data Register 2 (SH, A1) */
  82#define SIRFDR	0x60	/* Receive FIFO Data Register */
  83
  84/* SITMDR1 and SIRMDR1 */
  85#define SIMDR1_TRMD		BIT(31)		/* Transfer Mode (1 = Master mode) */
  86#define SIMDR1_SYNCMD_MASK	GENMASK(29, 28)	/* SYNC Mode */
  87#define SIMDR1_SYNCMD_SPI	(2 << 28)	/*   Level mode/SPI */
  88#define SIMDR1_SYNCMD_LR	(3 << 28)	/*   L/R mode */
  89#define SIMDR1_SYNCAC_SHIFT	25		/* Sync Polarity (1 = Active-low) */
  90#define SIMDR1_BITLSB_SHIFT	24		/* MSB/LSB First (1 = LSB first) */
  91#define SIMDR1_DTDL_SHIFT	20		/* Data Pin Bit Delay for MSIOF_SYNC */
  92#define SIMDR1_SYNCDL_SHIFT	16		/* Frame Sync Signal Timing Delay */
  93#define SIMDR1_FLD_MASK		GENMASK(3, 2)	/* Frame Sync Signal Interval (0-3) */
  94#define SIMDR1_FLD_SHIFT	2
  95#define SIMDR1_XXSTP		BIT(0)		/* Transmission/Reception Stop on FIFO */
  96/* SITMDR1 */
  97#define SITMDR1_PCON		BIT(30)		/* Transfer Signal Connection */
  98#define SITMDR1_SYNCCH_MASK	GENMASK(27, 26)	/* Sync Signal Channel Select */
  99#define SITMDR1_SYNCCH_SHIFT	26		/* 0=MSIOF_SYNC, 1=MSIOF_SS1, 2=MSIOF_SS2 */
 100
 101/* SITMDR2 and SIRMDR2 */
 102#define SIMDR2_BITLEN1(i)	(((i) - 1) << 24) /* Data Size (8-32 bits) */
 103#define SIMDR2_WDLEN1(i)	(((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */
 104#define SIMDR2_GRPMASK1		BIT(0)		/* Group Output Mask 1 (SH, A1) */
 105
 106/* SITSCR and SIRSCR */
 107#define SISCR_BRPS_MASK		GENMASK(12, 8)	/* Prescaler Setting (1-32) */
 108#define SISCR_BRPS(i)		(((i) - 1) << 8)
 109#define SISCR_BRDV_MASK		GENMASK(2, 0)	/* Baud Rate Generator's Division Ratio */
 110#define SISCR_BRDV_DIV_2	0
 111#define SISCR_BRDV_DIV_4	1
 112#define SISCR_BRDV_DIV_8	2
 113#define SISCR_BRDV_DIV_16	3
 114#define SISCR_BRDV_DIV_32	4
 115#define SISCR_BRDV_DIV_1	7
 116
 117/* SICTR */
 118#define SICTR_TSCKIZ_MASK	GENMASK(31, 30)	/* Transmit Clock I/O Polarity Select */
 119#define SICTR_TSCKIZ_SCK	BIT(31)		/*   Disable SCK when TX disabled */
 120#define SICTR_TSCKIZ_POL_SHIFT	30		/*   Transmit Clock Polarity */
 121#define SICTR_RSCKIZ_MASK	GENMASK(29, 28) /* Receive Clock Polarity Select */
 122#define SICTR_RSCKIZ_SCK	BIT(29)		/*   Must match CTR_TSCKIZ_SCK */
 123#define SICTR_RSCKIZ_POL_SHIFT	28		/*   Receive Clock Polarity */
 124#define SICTR_TEDG_SHIFT	27		/* Transmit Timing (1 = falling edge) */
 125#define SICTR_REDG_SHIFT	26		/* Receive Timing (1 = falling edge) */
 126#define SICTR_TXDIZ_MASK	GENMASK(23, 22)	/* Pin Output When TX is Disabled */
 127#define SICTR_TXDIZ_LOW		(0 << 22)	/*   0 */
 128#define SICTR_TXDIZ_HIGH	(1 << 22)	/*   1 */
 129#define SICTR_TXDIZ_HIZ		(2 << 22)	/*   High-impedance */
 130#define SICTR_TSCKE		BIT(15)		/* Transmit Serial Clock Output Enable */
 131#define SICTR_TFSE		BIT(14)		/* Transmit Frame Sync Signal Output Enable */
 132#define SICTR_TXE		BIT(9)		/* Transmit Enable */
 133#define SICTR_RXE		BIT(8)		/* Receive Enable */
 134#define SICTR_TXRST		BIT(1)		/* Transmit Reset */
 135#define SICTR_RXRST		BIT(0)		/* Receive Reset */
 136
 137/* SIFCTR */
 138#define SIFCTR_TFWM_MASK	GENMASK(31, 29)	/* Transmit FIFO Watermark */
 139#define SIFCTR_TFWM_64		(0UL << 29)	/*  Transfer Request when 64 empty stages */
 140#define SIFCTR_TFWM_32		(1UL << 29)	/*  Transfer Request when 32 empty stages */
 141#define SIFCTR_TFWM_24		(2UL << 29)	/*  Transfer Request when 24 empty stages */
 142#define SIFCTR_TFWM_16		(3UL << 29)	/*  Transfer Request when 16 empty stages */
 143#define SIFCTR_TFWM_12		(4UL << 29)	/*  Transfer Request when 12 empty stages */
 144#define SIFCTR_TFWM_8		(5UL << 29)	/*  Transfer Request when 8 empty stages */
 145#define SIFCTR_TFWM_4		(6UL << 29)	/*  Transfer Request when 4 empty stages */
 146#define SIFCTR_TFWM_1		(7UL << 29)	/*  Transfer Request when 1 empty stage */
 147#define SIFCTR_TFUA_MASK	GENMASK(26, 20) /* Transmit FIFO Usable Area */
 148#define SIFCTR_TFUA_SHIFT	20
 149#define SIFCTR_TFUA(i)		((i) << SIFCTR_TFUA_SHIFT)
 150#define SIFCTR_RFWM_MASK	GENMASK(15, 13)	/* Receive FIFO Watermark */
 151#define SIFCTR_RFWM_1		(0 << 13)	/*  Transfer Request when 1 valid stages */
 152#define SIFCTR_RFWM_4		(1 << 13)	/*  Transfer Request when 4 valid stages */
 153#define SIFCTR_RFWM_8		(2 << 13)	/*  Transfer Request when 8 valid stages */
 154#define SIFCTR_RFWM_16		(3 << 13)	/*  Transfer Request when 16 valid stages */
 155#define SIFCTR_RFWM_32		(4 << 13)	/*  Transfer Request when 32 valid stages */
 156#define SIFCTR_RFWM_64		(5 << 13)	/*  Transfer Request when 64 valid stages */
 157#define SIFCTR_RFWM_128		(6 << 13)	/*  Transfer Request when 128 valid stages */
 158#define SIFCTR_RFWM_256		(7 << 13)	/*  Transfer Request when 256 valid stages */
 159#define SIFCTR_RFUA_MASK	GENMASK(12, 4)	/* Receive FIFO Usable Area (0x40 = full) */
 160#define SIFCTR_RFUA_SHIFT	4
 161#define SIFCTR_RFUA(i)		((i) << SIFCTR_RFUA_SHIFT)
 162
 163/* SISTR */
 164#define SISTR_TFEMP		BIT(29) /* Transmit FIFO Empty */
 165#define SISTR_TDREQ		BIT(28) /* Transmit Data Transfer Request */
 166#define SISTR_TEOF		BIT(23) /* Frame Transmission End */
 167#define SISTR_TFSERR		BIT(21) /* Transmit Frame Synchronization Error */
 168#define SISTR_TFOVF		BIT(20) /* Transmit FIFO Overflow */
 169#define SISTR_TFUDF		BIT(19) /* Transmit FIFO Underflow */
 170#define SISTR_RFFUL		BIT(13) /* Receive FIFO Full */
 171#define SISTR_RDREQ		BIT(12) /* Receive Data Transfer Request */
 172#define SISTR_REOF		BIT(7)  /* Frame Reception End */
 173#define SISTR_RFSERR		BIT(5)  /* Receive Frame Synchronization Error */
 174#define SISTR_RFUDF		BIT(4)  /* Receive FIFO Underflow */
 175#define SISTR_RFOVF		BIT(3)  /* Receive FIFO Overflow */
 176
 177/* SIIER */
 178#define SIIER_TDMAE		BIT(31) /* Transmit Data DMA Transfer Req. Enable */
 179#define SIIER_TFEMPE		BIT(29) /* Transmit FIFO Empty Enable */
 180#define SIIER_TDREQE		BIT(28) /* Transmit Data Transfer Request Enable */
 181#define SIIER_TEOFE		BIT(23) /* Frame Transmission End Enable */
 182#define SIIER_TFSERRE		BIT(21) /* Transmit Frame Sync Error Enable */
 183#define SIIER_TFOVFE		BIT(20) /* Transmit FIFO Overflow Enable */
 184#define SIIER_TFUDFE		BIT(19) /* Transmit FIFO Underflow Enable */
 185#define SIIER_RDMAE		BIT(15) /* Receive Data DMA Transfer Req. Enable */
 186#define SIIER_RFFULE		BIT(13) /* Receive FIFO Full Enable */
 187#define SIIER_RDREQE		BIT(12) /* Receive Data Transfer Request Enable */
 188#define SIIER_REOFE		BIT(7)  /* Frame Reception End Enable */
 189#define SIIER_RFSERRE		BIT(5)  /* Receive Frame Sync Error Enable */
 190#define SIIER_RFUDFE		BIT(4)  /* Receive FIFO Underflow Enable */
 191#define SIIER_RFOVFE		BIT(3)  /* Receive FIFO Overflow Enable */
 192
 193
 194static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs)
 195{
 196	switch (reg_offs) {
 197	case SITSCR:
 198	case SIRSCR:
 199		return ioread16(p->mapbase + reg_offs);
 200	default:
 201		return ioread32(p->mapbase + reg_offs);
 202	}
 203}
 204
 205static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs,
 206			   u32 value)
 207{
 208	switch (reg_offs) {
 209	case SITSCR:
 210	case SIRSCR:
 211		iowrite16(value, p->mapbase + reg_offs);
 212		break;
 213	default:
 214		iowrite32(value, p->mapbase + reg_offs);
 215		break;
 216	}
 217}
 218
 219static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p,
 220				    u32 clr, u32 set)
 221{
 222	u32 mask = clr | set;
 223	u32 data;
 224
 225	data = sh_msiof_read(p, SICTR);
 226	data &= ~clr;
 227	data |= set;
 228	sh_msiof_write(p, SICTR, data);
 229
 230	return readl_poll_timeout_atomic(p->mapbase + SICTR, data,
 231					 (data & mask) == set, 1, 100);
 232}
 233
 234static irqreturn_t sh_msiof_spi_irq(int irq, void *data)
 235{
 236	struct sh_msiof_spi_priv *p = data;
 237
 238	/* just disable the interrupt and wake up */
 239	sh_msiof_write(p, SIIER, 0);
 240	complete(&p->done);
 241
 242	return IRQ_HANDLED;
 243}
 244
 245static void sh_msiof_spi_reset_regs(struct sh_msiof_spi_priv *p)
 246{
 247	u32 mask = SICTR_TXRST | SICTR_RXRST;
 248	u32 data;
 249
 250	data = sh_msiof_read(p, SICTR);
 251	data |= mask;
 252	sh_msiof_write(p, SICTR, data);
 253
 254	readl_poll_timeout_atomic(p->mapbase + SICTR, data, !(data & mask), 1,
 255				  100);
 256}
 257
 258static const u32 sh_msiof_spi_div_array[] = {
 259	SISCR_BRDV_DIV_1, SISCR_BRDV_DIV_2, SISCR_BRDV_DIV_4,
 260	SISCR_BRDV_DIV_8, SISCR_BRDV_DIV_16, SISCR_BRDV_DIV_32,
 261};
 262
 263static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p,
 264				      struct spi_transfer *t)
 265{
 266	unsigned long parent_rate = clk_get_rate(p->clk);
 267	unsigned int div_pow = p->min_div_pow;
 268	u32 spi_hz = t->speed_hz;
 269	unsigned long div;
 270	u32 brps, scr;
 271
 272	if (!spi_hz || !parent_rate) {
 273		WARN(1, "Invalid clock rate parameters %lu and %u\n",
 274		     parent_rate, spi_hz);
 275		return;
 276	}
 277
 278	div = DIV_ROUND_UP(parent_rate, spi_hz);
 279	if (div <= 1024) {
 280		/* SISCR_BRDV_DIV_1 is valid only if BRPS is x 1/1 or x 1/2 */
 281		if (!div_pow && div <= 32 && div > 2)
 282			div_pow = 1;
 283
 284		if (div_pow)
 285			brps = (div + 1) >> div_pow;
 286		else
 287			brps = div;
 288
 289		for (; brps > 32; div_pow++)
 290			brps = (brps + 1) >> 1;
 291	} else {
 292		/* Set transfer rate composite divisor to 2^5 * 32 = 1024 */
 293		dev_err(&p->pdev->dev,
 294			"Requested SPI transfer rate %d is too low\n", spi_hz);
 295		div_pow = 5;
 296		brps = 32;
 297	}
 298
 299	t->effective_speed_hz = parent_rate / (brps << div_pow);
 300
 301	scr = sh_msiof_spi_div_array[div_pow] | SISCR_BRPS(brps);
 302	sh_msiof_write(p, SITSCR, scr);
 303	if (!(p->ctlr->flags & SPI_CONTROLLER_MUST_TX))
 304		sh_msiof_write(p, SIRSCR, scr);
 305}
 306
 307static u32 sh_msiof_get_delay_bit(u32 dtdl_or_syncdl)
 308{
 309	/*
 310	 * DTDL/SYNCDL bit	: p->info->dtdl or p->info->syncdl
 311	 * b'000		: 0
 312	 * b'001		: 100
 313	 * b'010		: 200
 314	 * b'011 (SYNCDL only)	: 300
 315	 * b'101		: 50
 316	 * b'110		: 150
 317	 */
 318	if (dtdl_or_syncdl % 100)
 319		return dtdl_or_syncdl / 100 + 5;
 320	else
 321		return dtdl_or_syncdl / 100;
 322}
 323
 324static u32 sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv *p)
 325{
 326	u32 val;
 327
 328	if (!p->info)
 329		return 0;
 330
 331	/* check if DTDL and SYNCDL is allowed value */
 332	if (p->info->dtdl > 200 || p->info->syncdl > 300) {
 333		dev_warn(&p->pdev->dev, "DTDL or SYNCDL is too large\n");
 334		return 0;
 335	}
 336
 337	/* check if the sum of DTDL and SYNCDL becomes an integer value  */
 338	if ((p->info->dtdl + p->info->syncdl) % 100) {
 339		dev_warn(&p->pdev->dev, "the sum of DTDL/SYNCDL is not good\n");
 340		return 0;
 341	}
 342
 343	val = sh_msiof_get_delay_bit(p->info->dtdl) << SIMDR1_DTDL_SHIFT;
 344	val |= sh_msiof_get_delay_bit(p->info->syncdl) << SIMDR1_SYNCDL_SHIFT;
 345
 346	return val;
 347}
 348
 349static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p, u32 ss,
 350				      u32 cpol, u32 cpha,
 351				      u32 tx_hi_z, u32 lsb_first, u32 cs_high)
 352{
 353	u32 tmp;
 354	int edge;
 355
 356	/*
 357	 * CPOL CPHA     TSCKIZ RSCKIZ TEDG REDG
 358	 *    0    0         10     10    1    1
 359	 *    0    1         10     10    0    0
 360	 *    1    0         11     11    0    0
 361	 *    1    1         11     11    1    1
 362	 */
 363	tmp = SIMDR1_SYNCMD_SPI | 1 << SIMDR1_FLD_SHIFT | SIMDR1_XXSTP;
 364	tmp |= !cs_high << SIMDR1_SYNCAC_SHIFT;
 365	tmp |= lsb_first << SIMDR1_BITLSB_SHIFT;
 366	tmp |= sh_msiof_spi_get_dtdl_and_syncdl(p);
 367	if (spi_controller_is_target(p->ctlr)) {
 368		sh_msiof_write(p, SITMDR1, tmp | SITMDR1_PCON);
 369	} else {
 370		sh_msiof_write(p, SITMDR1,
 371			       tmp | SIMDR1_TRMD | SITMDR1_PCON |
 372			       (ss < MAX_SS ? ss : 0) << SITMDR1_SYNCCH_SHIFT);
 373	}
 374	if (p->ctlr->flags & SPI_CONTROLLER_MUST_TX) {
 375		/* These bits are reserved if RX needs TX */
 376		tmp &= ~0x0000ffff;
 377	}
 378	sh_msiof_write(p, SIRMDR1, tmp);
 379
 380	tmp = 0;
 381	tmp |= SICTR_TSCKIZ_SCK | cpol << SICTR_TSCKIZ_POL_SHIFT;
 382	tmp |= SICTR_RSCKIZ_SCK | cpol << SICTR_RSCKIZ_POL_SHIFT;
 383
 384	edge = cpol ^ !cpha;
 385
 386	tmp |= edge << SICTR_TEDG_SHIFT;
 387	tmp |= edge << SICTR_REDG_SHIFT;
 388	tmp |= tx_hi_z ? SICTR_TXDIZ_HIZ : SICTR_TXDIZ_LOW;
 389	sh_msiof_write(p, SICTR, tmp);
 390}
 391
 392static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p,
 393				       const void *tx_buf, void *rx_buf,
 394				       u32 bits, u32 words)
 395{
 396	u32 dr2 = SIMDR2_BITLEN1(bits) | SIMDR2_WDLEN1(words);
 397
 398	if (tx_buf || (p->ctlr->flags & SPI_CONTROLLER_MUST_TX))
 399		sh_msiof_write(p, SITMDR2, dr2);
 400	else
 401		sh_msiof_write(p, SITMDR2, dr2 | SIMDR2_GRPMASK1);
 402
 403	if (rx_buf)
 404		sh_msiof_write(p, SIRMDR2, dr2);
 405}
 406
 407static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p)
 408{
 409	sh_msiof_write(p, SISTR,
 410		       sh_msiof_read(p, SISTR) & ~(SISTR_TDREQ | SISTR_RDREQ));
 411}
 412
 413static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p,
 414				      const void *tx_buf, int words, int fs)
 415{
 416	const u8 *buf_8 = tx_buf;
 417	int k;
 418
 419	for (k = 0; k < words; k++)
 420		sh_msiof_write(p, SITFDR, buf_8[k] << fs);
 421}
 422
 423static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p,
 424				       const void *tx_buf, int words, int fs)
 425{
 426	const u16 *buf_16 = tx_buf;
 427	int k;
 428
 429	for (k = 0; k < words; k++)
 430		sh_msiof_write(p, SITFDR, buf_16[k] << fs);
 431}
 432
 433static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p,
 434					const void *tx_buf, int words, int fs)
 435{
 436	const u16 *buf_16 = tx_buf;
 437	int k;
 438
 439	for (k = 0; k < words; k++)
 440		sh_msiof_write(p, SITFDR, get_unaligned(&buf_16[k]) << fs);
 441}
 442
 443static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p,
 444				       const void *tx_buf, int words, int fs)
 445{
 446	const u32 *buf_32 = tx_buf;
 447	int k;
 448
 449	for (k = 0; k < words; k++)
 450		sh_msiof_write(p, SITFDR, buf_32[k] << fs);
 451}
 452
 453static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p,
 454					const void *tx_buf, int words, int fs)
 455{
 456	const u32 *buf_32 = tx_buf;
 457	int k;
 458
 459	for (k = 0; k < words; k++)
 460		sh_msiof_write(p, SITFDR, get_unaligned(&buf_32[k]) << fs);
 461}
 462
 463static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p,
 464					const void *tx_buf, int words, int fs)
 465{
 466	const u32 *buf_32 = tx_buf;
 467	int k;
 468
 469	for (k = 0; k < words; k++)
 470		sh_msiof_write(p, SITFDR, swab32(buf_32[k] << fs));
 471}
 472
 473static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p,
 474					 const void *tx_buf, int words, int fs)
 475{
 476	const u32 *buf_32 = tx_buf;
 477	int k;
 478
 479	for (k = 0; k < words; k++)
 480		sh_msiof_write(p, SITFDR, swab32(get_unaligned(&buf_32[k]) << fs));
 481}
 482
 483static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p,
 484				     void *rx_buf, int words, int fs)
 485{
 486	u8 *buf_8 = rx_buf;
 487	int k;
 488
 489	for (k = 0; k < words; k++)
 490		buf_8[k] = sh_msiof_read(p, SIRFDR) >> fs;
 491}
 492
 493static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p,
 494				      void *rx_buf, int words, int fs)
 495{
 496	u16 *buf_16 = rx_buf;
 497	int k;
 498
 499	for (k = 0; k < words; k++)
 500		buf_16[k] = sh_msiof_read(p, SIRFDR) >> fs;
 501}
 502
 503static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p,
 504				       void *rx_buf, int words, int fs)
 505{
 506	u16 *buf_16 = rx_buf;
 507	int k;
 508
 509	for (k = 0; k < words; k++)
 510		put_unaligned(sh_msiof_read(p, SIRFDR) >> fs, &buf_16[k]);
 511}
 512
 513static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p,
 514				      void *rx_buf, int words, int fs)
 515{
 516	u32 *buf_32 = rx_buf;
 517	int k;
 518
 519	for (k = 0; k < words; k++)
 520		buf_32[k] = sh_msiof_read(p, SIRFDR) >> fs;
 521}
 522
 523static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p,
 524				       void *rx_buf, int words, int fs)
 525{
 526	u32 *buf_32 = rx_buf;
 527	int k;
 528
 529	for (k = 0; k < words; k++)
 530		put_unaligned(sh_msiof_read(p, SIRFDR) >> fs, &buf_32[k]);
 531}
 532
 533static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p,
 534				       void *rx_buf, int words, int fs)
 535{
 536	u32 *buf_32 = rx_buf;
 537	int k;
 538
 539	for (k = 0; k < words; k++)
 540		buf_32[k] = swab32(sh_msiof_read(p, SIRFDR) >> fs);
 541}
 542
 543static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p,
 544				       void *rx_buf, int words, int fs)
 545{
 546	u32 *buf_32 = rx_buf;
 547	int k;
 548
 549	for (k = 0; k < words; k++)
 550		put_unaligned(swab32(sh_msiof_read(p, SIRFDR) >> fs), &buf_32[k]);
 551}
 552
 553static int sh_msiof_spi_setup(struct spi_device *spi)
 554{
 555	struct sh_msiof_spi_priv *p =
 556		spi_controller_get_devdata(spi->controller);
 557	u32 clr, set, tmp;
 558
 559	if (spi_get_csgpiod(spi, 0) || spi_controller_is_target(p->ctlr))
 560		return 0;
 561
 562	if (p->native_cs_inited &&
 563	    (p->native_cs_high == !!(spi->mode & SPI_CS_HIGH)))
 564		return 0;
 565
 566	/* Configure native chip select mode/polarity early */
 567	clr = SIMDR1_SYNCMD_MASK;
 568	set = SIMDR1_SYNCMD_SPI;
 569	if (spi->mode & SPI_CS_HIGH)
 570		clr |= BIT(SIMDR1_SYNCAC_SHIFT);
 571	else
 572		set |= BIT(SIMDR1_SYNCAC_SHIFT);
 573	pm_runtime_get_sync(&p->pdev->dev);
 574	tmp = sh_msiof_read(p, SITMDR1) & ~clr;
 575	sh_msiof_write(p, SITMDR1, tmp | set | SIMDR1_TRMD | SITMDR1_PCON);
 576	tmp = sh_msiof_read(p, SIRMDR1) & ~clr;
 577	sh_msiof_write(p, SIRMDR1, tmp | set);
 578	pm_runtime_put(&p->pdev->dev);
 579	p->native_cs_high = spi->mode & SPI_CS_HIGH;
 580	p->native_cs_inited = true;
 581	return 0;
 582}
 583
 584static int sh_msiof_prepare_message(struct spi_controller *ctlr,
 585				    struct spi_message *msg)
 586{
 587	struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr);
 588	const struct spi_device *spi = msg->spi;
 589	u32 ss, cs_high;
 590
 591	/* Configure pins before asserting CS */
 592	if (spi_get_csgpiod(spi, 0)) {
 593		ss = ctlr->unused_native_cs;
 594		cs_high = p->native_cs_high;
 595	} else {
 596		ss = spi_get_chipselect(spi, 0);
 597		cs_high = !!(spi->mode & SPI_CS_HIGH);
 598	}
 599	sh_msiof_spi_set_pin_regs(p, ss, !!(spi->mode & SPI_CPOL),
 600				  !!(spi->mode & SPI_CPHA),
 601				  !!(spi->mode & SPI_3WIRE),
 602				  !!(spi->mode & SPI_LSB_FIRST), cs_high);
 603	return 0;
 604}
 605
 606static int sh_msiof_spi_start(struct sh_msiof_spi_priv *p, void *rx_buf)
 607{
 608	bool target = spi_controller_is_target(p->ctlr);
 609	int ret = 0;
 610
 611	/* setup clock and rx/tx signals */
 612	if (!target)
 613		ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_TSCKE);
 614	if (rx_buf && !ret)
 615		ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_RXE);
 616	if (!ret)
 617		ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_TXE);
 618
 619	/* start by setting frame bit */
 620	if (!ret && !target)
 621		ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_TFSE);
 622
 623	return ret;
 624}
 625
 626static int sh_msiof_spi_stop(struct sh_msiof_spi_priv *p, void *rx_buf)
 627{
 628	bool target = spi_controller_is_target(p->ctlr);
 629	int ret = 0;
 630
 631	/* shut down frame, rx/tx and clock signals */
 632	if (!target)
 633		ret = sh_msiof_modify_ctr_wait(p, SICTR_TFSE, 0);
 634	if (!ret)
 635		ret = sh_msiof_modify_ctr_wait(p, SICTR_TXE, 0);
 636	if (rx_buf && !ret)
 637		ret = sh_msiof_modify_ctr_wait(p, SICTR_RXE, 0);
 638	if (!ret && !target)
 639		ret = sh_msiof_modify_ctr_wait(p, SICTR_TSCKE, 0);
 640
 641	return ret;
 642}
 643
 644static int sh_msiof_target_abort(struct spi_controller *ctlr)
 645{
 646	struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr);
 647
 648	p->target_aborted = true;
 649	complete(&p->done);
 650	complete(&p->done_txdma);
 651	return 0;
 652}
 653
 654static int sh_msiof_wait_for_completion(struct sh_msiof_spi_priv *p,
 655					struct completion *x)
 656{
 657	if (spi_controller_is_target(p->ctlr)) {
 658		if (wait_for_completion_interruptible(x) ||
 659		    p->target_aborted) {
 660			dev_dbg(&p->pdev->dev, "interrupted\n");
 661			return -EINTR;
 662		}
 663	} else {
 664		if (!wait_for_completion_timeout(x, HZ)) {
 665			dev_err(&p->pdev->dev, "timeout\n");
 666			return -ETIMEDOUT;
 667		}
 668	}
 669
 670	return 0;
 671}
 672
 673static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p,
 674				  void (*tx_fifo)(struct sh_msiof_spi_priv *,
 675						  const void *, int, int),
 676				  void (*rx_fifo)(struct sh_msiof_spi_priv *,
 677						  void *, int, int),
 678				  const void *tx_buf, void *rx_buf,
 679				  int words, int bits)
 680{
 681	int fifo_shift;
 682	int ret;
 683
 684	/* limit maximum word transfer to rx/tx fifo size */
 685	if (tx_buf)
 686		words = min_t(int, words, p->tx_fifo_size);
 687	if (rx_buf)
 688		words = min_t(int, words, p->rx_fifo_size);
 689
 690	/* the fifo contents need shifting */
 691	fifo_shift = 32 - bits;
 692
 693	/* default FIFO watermarks for PIO */
 694	sh_msiof_write(p, SIFCTR, 0);
 695
 696	/* setup msiof transfer mode registers */
 697	sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words);
 698	sh_msiof_write(p, SIIER, SIIER_TEOFE | SIIER_REOFE);
 699
 700	/* write tx fifo */
 701	if (tx_buf)
 702		tx_fifo(p, tx_buf, words, fifo_shift);
 703
 704	reinit_completion(&p->done);
 705	p->target_aborted = false;
 706
 707	ret = sh_msiof_spi_start(p, rx_buf);
 708	if (ret) {
 709		dev_err(&p->pdev->dev, "failed to start hardware\n");
 710		goto stop_ier;
 711	}
 712
 713	/* wait for tx fifo to be emptied / rx fifo to be filled */
 714	ret = sh_msiof_wait_for_completion(p, &p->done);
 715	if (ret)
 716		goto stop_reset;
 717
 718	/* read rx fifo */
 719	if (rx_buf)
 720		rx_fifo(p, rx_buf, words, fifo_shift);
 721
 722	/* clear status bits */
 723	sh_msiof_reset_str(p);
 724
 725	ret = sh_msiof_spi_stop(p, rx_buf);
 726	if (ret) {
 727		dev_err(&p->pdev->dev, "failed to shut down hardware\n");
 728		return ret;
 729	}
 730
 731	return words;
 732
 733stop_reset:
 734	sh_msiof_reset_str(p);
 735	sh_msiof_spi_stop(p, rx_buf);
 736stop_ier:
 737	sh_msiof_write(p, SIIER, 0);
 738	return ret;
 739}
 740
 741static void sh_msiof_dma_complete(void *arg)
 742{
 743	complete(arg);
 744}
 745
 746static int sh_msiof_dma_once(struct sh_msiof_spi_priv *p, const void *tx,
 747			     void *rx, unsigned int len)
 748{
 749	u32 ier_bits = 0;
 750	struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
 751	dma_cookie_t cookie;
 752	int ret;
 753
 754	/* First prepare and submit the DMA request(s), as this may fail */
 755	if (rx) {
 756		ier_bits |= SIIER_RDREQE | SIIER_RDMAE;
 757		desc_rx = dmaengine_prep_slave_single(p->ctlr->dma_rx,
 758					p->rx_dma_addr, len, DMA_DEV_TO_MEM,
 759					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 760		if (!desc_rx)
 761			return -EAGAIN;
 762
 763		desc_rx->callback = sh_msiof_dma_complete;
 764		desc_rx->callback_param = &p->done;
 765		cookie = dmaengine_submit(desc_rx);
 766		if (dma_submit_error(cookie))
 767			return cookie;
 768	}
 769
 770	if (tx) {
 771		ier_bits |= SIIER_TDREQE | SIIER_TDMAE;
 772		dma_sync_single_for_device(p->ctlr->dma_tx->device->dev,
 773					   p->tx_dma_addr, len, DMA_TO_DEVICE);
 774		desc_tx = dmaengine_prep_slave_single(p->ctlr->dma_tx,
 775					p->tx_dma_addr, len, DMA_MEM_TO_DEV,
 776					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 777		if (!desc_tx) {
 778			ret = -EAGAIN;
 779			goto no_dma_tx;
 780		}
 781
 782		desc_tx->callback = sh_msiof_dma_complete;
 783		desc_tx->callback_param = &p->done_txdma;
 784		cookie = dmaengine_submit(desc_tx);
 785		if (dma_submit_error(cookie)) {
 786			ret = cookie;
 787			goto no_dma_tx;
 788		}
 789	}
 790
 791	/* 1 stage FIFO watermarks for DMA */
 792	sh_msiof_write(p, SIFCTR, SIFCTR_TFWM_1 | SIFCTR_RFWM_1);
 793
 794	/* setup msiof transfer mode registers (32-bit words) */
 795	sh_msiof_spi_set_mode_regs(p, tx, rx, 32, len / 4);
 796
 797	sh_msiof_write(p, SIIER, ier_bits);
 798
 799	reinit_completion(&p->done);
 800	if (tx)
 801		reinit_completion(&p->done_txdma);
 802	p->target_aborted = false;
 803
 804	/* Now start DMA */
 805	if (rx)
 806		dma_async_issue_pending(p->ctlr->dma_rx);
 807	if (tx)
 808		dma_async_issue_pending(p->ctlr->dma_tx);
 809
 810	ret = sh_msiof_spi_start(p, rx);
 811	if (ret) {
 812		dev_err(&p->pdev->dev, "failed to start hardware\n");
 813		goto stop_dma;
 814	}
 815
 816	if (tx) {
 817		/* wait for tx DMA completion */
 818		ret = sh_msiof_wait_for_completion(p, &p->done_txdma);
 819		if (ret)
 820			goto stop_reset;
 821	}
 822
 823	if (rx) {
 824		/* wait for rx DMA completion */
 825		ret = sh_msiof_wait_for_completion(p, &p->done);
 826		if (ret)
 827			goto stop_reset;
 828
 829		sh_msiof_write(p, SIIER, 0);
 830	} else {
 831		/* wait for tx fifo to be emptied */
 832		sh_msiof_write(p, SIIER, SIIER_TEOFE);
 833		ret = sh_msiof_wait_for_completion(p, &p->done);
 834		if (ret)
 835			goto stop_reset;
 836	}
 837
 838	/* clear status bits */
 839	sh_msiof_reset_str(p);
 840
 841	ret = sh_msiof_spi_stop(p, rx);
 842	if (ret) {
 843		dev_err(&p->pdev->dev, "failed to shut down hardware\n");
 844		return ret;
 845	}
 846
 847	if (rx)
 848		dma_sync_single_for_cpu(p->ctlr->dma_rx->device->dev,
 849					p->rx_dma_addr, len, DMA_FROM_DEVICE);
 850
 851	return 0;
 852
 853stop_reset:
 854	sh_msiof_reset_str(p);
 855	sh_msiof_spi_stop(p, rx);
 856stop_dma:
 857	if (tx)
 858		dmaengine_terminate_sync(p->ctlr->dma_tx);
 859no_dma_tx:
 860	if (rx)
 861		dmaengine_terminate_sync(p->ctlr->dma_rx);
 862	sh_msiof_write(p, SIIER, 0);
 863	return ret;
 864}
 865
 866static void copy_bswap32(u32 *dst, const u32 *src, unsigned int words)
 867{
 868	/* src or dst can be unaligned, but not both */
 869	if ((unsigned long)src & 3) {
 870		while (words--) {
 871			*dst++ = swab32(get_unaligned(src));
 872			src++;
 873		}
 874	} else if ((unsigned long)dst & 3) {
 875		while (words--) {
 876			put_unaligned(swab32(*src++), dst);
 877			dst++;
 878		}
 879	} else {
 880		while (words--)
 881			*dst++ = swab32(*src++);
 882	}
 883}
 884
 885static void copy_wswap32(u32 *dst, const u32 *src, unsigned int words)
 886{
 887	/* src or dst can be unaligned, but not both */
 888	if ((unsigned long)src & 3) {
 889		while (words--) {
 890			*dst++ = swahw32(get_unaligned(src));
 891			src++;
 892		}
 893	} else if ((unsigned long)dst & 3) {
 894		while (words--) {
 895			put_unaligned(swahw32(*src++), dst);
 896			dst++;
 897		}
 898	} else {
 899		while (words--)
 900			*dst++ = swahw32(*src++);
 901	}
 902}
 903
 904static void copy_plain32(u32 *dst, const u32 *src, unsigned int words)
 905{
 906	memcpy(dst, src, words * 4);
 907}
 908
 909static int sh_msiof_transfer_one(struct spi_controller *ctlr,
 910				 struct spi_device *spi,
 911				 struct spi_transfer *t)
 912{
 913	struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr);
 914	void (*copy32)(u32 *, const u32 *, unsigned int);
 915	void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int);
 916	void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int);
 917	const void *tx_buf = t->tx_buf;
 918	void *rx_buf = t->rx_buf;
 919	unsigned int len = t->len;
 920	unsigned int bits = t->bits_per_word;
 921	unsigned int bytes_per_word;
 922	unsigned int words;
 923	int n;
 924	bool swab;
 925	int ret;
 926
 927	/* reset registers */
 928	sh_msiof_spi_reset_regs(p);
 929
 930	/* setup clocks (clock already enabled in chipselect()) */
 931	if (!spi_controller_is_target(p->ctlr))
 932		sh_msiof_spi_set_clk_regs(p, t);
 933
 934	while (ctlr->dma_tx && len > 15) {
 935		/*
 936		 *  DMA supports 32-bit words only, hence pack 8-bit and 16-bit
 937		 *  words, with byte resp. word swapping.
 938		 */
 939		unsigned int l = 0;
 940
 941		if (tx_buf)
 942			l = min(round_down(len, 4), p->tx_fifo_size * 4);
 943		if (rx_buf)
 944			l = min(round_down(len, 4), p->rx_fifo_size * 4);
 945
 946		if (bits <= 8) {
 947			copy32 = copy_bswap32;
 948		} else if (bits <= 16) {
 949			copy32 = copy_wswap32;
 950		} else {
 951			copy32 = copy_plain32;
 952		}
 953
 954		if (tx_buf)
 955			copy32(p->tx_dma_page, tx_buf, l / 4);
 956
 957		ret = sh_msiof_dma_once(p, tx_buf, rx_buf, l);
 958		if (ret == -EAGAIN) {
 959			dev_warn_once(&p->pdev->dev,
 960				"DMA not available, falling back to PIO\n");
 961			break;
 962		}
 963		if (ret)
 964			return ret;
 965
 966		if (rx_buf) {
 967			copy32(rx_buf, p->rx_dma_page, l / 4);
 968			rx_buf += l;
 969		}
 970		if (tx_buf)
 971			tx_buf += l;
 972
 973		len -= l;
 974		if (!len)
 975			return 0;
 976	}
 977
 978	if (bits <= 8 && len > 15) {
 979		bits = 32;
 980		swab = true;
 981	} else {
 982		swab = false;
 983	}
 984
 985	/* setup bytes per word and fifo read/write functions */
 986	if (bits <= 8) {
 987		bytes_per_word = 1;
 988		tx_fifo = sh_msiof_spi_write_fifo_8;
 989		rx_fifo = sh_msiof_spi_read_fifo_8;
 990	} else if (bits <= 16) {
 991		bytes_per_word = 2;
 992		if ((unsigned long)tx_buf & 0x01)
 993			tx_fifo = sh_msiof_spi_write_fifo_16u;
 994		else
 995			tx_fifo = sh_msiof_spi_write_fifo_16;
 996
 997		if ((unsigned long)rx_buf & 0x01)
 998			rx_fifo = sh_msiof_spi_read_fifo_16u;
 999		else
1000			rx_fifo = sh_msiof_spi_read_fifo_16;
1001	} else if (swab) {
1002		bytes_per_word = 4;
1003		if ((unsigned long)tx_buf & 0x03)
1004			tx_fifo = sh_msiof_spi_write_fifo_s32u;
1005		else
1006			tx_fifo = sh_msiof_spi_write_fifo_s32;
1007
1008		if ((unsigned long)rx_buf & 0x03)
1009			rx_fifo = sh_msiof_spi_read_fifo_s32u;
1010		else
1011			rx_fifo = sh_msiof_spi_read_fifo_s32;
1012	} else {
1013		bytes_per_word = 4;
1014		if ((unsigned long)tx_buf & 0x03)
1015			tx_fifo = sh_msiof_spi_write_fifo_32u;
1016		else
1017			tx_fifo = sh_msiof_spi_write_fifo_32;
1018
1019		if ((unsigned long)rx_buf & 0x03)
1020			rx_fifo = sh_msiof_spi_read_fifo_32u;
1021		else
1022			rx_fifo = sh_msiof_spi_read_fifo_32;
1023	}
1024
1025	/* transfer in fifo sized chunks */
1026	words = len / bytes_per_word;
1027
1028	while (words > 0) {
1029		n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo, tx_buf, rx_buf,
1030					   words, bits);
1031		if (n < 0)
1032			return n;
1033
1034		if (tx_buf)
1035			tx_buf += n * bytes_per_word;
1036		if (rx_buf)
1037			rx_buf += n * bytes_per_word;
1038		words -= n;
1039
1040		if (words == 0 && (len % bytes_per_word)) {
1041			words = len % bytes_per_word;
1042			bits = t->bits_per_word;
1043			bytes_per_word = 1;
1044			tx_fifo = sh_msiof_spi_write_fifo_8;
1045			rx_fifo = sh_msiof_spi_read_fifo_8;
1046		}
1047	}
1048
1049	return 0;
1050}
1051
1052static const struct sh_msiof_chipdata sh_data = {
1053	.bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32),
1054	.tx_fifo_size = 64,
1055	.rx_fifo_size = 64,
1056	.ctlr_flags = 0,
1057	.min_div_pow = 0,
1058};
1059
1060static const struct sh_msiof_chipdata rcar_gen2_data = {
1061	.bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16) |
1062			      SPI_BPW_MASK(24) | SPI_BPW_MASK(32),
1063	.tx_fifo_size = 64,
1064	.rx_fifo_size = 64,
1065	.ctlr_flags = SPI_CONTROLLER_MUST_TX,
1066	.min_div_pow = 0,
1067};
1068
1069static const struct sh_msiof_chipdata rcar_gen3_data = {
1070	.bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16) |
1071			      SPI_BPW_MASK(24) | SPI_BPW_MASK(32),
1072	.tx_fifo_size = 64,
1073	.rx_fifo_size = 64,
1074	.ctlr_flags = SPI_CONTROLLER_MUST_TX,
1075	.min_div_pow = 1,
1076};
1077
1078static const struct sh_msiof_chipdata rcar_r8a7795_data = {
1079	.bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16) |
1080			      SPI_BPW_MASK(24) | SPI_BPW_MASK(32),
1081	.tx_fifo_size = 64,
1082	.rx_fifo_size = 64,
1083	.ctlr_flags = SPI_CONTROLLER_MUST_TX,
1084	.min_div_pow = 1,
1085	.flags = SH_MSIOF_FLAG_FIXED_DTDL_200,
1086};
1087
1088static const struct of_device_id sh_msiof_match[] __maybe_unused = {
1089	{ .compatible = "renesas,sh-mobile-msiof", .data = &sh_data },
1090	{ .compatible = "renesas,msiof-r8a7743",   .data = &rcar_gen2_data },
1091	{ .compatible = "renesas,msiof-r8a7745",   .data = &rcar_gen2_data },
1092	{ .compatible = "renesas,msiof-r8a7790",   .data = &rcar_gen2_data },
1093	{ .compatible = "renesas,msiof-r8a7791",   .data = &rcar_gen2_data },
1094	{ .compatible = "renesas,msiof-r8a7792",   .data = &rcar_gen2_data },
1095	{ .compatible = "renesas,msiof-r8a7793",   .data = &rcar_gen2_data },
1096	{ .compatible = "renesas,msiof-r8a7794",   .data = &rcar_gen2_data },
1097	{ .compatible = "renesas,rcar-gen2-msiof", .data = &rcar_gen2_data },
1098	{ .compatible = "renesas,msiof-r8a7795",   .data = &rcar_r8a7795_data },
1099	{ .compatible = "renesas,msiof-r8a7796",   .data = &rcar_gen3_data },
1100	{ .compatible = "renesas,rcar-gen3-msiof", .data = &rcar_gen3_data },
1101	{ .compatible = "renesas,rcar-gen4-msiof", .data = &rcar_gen3_data },
1102	{ .compatible = "renesas,sh-msiof",        .data = &sh_data }, /* Deprecated */
1103	{},
1104};
1105MODULE_DEVICE_TABLE(of, sh_msiof_match);
1106
1107#ifdef CONFIG_OF
1108static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1109{
1110	struct sh_msiof_spi_info *info;
1111	struct device_node *np = dev->of_node;
1112	u32 num_cs = 1;
1113
1114	info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL);
1115	if (!info)
1116		return NULL;
1117
1118	info->mode = of_property_read_bool(np, "spi-slave") ? MSIOF_SPI_TARGET
1119							    : MSIOF_SPI_HOST;
1120
1121	/* Parse the MSIOF properties */
1122	if (info->mode == MSIOF_SPI_HOST)
1123		of_property_read_u32(np, "num-cs", &num_cs);
1124	of_property_read_u32(np, "renesas,tx-fifo-size",
1125					&info->tx_fifo_override);
1126	of_property_read_u32(np, "renesas,rx-fifo-size",
1127					&info->rx_fifo_override);
1128	of_property_read_u32(np, "renesas,dtdl", &info->dtdl);
1129	of_property_read_u32(np, "renesas,syncdl", &info->syncdl);
1130
1131	info->num_chipselect = num_cs;
1132
1133	return info;
1134}
1135#else
1136static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1137{
1138	return NULL;
1139}
1140#endif
1141
1142static struct dma_chan *sh_msiof_request_dma_chan(struct device *dev,
1143	enum dma_transfer_direction dir, unsigned int id, dma_addr_t port_addr)
1144{
1145	dma_cap_mask_t mask;
1146	struct dma_chan *chan;
1147	struct dma_slave_config cfg;
1148	int ret;
1149
1150	dma_cap_zero(mask);
1151	dma_cap_set(DMA_SLAVE, mask);
1152
1153	chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1154				(void *)(unsigned long)id, dev,
1155				dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1156	if (!chan) {
1157		dev_warn(dev, "dma_request_slave_channel_compat failed\n");
1158		return NULL;
1159	}
1160
1161	memset(&cfg, 0, sizeof(cfg));
1162	cfg.direction = dir;
1163	if (dir == DMA_MEM_TO_DEV) {
1164		cfg.dst_addr = port_addr;
1165		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1166	} else {
1167		cfg.src_addr = port_addr;
1168		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1169	}
1170
1171	ret = dmaengine_slave_config(chan, &cfg);
1172	if (ret) {
1173		dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1174		dma_release_channel(chan);
1175		return NULL;
1176	}
1177
1178	return chan;
1179}
1180
1181static int sh_msiof_request_dma(struct sh_msiof_spi_priv *p)
1182{
1183	struct platform_device *pdev = p->pdev;
1184	struct device *dev = &pdev->dev;
1185	const struct sh_msiof_spi_info *info = p->info;
1186	unsigned int dma_tx_id, dma_rx_id;
1187	const struct resource *res;
1188	struct spi_controller *ctlr;
1189	struct device *tx_dev, *rx_dev;
1190
1191	if (dev->of_node) {
1192		/* In the OF case we will get the slave IDs from the DT */
1193		dma_tx_id = 0;
1194		dma_rx_id = 0;
1195	} else if (info && info->dma_tx_id && info->dma_rx_id) {
1196		dma_tx_id = info->dma_tx_id;
1197		dma_rx_id = info->dma_rx_id;
1198	} else {
1199		/* The driver assumes no error */
1200		return 0;
1201	}
1202
1203	/* The DMA engine uses the second register set, if present */
1204	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1205	if (!res)
1206		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1207
1208	ctlr = p->ctlr;
1209	ctlr->dma_tx = sh_msiof_request_dma_chan(dev, DMA_MEM_TO_DEV,
1210						 dma_tx_id, res->start + SITFDR);
1211	if (!ctlr->dma_tx)
1212		return -ENODEV;
1213
1214	ctlr->dma_rx = sh_msiof_request_dma_chan(dev, DMA_DEV_TO_MEM,
1215						 dma_rx_id, res->start + SIRFDR);
1216	if (!ctlr->dma_rx)
1217		goto free_tx_chan;
1218
1219	p->tx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1220	if (!p->tx_dma_page)
1221		goto free_rx_chan;
1222
1223	p->rx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1224	if (!p->rx_dma_page)
1225		goto free_tx_page;
1226
1227	tx_dev = ctlr->dma_tx->device->dev;
1228	p->tx_dma_addr = dma_map_single(tx_dev, p->tx_dma_page, PAGE_SIZE,
1229					DMA_TO_DEVICE);
1230	if (dma_mapping_error(tx_dev, p->tx_dma_addr))
1231		goto free_rx_page;
1232
1233	rx_dev = ctlr->dma_rx->device->dev;
1234	p->rx_dma_addr = dma_map_single(rx_dev, p->rx_dma_page, PAGE_SIZE,
1235					DMA_FROM_DEVICE);
1236	if (dma_mapping_error(rx_dev, p->rx_dma_addr))
1237		goto unmap_tx_page;
1238
1239	dev_info(dev, "DMA available");
1240	return 0;
1241
1242unmap_tx_page:
1243	dma_unmap_single(tx_dev, p->tx_dma_addr, PAGE_SIZE, DMA_TO_DEVICE);
1244free_rx_page:
1245	free_page((unsigned long)p->rx_dma_page);
1246free_tx_page:
1247	free_page((unsigned long)p->tx_dma_page);
1248free_rx_chan:
1249	dma_release_channel(ctlr->dma_rx);
1250free_tx_chan:
1251	dma_release_channel(ctlr->dma_tx);
1252	ctlr->dma_tx = NULL;
1253	return -ENODEV;
1254}
1255
1256static void sh_msiof_release_dma(struct sh_msiof_spi_priv *p)
1257{
1258	struct spi_controller *ctlr = p->ctlr;
1259
1260	if (!ctlr->dma_tx)
1261		return;
1262
1263	dma_unmap_single(ctlr->dma_rx->device->dev, p->rx_dma_addr, PAGE_SIZE,
1264			 DMA_FROM_DEVICE);
1265	dma_unmap_single(ctlr->dma_tx->device->dev, p->tx_dma_addr, PAGE_SIZE,
1266			 DMA_TO_DEVICE);
1267	free_page((unsigned long)p->rx_dma_page);
1268	free_page((unsigned long)p->tx_dma_page);
1269	dma_release_channel(ctlr->dma_rx);
1270	dma_release_channel(ctlr->dma_tx);
1271}
1272
1273static int sh_msiof_spi_probe(struct platform_device *pdev)
1274{
1275	struct spi_controller *ctlr;
1276	const struct sh_msiof_chipdata *chipdata;
1277	struct sh_msiof_spi_info *info;
1278	struct sh_msiof_spi_priv *p;
1279	unsigned long clksrc;
1280	int i;
1281	int ret;
1282
1283	chipdata = of_device_get_match_data(&pdev->dev);
1284	if (chipdata) {
1285		info = sh_msiof_spi_parse_dt(&pdev->dev);
1286	} else {
1287		chipdata = (const void *)pdev->id_entry->driver_data;
1288		info = dev_get_platdata(&pdev->dev);
1289	}
1290
1291	if (!info) {
1292		dev_err(&pdev->dev, "failed to obtain device info\n");
1293		return -ENXIO;
1294	}
1295
1296	if (chipdata->flags & SH_MSIOF_FLAG_FIXED_DTDL_200)
1297		info->dtdl = 200;
1298
1299	if (info->mode == MSIOF_SPI_TARGET)
1300		ctlr = spi_alloc_target(&pdev->dev,
1301				        sizeof(struct sh_msiof_spi_priv));
1302	else
1303		ctlr = spi_alloc_host(&pdev->dev,
1304				      sizeof(struct sh_msiof_spi_priv));
1305	if (ctlr == NULL)
1306		return -ENOMEM;
1307
1308	p = spi_controller_get_devdata(ctlr);
1309
1310	platform_set_drvdata(pdev, p);
1311	p->ctlr = ctlr;
1312	p->info = info;
1313	p->min_div_pow = chipdata->min_div_pow;
1314
1315	init_completion(&p->done);
1316	init_completion(&p->done_txdma);
1317
1318	p->clk = devm_clk_get(&pdev->dev, NULL);
1319	if (IS_ERR(p->clk)) {
1320		dev_err(&pdev->dev, "cannot get clock\n");
1321		ret = PTR_ERR(p->clk);
1322		goto err1;
1323	}
1324
1325	i = platform_get_irq(pdev, 0);
1326	if (i < 0) {
1327		ret = i;
1328		goto err1;
1329	}
1330
1331	p->mapbase = devm_platform_ioremap_resource(pdev, 0);
1332	if (IS_ERR(p->mapbase)) {
1333		ret = PTR_ERR(p->mapbase);
1334		goto err1;
1335	}
1336
1337	ret = devm_request_irq(&pdev->dev, i, sh_msiof_spi_irq, 0,
1338			       dev_name(&pdev->dev), p);
1339	if (ret) {
1340		dev_err(&pdev->dev, "unable to request irq\n");
1341		goto err1;
1342	}
1343
1344	p->pdev = pdev;
1345	pm_runtime_enable(&pdev->dev);
1346
1347	/* Platform data may override FIFO sizes */
1348	p->tx_fifo_size = chipdata->tx_fifo_size;
1349	p->rx_fifo_size = chipdata->rx_fifo_size;
1350	if (p->info->tx_fifo_override)
1351		p->tx_fifo_size = p->info->tx_fifo_override;
1352	if (p->info->rx_fifo_override)
1353		p->rx_fifo_size = p->info->rx_fifo_override;
1354
1355	/* init controller code */
1356	ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1357	ctlr->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE;
1358	clksrc = clk_get_rate(p->clk);
1359	ctlr->min_speed_hz = DIV_ROUND_UP(clksrc, 1024);
1360	ctlr->max_speed_hz = DIV_ROUND_UP(clksrc, 1 << p->min_div_pow);
1361	ctlr->flags = chipdata->ctlr_flags;
1362	ctlr->bus_num = pdev->id;
1363	ctlr->num_chipselect = p->info->num_chipselect;
1364	ctlr->dev.of_node = pdev->dev.of_node;
1365	ctlr->setup = sh_msiof_spi_setup;
1366	ctlr->prepare_message = sh_msiof_prepare_message;
1367	ctlr->target_abort = sh_msiof_target_abort;
1368	ctlr->bits_per_word_mask = chipdata->bits_per_word_mask;
1369	ctlr->auto_runtime_pm = true;
1370	ctlr->transfer_one = sh_msiof_transfer_one;
1371	ctlr->use_gpio_descriptors = true;
1372	ctlr->max_native_cs = MAX_SS;
1373
1374	ret = sh_msiof_request_dma(p);
1375	if (ret < 0)
1376		dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1377
1378	ret = devm_spi_register_controller(&pdev->dev, ctlr);
1379	if (ret < 0) {
1380		dev_err(&pdev->dev, "devm_spi_register_controller error.\n");
1381		goto err2;
1382	}
1383
1384	return 0;
1385
1386 err2:
1387	sh_msiof_release_dma(p);
1388	pm_runtime_disable(&pdev->dev);
1389 err1:
1390	spi_controller_put(ctlr);
1391	return ret;
1392}
1393
1394static void sh_msiof_spi_remove(struct platform_device *pdev)
1395{
1396	struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
1397
1398	sh_msiof_release_dma(p);
1399	pm_runtime_disable(&pdev->dev);
 
1400}
1401
1402static const struct platform_device_id spi_driver_ids[] = {
1403	{ "spi_sh_msiof",	(kernel_ulong_t)&sh_data },
1404	{},
1405};
1406MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1407
1408#ifdef CONFIG_PM_SLEEP
1409static int sh_msiof_spi_suspend(struct device *dev)
1410{
1411	struct sh_msiof_spi_priv *p = dev_get_drvdata(dev);
1412
1413	return spi_controller_suspend(p->ctlr);
1414}
1415
1416static int sh_msiof_spi_resume(struct device *dev)
1417{
1418	struct sh_msiof_spi_priv *p = dev_get_drvdata(dev);
1419
1420	return spi_controller_resume(p->ctlr);
1421}
1422
1423static SIMPLE_DEV_PM_OPS(sh_msiof_spi_pm_ops, sh_msiof_spi_suspend,
1424			 sh_msiof_spi_resume);
1425#define DEV_PM_OPS	(&sh_msiof_spi_pm_ops)
1426#else
1427#define DEV_PM_OPS	NULL
1428#endif /* CONFIG_PM_SLEEP */
1429
1430static struct platform_driver sh_msiof_spi_drv = {
1431	.probe		= sh_msiof_spi_probe,
1432	.remove_new	= sh_msiof_spi_remove,
1433	.id_table	= spi_driver_ids,
1434	.driver		= {
1435		.name		= "spi_sh_msiof",
1436		.pm		= DEV_PM_OPS,
1437		.of_match_table = of_match_ptr(sh_msiof_match),
1438	},
1439};
1440module_platform_driver(sh_msiof_spi_drv);
1441
1442MODULE_DESCRIPTION("SuperH MSIOF SPI Controller Interface Driver");
1443MODULE_AUTHOR("Magnus Damm");
1444MODULE_LICENSE("GPL v2");
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * SuperH MSIOF SPI Controller Interface
   4 *
   5 * Copyright (c) 2009 Magnus Damm
   6 * Copyright (C) 2014 Renesas Electronics Corporation
   7 * Copyright (C) 2014-2017 Glider bvba
   8 */
   9
  10#include <linux/bitmap.h>
  11#include <linux/clk.h>
  12#include <linux/completion.h>
  13#include <linux/delay.h>
  14#include <linux/dma-mapping.h>
  15#include <linux/dmaengine.h>
  16#include <linux/err.h>
  17#include <linux/interrupt.h>
  18#include <linux/io.h>
  19#include <linux/iopoll.h>
  20#include <linux/kernel.h>
  21#include <linux/module.h>
  22#include <linux/of.h>
  23#include <linux/of_device.h>
  24#include <linux/platform_device.h>
  25#include <linux/pm_runtime.h>
  26#include <linux/sh_dma.h>
  27
  28#include <linux/spi/sh_msiof.h>
  29#include <linux/spi/spi.h>
  30
  31#include <asm/unaligned.h>
  32
 
 
  33struct sh_msiof_chipdata {
  34	u32 bits_per_word_mask;
  35	u16 tx_fifo_size;
  36	u16 rx_fifo_size;
  37	u16 ctlr_flags;
  38	u16 min_div_pow;
 
  39};
  40
  41struct sh_msiof_spi_priv {
  42	struct spi_controller *ctlr;
  43	void __iomem *mapbase;
  44	struct clk *clk;
  45	struct platform_device *pdev;
  46	struct sh_msiof_spi_info *info;
  47	struct completion done;
  48	struct completion done_txdma;
  49	unsigned int tx_fifo_size;
  50	unsigned int rx_fifo_size;
  51	unsigned int min_div_pow;
  52	void *tx_dma_page;
  53	void *rx_dma_page;
  54	dma_addr_t tx_dma_addr;
  55	dma_addr_t rx_dma_addr;
  56	bool native_cs_inited;
  57	bool native_cs_high;
  58	bool slave_aborted;
  59};
  60
  61#define MAX_SS	3	/* Maximum number of native chip selects */
  62
  63#define SITMDR1	0x00	/* Transmit Mode Register 1 */
  64#define SITMDR2	0x04	/* Transmit Mode Register 2 */
  65#define SITMDR3	0x08	/* Transmit Mode Register 3 */
  66#define SIRMDR1	0x10	/* Receive Mode Register 1 */
  67#define SIRMDR2	0x14	/* Receive Mode Register 2 */
  68#define SIRMDR3	0x18	/* Receive Mode Register 3 */
  69#define SITSCR	0x20	/* Transmit Clock Select Register */
  70#define SIRSCR	0x22	/* Receive Clock Select Register (SH, A1, APE6) */
  71#define SICTR	0x28	/* Control Register */
  72#define SIFCTR	0x30	/* FIFO Control Register */
  73#define SISTR	0x40	/* Status Register */
  74#define SIIER	0x44	/* Interrupt Enable Register */
  75#define SITDR1	0x48	/* Transmit Control Data Register 1 (SH, A1) */
  76#define SITDR2	0x4c	/* Transmit Control Data Register 2 (SH, A1) */
  77#define SITFDR	0x50	/* Transmit FIFO Data Register */
  78#define SIRDR1	0x58	/* Receive Control Data Register 1 (SH, A1) */
  79#define SIRDR2	0x5c	/* Receive Control Data Register 2 (SH, A1) */
  80#define SIRFDR	0x60	/* Receive FIFO Data Register */
  81
  82/* SITMDR1 and SIRMDR1 */
  83#define SIMDR1_TRMD		BIT(31)		/* Transfer Mode (1 = Master mode) */
  84#define SIMDR1_SYNCMD_MASK	GENMASK(29, 28)	/* SYNC Mode */
  85#define SIMDR1_SYNCMD_SPI	(2 << 28)	/*   Level mode/SPI */
  86#define SIMDR1_SYNCMD_LR	(3 << 28)	/*   L/R mode */
  87#define SIMDR1_SYNCAC_SHIFT	25		/* Sync Polarity (1 = Active-low) */
  88#define SIMDR1_BITLSB_SHIFT	24		/* MSB/LSB First (1 = LSB first) */
  89#define SIMDR1_DTDL_SHIFT	20		/* Data Pin Bit Delay for MSIOF_SYNC */
  90#define SIMDR1_SYNCDL_SHIFT	16		/* Frame Sync Signal Timing Delay */
  91#define SIMDR1_FLD_MASK		GENMASK(3, 2)	/* Frame Sync Signal Interval (0-3) */
  92#define SIMDR1_FLD_SHIFT	2
  93#define SIMDR1_XXSTP		BIT(0)		/* Transmission/Reception Stop on FIFO */
  94/* SITMDR1 */
  95#define SITMDR1_PCON		BIT(30)		/* Transfer Signal Connection */
  96#define SITMDR1_SYNCCH_MASK	GENMASK(27, 26)	/* Sync Signal Channel Select */
  97#define SITMDR1_SYNCCH_SHIFT	26		/* 0=MSIOF_SYNC, 1=MSIOF_SS1, 2=MSIOF_SS2 */
  98
  99/* SITMDR2 and SIRMDR2 */
 100#define SIMDR2_BITLEN1(i)	(((i) - 1) << 24) /* Data Size (8-32 bits) */
 101#define SIMDR2_WDLEN1(i)	(((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */
 102#define SIMDR2_GRPMASK1		BIT(0)		/* Group Output Mask 1 (SH, A1) */
 103
 104/* SITSCR and SIRSCR */
 105#define SISCR_BRPS_MASK		GENMASK(12, 8)	/* Prescaler Setting (1-32) */
 106#define SISCR_BRPS(i)		(((i) - 1) << 8)
 107#define SISCR_BRDV_MASK		GENMASK(2, 0)	/* Baud Rate Generator's Division Ratio */
 108#define SISCR_BRDV_DIV_2	0
 109#define SISCR_BRDV_DIV_4	1
 110#define SISCR_BRDV_DIV_8	2
 111#define SISCR_BRDV_DIV_16	3
 112#define SISCR_BRDV_DIV_32	4
 113#define SISCR_BRDV_DIV_1	7
 114
 115/* SICTR */
 116#define SICTR_TSCKIZ_MASK	GENMASK(31, 30)	/* Transmit Clock I/O Polarity Select */
 117#define SICTR_TSCKIZ_SCK	BIT(31)		/*   Disable SCK when TX disabled */
 118#define SICTR_TSCKIZ_POL_SHIFT	30		/*   Transmit Clock Polarity */
 119#define SICTR_RSCKIZ_MASK	GENMASK(29, 28) /* Receive Clock Polarity Select */
 120#define SICTR_RSCKIZ_SCK	BIT(29)		/*   Must match CTR_TSCKIZ_SCK */
 121#define SICTR_RSCKIZ_POL_SHIFT	28		/*   Receive Clock Polarity */
 122#define SICTR_TEDG_SHIFT	27		/* Transmit Timing (1 = falling edge) */
 123#define SICTR_REDG_SHIFT	26		/* Receive Timing (1 = falling edge) */
 124#define SICTR_TXDIZ_MASK	GENMASK(23, 22)	/* Pin Output When TX is Disabled */
 125#define SICTR_TXDIZ_LOW		(0 << 22)	/*   0 */
 126#define SICTR_TXDIZ_HIGH	(1 << 22)	/*   1 */
 127#define SICTR_TXDIZ_HIZ		(2 << 22)	/*   High-impedance */
 128#define SICTR_TSCKE		BIT(15)		/* Transmit Serial Clock Output Enable */
 129#define SICTR_TFSE		BIT(14)		/* Transmit Frame Sync Signal Output Enable */
 130#define SICTR_TXE		BIT(9)		/* Transmit Enable */
 131#define SICTR_RXE		BIT(8)		/* Receive Enable */
 132#define SICTR_TXRST		BIT(1)		/* Transmit Reset */
 133#define SICTR_RXRST		BIT(0)		/* Receive Reset */
 134
 135/* SIFCTR */
 136#define SIFCTR_TFWM_MASK	GENMASK(31, 29)	/* Transmit FIFO Watermark */
 137#define SIFCTR_TFWM_64		(0 << 29)	/*  Transfer Request when 64 empty stages */
 138#define SIFCTR_TFWM_32		(1 << 29)	/*  Transfer Request when 32 empty stages */
 139#define SIFCTR_TFWM_24		(2 << 29)	/*  Transfer Request when 24 empty stages */
 140#define SIFCTR_TFWM_16		(3 << 29)	/*  Transfer Request when 16 empty stages */
 141#define SIFCTR_TFWM_12		(4 << 29)	/*  Transfer Request when 12 empty stages */
 142#define SIFCTR_TFWM_8		(5 << 29)	/*  Transfer Request when 8 empty stages */
 143#define SIFCTR_TFWM_4		(6 << 29)	/*  Transfer Request when 4 empty stages */
 144#define SIFCTR_TFWM_1		(7 << 29)	/*  Transfer Request when 1 empty stage */
 145#define SIFCTR_TFUA_MASK	GENMASK(26, 20) /* Transmit FIFO Usable Area */
 146#define SIFCTR_TFUA_SHIFT	20
 147#define SIFCTR_TFUA(i)		((i) << SIFCTR_TFUA_SHIFT)
 148#define SIFCTR_RFWM_MASK	GENMASK(15, 13)	/* Receive FIFO Watermark */
 149#define SIFCTR_RFWM_1		(0 << 13)	/*  Transfer Request when 1 valid stages */
 150#define SIFCTR_RFWM_4		(1 << 13)	/*  Transfer Request when 4 valid stages */
 151#define SIFCTR_RFWM_8		(2 << 13)	/*  Transfer Request when 8 valid stages */
 152#define SIFCTR_RFWM_16		(3 << 13)	/*  Transfer Request when 16 valid stages */
 153#define SIFCTR_RFWM_32		(4 << 13)	/*  Transfer Request when 32 valid stages */
 154#define SIFCTR_RFWM_64		(5 << 13)	/*  Transfer Request when 64 valid stages */
 155#define SIFCTR_RFWM_128		(6 << 13)	/*  Transfer Request when 128 valid stages */
 156#define SIFCTR_RFWM_256		(7 << 13)	/*  Transfer Request when 256 valid stages */
 157#define SIFCTR_RFUA_MASK	GENMASK(12, 4)	/* Receive FIFO Usable Area (0x40 = full) */
 158#define SIFCTR_RFUA_SHIFT	4
 159#define SIFCTR_RFUA(i)		((i) << SIFCTR_RFUA_SHIFT)
 160
 161/* SISTR */
 162#define SISTR_TFEMP		BIT(29) /* Transmit FIFO Empty */
 163#define SISTR_TDREQ		BIT(28) /* Transmit Data Transfer Request */
 164#define SISTR_TEOF		BIT(23) /* Frame Transmission End */
 165#define SISTR_TFSERR		BIT(21) /* Transmit Frame Synchronization Error */
 166#define SISTR_TFOVF		BIT(20) /* Transmit FIFO Overflow */
 167#define SISTR_TFUDF		BIT(19) /* Transmit FIFO Underflow */
 168#define SISTR_RFFUL		BIT(13) /* Receive FIFO Full */
 169#define SISTR_RDREQ		BIT(12) /* Receive Data Transfer Request */
 170#define SISTR_REOF		BIT(7)  /* Frame Reception End */
 171#define SISTR_RFSERR		BIT(5)  /* Receive Frame Synchronization Error */
 172#define SISTR_RFUDF		BIT(4)  /* Receive FIFO Underflow */
 173#define SISTR_RFOVF		BIT(3)  /* Receive FIFO Overflow */
 174
 175/* SIIER */
 176#define SIIER_TDMAE		BIT(31) /* Transmit Data DMA Transfer Req. Enable */
 177#define SIIER_TFEMPE		BIT(29) /* Transmit FIFO Empty Enable */
 178#define SIIER_TDREQE		BIT(28) /* Transmit Data Transfer Request Enable */
 179#define SIIER_TEOFE		BIT(23) /* Frame Transmission End Enable */
 180#define SIIER_TFSERRE		BIT(21) /* Transmit Frame Sync Error Enable */
 181#define SIIER_TFOVFE		BIT(20) /* Transmit FIFO Overflow Enable */
 182#define SIIER_TFUDFE		BIT(19) /* Transmit FIFO Underflow Enable */
 183#define SIIER_RDMAE		BIT(15) /* Receive Data DMA Transfer Req. Enable */
 184#define SIIER_RFFULE		BIT(13) /* Receive FIFO Full Enable */
 185#define SIIER_RDREQE		BIT(12) /* Receive Data Transfer Request Enable */
 186#define SIIER_REOFE		BIT(7)  /* Frame Reception End Enable */
 187#define SIIER_RFSERRE		BIT(5)  /* Receive Frame Sync Error Enable */
 188#define SIIER_RFUDFE		BIT(4)  /* Receive FIFO Underflow Enable */
 189#define SIIER_RFOVFE		BIT(3)  /* Receive FIFO Overflow Enable */
 190
 191
 192static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs)
 193{
 194	switch (reg_offs) {
 195	case SITSCR:
 196	case SIRSCR:
 197		return ioread16(p->mapbase + reg_offs);
 198	default:
 199		return ioread32(p->mapbase + reg_offs);
 200	}
 201}
 202
 203static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs,
 204			   u32 value)
 205{
 206	switch (reg_offs) {
 207	case SITSCR:
 208	case SIRSCR:
 209		iowrite16(value, p->mapbase + reg_offs);
 210		break;
 211	default:
 212		iowrite32(value, p->mapbase + reg_offs);
 213		break;
 214	}
 215}
 216
 217static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p,
 218				    u32 clr, u32 set)
 219{
 220	u32 mask = clr | set;
 221	u32 data;
 222
 223	data = sh_msiof_read(p, SICTR);
 224	data &= ~clr;
 225	data |= set;
 226	sh_msiof_write(p, SICTR, data);
 227
 228	return readl_poll_timeout_atomic(p->mapbase + SICTR, data,
 229					 (data & mask) == set, 1, 100);
 230}
 231
 232static irqreturn_t sh_msiof_spi_irq(int irq, void *data)
 233{
 234	struct sh_msiof_spi_priv *p = data;
 235
 236	/* just disable the interrupt and wake up */
 237	sh_msiof_write(p, SIIER, 0);
 238	complete(&p->done);
 239
 240	return IRQ_HANDLED;
 241}
 242
 243static void sh_msiof_spi_reset_regs(struct sh_msiof_spi_priv *p)
 244{
 245	u32 mask = SICTR_TXRST | SICTR_RXRST;
 246	u32 data;
 247
 248	data = sh_msiof_read(p, SICTR);
 249	data |= mask;
 250	sh_msiof_write(p, SICTR, data);
 251
 252	readl_poll_timeout_atomic(p->mapbase + SICTR, data, !(data & mask), 1,
 253				  100);
 254}
 255
 256static const u32 sh_msiof_spi_div_array[] = {
 257	SISCR_BRDV_DIV_1, SISCR_BRDV_DIV_2, SISCR_BRDV_DIV_4,
 258	SISCR_BRDV_DIV_8, SISCR_BRDV_DIV_16, SISCR_BRDV_DIV_32,
 259};
 260
 261static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p,
 262				      struct spi_transfer *t)
 263{
 264	unsigned long parent_rate = clk_get_rate(p->clk);
 265	unsigned int div_pow = p->min_div_pow;
 266	u32 spi_hz = t->speed_hz;
 267	unsigned long div;
 268	u32 brps, scr;
 269
 270	if (!spi_hz || !parent_rate) {
 271		WARN(1, "Invalid clock rate parameters %lu and %u\n",
 272		     parent_rate, spi_hz);
 273		return;
 274	}
 275
 276	div = DIV_ROUND_UP(parent_rate, spi_hz);
 277	if (div <= 1024) {
 278		/* SISCR_BRDV_DIV_1 is valid only if BRPS is x 1/1 or x 1/2 */
 279		if (!div_pow && div <= 32 && div > 2)
 280			div_pow = 1;
 281
 282		if (div_pow)
 283			brps = (div + 1) >> div_pow;
 284		else
 285			brps = div;
 286
 287		for (; brps > 32; div_pow++)
 288			brps = (brps + 1) >> 1;
 289	} else {
 290		/* Set transfer rate composite divisor to 2^5 * 32 = 1024 */
 291		dev_err(&p->pdev->dev,
 292			"Requested SPI transfer rate %d is too low\n", spi_hz);
 293		div_pow = 5;
 294		brps = 32;
 295	}
 296
 297	t->effective_speed_hz = parent_rate / (brps << div_pow);
 298
 299	scr = sh_msiof_spi_div_array[div_pow] | SISCR_BRPS(brps);
 300	sh_msiof_write(p, SITSCR, scr);
 301	if (!(p->ctlr->flags & SPI_CONTROLLER_MUST_TX))
 302		sh_msiof_write(p, SIRSCR, scr);
 303}
 304
 305static u32 sh_msiof_get_delay_bit(u32 dtdl_or_syncdl)
 306{
 307	/*
 308	 * DTDL/SYNCDL bit	: p->info->dtdl or p->info->syncdl
 309	 * b'000		: 0
 310	 * b'001		: 100
 311	 * b'010		: 200
 312	 * b'011 (SYNCDL only)	: 300
 313	 * b'101		: 50
 314	 * b'110		: 150
 315	 */
 316	if (dtdl_or_syncdl % 100)
 317		return dtdl_or_syncdl / 100 + 5;
 318	else
 319		return dtdl_or_syncdl / 100;
 320}
 321
 322static u32 sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv *p)
 323{
 324	u32 val;
 325
 326	if (!p->info)
 327		return 0;
 328
 329	/* check if DTDL and SYNCDL is allowed value */
 330	if (p->info->dtdl > 200 || p->info->syncdl > 300) {
 331		dev_warn(&p->pdev->dev, "DTDL or SYNCDL is too large\n");
 332		return 0;
 333	}
 334
 335	/* check if the sum of DTDL and SYNCDL becomes an integer value  */
 336	if ((p->info->dtdl + p->info->syncdl) % 100) {
 337		dev_warn(&p->pdev->dev, "the sum of DTDL/SYNCDL is not good\n");
 338		return 0;
 339	}
 340
 341	val = sh_msiof_get_delay_bit(p->info->dtdl) << SIMDR1_DTDL_SHIFT;
 342	val |= sh_msiof_get_delay_bit(p->info->syncdl) << SIMDR1_SYNCDL_SHIFT;
 343
 344	return val;
 345}
 346
 347static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p, u32 ss,
 348				      u32 cpol, u32 cpha,
 349				      u32 tx_hi_z, u32 lsb_first, u32 cs_high)
 350{
 351	u32 tmp;
 352	int edge;
 353
 354	/*
 355	 * CPOL CPHA     TSCKIZ RSCKIZ TEDG REDG
 356	 *    0    0         10     10    1    1
 357	 *    0    1         10     10    0    0
 358	 *    1    0         11     11    0    0
 359	 *    1    1         11     11    1    1
 360	 */
 361	tmp = SIMDR1_SYNCMD_SPI | 1 << SIMDR1_FLD_SHIFT | SIMDR1_XXSTP;
 362	tmp |= !cs_high << SIMDR1_SYNCAC_SHIFT;
 363	tmp |= lsb_first << SIMDR1_BITLSB_SHIFT;
 364	tmp |= sh_msiof_spi_get_dtdl_and_syncdl(p);
 365	if (spi_controller_is_slave(p->ctlr)) {
 366		sh_msiof_write(p, SITMDR1, tmp | SITMDR1_PCON);
 367	} else {
 368		sh_msiof_write(p, SITMDR1,
 369			       tmp | SIMDR1_TRMD | SITMDR1_PCON |
 370			       (ss < MAX_SS ? ss : 0) << SITMDR1_SYNCCH_SHIFT);
 371	}
 372	if (p->ctlr->flags & SPI_CONTROLLER_MUST_TX) {
 373		/* These bits are reserved if RX needs TX */
 374		tmp &= ~0x0000ffff;
 375	}
 376	sh_msiof_write(p, SIRMDR1, tmp);
 377
 378	tmp = 0;
 379	tmp |= SICTR_TSCKIZ_SCK | cpol << SICTR_TSCKIZ_POL_SHIFT;
 380	tmp |= SICTR_RSCKIZ_SCK | cpol << SICTR_RSCKIZ_POL_SHIFT;
 381
 382	edge = cpol ^ !cpha;
 383
 384	tmp |= edge << SICTR_TEDG_SHIFT;
 385	tmp |= edge << SICTR_REDG_SHIFT;
 386	tmp |= tx_hi_z ? SICTR_TXDIZ_HIZ : SICTR_TXDIZ_LOW;
 387	sh_msiof_write(p, SICTR, tmp);
 388}
 389
 390static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p,
 391				       const void *tx_buf, void *rx_buf,
 392				       u32 bits, u32 words)
 393{
 394	u32 dr2 = SIMDR2_BITLEN1(bits) | SIMDR2_WDLEN1(words);
 395
 396	if (tx_buf || (p->ctlr->flags & SPI_CONTROLLER_MUST_TX))
 397		sh_msiof_write(p, SITMDR2, dr2);
 398	else
 399		sh_msiof_write(p, SITMDR2, dr2 | SIMDR2_GRPMASK1);
 400
 401	if (rx_buf)
 402		sh_msiof_write(p, SIRMDR2, dr2);
 403}
 404
 405static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p)
 406{
 407	sh_msiof_write(p, SISTR,
 408		       sh_msiof_read(p, SISTR) & ~(SISTR_TDREQ | SISTR_RDREQ));
 409}
 410
 411static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p,
 412				      const void *tx_buf, int words, int fs)
 413{
 414	const u8 *buf_8 = tx_buf;
 415	int k;
 416
 417	for (k = 0; k < words; k++)
 418		sh_msiof_write(p, SITFDR, buf_8[k] << fs);
 419}
 420
 421static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p,
 422				       const void *tx_buf, int words, int fs)
 423{
 424	const u16 *buf_16 = tx_buf;
 425	int k;
 426
 427	for (k = 0; k < words; k++)
 428		sh_msiof_write(p, SITFDR, buf_16[k] << fs);
 429}
 430
 431static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p,
 432					const void *tx_buf, int words, int fs)
 433{
 434	const u16 *buf_16 = tx_buf;
 435	int k;
 436
 437	for (k = 0; k < words; k++)
 438		sh_msiof_write(p, SITFDR, get_unaligned(&buf_16[k]) << fs);
 439}
 440
 441static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p,
 442				       const void *tx_buf, int words, int fs)
 443{
 444	const u32 *buf_32 = tx_buf;
 445	int k;
 446
 447	for (k = 0; k < words; k++)
 448		sh_msiof_write(p, SITFDR, buf_32[k] << fs);
 449}
 450
 451static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p,
 452					const void *tx_buf, int words, int fs)
 453{
 454	const u32 *buf_32 = tx_buf;
 455	int k;
 456
 457	for (k = 0; k < words; k++)
 458		sh_msiof_write(p, SITFDR, get_unaligned(&buf_32[k]) << fs);
 459}
 460
 461static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p,
 462					const void *tx_buf, int words, int fs)
 463{
 464	const u32 *buf_32 = tx_buf;
 465	int k;
 466
 467	for (k = 0; k < words; k++)
 468		sh_msiof_write(p, SITFDR, swab32(buf_32[k] << fs));
 469}
 470
 471static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p,
 472					 const void *tx_buf, int words, int fs)
 473{
 474	const u32 *buf_32 = tx_buf;
 475	int k;
 476
 477	for (k = 0; k < words; k++)
 478		sh_msiof_write(p, SITFDR, swab32(get_unaligned(&buf_32[k]) << fs));
 479}
 480
 481static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p,
 482				     void *rx_buf, int words, int fs)
 483{
 484	u8 *buf_8 = rx_buf;
 485	int k;
 486
 487	for (k = 0; k < words; k++)
 488		buf_8[k] = sh_msiof_read(p, SIRFDR) >> fs;
 489}
 490
 491static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p,
 492				      void *rx_buf, int words, int fs)
 493{
 494	u16 *buf_16 = rx_buf;
 495	int k;
 496
 497	for (k = 0; k < words; k++)
 498		buf_16[k] = sh_msiof_read(p, SIRFDR) >> fs;
 499}
 500
 501static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p,
 502				       void *rx_buf, int words, int fs)
 503{
 504	u16 *buf_16 = rx_buf;
 505	int k;
 506
 507	for (k = 0; k < words; k++)
 508		put_unaligned(sh_msiof_read(p, SIRFDR) >> fs, &buf_16[k]);
 509}
 510
 511static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p,
 512				      void *rx_buf, int words, int fs)
 513{
 514	u32 *buf_32 = rx_buf;
 515	int k;
 516
 517	for (k = 0; k < words; k++)
 518		buf_32[k] = sh_msiof_read(p, SIRFDR) >> fs;
 519}
 520
 521static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p,
 522				       void *rx_buf, int words, int fs)
 523{
 524	u32 *buf_32 = rx_buf;
 525	int k;
 526
 527	for (k = 0; k < words; k++)
 528		put_unaligned(sh_msiof_read(p, SIRFDR) >> fs, &buf_32[k]);
 529}
 530
 531static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p,
 532				       void *rx_buf, int words, int fs)
 533{
 534	u32 *buf_32 = rx_buf;
 535	int k;
 536
 537	for (k = 0; k < words; k++)
 538		buf_32[k] = swab32(sh_msiof_read(p, SIRFDR) >> fs);
 539}
 540
 541static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p,
 542				       void *rx_buf, int words, int fs)
 543{
 544	u32 *buf_32 = rx_buf;
 545	int k;
 546
 547	for (k = 0; k < words; k++)
 548		put_unaligned(swab32(sh_msiof_read(p, SIRFDR) >> fs), &buf_32[k]);
 549}
 550
 551static int sh_msiof_spi_setup(struct spi_device *spi)
 552{
 553	struct sh_msiof_spi_priv *p =
 554		spi_controller_get_devdata(spi->controller);
 555	u32 clr, set, tmp;
 556
 557	if (spi->cs_gpiod || spi_controller_is_slave(p->ctlr))
 558		return 0;
 559
 560	if (p->native_cs_inited &&
 561	    (p->native_cs_high == !!(spi->mode & SPI_CS_HIGH)))
 562		return 0;
 563
 564	/* Configure native chip select mode/polarity early */
 565	clr = SIMDR1_SYNCMD_MASK;
 566	set = SIMDR1_SYNCMD_SPI;
 567	if (spi->mode & SPI_CS_HIGH)
 568		clr |= BIT(SIMDR1_SYNCAC_SHIFT);
 569	else
 570		set |= BIT(SIMDR1_SYNCAC_SHIFT);
 571	pm_runtime_get_sync(&p->pdev->dev);
 572	tmp = sh_msiof_read(p, SITMDR1) & ~clr;
 573	sh_msiof_write(p, SITMDR1, tmp | set | SIMDR1_TRMD | SITMDR1_PCON);
 574	tmp = sh_msiof_read(p, SIRMDR1) & ~clr;
 575	sh_msiof_write(p, SIRMDR1, tmp | set);
 576	pm_runtime_put(&p->pdev->dev);
 577	p->native_cs_high = spi->mode & SPI_CS_HIGH;
 578	p->native_cs_inited = true;
 579	return 0;
 580}
 581
 582static int sh_msiof_prepare_message(struct spi_controller *ctlr,
 583				    struct spi_message *msg)
 584{
 585	struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr);
 586	const struct spi_device *spi = msg->spi;
 587	u32 ss, cs_high;
 588
 589	/* Configure pins before asserting CS */
 590	if (spi->cs_gpiod) {
 591		ss = ctlr->unused_native_cs;
 592		cs_high = p->native_cs_high;
 593	} else {
 594		ss = spi->chip_select;
 595		cs_high = !!(spi->mode & SPI_CS_HIGH);
 596	}
 597	sh_msiof_spi_set_pin_regs(p, ss, !!(spi->mode & SPI_CPOL),
 598				  !!(spi->mode & SPI_CPHA),
 599				  !!(spi->mode & SPI_3WIRE),
 600				  !!(spi->mode & SPI_LSB_FIRST), cs_high);
 601	return 0;
 602}
 603
 604static int sh_msiof_spi_start(struct sh_msiof_spi_priv *p, void *rx_buf)
 605{
 606	bool slave = spi_controller_is_slave(p->ctlr);
 607	int ret = 0;
 608
 609	/* setup clock and rx/tx signals */
 610	if (!slave)
 611		ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_TSCKE);
 612	if (rx_buf && !ret)
 613		ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_RXE);
 614	if (!ret)
 615		ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_TXE);
 616
 617	/* start by setting frame bit */
 618	if (!ret && !slave)
 619		ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_TFSE);
 620
 621	return ret;
 622}
 623
 624static int sh_msiof_spi_stop(struct sh_msiof_spi_priv *p, void *rx_buf)
 625{
 626	bool slave = spi_controller_is_slave(p->ctlr);
 627	int ret = 0;
 628
 629	/* shut down frame, rx/tx and clock signals */
 630	if (!slave)
 631		ret = sh_msiof_modify_ctr_wait(p, SICTR_TFSE, 0);
 632	if (!ret)
 633		ret = sh_msiof_modify_ctr_wait(p, SICTR_TXE, 0);
 634	if (rx_buf && !ret)
 635		ret = sh_msiof_modify_ctr_wait(p, SICTR_RXE, 0);
 636	if (!ret && !slave)
 637		ret = sh_msiof_modify_ctr_wait(p, SICTR_TSCKE, 0);
 638
 639	return ret;
 640}
 641
 642static int sh_msiof_slave_abort(struct spi_controller *ctlr)
 643{
 644	struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr);
 645
 646	p->slave_aborted = true;
 647	complete(&p->done);
 648	complete(&p->done_txdma);
 649	return 0;
 650}
 651
 652static int sh_msiof_wait_for_completion(struct sh_msiof_spi_priv *p,
 653					struct completion *x)
 654{
 655	if (spi_controller_is_slave(p->ctlr)) {
 656		if (wait_for_completion_interruptible(x) ||
 657		    p->slave_aborted) {
 658			dev_dbg(&p->pdev->dev, "interrupted\n");
 659			return -EINTR;
 660		}
 661	} else {
 662		if (!wait_for_completion_timeout(x, HZ)) {
 663			dev_err(&p->pdev->dev, "timeout\n");
 664			return -ETIMEDOUT;
 665		}
 666	}
 667
 668	return 0;
 669}
 670
 671static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p,
 672				  void (*tx_fifo)(struct sh_msiof_spi_priv *,
 673						  const void *, int, int),
 674				  void (*rx_fifo)(struct sh_msiof_spi_priv *,
 675						  void *, int, int),
 676				  const void *tx_buf, void *rx_buf,
 677				  int words, int bits)
 678{
 679	int fifo_shift;
 680	int ret;
 681
 682	/* limit maximum word transfer to rx/tx fifo size */
 683	if (tx_buf)
 684		words = min_t(int, words, p->tx_fifo_size);
 685	if (rx_buf)
 686		words = min_t(int, words, p->rx_fifo_size);
 687
 688	/* the fifo contents need shifting */
 689	fifo_shift = 32 - bits;
 690
 691	/* default FIFO watermarks for PIO */
 692	sh_msiof_write(p, SIFCTR, 0);
 693
 694	/* setup msiof transfer mode registers */
 695	sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words);
 696	sh_msiof_write(p, SIIER, SIIER_TEOFE | SIIER_REOFE);
 697
 698	/* write tx fifo */
 699	if (tx_buf)
 700		tx_fifo(p, tx_buf, words, fifo_shift);
 701
 702	reinit_completion(&p->done);
 703	p->slave_aborted = false;
 704
 705	ret = sh_msiof_spi_start(p, rx_buf);
 706	if (ret) {
 707		dev_err(&p->pdev->dev, "failed to start hardware\n");
 708		goto stop_ier;
 709	}
 710
 711	/* wait for tx fifo to be emptied / rx fifo to be filled */
 712	ret = sh_msiof_wait_for_completion(p, &p->done);
 713	if (ret)
 714		goto stop_reset;
 715
 716	/* read rx fifo */
 717	if (rx_buf)
 718		rx_fifo(p, rx_buf, words, fifo_shift);
 719
 720	/* clear status bits */
 721	sh_msiof_reset_str(p);
 722
 723	ret = sh_msiof_spi_stop(p, rx_buf);
 724	if (ret) {
 725		dev_err(&p->pdev->dev, "failed to shut down hardware\n");
 726		return ret;
 727	}
 728
 729	return words;
 730
 731stop_reset:
 732	sh_msiof_reset_str(p);
 733	sh_msiof_spi_stop(p, rx_buf);
 734stop_ier:
 735	sh_msiof_write(p, SIIER, 0);
 736	return ret;
 737}
 738
 739static void sh_msiof_dma_complete(void *arg)
 740{
 741	complete(arg);
 742}
 743
 744static int sh_msiof_dma_once(struct sh_msiof_spi_priv *p, const void *tx,
 745			     void *rx, unsigned int len)
 746{
 747	u32 ier_bits = 0;
 748	struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
 749	dma_cookie_t cookie;
 750	int ret;
 751
 752	/* First prepare and submit the DMA request(s), as this may fail */
 753	if (rx) {
 754		ier_bits |= SIIER_RDREQE | SIIER_RDMAE;
 755		desc_rx = dmaengine_prep_slave_single(p->ctlr->dma_rx,
 756					p->rx_dma_addr, len, DMA_DEV_TO_MEM,
 757					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 758		if (!desc_rx)
 759			return -EAGAIN;
 760
 761		desc_rx->callback = sh_msiof_dma_complete;
 762		desc_rx->callback_param = &p->done;
 763		cookie = dmaengine_submit(desc_rx);
 764		if (dma_submit_error(cookie))
 765			return cookie;
 766	}
 767
 768	if (tx) {
 769		ier_bits |= SIIER_TDREQE | SIIER_TDMAE;
 770		dma_sync_single_for_device(p->ctlr->dma_tx->device->dev,
 771					   p->tx_dma_addr, len, DMA_TO_DEVICE);
 772		desc_tx = dmaengine_prep_slave_single(p->ctlr->dma_tx,
 773					p->tx_dma_addr, len, DMA_MEM_TO_DEV,
 774					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 775		if (!desc_tx) {
 776			ret = -EAGAIN;
 777			goto no_dma_tx;
 778		}
 779
 780		desc_tx->callback = sh_msiof_dma_complete;
 781		desc_tx->callback_param = &p->done_txdma;
 782		cookie = dmaengine_submit(desc_tx);
 783		if (dma_submit_error(cookie)) {
 784			ret = cookie;
 785			goto no_dma_tx;
 786		}
 787	}
 788
 789	/* 1 stage FIFO watermarks for DMA */
 790	sh_msiof_write(p, SIFCTR, SIFCTR_TFWM_1 | SIFCTR_RFWM_1);
 791
 792	/* setup msiof transfer mode registers (32-bit words) */
 793	sh_msiof_spi_set_mode_regs(p, tx, rx, 32, len / 4);
 794
 795	sh_msiof_write(p, SIIER, ier_bits);
 796
 797	reinit_completion(&p->done);
 798	if (tx)
 799		reinit_completion(&p->done_txdma);
 800	p->slave_aborted = false;
 801
 802	/* Now start DMA */
 803	if (rx)
 804		dma_async_issue_pending(p->ctlr->dma_rx);
 805	if (tx)
 806		dma_async_issue_pending(p->ctlr->dma_tx);
 807
 808	ret = sh_msiof_spi_start(p, rx);
 809	if (ret) {
 810		dev_err(&p->pdev->dev, "failed to start hardware\n");
 811		goto stop_dma;
 812	}
 813
 814	if (tx) {
 815		/* wait for tx DMA completion */
 816		ret = sh_msiof_wait_for_completion(p, &p->done_txdma);
 817		if (ret)
 818			goto stop_reset;
 819	}
 820
 821	if (rx) {
 822		/* wait for rx DMA completion */
 823		ret = sh_msiof_wait_for_completion(p, &p->done);
 824		if (ret)
 825			goto stop_reset;
 826
 827		sh_msiof_write(p, SIIER, 0);
 828	} else {
 829		/* wait for tx fifo to be emptied */
 830		sh_msiof_write(p, SIIER, SIIER_TEOFE);
 831		ret = sh_msiof_wait_for_completion(p, &p->done);
 832		if (ret)
 833			goto stop_reset;
 834	}
 835
 836	/* clear status bits */
 837	sh_msiof_reset_str(p);
 838
 839	ret = sh_msiof_spi_stop(p, rx);
 840	if (ret) {
 841		dev_err(&p->pdev->dev, "failed to shut down hardware\n");
 842		return ret;
 843	}
 844
 845	if (rx)
 846		dma_sync_single_for_cpu(p->ctlr->dma_rx->device->dev,
 847					p->rx_dma_addr, len, DMA_FROM_DEVICE);
 848
 849	return 0;
 850
 851stop_reset:
 852	sh_msiof_reset_str(p);
 853	sh_msiof_spi_stop(p, rx);
 854stop_dma:
 855	if (tx)
 856		dmaengine_terminate_sync(p->ctlr->dma_tx);
 857no_dma_tx:
 858	if (rx)
 859		dmaengine_terminate_sync(p->ctlr->dma_rx);
 860	sh_msiof_write(p, SIIER, 0);
 861	return ret;
 862}
 863
 864static void copy_bswap32(u32 *dst, const u32 *src, unsigned int words)
 865{
 866	/* src or dst can be unaligned, but not both */
 867	if ((unsigned long)src & 3) {
 868		while (words--) {
 869			*dst++ = swab32(get_unaligned(src));
 870			src++;
 871		}
 872	} else if ((unsigned long)dst & 3) {
 873		while (words--) {
 874			put_unaligned(swab32(*src++), dst);
 875			dst++;
 876		}
 877	} else {
 878		while (words--)
 879			*dst++ = swab32(*src++);
 880	}
 881}
 882
 883static void copy_wswap32(u32 *dst, const u32 *src, unsigned int words)
 884{
 885	/* src or dst can be unaligned, but not both */
 886	if ((unsigned long)src & 3) {
 887		while (words--) {
 888			*dst++ = swahw32(get_unaligned(src));
 889			src++;
 890		}
 891	} else if ((unsigned long)dst & 3) {
 892		while (words--) {
 893			put_unaligned(swahw32(*src++), dst);
 894			dst++;
 895		}
 896	} else {
 897		while (words--)
 898			*dst++ = swahw32(*src++);
 899	}
 900}
 901
 902static void copy_plain32(u32 *dst, const u32 *src, unsigned int words)
 903{
 904	memcpy(dst, src, words * 4);
 905}
 906
 907static int sh_msiof_transfer_one(struct spi_controller *ctlr,
 908				 struct spi_device *spi,
 909				 struct spi_transfer *t)
 910{
 911	struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr);
 912	void (*copy32)(u32 *, const u32 *, unsigned int);
 913	void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int);
 914	void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int);
 915	const void *tx_buf = t->tx_buf;
 916	void *rx_buf = t->rx_buf;
 917	unsigned int len = t->len;
 918	unsigned int bits = t->bits_per_word;
 919	unsigned int bytes_per_word;
 920	unsigned int words;
 921	int n;
 922	bool swab;
 923	int ret;
 924
 925	/* reset registers */
 926	sh_msiof_spi_reset_regs(p);
 927
 928	/* setup clocks (clock already enabled in chipselect()) */
 929	if (!spi_controller_is_slave(p->ctlr))
 930		sh_msiof_spi_set_clk_regs(p, t);
 931
 932	while (ctlr->dma_tx && len > 15) {
 933		/*
 934		 *  DMA supports 32-bit words only, hence pack 8-bit and 16-bit
 935		 *  words, with byte resp. word swapping.
 936		 */
 937		unsigned int l = 0;
 938
 939		if (tx_buf)
 940			l = min(round_down(len, 4), p->tx_fifo_size * 4);
 941		if (rx_buf)
 942			l = min(round_down(len, 4), p->rx_fifo_size * 4);
 943
 944		if (bits <= 8) {
 945			copy32 = copy_bswap32;
 946		} else if (bits <= 16) {
 947			copy32 = copy_wswap32;
 948		} else {
 949			copy32 = copy_plain32;
 950		}
 951
 952		if (tx_buf)
 953			copy32(p->tx_dma_page, tx_buf, l / 4);
 954
 955		ret = sh_msiof_dma_once(p, tx_buf, rx_buf, l);
 956		if (ret == -EAGAIN) {
 957			dev_warn_once(&p->pdev->dev,
 958				"DMA not available, falling back to PIO\n");
 959			break;
 960		}
 961		if (ret)
 962			return ret;
 963
 964		if (rx_buf) {
 965			copy32(rx_buf, p->rx_dma_page, l / 4);
 966			rx_buf += l;
 967		}
 968		if (tx_buf)
 969			tx_buf += l;
 970
 971		len -= l;
 972		if (!len)
 973			return 0;
 974	}
 975
 976	if (bits <= 8 && len > 15) {
 977		bits = 32;
 978		swab = true;
 979	} else {
 980		swab = false;
 981	}
 982
 983	/* setup bytes per word and fifo read/write functions */
 984	if (bits <= 8) {
 985		bytes_per_word = 1;
 986		tx_fifo = sh_msiof_spi_write_fifo_8;
 987		rx_fifo = sh_msiof_spi_read_fifo_8;
 988	} else if (bits <= 16) {
 989		bytes_per_word = 2;
 990		if ((unsigned long)tx_buf & 0x01)
 991			tx_fifo = sh_msiof_spi_write_fifo_16u;
 992		else
 993			tx_fifo = sh_msiof_spi_write_fifo_16;
 994
 995		if ((unsigned long)rx_buf & 0x01)
 996			rx_fifo = sh_msiof_spi_read_fifo_16u;
 997		else
 998			rx_fifo = sh_msiof_spi_read_fifo_16;
 999	} else if (swab) {
1000		bytes_per_word = 4;
1001		if ((unsigned long)tx_buf & 0x03)
1002			tx_fifo = sh_msiof_spi_write_fifo_s32u;
1003		else
1004			tx_fifo = sh_msiof_spi_write_fifo_s32;
1005
1006		if ((unsigned long)rx_buf & 0x03)
1007			rx_fifo = sh_msiof_spi_read_fifo_s32u;
1008		else
1009			rx_fifo = sh_msiof_spi_read_fifo_s32;
1010	} else {
1011		bytes_per_word = 4;
1012		if ((unsigned long)tx_buf & 0x03)
1013			tx_fifo = sh_msiof_spi_write_fifo_32u;
1014		else
1015			tx_fifo = sh_msiof_spi_write_fifo_32;
1016
1017		if ((unsigned long)rx_buf & 0x03)
1018			rx_fifo = sh_msiof_spi_read_fifo_32u;
1019		else
1020			rx_fifo = sh_msiof_spi_read_fifo_32;
1021	}
1022
1023	/* transfer in fifo sized chunks */
1024	words = len / bytes_per_word;
1025
1026	while (words > 0) {
1027		n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo, tx_buf, rx_buf,
1028					   words, bits);
1029		if (n < 0)
1030			return n;
1031
1032		if (tx_buf)
1033			tx_buf += n * bytes_per_word;
1034		if (rx_buf)
1035			rx_buf += n * bytes_per_word;
1036		words -= n;
1037
1038		if (words == 0 && (len % bytes_per_word)) {
1039			words = len % bytes_per_word;
1040			bits = t->bits_per_word;
1041			bytes_per_word = 1;
1042			tx_fifo = sh_msiof_spi_write_fifo_8;
1043			rx_fifo = sh_msiof_spi_read_fifo_8;
1044		}
1045	}
1046
1047	return 0;
1048}
1049
1050static const struct sh_msiof_chipdata sh_data = {
1051	.bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32),
1052	.tx_fifo_size = 64,
1053	.rx_fifo_size = 64,
1054	.ctlr_flags = 0,
1055	.min_div_pow = 0,
1056};
1057
1058static const struct sh_msiof_chipdata rcar_gen2_data = {
1059	.bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16) |
1060			      SPI_BPW_MASK(24) | SPI_BPW_MASK(32),
1061	.tx_fifo_size = 64,
1062	.rx_fifo_size = 64,
1063	.ctlr_flags = SPI_CONTROLLER_MUST_TX,
1064	.min_div_pow = 0,
1065};
1066
1067static const struct sh_msiof_chipdata rcar_gen3_data = {
1068	.bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16) |
1069			      SPI_BPW_MASK(24) | SPI_BPW_MASK(32),
1070	.tx_fifo_size = 64,
1071	.rx_fifo_size = 64,
1072	.ctlr_flags = SPI_CONTROLLER_MUST_TX,
1073	.min_div_pow = 1,
1074};
1075
1076static const struct of_device_id sh_msiof_match[] = {
 
 
 
 
 
 
 
 
 
 
1077	{ .compatible = "renesas,sh-mobile-msiof", .data = &sh_data },
1078	{ .compatible = "renesas,msiof-r8a7743",   .data = &rcar_gen2_data },
1079	{ .compatible = "renesas,msiof-r8a7745",   .data = &rcar_gen2_data },
1080	{ .compatible = "renesas,msiof-r8a7790",   .data = &rcar_gen2_data },
1081	{ .compatible = "renesas,msiof-r8a7791",   .data = &rcar_gen2_data },
1082	{ .compatible = "renesas,msiof-r8a7792",   .data = &rcar_gen2_data },
1083	{ .compatible = "renesas,msiof-r8a7793",   .data = &rcar_gen2_data },
1084	{ .compatible = "renesas,msiof-r8a7794",   .data = &rcar_gen2_data },
1085	{ .compatible = "renesas,rcar-gen2-msiof", .data = &rcar_gen2_data },
 
1086	{ .compatible = "renesas,msiof-r8a7796",   .data = &rcar_gen3_data },
1087	{ .compatible = "renesas,rcar-gen3-msiof", .data = &rcar_gen3_data },
1088	{ .compatible = "renesas,rcar-gen4-msiof", .data = &rcar_gen3_data },
1089	{ .compatible = "renesas,sh-msiof",        .data = &sh_data }, /* Deprecated */
1090	{},
1091};
1092MODULE_DEVICE_TABLE(of, sh_msiof_match);
1093
1094#ifdef CONFIG_OF
1095static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1096{
1097	struct sh_msiof_spi_info *info;
1098	struct device_node *np = dev->of_node;
1099	u32 num_cs = 1;
1100
1101	info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL);
1102	if (!info)
1103		return NULL;
1104
1105	info->mode = of_property_read_bool(np, "spi-slave") ? MSIOF_SPI_SLAVE
1106							    : MSIOF_SPI_MASTER;
1107
1108	/* Parse the MSIOF properties */
1109	if (info->mode == MSIOF_SPI_MASTER)
1110		of_property_read_u32(np, "num-cs", &num_cs);
1111	of_property_read_u32(np, "renesas,tx-fifo-size",
1112					&info->tx_fifo_override);
1113	of_property_read_u32(np, "renesas,rx-fifo-size",
1114					&info->rx_fifo_override);
1115	of_property_read_u32(np, "renesas,dtdl", &info->dtdl);
1116	of_property_read_u32(np, "renesas,syncdl", &info->syncdl);
1117
1118	info->num_chipselect = num_cs;
1119
1120	return info;
1121}
1122#else
1123static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1124{
1125	return NULL;
1126}
1127#endif
1128
1129static struct dma_chan *sh_msiof_request_dma_chan(struct device *dev,
1130	enum dma_transfer_direction dir, unsigned int id, dma_addr_t port_addr)
1131{
1132	dma_cap_mask_t mask;
1133	struct dma_chan *chan;
1134	struct dma_slave_config cfg;
1135	int ret;
1136
1137	dma_cap_zero(mask);
1138	dma_cap_set(DMA_SLAVE, mask);
1139
1140	chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1141				(void *)(unsigned long)id, dev,
1142				dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1143	if (!chan) {
1144		dev_warn(dev, "dma_request_slave_channel_compat failed\n");
1145		return NULL;
1146	}
1147
1148	memset(&cfg, 0, sizeof(cfg));
1149	cfg.direction = dir;
1150	if (dir == DMA_MEM_TO_DEV) {
1151		cfg.dst_addr = port_addr;
1152		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1153	} else {
1154		cfg.src_addr = port_addr;
1155		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1156	}
1157
1158	ret = dmaengine_slave_config(chan, &cfg);
1159	if (ret) {
1160		dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1161		dma_release_channel(chan);
1162		return NULL;
1163	}
1164
1165	return chan;
1166}
1167
1168static int sh_msiof_request_dma(struct sh_msiof_spi_priv *p)
1169{
1170	struct platform_device *pdev = p->pdev;
1171	struct device *dev = &pdev->dev;
1172	const struct sh_msiof_spi_info *info = p->info;
1173	unsigned int dma_tx_id, dma_rx_id;
1174	const struct resource *res;
1175	struct spi_controller *ctlr;
1176	struct device *tx_dev, *rx_dev;
1177
1178	if (dev->of_node) {
1179		/* In the OF case we will get the slave IDs from the DT */
1180		dma_tx_id = 0;
1181		dma_rx_id = 0;
1182	} else if (info && info->dma_tx_id && info->dma_rx_id) {
1183		dma_tx_id = info->dma_tx_id;
1184		dma_rx_id = info->dma_rx_id;
1185	} else {
1186		/* The driver assumes no error */
1187		return 0;
1188	}
1189
1190	/* The DMA engine uses the second register set, if present */
1191	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1192	if (!res)
1193		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1194
1195	ctlr = p->ctlr;
1196	ctlr->dma_tx = sh_msiof_request_dma_chan(dev, DMA_MEM_TO_DEV,
1197						 dma_tx_id, res->start + SITFDR);
1198	if (!ctlr->dma_tx)
1199		return -ENODEV;
1200
1201	ctlr->dma_rx = sh_msiof_request_dma_chan(dev, DMA_DEV_TO_MEM,
1202						 dma_rx_id, res->start + SIRFDR);
1203	if (!ctlr->dma_rx)
1204		goto free_tx_chan;
1205
1206	p->tx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1207	if (!p->tx_dma_page)
1208		goto free_rx_chan;
1209
1210	p->rx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1211	if (!p->rx_dma_page)
1212		goto free_tx_page;
1213
1214	tx_dev = ctlr->dma_tx->device->dev;
1215	p->tx_dma_addr = dma_map_single(tx_dev, p->tx_dma_page, PAGE_SIZE,
1216					DMA_TO_DEVICE);
1217	if (dma_mapping_error(tx_dev, p->tx_dma_addr))
1218		goto free_rx_page;
1219
1220	rx_dev = ctlr->dma_rx->device->dev;
1221	p->rx_dma_addr = dma_map_single(rx_dev, p->rx_dma_page, PAGE_SIZE,
1222					DMA_FROM_DEVICE);
1223	if (dma_mapping_error(rx_dev, p->rx_dma_addr))
1224		goto unmap_tx_page;
1225
1226	dev_info(dev, "DMA available");
1227	return 0;
1228
1229unmap_tx_page:
1230	dma_unmap_single(tx_dev, p->tx_dma_addr, PAGE_SIZE, DMA_TO_DEVICE);
1231free_rx_page:
1232	free_page((unsigned long)p->rx_dma_page);
1233free_tx_page:
1234	free_page((unsigned long)p->tx_dma_page);
1235free_rx_chan:
1236	dma_release_channel(ctlr->dma_rx);
1237free_tx_chan:
1238	dma_release_channel(ctlr->dma_tx);
1239	ctlr->dma_tx = NULL;
1240	return -ENODEV;
1241}
1242
1243static void sh_msiof_release_dma(struct sh_msiof_spi_priv *p)
1244{
1245	struct spi_controller *ctlr = p->ctlr;
1246
1247	if (!ctlr->dma_tx)
1248		return;
1249
1250	dma_unmap_single(ctlr->dma_rx->device->dev, p->rx_dma_addr, PAGE_SIZE,
1251			 DMA_FROM_DEVICE);
1252	dma_unmap_single(ctlr->dma_tx->device->dev, p->tx_dma_addr, PAGE_SIZE,
1253			 DMA_TO_DEVICE);
1254	free_page((unsigned long)p->rx_dma_page);
1255	free_page((unsigned long)p->tx_dma_page);
1256	dma_release_channel(ctlr->dma_rx);
1257	dma_release_channel(ctlr->dma_tx);
1258}
1259
1260static int sh_msiof_spi_probe(struct platform_device *pdev)
1261{
1262	struct spi_controller *ctlr;
1263	const struct sh_msiof_chipdata *chipdata;
1264	struct sh_msiof_spi_info *info;
1265	struct sh_msiof_spi_priv *p;
1266	unsigned long clksrc;
1267	int i;
1268	int ret;
1269
1270	chipdata = of_device_get_match_data(&pdev->dev);
1271	if (chipdata) {
1272		info = sh_msiof_spi_parse_dt(&pdev->dev);
1273	} else {
1274		chipdata = (const void *)pdev->id_entry->driver_data;
1275		info = dev_get_platdata(&pdev->dev);
1276	}
1277
1278	if (!info) {
1279		dev_err(&pdev->dev, "failed to obtain device info\n");
1280		return -ENXIO;
1281	}
1282
1283	if (info->mode == MSIOF_SPI_SLAVE)
1284		ctlr = spi_alloc_slave(&pdev->dev,
1285				       sizeof(struct sh_msiof_spi_priv));
 
 
 
1286	else
1287		ctlr = spi_alloc_master(&pdev->dev,
1288					sizeof(struct sh_msiof_spi_priv));
1289	if (ctlr == NULL)
1290		return -ENOMEM;
1291
1292	p = spi_controller_get_devdata(ctlr);
1293
1294	platform_set_drvdata(pdev, p);
1295	p->ctlr = ctlr;
1296	p->info = info;
1297	p->min_div_pow = chipdata->min_div_pow;
1298
1299	init_completion(&p->done);
1300	init_completion(&p->done_txdma);
1301
1302	p->clk = devm_clk_get(&pdev->dev, NULL);
1303	if (IS_ERR(p->clk)) {
1304		dev_err(&pdev->dev, "cannot get clock\n");
1305		ret = PTR_ERR(p->clk);
1306		goto err1;
1307	}
1308
1309	i = platform_get_irq(pdev, 0);
1310	if (i < 0) {
1311		ret = i;
1312		goto err1;
1313	}
1314
1315	p->mapbase = devm_platform_ioremap_resource(pdev, 0);
1316	if (IS_ERR(p->mapbase)) {
1317		ret = PTR_ERR(p->mapbase);
1318		goto err1;
1319	}
1320
1321	ret = devm_request_irq(&pdev->dev, i, sh_msiof_spi_irq, 0,
1322			       dev_name(&pdev->dev), p);
1323	if (ret) {
1324		dev_err(&pdev->dev, "unable to request irq\n");
1325		goto err1;
1326	}
1327
1328	p->pdev = pdev;
1329	pm_runtime_enable(&pdev->dev);
1330
1331	/* Platform data may override FIFO sizes */
1332	p->tx_fifo_size = chipdata->tx_fifo_size;
1333	p->rx_fifo_size = chipdata->rx_fifo_size;
1334	if (p->info->tx_fifo_override)
1335		p->tx_fifo_size = p->info->tx_fifo_override;
1336	if (p->info->rx_fifo_override)
1337		p->rx_fifo_size = p->info->rx_fifo_override;
1338
1339	/* init controller code */
1340	ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1341	ctlr->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE;
1342	clksrc = clk_get_rate(p->clk);
1343	ctlr->min_speed_hz = DIV_ROUND_UP(clksrc, 1024);
1344	ctlr->max_speed_hz = DIV_ROUND_UP(clksrc, 1 << p->min_div_pow);
1345	ctlr->flags = chipdata->ctlr_flags;
1346	ctlr->bus_num = pdev->id;
1347	ctlr->num_chipselect = p->info->num_chipselect;
1348	ctlr->dev.of_node = pdev->dev.of_node;
1349	ctlr->setup = sh_msiof_spi_setup;
1350	ctlr->prepare_message = sh_msiof_prepare_message;
1351	ctlr->slave_abort = sh_msiof_slave_abort;
1352	ctlr->bits_per_word_mask = chipdata->bits_per_word_mask;
1353	ctlr->auto_runtime_pm = true;
1354	ctlr->transfer_one = sh_msiof_transfer_one;
1355	ctlr->use_gpio_descriptors = true;
1356	ctlr->max_native_cs = MAX_SS;
1357
1358	ret = sh_msiof_request_dma(p);
1359	if (ret < 0)
1360		dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1361
1362	ret = devm_spi_register_controller(&pdev->dev, ctlr);
1363	if (ret < 0) {
1364		dev_err(&pdev->dev, "devm_spi_register_controller error.\n");
1365		goto err2;
1366	}
1367
1368	return 0;
1369
1370 err2:
1371	sh_msiof_release_dma(p);
1372	pm_runtime_disable(&pdev->dev);
1373 err1:
1374	spi_controller_put(ctlr);
1375	return ret;
1376}
1377
1378static int sh_msiof_spi_remove(struct platform_device *pdev)
1379{
1380	struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
1381
1382	sh_msiof_release_dma(p);
1383	pm_runtime_disable(&pdev->dev);
1384	return 0;
1385}
1386
1387static const struct platform_device_id spi_driver_ids[] = {
1388	{ "spi_sh_msiof",	(kernel_ulong_t)&sh_data },
1389	{},
1390};
1391MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1392
1393#ifdef CONFIG_PM_SLEEP
1394static int sh_msiof_spi_suspend(struct device *dev)
1395{
1396	struct sh_msiof_spi_priv *p = dev_get_drvdata(dev);
1397
1398	return spi_controller_suspend(p->ctlr);
1399}
1400
1401static int sh_msiof_spi_resume(struct device *dev)
1402{
1403	struct sh_msiof_spi_priv *p = dev_get_drvdata(dev);
1404
1405	return spi_controller_resume(p->ctlr);
1406}
1407
1408static SIMPLE_DEV_PM_OPS(sh_msiof_spi_pm_ops, sh_msiof_spi_suspend,
1409			 sh_msiof_spi_resume);
1410#define DEV_PM_OPS	(&sh_msiof_spi_pm_ops)
1411#else
1412#define DEV_PM_OPS	NULL
1413#endif /* CONFIG_PM_SLEEP */
1414
1415static struct platform_driver sh_msiof_spi_drv = {
1416	.probe		= sh_msiof_spi_probe,
1417	.remove		= sh_msiof_spi_remove,
1418	.id_table	= spi_driver_ids,
1419	.driver		= {
1420		.name		= "spi_sh_msiof",
1421		.pm		= DEV_PM_OPS,
1422		.of_match_table = of_match_ptr(sh_msiof_match),
1423	},
1424};
1425module_platform_driver(sh_msiof_spi_drv);
1426
1427MODULE_DESCRIPTION("SuperH MSIOF SPI Controller Interface Driver");
1428MODULE_AUTHOR("Magnus Damm");
1429MODULE_LICENSE("GPL v2");