Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * SuperH MSIOF SPI Controller Interface
   4 *
   5 * Copyright (c) 2009 Magnus Damm
   6 * Copyright (C) 2014 Renesas Electronics Corporation
   7 * Copyright (C) 2014-2017 Glider bvba
 
 
 
 
   8 */
   9
  10#include <linux/bitmap.h>
  11#include <linux/clk.h>
  12#include <linux/completion.h>
  13#include <linux/delay.h>
  14#include <linux/dma-mapping.h>
  15#include <linux/dmaengine.h>
  16#include <linux/err.h>
 
  17#include <linux/interrupt.h>
  18#include <linux/io.h>
  19#include <linux/iopoll.h>
  20#include <linux/kernel.h>
  21#include <linux/module.h>
  22#include <linux/of.h>
 
  23#include <linux/platform_device.h>
  24#include <linux/pm_runtime.h>
  25#include <linux/sh_dma.h>
  26
  27#include <linux/spi/sh_msiof.h>
  28#include <linux/spi/spi.h>
  29
  30#include <asm/unaligned.h>
  31
  32#define SH_MSIOF_FLAG_FIXED_DTDL_200	BIT(0)
  33
  34struct sh_msiof_chipdata {
  35	u32 bits_per_word_mask;
  36	u16 tx_fifo_size;
  37	u16 rx_fifo_size;
  38	u16 ctlr_flags;
  39	u16 min_div_pow;
  40	u32 flags;
  41};
  42
  43struct sh_msiof_spi_priv {
  44	struct spi_controller *ctlr;
  45	void __iomem *mapbase;
  46	struct clk *clk;
  47	struct platform_device *pdev;
  48	struct sh_msiof_spi_info *info;
  49	struct completion done;
  50	struct completion done_txdma;
  51	unsigned int tx_fifo_size;
  52	unsigned int rx_fifo_size;
  53	unsigned int min_div_pow;
  54	void *tx_dma_page;
  55	void *rx_dma_page;
  56	dma_addr_t tx_dma_addr;
  57	dma_addr_t rx_dma_addr;
  58	bool native_cs_inited;
  59	bool native_cs_high;
  60	bool target_aborted;
  61};
  62
  63#define MAX_SS	3	/* Maximum number of native chip selects */
  64
  65#define SITMDR1	0x00	/* Transmit Mode Register 1 */
  66#define SITMDR2	0x04	/* Transmit Mode Register 2 */
  67#define SITMDR3	0x08	/* Transmit Mode Register 3 */
  68#define SIRMDR1	0x10	/* Receive Mode Register 1 */
  69#define SIRMDR2	0x14	/* Receive Mode Register 2 */
  70#define SIRMDR3	0x18	/* Receive Mode Register 3 */
  71#define SITSCR	0x20	/* Transmit Clock Select Register */
  72#define SIRSCR	0x22	/* Receive Clock Select Register (SH, A1, APE6) */
  73#define SICTR	0x28	/* Control Register */
  74#define SIFCTR	0x30	/* FIFO Control Register */
  75#define SISTR	0x40	/* Status Register */
  76#define SIIER	0x44	/* Interrupt Enable Register */
  77#define SITDR1	0x48	/* Transmit Control Data Register 1 (SH, A1) */
  78#define SITDR2	0x4c	/* Transmit Control Data Register 2 (SH, A1) */
  79#define SITFDR	0x50	/* Transmit FIFO Data Register */
  80#define SIRDR1	0x58	/* Receive Control Data Register 1 (SH, A1) */
  81#define SIRDR2	0x5c	/* Receive Control Data Register 2 (SH, A1) */
  82#define SIRFDR	0x60	/* Receive FIFO Data Register */
  83
  84/* SITMDR1 and SIRMDR1 */
  85#define SIMDR1_TRMD		BIT(31)		/* Transfer Mode (1 = Master mode) */
  86#define SIMDR1_SYNCMD_MASK	GENMASK(29, 28)	/* SYNC Mode */
  87#define SIMDR1_SYNCMD_SPI	(2 << 28)	/*   Level mode/SPI */
  88#define SIMDR1_SYNCMD_LR	(3 << 28)	/*   L/R mode */
  89#define SIMDR1_SYNCAC_SHIFT	25		/* Sync Polarity (1 = Active-low) */
  90#define SIMDR1_BITLSB_SHIFT	24		/* MSB/LSB First (1 = LSB first) */
  91#define SIMDR1_DTDL_SHIFT	20		/* Data Pin Bit Delay for MSIOF_SYNC */
  92#define SIMDR1_SYNCDL_SHIFT	16		/* Frame Sync Signal Timing Delay */
  93#define SIMDR1_FLD_MASK		GENMASK(3, 2)	/* Frame Sync Signal Interval (0-3) */
  94#define SIMDR1_FLD_SHIFT	2
  95#define SIMDR1_XXSTP		BIT(0)		/* Transmission/Reception Stop on FIFO */
  96/* SITMDR1 */
  97#define SITMDR1_PCON		BIT(30)		/* Transfer Signal Connection */
  98#define SITMDR1_SYNCCH_MASK	GENMASK(27, 26)	/* Sync Signal Channel Select */
  99#define SITMDR1_SYNCCH_SHIFT	26		/* 0=MSIOF_SYNC, 1=MSIOF_SS1, 2=MSIOF_SS2 */
 100
 101/* SITMDR2 and SIRMDR2 */
 102#define SIMDR2_BITLEN1(i)	(((i) - 1) << 24) /* Data Size (8-32 bits) */
 103#define SIMDR2_WDLEN1(i)	(((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */
 104#define SIMDR2_GRPMASK1		BIT(0)		/* Group Output Mask 1 (SH, A1) */
 105
 106/* SITSCR and SIRSCR */
 107#define SISCR_BRPS_MASK		GENMASK(12, 8)	/* Prescaler Setting (1-32) */
 108#define SISCR_BRPS(i)		(((i) - 1) << 8)
 109#define SISCR_BRDV_MASK		GENMASK(2, 0)	/* Baud Rate Generator's Division Ratio */
 110#define SISCR_BRDV_DIV_2	0
 111#define SISCR_BRDV_DIV_4	1
 112#define SISCR_BRDV_DIV_8	2
 113#define SISCR_BRDV_DIV_16	3
 114#define SISCR_BRDV_DIV_32	4
 115#define SISCR_BRDV_DIV_1	7
 116
 117/* SICTR */
 118#define SICTR_TSCKIZ_MASK	GENMASK(31, 30)	/* Transmit Clock I/O Polarity Select */
 119#define SICTR_TSCKIZ_SCK	BIT(31)		/*   Disable SCK when TX disabled */
 120#define SICTR_TSCKIZ_POL_SHIFT	30		/*   Transmit Clock Polarity */
 121#define SICTR_RSCKIZ_MASK	GENMASK(29, 28) /* Receive Clock Polarity Select */
 122#define SICTR_RSCKIZ_SCK	BIT(29)		/*   Must match CTR_TSCKIZ_SCK */
 123#define SICTR_RSCKIZ_POL_SHIFT	28		/*   Receive Clock Polarity */
 124#define SICTR_TEDG_SHIFT	27		/* Transmit Timing (1 = falling edge) */
 125#define SICTR_REDG_SHIFT	26		/* Receive Timing (1 = falling edge) */
 126#define SICTR_TXDIZ_MASK	GENMASK(23, 22)	/* Pin Output When TX is Disabled */
 127#define SICTR_TXDIZ_LOW		(0 << 22)	/*   0 */
 128#define SICTR_TXDIZ_HIGH	(1 << 22)	/*   1 */
 129#define SICTR_TXDIZ_HIZ		(2 << 22)	/*   High-impedance */
 130#define SICTR_TSCKE		BIT(15)		/* Transmit Serial Clock Output Enable */
 131#define SICTR_TFSE		BIT(14)		/* Transmit Frame Sync Signal Output Enable */
 132#define SICTR_TXE		BIT(9)		/* Transmit Enable */
 133#define SICTR_RXE		BIT(8)		/* Receive Enable */
 134#define SICTR_TXRST		BIT(1)		/* Transmit Reset */
 135#define SICTR_RXRST		BIT(0)		/* Receive Reset */
 136
 137/* SIFCTR */
 138#define SIFCTR_TFWM_MASK	GENMASK(31, 29)	/* Transmit FIFO Watermark */
 139#define SIFCTR_TFWM_64		(0UL << 29)	/*  Transfer Request when 64 empty stages */
 140#define SIFCTR_TFWM_32		(1UL << 29)	/*  Transfer Request when 32 empty stages */
 141#define SIFCTR_TFWM_24		(2UL << 29)	/*  Transfer Request when 24 empty stages */
 142#define SIFCTR_TFWM_16		(3UL << 29)	/*  Transfer Request when 16 empty stages */
 143#define SIFCTR_TFWM_12		(4UL << 29)	/*  Transfer Request when 12 empty stages */
 144#define SIFCTR_TFWM_8		(5UL << 29)	/*  Transfer Request when 8 empty stages */
 145#define SIFCTR_TFWM_4		(6UL << 29)	/*  Transfer Request when 4 empty stages */
 146#define SIFCTR_TFWM_1		(7UL << 29)	/*  Transfer Request when 1 empty stage */
 147#define SIFCTR_TFUA_MASK	GENMASK(26, 20) /* Transmit FIFO Usable Area */
 148#define SIFCTR_TFUA_SHIFT	20
 149#define SIFCTR_TFUA(i)		((i) << SIFCTR_TFUA_SHIFT)
 150#define SIFCTR_RFWM_MASK	GENMASK(15, 13)	/* Receive FIFO Watermark */
 151#define SIFCTR_RFWM_1		(0 << 13)	/*  Transfer Request when 1 valid stages */
 152#define SIFCTR_RFWM_4		(1 << 13)	/*  Transfer Request when 4 valid stages */
 153#define SIFCTR_RFWM_8		(2 << 13)	/*  Transfer Request when 8 valid stages */
 154#define SIFCTR_RFWM_16		(3 << 13)	/*  Transfer Request when 16 valid stages */
 155#define SIFCTR_RFWM_32		(4 << 13)	/*  Transfer Request when 32 valid stages */
 156#define SIFCTR_RFWM_64		(5 << 13)	/*  Transfer Request when 64 valid stages */
 157#define SIFCTR_RFWM_128		(6 << 13)	/*  Transfer Request when 128 valid stages */
 158#define SIFCTR_RFWM_256		(7 << 13)	/*  Transfer Request when 256 valid stages */
 159#define SIFCTR_RFUA_MASK	GENMASK(12, 4)	/* Receive FIFO Usable Area (0x40 = full) */
 160#define SIFCTR_RFUA_SHIFT	4
 161#define SIFCTR_RFUA(i)		((i) << SIFCTR_RFUA_SHIFT)
 162
 163/* SISTR */
 164#define SISTR_TFEMP		BIT(29) /* Transmit FIFO Empty */
 165#define SISTR_TDREQ		BIT(28) /* Transmit Data Transfer Request */
 166#define SISTR_TEOF		BIT(23) /* Frame Transmission End */
 167#define SISTR_TFSERR		BIT(21) /* Transmit Frame Synchronization Error */
 168#define SISTR_TFOVF		BIT(20) /* Transmit FIFO Overflow */
 169#define SISTR_TFUDF		BIT(19) /* Transmit FIFO Underflow */
 170#define SISTR_RFFUL		BIT(13) /* Receive FIFO Full */
 171#define SISTR_RDREQ		BIT(12) /* Receive Data Transfer Request */
 172#define SISTR_REOF		BIT(7)  /* Frame Reception End */
 173#define SISTR_RFSERR		BIT(5)  /* Receive Frame Synchronization Error */
 174#define SISTR_RFUDF		BIT(4)  /* Receive FIFO Underflow */
 175#define SISTR_RFOVF		BIT(3)  /* Receive FIFO Overflow */
 176
 177/* SIIER */
 178#define SIIER_TDMAE		BIT(31) /* Transmit Data DMA Transfer Req. Enable */
 179#define SIIER_TFEMPE		BIT(29) /* Transmit FIFO Empty Enable */
 180#define SIIER_TDREQE		BIT(28) /* Transmit Data Transfer Request Enable */
 181#define SIIER_TEOFE		BIT(23) /* Frame Transmission End Enable */
 182#define SIIER_TFSERRE		BIT(21) /* Transmit Frame Sync Error Enable */
 183#define SIIER_TFOVFE		BIT(20) /* Transmit FIFO Overflow Enable */
 184#define SIIER_TFUDFE		BIT(19) /* Transmit FIFO Underflow Enable */
 185#define SIIER_RDMAE		BIT(15) /* Receive Data DMA Transfer Req. Enable */
 186#define SIIER_RFFULE		BIT(13) /* Receive FIFO Full Enable */
 187#define SIIER_RDREQE		BIT(12) /* Receive Data Transfer Request Enable */
 188#define SIIER_REOFE		BIT(7)  /* Frame Reception End Enable */
 189#define SIIER_RFSERRE		BIT(5)  /* Receive Frame Sync Error Enable */
 190#define SIIER_RFUDFE		BIT(4)  /* Receive FIFO Underflow Enable */
 191#define SIIER_RFOVFE		BIT(3)  /* Receive FIFO Overflow Enable */
 192
 193
 194static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs)
 195{
 196	switch (reg_offs) {
 197	case SITSCR:
 198	case SIRSCR:
 199		return ioread16(p->mapbase + reg_offs);
 200	default:
 201		return ioread32(p->mapbase + reg_offs);
 202	}
 203}
 204
 205static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs,
 206			   u32 value)
 207{
 208	switch (reg_offs) {
 209	case SITSCR:
 210	case SIRSCR:
 211		iowrite16(value, p->mapbase + reg_offs);
 212		break;
 213	default:
 214		iowrite32(value, p->mapbase + reg_offs);
 215		break;
 216	}
 217}
 218
 219static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p,
 220				    u32 clr, u32 set)
 221{
 222	u32 mask = clr | set;
 223	u32 data;
 
 224
 225	data = sh_msiof_read(p, SICTR);
 226	data &= ~clr;
 227	data |= set;
 228	sh_msiof_write(p, SICTR, data);
 
 
 
 
 
 
 
 229
 230	return readl_poll_timeout_atomic(p->mapbase + SICTR, data,
 231					 (data & mask) == set, 1, 100);
 232}
 233
 234static irqreturn_t sh_msiof_spi_irq(int irq, void *data)
 235{
 236	struct sh_msiof_spi_priv *p = data;
 237
 238	/* just disable the interrupt and wake up */
 239	sh_msiof_write(p, SIIER, 0);
 240	complete(&p->done);
 241
 242	return IRQ_HANDLED;
 243}
 244
 245static void sh_msiof_spi_reset_regs(struct sh_msiof_spi_priv *p)
 246{
 247	u32 mask = SICTR_TXRST | SICTR_RXRST;
 248	u32 data;
 249
 250	data = sh_msiof_read(p, SICTR);
 251	data |= mask;
 252	sh_msiof_write(p, SICTR, data);
 253
 254	readl_poll_timeout_atomic(p->mapbase + SICTR, data, !(data & mask), 1,
 255				  100);
 256}
 257
 258static const u32 sh_msiof_spi_div_array[] = {
 259	SISCR_BRDV_DIV_1, SISCR_BRDV_DIV_2, SISCR_BRDV_DIV_4,
 260	SISCR_BRDV_DIV_8, SISCR_BRDV_DIV_16, SISCR_BRDV_DIV_32,
 261};
 262
 263static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p,
 264				      struct spi_transfer *t)
 265{
 266	unsigned long parent_rate = clk_get_rate(p->clk);
 267	unsigned int div_pow = p->min_div_pow;
 268	u32 spi_hz = t->speed_hz;
 269	unsigned long div;
 270	u32 brps, scr;
 
 271
 272	if (!spi_hz || !parent_rate) {
 273		WARN(1, "Invalid clock rate parameters %lu and %u\n",
 274		     parent_rate, spi_hz);
 275		return;
 276	}
 277
 278	div = DIV_ROUND_UP(parent_rate, spi_hz);
 279	if (div <= 1024) {
 280		/* SISCR_BRDV_DIV_1 is valid only if BRPS is x 1/1 or x 1/2 */
 281		if (!div_pow && div <= 32 && div > 2)
 282			div_pow = 1;
 283
 284		if (div_pow)
 285			brps = (div + 1) >> div_pow;
 286		else
 287			brps = div;
 288
 289		for (; brps > 32; div_pow++)
 290			brps = (brps + 1) >> 1;
 291	} else {
 292		/* Set transfer rate composite divisor to 2^5 * 32 = 1024 */
 293		dev_err(&p->pdev->dev,
 294			"Requested SPI transfer rate %d is too low\n", spi_hz);
 295		div_pow = 5;
 296		brps = 32;
 297	}
 298
 299	t->effective_speed_hz = parent_rate / (brps << div_pow);
 300
 301	scr = sh_msiof_spi_div_array[div_pow] | SISCR_BRPS(brps);
 302	sh_msiof_write(p, SITSCR, scr);
 303	if (!(p->ctlr->flags & SPI_CONTROLLER_MUST_TX))
 304		sh_msiof_write(p, SIRSCR, scr);
 305}
 306
 307static u32 sh_msiof_get_delay_bit(u32 dtdl_or_syncdl)
 308{
 309	/*
 310	 * DTDL/SYNCDL bit	: p->info->dtdl or p->info->syncdl
 311	 * b'000		: 0
 312	 * b'001		: 100
 313	 * b'010		: 200
 314	 * b'011 (SYNCDL only)	: 300
 315	 * b'101		: 50
 316	 * b'110		: 150
 317	 */
 318	if (dtdl_or_syncdl % 100)
 319		return dtdl_or_syncdl / 100 + 5;
 320	else
 321		return dtdl_or_syncdl / 100;
 322}
 323
 324static u32 sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv *p)
 325{
 326	u32 val;
 327
 328	if (!p->info)
 329		return 0;
 330
 331	/* check if DTDL and SYNCDL is allowed value */
 332	if (p->info->dtdl > 200 || p->info->syncdl > 300) {
 333		dev_warn(&p->pdev->dev, "DTDL or SYNCDL is too large\n");
 334		return 0;
 335	}
 336
 337	/* check if the sum of DTDL and SYNCDL becomes an integer value  */
 338	if ((p->info->dtdl + p->info->syncdl) % 100) {
 339		dev_warn(&p->pdev->dev, "the sum of DTDL/SYNCDL is not good\n");
 340		return 0;
 341	}
 342
 343	val = sh_msiof_get_delay_bit(p->info->dtdl) << SIMDR1_DTDL_SHIFT;
 344	val |= sh_msiof_get_delay_bit(p->info->syncdl) << SIMDR1_SYNCDL_SHIFT;
 345
 346	return val;
 347}
 348
 349static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p, u32 ss,
 350				      u32 cpol, u32 cpha,
 351				      u32 tx_hi_z, u32 lsb_first, u32 cs_high)
 352{
 353	u32 tmp;
 354	int edge;
 355
 356	/*
 357	 * CPOL CPHA     TSCKIZ RSCKIZ TEDG REDG
 358	 *    0    0         10     10    1    1
 359	 *    0    1         10     10    0    0
 360	 *    1    0         11     11    0    0
 361	 *    1    1         11     11    1    1
 362	 */
 363	tmp = SIMDR1_SYNCMD_SPI | 1 << SIMDR1_FLD_SHIFT | SIMDR1_XXSTP;
 364	tmp |= !cs_high << SIMDR1_SYNCAC_SHIFT;
 365	tmp |= lsb_first << SIMDR1_BITLSB_SHIFT;
 366	tmp |= sh_msiof_spi_get_dtdl_and_syncdl(p);
 367	if (spi_controller_is_target(p->ctlr)) {
 368		sh_msiof_write(p, SITMDR1, tmp | SITMDR1_PCON);
 369	} else {
 370		sh_msiof_write(p, SITMDR1,
 371			       tmp | SIMDR1_TRMD | SITMDR1_PCON |
 372			       (ss < MAX_SS ? ss : 0) << SITMDR1_SYNCCH_SHIFT);
 373	}
 374	if (p->ctlr->flags & SPI_CONTROLLER_MUST_TX) {
 375		/* These bits are reserved if RX needs TX */
 376		tmp &= ~0x0000ffff;
 377	}
 378	sh_msiof_write(p, SIRMDR1, tmp);
 379
 380	tmp = 0;
 381	tmp |= SICTR_TSCKIZ_SCK | cpol << SICTR_TSCKIZ_POL_SHIFT;
 382	tmp |= SICTR_RSCKIZ_SCK | cpol << SICTR_RSCKIZ_POL_SHIFT;
 383
 384	edge = cpol ^ !cpha;
 385
 386	tmp |= edge << SICTR_TEDG_SHIFT;
 387	tmp |= edge << SICTR_REDG_SHIFT;
 388	tmp |= tx_hi_z ? SICTR_TXDIZ_HIZ : SICTR_TXDIZ_LOW;
 389	sh_msiof_write(p, SICTR, tmp);
 390}
 391
 392static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p,
 393				       const void *tx_buf, void *rx_buf,
 394				       u32 bits, u32 words)
 395{
 396	u32 dr2 = SIMDR2_BITLEN1(bits) | SIMDR2_WDLEN1(words);
 397
 398	if (tx_buf || (p->ctlr->flags & SPI_CONTROLLER_MUST_TX))
 399		sh_msiof_write(p, SITMDR2, dr2);
 400	else
 401		sh_msiof_write(p, SITMDR2, dr2 | SIMDR2_GRPMASK1);
 402
 403	if (rx_buf)
 404		sh_msiof_write(p, SIRMDR2, dr2);
 405}
 406
 407static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p)
 408{
 409	sh_msiof_write(p, SISTR,
 410		       sh_msiof_read(p, SISTR) & ~(SISTR_TDREQ | SISTR_RDREQ));
 411}
 412
 413static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p,
 414				      const void *tx_buf, int words, int fs)
 415{
 416	const u8 *buf_8 = tx_buf;
 417	int k;
 418
 419	for (k = 0; k < words; k++)
 420		sh_msiof_write(p, SITFDR, buf_8[k] << fs);
 421}
 422
 423static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p,
 424				       const void *tx_buf, int words, int fs)
 425{
 426	const u16 *buf_16 = tx_buf;
 427	int k;
 428
 429	for (k = 0; k < words; k++)
 430		sh_msiof_write(p, SITFDR, buf_16[k] << fs);
 431}
 432
 433static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p,
 434					const void *tx_buf, int words, int fs)
 435{
 436	const u16 *buf_16 = tx_buf;
 437	int k;
 438
 439	for (k = 0; k < words; k++)
 440		sh_msiof_write(p, SITFDR, get_unaligned(&buf_16[k]) << fs);
 441}
 442
 443static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p,
 444				       const void *tx_buf, int words, int fs)
 445{
 446	const u32 *buf_32 = tx_buf;
 447	int k;
 448
 449	for (k = 0; k < words; k++)
 450		sh_msiof_write(p, SITFDR, buf_32[k] << fs);
 451}
 452
 453static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p,
 454					const void *tx_buf, int words, int fs)
 455{
 456	const u32 *buf_32 = tx_buf;
 457	int k;
 458
 459	for (k = 0; k < words; k++)
 460		sh_msiof_write(p, SITFDR, get_unaligned(&buf_32[k]) << fs);
 461}
 462
 463static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p,
 464					const void *tx_buf, int words, int fs)
 465{
 466	const u32 *buf_32 = tx_buf;
 467	int k;
 468
 469	for (k = 0; k < words; k++)
 470		sh_msiof_write(p, SITFDR, swab32(buf_32[k] << fs));
 471}
 472
 473static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p,
 474					 const void *tx_buf, int words, int fs)
 475{
 476	const u32 *buf_32 = tx_buf;
 477	int k;
 478
 479	for (k = 0; k < words; k++)
 480		sh_msiof_write(p, SITFDR, swab32(get_unaligned(&buf_32[k]) << fs));
 481}
 482
 483static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p,
 484				     void *rx_buf, int words, int fs)
 485{
 486	u8 *buf_8 = rx_buf;
 487	int k;
 488
 489	for (k = 0; k < words; k++)
 490		buf_8[k] = sh_msiof_read(p, SIRFDR) >> fs;
 491}
 492
 493static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p,
 494				      void *rx_buf, int words, int fs)
 495{
 496	u16 *buf_16 = rx_buf;
 497	int k;
 498
 499	for (k = 0; k < words; k++)
 500		buf_16[k] = sh_msiof_read(p, SIRFDR) >> fs;
 501}
 502
 503static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p,
 504				       void *rx_buf, int words, int fs)
 505{
 506	u16 *buf_16 = rx_buf;
 507	int k;
 508
 509	for (k = 0; k < words; k++)
 510		put_unaligned(sh_msiof_read(p, SIRFDR) >> fs, &buf_16[k]);
 511}
 512
 513static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p,
 514				      void *rx_buf, int words, int fs)
 515{
 516	u32 *buf_32 = rx_buf;
 517	int k;
 518
 519	for (k = 0; k < words; k++)
 520		buf_32[k] = sh_msiof_read(p, SIRFDR) >> fs;
 521}
 522
 523static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p,
 524				       void *rx_buf, int words, int fs)
 525{
 526	u32 *buf_32 = rx_buf;
 527	int k;
 528
 529	for (k = 0; k < words; k++)
 530		put_unaligned(sh_msiof_read(p, SIRFDR) >> fs, &buf_32[k]);
 531}
 532
 533static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p,
 534				       void *rx_buf, int words, int fs)
 535{
 536	u32 *buf_32 = rx_buf;
 537	int k;
 538
 539	for (k = 0; k < words; k++)
 540		buf_32[k] = swab32(sh_msiof_read(p, SIRFDR) >> fs);
 541}
 542
 543static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p,
 544				       void *rx_buf, int words, int fs)
 545{
 546	u32 *buf_32 = rx_buf;
 547	int k;
 548
 549	for (k = 0; k < words; k++)
 550		put_unaligned(swab32(sh_msiof_read(p, SIRFDR) >> fs), &buf_32[k]);
 551}
 552
 553static int sh_msiof_spi_setup(struct spi_device *spi)
 554{
 555	struct sh_msiof_spi_priv *p =
 556		spi_controller_get_devdata(spi->controller);
 557	u32 clr, set, tmp;
 558
 559	if (spi_get_csgpiod(spi, 0) || spi_controller_is_target(p->ctlr))
 560		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 561
 562	if (p->native_cs_inited &&
 563	    (p->native_cs_high == !!(spi->mode & SPI_CS_HIGH)))
 564		return 0;
 565
 566	/* Configure native chip select mode/polarity early */
 567	clr = SIMDR1_SYNCMD_MASK;
 568	set = SIMDR1_SYNCMD_SPI;
 569	if (spi->mode & SPI_CS_HIGH)
 570		clr |= BIT(SIMDR1_SYNCAC_SHIFT);
 571	else
 572		set |= BIT(SIMDR1_SYNCAC_SHIFT);
 573	pm_runtime_get_sync(&p->pdev->dev);
 574	tmp = sh_msiof_read(p, SITMDR1) & ~clr;
 575	sh_msiof_write(p, SITMDR1, tmp | set | SIMDR1_TRMD | SITMDR1_PCON);
 576	tmp = sh_msiof_read(p, SIRMDR1) & ~clr;
 577	sh_msiof_write(p, SIRMDR1, tmp | set);
 578	pm_runtime_put(&p->pdev->dev);
 579	p->native_cs_high = spi->mode & SPI_CS_HIGH;
 580	p->native_cs_inited = true;
 581	return 0;
 582}
 583
 584static int sh_msiof_prepare_message(struct spi_controller *ctlr,
 585				    struct spi_message *msg)
 586{
 587	struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr);
 588	const struct spi_device *spi = msg->spi;
 589	u32 ss, cs_high;
 590
 591	/* Configure pins before asserting CS */
 592	if (spi_get_csgpiod(spi, 0)) {
 593		ss = ctlr->unused_native_cs;
 594		cs_high = p->native_cs_high;
 595	} else {
 596		ss = spi_get_chipselect(spi, 0);
 597		cs_high = !!(spi->mode & SPI_CS_HIGH);
 598	}
 599	sh_msiof_spi_set_pin_regs(p, ss, !!(spi->mode & SPI_CPOL),
 600				  !!(spi->mode & SPI_CPHA),
 601				  !!(spi->mode & SPI_3WIRE),
 602				  !!(spi->mode & SPI_LSB_FIRST), cs_high);
 
 603	return 0;
 604}
 605
 606static int sh_msiof_spi_start(struct sh_msiof_spi_priv *p, void *rx_buf)
 607{
 608	bool target = spi_controller_is_target(p->ctlr);
 609	int ret = 0;
 610
 611	/* setup clock and rx/tx signals */
 612	if (!target)
 613		ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_TSCKE);
 614	if (rx_buf && !ret)
 615		ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_RXE);
 616	if (!ret)
 617		ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_TXE);
 618
 619	/* start by setting frame bit */
 620	if (!ret && !target)
 621		ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_TFSE);
 622
 623	return ret;
 624}
 625
 626static int sh_msiof_spi_stop(struct sh_msiof_spi_priv *p, void *rx_buf)
 627{
 628	bool target = spi_controller_is_target(p->ctlr);
 629	int ret = 0;
 630
 631	/* shut down frame, rx/tx and clock signals */
 632	if (!target)
 633		ret = sh_msiof_modify_ctr_wait(p, SICTR_TFSE, 0);
 634	if (!ret)
 635		ret = sh_msiof_modify_ctr_wait(p, SICTR_TXE, 0);
 636	if (rx_buf && !ret)
 637		ret = sh_msiof_modify_ctr_wait(p, SICTR_RXE, 0);
 638	if (!ret && !target)
 639		ret = sh_msiof_modify_ctr_wait(p, SICTR_TSCKE, 0);
 640
 641	return ret;
 642}
 643
 644static int sh_msiof_target_abort(struct spi_controller *ctlr)
 645{
 646	struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr);
 647
 648	p->target_aborted = true;
 649	complete(&p->done);
 650	complete(&p->done_txdma);
 651	return 0;
 652}
 653
 654static int sh_msiof_wait_for_completion(struct sh_msiof_spi_priv *p,
 655					struct completion *x)
 656{
 657	if (spi_controller_is_target(p->ctlr)) {
 658		if (wait_for_completion_interruptible(x) ||
 659		    p->target_aborted) {
 660			dev_dbg(&p->pdev->dev, "interrupted\n");
 661			return -EINTR;
 662		}
 663	} else {
 664		if (!wait_for_completion_timeout(x, HZ)) {
 665			dev_err(&p->pdev->dev, "timeout\n");
 666			return -ETIMEDOUT;
 667		}
 668	}
 669
 670	return 0;
 671}
 672
 673static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p,
 674				  void (*tx_fifo)(struct sh_msiof_spi_priv *,
 675						  const void *, int, int),
 676				  void (*rx_fifo)(struct sh_msiof_spi_priv *,
 677						  void *, int, int),
 678				  const void *tx_buf, void *rx_buf,
 679				  int words, int bits)
 680{
 681	int fifo_shift;
 682	int ret;
 683
 684	/* limit maximum word transfer to rx/tx fifo size */
 685	if (tx_buf)
 686		words = min_t(int, words, p->tx_fifo_size);
 687	if (rx_buf)
 688		words = min_t(int, words, p->rx_fifo_size);
 689
 690	/* the fifo contents need shifting */
 691	fifo_shift = 32 - bits;
 692
 693	/* default FIFO watermarks for PIO */
 694	sh_msiof_write(p, SIFCTR, 0);
 695
 696	/* setup msiof transfer mode registers */
 697	sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words);
 698	sh_msiof_write(p, SIIER, SIIER_TEOFE | SIIER_REOFE);
 699
 700	/* write tx fifo */
 701	if (tx_buf)
 702		tx_fifo(p, tx_buf, words, fifo_shift);
 703
 704	reinit_completion(&p->done);
 705	p->target_aborted = false;
 706
 707	ret = sh_msiof_spi_start(p, rx_buf);
 708	if (ret) {
 709		dev_err(&p->pdev->dev, "failed to start hardware\n");
 710		goto stop_ier;
 711	}
 712
 713	/* wait for tx fifo to be emptied / rx fifo to be filled */
 714	ret = sh_msiof_wait_for_completion(p, &p->done);
 715	if (ret)
 
 716		goto stop_reset;
 
 717
 718	/* read rx fifo */
 719	if (rx_buf)
 720		rx_fifo(p, rx_buf, words, fifo_shift);
 721
 722	/* clear status bits */
 723	sh_msiof_reset_str(p);
 724
 725	ret = sh_msiof_spi_stop(p, rx_buf);
 726	if (ret) {
 727		dev_err(&p->pdev->dev, "failed to shut down hardware\n");
 728		return ret;
 729	}
 730
 731	return words;
 732
 733stop_reset:
 734	sh_msiof_reset_str(p);
 735	sh_msiof_spi_stop(p, rx_buf);
 736stop_ier:
 737	sh_msiof_write(p, SIIER, 0);
 738	return ret;
 739}
 740
 741static void sh_msiof_dma_complete(void *arg)
 742{
 743	complete(arg);
 
 
 
 744}
 745
 746static int sh_msiof_dma_once(struct sh_msiof_spi_priv *p, const void *tx,
 747			     void *rx, unsigned int len)
 748{
 749	u32 ier_bits = 0;
 750	struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
 751	dma_cookie_t cookie;
 752	int ret;
 753
 754	/* First prepare and submit the DMA request(s), as this may fail */
 755	if (rx) {
 756		ier_bits |= SIIER_RDREQE | SIIER_RDMAE;
 757		desc_rx = dmaengine_prep_slave_single(p->ctlr->dma_rx,
 758					p->rx_dma_addr, len, DMA_DEV_TO_MEM,
 759					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 760		if (!desc_rx)
 761			return -EAGAIN;
 762
 763		desc_rx->callback = sh_msiof_dma_complete;
 764		desc_rx->callback_param = &p->done;
 765		cookie = dmaengine_submit(desc_rx);
 766		if (dma_submit_error(cookie))
 767			return cookie;
 768	}
 769
 770	if (tx) {
 771		ier_bits |= SIIER_TDREQE | SIIER_TDMAE;
 772		dma_sync_single_for_device(p->ctlr->dma_tx->device->dev,
 773					   p->tx_dma_addr, len, DMA_TO_DEVICE);
 774		desc_tx = dmaengine_prep_slave_single(p->ctlr->dma_tx,
 775					p->tx_dma_addr, len, DMA_MEM_TO_DEV,
 776					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 777		if (!desc_tx) {
 778			ret = -EAGAIN;
 779			goto no_dma_tx;
 780		}
 781
 782		desc_tx->callback = sh_msiof_dma_complete;
 783		desc_tx->callback_param = &p->done_txdma;
 
 
 
 
 
 784		cookie = dmaengine_submit(desc_tx);
 785		if (dma_submit_error(cookie)) {
 786			ret = cookie;
 787			goto no_dma_tx;
 788		}
 789	}
 790
 791	/* 1 stage FIFO watermarks for DMA */
 792	sh_msiof_write(p, SIFCTR, SIFCTR_TFWM_1 | SIFCTR_RFWM_1);
 793
 794	/* setup msiof transfer mode registers (32-bit words) */
 795	sh_msiof_spi_set_mode_regs(p, tx, rx, 32, len / 4);
 796
 797	sh_msiof_write(p, SIIER, ier_bits);
 798
 799	reinit_completion(&p->done);
 800	if (tx)
 801		reinit_completion(&p->done_txdma);
 802	p->target_aborted = false;
 803
 804	/* Now start DMA */
 805	if (rx)
 806		dma_async_issue_pending(p->ctlr->dma_rx);
 807	if (tx)
 808		dma_async_issue_pending(p->ctlr->dma_tx);
 809
 810	ret = sh_msiof_spi_start(p, rx);
 811	if (ret) {
 812		dev_err(&p->pdev->dev, "failed to start hardware\n");
 813		goto stop_dma;
 814	}
 815
 816	if (tx) {
 817		/* wait for tx DMA completion */
 818		ret = sh_msiof_wait_for_completion(p, &p->done_txdma);
 819		if (ret)
 820			goto stop_reset;
 821	}
 822
 823	if (rx) {
 824		/* wait for rx DMA completion */
 825		ret = sh_msiof_wait_for_completion(p, &p->done);
 826		if (ret)
 827			goto stop_reset;
 828
 829		sh_msiof_write(p, SIIER, 0);
 830	} else {
 831		/* wait for tx fifo to be emptied */
 832		sh_msiof_write(p, SIIER, SIIER_TEOFE);
 833		ret = sh_msiof_wait_for_completion(p, &p->done);
 834		if (ret)
 835			goto stop_reset;
 836	}
 837
 838	/* clear status bits */
 839	sh_msiof_reset_str(p);
 840
 841	ret = sh_msiof_spi_stop(p, rx);
 842	if (ret) {
 843		dev_err(&p->pdev->dev, "failed to shut down hardware\n");
 844		return ret;
 845	}
 846
 847	if (rx)
 848		dma_sync_single_for_cpu(p->ctlr->dma_rx->device->dev,
 849					p->rx_dma_addr, len, DMA_FROM_DEVICE);
 
 850
 851	return 0;
 852
 853stop_reset:
 854	sh_msiof_reset_str(p);
 855	sh_msiof_spi_stop(p, rx);
 856stop_dma:
 857	if (tx)
 858		dmaengine_terminate_sync(p->ctlr->dma_tx);
 859no_dma_tx:
 860	if (rx)
 861		dmaengine_terminate_sync(p->ctlr->dma_rx);
 862	sh_msiof_write(p, SIIER, 0);
 863	return ret;
 864}
 865
 866static void copy_bswap32(u32 *dst, const u32 *src, unsigned int words)
 867{
 868	/* src or dst can be unaligned, but not both */
 869	if ((unsigned long)src & 3) {
 870		while (words--) {
 871			*dst++ = swab32(get_unaligned(src));
 872			src++;
 873		}
 874	} else if ((unsigned long)dst & 3) {
 875		while (words--) {
 876			put_unaligned(swab32(*src++), dst);
 877			dst++;
 878		}
 879	} else {
 880		while (words--)
 881			*dst++ = swab32(*src++);
 882	}
 883}
 884
 885static void copy_wswap32(u32 *dst, const u32 *src, unsigned int words)
 886{
 887	/* src or dst can be unaligned, but not both */
 888	if ((unsigned long)src & 3) {
 889		while (words--) {
 890			*dst++ = swahw32(get_unaligned(src));
 891			src++;
 892		}
 893	} else if ((unsigned long)dst & 3) {
 894		while (words--) {
 895			put_unaligned(swahw32(*src++), dst);
 896			dst++;
 897		}
 898	} else {
 899		while (words--)
 900			*dst++ = swahw32(*src++);
 901	}
 902}
 903
 904static void copy_plain32(u32 *dst, const u32 *src, unsigned int words)
 905{
 906	memcpy(dst, src, words * 4);
 907}
 908
 909static int sh_msiof_transfer_one(struct spi_controller *ctlr,
 910				 struct spi_device *spi,
 911				 struct spi_transfer *t)
 912{
 913	struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr);
 914	void (*copy32)(u32 *, const u32 *, unsigned int);
 915	void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int);
 916	void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int);
 917	const void *tx_buf = t->tx_buf;
 918	void *rx_buf = t->rx_buf;
 919	unsigned int len = t->len;
 920	unsigned int bits = t->bits_per_word;
 921	unsigned int bytes_per_word;
 922	unsigned int words;
 923	int n;
 924	bool swab;
 925	int ret;
 926
 927	/* reset registers */
 928	sh_msiof_spi_reset_regs(p);
 929
 930	/* setup clocks (clock already enabled in chipselect()) */
 931	if (!spi_controller_is_target(p->ctlr))
 932		sh_msiof_spi_set_clk_regs(p, t);
 933
 934	while (ctlr->dma_tx && len > 15) {
 935		/*
 936		 *  DMA supports 32-bit words only, hence pack 8-bit and 16-bit
 937		 *  words, with byte resp. word swapping.
 938		 */
 939		unsigned int l = 0;
 940
 941		if (tx_buf)
 942			l = min(round_down(len, 4), p->tx_fifo_size * 4);
 943		if (rx_buf)
 944			l = min(round_down(len, 4), p->rx_fifo_size * 4);
 945
 946		if (bits <= 8) {
 
 
 947			copy32 = copy_bswap32;
 948		} else if (bits <= 16) {
 
 
 949			copy32 = copy_wswap32;
 950		} else {
 951			copy32 = copy_plain32;
 952		}
 953
 954		if (tx_buf)
 955			copy32(p->tx_dma_page, tx_buf, l / 4);
 956
 957		ret = sh_msiof_dma_once(p, tx_buf, rx_buf, l);
 958		if (ret == -EAGAIN) {
 959			dev_warn_once(&p->pdev->dev,
 960				"DMA not available, falling back to PIO\n");
 
 961			break;
 962		}
 963		if (ret)
 964			return ret;
 965
 966		if (rx_buf) {
 967			copy32(rx_buf, p->rx_dma_page, l / 4);
 968			rx_buf += l;
 969		}
 970		if (tx_buf)
 971			tx_buf += l;
 972
 973		len -= l;
 974		if (!len)
 975			return 0;
 976	}
 977
 978	if (bits <= 8 && len > 15) {
 979		bits = 32;
 980		swab = true;
 981	} else {
 982		swab = false;
 983	}
 984
 985	/* setup bytes per word and fifo read/write functions */
 986	if (bits <= 8) {
 987		bytes_per_word = 1;
 988		tx_fifo = sh_msiof_spi_write_fifo_8;
 989		rx_fifo = sh_msiof_spi_read_fifo_8;
 990	} else if (bits <= 16) {
 991		bytes_per_word = 2;
 992		if ((unsigned long)tx_buf & 0x01)
 993			tx_fifo = sh_msiof_spi_write_fifo_16u;
 994		else
 995			tx_fifo = sh_msiof_spi_write_fifo_16;
 996
 997		if ((unsigned long)rx_buf & 0x01)
 998			rx_fifo = sh_msiof_spi_read_fifo_16u;
 999		else
1000			rx_fifo = sh_msiof_spi_read_fifo_16;
1001	} else if (swab) {
1002		bytes_per_word = 4;
1003		if ((unsigned long)tx_buf & 0x03)
1004			tx_fifo = sh_msiof_spi_write_fifo_s32u;
1005		else
1006			tx_fifo = sh_msiof_spi_write_fifo_s32;
1007
1008		if ((unsigned long)rx_buf & 0x03)
1009			rx_fifo = sh_msiof_spi_read_fifo_s32u;
1010		else
1011			rx_fifo = sh_msiof_spi_read_fifo_s32;
1012	} else {
1013		bytes_per_word = 4;
1014		if ((unsigned long)tx_buf & 0x03)
1015			tx_fifo = sh_msiof_spi_write_fifo_32u;
1016		else
1017			tx_fifo = sh_msiof_spi_write_fifo_32;
1018
1019		if ((unsigned long)rx_buf & 0x03)
1020			rx_fifo = sh_msiof_spi_read_fifo_32u;
1021		else
1022			rx_fifo = sh_msiof_spi_read_fifo_32;
1023	}
1024
1025	/* transfer in fifo sized chunks */
1026	words = len / bytes_per_word;
1027
1028	while (words > 0) {
1029		n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo, tx_buf, rx_buf,
1030					   words, bits);
1031		if (n < 0)
1032			return n;
1033
1034		if (tx_buf)
1035			tx_buf += n * bytes_per_word;
1036		if (rx_buf)
1037			rx_buf += n * bytes_per_word;
1038		words -= n;
1039
1040		if (words == 0 && (len % bytes_per_word)) {
1041			words = len % bytes_per_word;
1042			bits = t->bits_per_word;
1043			bytes_per_word = 1;
1044			tx_fifo = sh_msiof_spi_write_fifo_8;
1045			rx_fifo = sh_msiof_spi_read_fifo_8;
1046		}
1047	}
1048
1049	return 0;
1050}
1051
1052static const struct sh_msiof_chipdata sh_data = {
1053	.bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32),
1054	.tx_fifo_size = 64,
1055	.rx_fifo_size = 64,
1056	.ctlr_flags = 0,
1057	.min_div_pow = 0,
1058};
1059
1060static const struct sh_msiof_chipdata rcar_gen2_data = {
1061	.bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16) |
1062			      SPI_BPW_MASK(24) | SPI_BPW_MASK(32),
1063	.tx_fifo_size = 64,
1064	.rx_fifo_size = 64,
1065	.ctlr_flags = SPI_CONTROLLER_MUST_TX,
1066	.min_div_pow = 0,
1067};
1068
1069static const struct sh_msiof_chipdata rcar_gen3_data = {
1070	.bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16) |
1071			      SPI_BPW_MASK(24) | SPI_BPW_MASK(32),
1072	.tx_fifo_size = 64,
1073	.rx_fifo_size = 64,
1074	.ctlr_flags = SPI_CONTROLLER_MUST_TX,
1075	.min_div_pow = 1,
1076};
1077
1078static const struct sh_msiof_chipdata rcar_r8a7795_data = {
1079	.bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16) |
1080			      SPI_BPW_MASK(24) | SPI_BPW_MASK(32),
1081	.tx_fifo_size = 64,
1082	.rx_fifo_size = 64,
1083	.ctlr_flags = SPI_CONTROLLER_MUST_TX,
1084	.min_div_pow = 1,
1085	.flags = SH_MSIOF_FLAG_FIXED_DTDL_200,
1086};
1087
1088static const struct of_device_id sh_msiof_match[] __maybe_unused = {
1089	{ .compatible = "renesas,sh-mobile-msiof", .data = &sh_data },
1090	{ .compatible = "renesas,msiof-r8a7743",   .data = &rcar_gen2_data },
1091	{ .compatible = "renesas,msiof-r8a7745",   .data = &rcar_gen2_data },
1092	{ .compatible = "renesas,msiof-r8a7790",   .data = &rcar_gen2_data },
1093	{ .compatible = "renesas,msiof-r8a7791",   .data = &rcar_gen2_data },
1094	{ .compatible = "renesas,msiof-r8a7792",   .data = &rcar_gen2_data },
1095	{ .compatible = "renesas,msiof-r8a7793",   .data = &rcar_gen2_data },
1096	{ .compatible = "renesas,msiof-r8a7794",   .data = &rcar_gen2_data },
1097	{ .compatible = "renesas,rcar-gen2-msiof", .data = &rcar_gen2_data },
1098	{ .compatible = "renesas,msiof-r8a7795",   .data = &rcar_r8a7795_data },
1099	{ .compatible = "renesas,msiof-r8a7796",   .data = &rcar_gen3_data },
1100	{ .compatible = "renesas,rcar-gen3-msiof", .data = &rcar_gen3_data },
1101	{ .compatible = "renesas,rcar-gen4-msiof", .data = &rcar_gen3_data },
1102	{ .compatible = "renesas,sh-msiof",        .data = &sh_data }, /* Deprecated */
1103	{},
1104};
1105MODULE_DEVICE_TABLE(of, sh_msiof_match);
1106
1107#ifdef CONFIG_OF
1108static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1109{
1110	struct sh_msiof_spi_info *info;
1111	struct device_node *np = dev->of_node;
1112	u32 num_cs = 1;
1113
1114	info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL);
1115	if (!info)
1116		return NULL;
1117
1118	info->mode = of_property_read_bool(np, "spi-slave") ? MSIOF_SPI_TARGET
1119							    : MSIOF_SPI_HOST;
1120
1121	/* Parse the MSIOF properties */
1122	if (info->mode == MSIOF_SPI_HOST)
1123		of_property_read_u32(np, "num-cs", &num_cs);
1124	of_property_read_u32(np, "renesas,tx-fifo-size",
1125					&info->tx_fifo_override);
1126	of_property_read_u32(np, "renesas,rx-fifo-size",
1127					&info->rx_fifo_override);
1128	of_property_read_u32(np, "renesas,dtdl", &info->dtdl);
1129	of_property_read_u32(np, "renesas,syncdl", &info->syncdl);
1130
1131	info->num_chipselect = num_cs;
1132
1133	return info;
1134}
1135#else
1136static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1137{
1138	return NULL;
1139}
1140#endif
1141
1142static struct dma_chan *sh_msiof_request_dma_chan(struct device *dev,
1143	enum dma_transfer_direction dir, unsigned int id, dma_addr_t port_addr)
1144{
1145	dma_cap_mask_t mask;
1146	struct dma_chan *chan;
1147	struct dma_slave_config cfg;
1148	int ret;
1149
1150	dma_cap_zero(mask);
1151	dma_cap_set(DMA_SLAVE, mask);
1152
1153	chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1154				(void *)(unsigned long)id, dev,
1155				dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1156	if (!chan) {
1157		dev_warn(dev, "dma_request_slave_channel_compat failed\n");
1158		return NULL;
1159	}
1160
1161	memset(&cfg, 0, sizeof(cfg));
1162	cfg.direction = dir;
1163	if (dir == DMA_MEM_TO_DEV) {
1164		cfg.dst_addr = port_addr;
1165		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1166	} else {
1167		cfg.src_addr = port_addr;
1168		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1169	}
1170
1171	ret = dmaengine_slave_config(chan, &cfg);
1172	if (ret) {
1173		dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1174		dma_release_channel(chan);
1175		return NULL;
1176	}
1177
1178	return chan;
1179}
1180
1181static int sh_msiof_request_dma(struct sh_msiof_spi_priv *p)
1182{
1183	struct platform_device *pdev = p->pdev;
1184	struct device *dev = &pdev->dev;
1185	const struct sh_msiof_spi_info *info = p->info;
1186	unsigned int dma_tx_id, dma_rx_id;
1187	const struct resource *res;
1188	struct spi_controller *ctlr;
1189	struct device *tx_dev, *rx_dev;
1190
1191	if (dev->of_node) {
1192		/* In the OF case we will get the slave IDs from the DT */
1193		dma_tx_id = 0;
1194		dma_rx_id = 0;
1195	} else if (info && info->dma_tx_id && info->dma_rx_id) {
1196		dma_tx_id = info->dma_tx_id;
1197		dma_rx_id = info->dma_rx_id;
1198	} else {
1199		/* The driver assumes no error */
1200		return 0;
1201	}
1202
1203	/* The DMA engine uses the second register set, if present */
1204	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1205	if (!res)
1206		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1207
1208	ctlr = p->ctlr;
1209	ctlr->dma_tx = sh_msiof_request_dma_chan(dev, DMA_MEM_TO_DEV,
1210						 dma_tx_id, res->start + SITFDR);
1211	if (!ctlr->dma_tx)
 
1212		return -ENODEV;
1213
1214	ctlr->dma_rx = sh_msiof_request_dma_chan(dev, DMA_DEV_TO_MEM,
1215						 dma_rx_id, res->start + SIRFDR);
1216	if (!ctlr->dma_rx)
 
1217		goto free_tx_chan;
1218
1219	p->tx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1220	if (!p->tx_dma_page)
1221		goto free_rx_chan;
1222
1223	p->rx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1224	if (!p->rx_dma_page)
1225		goto free_tx_page;
1226
1227	tx_dev = ctlr->dma_tx->device->dev;
1228	p->tx_dma_addr = dma_map_single(tx_dev, p->tx_dma_page, PAGE_SIZE,
1229					DMA_TO_DEVICE);
1230	if (dma_mapping_error(tx_dev, p->tx_dma_addr))
1231		goto free_rx_page;
1232
1233	rx_dev = ctlr->dma_rx->device->dev;
1234	p->rx_dma_addr = dma_map_single(rx_dev, p->rx_dma_page, PAGE_SIZE,
1235					DMA_FROM_DEVICE);
1236	if (dma_mapping_error(rx_dev, p->rx_dma_addr))
1237		goto unmap_tx_page;
1238
1239	dev_info(dev, "DMA available");
1240	return 0;
1241
1242unmap_tx_page:
1243	dma_unmap_single(tx_dev, p->tx_dma_addr, PAGE_SIZE, DMA_TO_DEVICE);
1244free_rx_page:
1245	free_page((unsigned long)p->rx_dma_page);
1246free_tx_page:
1247	free_page((unsigned long)p->tx_dma_page);
1248free_rx_chan:
1249	dma_release_channel(ctlr->dma_rx);
1250free_tx_chan:
1251	dma_release_channel(ctlr->dma_tx);
1252	ctlr->dma_tx = NULL;
1253	return -ENODEV;
1254}
1255
1256static void sh_msiof_release_dma(struct sh_msiof_spi_priv *p)
1257{
1258	struct spi_controller *ctlr = p->ctlr;
 
1259
1260	if (!ctlr->dma_tx)
1261		return;
1262
1263	dma_unmap_single(ctlr->dma_rx->device->dev, p->rx_dma_addr, PAGE_SIZE,
1264			 DMA_FROM_DEVICE);
1265	dma_unmap_single(ctlr->dma_tx->device->dev, p->tx_dma_addr, PAGE_SIZE,
1266			 DMA_TO_DEVICE);
 
1267	free_page((unsigned long)p->rx_dma_page);
1268	free_page((unsigned long)p->tx_dma_page);
1269	dma_release_channel(ctlr->dma_rx);
1270	dma_release_channel(ctlr->dma_tx);
1271}
1272
1273static int sh_msiof_spi_probe(struct platform_device *pdev)
1274{
1275	struct spi_controller *ctlr;
 
1276	const struct sh_msiof_chipdata *chipdata;
1277	struct sh_msiof_spi_info *info;
1278	struct sh_msiof_spi_priv *p;
1279	unsigned long clksrc;
1280	int i;
1281	int ret;
1282
1283	chipdata = of_device_get_match_data(&pdev->dev);
1284	if (chipdata) {
1285		info = sh_msiof_spi_parse_dt(&pdev->dev);
 
 
 
 
 
 
 
 
 
 
 
 
1286	} else {
1287		chipdata = (const void *)pdev->id_entry->driver_data;
1288		info = dev_get_platdata(&pdev->dev);
1289	}
1290
1291	if (!info) {
1292		dev_err(&pdev->dev, "failed to obtain device info\n");
1293		return -ENXIO;
 
1294	}
1295
1296	if (chipdata->flags & SH_MSIOF_FLAG_FIXED_DTDL_200)
1297		info->dtdl = 200;
1298
1299	if (info->mode == MSIOF_SPI_TARGET)
1300		ctlr = spi_alloc_target(&pdev->dev,
1301				        sizeof(struct sh_msiof_spi_priv));
1302	else
1303		ctlr = spi_alloc_host(&pdev->dev,
1304				      sizeof(struct sh_msiof_spi_priv));
1305	if (ctlr == NULL)
1306		return -ENOMEM;
1307
1308	p = spi_controller_get_devdata(ctlr);
1309
1310	platform_set_drvdata(pdev, p);
1311	p->ctlr = ctlr;
1312	p->info = info;
1313	p->min_div_pow = chipdata->min_div_pow;
1314
1315	init_completion(&p->done);
1316	init_completion(&p->done_txdma);
1317
1318	p->clk = devm_clk_get(&pdev->dev, NULL);
1319	if (IS_ERR(p->clk)) {
1320		dev_err(&pdev->dev, "cannot get clock\n");
1321		ret = PTR_ERR(p->clk);
1322		goto err1;
1323	}
1324
1325	i = platform_get_irq(pdev, 0);
1326	if (i < 0) {
1327		ret = i;
 
1328		goto err1;
1329	}
1330
1331	p->mapbase = devm_platform_ioremap_resource(pdev, 0);
 
1332	if (IS_ERR(p->mapbase)) {
1333		ret = PTR_ERR(p->mapbase);
1334		goto err1;
1335	}
1336
1337	ret = devm_request_irq(&pdev->dev, i, sh_msiof_spi_irq, 0,
1338			       dev_name(&pdev->dev), p);
1339	if (ret) {
1340		dev_err(&pdev->dev, "unable to request irq\n");
1341		goto err1;
1342	}
1343
1344	p->pdev = pdev;
1345	pm_runtime_enable(&pdev->dev);
1346
1347	/* Platform data may override FIFO sizes */
1348	p->tx_fifo_size = chipdata->tx_fifo_size;
1349	p->rx_fifo_size = chipdata->rx_fifo_size;
1350	if (p->info->tx_fifo_override)
1351		p->tx_fifo_size = p->info->tx_fifo_override;
1352	if (p->info->rx_fifo_override)
1353		p->rx_fifo_size = p->info->rx_fifo_override;
1354
1355	/* init controller code */
1356	ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1357	ctlr->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE;
1358	clksrc = clk_get_rate(p->clk);
1359	ctlr->min_speed_hz = DIV_ROUND_UP(clksrc, 1024);
1360	ctlr->max_speed_hz = DIV_ROUND_UP(clksrc, 1 << p->min_div_pow);
1361	ctlr->flags = chipdata->ctlr_flags;
1362	ctlr->bus_num = pdev->id;
1363	ctlr->num_chipselect = p->info->num_chipselect;
1364	ctlr->dev.of_node = pdev->dev.of_node;
1365	ctlr->setup = sh_msiof_spi_setup;
1366	ctlr->prepare_message = sh_msiof_prepare_message;
1367	ctlr->target_abort = sh_msiof_target_abort;
1368	ctlr->bits_per_word_mask = chipdata->bits_per_word_mask;
1369	ctlr->auto_runtime_pm = true;
1370	ctlr->transfer_one = sh_msiof_transfer_one;
1371	ctlr->use_gpio_descriptors = true;
1372	ctlr->max_native_cs = MAX_SS;
1373
1374	ret = sh_msiof_request_dma(p);
1375	if (ret < 0)
1376		dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1377
1378	ret = devm_spi_register_controller(&pdev->dev, ctlr);
1379	if (ret < 0) {
1380		dev_err(&pdev->dev, "devm_spi_register_controller error.\n");
1381		goto err2;
1382	}
1383
1384	return 0;
1385
1386 err2:
1387	sh_msiof_release_dma(p);
1388	pm_runtime_disable(&pdev->dev);
1389 err1:
1390	spi_controller_put(ctlr);
1391	return ret;
1392}
1393
1394static void sh_msiof_spi_remove(struct platform_device *pdev)
1395{
1396	struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
1397
1398	sh_msiof_release_dma(p);
1399	pm_runtime_disable(&pdev->dev);
 
1400}
1401
1402static const struct platform_device_id spi_driver_ids[] = {
1403	{ "spi_sh_msiof",	(kernel_ulong_t)&sh_data },
1404	{},
1405};
1406MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1407
1408#ifdef CONFIG_PM_SLEEP
1409static int sh_msiof_spi_suspend(struct device *dev)
1410{
1411	struct sh_msiof_spi_priv *p = dev_get_drvdata(dev);
1412
1413	return spi_controller_suspend(p->ctlr);
1414}
1415
1416static int sh_msiof_spi_resume(struct device *dev)
1417{
1418	struct sh_msiof_spi_priv *p = dev_get_drvdata(dev);
1419
1420	return spi_controller_resume(p->ctlr);
1421}
1422
1423static SIMPLE_DEV_PM_OPS(sh_msiof_spi_pm_ops, sh_msiof_spi_suspend,
1424			 sh_msiof_spi_resume);
1425#define DEV_PM_OPS	(&sh_msiof_spi_pm_ops)
1426#else
1427#define DEV_PM_OPS	NULL
1428#endif /* CONFIG_PM_SLEEP */
1429
1430static struct platform_driver sh_msiof_spi_drv = {
1431	.probe		= sh_msiof_spi_probe,
1432	.remove_new	= sh_msiof_spi_remove,
1433	.id_table	= spi_driver_ids,
1434	.driver		= {
1435		.name		= "spi_sh_msiof",
1436		.pm		= DEV_PM_OPS,
1437		.of_match_table = of_match_ptr(sh_msiof_match),
1438	},
1439};
1440module_platform_driver(sh_msiof_spi_drv);
1441
1442MODULE_DESCRIPTION("SuperH MSIOF SPI Controller Interface Driver");
1443MODULE_AUTHOR("Magnus Damm");
1444MODULE_LICENSE("GPL v2");
v4.10.11
 
   1/*
   2 * SuperH MSIOF SPI Master Interface
   3 *
   4 * Copyright (c) 2009 Magnus Damm
   5 * Copyright (C) 2014 Glider bvba
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 *
  11 */
  12
  13#include <linux/bitmap.h>
  14#include <linux/clk.h>
  15#include <linux/completion.h>
  16#include <linux/delay.h>
  17#include <linux/dma-mapping.h>
  18#include <linux/dmaengine.h>
  19#include <linux/err.h>
  20#include <linux/gpio.h>
  21#include <linux/interrupt.h>
  22#include <linux/io.h>
 
  23#include <linux/kernel.h>
  24#include <linux/module.h>
  25#include <linux/of.h>
  26#include <linux/of_device.h>
  27#include <linux/platform_device.h>
  28#include <linux/pm_runtime.h>
  29#include <linux/sh_dma.h>
  30
  31#include <linux/spi/sh_msiof.h>
  32#include <linux/spi/spi.h>
  33
  34#include <asm/unaligned.h>
  35
 
  36
  37struct sh_msiof_chipdata {
 
  38	u16 tx_fifo_size;
  39	u16 rx_fifo_size;
  40	u16 master_flags;
 
 
  41};
  42
  43struct sh_msiof_spi_priv {
  44	struct spi_master *master;
  45	void __iomem *mapbase;
  46	struct clk *clk;
  47	struct platform_device *pdev;
  48	struct sh_msiof_spi_info *info;
  49	struct completion done;
 
  50	unsigned int tx_fifo_size;
  51	unsigned int rx_fifo_size;
 
  52	void *tx_dma_page;
  53	void *rx_dma_page;
  54	dma_addr_t tx_dma_addr;
  55	dma_addr_t rx_dma_addr;
 
 
 
  56};
  57
  58#define TMDR1	0x00	/* Transmit Mode Register 1 */
  59#define TMDR2	0x04	/* Transmit Mode Register 2 */
  60#define TMDR3	0x08	/* Transmit Mode Register 3 */
  61#define RMDR1	0x10	/* Receive Mode Register 1 */
  62#define RMDR2	0x14	/* Receive Mode Register 2 */
  63#define RMDR3	0x18	/* Receive Mode Register 3 */
  64#define TSCR	0x20	/* Transmit Clock Select Register */
  65#define RSCR	0x22	/* Receive Clock Select Register (SH, A1, APE6) */
  66#define CTR	0x28	/* Control Register */
  67#define FCTR	0x30	/* FIFO Control Register */
  68#define STR	0x40	/* Status Register */
  69#define IER	0x44	/* Interrupt Enable Register */
  70#define TDR1	0x48	/* Transmit Control Data Register 1 (SH, A1) */
  71#define TDR2	0x4c	/* Transmit Control Data Register 2 (SH, A1) */
  72#define TFDR	0x50	/* Transmit FIFO Data Register */
  73#define RDR1	0x58	/* Receive Control Data Register 1 (SH, A1) */
  74#define RDR2	0x5c	/* Receive Control Data Register 2 (SH, A1) */
  75#define RFDR	0x60	/* Receive FIFO Data Register */
  76
  77/* TMDR1 and RMDR1 */
  78#define MDR1_TRMD	 0x80000000 /* Transfer Mode (1 = Master mode) */
  79#define MDR1_SYNCMD_MASK 0x30000000 /* SYNC Mode */
  80#define MDR1_SYNCMD_SPI	 0x20000000 /*   Level mode/SPI */
  81#define MDR1_SYNCMD_LR	 0x30000000 /*   L/R mode */
  82#define MDR1_SYNCAC_SHIFT	 25 /* Sync Polarity (1 = Active-low) */
  83#define MDR1_BITLSB_SHIFT	 24 /* MSB/LSB First (1 = LSB first) */
  84#define MDR1_DTDL_SHIFT		 20 /* Data Pin Bit Delay for MSIOF_SYNC */
  85#define MDR1_SYNCDL_SHIFT	 16 /* Frame Sync Signal Timing Delay */
  86#define MDR1_FLD_MASK	 0x0000000c /* Frame Sync Signal Interval (0-3) */
  87#define MDR1_FLD_SHIFT		  2
  88#define MDR1_XXSTP	 0x00000001 /* Transmission/Reception Stop on FIFO */
  89/* TMDR1 */
  90#define TMDR1_PCON	 0x40000000 /* Transfer Signal Connection */
  91
  92/* TMDR2 and RMDR2 */
  93#define MDR2_BITLEN1(i)	(((i) - 1) << 24) /* Data Size (8-32 bits) */
  94#define MDR2_WDLEN1(i)	(((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */
  95#define MDR2_GRPMASK1	0x00000001 /* Group Output Mask 1 (SH, A1) */
  96
  97/* TSCR and RSCR */
  98#define SCR_BRPS_MASK	    0x1f00 /* Prescaler Setting (1-32) */
  99#define SCR_BRPS(i)	(((i) - 1) << 8)
 100#define SCR_BRDV_MASK	    0x0007 /* Baud Rate Generator's Division Ratio */
 101#define SCR_BRDV_DIV_2	    0x0000
 102#define SCR_BRDV_DIV_4	    0x0001
 103#define SCR_BRDV_DIV_8	    0x0002
 104#define SCR_BRDV_DIV_16	    0x0003
 105#define SCR_BRDV_DIV_32	    0x0004
 106#define SCR_BRDV_DIV_1	    0x0007
 107
 108/* CTR */
 109#define CTR_TSCKIZ_MASK	0xc0000000 /* Transmit Clock I/O Polarity Select */
 110#define CTR_TSCKIZ_SCK	0x80000000 /*   Disable SCK when TX disabled */
 111#define CTR_TSCKIZ_POL_SHIFT	30 /*   Transmit Clock Polarity */
 112#define CTR_RSCKIZ_MASK	0x30000000 /* Receive Clock Polarity Select */
 113#define CTR_RSCKIZ_SCK	0x20000000 /*   Must match CTR_TSCKIZ_SCK */
 114#define CTR_RSCKIZ_POL_SHIFT	28 /*   Receive Clock Polarity */
 115#define CTR_TEDG_SHIFT		27 /* Transmit Timing (1 = falling edge) */
 116#define CTR_REDG_SHIFT		26 /* Receive Timing (1 = falling edge) */
 117#define CTR_TXDIZ_MASK	0x00c00000 /* Pin Output When TX is Disabled */
 118#define CTR_TXDIZ_LOW	0x00000000 /*   0 */
 119#define CTR_TXDIZ_HIGH	0x00400000 /*   1 */
 120#define CTR_TXDIZ_HIZ	0x00800000 /*   High-impedance */
 121#define CTR_TSCKE	0x00008000 /* Transmit Serial Clock Output Enable */
 122#define CTR_TFSE	0x00004000 /* Transmit Frame Sync Signal Output Enable */
 123#define CTR_TXE		0x00000200 /* Transmit Enable */
 124#define CTR_RXE		0x00000100 /* Receive Enable */
 125
 126/* FCTR */
 127#define FCTR_TFWM_MASK	0xe0000000 /* Transmit FIFO Watermark */
 128#define FCTR_TFWM_64	0x00000000 /*  Transfer Request when 64 empty stages */
 129#define FCTR_TFWM_32	0x20000000 /*  Transfer Request when 32 empty stages */
 130#define FCTR_TFWM_24	0x40000000 /*  Transfer Request when 24 empty stages */
 131#define FCTR_TFWM_16	0x60000000 /*  Transfer Request when 16 empty stages */
 132#define FCTR_TFWM_12	0x80000000 /*  Transfer Request when 12 empty stages */
 133#define FCTR_TFWM_8	0xa0000000 /*  Transfer Request when 8 empty stages */
 134#define FCTR_TFWM_4	0xc0000000 /*  Transfer Request when 4 empty stages */
 135#define FCTR_TFWM_1	0xe0000000 /*  Transfer Request when 1 empty stage */
 136#define FCTR_TFUA_MASK	0x07f00000 /* Transmit FIFO Usable Area */
 137#define FCTR_TFUA_SHIFT		20
 138#define FCTR_TFUA(i)	((i) << FCTR_TFUA_SHIFT)
 139#define FCTR_RFWM_MASK	0x0000e000 /* Receive FIFO Watermark */
 140#define FCTR_RFWM_1	0x00000000 /*  Transfer Request when 1 valid stages */
 141#define FCTR_RFWM_4	0x00002000 /*  Transfer Request when 4 valid stages */
 142#define FCTR_RFWM_8	0x00004000 /*  Transfer Request when 8 valid stages */
 143#define FCTR_RFWM_16	0x00006000 /*  Transfer Request when 16 valid stages */
 144#define FCTR_RFWM_32	0x00008000 /*  Transfer Request when 32 valid stages */
 145#define FCTR_RFWM_64	0x0000a000 /*  Transfer Request when 64 valid stages */
 146#define FCTR_RFWM_128	0x0000c000 /*  Transfer Request when 128 valid stages */
 147#define FCTR_RFWM_256	0x0000e000 /*  Transfer Request when 256 valid stages */
 148#define FCTR_RFUA_MASK	0x00001ff0 /* Receive FIFO Usable Area (0x40 = full) */
 149#define FCTR_RFUA_SHIFT		 4
 150#define FCTR_RFUA(i)	((i) << FCTR_RFUA_SHIFT)
 151
 152/* STR */
 153#define STR_TFEMP	0x20000000 /* Transmit FIFO Empty */
 154#define STR_TDREQ	0x10000000 /* Transmit Data Transfer Request */
 155#define STR_TEOF	0x00800000 /* Frame Transmission End */
 156#define STR_TFSERR	0x00200000 /* Transmit Frame Synchronization Error */
 157#define STR_TFOVF	0x00100000 /* Transmit FIFO Overflow */
 158#define STR_TFUDF	0x00080000 /* Transmit FIFO Underflow */
 159#define STR_RFFUL	0x00002000 /* Receive FIFO Full */
 160#define STR_RDREQ	0x00001000 /* Receive Data Transfer Request */
 161#define STR_REOF	0x00000080 /* Frame Reception End */
 162#define STR_RFSERR	0x00000020 /* Receive Frame Synchronization Error */
 163#define STR_RFUDF	0x00000010 /* Receive FIFO Underflow */
 164#define STR_RFOVF	0x00000008 /* Receive FIFO Overflow */
 165
 166/* IER */
 167#define IER_TDMAE	0x80000000 /* Transmit Data DMA Transfer Req. Enable */
 168#define IER_TFEMPE	0x20000000 /* Transmit FIFO Empty Enable */
 169#define IER_TDREQE	0x10000000 /* Transmit Data Transfer Request Enable */
 170#define IER_TEOFE	0x00800000 /* Frame Transmission End Enable */
 171#define IER_TFSERRE	0x00200000 /* Transmit Frame Sync Error Enable */
 172#define IER_TFOVFE	0x00100000 /* Transmit FIFO Overflow Enable */
 173#define IER_TFUDFE	0x00080000 /* Transmit FIFO Underflow Enable */
 174#define IER_RDMAE	0x00008000 /* Receive Data DMA Transfer Req. Enable */
 175#define IER_RFFULE	0x00002000 /* Receive FIFO Full Enable */
 176#define IER_RDREQE	0x00001000 /* Receive Data Transfer Request Enable */
 177#define IER_REOFE	0x00000080 /* Frame Reception End Enable */
 178#define IER_RFSERRE	0x00000020 /* Receive Frame Sync Error Enable */
 179#define IER_RFUDFE	0x00000010 /* Receive FIFO Underflow Enable */
 180#define IER_RFOVFE	0x00000008 /* Receive FIFO Overflow Enable */
 
 
 
 
 
 
 181
 182
 183static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs)
 184{
 185	switch (reg_offs) {
 186	case TSCR:
 187	case RSCR:
 188		return ioread16(p->mapbase + reg_offs);
 189	default:
 190		return ioread32(p->mapbase + reg_offs);
 191	}
 192}
 193
 194static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs,
 195			   u32 value)
 196{
 197	switch (reg_offs) {
 198	case TSCR:
 199	case RSCR:
 200		iowrite16(value, p->mapbase + reg_offs);
 201		break;
 202	default:
 203		iowrite32(value, p->mapbase + reg_offs);
 204		break;
 205	}
 206}
 207
 208static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p,
 209				    u32 clr, u32 set)
 210{
 211	u32 mask = clr | set;
 212	u32 data;
 213	int k;
 214
 215	data = sh_msiof_read(p, CTR);
 216	data &= ~clr;
 217	data |= set;
 218	sh_msiof_write(p, CTR, data);
 219
 220	for (k = 100; k > 0; k--) {
 221		if ((sh_msiof_read(p, CTR) & mask) == set)
 222			break;
 223
 224		udelay(10);
 225	}
 226
 227	return k > 0 ? 0 : -ETIMEDOUT;
 
 228}
 229
 230static irqreturn_t sh_msiof_spi_irq(int irq, void *data)
 231{
 232	struct sh_msiof_spi_priv *p = data;
 233
 234	/* just disable the interrupt and wake up */
 235	sh_msiof_write(p, IER, 0);
 236	complete(&p->done);
 237
 238	return IRQ_HANDLED;
 239}
 240
 241static struct {
 242	unsigned short div;
 243	unsigned short brdv;
 244} const sh_msiof_spi_div_table[] = {
 245	{ 1,	SCR_BRDV_DIV_1 },
 246	{ 2,	SCR_BRDV_DIV_2 },
 247	{ 4,	SCR_BRDV_DIV_4 },
 248	{ 8,	SCR_BRDV_DIV_8 },
 249	{ 16,	SCR_BRDV_DIV_16 },
 250	{ 32,	SCR_BRDV_DIV_32 },
 
 
 
 
 
 
 251};
 252
 253static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p,
 254				      unsigned long parent_rate, u32 spi_hz)
 255{
 256	unsigned long div = 1024;
 
 
 
 257	u32 brps, scr;
 258	size_t k;
 259
 260	if (!WARN_ON(!spi_hz || !parent_rate))
 261		div = DIV_ROUND_UP(parent_rate, spi_hz);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 262
 263	for (k = 0; k < ARRAY_SIZE(sh_msiof_spi_div_table); k++) {
 264		brps = DIV_ROUND_UP(div, sh_msiof_spi_div_table[k].div);
 265		/* SCR_BRDV_DIV_1 is valid only if BRPS is x 1/1 or x 1/2 */
 266		if (sh_msiof_spi_div_table[k].div == 1 && brps > 2)
 267			continue;
 268		if (brps <= 32) /* max of brdv is 32 */
 269			break;
 
 270	}
 271
 272	k = min_t(int, k, ARRAY_SIZE(sh_msiof_spi_div_table) - 1);
 273
 274	scr = sh_msiof_spi_div_table[k].brdv | SCR_BRPS(brps);
 275	sh_msiof_write(p, TSCR, scr);
 276	if (!(p->master->flags & SPI_MASTER_MUST_TX))
 277		sh_msiof_write(p, RSCR, scr);
 278}
 279
 280static u32 sh_msiof_get_delay_bit(u32 dtdl_or_syncdl)
 281{
 282	/*
 283	 * DTDL/SYNCDL bit	: p->info->dtdl or p->info->syncdl
 284	 * b'000		: 0
 285	 * b'001		: 100
 286	 * b'010		: 200
 287	 * b'011 (SYNCDL only)	: 300
 288	 * b'101		: 50
 289	 * b'110		: 150
 290	 */
 291	if (dtdl_or_syncdl % 100)
 292		return dtdl_or_syncdl / 100 + 5;
 293	else
 294		return dtdl_or_syncdl / 100;
 295}
 296
 297static u32 sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv *p)
 298{
 299	u32 val;
 300
 301	if (!p->info)
 302		return 0;
 303
 304	/* check if DTDL and SYNCDL is allowed value */
 305	if (p->info->dtdl > 200 || p->info->syncdl > 300) {
 306		dev_warn(&p->pdev->dev, "DTDL or SYNCDL is too large\n");
 307		return 0;
 308	}
 309
 310	/* check if the sum of DTDL and SYNCDL becomes an integer value  */
 311	if ((p->info->dtdl + p->info->syncdl) % 100) {
 312		dev_warn(&p->pdev->dev, "the sum of DTDL/SYNCDL is not good\n");
 313		return 0;
 314	}
 315
 316	val = sh_msiof_get_delay_bit(p->info->dtdl) << MDR1_DTDL_SHIFT;
 317	val |= sh_msiof_get_delay_bit(p->info->syncdl) << MDR1_SYNCDL_SHIFT;
 318
 319	return val;
 320}
 321
 322static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p,
 323				      u32 cpol, u32 cpha,
 324				      u32 tx_hi_z, u32 lsb_first, u32 cs_high)
 325{
 326	u32 tmp;
 327	int edge;
 328
 329	/*
 330	 * CPOL CPHA     TSCKIZ RSCKIZ TEDG REDG
 331	 *    0    0         10     10    1    1
 332	 *    0    1         10     10    0    0
 333	 *    1    0         11     11    0    0
 334	 *    1    1         11     11    1    1
 335	 */
 336	tmp = MDR1_SYNCMD_SPI | 1 << MDR1_FLD_SHIFT | MDR1_XXSTP;
 337	tmp |= !cs_high << MDR1_SYNCAC_SHIFT;
 338	tmp |= lsb_first << MDR1_BITLSB_SHIFT;
 339	tmp |= sh_msiof_spi_get_dtdl_and_syncdl(p);
 340	sh_msiof_write(p, TMDR1, tmp | MDR1_TRMD | TMDR1_PCON);
 341	if (p->master->flags & SPI_MASTER_MUST_TX) {
 
 
 
 
 
 
 342		/* These bits are reserved if RX needs TX */
 343		tmp &= ~0x0000ffff;
 344	}
 345	sh_msiof_write(p, RMDR1, tmp);
 346
 347	tmp = 0;
 348	tmp |= CTR_TSCKIZ_SCK | cpol << CTR_TSCKIZ_POL_SHIFT;
 349	tmp |= CTR_RSCKIZ_SCK | cpol << CTR_RSCKIZ_POL_SHIFT;
 350
 351	edge = cpol ^ !cpha;
 352
 353	tmp |= edge << CTR_TEDG_SHIFT;
 354	tmp |= edge << CTR_REDG_SHIFT;
 355	tmp |= tx_hi_z ? CTR_TXDIZ_HIZ : CTR_TXDIZ_LOW;
 356	sh_msiof_write(p, CTR, tmp);
 357}
 358
 359static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p,
 360				       const void *tx_buf, void *rx_buf,
 361				       u32 bits, u32 words)
 362{
 363	u32 dr2 = MDR2_BITLEN1(bits) | MDR2_WDLEN1(words);
 364
 365	if (tx_buf || (p->master->flags & SPI_MASTER_MUST_TX))
 366		sh_msiof_write(p, TMDR2, dr2);
 367	else
 368		sh_msiof_write(p, TMDR2, dr2 | MDR2_GRPMASK1);
 369
 370	if (rx_buf)
 371		sh_msiof_write(p, RMDR2, dr2);
 372}
 373
 374static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p)
 375{
 376	sh_msiof_write(p, STR, sh_msiof_read(p, STR));
 
 377}
 378
 379static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p,
 380				      const void *tx_buf, int words, int fs)
 381{
 382	const u8 *buf_8 = tx_buf;
 383	int k;
 384
 385	for (k = 0; k < words; k++)
 386		sh_msiof_write(p, TFDR, buf_8[k] << fs);
 387}
 388
 389static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p,
 390				       const void *tx_buf, int words, int fs)
 391{
 392	const u16 *buf_16 = tx_buf;
 393	int k;
 394
 395	for (k = 0; k < words; k++)
 396		sh_msiof_write(p, TFDR, buf_16[k] << fs);
 397}
 398
 399static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p,
 400					const void *tx_buf, int words, int fs)
 401{
 402	const u16 *buf_16 = tx_buf;
 403	int k;
 404
 405	for (k = 0; k < words; k++)
 406		sh_msiof_write(p, TFDR, get_unaligned(&buf_16[k]) << fs);
 407}
 408
 409static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p,
 410				       const void *tx_buf, int words, int fs)
 411{
 412	const u32 *buf_32 = tx_buf;
 413	int k;
 414
 415	for (k = 0; k < words; k++)
 416		sh_msiof_write(p, TFDR, buf_32[k] << fs);
 417}
 418
 419static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p,
 420					const void *tx_buf, int words, int fs)
 421{
 422	const u32 *buf_32 = tx_buf;
 423	int k;
 424
 425	for (k = 0; k < words; k++)
 426		sh_msiof_write(p, TFDR, get_unaligned(&buf_32[k]) << fs);
 427}
 428
 429static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p,
 430					const void *tx_buf, int words, int fs)
 431{
 432	const u32 *buf_32 = tx_buf;
 433	int k;
 434
 435	for (k = 0; k < words; k++)
 436		sh_msiof_write(p, TFDR, swab32(buf_32[k] << fs));
 437}
 438
 439static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p,
 440					 const void *tx_buf, int words, int fs)
 441{
 442	const u32 *buf_32 = tx_buf;
 443	int k;
 444
 445	for (k = 0; k < words; k++)
 446		sh_msiof_write(p, TFDR, swab32(get_unaligned(&buf_32[k]) << fs));
 447}
 448
 449static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p,
 450				     void *rx_buf, int words, int fs)
 451{
 452	u8 *buf_8 = rx_buf;
 453	int k;
 454
 455	for (k = 0; k < words; k++)
 456		buf_8[k] = sh_msiof_read(p, RFDR) >> fs;
 457}
 458
 459static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p,
 460				      void *rx_buf, int words, int fs)
 461{
 462	u16 *buf_16 = rx_buf;
 463	int k;
 464
 465	for (k = 0; k < words; k++)
 466		buf_16[k] = sh_msiof_read(p, RFDR) >> fs;
 467}
 468
 469static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p,
 470				       void *rx_buf, int words, int fs)
 471{
 472	u16 *buf_16 = rx_buf;
 473	int k;
 474
 475	for (k = 0; k < words; k++)
 476		put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_16[k]);
 477}
 478
 479static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p,
 480				      void *rx_buf, int words, int fs)
 481{
 482	u32 *buf_32 = rx_buf;
 483	int k;
 484
 485	for (k = 0; k < words; k++)
 486		buf_32[k] = sh_msiof_read(p, RFDR) >> fs;
 487}
 488
 489static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p,
 490				       void *rx_buf, int words, int fs)
 491{
 492	u32 *buf_32 = rx_buf;
 493	int k;
 494
 495	for (k = 0; k < words; k++)
 496		put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_32[k]);
 497}
 498
 499static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p,
 500				       void *rx_buf, int words, int fs)
 501{
 502	u32 *buf_32 = rx_buf;
 503	int k;
 504
 505	for (k = 0; k < words; k++)
 506		buf_32[k] = swab32(sh_msiof_read(p, RFDR) >> fs);
 507}
 508
 509static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p,
 510				       void *rx_buf, int words, int fs)
 511{
 512	u32 *buf_32 = rx_buf;
 513	int k;
 514
 515	for (k = 0; k < words; k++)
 516		put_unaligned(swab32(sh_msiof_read(p, RFDR) >> fs), &buf_32[k]);
 517}
 518
 519static int sh_msiof_spi_setup(struct spi_device *spi)
 520{
 521	struct device_node	*np = spi->master->dev.of_node;
 522	struct sh_msiof_spi_priv *p = spi_master_get_devdata(spi->master);
 
 523
 524	pm_runtime_get_sync(&p->pdev->dev);
 525
 526	if (!np) {
 527		/*
 528		 * Use spi->controller_data for CS (same strategy as spi_gpio),
 529		 * if any. otherwise let HW control CS
 530		 */
 531		spi->cs_gpio = (uintptr_t)spi->controller_data;
 532	}
 533
 534	/* Configure pins before deasserting CS */
 535	sh_msiof_spi_set_pin_regs(p, !!(spi->mode & SPI_CPOL),
 536				  !!(spi->mode & SPI_CPHA),
 537				  !!(spi->mode & SPI_3WIRE),
 538				  !!(spi->mode & SPI_LSB_FIRST),
 539				  !!(spi->mode & SPI_CS_HIGH));
 540
 541	if (spi->cs_gpio >= 0)
 542		gpio_set_value(spi->cs_gpio, !(spi->mode & SPI_CS_HIGH));
 543
 
 
 
 544
 
 
 
 
 
 
 
 
 
 
 
 
 545	pm_runtime_put(&p->pdev->dev);
 546
 
 547	return 0;
 548}
 549
 550static int sh_msiof_prepare_message(struct spi_master *master,
 551				    struct spi_message *msg)
 552{
 553	struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
 554	const struct spi_device *spi = msg->spi;
 
 555
 556	/* Configure pins before asserting CS */
 557	sh_msiof_spi_set_pin_regs(p, !!(spi->mode & SPI_CPOL),
 
 
 
 
 
 
 
 558				  !!(spi->mode & SPI_CPHA),
 559				  !!(spi->mode & SPI_3WIRE),
 560				  !!(spi->mode & SPI_LSB_FIRST),
 561				  !!(spi->mode & SPI_CS_HIGH));
 562	return 0;
 563}
 564
 565static int sh_msiof_spi_start(struct sh_msiof_spi_priv *p, void *rx_buf)
 566{
 567	int ret;
 
 568
 569	/* setup clock and rx/tx signals */
 570	ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TSCKE);
 
 571	if (rx_buf && !ret)
 572		ret = sh_msiof_modify_ctr_wait(p, 0, CTR_RXE);
 573	if (!ret)
 574		ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TXE);
 575
 576	/* start by setting frame bit */
 577	if (!ret)
 578		ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TFSE);
 579
 580	return ret;
 581}
 582
 583static int sh_msiof_spi_stop(struct sh_msiof_spi_priv *p, void *rx_buf)
 584{
 585	int ret;
 
 586
 587	/* shut down frame, rx/tx and clock signals */
 588	ret = sh_msiof_modify_ctr_wait(p, CTR_TFSE, 0);
 
 589	if (!ret)
 590		ret = sh_msiof_modify_ctr_wait(p, CTR_TXE, 0);
 591	if (rx_buf && !ret)
 592		ret = sh_msiof_modify_ctr_wait(p, CTR_RXE, 0);
 593	if (!ret)
 594		ret = sh_msiof_modify_ctr_wait(p, CTR_TSCKE, 0);
 595
 596	return ret;
 597}
 598
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 599static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p,
 600				  void (*tx_fifo)(struct sh_msiof_spi_priv *,
 601						  const void *, int, int),
 602				  void (*rx_fifo)(struct sh_msiof_spi_priv *,
 603						  void *, int, int),
 604				  const void *tx_buf, void *rx_buf,
 605				  int words, int bits)
 606{
 607	int fifo_shift;
 608	int ret;
 609
 610	/* limit maximum word transfer to rx/tx fifo size */
 611	if (tx_buf)
 612		words = min_t(int, words, p->tx_fifo_size);
 613	if (rx_buf)
 614		words = min_t(int, words, p->rx_fifo_size);
 615
 616	/* the fifo contents need shifting */
 617	fifo_shift = 32 - bits;
 618
 619	/* default FIFO watermarks for PIO */
 620	sh_msiof_write(p, FCTR, 0);
 621
 622	/* setup msiof transfer mode registers */
 623	sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words);
 624	sh_msiof_write(p, IER, IER_TEOFE | IER_REOFE);
 625
 626	/* write tx fifo */
 627	if (tx_buf)
 628		tx_fifo(p, tx_buf, words, fifo_shift);
 629
 630	reinit_completion(&p->done);
 
 631
 632	ret = sh_msiof_spi_start(p, rx_buf);
 633	if (ret) {
 634		dev_err(&p->pdev->dev, "failed to start hardware\n");
 635		goto stop_ier;
 636	}
 637
 638	/* wait for tx fifo to be emptied / rx fifo to be filled */
 639	if (!wait_for_completion_timeout(&p->done, HZ)) {
 640		dev_err(&p->pdev->dev, "PIO timeout\n");
 641		ret = -ETIMEDOUT;
 642		goto stop_reset;
 643	}
 644
 645	/* read rx fifo */
 646	if (rx_buf)
 647		rx_fifo(p, rx_buf, words, fifo_shift);
 648
 649	/* clear status bits */
 650	sh_msiof_reset_str(p);
 651
 652	ret = sh_msiof_spi_stop(p, rx_buf);
 653	if (ret) {
 654		dev_err(&p->pdev->dev, "failed to shut down hardware\n");
 655		return ret;
 656	}
 657
 658	return words;
 659
 660stop_reset:
 661	sh_msiof_reset_str(p);
 662	sh_msiof_spi_stop(p, rx_buf);
 663stop_ier:
 664	sh_msiof_write(p, IER, 0);
 665	return ret;
 666}
 667
 668static void sh_msiof_dma_complete(void *arg)
 669{
 670	struct sh_msiof_spi_priv *p = arg;
 671
 672	sh_msiof_write(p, IER, 0);
 673	complete(&p->done);
 674}
 675
 676static int sh_msiof_dma_once(struct sh_msiof_spi_priv *p, const void *tx,
 677			     void *rx, unsigned int len)
 678{
 679	u32 ier_bits = 0;
 680	struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
 681	dma_cookie_t cookie;
 682	int ret;
 683
 684	/* First prepare and submit the DMA request(s), as this may fail */
 685	if (rx) {
 686		ier_bits |= IER_RDREQE | IER_RDMAE;
 687		desc_rx = dmaengine_prep_slave_single(p->master->dma_rx,
 688					p->rx_dma_addr, len, DMA_FROM_DEVICE,
 689					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 690		if (!desc_rx)
 691			return -EAGAIN;
 692
 693		desc_rx->callback = sh_msiof_dma_complete;
 694		desc_rx->callback_param = p;
 695		cookie = dmaengine_submit(desc_rx);
 696		if (dma_submit_error(cookie))
 697			return cookie;
 698	}
 699
 700	if (tx) {
 701		ier_bits |= IER_TDREQE | IER_TDMAE;
 702		dma_sync_single_for_device(p->master->dma_tx->device->dev,
 703					   p->tx_dma_addr, len, DMA_TO_DEVICE);
 704		desc_tx = dmaengine_prep_slave_single(p->master->dma_tx,
 705					p->tx_dma_addr, len, DMA_TO_DEVICE,
 706					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 707		if (!desc_tx) {
 708			ret = -EAGAIN;
 709			goto no_dma_tx;
 710		}
 711
 712		if (rx) {
 713			/* No callback */
 714			desc_tx->callback = NULL;
 715		} else {
 716			desc_tx->callback = sh_msiof_dma_complete;
 717			desc_tx->callback_param = p;
 718		}
 719		cookie = dmaengine_submit(desc_tx);
 720		if (dma_submit_error(cookie)) {
 721			ret = cookie;
 722			goto no_dma_tx;
 723		}
 724	}
 725
 726	/* 1 stage FIFO watermarks for DMA */
 727	sh_msiof_write(p, FCTR, FCTR_TFWM_1 | FCTR_RFWM_1);
 728
 729	/* setup msiof transfer mode registers (32-bit words) */
 730	sh_msiof_spi_set_mode_regs(p, tx, rx, 32, len / 4);
 731
 732	sh_msiof_write(p, IER, ier_bits);
 733
 734	reinit_completion(&p->done);
 
 
 
 735
 736	/* Now start DMA */
 737	if (rx)
 738		dma_async_issue_pending(p->master->dma_rx);
 739	if (tx)
 740		dma_async_issue_pending(p->master->dma_tx);
 741
 742	ret = sh_msiof_spi_start(p, rx);
 743	if (ret) {
 744		dev_err(&p->pdev->dev, "failed to start hardware\n");
 745		goto stop_dma;
 746	}
 747
 748	/* wait for tx fifo to be emptied / rx fifo to be filled */
 749	if (!wait_for_completion_timeout(&p->done, HZ)) {
 750		dev_err(&p->pdev->dev, "DMA timeout\n");
 751		ret = -ETIMEDOUT;
 752		goto stop_reset;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 753	}
 754
 755	/* clear status bits */
 756	sh_msiof_reset_str(p);
 757
 758	ret = sh_msiof_spi_stop(p, rx);
 759	if (ret) {
 760		dev_err(&p->pdev->dev, "failed to shut down hardware\n");
 761		return ret;
 762	}
 763
 764	if (rx)
 765		dma_sync_single_for_cpu(p->master->dma_rx->device->dev,
 766					p->rx_dma_addr, len,
 767					DMA_FROM_DEVICE);
 768
 769	return 0;
 770
 771stop_reset:
 772	sh_msiof_reset_str(p);
 773	sh_msiof_spi_stop(p, rx);
 774stop_dma:
 775	if (tx)
 776		dmaengine_terminate_all(p->master->dma_tx);
 777no_dma_tx:
 778	if (rx)
 779		dmaengine_terminate_all(p->master->dma_rx);
 780	sh_msiof_write(p, IER, 0);
 781	return ret;
 782}
 783
 784static void copy_bswap32(u32 *dst, const u32 *src, unsigned int words)
 785{
 786	/* src or dst can be unaligned, but not both */
 787	if ((unsigned long)src & 3) {
 788		while (words--) {
 789			*dst++ = swab32(get_unaligned(src));
 790			src++;
 791		}
 792	} else if ((unsigned long)dst & 3) {
 793		while (words--) {
 794			put_unaligned(swab32(*src++), dst);
 795			dst++;
 796		}
 797	} else {
 798		while (words--)
 799			*dst++ = swab32(*src++);
 800	}
 801}
 802
 803static void copy_wswap32(u32 *dst, const u32 *src, unsigned int words)
 804{
 805	/* src or dst can be unaligned, but not both */
 806	if ((unsigned long)src & 3) {
 807		while (words--) {
 808			*dst++ = swahw32(get_unaligned(src));
 809			src++;
 810		}
 811	} else if ((unsigned long)dst & 3) {
 812		while (words--) {
 813			put_unaligned(swahw32(*src++), dst);
 814			dst++;
 815		}
 816	} else {
 817		while (words--)
 818			*dst++ = swahw32(*src++);
 819	}
 820}
 821
 822static void copy_plain32(u32 *dst, const u32 *src, unsigned int words)
 823{
 824	memcpy(dst, src, words * 4);
 825}
 826
 827static int sh_msiof_transfer_one(struct spi_master *master,
 828				 struct spi_device *spi,
 829				 struct spi_transfer *t)
 830{
 831	struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
 832	void (*copy32)(u32 *, const u32 *, unsigned int);
 833	void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int);
 834	void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int);
 835	const void *tx_buf = t->tx_buf;
 836	void *rx_buf = t->rx_buf;
 837	unsigned int len = t->len;
 838	unsigned int bits = t->bits_per_word;
 839	unsigned int bytes_per_word;
 840	unsigned int words;
 841	int n;
 842	bool swab;
 843	int ret;
 844
 
 
 
 845	/* setup clocks (clock already enabled in chipselect()) */
 846	sh_msiof_spi_set_clk_regs(p, clk_get_rate(p->clk), t->speed_hz);
 
 847
 848	while (master->dma_tx && len > 15) {
 849		/*
 850		 *  DMA supports 32-bit words only, hence pack 8-bit and 16-bit
 851		 *  words, with byte resp. word swapping.
 852		 */
 853		unsigned int l = 0;
 854
 855		if (tx_buf)
 856			l = min(len, p->tx_fifo_size * 4);
 857		if (rx_buf)
 858			l = min(len, p->rx_fifo_size * 4);
 859
 860		if (bits <= 8) {
 861			if (l & 3)
 862				break;
 863			copy32 = copy_bswap32;
 864		} else if (bits <= 16) {
 865			if (l & 1)
 866				break;
 867			copy32 = copy_wswap32;
 868		} else {
 869			copy32 = copy_plain32;
 870		}
 871
 872		if (tx_buf)
 873			copy32(p->tx_dma_page, tx_buf, l / 4);
 874
 875		ret = sh_msiof_dma_once(p, tx_buf, rx_buf, l);
 876		if (ret == -EAGAIN) {
 877			pr_warn_once("%s %s: DMA not available, falling back to PIO\n",
 878				     dev_driver_string(&p->pdev->dev),
 879				     dev_name(&p->pdev->dev));
 880			break;
 881		}
 882		if (ret)
 883			return ret;
 884
 885		if (rx_buf) {
 886			copy32(rx_buf, p->rx_dma_page, l / 4);
 887			rx_buf += l;
 888		}
 889		if (tx_buf)
 890			tx_buf += l;
 891
 892		len -= l;
 893		if (!len)
 894			return 0;
 895	}
 896
 897	if (bits <= 8 && len > 15 && !(len & 3)) {
 898		bits = 32;
 899		swab = true;
 900	} else {
 901		swab = false;
 902	}
 903
 904	/* setup bytes per word and fifo read/write functions */
 905	if (bits <= 8) {
 906		bytes_per_word = 1;
 907		tx_fifo = sh_msiof_spi_write_fifo_8;
 908		rx_fifo = sh_msiof_spi_read_fifo_8;
 909	} else if (bits <= 16) {
 910		bytes_per_word = 2;
 911		if ((unsigned long)tx_buf & 0x01)
 912			tx_fifo = sh_msiof_spi_write_fifo_16u;
 913		else
 914			tx_fifo = sh_msiof_spi_write_fifo_16;
 915
 916		if ((unsigned long)rx_buf & 0x01)
 917			rx_fifo = sh_msiof_spi_read_fifo_16u;
 918		else
 919			rx_fifo = sh_msiof_spi_read_fifo_16;
 920	} else if (swab) {
 921		bytes_per_word = 4;
 922		if ((unsigned long)tx_buf & 0x03)
 923			tx_fifo = sh_msiof_spi_write_fifo_s32u;
 924		else
 925			tx_fifo = sh_msiof_spi_write_fifo_s32;
 926
 927		if ((unsigned long)rx_buf & 0x03)
 928			rx_fifo = sh_msiof_spi_read_fifo_s32u;
 929		else
 930			rx_fifo = sh_msiof_spi_read_fifo_s32;
 931	} else {
 932		bytes_per_word = 4;
 933		if ((unsigned long)tx_buf & 0x03)
 934			tx_fifo = sh_msiof_spi_write_fifo_32u;
 935		else
 936			tx_fifo = sh_msiof_spi_write_fifo_32;
 937
 938		if ((unsigned long)rx_buf & 0x03)
 939			rx_fifo = sh_msiof_spi_read_fifo_32u;
 940		else
 941			rx_fifo = sh_msiof_spi_read_fifo_32;
 942	}
 943
 944	/* transfer in fifo sized chunks */
 945	words = len / bytes_per_word;
 946
 947	while (words > 0) {
 948		n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo, tx_buf, rx_buf,
 949					   words, bits);
 950		if (n < 0)
 951			return n;
 952
 953		if (tx_buf)
 954			tx_buf += n * bytes_per_word;
 955		if (rx_buf)
 956			rx_buf += n * bytes_per_word;
 957		words -= n;
 
 
 
 
 
 
 
 
 958	}
 959
 960	return 0;
 961}
 962
 963static const struct sh_msiof_chipdata sh_data = {
 
 964	.tx_fifo_size = 64,
 965	.rx_fifo_size = 64,
 966	.master_flags = 0,
 
 967};
 968
 969static const struct sh_msiof_chipdata r8a779x_data = {
 
 
 970	.tx_fifo_size = 64,
 971	.rx_fifo_size = 64,
 972	.master_flags = SPI_MASTER_MUST_TX,
 
 973};
 974
 975static const struct of_device_id sh_msiof_match[] = {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 976	{ .compatible = "renesas,sh-mobile-msiof", .data = &sh_data },
 977	{ .compatible = "renesas,msiof-r8a7790",   .data = &r8a779x_data },
 978	{ .compatible = "renesas,msiof-r8a7791",   .data = &r8a779x_data },
 979	{ .compatible = "renesas,msiof-r8a7792",   .data = &r8a779x_data },
 980	{ .compatible = "renesas,msiof-r8a7793",   .data = &r8a779x_data },
 981	{ .compatible = "renesas,msiof-r8a7794",   .data = &r8a779x_data },
 982	{ .compatible = "renesas,rcar-gen2-msiof", .data = &r8a779x_data },
 983	{ .compatible = "renesas,msiof-r8a7796",   .data = &r8a779x_data },
 984	{ .compatible = "renesas,rcar-gen3-msiof", .data = &r8a779x_data },
 
 
 
 
 985	{ .compatible = "renesas,sh-msiof",        .data = &sh_data }, /* Deprecated */
 986	{},
 987};
 988MODULE_DEVICE_TABLE(of, sh_msiof_match);
 989
 990#ifdef CONFIG_OF
 991static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
 992{
 993	struct sh_msiof_spi_info *info;
 994	struct device_node *np = dev->of_node;
 995	u32 num_cs = 1;
 996
 997	info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL);
 998	if (!info)
 999		return NULL;
1000
 
 
 
1001	/* Parse the MSIOF properties */
1002	of_property_read_u32(np, "num-cs", &num_cs);
 
1003	of_property_read_u32(np, "renesas,tx-fifo-size",
1004					&info->tx_fifo_override);
1005	of_property_read_u32(np, "renesas,rx-fifo-size",
1006					&info->rx_fifo_override);
1007	of_property_read_u32(np, "renesas,dtdl", &info->dtdl);
1008	of_property_read_u32(np, "renesas,syncdl", &info->syncdl);
1009
1010	info->num_chipselect = num_cs;
1011
1012	return info;
1013}
1014#else
1015static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1016{
1017	return NULL;
1018}
1019#endif
1020
1021static struct dma_chan *sh_msiof_request_dma_chan(struct device *dev,
1022	enum dma_transfer_direction dir, unsigned int id, dma_addr_t port_addr)
1023{
1024	dma_cap_mask_t mask;
1025	struct dma_chan *chan;
1026	struct dma_slave_config cfg;
1027	int ret;
1028
1029	dma_cap_zero(mask);
1030	dma_cap_set(DMA_SLAVE, mask);
1031
1032	chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1033				(void *)(unsigned long)id, dev,
1034				dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1035	if (!chan) {
1036		dev_warn(dev, "dma_request_slave_channel_compat failed\n");
1037		return NULL;
1038	}
1039
1040	memset(&cfg, 0, sizeof(cfg));
1041	cfg.direction = dir;
1042	if (dir == DMA_MEM_TO_DEV) {
1043		cfg.dst_addr = port_addr;
1044		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1045	} else {
1046		cfg.src_addr = port_addr;
1047		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1048	}
1049
1050	ret = dmaengine_slave_config(chan, &cfg);
1051	if (ret) {
1052		dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1053		dma_release_channel(chan);
1054		return NULL;
1055	}
1056
1057	return chan;
1058}
1059
1060static int sh_msiof_request_dma(struct sh_msiof_spi_priv *p)
1061{
1062	struct platform_device *pdev = p->pdev;
1063	struct device *dev = &pdev->dev;
1064	const struct sh_msiof_spi_info *info = dev_get_platdata(dev);
1065	unsigned int dma_tx_id, dma_rx_id;
1066	const struct resource *res;
1067	struct spi_master *master;
1068	struct device *tx_dev, *rx_dev;
1069
1070	if (dev->of_node) {
1071		/* In the OF case we will get the slave IDs from the DT */
1072		dma_tx_id = 0;
1073		dma_rx_id = 0;
1074	} else if (info && info->dma_tx_id && info->dma_rx_id) {
1075		dma_tx_id = info->dma_tx_id;
1076		dma_rx_id = info->dma_rx_id;
1077	} else {
1078		/* The driver assumes no error */
1079		return 0;
1080	}
1081
1082	/* The DMA engine uses the second register set, if present */
1083	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1084	if (!res)
1085		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1086
1087	master = p->master;
1088	master->dma_tx = sh_msiof_request_dma_chan(dev, DMA_MEM_TO_DEV,
1089						   dma_tx_id,
1090						   res->start + TFDR);
1091	if (!master->dma_tx)
1092		return -ENODEV;
1093
1094	master->dma_rx = sh_msiof_request_dma_chan(dev, DMA_DEV_TO_MEM,
1095						   dma_rx_id,
1096						   res->start + RFDR);
1097	if (!master->dma_rx)
1098		goto free_tx_chan;
1099
1100	p->tx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1101	if (!p->tx_dma_page)
1102		goto free_rx_chan;
1103
1104	p->rx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1105	if (!p->rx_dma_page)
1106		goto free_tx_page;
1107
1108	tx_dev = master->dma_tx->device->dev;
1109	p->tx_dma_addr = dma_map_single(tx_dev, p->tx_dma_page, PAGE_SIZE,
1110					DMA_TO_DEVICE);
1111	if (dma_mapping_error(tx_dev, p->tx_dma_addr))
1112		goto free_rx_page;
1113
1114	rx_dev = master->dma_rx->device->dev;
1115	p->rx_dma_addr = dma_map_single(rx_dev, p->rx_dma_page, PAGE_SIZE,
1116					DMA_FROM_DEVICE);
1117	if (dma_mapping_error(rx_dev, p->rx_dma_addr))
1118		goto unmap_tx_page;
1119
1120	dev_info(dev, "DMA available");
1121	return 0;
1122
1123unmap_tx_page:
1124	dma_unmap_single(tx_dev, p->tx_dma_addr, PAGE_SIZE, DMA_TO_DEVICE);
1125free_rx_page:
1126	free_page((unsigned long)p->rx_dma_page);
1127free_tx_page:
1128	free_page((unsigned long)p->tx_dma_page);
1129free_rx_chan:
1130	dma_release_channel(master->dma_rx);
1131free_tx_chan:
1132	dma_release_channel(master->dma_tx);
1133	master->dma_tx = NULL;
1134	return -ENODEV;
1135}
1136
1137static void sh_msiof_release_dma(struct sh_msiof_spi_priv *p)
1138{
1139	struct spi_master *master = p->master;
1140	struct device *dev;
1141
1142	if (!master->dma_tx)
1143		return;
1144
1145	dev = &p->pdev->dev;
1146	dma_unmap_single(master->dma_rx->device->dev, p->rx_dma_addr,
1147			 PAGE_SIZE, DMA_FROM_DEVICE);
1148	dma_unmap_single(master->dma_tx->device->dev, p->tx_dma_addr,
1149			 PAGE_SIZE, DMA_TO_DEVICE);
1150	free_page((unsigned long)p->rx_dma_page);
1151	free_page((unsigned long)p->tx_dma_page);
1152	dma_release_channel(master->dma_rx);
1153	dma_release_channel(master->dma_tx);
1154}
1155
1156static int sh_msiof_spi_probe(struct platform_device *pdev)
1157{
1158	struct resource	*r;
1159	struct spi_master *master;
1160	const struct sh_msiof_chipdata *chipdata;
1161	const struct of_device_id *of_id;
1162	struct sh_msiof_spi_priv *p;
 
1163	int i;
1164	int ret;
1165
1166	master = spi_alloc_master(&pdev->dev, sizeof(struct sh_msiof_spi_priv));
1167	if (master == NULL) {
1168		dev_err(&pdev->dev, "failed to allocate spi master\n");
1169		return -ENOMEM;
1170	}
1171
1172	p = spi_master_get_devdata(master);
1173
1174	platform_set_drvdata(pdev, p);
1175	p->master = master;
1176
1177	of_id = of_match_device(sh_msiof_match, &pdev->dev);
1178	if (of_id) {
1179		chipdata = of_id->data;
1180		p->info = sh_msiof_spi_parse_dt(&pdev->dev);
1181	} else {
1182		chipdata = (const void *)pdev->id_entry->driver_data;
1183		p->info = dev_get_platdata(&pdev->dev);
1184	}
1185
1186	if (!p->info) {
1187		dev_err(&pdev->dev, "failed to obtain device info\n");
1188		ret = -ENXIO;
1189		goto err1;
1190	}
1191
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1192	init_completion(&p->done);
 
1193
1194	p->clk = devm_clk_get(&pdev->dev, NULL);
1195	if (IS_ERR(p->clk)) {
1196		dev_err(&pdev->dev, "cannot get clock\n");
1197		ret = PTR_ERR(p->clk);
1198		goto err1;
1199	}
1200
1201	i = platform_get_irq(pdev, 0);
1202	if (i < 0) {
1203		dev_err(&pdev->dev, "cannot get platform IRQ\n");
1204		ret = -ENOENT;
1205		goto err1;
1206	}
1207
1208	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1209	p->mapbase = devm_ioremap_resource(&pdev->dev, r);
1210	if (IS_ERR(p->mapbase)) {
1211		ret = PTR_ERR(p->mapbase);
1212		goto err1;
1213	}
1214
1215	ret = devm_request_irq(&pdev->dev, i, sh_msiof_spi_irq, 0,
1216			       dev_name(&pdev->dev), p);
1217	if (ret) {
1218		dev_err(&pdev->dev, "unable to request irq\n");
1219		goto err1;
1220	}
1221
1222	p->pdev = pdev;
1223	pm_runtime_enable(&pdev->dev);
1224
1225	/* Platform data may override FIFO sizes */
1226	p->tx_fifo_size = chipdata->tx_fifo_size;
1227	p->rx_fifo_size = chipdata->rx_fifo_size;
1228	if (p->info->tx_fifo_override)
1229		p->tx_fifo_size = p->info->tx_fifo_override;
1230	if (p->info->rx_fifo_override)
1231		p->rx_fifo_size = p->info->rx_fifo_override;
1232
1233	/* init master code */
1234	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1235	master->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE;
1236	master->flags = chipdata->master_flags;
1237	master->bus_num = pdev->id;
1238	master->dev.of_node = pdev->dev.of_node;
1239	master->num_chipselect = p->info->num_chipselect;
1240	master->setup = sh_msiof_spi_setup;
1241	master->prepare_message = sh_msiof_prepare_message;
1242	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32);
1243	master->auto_runtime_pm = true;
1244	master->transfer_one = sh_msiof_transfer_one;
 
 
 
 
 
 
1245
1246	ret = sh_msiof_request_dma(p);
1247	if (ret < 0)
1248		dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1249
1250	ret = devm_spi_register_master(&pdev->dev, master);
1251	if (ret < 0) {
1252		dev_err(&pdev->dev, "spi_register_master error.\n");
1253		goto err2;
1254	}
1255
1256	return 0;
1257
1258 err2:
1259	sh_msiof_release_dma(p);
1260	pm_runtime_disable(&pdev->dev);
1261 err1:
1262	spi_master_put(master);
1263	return ret;
1264}
1265
1266static int sh_msiof_spi_remove(struct platform_device *pdev)
1267{
1268	struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
1269
1270	sh_msiof_release_dma(p);
1271	pm_runtime_disable(&pdev->dev);
1272	return 0;
1273}
1274
1275static const struct platform_device_id spi_driver_ids[] = {
1276	{ "spi_sh_msiof",	(kernel_ulong_t)&sh_data },
1277	{},
1278};
1279MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1280
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1281static struct platform_driver sh_msiof_spi_drv = {
1282	.probe		= sh_msiof_spi_probe,
1283	.remove		= sh_msiof_spi_remove,
1284	.id_table	= spi_driver_ids,
1285	.driver		= {
1286		.name		= "spi_sh_msiof",
 
1287		.of_match_table = of_match_ptr(sh_msiof_match),
1288	},
1289};
1290module_platform_driver(sh_msiof_spi_drv);
1291
1292MODULE_DESCRIPTION("SuperH MSIOF SPI Master Interface Driver");
1293MODULE_AUTHOR("Magnus Damm");
1294MODULE_LICENSE("GPL v2");
1295MODULE_ALIAS("platform:spi_sh_msiof");