Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) Microsoft Corporation.
4 *
5 * Author:
6 * Jake Oshins <jakeo@microsoft.com>
7 *
8 * This driver acts as a paravirtual front-end for PCI Express root buses.
9 * When a PCI Express function (either an entire device or an SR-IOV
10 * Virtual Function) is being passed through to the VM, this driver exposes
11 * a new bus to the guest VM. This is modeled as a root PCI bus because
12 * no bridges are being exposed to the VM. In fact, with a "Generation 2"
13 * VM within Hyper-V, there may seem to be no PCI bus at all in the VM
14 * until a device as been exposed using this driver.
15 *
16 * Each root PCI bus has its own PCI domain, which is called "Segment" in
17 * the PCI Firmware Specifications. Thus while each device passed through
18 * to the VM using this front-end will appear at "device 0", the domain will
19 * be unique. Typically, each bus will have one PCI function on it, though
20 * this driver does support more than one.
21 *
22 * In order to map the interrupts from the device through to the guest VM,
23 * this driver also implements an IRQ Domain, which handles interrupts (either
24 * MSI or MSI-X) associated with the functions on the bus. As interrupts are
25 * set up, torn down, or reaffined, this driver communicates with the
26 * underlying hypervisor to adjust the mappings in the I/O MMU so that each
27 * interrupt will be delivered to the correct virtual processor at the right
28 * vector. This driver does not support level-triggered (line-based)
29 * interrupts, and will report that the Interrupt Line register in the
30 * function's configuration space is zero.
31 *
32 * The rest of this driver mostly maps PCI concepts onto underlying Hyper-V
33 * facilities. For instance, the configuration space of a function exposed
34 * by Hyper-V is mapped into a single page of memory space, and the
35 * read and write handlers for config space must be aware of this mechanism.
36 * Similarly, device setup and teardown involves messages sent to and from
37 * the PCI back-end driver in Hyper-V.
38 */
39
40#include <linux/kernel.h>
41#include <linux/module.h>
42#include <linux/pci.h>
43#include <linux/pci-ecam.h>
44#include <linux/delay.h>
45#include <linux/semaphore.h>
46#include <linux/irq.h>
47#include <linux/msi.h>
48#include <linux/hyperv.h>
49#include <linux/refcount.h>
50#include <linux/irqdomain.h>
51#include <linux/acpi.h>
52#include <asm/mshyperv.h>
53
54/*
55 * Protocol versions. The low word is the minor version, the high word the
56 * major version.
57 */
58
59#define PCI_MAKE_VERSION(major, minor) ((u32)(((major) << 16) | (minor)))
60#define PCI_MAJOR_VERSION(version) ((u32)(version) >> 16)
61#define PCI_MINOR_VERSION(version) ((u32)(version) & 0xff)
62
63enum pci_protocol_version_t {
64 PCI_PROTOCOL_VERSION_1_1 = PCI_MAKE_VERSION(1, 1), /* Win10 */
65 PCI_PROTOCOL_VERSION_1_2 = PCI_MAKE_VERSION(1, 2), /* RS1 */
66 PCI_PROTOCOL_VERSION_1_3 = PCI_MAKE_VERSION(1, 3), /* Vibranium */
67 PCI_PROTOCOL_VERSION_1_4 = PCI_MAKE_VERSION(1, 4), /* WS2022 */
68};
69
70#define CPU_AFFINITY_ALL -1ULL
71
72/*
73 * Supported protocol versions in the order of probing - highest go
74 * first.
75 */
76static enum pci_protocol_version_t pci_protocol_versions[] = {
77 PCI_PROTOCOL_VERSION_1_4,
78 PCI_PROTOCOL_VERSION_1_3,
79 PCI_PROTOCOL_VERSION_1_2,
80 PCI_PROTOCOL_VERSION_1_1,
81};
82
83#define PCI_CONFIG_MMIO_LENGTH 0x2000
84#define CFG_PAGE_OFFSET 0x1000
85#define CFG_PAGE_SIZE (PCI_CONFIG_MMIO_LENGTH - CFG_PAGE_OFFSET)
86
87#define MAX_SUPPORTED_MSI_MESSAGES 0x400
88
89#define STATUS_REVISION_MISMATCH 0xC0000059
90
91/* space for 32bit serial number as string */
92#define SLOT_NAME_SIZE 11
93
94/*
95 * Size of requestor for VMbus; the value is based on the observation
96 * that having more than one request outstanding is 'rare', and so 64
97 * should be generous in ensuring that we don't ever run out.
98 */
99#define HV_PCI_RQSTOR_SIZE 64
100
101/*
102 * Message Types
103 */
104
105enum pci_message_type {
106 /*
107 * Version 1.1
108 */
109 PCI_MESSAGE_BASE = 0x42490000,
110 PCI_BUS_RELATIONS = PCI_MESSAGE_BASE + 0,
111 PCI_QUERY_BUS_RELATIONS = PCI_MESSAGE_BASE + 1,
112 PCI_POWER_STATE_CHANGE = PCI_MESSAGE_BASE + 4,
113 PCI_QUERY_RESOURCE_REQUIREMENTS = PCI_MESSAGE_BASE + 5,
114 PCI_QUERY_RESOURCE_RESOURCES = PCI_MESSAGE_BASE + 6,
115 PCI_BUS_D0ENTRY = PCI_MESSAGE_BASE + 7,
116 PCI_BUS_D0EXIT = PCI_MESSAGE_BASE + 8,
117 PCI_READ_BLOCK = PCI_MESSAGE_BASE + 9,
118 PCI_WRITE_BLOCK = PCI_MESSAGE_BASE + 0xA,
119 PCI_EJECT = PCI_MESSAGE_BASE + 0xB,
120 PCI_QUERY_STOP = PCI_MESSAGE_BASE + 0xC,
121 PCI_REENABLE = PCI_MESSAGE_BASE + 0xD,
122 PCI_QUERY_STOP_FAILED = PCI_MESSAGE_BASE + 0xE,
123 PCI_EJECTION_COMPLETE = PCI_MESSAGE_BASE + 0xF,
124 PCI_RESOURCES_ASSIGNED = PCI_MESSAGE_BASE + 0x10,
125 PCI_RESOURCES_RELEASED = PCI_MESSAGE_BASE + 0x11,
126 PCI_INVALIDATE_BLOCK = PCI_MESSAGE_BASE + 0x12,
127 PCI_QUERY_PROTOCOL_VERSION = PCI_MESSAGE_BASE + 0x13,
128 PCI_CREATE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x14,
129 PCI_DELETE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x15,
130 PCI_RESOURCES_ASSIGNED2 = PCI_MESSAGE_BASE + 0x16,
131 PCI_CREATE_INTERRUPT_MESSAGE2 = PCI_MESSAGE_BASE + 0x17,
132 PCI_DELETE_INTERRUPT_MESSAGE2 = PCI_MESSAGE_BASE + 0x18, /* unused */
133 PCI_BUS_RELATIONS2 = PCI_MESSAGE_BASE + 0x19,
134 PCI_RESOURCES_ASSIGNED3 = PCI_MESSAGE_BASE + 0x1A,
135 PCI_CREATE_INTERRUPT_MESSAGE3 = PCI_MESSAGE_BASE + 0x1B,
136 PCI_MESSAGE_MAXIMUM
137};
138
139/*
140 * Structures defining the virtual PCI Express protocol.
141 */
142
143union pci_version {
144 struct {
145 u16 minor_version;
146 u16 major_version;
147 } parts;
148 u32 version;
149} __packed;
150
151/*
152 * Function numbers are 8-bits wide on Express, as interpreted through ARI,
153 * which is all this driver does. This representation is the one used in
154 * Windows, which is what is expected when sending this back and forth with
155 * the Hyper-V parent partition.
156 */
157union win_slot_encoding {
158 struct {
159 u32 dev:5;
160 u32 func:3;
161 u32 reserved:24;
162 } bits;
163 u32 slot;
164} __packed;
165
166/*
167 * Pretty much as defined in the PCI Specifications.
168 */
169struct pci_function_description {
170 u16 v_id; /* vendor ID */
171 u16 d_id; /* device ID */
172 u8 rev;
173 u8 prog_intf;
174 u8 subclass;
175 u8 base_class;
176 u32 subsystem_id;
177 union win_slot_encoding win_slot;
178 u32 ser; /* serial number */
179} __packed;
180
181enum pci_device_description_flags {
182 HV_PCI_DEVICE_FLAG_NONE = 0x0,
183 HV_PCI_DEVICE_FLAG_NUMA_AFFINITY = 0x1,
184};
185
186struct pci_function_description2 {
187 u16 v_id; /* vendor ID */
188 u16 d_id; /* device ID */
189 u8 rev;
190 u8 prog_intf;
191 u8 subclass;
192 u8 base_class;
193 u32 subsystem_id;
194 union win_slot_encoding win_slot;
195 u32 ser; /* serial number */
196 u32 flags;
197 u16 virtual_numa_node;
198 u16 reserved;
199} __packed;
200
201/**
202 * struct hv_msi_desc
203 * @vector: IDT entry
204 * @delivery_mode: As defined in Intel's Programmer's
205 * Reference Manual, Volume 3, Chapter 8.
206 * @vector_count: Number of contiguous entries in the
207 * Interrupt Descriptor Table that are
208 * occupied by this Message-Signaled
209 * Interrupt. For "MSI", as first defined
210 * in PCI 2.2, this can be between 1 and
211 * 32. For "MSI-X," as first defined in PCI
212 * 3.0, this must be 1, as each MSI-X table
213 * entry would have its own descriptor.
214 * @reserved: Empty space
215 * @cpu_mask: All the target virtual processors.
216 */
217struct hv_msi_desc {
218 u8 vector;
219 u8 delivery_mode;
220 u16 vector_count;
221 u32 reserved;
222 u64 cpu_mask;
223} __packed;
224
225/**
226 * struct hv_msi_desc2 - 1.2 version of hv_msi_desc
227 * @vector: IDT entry
228 * @delivery_mode: As defined in Intel's Programmer's
229 * Reference Manual, Volume 3, Chapter 8.
230 * @vector_count: Number of contiguous entries in the
231 * Interrupt Descriptor Table that are
232 * occupied by this Message-Signaled
233 * Interrupt. For "MSI", as first defined
234 * in PCI 2.2, this can be between 1 and
235 * 32. For "MSI-X," as first defined in PCI
236 * 3.0, this must be 1, as each MSI-X table
237 * entry would have its own descriptor.
238 * @processor_count: number of bits enabled in array.
239 * @processor_array: All the target virtual processors.
240 */
241struct hv_msi_desc2 {
242 u8 vector;
243 u8 delivery_mode;
244 u16 vector_count;
245 u16 processor_count;
246 u16 processor_array[32];
247} __packed;
248
249/*
250 * struct hv_msi_desc3 - 1.3 version of hv_msi_desc
251 * Everything is the same as in 'hv_msi_desc2' except that the size of the
252 * 'vector' field is larger to support bigger vector values. For ex: LPI
253 * vectors on ARM.
254 */
255struct hv_msi_desc3 {
256 u32 vector;
257 u8 delivery_mode;
258 u8 reserved;
259 u16 vector_count;
260 u16 processor_count;
261 u16 processor_array[32];
262} __packed;
263
264/**
265 * struct tran_int_desc
266 * @reserved: unused, padding
267 * @vector_count: same as in hv_msi_desc
268 * @data: This is the "data payload" value that is
269 * written by the device when it generates
270 * a message-signaled interrupt, either MSI
271 * or MSI-X.
272 * @address: This is the address to which the data
273 * payload is written on interrupt
274 * generation.
275 */
276struct tran_int_desc {
277 u16 reserved;
278 u16 vector_count;
279 u32 data;
280 u64 address;
281} __packed;
282
283/*
284 * A generic message format for virtual PCI.
285 * Specific message formats are defined later in the file.
286 */
287
288struct pci_message {
289 u32 type;
290} __packed;
291
292struct pci_child_message {
293 struct pci_message message_type;
294 union win_slot_encoding wslot;
295} __packed;
296
297struct pci_incoming_message {
298 struct vmpacket_descriptor hdr;
299 struct pci_message message_type;
300} __packed;
301
302struct pci_response {
303 struct vmpacket_descriptor hdr;
304 s32 status; /* negative values are failures */
305} __packed;
306
307struct pci_packet {
308 void (*completion_func)(void *context, struct pci_response *resp,
309 int resp_packet_size);
310 void *compl_ctxt;
311
312 struct pci_message message[];
313};
314
315/*
316 * Specific message types supporting the PCI protocol.
317 */
318
319/*
320 * Version negotiation message. Sent from the guest to the host.
321 * The guest is free to try different versions until the host
322 * accepts the version.
323 *
324 * pci_version: The protocol version requested.
325 * is_last_attempt: If TRUE, this is the last version guest will request.
326 * reservedz: Reserved field, set to zero.
327 */
328
329struct pci_version_request {
330 struct pci_message message_type;
331 u32 protocol_version;
332} __packed;
333
334/*
335 * Bus D0 Entry. This is sent from the guest to the host when the virtual
336 * bus (PCI Express port) is ready for action.
337 */
338
339struct pci_bus_d0_entry {
340 struct pci_message message_type;
341 u32 reserved;
342 u64 mmio_base;
343} __packed;
344
345struct pci_bus_relations {
346 struct pci_incoming_message incoming;
347 u32 device_count;
348 struct pci_function_description func[];
349} __packed;
350
351struct pci_bus_relations2 {
352 struct pci_incoming_message incoming;
353 u32 device_count;
354 struct pci_function_description2 func[];
355} __packed;
356
357struct pci_q_res_req_response {
358 struct vmpacket_descriptor hdr;
359 s32 status; /* negative values are failures */
360 u32 probed_bar[PCI_STD_NUM_BARS];
361} __packed;
362
363struct pci_set_power {
364 struct pci_message message_type;
365 union win_slot_encoding wslot;
366 u32 power_state; /* In Windows terms */
367 u32 reserved;
368} __packed;
369
370struct pci_set_power_response {
371 struct vmpacket_descriptor hdr;
372 s32 status; /* negative values are failures */
373 union win_slot_encoding wslot;
374 u32 resultant_state; /* In Windows terms */
375 u32 reserved;
376} __packed;
377
378struct pci_resources_assigned {
379 struct pci_message message_type;
380 union win_slot_encoding wslot;
381 u8 memory_range[0x14][6]; /* not used here */
382 u32 msi_descriptors;
383 u32 reserved[4];
384} __packed;
385
386struct pci_resources_assigned2 {
387 struct pci_message message_type;
388 union win_slot_encoding wslot;
389 u8 memory_range[0x14][6]; /* not used here */
390 u32 msi_descriptor_count;
391 u8 reserved[70];
392} __packed;
393
394struct pci_create_interrupt {
395 struct pci_message message_type;
396 union win_slot_encoding wslot;
397 struct hv_msi_desc int_desc;
398} __packed;
399
400struct pci_create_int_response {
401 struct pci_response response;
402 u32 reserved;
403 struct tran_int_desc int_desc;
404} __packed;
405
406struct pci_create_interrupt2 {
407 struct pci_message message_type;
408 union win_slot_encoding wslot;
409 struct hv_msi_desc2 int_desc;
410} __packed;
411
412struct pci_create_interrupt3 {
413 struct pci_message message_type;
414 union win_slot_encoding wslot;
415 struct hv_msi_desc3 int_desc;
416} __packed;
417
418struct pci_delete_interrupt {
419 struct pci_message message_type;
420 union win_slot_encoding wslot;
421 struct tran_int_desc int_desc;
422} __packed;
423
424/*
425 * Note: the VM must pass a valid block id, wslot and bytes_requested.
426 */
427struct pci_read_block {
428 struct pci_message message_type;
429 u32 block_id;
430 union win_slot_encoding wslot;
431 u32 bytes_requested;
432} __packed;
433
434struct pci_read_block_response {
435 struct vmpacket_descriptor hdr;
436 u32 status;
437 u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX];
438} __packed;
439
440/*
441 * Note: the VM must pass a valid block id, wslot and byte_count.
442 */
443struct pci_write_block {
444 struct pci_message message_type;
445 u32 block_id;
446 union win_slot_encoding wslot;
447 u32 byte_count;
448 u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX];
449} __packed;
450
451struct pci_dev_inval_block {
452 struct pci_incoming_message incoming;
453 union win_slot_encoding wslot;
454 u64 block_mask;
455} __packed;
456
457struct pci_dev_incoming {
458 struct pci_incoming_message incoming;
459 union win_slot_encoding wslot;
460} __packed;
461
462struct pci_eject_response {
463 struct pci_message message_type;
464 union win_slot_encoding wslot;
465 u32 status;
466} __packed;
467
468static int pci_ring_size = (4 * PAGE_SIZE);
469
470/*
471 * Driver specific state.
472 */
473
474enum hv_pcibus_state {
475 hv_pcibus_init = 0,
476 hv_pcibus_probed,
477 hv_pcibus_installed,
478 hv_pcibus_removing,
479 hv_pcibus_maximum
480};
481
482struct hv_pcibus_device {
483#ifdef CONFIG_X86
484 struct pci_sysdata sysdata;
485#elif defined(CONFIG_ARM64)
486 struct pci_config_window sysdata;
487#endif
488 struct pci_host_bridge *bridge;
489 struct fwnode_handle *fwnode;
490 /* Protocol version negotiated with the host */
491 enum pci_protocol_version_t protocol_version;
492
493 struct mutex state_lock;
494 enum hv_pcibus_state state;
495
496 struct hv_device *hdev;
497 resource_size_t low_mmio_space;
498 resource_size_t high_mmio_space;
499 struct resource *mem_config;
500 struct resource *low_mmio_res;
501 struct resource *high_mmio_res;
502 struct completion *survey_event;
503 struct pci_bus *pci_bus;
504 spinlock_t config_lock; /* Avoid two threads writing index page */
505 spinlock_t device_list_lock; /* Protect lists below */
506 void __iomem *cfg_addr;
507
508 struct list_head children;
509 struct list_head dr_list;
510
511 struct msi_domain_info msi_info;
512 struct irq_domain *irq_domain;
513
514 struct workqueue_struct *wq;
515
516 /* Highest slot of child device with resources allocated */
517 int wslot_res_allocated;
518 bool use_calls; /* Use hypercalls to access mmio cfg space */
519};
520
521/*
522 * Tracks "Device Relations" messages from the host, which must be both
523 * processed in order and deferred so that they don't run in the context
524 * of the incoming packet callback.
525 */
526struct hv_dr_work {
527 struct work_struct wrk;
528 struct hv_pcibus_device *bus;
529};
530
531struct hv_pcidev_description {
532 u16 v_id; /* vendor ID */
533 u16 d_id; /* device ID */
534 u8 rev;
535 u8 prog_intf;
536 u8 subclass;
537 u8 base_class;
538 u32 subsystem_id;
539 union win_slot_encoding win_slot;
540 u32 ser; /* serial number */
541 u32 flags;
542 u16 virtual_numa_node;
543};
544
545struct hv_dr_state {
546 struct list_head list_entry;
547 u32 device_count;
548 struct hv_pcidev_description func[] __counted_by(device_count);
549};
550
551struct hv_pci_dev {
552 /* List protected by pci_rescan_remove_lock */
553 struct list_head list_entry;
554 refcount_t refs;
555 struct pci_slot *pci_slot;
556 struct hv_pcidev_description desc;
557 bool reported_missing;
558 struct hv_pcibus_device *hbus;
559 struct work_struct wrk;
560
561 void (*block_invalidate)(void *context, u64 block_mask);
562 void *invalidate_context;
563
564 /*
565 * What would be observed if one wrote 0xFFFFFFFF to a BAR and then
566 * read it back, for each of the BAR offsets within config space.
567 */
568 u32 probed_bar[PCI_STD_NUM_BARS];
569};
570
571struct hv_pci_compl {
572 struct completion host_event;
573 s32 completion_status;
574};
575
576static void hv_pci_onchannelcallback(void *context);
577
578#ifdef CONFIG_X86
579#define DELIVERY_MODE APIC_DELIVERY_MODE_FIXED
580#define FLOW_HANDLER handle_edge_irq
581#define FLOW_NAME "edge"
582
583static int hv_pci_irqchip_init(void)
584{
585 return 0;
586}
587
588static struct irq_domain *hv_pci_get_root_domain(void)
589{
590 return x86_vector_domain;
591}
592
593static unsigned int hv_msi_get_int_vector(struct irq_data *data)
594{
595 struct irq_cfg *cfg = irqd_cfg(data);
596
597 return cfg->vector;
598}
599
600#define hv_msi_prepare pci_msi_prepare
601
602/**
603 * hv_arch_irq_unmask() - "Unmask" the IRQ by setting its current
604 * affinity.
605 * @data: Describes the IRQ
606 *
607 * Build new a destination for the MSI and make a hypercall to
608 * update the Interrupt Redirection Table. "Device Logical ID"
609 * is built out of this PCI bus's instance GUID and the function
610 * number of the device.
611 */
612static void hv_arch_irq_unmask(struct irq_data *data)
613{
614 struct msi_desc *msi_desc = irq_data_get_msi_desc(data);
615 struct hv_retarget_device_interrupt *params;
616 struct tran_int_desc *int_desc;
617 struct hv_pcibus_device *hbus;
618 const struct cpumask *dest;
619 cpumask_var_t tmp;
620 struct pci_bus *pbus;
621 struct pci_dev *pdev;
622 unsigned long flags;
623 u32 var_size = 0;
624 int cpu, nr_bank;
625 u64 res;
626
627 dest = irq_data_get_effective_affinity_mask(data);
628 pdev = msi_desc_to_pci_dev(msi_desc);
629 pbus = pdev->bus;
630 hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
631 int_desc = data->chip_data;
632 if (!int_desc) {
633 dev_warn(&hbus->hdev->device, "%s() can not unmask irq %u\n",
634 __func__, data->irq);
635 return;
636 }
637
638 local_irq_save(flags);
639
640 params = *this_cpu_ptr(hyperv_pcpu_input_arg);
641 memset(params, 0, sizeof(*params));
642 params->partition_id = HV_PARTITION_ID_SELF;
643 params->int_entry.source = HV_INTERRUPT_SOURCE_MSI;
644 params->int_entry.msi_entry.address.as_uint32 = int_desc->address & 0xffffffff;
645 params->int_entry.msi_entry.data.as_uint32 = int_desc->data;
646 params->device_id = (hbus->hdev->dev_instance.b[5] << 24) |
647 (hbus->hdev->dev_instance.b[4] << 16) |
648 (hbus->hdev->dev_instance.b[7] << 8) |
649 (hbus->hdev->dev_instance.b[6] & 0xf8) |
650 PCI_FUNC(pdev->devfn);
651 params->int_target.vector = hv_msi_get_int_vector(data);
652
653 if (hbus->protocol_version >= PCI_PROTOCOL_VERSION_1_2) {
654 /*
655 * PCI_PROTOCOL_VERSION_1_2 supports the VP_SET version of the
656 * HVCALL_RETARGET_INTERRUPT hypercall, which also coincides
657 * with >64 VP support.
658 * ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED
659 * is not sufficient for this hypercall.
660 */
661 params->int_target.flags |=
662 HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET;
663
664 if (!alloc_cpumask_var(&tmp, GFP_ATOMIC)) {
665 res = 1;
666 goto out;
667 }
668
669 cpumask_and(tmp, dest, cpu_online_mask);
670 nr_bank = cpumask_to_vpset(¶ms->int_target.vp_set, tmp);
671 free_cpumask_var(tmp);
672
673 if (nr_bank <= 0) {
674 res = 1;
675 goto out;
676 }
677
678 /*
679 * var-sized hypercall, var-size starts after vp_mask (thus
680 * vp_set.format does not count, but vp_set.valid_bank_mask
681 * does).
682 */
683 var_size = 1 + nr_bank;
684 } else {
685 for_each_cpu_and(cpu, dest, cpu_online_mask) {
686 params->int_target.vp_mask |=
687 (1ULL << hv_cpu_number_to_vp_number(cpu));
688 }
689 }
690
691 res = hv_do_hypercall(HVCALL_RETARGET_INTERRUPT | (var_size << 17),
692 params, NULL);
693
694out:
695 local_irq_restore(flags);
696
697 /*
698 * During hibernation, when a CPU is offlined, the kernel tries
699 * to move the interrupt to the remaining CPUs that haven't
700 * been offlined yet. In this case, the below hv_do_hypercall()
701 * always fails since the vmbus channel has been closed:
702 * refer to cpu_disable_common() -> fixup_irqs() ->
703 * irq_migrate_all_off_this_cpu() -> migrate_one_irq().
704 *
705 * Suppress the error message for hibernation because the failure
706 * during hibernation does not matter (at this time all the devices
707 * have been frozen). Note: the correct affinity info is still updated
708 * into the irqdata data structure in migrate_one_irq() ->
709 * irq_do_set_affinity(), so later when the VM resumes,
710 * hv_pci_restore_msi_state() is able to correctly restore the
711 * interrupt with the correct affinity.
712 */
713 if (!hv_result_success(res) && hbus->state != hv_pcibus_removing)
714 dev_err(&hbus->hdev->device,
715 "%s() failed: %#llx", __func__, res);
716}
717#elif defined(CONFIG_ARM64)
718/*
719 * SPI vectors to use for vPCI; arch SPIs range is [32, 1019], but leaving a bit
720 * of room at the start to allow for SPIs to be specified through ACPI and
721 * starting with a power of two to satisfy power of 2 multi-MSI requirement.
722 */
723#define HV_PCI_MSI_SPI_START 64
724#define HV_PCI_MSI_SPI_NR (1020 - HV_PCI_MSI_SPI_START)
725#define DELIVERY_MODE 0
726#define FLOW_HANDLER NULL
727#define FLOW_NAME NULL
728#define hv_msi_prepare NULL
729
730struct hv_pci_chip_data {
731 DECLARE_BITMAP(spi_map, HV_PCI_MSI_SPI_NR);
732 struct mutex map_lock;
733};
734
735/* Hyper-V vPCI MSI GIC IRQ domain */
736static struct irq_domain *hv_msi_gic_irq_domain;
737
738/* Hyper-V PCI MSI IRQ chip */
739static struct irq_chip hv_arm64_msi_irq_chip = {
740 .name = "MSI",
741 .irq_set_affinity = irq_chip_set_affinity_parent,
742 .irq_eoi = irq_chip_eoi_parent,
743 .irq_mask = irq_chip_mask_parent,
744 .irq_unmask = irq_chip_unmask_parent
745};
746
747static unsigned int hv_msi_get_int_vector(struct irq_data *irqd)
748{
749 return irqd->parent_data->hwirq;
750}
751
752/*
753 * @nr_bm_irqs: Indicates the number of IRQs that were allocated from
754 * the bitmap.
755 * @nr_dom_irqs: Indicates the number of IRQs that were allocated from
756 * the parent domain.
757 */
758static void hv_pci_vec_irq_free(struct irq_domain *domain,
759 unsigned int virq,
760 unsigned int nr_bm_irqs,
761 unsigned int nr_dom_irqs)
762{
763 struct hv_pci_chip_data *chip_data = domain->host_data;
764 struct irq_data *d = irq_domain_get_irq_data(domain, virq);
765 int first = d->hwirq - HV_PCI_MSI_SPI_START;
766 int i;
767
768 mutex_lock(&chip_data->map_lock);
769 bitmap_release_region(chip_data->spi_map,
770 first,
771 get_count_order(nr_bm_irqs));
772 mutex_unlock(&chip_data->map_lock);
773 for (i = 0; i < nr_dom_irqs; i++) {
774 if (i)
775 d = irq_domain_get_irq_data(domain, virq + i);
776 irq_domain_reset_irq_data(d);
777 }
778
779 irq_domain_free_irqs_parent(domain, virq, nr_dom_irqs);
780}
781
782static void hv_pci_vec_irq_domain_free(struct irq_domain *domain,
783 unsigned int virq,
784 unsigned int nr_irqs)
785{
786 hv_pci_vec_irq_free(domain, virq, nr_irqs, nr_irqs);
787}
788
789static int hv_pci_vec_alloc_device_irq(struct irq_domain *domain,
790 unsigned int nr_irqs,
791 irq_hw_number_t *hwirq)
792{
793 struct hv_pci_chip_data *chip_data = domain->host_data;
794 int index;
795
796 /* Find and allocate region from the SPI bitmap */
797 mutex_lock(&chip_data->map_lock);
798 index = bitmap_find_free_region(chip_data->spi_map,
799 HV_PCI_MSI_SPI_NR,
800 get_count_order(nr_irqs));
801 mutex_unlock(&chip_data->map_lock);
802 if (index < 0)
803 return -ENOSPC;
804
805 *hwirq = index + HV_PCI_MSI_SPI_START;
806
807 return 0;
808}
809
810static int hv_pci_vec_irq_gic_domain_alloc(struct irq_domain *domain,
811 unsigned int virq,
812 irq_hw_number_t hwirq)
813{
814 struct irq_fwspec fwspec;
815 struct irq_data *d;
816 int ret;
817
818 fwspec.fwnode = domain->parent->fwnode;
819 fwspec.param_count = 2;
820 fwspec.param[0] = hwirq;
821 fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
822
823 ret = irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
824 if (ret)
825 return ret;
826
827 /*
828 * Since the interrupt specifier is not coming from ACPI or DT, the
829 * trigger type will need to be set explicitly. Otherwise, it will be
830 * set to whatever is in the GIC configuration.
831 */
832 d = irq_domain_get_irq_data(domain->parent, virq);
833
834 return d->chip->irq_set_type(d, IRQ_TYPE_EDGE_RISING);
835}
836
837static int hv_pci_vec_irq_domain_alloc(struct irq_domain *domain,
838 unsigned int virq, unsigned int nr_irqs,
839 void *args)
840{
841 irq_hw_number_t hwirq;
842 unsigned int i;
843 int ret;
844
845 ret = hv_pci_vec_alloc_device_irq(domain, nr_irqs, &hwirq);
846 if (ret)
847 return ret;
848
849 for (i = 0; i < nr_irqs; i++) {
850 ret = hv_pci_vec_irq_gic_domain_alloc(domain, virq + i,
851 hwirq + i);
852 if (ret) {
853 hv_pci_vec_irq_free(domain, virq, nr_irqs, i);
854 return ret;
855 }
856
857 irq_domain_set_hwirq_and_chip(domain, virq + i,
858 hwirq + i,
859 &hv_arm64_msi_irq_chip,
860 domain->host_data);
861 pr_debug("pID:%d vID:%u\n", (int)(hwirq + i), virq + i);
862 }
863
864 return 0;
865}
866
867/*
868 * Pick the first cpu as the irq affinity that can be temporarily used for
869 * composing MSI from the hypervisor. GIC will eventually set the right
870 * affinity for the irq and the 'unmask' will retarget the interrupt to that
871 * cpu.
872 */
873static int hv_pci_vec_irq_domain_activate(struct irq_domain *domain,
874 struct irq_data *irqd, bool reserve)
875{
876 int cpu = cpumask_first(cpu_present_mask);
877
878 irq_data_update_effective_affinity(irqd, cpumask_of(cpu));
879
880 return 0;
881}
882
883static const struct irq_domain_ops hv_pci_domain_ops = {
884 .alloc = hv_pci_vec_irq_domain_alloc,
885 .free = hv_pci_vec_irq_domain_free,
886 .activate = hv_pci_vec_irq_domain_activate,
887};
888
889static int hv_pci_irqchip_init(void)
890{
891 static struct hv_pci_chip_data *chip_data;
892 struct fwnode_handle *fn = NULL;
893 int ret = -ENOMEM;
894
895 chip_data = kzalloc(sizeof(*chip_data), GFP_KERNEL);
896 if (!chip_data)
897 return ret;
898
899 mutex_init(&chip_data->map_lock);
900 fn = irq_domain_alloc_named_fwnode("hv_vpci_arm64");
901 if (!fn)
902 goto free_chip;
903
904 /*
905 * IRQ domain once enabled, should not be removed since there is no
906 * way to ensure that all the corresponding devices are also gone and
907 * no interrupts will be generated.
908 */
909 hv_msi_gic_irq_domain = acpi_irq_create_hierarchy(0, HV_PCI_MSI_SPI_NR,
910 fn, &hv_pci_domain_ops,
911 chip_data);
912
913 if (!hv_msi_gic_irq_domain) {
914 pr_err("Failed to create Hyper-V arm64 vPCI MSI IRQ domain\n");
915 goto free_chip;
916 }
917
918 return 0;
919
920free_chip:
921 kfree(chip_data);
922 if (fn)
923 irq_domain_free_fwnode(fn);
924
925 return ret;
926}
927
928static struct irq_domain *hv_pci_get_root_domain(void)
929{
930 return hv_msi_gic_irq_domain;
931}
932
933/*
934 * SPIs are used for interrupts of PCI devices and SPIs is managed via GICD
935 * registers which Hyper-V already supports, so no hypercall needed.
936 */
937static void hv_arch_irq_unmask(struct irq_data *data) { }
938#endif /* CONFIG_ARM64 */
939
940/**
941 * hv_pci_generic_compl() - Invoked for a completion packet
942 * @context: Set up by the sender of the packet.
943 * @resp: The response packet
944 * @resp_packet_size: Size in bytes of the packet
945 *
946 * This function is used to trigger an event and report status
947 * for any message for which the completion packet contains a
948 * status and nothing else.
949 */
950static void hv_pci_generic_compl(void *context, struct pci_response *resp,
951 int resp_packet_size)
952{
953 struct hv_pci_compl *comp_pkt = context;
954
955 comp_pkt->completion_status = resp->status;
956 complete(&comp_pkt->host_event);
957}
958
959static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
960 u32 wslot);
961
962static void get_pcichild(struct hv_pci_dev *hpdev)
963{
964 refcount_inc(&hpdev->refs);
965}
966
967static void put_pcichild(struct hv_pci_dev *hpdev)
968{
969 if (refcount_dec_and_test(&hpdev->refs))
970 kfree(hpdev);
971}
972
973/*
974 * There is no good way to get notified from vmbus_onoffer_rescind(),
975 * so let's use polling here, since this is not a hot path.
976 */
977static int wait_for_response(struct hv_device *hdev,
978 struct completion *comp)
979{
980 while (true) {
981 if (hdev->channel->rescind) {
982 dev_warn_once(&hdev->device, "The device is gone.\n");
983 return -ENODEV;
984 }
985
986 if (wait_for_completion_timeout(comp, HZ / 10))
987 break;
988 }
989
990 return 0;
991}
992
993/**
994 * devfn_to_wslot() - Convert from Linux PCI slot to Windows
995 * @devfn: The Linux representation of PCI slot
996 *
997 * Windows uses a slightly different representation of PCI slot.
998 *
999 * Return: The Windows representation
1000 */
1001static u32 devfn_to_wslot(int devfn)
1002{
1003 union win_slot_encoding wslot;
1004
1005 wslot.slot = 0;
1006 wslot.bits.dev = PCI_SLOT(devfn);
1007 wslot.bits.func = PCI_FUNC(devfn);
1008
1009 return wslot.slot;
1010}
1011
1012/**
1013 * wslot_to_devfn() - Convert from Windows PCI slot to Linux
1014 * @wslot: The Windows representation of PCI slot
1015 *
1016 * Windows uses a slightly different representation of PCI slot.
1017 *
1018 * Return: The Linux representation
1019 */
1020static int wslot_to_devfn(u32 wslot)
1021{
1022 union win_slot_encoding slot_no;
1023
1024 slot_no.slot = wslot;
1025 return PCI_DEVFN(slot_no.bits.dev, slot_no.bits.func);
1026}
1027
1028static void hv_pci_read_mmio(struct device *dev, phys_addr_t gpa, int size, u32 *val)
1029{
1030 struct hv_mmio_read_input *in;
1031 struct hv_mmio_read_output *out;
1032 u64 ret;
1033
1034 /*
1035 * Must be called with interrupts disabled so it is safe
1036 * to use the per-cpu input argument page. Use it for
1037 * both input and output.
1038 */
1039 in = *this_cpu_ptr(hyperv_pcpu_input_arg);
1040 out = *this_cpu_ptr(hyperv_pcpu_input_arg) + sizeof(*in);
1041 in->gpa = gpa;
1042 in->size = size;
1043
1044 ret = hv_do_hypercall(HVCALL_MMIO_READ, in, out);
1045 if (hv_result_success(ret)) {
1046 switch (size) {
1047 case 1:
1048 *val = *(u8 *)(out->data);
1049 break;
1050 case 2:
1051 *val = *(u16 *)(out->data);
1052 break;
1053 default:
1054 *val = *(u32 *)(out->data);
1055 break;
1056 }
1057 } else
1058 dev_err(dev, "MMIO read hypercall error %llx addr %llx size %d\n",
1059 ret, gpa, size);
1060}
1061
1062static void hv_pci_write_mmio(struct device *dev, phys_addr_t gpa, int size, u32 val)
1063{
1064 struct hv_mmio_write_input *in;
1065 u64 ret;
1066
1067 /*
1068 * Must be called with interrupts disabled so it is safe
1069 * to use the per-cpu input argument memory.
1070 */
1071 in = *this_cpu_ptr(hyperv_pcpu_input_arg);
1072 in->gpa = gpa;
1073 in->size = size;
1074 switch (size) {
1075 case 1:
1076 *(u8 *)(in->data) = val;
1077 break;
1078 case 2:
1079 *(u16 *)(in->data) = val;
1080 break;
1081 default:
1082 *(u32 *)(in->data) = val;
1083 break;
1084 }
1085
1086 ret = hv_do_hypercall(HVCALL_MMIO_WRITE, in, NULL);
1087 if (!hv_result_success(ret))
1088 dev_err(dev, "MMIO write hypercall error %llx addr %llx size %d\n",
1089 ret, gpa, size);
1090}
1091
1092/*
1093 * PCI Configuration Space for these root PCI buses is implemented as a pair
1094 * of pages in memory-mapped I/O space. Writing to the first page chooses
1095 * the PCI function being written or read. Once the first page has been
1096 * written to, the following page maps in the entire configuration space of
1097 * the function.
1098 */
1099
1100/**
1101 * _hv_pcifront_read_config() - Internal PCI config read
1102 * @hpdev: The PCI driver's representation of the device
1103 * @where: Offset within config space
1104 * @size: Size of the transfer
1105 * @val: Pointer to the buffer receiving the data
1106 */
1107static void _hv_pcifront_read_config(struct hv_pci_dev *hpdev, int where,
1108 int size, u32 *val)
1109{
1110 struct hv_pcibus_device *hbus = hpdev->hbus;
1111 struct device *dev = &hbus->hdev->device;
1112 int offset = where + CFG_PAGE_OFFSET;
1113 unsigned long flags;
1114
1115 /*
1116 * If the attempt is to read the IDs or the ROM BAR, simulate that.
1117 */
1118 if (where + size <= PCI_COMMAND) {
1119 memcpy(val, ((u8 *)&hpdev->desc.v_id) + where, size);
1120 } else if (where >= PCI_CLASS_REVISION && where + size <=
1121 PCI_CACHE_LINE_SIZE) {
1122 memcpy(val, ((u8 *)&hpdev->desc.rev) + where -
1123 PCI_CLASS_REVISION, size);
1124 } else if (where >= PCI_SUBSYSTEM_VENDOR_ID && where + size <=
1125 PCI_ROM_ADDRESS) {
1126 memcpy(val, (u8 *)&hpdev->desc.subsystem_id + where -
1127 PCI_SUBSYSTEM_VENDOR_ID, size);
1128 } else if (where >= PCI_ROM_ADDRESS && where + size <=
1129 PCI_CAPABILITY_LIST) {
1130 /* ROM BARs are unimplemented */
1131 *val = 0;
1132 } else if (where >= PCI_INTERRUPT_LINE && where + size <=
1133 PCI_INTERRUPT_PIN) {
1134 /*
1135 * Interrupt Line and Interrupt PIN are hard-wired to zero
1136 * because this front-end only supports message-signaled
1137 * interrupts.
1138 */
1139 *val = 0;
1140 } else if (where + size <= CFG_PAGE_SIZE) {
1141
1142 spin_lock_irqsave(&hbus->config_lock, flags);
1143 if (hbus->use_calls) {
1144 phys_addr_t addr = hbus->mem_config->start + offset;
1145
1146 hv_pci_write_mmio(dev, hbus->mem_config->start, 4,
1147 hpdev->desc.win_slot.slot);
1148 hv_pci_read_mmio(dev, addr, size, val);
1149 } else {
1150 void __iomem *addr = hbus->cfg_addr + offset;
1151
1152 /* Choose the function to be read. (See comment above) */
1153 writel(hpdev->desc.win_slot.slot, hbus->cfg_addr);
1154 /* Make sure the function was chosen before reading. */
1155 mb();
1156 /* Read from that function's config space. */
1157 switch (size) {
1158 case 1:
1159 *val = readb(addr);
1160 break;
1161 case 2:
1162 *val = readw(addr);
1163 break;
1164 default:
1165 *val = readl(addr);
1166 break;
1167 }
1168 /*
1169 * Make sure the read was done before we release the
1170 * spinlock allowing consecutive reads/writes.
1171 */
1172 mb();
1173 }
1174 spin_unlock_irqrestore(&hbus->config_lock, flags);
1175 } else {
1176 dev_err(dev, "Attempt to read beyond a function's config space.\n");
1177 }
1178}
1179
1180static u16 hv_pcifront_get_vendor_id(struct hv_pci_dev *hpdev)
1181{
1182 struct hv_pcibus_device *hbus = hpdev->hbus;
1183 struct device *dev = &hbus->hdev->device;
1184 u32 val;
1185 u16 ret;
1186 unsigned long flags;
1187
1188 spin_lock_irqsave(&hbus->config_lock, flags);
1189
1190 if (hbus->use_calls) {
1191 phys_addr_t addr = hbus->mem_config->start +
1192 CFG_PAGE_OFFSET + PCI_VENDOR_ID;
1193
1194 hv_pci_write_mmio(dev, hbus->mem_config->start, 4,
1195 hpdev->desc.win_slot.slot);
1196 hv_pci_read_mmio(dev, addr, 2, &val);
1197 ret = val; /* Truncates to 16 bits */
1198 } else {
1199 void __iomem *addr = hbus->cfg_addr + CFG_PAGE_OFFSET +
1200 PCI_VENDOR_ID;
1201 /* Choose the function to be read. (See comment above) */
1202 writel(hpdev->desc.win_slot.slot, hbus->cfg_addr);
1203 /* Make sure the function was chosen before we start reading. */
1204 mb();
1205 /* Read from that function's config space. */
1206 ret = readw(addr);
1207 /*
1208 * mb() is not required here, because the
1209 * spin_unlock_irqrestore() is a barrier.
1210 */
1211 }
1212
1213 spin_unlock_irqrestore(&hbus->config_lock, flags);
1214
1215 return ret;
1216}
1217
1218/**
1219 * _hv_pcifront_write_config() - Internal PCI config write
1220 * @hpdev: The PCI driver's representation of the device
1221 * @where: Offset within config space
1222 * @size: Size of the transfer
1223 * @val: The data being transferred
1224 */
1225static void _hv_pcifront_write_config(struct hv_pci_dev *hpdev, int where,
1226 int size, u32 val)
1227{
1228 struct hv_pcibus_device *hbus = hpdev->hbus;
1229 struct device *dev = &hbus->hdev->device;
1230 int offset = where + CFG_PAGE_OFFSET;
1231 unsigned long flags;
1232
1233 if (where >= PCI_SUBSYSTEM_VENDOR_ID &&
1234 where + size <= PCI_CAPABILITY_LIST) {
1235 /* SSIDs and ROM BARs are read-only */
1236 } else if (where >= PCI_COMMAND && where + size <= CFG_PAGE_SIZE) {
1237 spin_lock_irqsave(&hbus->config_lock, flags);
1238
1239 if (hbus->use_calls) {
1240 phys_addr_t addr = hbus->mem_config->start + offset;
1241
1242 hv_pci_write_mmio(dev, hbus->mem_config->start, 4,
1243 hpdev->desc.win_slot.slot);
1244 hv_pci_write_mmio(dev, addr, size, val);
1245 } else {
1246 void __iomem *addr = hbus->cfg_addr + offset;
1247
1248 /* Choose the function to write. (See comment above) */
1249 writel(hpdev->desc.win_slot.slot, hbus->cfg_addr);
1250 /* Make sure the function was chosen before writing. */
1251 wmb();
1252 /* Write to that function's config space. */
1253 switch (size) {
1254 case 1:
1255 writeb(val, addr);
1256 break;
1257 case 2:
1258 writew(val, addr);
1259 break;
1260 default:
1261 writel(val, addr);
1262 break;
1263 }
1264 /*
1265 * Make sure the write was done before we release the
1266 * spinlock allowing consecutive reads/writes.
1267 */
1268 mb();
1269 }
1270 spin_unlock_irqrestore(&hbus->config_lock, flags);
1271 } else {
1272 dev_err(dev, "Attempt to write beyond a function's config space.\n");
1273 }
1274}
1275
1276/**
1277 * hv_pcifront_read_config() - Read configuration space
1278 * @bus: PCI Bus structure
1279 * @devfn: Device/function
1280 * @where: Offset from base
1281 * @size: Byte/word/dword
1282 * @val: Value to be read
1283 *
1284 * Return: PCIBIOS_SUCCESSFUL on success
1285 * PCIBIOS_DEVICE_NOT_FOUND on failure
1286 */
1287static int hv_pcifront_read_config(struct pci_bus *bus, unsigned int devfn,
1288 int where, int size, u32 *val)
1289{
1290 struct hv_pcibus_device *hbus =
1291 container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
1292 struct hv_pci_dev *hpdev;
1293
1294 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
1295 if (!hpdev)
1296 return PCIBIOS_DEVICE_NOT_FOUND;
1297
1298 _hv_pcifront_read_config(hpdev, where, size, val);
1299
1300 put_pcichild(hpdev);
1301 return PCIBIOS_SUCCESSFUL;
1302}
1303
1304/**
1305 * hv_pcifront_write_config() - Write configuration space
1306 * @bus: PCI Bus structure
1307 * @devfn: Device/function
1308 * @where: Offset from base
1309 * @size: Byte/word/dword
1310 * @val: Value to be written to device
1311 *
1312 * Return: PCIBIOS_SUCCESSFUL on success
1313 * PCIBIOS_DEVICE_NOT_FOUND on failure
1314 */
1315static int hv_pcifront_write_config(struct pci_bus *bus, unsigned int devfn,
1316 int where, int size, u32 val)
1317{
1318 struct hv_pcibus_device *hbus =
1319 container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
1320 struct hv_pci_dev *hpdev;
1321
1322 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
1323 if (!hpdev)
1324 return PCIBIOS_DEVICE_NOT_FOUND;
1325
1326 _hv_pcifront_write_config(hpdev, where, size, val);
1327
1328 put_pcichild(hpdev);
1329 return PCIBIOS_SUCCESSFUL;
1330}
1331
1332/* PCIe operations */
1333static struct pci_ops hv_pcifront_ops = {
1334 .read = hv_pcifront_read_config,
1335 .write = hv_pcifront_write_config,
1336};
1337
1338/*
1339 * Paravirtual backchannel
1340 *
1341 * Hyper-V SR-IOV provides a backchannel mechanism in software for
1342 * communication between a VF driver and a PF driver. These
1343 * "configuration blocks" are similar in concept to PCI configuration space,
1344 * but instead of doing reads and writes in 32-bit chunks through a very slow
1345 * path, packets of up to 128 bytes can be sent or received asynchronously.
1346 *
1347 * Nearly every SR-IOV device contains just such a communications channel in
1348 * hardware, so using this one in software is usually optional. Using the
1349 * software channel, however, allows driver implementers to leverage software
1350 * tools that fuzz the communications channel looking for vulnerabilities.
1351 *
1352 * The usage model for these packets puts the responsibility for reading or
1353 * writing on the VF driver. The VF driver sends a read or a write packet,
1354 * indicating which "block" is being referred to by number.
1355 *
1356 * If the PF driver wishes to initiate communication, it can "invalidate" one or
1357 * more of the first 64 blocks. This invalidation is delivered via a callback
1358 * supplied by the VF driver by this driver.
1359 *
1360 * No protocol is implied, except that supplied by the PF and VF drivers.
1361 */
1362
1363struct hv_read_config_compl {
1364 struct hv_pci_compl comp_pkt;
1365 void *buf;
1366 unsigned int len;
1367 unsigned int bytes_returned;
1368};
1369
1370/**
1371 * hv_pci_read_config_compl() - Invoked when a response packet
1372 * for a read config block operation arrives.
1373 * @context: Identifies the read config operation
1374 * @resp: The response packet itself
1375 * @resp_packet_size: Size in bytes of the response packet
1376 */
1377static void hv_pci_read_config_compl(void *context, struct pci_response *resp,
1378 int resp_packet_size)
1379{
1380 struct hv_read_config_compl *comp = context;
1381 struct pci_read_block_response *read_resp =
1382 (struct pci_read_block_response *)resp;
1383 unsigned int data_len, hdr_len;
1384
1385 hdr_len = offsetof(struct pci_read_block_response, bytes);
1386 if (resp_packet_size < hdr_len) {
1387 comp->comp_pkt.completion_status = -1;
1388 goto out;
1389 }
1390
1391 data_len = resp_packet_size - hdr_len;
1392 if (data_len > 0 && read_resp->status == 0) {
1393 comp->bytes_returned = min(comp->len, data_len);
1394 memcpy(comp->buf, read_resp->bytes, comp->bytes_returned);
1395 } else {
1396 comp->bytes_returned = 0;
1397 }
1398
1399 comp->comp_pkt.completion_status = read_resp->status;
1400out:
1401 complete(&comp->comp_pkt.host_event);
1402}
1403
1404/**
1405 * hv_read_config_block() - Sends a read config block request to
1406 * the back-end driver running in the Hyper-V parent partition.
1407 * @pdev: The PCI driver's representation for this device.
1408 * @buf: Buffer into which the config block will be copied.
1409 * @len: Size in bytes of buf.
1410 * @block_id: Identifies the config block which has been requested.
1411 * @bytes_returned: Size which came back from the back-end driver.
1412 *
1413 * Return: 0 on success, -errno on failure
1414 */
1415static int hv_read_config_block(struct pci_dev *pdev, void *buf,
1416 unsigned int len, unsigned int block_id,
1417 unsigned int *bytes_returned)
1418{
1419 struct hv_pcibus_device *hbus =
1420 container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1421 sysdata);
1422 struct {
1423 struct pci_packet pkt;
1424 char buf[sizeof(struct pci_read_block)];
1425 } pkt;
1426 struct hv_read_config_compl comp_pkt;
1427 struct pci_read_block *read_blk;
1428 int ret;
1429
1430 if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX)
1431 return -EINVAL;
1432
1433 init_completion(&comp_pkt.comp_pkt.host_event);
1434 comp_pkt.buf = buf;
1435 comp_pkt.len = len;
1436
1437 memset(&pkt, 0, sizeof(pkt));
1438 pkt.pkt.completion_func = hv_pci_read_config_compl;
1439 pkt.pkt.compl_ctxt = &comp_pkt;
1440 read_blk = (struct pci_read_block *)&pkt.pkt.message;
1441 read_blk->message_type.type = PCI_READ_BLOCK;
1442 read_blk->wslot.slot = devfn_to_wslot(pdev->devfn);
1443 read_blk->block_id = block_id;
1444 read_blk->bytes_requested = len;
1445
1446 ret = vmbus_sendpacket(hbus->hdev->channel, read_blk,
1447 sizeof(*read_blk), (unsigned long)&pkt.pkt,
1448 VM_PKT_DATA_INBAND,
1449 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1450 if (ret)
1451 return ret;
1452
1453 ret = wait_for_response(hbus->hdev, &comp_pkt.comp_pkt.host_event);
1454 if (ret)
1455 return ret;
1456
1457 if (comp_pkt.comp_pkt.completion_status != 0 ||
1458 comp_pkt.bytes_returned == 0) {
1459 dev_err(&hbus->hdev->device,
1460 "Read Config Block failed: 0x%x, bytes_returned=%d\n",
1461 comp_pkt.comp_pkt.completion_status,
1462 comp_pkt.bytes_returned);
1463 return -EIO;
1464 }
1465
1466 *bytes_returned = comp_pkt.bytes_returned;
1467 return 0;
1468}
1469
1470/**
1471 * hv_pci_write_config_compl() - Invoked when a response packet for a write
1472 * config block operation arrives.
1473 * @context: Identifies the write config operation
1474 * @resp: The response packet itself
1475 * @resp_packet_size: Size in bytes of the response packet
1476 */
1477static void hv_pci_write_config_compl(void *context, struct pci_response *resp,
1478 int resp_packet_size)
1479{
1480 struct hv_pci_compl *comp_pkt = context;
1481
1482 comp_pkt->completion_status = resp->status;
1483 complete(&comp_pkt->host_event);
1484}
1485
1486/**
1487 * hv_write_config_block() - Sends a write config block request to the
1488 * back-end driver running in the Hyper-V parent partition.
1489 * @pdev: The PCI driver's representation for this device.
1490 * @buf: Buffer from which the config block will be copied.
1491 * @len: Size in bytes of buf.
1492 * @block_id: Identifies the config block which is being written.
1493 *
1494 * Return: 0 on success, -errno on failure
1495 */
1496static int hv_write_config_block(struct pci_dev *pdev, void *buf,
1497 unsigned int len, unsigned int block_id)
1498{
1499 struct hv_pcibus_device *hbus =
1500 container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1501 sysdata);
1502 struct {
1503 struct pci_packet pkt;
1504 char buf[sizeof(struct pci_write_block)];
1505 u32 reserved;
1506 } pkt;
1507 struct hv_pci_compl comp_pkt;
1508 struct pci_write_block *write_blk;
1509 u32 pkt_size;
1510 int ret;
1511
1512 if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX)
1513 return -EINVAL;
1514
1515 init_completion(&comp_pkt.host_event);
1516
1517 memset(&pkt, 0, sizeof(pkt));
1518 pkt.pkt.completion_func = hv_pci_write_config_compl;
1519 pkt.pkt.compl_ctxt = &comp_pkt;
1520 write_blk = (struct pci_write_block *)&pkt.pkt.message;
1521 write_blk->message_type.type = PCI_WRITE_BLOCK;
1522 write_blk->wslot.slot = devfn_to_wslot(pdev->devfn);
1523 write_blk->block_id = block_id;
1524 write_blk->byte_count = len;
1525 memcpy(write_blk->bytes, buf, len);
1526 pkt_size = offsetof(struct pci_write_block, bytes) + len;
1527 /*
1528 * This quirk is required on some hosts shipped around 2018, because
1529 * these hosts don't check the pkt_size correctly (new hosts have been
1530 * fixed since early 2019). The quirk is also safe on very old hosts
1531 * and new hosts, because, on them, what really matters is the length
1532 * specified in write_blk->byte_count.
1533 */
1534 pkt_size += sizeof(pkt.reserved);
1535
1536 ret = vmbus_sendpacket(hbus->hdev->channel, write_blk, pkt_size,
1537 (unsigned long)&pkt.pkt, VM_PKT_DATA_INBAND,
1538 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1539 if (ret)
1540 return ret;
1541
1542 ret = wait_for_response(hbus->hdev, &comp_pkt.host_event);
1543 if (ret)
1544 return ret;
1545
1546 if (comp_pkt.completion_status != 0) {
1547 dev_err(&hbus->hdev->device,
1548 "Write Config Block failed: 0x%x\n",
1549 comp_pkt.completion_status);
1550 return -EIO;
1551 }
1552
1553 return 0;
1554}
1555
1556/**
1557 * hv_register_block_invalidate() - Invoked when a config block invalidation
1558 * arrives from the back-end driver.
1559 * @pdev: The PCI driver's representation for this device.
1560 * @context: Identifies the device.
1561 * @block_invalidate: Identifies all of the blocks being invalidated.
1562 *
1563 * Return: 0 on success, -errno on failure
1564 */
1565static int hv_register_block_invalidate(struct pci_dev *pdev, void *context,
1566 void (*block_invalidate)(void *context,
1567 u64 block_mask))
1568{
1569 struct hv_pcibus_device *hbus =
1570 container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1571 sysdata);
1572 struct hv_pci_dev *hpdev;
1573
1574 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1575 if (!hpdev)
1576 return -ENODEV;
1577
1578 hpdev->block_invalidate = block_invalidate;
1579 hpdev->invalidate_context = context;
1580
1581 put_pcichild(hpdev);
1582 return 0;
1583
1584}
1585
1586/* Interrupt management hooks */
1587static void hv_int_desc_free(struct hv_pci_dev *hpdev,
1588 struct tran_int_desc *int_desc)
1589{
1590 struct pci_delete_interrupt *int_pkt;
1591 struct {
1592 struct pci_packet pkt;
1593 u8 buffer[sizeof(struct pci_delete_interrupt)];
1594 } ctxt;
1595
1596 if (!int_desc->vector_count) {
1597 kfree(int_desc);
1598 return;
1599 }
1600 memset(&ctxt, 0, sizeof(ctxt));
1601 int_pkt = (struct pci_delete_interrupt *)&ctxt.pkt.message;
1602 int_pkt->message_type.type =
1603 PCI_DELETE_INTERRUPT_MESSAGE;
1604 int_pkt->wslot.slot = hpdev->desc.win_slot.slot;
1605 int_pkt->int_desc = *int_desc;
1606 vmbus_sendpacket(hpdev->hbus->hdev->channel, int_pkt, sizeof(*int_pkt),
1607 0, VM_PKT_DATA_INBAND, 0);
1608 kfree(int_desc);
1609}
1610
1611/**
1612 * hv_msi_free() - Free the MSI.
1613 * @domain: The interrupt domain pointer
1614 * @info: Extra MSI-related context
1615 * @irq: Identifies the IRQ.
1616 *
1617 * The Hyper-V parent partition and hypervisor are tracking the
1618 * messages that are in use, keeping the interrupt redirection
1619 * table up to date. This callback sends a message that frees
1620 * the IRT entry and related tracking nonsense.
1621 */
1622static void hv_msi_free(struct irq_domain *domain, struct msi_domain_info *info,
1623 unsigned int irq)
1624{
1625 struct hv_pcibus_device *hbus;
1626 struct hv_pci_dev *hpdev;
1627 struct pci_dev *pdev;
1628 struct tran_int_desc *int_desc;
1629 struct irq_data *irq_data = irq_domain_get_irq_data(domain, irq);
1630 struct msi_desc *msi = irq_data_get_msi_desc(irq_data);
1631
1632 pdev = msi_desc_to_pci_dev(msi);
1633 hbus = info->data;
1634 int_desc = irq_data_get_irq_chip_data(irq_data);
1635 if (!int_desc)
1636 return;
1637
1638 irq_data->chip_data = NULL;
1639 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1640 if (!hpdev) {
1641 kfree(int_desc);
1642 return;
1643 }
1644
1645 hv_int_desc_free(hpdev, int_desc);
1646 put_pcichild(hpdev);
1647}
1648
1649static void hv_irq_mask(struct irq_data *data)
1650{
1651 pci_msi_mask_irq(data);
1652 if (data->parent_data->chip->irq_mask)
1653 irq_chip_mask_parent(data);
1654}
1655
1656static void hv_irq_unmask(struct irq_data *data)
1657{
1658 hv_arch_irq_unmask(data);
1659
1660 if (data->parent_data->chip->irq_unmask)
1661 irq_chip_unmask_parent(data);
1662 pci_msi_unmask_irq(data);
1663}
1664
1665struct compose_comp_ctxt {
1666 struct hv_pci_compl comp_pkt;
1667 struct tran_int_desc int_desc;
1668};
1669
1670static void hv_pci_compose_compl(void *context, struct pci_response *resp,
1671 int resp_packet_size)
1672{
1673 struct compose_comp_ctxt *comp_pkt = context;
1674 struct pci_create_int_response *int_resp =
1675 (struct pci_create_int_response *)resp;
1676
1677 if (resp_packet_size < sizeof(*int_resp)) {
1678 comp_pkt->comp_pkt.completion_status = -1;
1679 goto out;
1680 }
1681 comp_pkt->comp_pkt.completion_status = resp->status;
1682 comp_pkt->int_desc = int_resp->int_desc;
1683out:
1684 complete(&comp_pkt->comp_pkt.host_event);
1685}
1686
1687static u32 hv_compose_msi_req_v1(
1688 struct pci_create_interrupt *int_pkt,
1689 u32 slot, u8 vector, u16 vector_count)
1690{
1691 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE;
1692 int_pkt->wslot.slot = slot;
1693 int_pkt->int_desc.vector = vector;
1694 int_pkt->int_desc.vector_count = vector_count;
1695 int_pkt->int_desc.delivery_mode = DELIVERY_MODE;
1696
1697 /*
1698 * Create MSI w/ dummy vCPU set, overwritten by subsequent retarget in
1699 * hv_irq_unmask().
1700 */
1701 int_pkt->int_desc.cpu_mask = CPU_AFFINITY_ALL;
1702
1703 return sizeof(*int_pkt);
1704}
1705
1706/*
1707 * The vCPU selected by hv_compose_multi_msi_req_get_cpu() and
1708 * hv_compose_msi_req_get_cpu() is a "dummy" vCPU because the final vCPU to be
1709 * interrupted is specified later in hv_irq_unmask() and communicated to Hyper-V
1710 * via the HVCALL_RETARGET_INTERRUPT hypercall. But the choice of dummy vCPU is
1711 * not irrelevant because Hyper-V chooses the physical CPU to handle the
1712 * interrupts based on the vCPU specified in message sent to the vPCI VSP in
1713 * hv_compose_msi_msg(). Hyper-V's choice of pCPU is not visible to the guest,
1714 * but assigning too many vPCI device interrupts to the same pCPU can cause a
1715 * performance bottleneck. So we spread out the dummy vCPUs to influence Hyper-V
1716 * to spread out the pCPUs that it selects.
1717 *
1718 * For the single-MSI and MSI-X cases, it's OK for hv_compose_msi_req_get_cpu()
1719 * to always return the same dummy vCPU, because a second call to
1720 * hv_compose_msi_msg() contains the "real" vCPU, causing Hyper-V to choose a
1721 * new pCPU for the interrupt. But for the multi-MSI case, the second call to
1722 * hv_compose_msi_msg() exits without sending a message to the vPCI VSP, so the
1723 * original dummy vCPU is used. This dummy vCPU must be round-robin'ed so that
1724 * the pCPUs are spread out. All interrupts for a multi-MSI device end up using
1725 * the same pCPU, even though the vCPUs will be spread out by later calls
1726 * to hv_irq_unmask(), but that is the best we can do now.
1727 *
1728 * With Hyper-V in Nov 2022, the HVCALL_RETARGET_INTERRUPT hypercall does *not*
1729 * cause Hyper-V to reselect the pCPU based on the specified vCPU. Such an
1730 * enhancement is planned for a future version. With that enhancement, the
1731 * dummy vCPU selection won't matter, and interrupts for the same multi-MSI
1732 * device will be spread across multiple pCPUs.
1733 */
1734
1735/*
1736 * Create MSI w/ dummy vCPU set targeting just one vCPU, overwritten
1737 * by subsequent retarget in hv_irq_unmask().
1738 */
1739static int hv_compose_msi_req_get_cpu(const struct cpumask *affinity)
1740{
1741 return cpumask_first_and(affinity, cpu_online_mask);
1742}
1743
1744/*
1745 * Make sure the dummy vCPU values for multi-MSI don't all point to vCPU0.
1746 */
1747static int hv_compose_multi_msi_req_get_cpu(void)
1748{
1749 static DEFINE_SPINLOCK(multi_msi_cpu_lock);
1750
1751 /* -1 means starting with CPU 0 */
1752 static int cpu_next = -1;
1753
1754 unsigned long flags;
1755 int cpu;
1756
1757 spin_lock_irqsave(&multi_msi_cpu_lock, flags);
1758
1759 cpu_next = cpumask_next_wrap(cpu_next, cpu_online_mask, nr_cpu_ids,
1760 false);
1761 cpu = cpu_next;
1762
1763 spin_unlock_irqrestore(&multi_msi_cpu_lock, flags);
1764
1765 return cpu;
1766}
1767
1768static u32 hv_compose_msi_req_v2(
1769 struct pci_create_interrupt2 *int_pkt, int cpu,
1770 u32 slot, u8 vector, u16 vector_count)
1771{
1772 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE2;
1773 int_pkt->wslot.slot = slot;
1774 int_pkt->int_desc.vector = vector;
1775 int_pkt->int_desc.vector_count = vector_count;
1776 int_pkt->int_desc.delivery_mode = DELIVERY_MODE;
1777 int_pkt->int_desc.processor_array[0] =
1778 hv_cpu_number_to_vp_number(cpu);
1779 int_pkt->int_desc.processor_count = 1;
1780
1781 return sizeof(*int_pkt);
1782}
1783
1784static u32 hv_compose_msi_req_v3(
1785 struct pci_create_interrupt3 *int_pkt, int cpu,
1786 u32 slot, u32 vector, u16 vector_count)
1787{
1788 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE3;
1789 int_pkt->wslot.slot = slot;
1790 int_pkt->int_desc.vector = vector;
1791 int_pkt->int_desc.reserved = 0;
1792 int_pkt->int_desc.vector_count = vector_count;
1793 int_pkt->int_desc.delivery_mode = DELIVERY_MODE;
1794 int_pkt->int_desc.processor_array[0] =
1795 hv_cpu_number_to_vp_number(cpu);
1796 int_pkt->int_desc.processor_count = 1;
1797
1798 return sizeof(*int_pkt);
1799}
1800
1801/**
1802 * hv_compose_msi_msg() - Supplies a valid MSI address/data
1803 * @data: Everything about this MSI
1804 * @msg: Buffer that is filled in by this function
1805 *
1806 * This function unpacks the IRQ looking for target CPU set, IDT
1807 * vector and mode and sends a message to the parent partition
1808 * asking for a mapping for that tuple in this partition. The
1809 * response supplies a data value and address to which that data
1810 * should be written to trigger that interrupt.
1811 */
1812static void hv_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
1813{
1814 struct hv_pcibus_device *hbus;
1815 struct vmbus_channel *channel;
1816 struct hv_pci_dev *hpdev;
1817 struct pci_bus *pbus;
1818 struct pci_dev *pdev;
1819 const struct cpumask *dest;
1820 struct compose_comp_ctxt comp;
1821 struct tran_int_desc *int_desc;
1822 struct msi_desc *msi_desc;
1823 /*
1824 * vector_count should be u16: see hv_msi_desc, hv_msi_desc2
1825 * and hv_msi_desc3. vector must be u32: see hv_msi_desc3.
1826 */
1827 u16 vector_count;
1828 u32 vector;
1829 struct {
1830 struct pci_packet pci_pkt;
1831 union {
1832 struct pci_create_interrupt v1;
1833 struct pci_create_interrupt2 v2;
1834 struct pci_create_interrupt3 v3;
1835 } int_pkts;
1836 } __packed ctxt;
1837 bool multi_msi;
1838 u64 trans_id;
1839 u32 size;
1840 int ret;
1841 int cpu;
1842
1843 msi_desc = irq_data_get_msi_desc(data);
1844 multi_msi = !msi_desc->pci.msi_attrib.is_msix &&
1845 msi_desc->nvec_used > 1;
1846
1847 /* Reuse the previous allocation */
1848 if (data->chip_data && multi_msi) {
1849 int_desc = data->chip_data;
1850 msg->address_hi = int_desc->address >> 32;
1851 msg->address_lo = int_desc->address & 0xffffffff;
1852 msg->data = int_desc->data;
1853 return;
1854 }
1855
1856 pdev = msi_desc_to_pci_dev(msi_desc);
1857 dest = irq_data_get_effective_affinity_mask(data);
1858 pbus = pdev->bus;
1859 hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
1860 channel = hbus->hdev->channel;
1861 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1862 if (!hpdev)
1863 goto return_null_message;
1864
1865 /* Free any previous message that might have already been composed. */
1866 if (data->chip_data && !multi_msi) {
1867 int_desc = data->chip_data;
1868 data->chip_data = NULL;
1869 hv_int_desc_free(hpdev, int_desc);
1870 }
1871
1872 int_desc = kzalloc(sizeof(*int_desc), GFP_ATOMIC);
1873 if (!int_desc)
1874 goto drop_reference;
1875
1876 if (multi_msi) {
1877 /*
1878 * If this is not the first MSI of Multi MSI, we already have
1879 * a mapping. Can exit early.
1880 */
1881 if (msi_desc->irq != data->irq) {
1882 data->chip_data = int_desc;
1883 int_desc->address = msi_desc->msg.address_lo |
1884 (u64)msi_desc->msg.address_hi << 32;
1885 int_desc->data = msi_desc->msg.data +
1886 (data->irq - msi_desc->irq);
1887 msg->address_hi = msi_desc->msg.address_hi;
1888 msg->address_lo = msi_desc->msg.address_lo;
1889 msg->data = int_desc->data;
1890 put_pcichild(hpdev);
1891 return;
1892 }
1893 /*
1894 * The vector we select here is a dummy value. The correct
1895 * value gets sent to the hypervisor in unmask(). This needs
1896 * to be aligned with the count, and also not zero. Multi-msi
1897 * is powers of 2 up to 32, so 32 will always work here.
1898 */
1899 vector = 32;
1900 vector_count = msi_desc->nvec_used;
1901 cpu = hv_compose_multi_msi_req_get_cpu();
1902 } else {
1903 vector = hv_msi_get_int_vector(data);
1904 vector_count = 1;
1905 cpu = hv_compose_msi_req_get_cpu(dest);
1906 }
1907
1908 /*
1909 * hv_compose_msi_req_v1 and v2 are for x86 only, meaning 'vector'
1910 * can't exceed u8. Cast 'vector' down to u8 for v1/v2 explicitly
1911 * for better readability.
1912 */
1913 memset(&ctxt, 0, sizeof(ctxt));
1914 init_completion(&comp.comp_pkt.host_event);
1915 ctxt.pci_pkt.completion_func = hv_pci_compose_compl;
1916 ctxt.pci_pkt.compl_ctxt = ∁
1917
1918 switch (hbus->protocol_version) {
1919 case PCI_PROTOCOL_VERSION_1_1:
1920 size = hv_compose_msi_req_v1(&ctxt.int_pkts.v1,
1921 hpdev->desc.win_slot.slot,
1922 (u8)vector,
1923 vector_count);
1924 break;
1925
1926 case PCI_PROTOCOL_VERSION_1_2:
1927 case PCI_PROTOCOL_VERSION_1_3:
1928 size = hv_compose_msi_req_v2(&ctxt.int_pkts.v2,
1929 cpu,
1930 hpdev->desc.win_slot.slot,
1931 (u8)vector,
1932 vector_count);
1933 break;
1934
1935 case PCI_PROTOCOL_VERSION_1_4:
1936 size = hv_compose_msi_req_v3(&ctxt.int_pkts.v3,
1937 cpu,
1938 hpdev->desc.win_slot.slot,
1939 vector,
1940 vector_count);
1941 break;
1942
1943 default:
1944 /* As we only negotiate protocol versions known to this driver,
1945 * this path should never hit. However, this is it not a hot
1946 * path so we print a message to aid future updates.
1947 */
1948 dev_err(&hbus->hdev->device,
1949 "Unexpected vPCI protocol, update driver.");
1950 goto free_int_desc;
1951 }
1952
1953 ret = vmbus_sendpacket_getid(hpdev->hbus->hdev->channel, &ctxt.int_pkts,
1954 size, (unsigned long)&ctxt.pci_pkt,
1955 &trans_id, VM_PKT_DATA_INBAND,
1956 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1957 if (ret) {
1958 dev_err(&hbus->hdev->device,
1959 "Sending request for interrupt failed: 0x%x",
1960 comp.comp_pkt.completion_status);
1961 goto free_int_desc;
1962 }
1963
1964 /*
1965 * Prevents hv_pci_onchannelcallback() from running concurrently
1966 * in the tasklet.
1967 */
1968 tasklet_disable_in_atomic(&channel->callback_event);
1969
1970 /*
1971 * Since this function is called with IRQ locks held, can't
1972 * do normal wait for completion; instead poll.
1973 */
1974 while (!try_wait_for_completion(&comp.comp_pkt.host_event)) {
1975 unsigned long flags;
1976
1977 /* 0xFFFF means an invalid PCI VENDOR ID. */
1978 if (hv_pcifront_get_vendor_id(hpdev) == 0xFFFF) {
1979 dev_err_once(&hbus->hdev->device,
1980 "the device has gone\n");
1981 goto enable_tasklet;
1982 }
1983
1984 /*
1985 * Make sure that the ring buffer data structure doesn't get
1986 * freed while we dereference the ring buffer pointer. Test
1987 * for the channel's onchannel_callback being NULL within a
1988 * sched_lock critical section. See also the inline comments
1989 * in vmbus_reset_channel_cb().
1990 */
1991 spin_lock_irqsave(&channel->sched_lock, flags);
1992 if (unlikely(channel->onchannel_callback == NULL)) {
1993 spin_unlock_irqrestore(&channel->sched_lock, flags);
1994 goto enable_tasklet;
1995 }
1996 hv_pci_onchannelcallback(hbus);
1997 spin_unlock_irqrestore(&channel->sched_lock, flags);
1998
1999 udelay(100);
2000 }
2001
2002 tasklet_enable(&channel->callback_event);
2003
2004 if (comp.comp_pkt.completion_status < 0) {
2005 dev_err(&hbus->hdev->device,
2006 "Request for interrupt failed: 0x%x",
2007 comp.comp_pkt.completion_status);
2008 goto free_int_desc;
2009 }
2010
2011 /*
2012 * Record the assignment so that this can be unwound later. Using
2013 * irq_set_chip_data() here would be appropriate, but the lock it takes
2014 * is already held.
2015 */
2016 *int_desc = comp.int_desc;
2017 data->chip_data = int_desc;
2018
2019 /* Pass up the result. */
2020 msg->address_hi = comp.int_desc.address >> 32;
2021 msg->address_lo = comp.int_desc.address & 0xffffffff;
2022 msg->data = comp.int_desc.data;
2023
2024 put_pcichild(hpdev);
2025 return;
2026
2027enable_tasklet:
2028 tasklet_enable(&channel->callback_event);
2029 /*
2030 * The completion packet on the stack becomes invalid after 'return';
2031 * remove the ID from the VMbus requestor if the identifier is still
2032 * mapped to/associated with the packet. (The identifier could have
2033 * been 're-used', i.e., already removed and (re-)mapped.)
2034 *
2035 * Cf. hv_pci_onchannelcallback().
2036 */
2037 vmbus_request_addr_match(channel, trans_id, (unsigned long)&ctxt.pci_pkt);
2038free_int_desc:
2039 kfree(int_desc);
2040drop_reference:
2041 put_pcichild(hpdev);
2042return_null_message:
2043 msg->address_hi = 0;
2044 msg->address_lo = 0;
2045 msg->data = 0;
2046}
2047
2048/* HW Interrupt Chip Descriptor */
2049static struct irq_chip hv_msi_irq_chip = {
2050 .name = "Hyper-V PCIe MSI",
2051 .irq_compose_msi_msg = hv_compose_msi_msg,
2052 .irq_set_affinity = irq_chip_set_affinity_parent,
2053#ifdef CONFIG_X86
2054 .irq_ack = irq_chip_ack_parent,
2055#elif defined(CONFIG_ARM64)
2056 .irq_eoi = irq_chip_eoi_parent,
2057#endif
2058 .irq_mask = hv_irq_mask,
2059 .irq_unmask = hv_irq_unmask,
2060};
2061
2062static struct msi_domain_ops hv_msi_ops = {
2063 .msi_prepare = hv_msi_prepare,
2064 .msi_free = hv_msi_free,
2065};
2066
2067/**
2068 * hv_pcie_init_irq_domain() - Initialize IRQ domain
2069 * @hbus: The root PCI bus
2070 *
2071 * This function creates an IRQ domain which will be used for
2072 * interrupts from devices that have been passed through. These
2073 * devices only support MSI and MSI-X, not line-based interrupts
2074 * or simulations of line-based interrupts through PCIe's
2075 * fabric-layer messages. Because interrupts are remapped, we
2076 * can support multi-message MSI here.
2077 *
2078 * Return: '0' on success and error value on failure
2079 */
2080static int hv_pcie_init_irq_domain(struct hv_pcibus_device *hbus)
2081{
2082 hbus->msi_info.chip = &hv_msi_irq_chip;
2083 hbus->msi_info.ops = &hv_msi_ops;
2084 hbus->msi_info.flags = (MSI_FLAG_USE_DEF_DOM_OPS |
2085 MSI_FLAG_USE_DEF_CHIP_OPS | MSI_FLAG_MULTI_PCI_MSI |
2086 MSI_FLAG_PCI_MSIX);
2087 hbus->msi_info.handler = FLOW_HANDLER;
2088 hbus->msi_info.handler_name = FLOW_NAME;
2089 hbus->msi_info.data = hbus;
2090 hbus->irq_domain = pci_msi_create_irq_domain(hbus->fwnode,
2091 &hbus->msi_info,
2092 hv_pci_get_root_domain());
2093 if (!hbus->irq_domain) {
2094 dev_err(&hbus->hdev->device,
2095 "Failed to build an MSI IRQ domain\n");
2096 return -ENODEV;
2097 }
2098
2099 dev_set_msi_domain(&hbus->bridge->dev, hbus->irq_domain);
2100
2101 return 0;
2102}
2103
2104/**
2105 * get_bar_size() - Get the address space consumed by a BAR
2106 * @bar_val: Value that a BAR returned after -1 was written
2107 * to it.
2108 *
2109 * This function returns the size of the BAR, rounded up to 1
2110 * page. It has to be rounded up because the hypervisor's page
2111 * table entry that maps the BAR into the VM can't specify an
2112 * offset within a page. The invariant is that the hypervisor
2113 * must place any BARs of smaller than page length at the
2114 * beginning of a page.
2115 *
2116 * Return: Size in bytes of the consumed MMIO space.
2117 */
2118static u64 get_bar_size(u64 bar_val)
2119{
2120 return round_up((1 + ~(bar_val & PCI_BASE_ADDRESS_MEM_MASK)),
2121 PAGE_SIZE);
2122}
2123
2124/**
2125 * survey_child_resources() - Total all MMIO requirements
2126 * @hbus: Root PCI bus, as understood by this driver
2127 */
2128static void survey_child_resources(struct hv_pcibus_device *hbus)
2129{
2130 struct hv_pci_dev *hpdev;
2131 resource_size_t bar_size = 0;
2132 unsigned long flags;
2133 struct completion *event;
2134 u64 bar_val;
2135 int i;
2136
2137 /* If nobody is waiting on the answer, don't compute it. */
2138 event = xchg(&hbus->survey_event, NULL);
2139 if (!event)
2140 return;
2141
2142 /* If the answer has already been computed, go with it. */
2143 if (hbus->low_mmio_space || hbus->high_mmio_space) {
2144 complete(event);
2145 return;
2146 }
2147
2148 spin_lock_irqsave(&hbus->device_list_lock, flags);
2149
2150 /*
2151 * Due to an interesting quirk of the PCI spec, all memory regions
2152 * for a child device are a power of 2 in size and aligned in memory,
2153 * so it's sufficient to just add them up without tracking alignment.
2154 */
2155 list_for_each_entry(hpdev, &hbus->children, list_entry) {
2156 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
2157 if (hpdev->probed_bar[i] & PCI_BASE_ADDRESS_SPACE_IO)
2158 dev_err(&hbus->hdev->device,
2159 "There's an I/O BAR in this list!\n");
2160
2161 if (hpdev->probed_bar[i] != 0) {
2162 /*
2163 * A probed BAR has all the upper bits set that
2164 * can be changed.
2165 */
2166
2167 bar_val = hpdev->probed_bar[i];
2168 if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
2169 bar_val |=
2170 ((u64)hpdev->probed_bar[++i] << 32);
2171 else
2172 bar_val |= 0xffffffff00000000ULL;
2173
2174 bar_size = get_bar_size(bar_val);
2175
2176 if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
2177 hbus->high_mmio_space += bar_size;
2178 else
2179 hbus->low_mmio_space += bar_size;
2180 }
2181 }
2182 }
2183
2184 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2185 complete(event);
2186}
2187
2188/**
2189 * prepopulate_bars() - Fill in BARs with defaults
2190 * @hbus: Root PCI bus, as understood by this driver
2191 *
2192 * The core PCI driver code seems much, much happier if the BARs
2193 * for a device have values upon first scan. So fill them in.
2194 * The algorithm below works down from large sizes to small,
2195 * attempting to pack the assignments optimally. The assumption,
2196 * enforced in other parts of the code, is that the beginning of
2197 * the memory-mapped I/O space will be aligned on the largest
2198 * BAR size.
2199 */
2200static void prepopulate_bars(struct hv_pcibus_device *hbus)
2201{
2202 resource_size_t high_size = 0;
2203 resource_size_t low_size = 0;
2204 resource_size_t high_base = 0;
2205 resource_size_t low_base = 0;
2206 resource_size_t bar_size;
2207 struct hv_pci_dev *hpdev;
2208 unsigned long flags;
2209 u64 bar_val;
2210 u32 command;
2211 bool high;
2212 int i;
2213
2214 if (hbus->low_mmio_space) {
2215 low_size = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
2216 low_base = hbus->low_mmio_res->start;
2217 }
2218
2219 if (hbus->high_mmio_space) {
2220 high_size = 1ULL <<
2221 (63 - __builtin_clzll(hbus->high_mmio_space));
2222 high_base = hbus->high_mmio_res->start;
2223 }
2224
2225 spin_lock_irqsave(&hbus->device_list_lock, flags);
2226
2227 /*
2228 * Clear the memory enable bit, in case it's already set. This occurs
2229 * in the suspend path of hibernation, where the device is suspended,
2230 * resumed and suspended again: see hibernation_snapshot() and
2231 * hibernation_platform_enter().
2232 *
2233 * If the memory enable bit is already set, Hyper-V silently ignores
2234 * the below BAR updates, and the related PCI device driver can not
2235 * work, because reading from the device register(s) always returns
2236 * 0xFFFFFFFF (PCI_ERROR_RESPONSE).
2237 */
2238 list_for_each_entry(hpdev, &hbus->children, list_entry) {
2239 _hv_pcifront_read_config(hpdev, PCI_COMMAND, 2, &command);
2240 command &= ~PCI_COMMAND_MEMORY;
2241 _hv_pcifront_write_config(hpdev, PCI_COMMAND, 2, command);
2242 }
2243
2244 /* Pick addresses for the BARs. */
2245 do {
2246 list_for_each_entry(hpdev, &hbus->children, list_entry) {
2247 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
2248 bar_val = hpdev->probed_bar[i];
2249 if (bar_val == 0)
2250 continue;
2251 high = bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64;
2252 if (high) {
2253 bar_val |=
2254 ((u64)hpdev->probed_bar[i + 1]
2255 << 32);
2256 } else {
2257 bar_val |= 0xffffffffULL << 32;
2258 }
2259 bar_size = get_bar_size(bar_val);
2260 if (high) {
2261 if (high_size != bar_size) {
2262 i++;
2263 continue;
2264 }
2265 _hv_pcifront_write_config(hpdev,
2266 PCI_BASE_ADDRESS_0 + (4 * i),
2267 4,
2268 (u32)(high_base & 0xffffff00));
2269 i++;
2270 _hv_pcifront_write_config(hpdev,
2271 PCI_BASE_ADDRESS_0 + (4 * i),
2272 4, (u32)(high_base >> 32));
2273 high_base += bar_size;
2274 } else {
2275 if (low_size != bar_size)
2276 continue;
2277 _hv_pcifront_write_config(hpdev,
2278 PCI_BASE_ADDRESS_0 + (4 * i),
2279 4,
2280 (u32)(low_base & 0xffffff00));
2281 low_base += bar_size;
2282 }
2283 }
2284 if (high_size <= 1 && low_size <= 1) {
2285 /*
2286 * No need to set the PCI_COMMAND_MEMORY bit as
2287 * the core PCI driver doesn't require the bit
2288 * to be pre-set. Actually here we intentionally
2289 * keep the bit off so that the PCI BAR probing
2290 * in the core PCI driver doesn't cause Hyper-V
2291 * to unnecessarily unmap/map the virtual BARs
2292 * from/to the physical BARs multiple times.
2293 * This reduces the VM boot time significantly
2294 * if the BAR sizes are huge.
2295 */
2296 break;
2297 }
2298 }
2299
2300 high_size >>= 1;
2301 low_size >>= 1;
2302 } while (high_size || low_size);
2303
2304 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2305}
2306
2307/*
2308 * Assign entries in sysfs pci slot directory.
2309 *
2310 * Note that this function does not need to lock the children list
2311 * because it is called from pci_devices_present_work which
2312 * is serialized with hv_eject_device_work because they are on the
2313 * same ordered workqueue. Therefore hbus->children list will not change
2314 * even when pci_create_slot sleeps.
2315 */
2316static void hv_pci_assign_slots(struct hv_pcibus_device *hbus)
2317{
2318 struct hv_pci_dev *hpdev;
2319 char name[SLOT_NAME_SIZE];
2320 int slot_nr;
2321
2322 list_for_each_entry(hpdev, &hbus->children, list_entry) {
2323 if (hpdev->pci_slot)
2324 continue;
2325
2326 slot_nr = PCI_SLOT(wslot_to_devfn(hpdev->desc.win_slot.slot));
2327 snprintf(name, SLOT_NAME_SIZE, "%u", hpdev->desc.ser);
2328 hpdev->pci_slot = pci_create_slot(hbus->bridge->bus, slot_nr,
2329 name, NULL);
2330 if (IS_ERR(hpdev->pci_slot)) {
2331 pr_warn("pci_create slot %s failed\n", name);
2332 hpdev->pci_slot = NULL;
2333 }
2334 }
2335}
2336
2337/*
2338 * Remove entries in sysfs pci slot directory.
2339 */
2340static void hv_pci_remove_slots(struct hv_pcibus_device *hbus)
2341{
2342 struct hv_pci_dev *hpdev;
2343
2344 list_for_each_entry(hpdev, &hbus->children, list_entry) {
2345 if (!hpdev->pci_slot)
2346 continue;
2347 pci_destroy_slot(hpdev->pci_slot);
2348 hpdev->pci_slot = NULL;
2349 }
2350}
2351
2352/*
2353 * Set NUMA node for the devices on the bus
2354 */
2355static void hv_pci_assign_numa_node(struct hv_pcibus_device *hbus)
2356{
2357 struct pci_dev *dev;
2358 struct pci_bus *bus = hbus->bridge->bus;
2359 struct hv_pci_dev *hv_dev;
2360
2361 list_for_each_entry(dev, &bus->devices, bus_list) {
2362 hv_dev = get_pcichild_wslot(hbus, devfn_to_wslot(dev->devfn));
2363 if (!hv_dev)
2364 continue;
2365
2366 if (hv_dev->desc.flags & HV_PCI_DEVICE_FLAG_NUMA_AFFINITY &&
2367 hv_dev->desc.virtual_numa_node < num_possible_nodes())
2368 /*
2369 * The kernel may boot with some NUMA nodes offline
2370 * (e.g. in a KDUMP kernel) or with NUMA disabled via
2371 * "numa=off". In those cases, adjust the host provided
2372 * NUMA node to a valid NUMA node used by the kernel.
2373 */
2374 set_dev_node(&dev->dev,
2375 numa_map_to_online_node(
2376 hv_dev->desc.virtual_numa_node));
2377
2378 put_pcichild(hv_dev);
2379 }
2380}
2381
2382/**
2383 * create_root_hv_pci_bus() - Expose a new root PCI bus
2384 * @hbus: Root PCI bus, as understood by this driver
2385 *
2386 * Return: 0 on success, -errno on failure
2387 */
2388static int create_root_hv_pci_bus(struct hv_pcibus_device *hbus)
2389{
2390 int error;
2391 struct pci_host_bridge *bridge = hbus->bridge;
2392
2393 bridge->dev.parent = &hbus->hdev->device;
2394 bridge->sysdata = &hbus->sysdata;
2395 bridge->ops = &hv_pcifront_ops;
2396
2397 error = pci_scan_root_bus_bridge(bridge);
2398 if (error)
2399 return error;
2400
2401 pci_lock_rescan_remove();
2402 hv_pci_assign_numa_node(hbus);
2403 pci_bus_assign_resources(bridge->bus);
2404 hv_pci_assign_slots(hbus);
2405 pci_bus_add_devices(bridge->bus);
2406 pci_unlock_rescan_remove();
2407 hbus->state = hv_pcibus_installed;
2408 return 0;
2409}
2410
2411struct q_res_req_compl {
2412 struct completion host_event;
2413 struct hv_pci_dev *hpdev;
2414};
2415
2416/**
2417 * q_resource_requirements() - Query Resource Requirements
2418 * @context: The completion context.
2419 * @resp: The response that came from the host.
2420 * @resp_packet_size: The size in bytes of resp.
2421 *
2422 * This function is invoked on completion of a Query Resource
2423 * Requirements packet.
2424 */
2425static void q_resource_requirements(void *context, struct pci_response *resp,
2426 int resp_packet_size)
2427{
2428 struct q_res_req_compl *completion = context;
2429 struct pci_q_res_req_response *q_res_req =
2430 (struct pci_q_res_req_response *)resp;
2431 s32 status;
2432 int i;
2433
2434 status = (resp_packet_size < sizeof(*q_res_req)) ? -1 : resp->status;
2435 if (status < 0) {
2436 dev_err(&completion->hpdev->hbus->hdev->device,
2437 "query resource requirements failed: %x\n",
2438 status);
2439 } else {
2440 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
2441 completion->hpdev->probed_bar[i] =
2442 q_res_req->probed_bar[i];
2443 }
2444 }
2445
2446 complete(&completion->host_event);
2447}
2448
2449/**
2450 * new_pcichild_device() - Create a new child device
2451 * @hbus: The internal struct tracking this root PCI bus.
2452 * @desc: The information supplied so far from the host
2453 * about the device.
2454 *
2455 * This function creates the tracking structure for a new child
2456 * device and kicks off the process of figuring out what it is.
2457 *
2458 * Return: Pointer to the new tracking struct
2459 */
2460static struct hv_pci_dev *new_pcichild_device(struct hv_pcibus_device *hbus,
2461 struct hv_pcidev_description *desc)
2462{
2463 struct hv_pci_dev *hpdev;
2464 struct pci_child_message *res_req;
2465 struct q_res_req_compl comp_pkt;
2466 struct {
2467 struct pci_packet init_packet;
2468 u8 buffer[sizeof(struct pci_child_message)];
2469 } pkt;
2470 unsigned long flags;
2471 int ret;
2472
2473 hpdev = kzalloc(sizeof(*hpdev), GFP_KERNEL);
2474 if (!hpdev)
2475 return NULL;
2476
2477 hpdev->hbus = hbus;
2478
2479 memset(&pkt, 0, sizeof(pkt));
2480 init_completion(&comp_pkt.host_event);
2481 comp_pkt.hpdev = hpdev;
2482 pkt.init_packet.compl_ctxt = &comp_pkt;
2483 pkt.init_packet.completion_func = q_resource_requirements;
2484 res_req = (struct pci_child_message *)&pkt.init_packet.message;
2485 res_req->message_type.type = PCI_QUERY_RESOURCE_REQUIREMENTS;
2486 res_req->wslot.slot = desc->win_slot.slot;
2487
2488 ret = vmbus_sendpacket(hbus->hdev->channel, res_req,
2489 sizeof(struct pci_child_message),
2490 (unsigned long)&pkt.init_packet,
2491 VM_PKT_DATA_INBAND,
2492 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2493 if (ret)
2494 goto error;
2495
2496 if (wait_for_response(hbus->hdev, &comp_pkt.host_event))
2497 goto error;
2498
2499 hpdev->desc = *desc;
2500 refcount_set(&hpdev->refs, 1);
2501 get_pcichild(hpdev);
2502 spin_lock_irqsave(&hbus->device_list_lock, flags);
2503
2504 list_add_tail(&hpdev->list_entry, &hbus->children);
2505 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2506 return hpdev;
2507
2508error:
2509 kfree(hpdev);
2510 return NULL;
2511}
2512
2513/**
2514 * get_pcichild_wslot() - Find device from slot
2515 * @hbus: Root PCI bus, as understood by this driver
2516 * @wslot: Location on the bus
2517 *
2518 * This function looks up a PCI device and returns the internal
2519 * representation of it. It acquires a reference on it, so that
2520 * the device won't be deleted while somebody is using it. The
2521 * caller is responsible for calling put_pcichild() to release
2522 * this reference.
2523 *
2524 * Return: Internal representation of a PCI device
2525 */
2526static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
2527 u32 wslot)
2528{
2529 unsigned long flags;
2530 struct hv_pci_dev *iter, *hpdev = NULL;
2531
2532 spin_lock_irqsave(&hbus->device_list_lock, flags);
2533 list_for_each_entry(iter, &hbus->children, list_entry) {
2534 if (iter->desc.win_slot.slot == wslot) {
2535 hpdev = iter;
2536 get_pcichild(hpdev);
2537 break;
2538 }
2539 }
2540 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2541
2542 return hpdev;
2543}
2544
2545/**
2546 * pci_devices_present_work() - Handle new list of child devices
2547 * @work: Work struct embedded in struct hv_dr_work
2548 *
2549 * "Bus Relations" is the Windows term for "children of this
2550 * bus." The terminology is preserved here for people trying to
2551 * debug the interaction between Hyper-V and Linux. This
2552 * function is called when the parent partition reports a list
2553 * of functions that should be observed under this PCI Express
2554 * port (bus).
2555 *
2556 * This function updates the list, and must tolerate being
2557 * called multiple times with the same information. The typical
2558 * number of child devices is one, with very atypical cases
2559 * involving three or four, so the algorithms used here can be
2560 * simple and inefficient.
2561 *
2562 * It must also treat the omission of a previously observed device as
2563 * notification that the device no longer exists.
2564 *
2565 * Note that this function is serialized with hv_eject_device_work(),
2566 * because both are pushed to the ordered workqueue hbus->wq.
2567 */
2568static void pci_devices_present_work(struct work_struct *work)
2569{
2570 u32 child_no;
2571 bool found;
2572 struct hv_pcidev_description *new_desc;
2573 struct hv_pci_dev *hpdev;
2574 struct hv_pcibus_device *hbus;
2575 struct list_head removed;
2576 struct hv_dr_work *dr_wrk;
2577 struct hv_dr_state *dr = NULL;
2578 unsigned long flags;
2579
2580 dr_wrk = container_of(work, struct hv_dr_work, wrk);
2581 hbus = dr_wrk->bus;
2582 kfree(dr_wrk);
2583
2584 INIT_LIST_HEAD(&removed);
2585
2586 /* Pull this off the queue and process it if it was the last one. */
2587 spin_lock_irqsave(&hbus->device_list_lock, flags);
2588 while (!list_empty(&hbus->dr_list)) {
2589 dr = list_first_entry(&hbus->dr_list, struct hv_dr_state,
2590 list_entry);
2591 list_del(&dr->list_entry);
2592
2593 /* Throw this away if the list still has stuff in it. */
2594 if (!list_empty(&hbus->dr_list)) {
2595 kfree(dr);
2596 continue;
2597 }
2598 }
2599 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2600
2601 if (!dr)
2602 return;
2603
2604 mutex_lock(&hbus->state_lock);
2605
2606 /* First, mark all existing children as reported missing. */
2607 spin_lock_irqsave(&hbus->device_list_lock, flags);
2608 list_for_each_entry(hpdev, &hbus->children, list_entry) {
2609 hpdev->reported_missing = true;
2610 }
2611 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2612
2613 /* Next, add back any reported devices. */
2614 for (child_no = 0; child_no < dr->device_count; child_no++) {
2615 found = false;
2616 new_desc = &dr->func[child_no];
2617
2618 spin_lock_irqsave(&hbus->device_list_lock, flags);
2619 list_for_each_entry(hpdev, &hbus->children, list_entry) {
2620 if ((hpdev->desc.win_slot.slot == new_desc->win_slot.slot) &&
2621 (hpdev->desc.v_id == new_desc->v_id) &&
2622 (hpdev->desc.d_id == new_desc->d_id) &&
2623 (hpdev->desc.ser == new_desc->ser)) {
2624 hpdev->reported_missing = false;
2625 found = true;
2626 }
2627 }
2628 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2629
2630 if (!found) {
2631 hpdev = new_pcichild_device(hbus, new_desc);
2632 if (!hpdev)
2633 dev_err(&hbus->hdev->device,
2634 "couldn't record a child device.\n");
2635 }
2636 }
2637
2638 /* Move missing children to a list on the stack. */
2639 spin_lock_irqsave(&hbus->device_list_lock, flags);
2640 do {
2641 found = false;
2642 list_for_each_entry(hpdev, &hbus->children, list_entry) {
2643 if (hpdev->reported_missing) {
2644 found = true;
2645 put_pcichild(hpdev);
2646 list_move_tail(&hpdev->list_entry, &removed);
2647 break;
2648 }
2649 }
2650 } while (found);
2651 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2652
2653 /* Delete everything that should no longer exist. */
2654 while (!list_empty(&removed)) {
2655 hpdev = list_first_entry(&removed, struct hv_pci_dev,
2656 list_entry);
2657 list_del(&hpdev->list_entry);
2658
2659 if (hpdev->pci_slot)
2660 pci_destroy_slot(hpdev->pci_slot);
2661
2662 put_pcichild(hpdev);
2663 }
2664
2665 switch (hbus->state) {
2666 case hv_pcibus_installed:
2667 /*
2668 * Tell the core to rescan bus
2669 * because there may have been changes.
2670 */
2671 pci_lock_rescan_remove();
2672 pci_scan_child_bus(hbus->bridge->bus);
2673 hv_pci_assign_numa_node(hbus);
2674 hv_pci_assign_slots(hbus);
2675 pci_unlock_rescan_remove();
2676 break;
2677
2678 case hv_pcibus_init:
2679 case hv_pcibus_probed:
2680 survey_child_resources(hbus);
2681 break;
2682
2683 default:
2684 break;
2685 }
2686
2687 mutex_unlock(&hbus->state_lock);
2688
2689 kfree(dr);
2690}
2691
2692/**
2693 * hv_pci_start_relations_work() - Queue work to start device discovery
2694 * @hbus: Root PCI bus, as understood by this driver
2695 * @dr: The list of children returned from host
2696 *
2697 * Return: 0 on success, -errno on failure
2698 */
2699static int hv_pci_start_relations_work(struct hv_pcibus_device *hbus,
2700 struct hv_dr_state *dr)
2701{
2702 struct hv_dr_work *dr_wrk;
2703 unsigned long flags;
2704 bool pending_dr;
2705
2706 if (hbus->state == hv_pcibus_removing) {
2707 dev_info(&hbus->hdev->device,
2708 "PCI VMBus BUS_RELATIONS: ignored\n");
2709 return -ENOENT;
2710 }
2711
2712 dr_wrk = kzalloc(sizeof(*dr_wrk), GFP_NOWAIT);
2713 if (!dr_wrk)
2714 return -ENOMEM;
2715
2716 INIT_WORK(&dr_wrk->wrk, pci_devices_present_work);
2717 dr_wrk->bus = hbus;
2718
2719 spin_lock_irqsave(&hbus->device_list_lock, flags);
2720 /*
2721 * If pending_dr is true, we have already queued a work,
2722 * which will see the new dr. Otherwise, we need to
2723 * queue a new work.
2724 */
2725 pending_dr = !list_empty(&hbus->dr_list);
2726 list_add_tail(&dr->list_entry, &hbus->dr_list);
2727 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2728
2729 if (pending_dr)
2730 kfree(dr_wrk);
2731 else
2732 queue_work(hbus->wq, &dr_wrk->wrk);
2733
2734 return 0;
2735}
2736
2737/**
2738 * hv_pci_devices_present() - Handle list of new children
2739 * @hbus: Root PCI bus, as understood by this driver
2740 * @relations: Packet from host listing children
2741 *
2742 * Process a new list of devices on the bus. The list of devices is
2743 * discovered by VSP and sent to us via VSP message PCI_BUS_RELATIONS,
2744 * whenever a new list of devices for this bus appears.
2745 */
2746static void hv_pci_devices_present(struct hv_pcibus_device *hbus,
2747 struct pci_bus_relations *relations)
2748{
2749 struct hv_dr_state *dr;
2750 int i;
2751
2752 dr = kzalloc(struct_size(dr, func, relations->device_count),
2753 GFP_NOWAIT);
2754 if (!dr)
2755 return;
2756
2757 dr->device_count = relations->device_count;
2758 for (i = 0; i < dr->device_count; i++) {
2759 dr->func[i].v_id = relations->func[i].v_id;
2760 dr->func[i].d_id = relations->func[i].d_id;
2761 dr->func[i].rev = relations->func[i].rev;
2762 dr->func[i].prog_intf = relations->func[i].prog_intf;
2763 dr->func[i].subclass = relations->func[i].subclass;
2764 dr->func[i].base_class = relations->func[i].base_class;
2765 dr->func[i].subsystem_id = relations->func[i].subsystem_id;
2766 dr->func[i].win_slot = relations->func[i].win_slot;
2767 dr->func[i].ser = relations->func[i].ser;
2768 }
2769
2770 if (hv_pci_start_relations_work(hbus, dr))
2771 kfree(dr);
2772}
2773
2774/**
2775 * hv_pci_devices_present2() - Handle list of new children
2776 * @hbus: Root PCI bus, as understood by this driver
2777 * @relations: Packet from host listing children
2778 *
2779 * This function is the v2 version of hv_pci_devices_present()
2780 */
2781static void hv_pci_devices_present2(struct hv_pcibus_device *hbus,
2782 struct pci_bus_relations2 *relations)
2783{
2784 struct hv_dr_state *dr;
2785 int i;
2786
2787 dr = kzalloc(struct_size(dr, func, relations->device_count),
2788 GFP_NOWAIT);
2789 if (!dr)
2790 return;
2791
2792 dr->device_count = relations->device_count;
2793 for (i = 0; i < dr->device_count; i++) {
2794 dr->func[i].v_id = relations->func[i].v_id;
2795 dr->func[i].d_id = relations->func[i].d_id;
2796 dr->func[i].rev = relations->func[i].rev;
2797 dr->func[i].prog_intf = relations->func[i].prog_intf;
2798 dr->func[i].subclass = relations->func[i].subclass;
2799 dr->func[i].base_class = relations->func[i].base_class;
2800 dr->func[i].subsystem_id = relations->func[i].subsystem_id;
2801 dr->func[i].win_slot = relations->func[i].win_slot;
2802 dr->func[i].ser = relations->func[i].ser;
2803 dr->func[i].flags = relations->func[i].flags;
2804 dr->func[i].virtual_numa_node =
2805 relations->func[i].virtual_numa_node;
2806 }
2807
2808 if (hv_pci_start_relations_work(hbus, dr))
2809 kfree(dr);
2810}
2811
2812/**
2813 * hv_eject_device_work() - Asynchronously handles ejection
2814 * @work: Work struct embedded in internal device struct
2815 *
2816 * This function handles ejecting a device. Windows will
2817 * attempt to gracefully eject a device, waiting 60 seconds to
2818 * hear back from the guest OS that this completed successfully.
2819 * If this timer expires, the device will be forcibly removed.
2820 */
2821static void hv_eject_device_work(struct work_struct *work)
2822{
2823 struct pci_eject_response *ejct_pkt;
2824 struct hv_pcibus_device *hbus;
2825 struct hv_pci_dev *hpdev;
2826 struct pci_dev *pdev;
2827 unsigned long flags;
2828 int wslot;
2829 struct {
2830 struct pci_packet pkt;
2831 u8 buffer[sizeof(struct pci_eject_response)];
2832 } ctxt;
2833
2834 hpdev = container_of(work, struct hv_pci_dev, wrk);
2835 hbus = hpdev->hbus;
2836
2837 mutex_lock(&hbus->state_lock);
2838
2839 /*
2840 * Ejection can come before or after the PCI bus has been set up, so
2841 * attempt to find it and tear down the bus state, if it exists. This
2842 * must be done without constructs like pci_domain_nr(hbus->bridge->bus)
2843 * because hbus->bridge->bus may not exist yet.
2844 */
2845 wslot = wslot_to_devfn(hpdev->desc.win_slot.slot);
2846 pdev = pci_get_domain_bus_and_slot(hbus->bridge->domain_nr, 0, wslot);
2847 if (pdev) {
2848 pci_lock_rescan_remove();
2849 pci_stop_and_remove_bus_device(pdev);
2850 pci_dev_put(pdev);
2851 pci_unlock_rescan_remove();
2852 }
2853
2854 spin_lock_irqsave(&hbus->device_list_lock, flags);
2855 list_del(&hpdev->list_entry);
2856 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2857
2858 if (hpdev->pci_slot)
2859 pci_destroy_slot(hpdev->pci_slot);
2860
2861 memset(&ctxt, 0, sizeof(ctxt));
2862 ejct_pkt = (struct pci_eject_response *)&ctxt.pkt.message;
2863 ejct_pkt->message_type.type = PCI_EJECTION_COMPLETE;
2864 ejct_pkt->wslot.slot = hpdev->desc.win_slot.slot;
2865 vmbus_sendpacket(hbus->hdev->channel, ejct_pkt,
2866 sizeof(*ejct_pkt), 0,
2867 VM_PKT_DATA_INBAND, 0);
2868
2869 /* For the get_pcichild() in hv_pci_eject_device() */
2870 put_pcichild(hpdev);
2871 /* For the two refs got in new_pcichild_device() */
2872 put_pcichild(hpdev);
2873 put_pcichild(hpdev);
2874 /* hpdev has been freed. Do not use it any more. */
2875
2876 mutex_unlock(&hbus->state_lock);
2877}
2878
2879/**
2880 * hv_pci_eject_device() - Handles device ejection
2881 * @hpdev: Internal device tracking struct
2882 *
2883 * This function is invoked when an ejection packet arrives. It
2884 * just schedules work so that we don't re-enter the packet
2885 * delivery code handling the ejection.
2886 */
2887static void hv_pci_eject_device(struct hv_pci_dev *hpdev)
2888{
2889 struct hv_pcibus_device *hbus = hpdev->hbus;
2890 struct hv_device *hdev = hbus->hdev;
2891
2892 if (hbus->state == hv_pcibus_removing) {
2893 dev_info(&hdev->device, "PCI VMBus EJECT: ignored\n");
2894 return;
2895 }
2896
2897 get_pcichild(hpdev);
2898 INIT_WORK(&hpdev->wrk, hv_eject_device_work);
2899 queue_work(hbus->wq, &hpdev->wrk);
2900}
2901
2902/**
2903 * hv_pci_onchannelcallback() - Handles incoming packets
2904 * @context: Internal bus tracking struct
2905 *
2906 * This function is invoked whenever the host sends a packet to
2907 * this channel (which is private to this root PCI bus).
2908 */
2909static void hv_pci_onchannelcallback(void *context)
2910{
2911 const int packet_size = 0x100;
2912 int ret;
2913 struct hv_pcibus_device *hbus = context;
2914 struct vmbus_channel *chan = hbus->hdev->channel;
2915 u32 bytes_recvd;
2916 u64 req_id, req_addr;
2917 struct vmpacket_descriptor *desc;
2918 unsigned char *buffer;
2919 int bufferlen = packet_size;
2920 struct pci_packet *comp_packet;
2921 struct pci_response *response;
2922 struct pci_incoming_message *new_message;
2923 struct pci_bus_relations *bus_rel;
2924 struct pci_bus_relations2 *bus_rel2;
2925 struct pci_dev_inval_block *inval;
2926 struct pci_dev_incoming *dev_message;
2927 struct hv_pci_dev *hpdev;
2928 unsigned long flags;
2929
2930 buffer = kmalloc(bufferlen, GFP_ATOMIC);
2931 if (!buffer)
2932 return;
2933
2934 while (1) {
2935 ret = vmbus_recvpacket_raw(chan, buffer, bufferlen,
2936 &bytes_recvd, &req_id);
2937
2938 if (ret == -ENOBUFS) {
2939 kfree(buffer);
2940 /* Handle large packet */
2941 bufferlen = bytes_recvd;
2942 buffer = kmalloc(bytes_recvd, GFP_ATOMIC);
2943 if (!buffer)
2944 return;
2945 continue;
2946 }
2947
2948 /* Zero length indicates there are no more packets. */
2949 if (ret || !bytes_recvd)
2950 break;
2951
2952 /*
2953 * All incoming packets must be at least as large as a
2954 * response.
2955 */
2956 if (bytes_recvd <= sizeof(struct pci_response))
2957 continue;
2958 desc = (struct vmpacket_descriptor *)buffer;
2959
2960 switch (desc->type) {
2961 case VM_PKT_COMP:
2962
2963 lock_requestor(chan, flags);
2964 req_addr = __vmbus_request_addr_match(chan, req_id,
2965 VMBUS_RQST_ADDR_ANY);
2966 if (req_addr == VMBUS_RQST_ERROR) {
2967 unlock_requestor(chan, flags);
2968 dev_err(&hbus->hdev->device,
2969 "Invalid transaction ID %llx\n",
2970 req_id);
2971 break;
2972 }
2973 comp_packet = (struct pci_packet *)req_addr;
2974 response = (struct pci_response *)buffer;
2975 /*
2976 * Call ->completion_func() within the critical section to make
2977 * sure that the packet pointer is still valid during the call:
2978 * here 'valid' means that there's a task still waiting for the
2979 * completion, and that the packet data is still on the waiting
2980 * task's stack. Cf. hv_compose_msi_msg().
2981 */
2982 comp_packet->completion_func(comp_packet->compl_ctxt,
2983 response,
2984 bytes_recvd);
2985 unlock_requestor(chan, flags);
2986 break;
2987
2988 case VM_PKT_DATA_INBAND:
2989
2990 new_message = (struct pci_incoming_message *)buffer;
2991 switch (new_message->message_type.type) {
2992 case PCI_BUS_RELATIONS:
2993
2994 bus_rel = (struct pci_bus_relations *)buffer;
2995 if (bytes_recvd < sizeof(*bus_rel) ||
2996 bytes_recvd <
2997 struct_size(bus_rel, func,
2998 bus_rel->device_count)) {
2999 dev_err(&hbus->hdev->device,
3000 "bus relations too small\n");
3001 break;
3002 }
3003
3004 hv_pci_devices_present(hbus, bus_rel);
3005 break;
3006
3007 case PCI_BUS_RELATIONS2:
3008
3009 bus_rel2 = (struct pci_bus_relations2 *)buffer;
3010 if (bytes_recvd < sizeof(*bus_rel2) ||
3011 bytes_recvd <
3012 struct_size(bus_rel2, func,
3013 bus_rel2->device_count)) {
3014 dev_err(&hbus->hdev->device,
3015 "bus relations v2 too small\n");
3016 break;
3017 }
3018
3019 hv_pci_devices_present2(hbus, bus_rel2);
3020 break;
3021
3022 case PCI_EJECT:
3023
3024 dev_message = (struct pci_dev_incoming *)buffer;
3025 if (bytes_recvd < sizeof(*dev_message)) {
3026 dev_err(&hbus->hdev->device,
3027 "eject message too small\n");
3028 break;
3029 }
3030 hpdev = get_pcichild_wslot(hbus,
3031 dev_message->wslot.slot);
3032 if (hpdev) {
3033 hv_pci_eject_device(hpdev);
3034 put_pcichild(hpdev);
3035 }
3036 break;
3037
3038 case PCI_INVALIDATE_BLOCK:
3039
3040 inval = (struct pci_dev_inval_block *)buffer;
3041 if (bytes_recvd < sizeof(*inval)) {
3042 dev_err(&hbus->hdev->device,
3043 "invalidate message too small\n");
3044 break;
3045 }
3046 hpdev = get_pcichild_wslot(hbus,
3047 inval->wslot.slot);
3048 if (hpdev) {
3049 if (hpdev->block_invalidate) {
3050 hpdev->block_invalidate(
3051 hpdev->invalidate_context,
3052 inval->block_mask);
3053 }
3054 put_pcichild(hpdev);
3055 }
3056 break;
3057
3058 default:
3059 dev_warn(&hbus->hdev->device,
3060 "Unimplemented protocol message %x\n",
3061 new_message->message_type.type);
3062 break;
3063 }
3064 break;
3065
3066 default:
3067 dev_err(&hbus->hdev->device,
3068 "unhandled packet type %d, tid %llx len %d\n",
3069 desc->type, req_id, bytes_recvd);
3070 break;
3071 }
3072 }
3073
3074 kfree(buffer);
3075}
3076
3077/**
3078 * hv_pci_protocol_negotiation() - Set up protocol
3079 * @hdev: VMBus's tracking struct for this root PCI bus.
3080 * @version: Array of supported channel protocol versions in
3081 * the order of probing - highest go first.
3082 * @num_version: Number of elements in the version array.
3083 *
3084 * This driver is intended to support running on Windows 10
3085 * (server) and later versions. It will not run on earlier
3086 * versions, as they assume that many of the operations which
3087 * Linux needs accomplished with a spinlock held were done via
3088 * asynchronous messaging via VMBus. Windows 10 increases the
3089 * surface area of PCI emulation so that these actions can take
3090 * place by suspending a virtual processor for their duration.
3091 *
3092 * This function negotiates the channel protocol version,
3093 * failing if the host doesn't support the necessary protocol
3094 * level.
3095 */
3096static int hv_pci_protocol_negotiation(struct hv_device *hdev,
3097 enum pci_protocol_version_t version[],
3098 int num_version)
3099{
3100 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3101 struct pci_version_request *version_req;
3102 struct hv_pci_compl comp_pkt;
3103 struct pci_packet *pkt;
3104 int ret;
3105 int i;
3106
3107 /*
3108 * Initiate the handshake with the host and negotiate
3109 * a version that the host can support. We start with the
3110 * highest version number and go down if the host cannot
3111 * support it.
3112 */
3113 pkt = kzalloc(sizeof(*pkt) + sizeof(*version_req), GFP_KERNEL);
3114 if (!pkt)
3115 return -ENOMEM;
3116
3117 init_completion(&comp_pkt.host_event);
3118 pkt->completion_func = hv_pci_generic_compl;
3119 pkt->compl_ctxt = &comp_pkt;
3120 version_req = (struct pci_version_request *)&pkt->message;
3121 version_req->message_type.type = PCI_QUERY_PROTOCOL_VERSION;
3122
3123 for (i = 0; i < num_version; i++) {
3124 version_req->protocol_version = version[i];
3125 ret = vmbus_sendpacket(hdev->channel, version_req,
3126 sizeof(struct pci_version_request),
3127 (unsigned long)pkt, VM_PKT_DATA_INBAND,
3128 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3129 if (!ret)
3130 ret = wait_for_response(hdev, &comp_pkt.host_event);
3131
3132 if (ret) {
3133 dev_err(&hdev->device,
3134 "PCI Pass-through VSP failed to request version: %d",
3135 ret);
3136 goto exit;
3137 }
3138
3139 if (comp_pkt.completion_status >= 0) {
3140 hbus->protocol_version = version[i];
3141 dev_info(&hdev->device,
3142 "PCI VMBus probing: Using version %#x\n",
3143 hbus->protocol_version);
3144 goto exit;
3145 }
3146
3147 if (comp_pkt.completion_status != STATUS_REVISION_MISMATCH) {
3148 dev_err(&hdev->device,
3149 "PCI Pass-through VSP failed version request: %#x",
3150 comp_pkt.completion_status);
3151 ret = -EPROTO;
3152 goto exit;
3153 }
3154
3155 reinit_completion(&comp_pkt.host_event);
3156 }
3157
3158 dev_err(&hdev->device,
3159 "PCI pass-through VSP failed to find supported version");
3160 ret = -EPROTO;
3161
3162exit:
3163 kfree(pkt);
3164 return ret;
3165}
3166
3167/**
3168 * hv_pci_free_bridge_windows() - Release memory regions for the
3169 * bus
3170 * @hbus: Root PCI bus, as understood by this driver
3171 */
3172static void hv_pci_free_bridge_windows(struct hv_pcibus_device *hbus)
3173{
3174 /*
3175 * Set the resources back to the way they looked when they
3176 * were allocated by setting IORESOURCE_BUSY again.
3177 */
3178
3179 if (hbus->low_mmio_space && hbus->low_mmio_res) {
3180 hbus->low_mmio_res->flags |= IORESOURCE_BUSY;
3181 vmbus_free_mmio(hbus->low_mmio_res->start,
3182 resource_size(hbus->low_mmio_res));
3183 }
3184
3185 if (hbus->high_mmio_space && hbus->high_mmio_res) {
3186 hbus->high_mmio_res->flags |= IORESOURCE_BUSY;
3187 vmbus_free_mmio(hbus->high_mmio_res->start,
3188 resource_size(hbus->high_mmio_res));
3189 }
3190}
3191
3192/**
3193 * hv_pci_allocate_bridge_windows() - Allocate memory regions
3194 * for the bus
3195 * @hbus: Root PCI bus, as understood by this driver
3196 *
3197 * This function calls vmbus_allocate_mmio(), which is itself a
3198 * bit of a compromise. Ideally, we might change the pnp layer
3199 * in the kernel such that it comprehends either PCI devices
3200 * which are "grandchildren of ACPI," with some intermediate bus
3201 * node (in this case, VMBus) or change it such that it
3202 * understands VMBus. The pnp layer, however, has been declared
3203 * deprecated, and not subject to change.
3204 *
3205 * The workaround, implemented here, is to ask VMBus to allocate
3206 * MMIO space for this bus. VMBus itself knows which ranges are
3207 * appropriate by looking at its own ACPI objects. Then, after
3208 * these ranges are claimed, they're modified to look like they
3209 * would have looked if the ACPI and pnp code had allocated
3210 * bridge windows. These descriptors have to exist in this form
3211 * in order to satisfy the code which will get invoked when the
3212 * endpoint PCI function driver calls request_mem_region() or
3213 * request_mem_region_exclusive().
3214 *
3215 * Return: 0 on success, -errno on failure
3216 */
3217static int hv_pci_allocate_bridge_windows(struct hv_pcibus_device *hbus)
3218{
3219 resource_size_t align;
3220 int ret;
3221
3222 if (hbus->low_mmio_space) {
3223 align = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
3224 ret = vmbus_allocate_mmio(&hbus->low_mmio_res, hbus->hdev, 0,
3225 (u64)(u32)0xffffffff,
3226 hbus->low_mmio_space,
3227 align, false);
3228 if (ret) {
3229 dev_err(&hbus->hdev->device,
3230 "Need %#llx of low MMIO space. Consider reconfiguring the VM.\n",
3231 hbus->low_mmio_space);
3232 return ret;
3233 }
3234
3235 /* Modify this resource to become a bridge window. */
3236 hbus->low_mmio_res->flags |= IORESOURCE_WINDOW;
3237 hbus->low_mmio_res->flags &= ~IORESOURCE_BUSY;
3238 pci_add_resource(&hbus->bridge->windows, hbus->low_mmio_res);
3239 }
3240
3241 if (hbus->high_mmio_space) {
3242 align = 1ULL << (63 - __builtin_clzll(hbus->high_mmio_space));
3243 ret = vmbus_allocate_mmio(&hbus->high_mmio_res, hbus->hdev,
3244 0x100000000, -1,
3245 hbus->high_mmio_space, align,
3246 false);
3247 if (ret) {
3248 dev_err(&hbus->hdev->device,
3249 "Need %#llx of high MMIO space. Consider reconfiguring the VM.\n",
3250 hbus->high_mmio_space);
3251 goto release_low_mmio;
3252 }
3253
3254 /* Modify this resource to become a bridge window. */
3255 hbus->high_mmio_res->flags |= IORESOURCE_WINDOW;
3256 hbus->high_mmio_res->flags &= ~IORESOURCE_BUSY;
3257 pci_add_resource(&hbus->bridge->windows, hbus->high_mmio_res);
3258 }
3259
3260 return 0;
3261
3262release_low_mmio:
3263 if (hbus->low_mmio_res) {
3264 vmbus_free_mmio(hbus->low_mmio_res->start,
3265 resource_size(hbus->low_mmio_res));
3266 }
3267
3268 return ret;
3269}
3270
3271/**
3272 * hv_allocate_config_window() - Find MMIO space for PCI Config
3273 * @hbus: Root PCI bus, as understood by this driver
3274 *
3275 * This function claims memory-mapped I/O space for accessing
3276 * configuration space for the functions on this bus.
3277 *
3278 * Return: 0 on success, -errno on failure
3279 */
3280static int hv_allocate_config_window(struct hv_pcibus_device *hbus)
3281{
3282 int ret;
3283
3284 /*
3285 * Set up a region of MMIO space to use for accessing configuration
3286 * space.
3287 */
3288 ret = vmbus_allocate_mmio(&hbus->mem_config, hbus->hdev, 0, -1,
3289 PCI_CONFIG_MMIO_LENGTH, 0x1000, false);
3290 if (ret)
3291 return ret;
3292
3293 /*
3294 * vmbus_allocate_mmio() gets used for allocating both device endpoint
3295 * resource claims (those which cannot be overlapped) and the ranges
3296 * which are valid for the children of this bus, which are intended
3297 * to be overlapped by those children. Set the flag on this claim
3298 * meaning that this region can't be overlapped.
3299 */
3300
3301 hbus->mem_config->flags |= IORESOURCE_BUSY;
3302
3303 return 0;
3304}
3305
3306static void hv_free_config_window(struct hv_pcibus_device *hbus)
3307{
3308 vmbus_free_mmio(hbus->mem_config->start, PCI_CONFIG_MMIO_LENGTH);
3309}
3310
3311static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs);
3312
3313/**
3314 * hv_pci_enter_d0() - Bring the "bus" into the D0 power state
3315 * @hdev: VMBus's tracking struct for this root PCI bus
3316 *
3317 * Return: 0 on success, -errno on failure
3318 */
3319static int hv_pci_enter_d0(struct hv_device *hdev)
3320{
3321 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3322 struct pci_bus_d0_entry *d0_entry;
3323 struct hv_pci_compl comp_pkt;
3324 struct pci_packet *pkt;
3325 bool retry = true;
3326 int ret;
3327
3328enter_d0_retry:
3329 /*
3330 * Tell the host that the bus is ready to use, and moved into the
3331 * powered-on state. This includes telling the host which region
3332 * of memory-mapped I/O space has been chosen for configuration space
3333 * access.
3334 */
3335 pkt = kzalloc(sizeof(*pkt) + sizeof(*d0_entry), GFP_KERNEL);
3336 if (!pkt)
3337 return -ENOMEM;
3338
3339 init_completion(&comp_pkt.host_event);
3340 pkt->completion_func = hv_pci_generic_compl;
3341 pkt->compl_ctxt = &comp_pkt;
3342 d0_entry = (struct pci_bus_d0_entry *)&pkt->message;
3343 d0_entry->message_type.type = PCI_BUS_D0ENTRY;
3344 d0_entry->mmio_base = hbus->mem_config->start;
3345
3346 ret = vmbus_sendpacket(hdev->channel, d0_entry, sizeof(*d0_entry),
3347 (unsigned long)pkt, VM_PKT_DATA_INBAND,
3348 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3349 if (!ret)
3350 ret = wait_for_response(hdev, &comp_pkt.host_event);
3351
3352 if (ret)
3353 goto exit;
3354
3355 /*
3356 * In certain case (Kdump) the pci device of interest was
3357 * not cleanly shut down and resource is still held on host
3358 * side, the host could return invalid device status.
3359 * We need to explicitly request host to release the resource
3360 * and try to enter D0 again.
3361 */
3362 if (comp_pkt.completion_status < 0 && retry) {
3363 retry = false;
3364
3365 dev_err(&hdev->device, "Retrying D0 Entry\n");
3366
3367 /*
3368 * Hv_pci_bus_exit() calls hv_send_resource_released()
3369 * to free up resources of its child devices.
3370 * In the kdump kernel we need to set the
3371 * wslot_res_allocated to 255 so it scans all child
3372 * devices to release resources allocated in the
3373 * normal kernel before panic happened.
3374 */
3375 hbus->wslot_res_allocated = 255;
3376
3377 ret = hv_pci_bus_exit(hdev, true);
3378
3379 if (ret == 0) {
3380 kfree(pkt);
3381 goto enter_d0_retry;
3382 }
3383 dev_err(&hdev->device,
3384 "Retrying D0 failed with ret %d\n", ret);
3385 }
3386
3387 if (comp_pkt.completion_status < 0) {
3388 dev_err(&hdev->device,
3389 "PCI Pass-through VSP failed D0 Entry with status %x\n",
3390 comp_pkt.completion_status);
3391 ret = -EPROTO;
3392 goto exit;
3393 }
3394
3395 ret = 0;
3396
3397exit:
3398 kfree(pkt);
3399 return ret;
3400}
3401
3402/**
3403 * hv_pci_query_relations() - Ask host to send list of child
3404 * devices
3405 * @hdev: VMBus's tracking struct for this root PCI bus
3406 *
3407 * Return: 0 on success, -errno on failure
3408 */
3409static int hv_pci_query_relations(struct hv_device *hdev)
3410{
3411 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3412 struct pci_message message;
3413 struct completion comp;
3414 int ret;
3415
3416 /* Ask the host to send along the list of child devices */
3417 init_completion(&comp);
3418 if (cmpxchg(&hbus->survey_event, NULL, &comp))
3419 return -ENOTEMPTY;
3420
3421 memset(&message, 0, sizeof(message));
3422 message.type = PCI_QUERY_BUS_RELATIONS;
3423
3424 ret = vmbus_sendpacket(hdev->channel, &message, sizeof(message),
3425 0, VM_PKT_DATA_INBAND, 0);
3426 if (!ret)
3427 ret = wait_for_response(hdev, &comp);
3428
3429 /*
3430 * In the case of fast device addition/removal, it's possible that
3431 * vmbus_sendpacket() or wait_for_response() returns -ENODEV but we
3432 * already got a PCI_BUS_RELATIONS* message from the host and the
3433 * channel callback already scheduled a work to hbus->wq, which can be
3434 * running pci_devices_present_work() -> survey_child_resources() ->
3435 * complete(&hbus->survey_event), even after hv_pci_query_relations()
3436 * exits and the stack variable 'comp' is no longer valid; as a result,
3437 * a hang or a page fault may happen when the complete() calls
3438 * raw_spin_lock_irqsave(). Flush hbus->wq before we exit from
3439 * hv_pci_query_relations() to avoid the issues. Note: if 'ret' is
3440 * -ENODEV, there can't be any more work item scheduled to hbus->wq
3441 * after the flush_workqueue(): see vmbus_onoffer_rescind() ->
3442 * vmbus_reset_channel_cb(), vmbus_rescind_cleanup() ->
3443 * channel->rescind = true.
3444 */
3445 flush_workqueue(hbus->wq);
3446
3447 return ret;
3448}
3449
3450/**
3451 * hv_send_resources_allocated() - Report local resource choices
3452 * @hdev: VMBus's tracking struct for this root PCI bus
3453 *
3454 * The host OS is expecting to be sent a request as a message
3455 * which contains all the resources that the device will use.
3456 * The response contains those same resources, "translated"
3457 * which is to say, the values which should be used by the
3458 * hardware, when it delivers an interrupt. (MMIO resources are
3459 * used in local terms.) This is nice for Windows, and lines up
3460 * with the FDO/PDO split, which doesn't exist in Linux. Linux
3461 * is deeply expecting to scan an emulated PCI configuration
3462 * space. So this message is sent here only to drive the state
3463 * machine on the host forward.
3464 *
3465 * Return: 0 on success, -errno on failure
3466 */
3467static int hv_send_resources_allocated(struct hv_device *hdev)
3468{
3469 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3470 struct pci_resources_assigned *res_assigned;
3471 struct pci_resources_assigned2 *res_assigned2;
3472 struct hv_pci_compl comp_pkt;
3473 struct hv_pci_dev *hpdev;
3474 struct pci_packet *pkt;
3475 size_t size_res;
3476 int wslot;
3477 int ret;
3478
3479 size_res = (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2)
3480 ? sizeof(*res_assigned) : sizeof(*res_assigned2);
3481
3482 pkt = kmalloc(sizeof(*pkt) + size_res, GFP_KERNEL);
3483 if (!pkt)
3484 return -ENOMEM;
3485
3486 ret = 0;
3487
3488 for (wslot = 0; wslot < 256; wslot++) {
3489 hpdev = get_pcichild_wslot(hbus, wslot);
3490 if (!hpdev)
3491 continue;
3492
3493 memset(pkt, 0, sizeof(*pkt) + size_res);
3494 init_completion(&comp_pkt.host_event);
3495 pkt->completion_func = hv_pci_generic_compl;
3496 pkt->compl_ctxt = &comp_pkt;
3497
3498 if (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2) {
3499 res_assigned =
3500 (struct pci_resources_assigned *)&pkt->message;
3501 res_assigned->message_type.type =
3502 PCI_RESOURCES_ASSIGNED;
3503 res_assigned->wslot.slot = hpdev->desc.win_slot.slot;
3504 } else {
3505 res_assigned2 =
3506 (struct pci_resources_assigned2 *)&pkt->message;
3507 res_assigned2->message_type.type =
3508 PCI_RESOURCES_ASSIGNED2;
3509 res_assigned2->wslot.slot = hpdev->desc.win_slot.slot;
3510 }
3511 put_pcichild(hpdev);
3512
3513 ret = vmbus_sendpacket(hdev->channel, &pkt->message,
3514 size_res, (unsigned long)pkt,
3515 VM_PKT_DATA_INBAND,
3516 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3517 if (!ret)
3518 ret = wait_for_response(hdev, &comp_pkt.host_event);
3519 if (ret)
3520 break;
3521
3522 if (comp_pkt.completion_status < 0) {
3523 ret = -EPROTO;
3524 dev_err(&hdev->device,
3525 "resource allocated returned 0x%x",
3526 comp_pkt.completion_status);
3527 break;
3528 }
3529
3530 hbus->wslot_res_allocated = wslot;
3531 }
3532
3533 kfree(pkt);
3534 return ret;
3535}
3536
3537/**
3538 * hv_send_resources_released() - Report local resources
3539 * released
3540 * @hdev: VMBus's tracking struct for this root PCI bus
3541 *
3542 * Return: 0 on success, -errno on failure
3543 */
3544static int hv_send_resources_released(struct hv_device *hdev)
3545{
3546 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3547 struct pci_child_message pkt;
3548 struct hv_pci_dev *hpdev;
3549 int wslot;
3550 int ret;
3551
3552 for (wslot = hbus->wslot_res_allocated; wslot >= 0; wslot--) {
3553 hpdev = get_pcichild_wslot(hbus, wslot);
3554 if (!hpdev)
3555 continue;
3556
3557 memset(&pkt, 0, sizeof(pkt));
3558 pkt.message_type.type = PCI_RESOURCES_RELEASED;
3559 pkt.wslot.slot = hpdev->desc.win_slot.slot;
3560
3561 put_pcichild(hpdev);
3562
3563 ret = vmbus_sendpacket(hdev->channel, &pkt, sizeof(pkt), 0,
3564 VM_PKT_DATA_INBAND, 0);
3565 if (ret)
3566 return ret;
3567
3568 hbus->wslot_res_allocated = wslot - 1;
3569 }
3570
3571 hbus->wslot_res_allocated = -1;
3572
3573 return 0;
3574}
3575
3576#define HVPCI_DOM_MAP_SIZE (64 * 1024)
3577static DECLARE_BITMAP(hvpci_dom_map, HVPCI_DOM_MAP_SIZE);
3578
3579/*
3580 * PCI domain number 0 is used by emulated devices on Gen1 VMs, so define 0
3581 * as invalid for passthrough PCI devices of this driver.
3582 */
3583#define HVPCI_DOM_INVALID 0
3584
3585/**
3586 * hv_get_dom_num() - Get a valid PCI domain number
3587 * Check if the PCI domain number is in use, and return another number if
3588 * it is in use.
3589 *
3590 * @dom: Requested domain number
3591 *
3592 * return: domain number on success, HVPCI_DOM_INVALID on failure
3593 */
3594static u16 hv_get_dom_num(u16 dom)
3595{
3596 unsigned int i;
3597
3598 if (test_and_set_bit(dom, hvpci_dom_map) == 0)
3599 return dom;
3600
3601 for_each_clear_bit(i, hvpci_dom_map, HVPCI_DOM_MAP_SIZE) {
3602 if (test_and_set_bit(i, hvpci_dom_map) == 0)
3603 return i;
3604 }
3605
3606 return HVPCI_DOM_INVALID;
3607}
3608
3609/**
3610 * hv_put_dom_num() - Mark the PCI domain number as free
3611 * @dom: Domain number to be freed
3612 */
3613static void hv_put_dom_num(u16 dom)
3614{
3615 clear_bit(dom, hvpci_dom_map);
3616}
3617
3618/**
3619 * hv_pci_probe() - New VMBus channel probe, for a root PCI bus
3620 * @hdev: VMBus's tracking struct for this root PCI bus
3621 * @dev_id: Identifies the device itself
3622 *
3623 * Return: 0 on success, -errno on failure
3624 */
3625static int hv_pci_probe(struct hv_device *hdev,
3626 const struct hv_vmbus_device_id *dev_id)
3627{
3628 struct pci_host_bridge *bridge;
3629 struct hv_pcibus_device *hbus;
3630 u16 dom_req, dom;
3631 char *name;
3632 int ret;
3633
3634 bridge = devm_pci_alloc_host_bridge(&hdev->device, 0);
3635 if (!bridge)
3636 return -ENOMEM;
3637
3638 hbus = kzalloc(sizeof(*hbus), GFP_KERNEL);
3639 if (!hbus)
3640 return -ENOMEM;
3641
3642 hbus->bridge = bridge;
3643 mutex_init(&hbus->state_lock);
3644 hbus->state = hv_pcibus_init;
3645 hbus->wslot_res_allocated = -1;
3646
3647 /*
3648 * The PCI bus "domain" is what is called "segment" in ACPI and other
3649 * specs. Pull it from the instance ID, to get something usually
3650 * unique. In rare cases of collision, we will find out another number
3651 * not in use.
3652 *
3653 * Note that, since this code only runs in a Hyper-V VM, Hyper-V
3654 * together with this guest driver can guarantee that (1) The only
3655 * domain used by Gen1 VMs for something that looks like a physical
3656 * PCI bus (which is actually emulated by the hypervisor) is domain 0.
3657 * (2) There will be no overlap between domains (after fixing possible
3658 * collisions) in the same VM.
3659 */
3660 dom_req = hdev->dev_instance.b[5] << 8 | hdev->dev_instance.b[4];
3661 dom = hv_get_dom_num(dom_req);
3662
3663 if (dom == HVPCI_DOM_INVALID) {
3664 dev_err(&hdev->device,
3665 "Unable to use dom# 0x%x or other numbers", dom_req);
3666 ret = -EINVAL;
3667 goto free_bus;
3668 }
3669
3670 if (dom != dom_req)
3671 dev_info(&hdev->device,
3672 "PCI dom# 0x%x has collision, using 0x%x",
3673 dom_req, dom);
3674
3675 hbus->bridge->domain_nr = dom;
3676#ifdef CONFIG_X86
3677 hbus->sysdata.domain = dom;
3678 hbus->use_calls = !!(ms_hyperv.hints & HV_X64_USE_MMIO_HYPERCALLS);
3679#elif defined(CONFIG_ARM64)
3680 /*
3681 * Set the PCI bus parent to be the corresponding VMbus
3682 * device. Then the VMbus device will be assigned as the
3683 * ACPI companion in pcibios_root_bridge_prepare() and
3684 * pci_dma_configure() will propagate device coherence
3685 * information to devices created on the bus.
3686 */
3687 hbus->sysdata.parent = hdev->device.parent;
3688 hbus->use_calls = false;
3689#endif
3690
3691 hbus->hdev = hdev;
3692 INIT_LIST_HEAD(&hbus->children);
3693 INIT_LIST_HEAD(&hbus->dr_list);
3694 spin_lock_init(&hbus->config_lock);
3695 spin_lock_init(&hbus->device_list_lock);
3696 hbus->wq = alloc_ordered_workqueue("hv_pci_%x", 0,
3697 hbus->bridge->domain_nr);
3698 if (!hbus->wq) {
3699 ret = -ENOMEM;
3700 goto free_dom;
3701 }
3702
3703 hdev->channel->next_request_id_callback = vmbus_next_request_id;
3704 hdev->channel->request_addr_callback = vmbus_request_addr;
3705 hdev->channel->rqstor_size = HV_PCI_RQSTOR_SIZE;
3706
3707 ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
3708 hv_pci_onchannelcallback, hbus);
3709 if (ret)
3710 goto destroy_wq;
3711
3712 hv_set_drvdata(hdev, hbus);
3713
3714 ret = hv_pci_protocol_negotiation(hdev, pci_protocol_versions,
3715 ARRAY_SIZE(pci_protocol_versions));
3716 if (ret)
3717 goto close;
3718
3719 ret = hv_allocate_config_window(hbus);
3720 if (ret)
3721 goto close;
3722
3723 hbus->cfg_addr = ioremap(hbus->mem_config->start,
3724 PCI_CONFIG_MMIO_LENGTH);
3725 if (!hbus->cfg_addr) {
3726 dev_err(&hdev->device,
3727 "Unable to map a virtual address for config space\n");
3728 ret = -ENOMEM;
3729 goto free_config;
3730 }
3731
3732 name = kasprintf(GFP_KERNEL, "%pUL", &hdev->dev_instance);
3733 if (!name) {
3734 ret = -ENOMEM;
3735 goto unmap;
3736 }
3737
3738 hbus->fwnode = irq_domain_alloc_named_fwnode(name);
3739 kfree(name);
3740 if (!hbus->fwnode) {
3741 ret = -ENOMEM;
3742 goto unmap;
3743 }
3744
3745 ret = hv_pcie_init_irq_domain(hbus);
3746 if (ret)
3747 goto free_fwnode;
3748
3749 ret = hv_pci_query_relations(hdev);
3750 if (ret)
3751 goto free_irq_domain;
3752
3753 mutex_lock(&hbus->state_lock);
3754
3755 ret = hv_pci_enter_d0(hdev);
3756 if (ret)
3757 goto release_state_lock;
3758
3759 ret = hv_pci_allocate_bridge_windows(hbus);
3760 if (ret)
3761 goto exit_d0;
3762
3763 ret = hv_send_resources_allocated(hdev);
3764 if (ret)
3765 goto free_windows;
3766
3767 prepopulate_bars(hbus);
3768
3769 hbus->state = hv_pcibus_probed;
3770
3771 ret = create_root_hv_pci_bus(hbus);
3772 if (ret)
3773 goto free_windows;
3774
3775 mutex_unlock(&hbus->state_lock);
3776 return 0;
3777
3778free_windows:
3779 hv_pci_free_bridge_windows(hbus);
3780exit_d0:
3781 (void) hv_pci_bus_exit(hdev, true);
3782release_state_lock:
3783 mutex_unlock(&hbus->state_lock);
3784free_irq_domain:
3785 irq_domain_remove(hbus->irq_domain);
3786free_fwnode:
3787 irq_domain_free_fwnode(hbus->fwnode);
3788unmap:
3789 iounmap(hbus->cfg_addr);
3790free_config:
3791 hv_free_config_window(hbus);
3792close:
3793 vmbus_close(hdev->channel);
3794destroy_wq:
3795 destroy_workqueue(hbus->wq);
3796free_dom:
3797 hv_put_dom_num(hbus->bridge->domain_nr);
3798free_bus:
3799 kfree(hbus);
3800 return ret;
3801}
3802
3803static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs)
3804{
3805 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3806 struct vmbus_channel *chan = hdev->channel;
3807 struct {
3808 struct pci_packet teardown_packet;
3809 u8 buffer[sizeof(struct pci_message)];
3810 } pkt;
3811 struct hv_pci_compl comp_pkt;
3812 struct hv_pci_dev *hpdev, *tmp;
3813 unsigned long flags;
3814 u64 trans_id;
3815 int ret;
3816
3817 /*
3818 * After the host sends the RESCIND_CHANNEL message, it doesn't
3819 * access the per-channel ringbuffer any longer.
3820 */
3821 if (chan->rescind)
3822 return 0;
3823
3824 if (!keep_devs) {
3825 struct list_head removed;
3826
3827 /* Move all present children to the list on stack */
3828 INIT_LIST_HEAD(&removed);
3829 spin_lock_irqsave(&hbus->device_list_lock, flags);
3830 list_for_each_entry_safe(hpdev, tmp, &hbus->children, list_entry)
3831 list_move_tail(&hpdev->list_entry, &removed);
3832 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
3833
3834 /* Remove all children in the list */
3835 list_for_each_entry_safe(hpdev, tmp, &removed, list_entry) {
3836 list_del(&hpdev->list_entry);
3837 if (hpdev->pci_slot)
3838 pci_destroy_slot(hpdev->pci_slot);
3839 /* For the two refs got in new_pcichild_device() */
3840 put_pcichild(hpdev);
3841 put_pcichild(hpdev);
3842 }
3843 }
3844
3845 ret = hv_send_resources_released(hdev);
3846 if (ret) {
3847 dev_err(&hdev->device,
3848 "Couldn't send resources released packet(s)\n");
3849 return ret;
3850 }
3851
3852 memset(&pkt.teardown_packet, 0, sizeof(pkt.teardown_packet));
3853 init_completion(&comp_pkt.host_event);
3854 pkt.teardown_packet.completion_func = hv_pci_generic_compl;
3855 pkt.teardown_packet.compl_ctxt = &comp_pkt;
3856 pkt.teardown_packet.message[0].type = PCI_BUS_D0EXIT;
3857
3858 ret = vmbus_sendpacket_getid(chan, &pkt.teardown_packet.message,
3859 sizeof(struct pci_message),
3860 (unsigned long)&pkt.teardown_packet,
3861 &trans_id, VM_PKT_DATA_INBAND,
3862 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3863 if (ret)
3864 return ret;
3865
3866 if (wait_for_completion_timeout(&comp_pkt.host_event, 10 * HZ) == 0) {
3867 /*
3868 * The completion packet on the stack becomes invalid after
3869 * 'return'; remove the ID from the VMbus requestor if the
3870 * identifier is still mapped to/associated with the packet.
3871 *
3872 * Cf. hv_pci_onchannelcallback().
3873 */
3874 vmbus_request_addr_match(chan, trans_id,
3875 (unsigned long)&pkt.teardown_packet);
3876 return -ETIMEDOUT;
3877 }
3878
3879 return 0;
3880}
3881
3882/**
3883 * hv_pci_remove() - Remove routine for this VMBus channel
3884 * @hdev: VMBus's tracking struct for this root PCI bus
3885 */
3886static void hv_pci_remove(struct hv_device *hdev)
3887{
3888 struct hv_pcibus_device *hbus;
3889
3890 hbus = hv_get_drvdata(hdev);
3891 if (hbus->state == hv_pcibus_installed) {
3892 tasklet_disable(&hdev->channel->callback_event);
3893 hbus->state = hv_pcibus_removing;
3894 tasklet_enable(&hdev->channel->callback_event);
3895 destroy_workqueue(hbus->wq);
3896 hbus->wq = NULL;
3897 /*
3898 * At this point, no work is running or can be scheduled
3899 * on hbus-wq. We can't race with hv_pci_devices_present()
3900 * or hv_pci_eject_device(), it's safe to proceed.
3901 */
3902
3903 /* Remove the bus from PCI's point of view. */
3904 pci_lock_rescan_remove();
3905 pci_stop_root_bus(hbus->bridge->bus);
3906 hv_pci_remove_slots(hbus);
3907 pci_remove_root_bus(hbus->bridge->bus);
3908 pci_unlock_rescan_remove();
3909 }
3910
3911 hv_pci_bus_exit(hdev, false);
3912
3913 vmbus_close(hdev->channel);
3914
3915 iounmap(hbus->cfg_addr);
3916 hv_free_config_window(hbus);
3917 hv_pci_free_bridge_windows(hbus);
3918 irq_domain_remove(hbus->irq_domain);
3919 irq_domain_free_fwnode(hbus->fwnode);
3920
3921 hv_put_dom_num(hbus->bridge->domain_nr);
3922
3923 kfree(hbus);
3924}
3925
3926static int hv_pci_suspend(struct hv_device *hdev)
3927{
3928 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3929 enum hv_pcibus_state old_state;
3930 int ret;
3931
3932 /*
3933 * hv_pci_suspend() must make sure there are no pending work items
3934 * before calling vmbus_close(), since it runs in a process context
3935 * as a callback in dpm_suspend(). When it starts to run, the channel
3936 * callback hv_pci_onchannelcallback(), which runs in a tasklet
3937 * context, can be still running concurrently and scheduling new work
3938 * items onto hbus->wq in hv_pci_devices_present() and
3939 * hv_pci_eject_device(), and the work item handlers can access the
3940 * vmbus channel, which can be being closed by hv_pci_suspend(), e.g.
3941 * the work item handler pci_devices_present_work() ->
3942 * new_pcichild_device() writes to the vmbus channel.
3943 *
3944 * To eliminate the race, hv_pci_suspend() disables the channel
3945 * callback tasklet, sets hbus->state to hv_pcibus_removing, and
3946 * re-enables the tasklet. This way, when hv_pci_suspend() proceeds,
3947 * it knows that no new work item can be scheduled, and then it flushes
3948 * hbus->wq and safely closes the vmbus channel.
3949 */
3950 tasklet_disable(&hdev->channel->callback_event);
3951
3952 /* Change the hbus state to prevent new work items. */
3953 old_state = hbus->state;
3954 if (hbus->state == hv_pcibus_installed)
3955 hbus->state = hv_pcibus_removing;
3956
3957 tasklet_enable(&hdev->channel->callback_event);
3958
3959 if (old_state != hv_pcibus_installed)
3960 return -EINVAL;
3961
3962 flush_workqueue(hbus->wq);
3963
3964 ret = hv_pci_bus_exit(hdev, true);
3965 if (ret)
3966 return ret;
3967
3968 vmbus_close(hdev->channel);
3969
3970 return 0;
3971}
3972
3973static int hv_pci_restore_msi_msg(struct pci_dev *pdev, void *arg)
3974{
3975 struct irq_data *irq_data;
3976 struct msi_desc *entry;
3977 int ret = 0;
3978
3979 if (!pdev->msi_enabled && !pdev->msix_enabled)
3980 return 0;
3981
3982 msi_lock_descs(&pdev->dev);
3983 msi_for_each_desc(entry, &pdev->dev, MSI_DESC_ASSOCIATED) {
3984 irq_data = irq_get_irq_data(entry->irq);
3985 if (WARN_ON_ONCE(!irq_data)) {
3986 ret = -EINVAL;
3987 break;
3988 }
3989
3990 hv_compose_msi_msg(irq_data, &entry->msg);
3991 }
3992 msi_unlock_descs(&pdev->dev);
3993
3994 return ret;
3995}
3996
3997/*
3998 * Upon resume, pci_restore_msi_state() -> ... -> __pci_write_msi_msg()
3999 * directly writes the MSI/MSI-X registers via MMIO, but since Hyper-V
4000 * doesn't trap and emulate the MMIO accesses, here hv_compose_msi_msg()
4001 * must be used to ask Hyper-V to re-create the IOMMU Interrupt Remapping
4002 * Table entries.
4003 */
4004static void hv_pci_restore_msi_state(struct hv_pcibus_device *hbus)
4005{
4006 pci_walk_bus(hbus->bridge->bus, hv_pci_restore_msi_msg, NULL);
4007}
4008
4009static int hv_pci_resume(struct hv_device *hdev)
4010{
4011 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
4012 enum pci_protocol_version_t version[1];
4013 int ret;
4014
4015 hbus->state = hv_pcibus_init;
4016
4017 hdev->channel->next_request_id_callback = vmbus_next_request_id;
4018 hdev->channel->request_addr_callback = vmbus_request_addr;
4019 hdev->channel->rqstor_size = HV_PCI_RQSTOR_SIZE;
4020
4021 ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
4022 hv_pci_onchannelcallback, hbus);
4023 if (ret)
4024 return ret;
4025
4026 /* Only use the version that was in use before hibernation. */
4027 version[0] = hbus->protocol_version;
4028 ret = hv_pci_protocol_negotiation(hdev, version, 1);
4029 if (ret)
4030 goto out;
4031
4032 ret = hv_pci_query_relations(hdev);
4033 if (ret)
4034 goto out;
4035
4036 mutex_lock(&hbus->state_lock);
4037
4038 ret = hv_pci_enter_d0(hdev);
4039 if (ret)
4040 goto release_state_lock;
4041
4042 ret = hv_send_resources_allocated(hdev);
4043 if (ret)
4044 goto release_state_lock;
4045
4046 prepopulate_bars(hbus);
4047
4048 hv_pci_restore_msi_state(hbus);
4049
4050 hbus->state = hv_pcibus_installed;
4051 mutex_unlock(&hbus->state_lock);
4052 return 0;
4053
4054release_state_lock:
4055 mutex_unlock(&hbus->state_lock);
4056out:
4057 vmbus_close(hdev->channel);
4058 return ret;
4059}
4060
4061static const struct hv_vmbus_device_id hv_pci_id_table[] = {
4062 /* PCI Pass-through Class ID */
4063 /* 44C4F61D-4444-4400-9D52-802E27EDE19F */
4064 { HV_PCIE_GUID, },
4065 { },
4066};
4067
4068MODULE_DEVICE_TABLE(vmbus, hv_pci_id_table);
4069
4070static struct hv_driver hv_pci_drv = {
4071 .name = "hv_pci",
4072 .id_table = hv_pci_id_table,
4073 .probe = hv_pci_probe,
4074 .remove = hv_pci_remove,
4075 .suspend = hv_pci_suspend,
4076 .resume = hv_pci_resume,
4077};
4078
4079static void __exit exit_hv_pci_drv(void)
4080{
4081 vmbus_driver_unregister(&hv_pci_drv);
4082
4083 hvpci_block_ops.read_block = NULL;
4084 hvpci_block_ops.write_block = NULL;
4085 hvpci_block_ops.reg_blk_invalidate = NULL;
4086}
4087
4088static int __init init_hv_pci_drv(void)
4089{
4090 int ret;
4091
4092 if (!hv_is_hyperv_initialized())
4093 return -ENODEV;
4094
4095 ret = hv_pci_irqchip_init();
4096 if (ret)
4097 return ret;
4098
4099 /* Set the invalid domain number's bit, so it will not be used */
4100 set_bit(HVPCI_DOM_INVALID, hvpci_dom_map);
4101
4102 /* Initialize PCI block r/w interface */
4103 hvpci_block_ops.read_block = hv_read_config_block;
4104 hvpci_block_ops.write_block = hv_write_config_block;
4105 hvpci_block_ops.reg_blk_invalidate = hv_register_block_invalidate;
4106
4107 return vmbus_driver_register(&hv_pci_drv);
4108}
4109
4110module_init(init_hv_pci_drv);
4111module_exit(exit_hv_pci_drv);
4112
4113MODULE_DESCRIPTION("Hyper-V PCI");
4114MODULE_LICENSE("GPL v2");
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) Microsoft Corporation.
4 *
5 * Author:
6 * Jake Oshins <jakeo@microsoft.com>
7 *
8 * This driver acts as a paravirtual front-end for PCI Express root buses.
9 * When a PCI Express function (either an entire device or an SR-IOV
10 * Virtual Function) is being passed through to the VM, this driver exposes
11 * a new bus to the guest VM. This is modeled as a root PCI bus because
12 * no bridges are being exposed to the VM. In fact, with a "Generation 2"
13 * VM within Hyper-V, there may seem to be no PCI bus at all in the VM
14 * until a device as been exposed using this driver.
15 *
16 * Each root PCI bus has its own PCI domain, which is called "Segment" in
17 * the PCI Firmware Specifications. Thus while each device passed through
18 * to the VM using this front-end will appear at "device 0", the domain will
19 * be unique. Typically, each bus will have one PCI function on it, though
20 * this driver does support more than one.
21 *
22 * In order to map the interrupts from the device through to the guest VM,
23 * this driver also implements an IRQ Domain, which handles interrupts (either
24 * MSI or MSI-X) associated with the functions on the bus. As interrupts are
25 * set up, torn down, or reaffined, this driver communicates with the
26 * underlying hypervisor to adjust the mappings in the I/O MMU so that each
27 * interrupt will be delivered to the correct virtual processor at the right
28 * vector. This driver does not support level-triggered (line-based)
29 * interrupts, and will report that the Interrupt Line register in the
30 * function's configuration space is zero.
31 *
32 * The rest of this driver mostly maps PCI concepts onto underlying Hyper-V
33 * facilities. For instance, the configuration space of a function exposed
34 * by Hyper-V is mapped into a single page of memory space, and the
35 * read and write handlers for config space must be aware of this mechanism.
36 * Similarly, device setup and teardown involves messages sent to and from
37 * the PCI back-end driver in Hyper-V.
38 */
39
40#include <linux/kernel.h>
41#include <linux/module.h>
42#include <linux/pci.h>
43#include <linux/pci-ecam.h>
44#include <linux/delay.h>
45#include <linux/semaphore.h>
46#include <linux/irq.h>
47#include <linux/msi.h>
48#include <linux/hyperv.h>
49#include <linux/refcount.h>
50#include <linux/irqdomain.h>
51#include <linux/acpi.h>
52#include <asm/mshyperv.h>
53
54/*
55 * Protocol versions. The low word is the minor version, the high word the
56 * major version.
57 */
58
59#define PCI_MAKE_VERSION(major, minor) ((u32)(((major) << 16) | (minor)))
60#define PCI_MAJOR_VERSION(version) ((u32)(version) >> 16)
61#define PCI_MINOR_VERSION(version) ((u32)(version) & 0xff)
62
63enum pci_protocol_version_t {
64 PCI_PROTOCOL_VERSION_1_1 = PCI_MAKE_VERSION(1, 1), /* Win10 */
65 PCI_PROTOCOL_VERSION_1_2 = PCI_MAKE_VERSION(1, 2), /* RS1 */
66 PCI_PROTOCOL_VERSION_1_3 = PCI_MAKE_VERSION(1, 3), /* Vibranium */
67 PCI_PROTOCOL_VERSION_1_4 = PCI_MAKE_VERSION(1, 4), /* WS2022 */
68};
69
70#define CPU_AFFINITY_ALL -1ULL
71
72/*
73 * Supported protocol versions in the order of probing - highest go
74 * first.
75 */
76static enum pci_protocol_version_t pci_protocol_versions[] = {
77 PCI_PROTOCOL_VERSION_1_4,
78 PCI_PROTOCOL_VERSION_1_3,
79 PCI_PROTOCOL_VERSION_1_2,
80 PCI_PROTOCOL_VERSION_1_1,
81};
82
83#define PCI_CONFIG_MMIO_LENGTH 0x2000
84#define CFG_PAGE_OFFSET 0x1000
85#define CFG_PAGE_SIZE (PCI_CONFIG_MMIO_LENGTH - CFG_PAGE_OFFSET)
86
87#define MAX_SUPPORTED_MSI_MESSAGES 0x400
88
89#define STATUS_REVISION_MISMATCH 0xC0000059
90
91/* space for 32bit serial number as string */
92#define SLOT_NAME_SIZE 11
93
94/*
95 * Size of requestor for VMbus; the value is based on the observation
96 * that having more than one request outstanding is 'rare', and so 64
97 * should be generous in ensuring that we don't ever run out.
98 */
99#define HV_PCI_RQSTOR_SIZE 64
100
101/*
102 * Message Types
103 */
104
105enum pci_message_type {
106 /*
107 * Version 1.1
108 */
109 PCI_MESSAGE_BASE = 0x42490000,
110 PCI_BUS_RELATIONS = PCI_MESSAGE_BASE + 0,
111 PCI_QUERY_BUS_RELATIONS = PCI_MESSAGE_BASE + 1,
112 PCI_POWER_STATE_CHANGE = PCI_MESSAGE_BASE + 4,
113 PCI_QUERY_RESOURCE_REQUIREMENTS = PCI_MESSAGE_BASE + 5,
114 PCI_QUERY_RESOURCE_RESOURCES = PCI_MESSAGE_BASE + 6,
115 PCI_BUS_D0ENTRY = PCI_MESSAGE_BASE + 7,
116 PCI_BUS_D0EXIT = PCI_MESSAGE_BASE + 8,
117 PCI_READ_BLOCK = PCI_MESSAGE_BASE + 9,
118 PCI_WRITE_BLOCK = PCI_MESSAGE_BASE + 0xA,
119 PCI_EJECT = PCI_MESSAGE_BASE + 0xB,
120 PCI_QUERY_STOP = PCI_MESSAGE_BASE + 0xC,
121 PCI_REENABLE = PCI_MESSAGE_BASE + 0xD,
122 PCI_QUERY_STOP_FAILED = PCI_MESSAGE_BASE + 0xE,
123 PCI_EJECTION_COMPLETE = PCI_MESSAGE_BASE + 0xF,
124 PCI_RESOURCES_ASSIGNED = PCI_MESSAGE_BASE + 0x10,
125 PCI_RESOURCES_RELEASED = PCI_MESSAGE_BASE + 0x11,
126 PCI_INVALIDATE_BLOCK = PCI_MESSAGE_BASE + 0x12,
127 PCI_QUERY_PROTOCOL_VERSION = PCI_MESSAGE_BASE + 0x13,
128 PCI_CREATE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x14,
129 PCI_DELETE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x15,
130 PCI_RESOURCES_ASSIGNED2 = PCI_MESSAGE_BASE + 0x16,
131 PCI_CREATE_INTERRUPT_MESSAGE2 = PCI_MESSAGE_BASE + 0x17,
132 PCI_DELETE_INTERRUPT_MESSAGE2 = PCI_MESSAGE_BASE + 0x18, /* unused */
133 PCI_BUS_RELATIONS2 = PCI_MESSAGE_BASE + 0x19,
134 PCI_RESOURCES_ASSIGNED3 = PCI_MESSAGE_BASE + 0x1A,
135 PCI_CREATE_INTERRUPT_MESSAGE3 = PCI_MESSAGE_BASE + 0x1B,
136 PCI_MESSAGE_MAXIMUM
137};
138
139/*
140 * Structures defining the virtual PCI Express protocol.
141 */
142
143union pci_version {
144 struct {
145 u16 minor_version;
146 u16 major_version;
147 } parts;
148 u32 version;
149} __packed;
150
151/*
152 * Function numbers are 8-bits wide on Express, as interpreted through ARI,
153 * which is all this driver does. This representation is the one used in
154 * Windows, which is what is expected when sending this back and forth with
155 * the Hyper-V parent partition.
156 */
157union win_slot_encoding {
158 struct {
159 u32 dev:5;
160 u32 func:3;
161 u32 reserved:24;
162 } bits;
163 u32 slot;
164} __packed;
165
166/*
167 * Pretty much as defined in the PCI Specifications.
168 */
169struct pci_function_description {
170 u16 v_id; /* vendor ID */
171 u16 d_id; /* device ID */
172 u8 rev;
173 u8 prog_intf;
174 u8 subclass;
175 u8 base_class;
176 u32 subsystem_id;
177 union win_slot_encoding win_slot;
178 u32 ser; /* serial number */
179} __packed;
180
181enum pci_device_description_flags {
182 HV_PCI_DEVICE_FLAG_NONE = 0x0,
183 HV_PCI_DEVICE_FLAG_NUMA_AFFINITY = 0x1,
184};
185
186struct pci_function_description2 {
187 u16 v_id; /* vendor ID */
188 u16 d_id; /* device ID */
189 u8 rev;
190 u8 prog_intf;
191 u8 subclass;
192 u8 base_class;
193 u32 subsystem_id;
194 union win_slot_encoding win_slot;
195 u32 ser; /* serial number */
196 u32 flags;
197 u16 virtual_numa_node;
198 u16 reserved;
199} __packed;
200
201/**
202 * struct hv_msi_desc
203 * @vector: IDT entry
204 * @delivery_mode: As defined in Intel's Programmer's
205 * Reference Manual, Volume 3, Chapter 8.
206 * @vector_count: Number of contiguous entries in the
207 * Interrupt Descriptor Table that are
208 * occupied by this Message-Signaled
209 * Interrupt. For "MSI", as first defined
210 * in PCI 2.2, this can be between 1 and
211 * 32. For "MSI-X," as first defined in PCI
212 * 3.0, this must be 1, as each MSI-X table
213 * entry would have its own descriptor.
214 * @reserved: Empty space
215 * @cpu_mask: All the target virtual processors.
216 */
217struct hv_msi_desc {
218 u8 vector;
219 u8 delivery_mode;
220 u16 vector_count;
221 u32 reserved;
222 u64 cpu_mask;
223} __packed;
224
225/**
226 * struct hv_msi_desc2 - 1.2 version of hv_msi_desc
227 * @vector: IDT entry
228 * @delivery_mode: As defined in Intel's Programmer's
229 * Reference Manual, Volume 3, Chapter 8.
230 * @vector_count: Number of contiguous entries in the
231 * Interrupt Descriptor Table that are
232 * occupied by this Message-Signaled
233 * Interrupt. For "MSI", as first defined
234 * in PCI 2.2, this can be between 1 and
235 * 32. For "MSI-X," as first defined in PCI
236 * 3.0, this must be 1, as each MSI-X table
237 * entry would have its own descriptor.
238 * @processor_count: number of bits enabled in array.
239 * @processor_array: All the target virtual processors.
240 */
241struct hv_msi_desc2 {
242 u8 vector;
243 u8 delivery_mode;
244 u16 vector_count;
245 u16 processor_count;
246 u16 processor_array[32];
247} __packed;
248
249/*
250 * struct hv_msi_desc3 - 1.3 version of hv_msi_desc
251 * Everything is the same as in 'hv_msi_desc2' except that the size of the
252 * 'vector' field is larger to support bigger vector values. For ex: LPI
253 * vectors on ARM.
254 */
255struct hv_msi_desc3 {
256 u32 vector;
257 u8 delivery_mode;
258 u8 reserved;
259 u16 vector_count;
260 u16 processor_count;
261 u16 processor_array[32];
262} __packed;
263
264/**
265 * struct tran_int_desc
266 * @reserved: unused, padding
267 * @vector_count: same as in hv_msi_desc
268 * @data: This is the "data payload" value that is
269 * written by the device when it generates
270 * a message-signaled interrupt, either MSI
271 * or MSI-X.
272 * @address: This is the address to which the data
273 * payload is written on interrupt
274 * generation.
275 */
276struct tran_int_desc {
277 u16 reserved;
278 u16 vector_count;
279 u32 data;
280 u64 address;
281} __packed;
282
283/*
284 * A generic message format for virtual PCI.
285 * Specific message formats are defined later in the file.
286 */
287
288struct pci_message {
289 u32 type;
290} __packed;
291
292struct pci_child_message {
293 struct pci_message message_type;
294 union win_slot_encoding wslot;
295} __packed;
296
297struct pci_incoming_message {
298 struct vmpacket_descriptor hdr;
299 struct pci_message message_type;
300} __packed;
301
302struct pci_response {
303 struct vmpacket_descriptor hdr;
304 s32 status; /* negative values are failures */
305} __packed;
306
307struct pci_packet {
308 void (*completion_func)(void *context, struct pci_response *resp,
309 int resp_packet_size);
310 void *compl_ctxt;
311
312 struct pci_message message[];
313};
314
315/*
316 * Specific message types supporting the PCI protocol.
317 */
318
319/*
320 * Version negotiation message. Sent from the guest to the host.
321 * The guest is free to try different versions until the host
322 * accepts the version.
323 *
324 * pci_version: The protocol version requested.
325 * is_last_attempt: If TRUE, this is the last version guest will request.
326 * reservedz: Reserved field, set to zero.
327 */
328
329struct pci_version_request {
330 struct pci_message message_type;
331 u32 protocol_version;
332} __packed;
333
334/*
335 * Bus D0 Entry. This is sent from the guest to the host when the virtual
336 * bus (PCI Express port) is ready for action.
337 */
338
339struct pci_bus_d0_entry {
340 struct pci_message message_type;
341 u32 reserved;
342 u64 mmio_base;
343} __packed;
344
345struct pci_bus_relations {
346 struct pci_incoming_message incoming;
347 u32 device_count;
348 struct pci_function_description func[];
349} __packed;
350
351struct pci_bus_relations2 {
352 struct pci_incoming_message incoming;
353 u32 device_count;
354 struct pci_function_description2 func[];
355} __packed;
356
357struct pci_q_res_req_response {
358 struct vmpacket_descriptor hdr;
359 s32 status; /* negative values are failures */
360 u32 probed_bar[PCI_STD_NUM_BARS];
361} __packed;
362
363struct pci_set_power {
364 struct pci_message message_type;
365 union win_slot_encoding wslot;
366 u32 power_state; /* In Windows terms */
367 u32 reserved;
368} __packed;
369
370struct pci_set_power_response {
371 struct vmpacket_descriptor hdr;
372 s32 status; /* negative values are failures */
373 union win_slot_encoding wslot;
374 u32 resultant_state; /* In Windows terms */
375 u32 reserved;
376} __packed;
377
378struct pci_resources_assigned {
379 struct pci_message message_type;
380 union win_slot_encoding wslot;
381 u8 memory_range[0x14][6]; /* not used here */
382 u32 msi_descriptors;
383 u32 reserved[4];
384} __packed;
385
386struct pci_resources_assigned2 {
387 struct pci_message message_type;
388 union win_slot_encoding wslot;
389 u8 memory_range[0x14][6]; /* not used here */
390 u32 msi_descriptor_count;
391 u8 reserved[70];
392} __packed;
393
394struct pci_create_interrupt {
395 struct pci_message message_type;
396 union win_slot_encoding wslot;
397 struct hv_msi_desc int_desc;
398} __packed;
399
400struct pci_create_int_response {
401 struct pci_response response;
402 u32 reserved;
403 struct tran_int_desc int_desc;
404} __packed;
405
406struct pci_create_interrupt2 {
407 struct pci_message message_type;
408 union win_slot_encoding wslot;
409 struct hv_msi_desc2 int_desc;
410} __packed;
411
412struct pci_create_interrupt3 {
413 struct pci_message message_type;
414 union win_slot_encoding wslot;
415 struct hv_msi_desc3 int_desc;
416} __packed;
417
418struct pci_delete_interrupt {
419 struct pci_message message_type;
420 union win_slot_encoding wslot;
421 struct tran_int_desc int_desc;
422} __packed;
423
424/*
425 * Note: the VM must pass a valid block id, wslot and bytes_requested.
426 */
427struct pci_read_block {
428 struct pci_message message_type;
429 u32 block_id;
430 union win_slot_encoding wslot;
431 u32 bytes_requested;
432} __packed;
433
434struct pci_read_block_response {
435 struct vmpacket_descriptor hdr;
436 u32 status;
437 u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX];
438} __packed;
439
440/*
441 * Note: the VM must pass a valid block id, wslot and byte_count.
442 */
443struct pci_write_block {
444 struct pci_message message_type;
445 u32 block_id;
446 union win_slot_encoding wslot;
447 u32 byte_count;
448 u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX];
449} __packed;
450
451struct pci_dev_inval_block {
452 struct pci_incoming_message incoming;
453 union win_slot_encoding wslot;
454 u64 block_mask;
455} __packed;
456
457struct pci_dev_incoming {
458 struct pci_incoming_message incoming;
459 union win_slot_encoding wslot;
460} __packed;
461
462struct pci_eject_response {
463 struct pci_message message_type;
464 union win_slot_encoding wslot;
465 u32 status;
466} __packed;
467
468static int pci_ring_size = (4 * PAGE_SIZE);
469
470/*
471 * Driver specific state.
472 */
473
474enum hv_pcibus_state {
475 hv_pcibus_init = 0,
476 hv_pcibus_probed,
477 hv_pcibus_installed,
478 hv_pcibus_removing,
479 hv_pcibus_maximum
480};
481
482struct hv_pcibus_device {
483#ifdef CONFIG_X86
484 struct pci_sysdata sysdata;
485#elif defined(CONFIG_ARM64)
486 struct pci_config_window sysdata;
487#endif
488 struct pci_host_bridge *bridge;
489 struct fwnode_handle *fwnode;
490 /* Protocol version negotiated with the host */
491 enum pci_protocol_version_t protocol_version;
492 enum hv_pcibus_state state;
493 struct hv_device *hdev;
494 resource_size_t low_mmio_space;
495 resource_size_t high_mmio_space;
496 struct resource *mem_config;
497 struct resource *low_mmio_res;
498 struct resource *high_mmio_res;
499 struct completion *survey_event;
500 struct pci_bus *pci_bus;
501 spinlock_t config_lock; /* Avoid two threads writing index page */
502 spinlock_t device_list_lock; /* Protect lists below */
503 void __iomem *cfg_addr;
504
505 struct list_head children;
506 struct list_head dr_list;
507
508 struct msi_domain_info msi_info;
509 struct irq_domain *irq_domain;
510
511 spinlock_t retarget_msi_interrupt_lock;
512
513 struct workqueue_struct *wq;
514
515 /* Highest slot of child device with resources allocated */
516 int wslot_res_allocated;
517
518 /* hypercall arg, must not cross page boundary */
519 struct hv_retarget_device_interrupt retarget_msi_interrupt_params;
520
521 /*
522 * Don't put anything here: retarget_msi_interrupt_params must be last
523 */
524};
525
526/*
527 * Tracks "Device Relations" messages from the host, which must be both
528 * processed in order and deferred so that they don't run in the context
529 * of the incoming packet callback.
530 */
531struct hv_dr_work {
532 struct work_struct wrk;
533 struct hv_pcibus_device *bus;
534};
535
536struct hv_pcidev_description {
537 u16 v_id; /* vendor ID */
538 u16 d_id; /* device ID */
539 u8 rev;
540 u8 prog_intf;
541 u8 subclass;
542 u8 base_class;
543 u32 subsystem_id;
544 union win_slot_encoding win_slot;
545 u32 ser; /* serial number */
546 u32 flags;
547 u16 virtual_numa_node;
548};
549
550struct hv_dr_state {
551 struct list_head list_entry;
552 u32 device_count;
553 struct hv_pcidev_description func[];
554};
555
556enum hv_pcichild_state {
557 hv_pcichild_init = 0,
558 hv_pcichild_requirements,
559 hv_pcichild_resourced,
560 hv_pcichild_ejecting,
561 hv_pcichild_maximum
562};
563
564struct hv_pci_dev {
565 /* List protected by pci_rescan_remove_lock */
566 struct list_head list_entry;
567 refcount_t refs;
568 enum hv_pcichild_state state;
569 struct pci_slot *pci_slot;
570 struct hv_pcidev_description desc;
571 bool reported_missing;
572 struct hv_pcibus_device *hbus;
573 struct work_struct wrk;
574
575 void (*block_invalidate)(void *context, u64 block_mask);
576 void *invalidate_context;
577
578 /*
579 * What would be observed if one wrote 0xFFFFFFFF to a BAR and then
580 * read it back, for each of the BAR offsets within config space.
581 */
582 u32 probed_bar[PCI_STD_NUM_BARS];
583};
584
585struct hv_pci_compl {
586 struct completion host_event;
587 s32 completion_status;
588};
589
590static void hv_pci_onchannelcallback(void *context);
591
592#ifdef CONFIG_X86
593#define DELIVERY_MODE APIC_DELIVERY_MODE_FIXED
594#define FLOW_HANDLER handle_edge_irq
595#define FLOW_NAME "edge"
596
597static int hv_pci_irqchip_init(void)
598{
599 return 0;
600}
601
602static struct irq_domain *hv_pci_get_root_domain(void)
603{
604 return x86_vector_domain;
605}
606
607static unsigned int hv_msi_get_int_vector(struct irq_data *data)
608{
609 struct irq_cfg *cfg = irqd_cfg(data);
610
611 return cfg->vector;
612}
613
614#define hv_msi_prepare pci_msi_prepare
615
616/**
617 * hv_arch_irq_unmask() - "Unmask" the IRQ by setting its current
618 * affinity.
619 * @data: Describes the IRQ
620 *
621 * Build new a destination for the MSI and make a hypercall to
622 * update the Interrupt Redirection Table. "Device Logical ID"
623 * is built out of this PCI bus's instance GUID and the function
624 * number of the device.
625 */
626static void hv_arch_irq_unmask(struct irq_data *data)
627{
628 struct msi_desc *msi_desc = irq_data_get_msi_desc(data);
629 struct hv_retarget_device_interrupt *params;
630 struct tran_int_desc *int_desc;
631 struct hv_pcibus_device *hbus;
632 const struct cpumask *dest;
633 cpumask_var_t tmp;
634 struct pci_bus *pbus;
635 struct pci_dev *pdev;
636 unsigned long flags;
637 u32 var_size = 0;
638 int cpu, nr_bank;
639 u64 res;
640
641 dest = irq_data_get_effective_affinity_mask(data);
642 pdev = msi_desc_to_pci_dev(msi_desc);
643 pbus = pdev->bus;
644 hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
645 int_desc = data->chip_data;
646
647 spin_lock_irqsave(&hbus->retarget_msi_interrupt_lock, flags);
648
649 params = &hbus->retarget_msi_interrupt_params;
650 memset(params, 0, sizeof(*params));
651 params->partition_id = HV_PARTITION_ID_SELF;
652 params->int_entry.source = HV_INTERRUPT_SOURCE_MSI;
653 params->int_entry.msi_entry.address.as_uint32 = int_desc->address & 0xffffffff;
654 params->int_entry.msi_entry.data.as_uint32 = int_desc->data;
655 params->device_id = (hbus->hdev->dev_instance.b[5] << 24) |
656 (hbus->hdev->dev_instance.b[4] << 16) |
657 (hbus->hdev->dev_instance.b[7] << 8) |
658 (hbus->hdev->dev_instance.b[6] & 0xf8) |
659 PCI_FUNC(pdev->devfn);
660 params->int_target.vector = hv_msi_get_int_vector(data);
661
662 /*
663 * Honoring apic->delivery_mode set to APIC_DELIVERY_MODE_FIXED by
664 * setting the HV_DEVICE_INTERRUPT_TARGET_MULTICAST flag results in a
665 * spurious interrupt storm. Not doing so does not seem to have a
666 * negative effect (yet?).
667 */
668
669 if (hbus->protocol_version >= PCI_PROTOCOL_VERSION_1_2) {
670 /*
671 * PCI_PROTOCOL_VERSION_1_2 supports the VP_SET version of the
672 * HVCALL_RETARGET_INTERRUPT hypercall, which also coincides
673 * with >64 VP support.
674 * ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED
675 * is not sufficient for this hypercall.
676 */
677 params->int_target.flags |=
678 HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET;
679
680 if (!alloc_cpumask_var(&tmp, GFP_ATOMIC)) {
681 res = 1;
682 goto exit_unlock;
683 }
684
685 cpumask_and(tmp, dest, cpu_online_mask);
686 nr_bank = cpumask_to_vpset(¶ms->int_target.vp_set, tmp);
687 free_cpumask_var(tmp);
688
689 if (nr_bank <= 0) {
690 res = 1;
691 goto exit_unlock;
692 }
693
694 /*
695 * var-sized hypercall, var-size starts after vp_mask (thus
696 * vp_set.format does not count, but vp_set.valid_bank_mask
697 * does).
698 */
699 var_size = 1 + nr_bank;
700 } else {
701 for_each_cpu_and(cpu, dest, cpu_online_mask) {
702 params->int_target.vp_mask |=
703 (1ULL << hv_cpu_number_to_vp_number(cpu));
704 }
705 }
706
707 res = hv_do_hypercall(HVCALL_RETARGET_INTERRUPT | (var_size << 17),
708 params, NULL);
709
710exit_unlock:
711 spin_unlock_irqrestore(&hbus->retarget_msi_interrupt_lock, flags);
712
713 /*
714 * During hibernation, when a CPU is offlined, the kernel tries
715 * to move the interrupt to the remaining CPUs that haven't
716 * been offlined yet. In this case, the below hv_do_hypercall()
717 * always fails since the vmbus channel has been closed:
718 * refer to cpu_disable_common() -> fixup_irqs() ->
719 * irq_migrate_all_off_this_cpu() -> migrate_one_irq().
720 *
721 * Suppress the error message for hibernation because the failure
722 * during hibernation does not matter (at this time all the devices
723 * have been frozen). Note: the correct affinity info is still updated
724 * into the irqdata data structure in migrate_one_irq() ->
725 * irq_do_set_affinity(), so later when the VM resumes,
726 * hv_pci_restore_msi_state() is able to correctly restore the
727 * interrupt with the correct affinity.
728 */
729 if (!hv_result_success(res) && hbus->state != hv_pcibus_removing)
730 dev_err(&hbus->hdev->device,
731 "%s() failed: %#llx", __func__, res);
732}
733#elif defined(CONFIG_ARM64)
734/*
735 * SPI vectors to use for vPCI; arch SPIs range is [32, 1019], but leaving a bit
736 * of room at the start to allow for SPIs to be specified through ACPI and
737 * starting with a power of two to satisfy power of 2 multi-MSI requirement.
738 */
739#define HV_PCI_MSI_SPI_START 64
740#define HV_PCI_MSI_SPI_NR (1020 - HV_PCI_MSI_SPI_START)
741#define DELIVERY_MODE 0
742#define FLOW_HANDLER NULL
743#define FLOW_NAME NULL
744#define hv_msi_prepare NULL
745
746struct hv_pci_chip_data {
747 DECLARE_BITMAP(spi_map, HV_PCI_MSI_SPI_NR);
748 struct mutex map_lock;
749};
750
751/* Hyper-V vPCI MSI GIC IRQ domain */
752static struct irq_domain *hv_msi_gic_irq_domain;
753
754/* Hyper-V PCI MSI IRQ chip */
755static struct irq_chip hv_arm64_msi_irq_chip = {
756 .name = "MSI",
757 .irq_set_affinity = irq_chip_set_affinity_parent,
758 .irq_eoi = irq_chip_eoi_parent,
759 .irq_mask = irq_chip_mask_parent,
760 .irq_unmask = irq_chip_unmask_parent
761};
762
763static unsigned int hv_msi_get_int_vector(struct irq_data *irqd)
764{
765 return irqd->parent_data->hwirq;
766}
767
768/*
769 * @nr_bm_irqs: Indicates the number of IRQs that were allocated from
770 * the bitmap.
771 * @nr_dom_irqs: Indicates the number of IRQs that were allocated from
772 * the parent domain.
773 */
774static void hv_pci_vec_irq_free(struct irq_domain *domain,
775 unsigned int virq,
776 unsigned int nr_bm_irqs,
777 unsigned int nr_dom_irqs)
778{
779 struct hv_pci_chip_data *chip_data = domain->host_data;
780 struct irq_data *d = irq_domain_get_irq_data(domain, virq);
781 int first = d->hwirq - HV_PCI_MSI_SPI_START;
782 int i;
783
784 mutex_lock(&chip_data->map_lock);
785 bitmap_release_region(chip_data->spi_map,
786 first,
787 get_count_order(nr_bm_irqs));
788 mutex_unlock(&chip_data->map_lock);
789 for (i = 0; i < nr_dom_irqs; i++) {
790 if (i)
791 d = irq_domain_get_irq_data(domain, virq + i);
792 irq_domain_reset_irq_data(d);
793 }
794
795 irq_domain_free_irqs_parent(domain, virq, nr_dom_irqs);
796}
797
798static void hv_pci_vec_irq_domain_free(struct irq_domain *domain,
799 unsigned int virq,
800 unsigned int nr_irqs)
801{
802 hv_pci_vec_irq_free(domain, virq, nr_irqs, nr_irqs);
803}
804
805static int hv_pci_vec_alloc_device_irq(struct irq_domain *domain,
806 unsigned int nr_irqs,
807 irq_hw_number_t *hwirq)
808{
809 struct hv_pci_chip_data *chip_data = domain->host_data;
810 int index;
811
812 /* Find and allocate region from the SPI bitmap */
813 mutex_lock(&chip_data->map_lock);
814 index = bitmap_find_free_region(chip_data->spi_map,
815 HV_PCI_MSI_SPI_NR,
816 get_count_order(nr_irqs));
817 mutex_unlock(&chip_data->map_lock);
818 if (index < 0)
819 return -ENOSPC;
820
821 *hwirq = index + HV_PCI_MSI_SPI_START;
822
823 return 0;
824}
825
826static int hv_pci_vec_irq_gic_domain_alloc(struct irq_domain *domain,
827 unsigned int virq,
828 irq_hw_number_t hwirq)
829{
830 struct irq_fwspec fwspec;
831 struct irq_data *d;
832 int ret;
833
834 fwspec.fwnode = domain->parent->fwnode;
835 fwspec.param_count = 2;
836 fwspec.param[0] = hwirq;
837 fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
838
839 ret = irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
840 if (ret)
841 return ret;
842
843 /*
844 * Since the interrupt specifier is not coming from ACPI or DT, the
845 * trigger type will need to be set explicitly. Otherwise, it will be
846 * set to whatever is in the GIC configuration.
847 */
848 d = irq_domain_get_irq_data(domain->parent, virq);
849
850 return d->chip->irq_set_type(d, IRQ_TYPE_EDGE_RISING);
851}
852
853static int hv_pci_vec_irq_domain_alloc(struct irq_domain *domain,
854 unsigned int virq, unsigned int nr_irqs,
855 void *args)
856{
857 irq_hw_number_t hwirq;
858 unsigned int i;
859 int ret;
860
861 ret = hv_pci_vec_alloc_device_irq(domain, nr_irqs, &hwirq);
862 if (ret)
863 return ret;
864
865 for (i = 0; i < nr_irqs; i++) {
866 ret = hv_pci_vec_irq_gic_domain_alloc(domain, virq + i,
867 hwirq + i);
868 if (ret) {
869 hv_pci_vec_irq_free(domain, virq, nr_irqs, i);
870 return ret;
871 }
872
873 irq_domain_set_hwirq_and_chip(domain, virq + i,
874 hwirq + i,
875 &hv_arm64_msi_irq_chip,
876 domain->host_data);
877 pr_debug("pID:%d vID:%u\n", (int)(hwirq + i), virq + i);
878 }
879
880 return 0;
881}
882
883/*
884 * Pick the first cpu as the irq affinity that can be temporarily used for
885 * composing MSI from the hypervisor. GIC will eventually set the right
886 * affinity for the irq and the 'unmask' will retarget the interrupt to that
887 * cpu.
888 */
889static int hv_pci_vec_irq_domain_activate(struct irq_domain *domain,
890 struct irq_data *irqd, bool reserve)
891{
892 int cpu = cpumask_first(cpu_present_mask);
893
894 irq_data_update_effective_affinity(irqd, cpumask_of(cpu));
895
896 return 0;
897}
898
899static const struct irq_domain_ops hv_pci_domain_ops = {
900 .alloc = hv_pci_vec_irq_domain_alloc,
901 .free = hv_pci_vec_irq_domain_free,
902 .activate = hv_pci_vec_irq_domain_activate,
903};
904
905static int hv_pci_irqchip_init(void)
906{
907 static struct hv_pci_chip_data *chip_data;
908 struct fwnode_handle *fn = NULL;
909 int ret = -ENOMEM;
910
911 chip_data = kzalloc(sizeof(*chip_data), GFP_KERNEL);
912 if (!chip_data)
913 return ret;
914
915 mutex_init(&chip_data->map_lock);
916 fn = irq_domain_alloc_named_fwnode("hv_vpci_arm64");
917 if (!fn)
918 goto free_chip;
919
920 /*
921 * IRQ domain once enabled, should not be removed since there is no
922 * way to ensure that all the corresponding devices are also gone and
923 * no interrupts will be generated.
924 */
925 hv_msi_gic_irq_domain = acpi_irq_create_hierarchy(0, HV_PCI_MSI_SPI_NR,
926 fn, &hv_pci_domain_ops,
927 chip_data);
928
929 if (!hv_msi_gic_irq_domain) {
930 pr_err("Failed to create Hyper-V arm64 vPCI MSI IRQ domain\n");
931 goto free_chip;
932 }
933
934 return 0;
935
936free_chip:
937 kfree(chip_data);
938 if (fn)
939 irq_domain_free_fwnode(fn);
940
941 return ret;
942}
943
944static struct irq_domain *hv_pci_get_root_domain(void)
945{
946 return hv_msi_gic_irq_domain;
947}
948
949/*
950 * SPIs are used for interrupts of PCI devices and SPIs is managed via GICD
951 * registers which Hyper-V already supports, so no hypercall needed.
952 */
953static void hv_arch_irq_unmask(struct irq_data *data) { }
954#endif /* CONFIG_ARM64 */
955
956/**
957 * hv_pci_generic_compl() - Invoked for a completion packet
958 * @context: Set up by the sender of the packet.
959 * @resp: The response packet
960 * @resp_packet_size: Size in bytes of the packet
961 *
962 * This function is used to trigger an event and report status
963 * for any message for which the completion packet contains a
964 * status and nothing else.
965 */
966static void hv_pci_generic_compl(void *context, struct pci_response *resp,
967 int resp_packet_size)
968{
969 struct hv_pci_compl *comp_pkt = context;
970
971 comp_pkt->completion_status = resp->status;
972 complete(&comp_pkt->host_event);
973}
974
975static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
976 u32 wslot);
977
978static void get_pcichild(struct hv_pci_dev *hpdev)
979{
980 refcount_inc(&hpdev->refs);
981}
982
983static void put_pcichild(struct hv_pci_dev *hpdev)
984{
985 if (refcount_dec_and_test(&hpdev->refs))
986 kfree(hpdev);
987}
988
989/*
990 * There is no good way to get notified from vmbus_onoffer_rescind(),
991 * so let's use polling here, since this is not a hot path.
992 */
993static int wait_for_response(struct hv_device *hdev,
994 struct completion *comp)
995{
996 while (true) {
997 if (hdev->channel->rescind) {
998 dev_warn_once(&hdev->device, "The device is gone.\n");
999 return -ENODEV;
1000 }
1001
1002 if (wait_for_completion_timeout(comp, HZ / 10))
1003 break;
1004 }
1005
1006 return 0;
1007}
1008
1009/**
1010 * devfn_to_wslot() - Convert from Linux PCI slot to Windows
1011 * @devfn: The Linux representation of PCI slot
1012 *
1013 * Windows uses a slightly different representation of PCI slot.
1014 *
1015 * Return: The Windows representation
1016 */
1017static u32 devfn_to_wslot(int devfn)
1018{
1019 union win_slot_encoding wslot;
1020
1021 wslot.slot = 0;
1022 wslot.bits.dev = PCI_SLOT(devfn);
1023 wslot.bits.func = PCI_FUNC(devfn);
1024
1025 return wslot.slot;
1026}
1027
1028/**
1029 * wslot_to_devfn() - Convert from Windows PCI slot to Linux
1030 * @wslot: The Windows representation of PCI slot
1031 *
1032 * Windows uses a slightly different representation of PCI slot.
1033 *
1034 * Return: The Linux representation
1035 */
1036static int wslot_to_devfn(u32 wslot)
1037{
1038 union win_slot_encoding slot_no;
1039
1040 slot_no.slot = wslot;
1041 return PCI_DEVFN(slot_no.bits.dev, slot_no.bits.func);
1042}
1043
1044/*
1045 * PCI Configuration Space for these root PCI buses is implemented as a pair
1046 * of pages in memory-mapped I/O space. Writing to the first page chooses
1047 * the PCI function being written or read. Once the first page has been
1048 * written to, the following page maps in the entire configuration space of
1049 * the function.
1050 */
1051
1052/**
1053 * _hv_pcifront_read_config() - Internal PCI config read
1054 * @hpdev: The PCI driver's representation of the device
1055 * @where: Offset within config space
1056 * @size: Size of the transfer
1057 * @val: Pointer to the buffer receiving the data
1058 */
1059static void _hv_pcifront_read_config(struct hv_pci_dev *hpdev, int where,
1060 int size, u32 *val)
1061{
1062 unsigned long flags;
1063 void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where;
1064
1065 /*
1066 * If the attempt is to read the IDs or the ROM BAR, simulate that.
1067 */
1068 if (where + size <= PCI_COMMAND) {
1069 memcpy(val, ((u8 *)&hpdev->desc.v_id) + where, size);
1070 } else if (where >= PCI_CLASS_REVISION && where + size <=
1071 PCI_CACHE_LINE_SIZE) {
1072 memcpy(val, ((u8 *)&hpdev->desc.rev) + where -
1073 PCI_CLASS_REVISION, size);
1074 } else if (where >= PCI_SUBSYSTEM_VENDOR_ID && where + size <=
1075 PCI_ROM_ADDRESS) {
1076 memcpy(val, (u8 *)&hpdev->desc.subsystem_id + where -
1077 PCI_SUBSYSTEM_VENDOR_ID, size);
1078 } else if (where >= PCI_ROM_ADDRESS && where + size <=
1079 PCI_CAPABILITY_LIST) {
1080 /* ROM BARs are unimplemented */
1081 *val = 0;
1082 } else if (where >= PCI_INTERRUPT_LINE && where + size <=
1083 PCI_INTERRUPT_PIN) {
1084 /*
1085 * Interrupt Line and Interrupt PIN are hard-wired to zero
1086 * because this front-end only supports message-signaled
1087 * interrupts.
1088 */
1089 *val = 0;
1090 } else if (where + size <= CFG_PAGE_SIZE) {
1091 spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
1092 /* Choose the function to be read. (See comment above) */
1093 writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
1094 /* Make sure the function was chosen before we start reading. */
1095 mb();
1096 /* Read from that function's config space. */
1097 switch (size) {
1098 case 1:
1099 *val = readb(addr);
1100 break;
1101 case 2:
1102 *val = readw(addr);
1103 break;
1104 default:
1105 *val = readl(addr);
1106 break;
1107 }
1108 /*
1109 * Make sure the read was done before we release the spinlock
1110 * allowing consecutive reads/writes.
1111 */
1112 mb();
1113 spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
1114 } else {
1115 dev_err(&hpdev->hbus->hdev->device,
1116 "Attempt to read beyond a function's config space.\n");
1117 }
1118}
1119
1120static u16 hv_pcifront_get_vendor_id(struct hv_pci_dev *hpdev)
1121{
1122 u16 ret;
1123 unsigned long flags;
1124 void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET +
1125 PCI_VENDOR_ID;
1126
1127 spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
1128
1129 /* Choose the function to be read. (See comment above) */
1130 writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
1131 /* Make sure the function was chosen before we start reading. */
1132 mb();
1133 /* Read from that function's config space. */
1134 ret = readw(addr);
1135 /*
1136 * mb() is not required here, because the spin_unlock_irqrestore()
1137 * is a barrier.
1138 */
1139
1140 spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
1141
1142 return ret;
1143}
1144
1145/**
1146 * _hv_pcifront_write_config() - Internal PCI config write
1147 * @hpdev: The PCI driver's representation of the device
1148 * @where: Offset within config space
1149 * @size: Size of the transfer
1150 * @val: The data being transferred
1151 */
1152static void _hv_pcifront_write_config(struct hv_pci_dev *hpdev, int where,
1153 int size, u32 val)
1154{
1155 unsigned long flags;
1156 void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where;
1157
1158 if (where >= PCI_SUBSYSTEM_VENDOR_ID &&
1159 where + size <= PCI_CAPABILITY_LIST) {
1160 /* SSIDs and ROM BARs are read-only */
1161 } else if (where >= PCI_COMMAND && where + size <= CFG_PAGE_SIZE) {
1162 spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
1163 /* Choose the function to be written. (See comment above) */
1164 writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
1165 /* Make sure the function was chosen before we start writing. */
1166 wmb();
1167 /* Write to that function's config space. */
1168 switch (size) {
1169 case 1:
1170 writeb(val, addr);
1171 break;
1172 case 2:
1173 writew(val, addr);
1174 break;
1175 default:
1176 writel(val, addr);
1177 break;
1178 }
1179 /*
1180 * Make sure the write was done before we release the spinlock
1181 * allowing consecutive reads/writes.
1182 */
1183 mb();
1184 spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
1185 } else {
1186 dev_err(&hpdev->hbus->hdev->device,
1187 "Attempt to write beyond a function's config space.\n");
1188 }
1189}
1190
1191/**
1192 * hv_pcifront_read_config() - Read configuration space
1193 * @bus: PCI Bus structure
1194 * @devfn: Device/function
1195 * @where: Offset from base
1196 * @size: Byte/word/dword
1197 * @val: Value to be read
1198 *
1199 * Return: PCIBIOS_SUCCESSFUL on success
1200 * PCIBIOS_DEVICE_NOT_FOUND on failure
1201 */
1202static int hv_pcifront_read_config(struct pci_bus *bus, unsigned int devfn,
1203 int where, int size, u32 *val)
1204{
1205 struct hv_pcibus_device *hbus =
1206 container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
1207 struct hv_pci_dev *hpdev;
1208
1209 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
1210 if (!hpdev)
1211 return PCIBIOS_DEVICE_NOT_FOUND;
1212
1213 _hv_pcifront_read_config(hpdev, where, size, val);
1214
1215 put_pcichild(hpdev);
1216 return PCIBIOS_SUCCESSFUL;
1217}
1218
1219/**
1220 * hv_pcifront_write_config() - Write configuration space
1221 * @bus: PCI Bus structure
1222 * @devfn: Device/function
1223 * @where: Offset from base
1224 * @size: Byte/word/dword
1225 * @val: Value to be written to device
1226 *
1227 * Return: PCIBIOS_SUCCESSFUL on success
1228 * PCIBIOS_DEVICE_NOT_FOUND on failure
1229 */
1230static int hv_pcifront_write_config(struct pci_bus *bus, unsigned int devfn,
1231 int where, int size, u32 val)
1232{
1233 struct hv_pcibus_device *hbus =
1234 container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
1235 struct hv_pci_dev *hpdev;
1236
1237 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
1238 if (!hpdev)
1239 return PCIBIOS_DEVICE_NOT_FOUND;
1240
1241 _hv_pcifront_write_config(hpdev, where, size, val);
1242
1243 put_pcichild(hpdev);
1244 return PCIBIOS_SUCCESSFUL;
1245}
1246
1247/* PCIe operations */
1248static struct pci_ops hv_pcifront_ops = {
1249 .read = hv_pcifront_read_config,
1250 .write = hv_pcifront_write_config,
1251};
1252
1253/*
1254 * Paravirtual backchannel
1255 *
1256 * Hyper-V SR-IOV provides a backchannel mechanism in software for
1257 * communication between a VF driver and a PF driver. These
1258 * "configuration blocks" are similar in concept to PCI configuration space,
1259 * but instead of doing reads and writes in 32-bit chunks through a very slow
1260 * path, packets of up to 128 bytes can be sent or received asynchronously.
1261 *
1262 * Nearly every SR-IOV device contains just such a communications channel in
1263 * hardware, so using this one in software is usually optional. Using the
1264 * software channel, however, allows driver implementers to leverage software
1265 * tools that fuzz the communications channel looking for vulnerabilities.
1266 *
1267 * The usage model for these packets puts the responsibility for reading or
1268 * writing on the VF driver. The VF driver sends a read or a write packet,
1269 * indicating which "block" is being referred to by number.
1270 *
1271 * If the PF driver wishes to initiate communication, it can "invalidate" one or
1272 * more of the first 64 blocks. This invalidation is delivered via a callback
1273 * supplied by the VF driver by this driver.
1274 *
1275 * No protocol is implied, except that supplied by the PF and VF drivers.
1276 */
1277
1278struct hv_read_config_compl {
1279 struct hv_pci_compl comp_pkt;
1280 void *buf;
1281 unsigned int len;
1282 unsigned int bytes_returned;
1283};
1284
1285/**
1286 * hv_pci_read_config_compl() - Invoked when a response packet
1287 * for a read config block operation arrives.
1288 * @context: Identifies the read config operation
1289 * @resp: The response packet itself
1290 * @resp_packet_size: Size in bytes of the response packet
1291 */
1292static void hv_pci_read_config_compl(void *context, struct pci_response *resp,
1293 int resp_packet_size)
1294{
1295 struct hv_read_config_compl *comp = context;
1296 struct pci_read_block_response *read_resp =
1297 (struct pci_read_block_response *)resp;
1298 unsigned int data_len, hdr_len;
1299
1300 hdr_len = offsetof(struct pci_read_block_response, bytes);
1301 if (resp_packet_size < hdr_len) {
1302 comp->comp_pkt.completion_status = -1;
1303 goto out;
1304 }
1305
1306 data_len = resp_packet_size - hdr_len;
1307 if (data_len > 0 && read_resp->status == 0) {
1308 comp->bytes_returned = min(comp->len, data_len);
1309 memcpy(comp->buf, read_resp->bytes, comp->bytes_returned);
1310 } else {
1311 comp->bytes_returned = 0;
1312 }
1313
1314 comp->comp_pkt.completion_status = read_resp->status;
1315out:
1316 complete(&comp->comp_pkt.host_event);
1317}
1318
1319/**
1320 * hv_read_config_block() - Sends a read config block request to
1321 * the back-end driver running in the Hyper-V parent partition.
1322 * @pdev: The PCI driver's representation for this device.
1323 * @buf: Buffer into which the config block will be copied.
1324 * @len: Size in bytes of buf.
1325 * @block_id: Identifies the config block which has been requested.
1326 * @bytes_returned: Size which came back from the back-end driver.
1327 *
1328 * Return: 0 on success, -errno on failure
1329 */
1330static int hv_read_config_block(struct pci_dev *pdev, void *buf,
1331 unsigned int len, unsigned int block_id,
1332 unsigned int *bytes_returned)
1333{
1334 struct hv_pcibus_device *hbus =
1335 container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1336 sysdata);
1337 struct {
1338 struct pci_packet pkt;
1339 char buf[sizeof(struct pci_read_block)];
1340 } pkt;
1341 struct hv_read_config_compl comp_pkt;
1342 struct pci_read_block *read_blk;
1343 int ret;
1344
1345 if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX)
1346 return -EINVAL;
1347
1348 init_completion(&comp_pkt.comp_pkt.host_event);
1349 comp_pkt.buf = buf;
1350 comp_pkt.len = len;
1351
1352 memset(&pkt, 0, sizeof(pkt));
1353 pkt.pkt.completion_func = hv_pci_read_config_compl;
1354 pkt.pkt.compl_ctxt = &comp_pkt;
1355 read_blk = (struct pci_read_block *)&pkt.pkt.message;
1356 read_blk->message_type.type = PCI_READ_BLOCK;
1357 read_blk->wslot.slot = devfn_to_wslot(pdev->devfn);
1358 read_blk->block_id = block_id;
1359 read_blk->bytes_requested = len;
1360
1361 ret = vmbus_sendpacket(hbus->hdev->channel, read_blk,
1362 sizeof(*read_blk), (unsigned long)&pkt.pkt,
1363 VM_PKT_DATA_INBAND,
1364 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1365 if (ret)
1366 return ret;
1367
1368 ret = wait_for_response(hbus->hdev, &comp_pkt.comp_pkt.host_event);
1369 if (ret)
1370 return ret;
1371
1372 if (comp_pkt.comp_pkt.completion_status != 0 ||
1373 comp_pkt.bytes_returned == 0) {
1374 dev_err(&hbus->hdev->device,
1375 "Read Config Block failed: 0x%x, bytes_returned=%d\n",
1376 comp_pkt.comp_pkt.completion_status,
1377 comp_pkt.bytes_returned);
1378 return -EIO;
1379 }
1380
1381 *bytes_returned = comp_pkt.bytes_returned;
1382 return 0;
1383}
1384
1385/**
1386 * hv_pci_write_config_compl() - Invoked when a response packet for a write
1387 * config block operation arrives.
1388 * @context: Identifies the write config operation
1389 * @resp: The response packet itself
1390 * @resp_packet_size: Size in bytes of the response packet
1391 */
1392static void hv_pci_write_config_compl(void *context, struct pci_response *resp,
1393 int resp_packet_size)
1394{
1395 struct hv_pci_compl *comp_pkt = context;
1396
1397 comp_pkt->completion_status = resp->status;
1398 complete(&comp_pkt->host_event);
1399}
1400
1401/**
1402 * hv_write_config_block() - Sends a write config block request to the
1403 * back-end driver running in the Hyper-V parent partition.
1404 * @pdev: The PCI driver's representation for this device.
1405 * @buf: Buffer from which the config block will be copied.
1406 * @len: Size in bytes of buf.
1407 * @block_id: Identifies the config block which is being written.
1408 *
1409 * Return: 0 on success, -errno on failure
1410 */
1411static int hv_write_config_block(struct pci_dev *pdev, void *buf,
1412 unsigned int len, unsigned int block_id)
1413{
1414 struct hv_pcibus_device *hbus =
1415 container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1416 sysdata);
1417 struct {
1418 struct pci_packet pkt;
1419 char buf[sizeof(struct pci_write_block)];
1420 u32 reserved;
1421 } pkt;
1422 struct hv_pci_compl comp_pkt;
1423 struct pci_write_block *write_blk;
1424 u32 pkt_size;
1425 int ret;
1426
1427 if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX)
1428 return -EINVAL;
1429
1430 init_completion(&comp_pkt.host_event);
1431
1432 memset(&pkt, 0, sizeof(pkt));
1433 pkt.pkt.completion_func = hv_pci_write_config_compl;
1434 pkt.pkt.compl_ctxt = &comp_pkt;
1435 write_blk = (struct pci_write_block *)&pkt.pkt.message;
1436 write_blk->message_type.type = PCI_WRITE_BLOCK;
1437 write_blk->wslot.slot = devfn_to_wslot(pdev->devfn);
1438 write_blk->block_id = block_id;
1439 write_blk->byte_count = len;
1440 memcpy(write_blk->bytes, buf, len);
1441 pkt_size = offsetof(struct pci_write_block, bytes) + len;
1442 /*
1443 * This quirk is required on some hosts shipped around 2018, because
1444 * these hosts don't check the pkt_size correctly (new hosts have been
1445 * fixed since early 2019). The quirk is also safe on very old hosts
1446 * and new hosts, because, on them, what really matters is the length
1447 * specified in write_blk->byte_count.
1448 */
1449 pkt_size += sizeof(pkt.reserved);
1450
1451 ret = vmbus_sendpacket(hbus->hdev->channel, write_blk, pkt_size,
1452 (unsigned long)&pkt.pkt, VM_PKT_DATA_INBAND,
1453 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1454 if (ret)
1455 return ret;
1456
1457 ret = wait_for_response(hbus->hdev, &comp_pkt.host_event);
1458 if (ret)
1459 return ret;
1460
1461 if (comp_pkt.completion_status != 0) {
1462 dev_err(&hbus->hdev->device,
1463 "Write Config Block failed: 0x%x\n",
1464 comp_pkt.completion_status);
1465 return -EIO;
1466 }
1467
1468 return 0;
1469}
1470
1471/**
1472 * hv_register_block_invalidate() - Invoked when a config block invalidation
1473 * arrives from the back-end driver.
1474 * @pdev: The PCI driver's representation for this device.
1475 * @context: Identifies the device.
1476 * @block_invalidate: Identifies all of the blocks being invalidated.
1477 *
1478 * Return: 0 on success, -errno on failure
1479 */
1480static int hv_register_block_invalidate(struct pci_dev *pdev, void *context,
1481 void (*block_invalidate)(void *context,
1482 u64 block_mask))
1483{
1484 struct hv_pcibus_device *hbus =
1485 container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1486 sysdata);
1487 struct hv_pci_dev *hpdev;
1488
1489 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1490 if (!hpdev)
1491 return -ENODEV;
1492
1493 hpdev->block_invalidate = block_invalidate;
1494 hpdev->invalidate_context = context;
1495
1496 put_pcichild(hpdev);
1497 return 0;
1498
1499}
1500
1501/* Interrupt management hooks */
1502static void hv_int_desc_free(struct hv_pci_dev *hpdev,
1503 struct tran_int_desc *int_desc)
1504{
1505 struct pci_delete_interrupt *int_pkt;
1506 struct {
1507 struct pci_packet pkt;
1508 u8 buffer[sizeof(struct pci_delete_interrupt)];
1509 } ctxt;
1510
1511 if (!int_desc->vector_count) {
1512 kfree(int_desc);
1513 return;
1514 }
1515 memset(&ctxt, 0, sizeof(ctxt));
1516 int_pkt = (struct pci_delete_interrupt *)&ctxt.pkt.message;
1517 int_pkt->message_type.type =
1518 PCI_DELETE_INTERRUPT_MESSAGE;
1519 int_pkt->wslot.slot = hpdev->desc.win_slot.slot;
1520 int_pkt->int_desc = *int_desc;
1521 vmbus_sendpacket(hpdev->hbus->hdev->channel, int_pkt, sizeof(*int_pkt),
1522 0, VM_PKT_DATA_INBAND, 0);
1523 kfree(int_desc);
1524}
1525
1526/**
1527 * hv_msi_free() - Free the MSI.
1528 * @domain: The interrupt domain pointer
1529 * @info: Extra MSI-related context
1530 * @irq: Identifies the IRQ.
1531 *
1532 * The Hyper-V parent partition and hypervisor are tracking the
1533 * messages that are in use, keeping the interrupt redirection
1534 * table up to date. This callback sends a message that frees
1535 * the IRT entry and related tracking nonsense.
1536 */
1537static void hv_msi_free(struct irq_domain *domain, struct msi_domain_info *info,
1538 unsigned int irq)
1539{
1540 struct hv_pcibus_device *hbus;
1541 struct hv_pci_dev *hpdev;
1542 struct pci_dev *pdev;
1543 struct tran_int_desc *int_desc;
1544 struct irq_data *irq_data = irq_domain_get_irq_data(domain, irq);
1545 struct msi_desc *msi = irq_data_get_msi_desc(irq_data);
1546
1547 pdev = msi_desc_to_pci_dev(msi);
1548 hbus = info->data;
1549 int_desc = irq_data_get_irq_chip_data(irq_data);
1550 if (!int_desc)
1551 return;
1552
1553 irq_data->chip_data = NULL;
1554 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1555 if (!hpdev) {
1556 kfree(int_desc);
1557 return;
1558 }
1559
1560 hv_int_desc_free(hpdev, int_desc);
1561 put_pcichild(hpdev);
1562}
1563
1564static void hv_irq_mask(struct irq_data *data)
1565{
1566 pci_msi_mask_irq(data);
1567 if (data->parent_data->chip->irq_mask)
1568 irq_chip_mask_parent(data);
1569}
1570
1571static void hv_irq_unmask(struct irq_data *data)
1572{
1573 hv_arch_irq_unmask(data);
1574
1575 if (data->parent_data->chip->irq_unmask)
1576 irq_chip_unmask_parent(data);
1577 pci_msi_unmask_irq(data);
1578}
1579
1580struct compose_comp_ctxt {
1581 struct hv_pci_compl comp_pkt;
1582 struct tran_int_desc int_desc;
1583};
1584
1585static void hv_pci_compose_compl(void *context, struct pci_response *resp,
1586 int resp_packet_size)
1587{
1588 struct compose_comp_ctxt *comp_pkt = context;
1589 struct pci_create_int_response *int_resp =
1590 (struct pci_create_int_response *)resp;
1591
1592 if (resp_packet_size < sizeof(*int_resp)) {
1593 comp_pkt->comp_pkt.completion_status = -1;
1594 goto out;
1595 }
1596 comp_pkt->comp_pkt.completion_status = resp->status;
1597 comp_pkt->int_desc = int_resp->int_desc;
1598out:
1599 complete(&comp_pkt->comp_pkt.host_event);
1600}
1601
1602static u32 hv_compose_msi_req_v1(
1603 struct pci_create_interrupt *int_pkt,
1604 u32 slot, u8 vector, u16 vector_count)
1605{
1606 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE;
1607 int_pkt->wslot.slot = slot;
1608 int_pkt->int_desc.vector = vector;
1609 int_pkt->int_desc.vector_count = vector_count;
1610 int_pkt->int_desc.delivery_mode = DELIVERY_MODE;
1611
1612 /*
1613 * Create MSI w/ dummy vCPU set, overwritten by subsequent retarget in
1614 * hv_irq_unmask().
1615 */
1616 int_pkt->int_desc.cpu_mask = CPU_AFFINITY_ALL;
1617
1618 return sizeof(*int_pkt);
1619}
1620
1621/*
1622 * The vCPU selected by hv_compose_multi_msi_req_get_cpu() and
1623 * hv_compose_msi_req_get_cpu() is a "dummy" vCPU because the final vCPU to be
1624 * interrupted is specified later in hv_irq_unmask() and communicated to Hyper-V
1625 * via the HVCALL_RETARGET_INTERRUPT hypercall. But the choice of dummy vCPU is
1626 * not irrelevant because Hyper-V chooses the physical CPU to handle the
1627 * interrupts based on the vCPU specified in message sent to the vPCI VSP in
1628 * hv_compose_msi_msg(). Hyper-V's choice of pCPU is not visible to the guest,
1629 * but assigning too many vPCI device interrupts to the same pCPU can cause a
1630 * performance bottleneck. So we spread out the dummy vCPUs to influence Hyper-V
1631 * to spread out the pCPUs that it selects.
1632 *
1633 * For the single-MSI and MSI-X cases, it's OK for hv_compose_msi_req_get_cpu()
1634 * to always return the same dummy vCPU, because a second call to
1635 * hv_compose_msi_msg() contains the "real" vCPU, causing Hyper-V to choose a
1636 * new pCPU for the interrupt. But for the multi-MSI case, the second call to
1637 * hv_compose_msi_msg() exits without sending a message to the vPCI VSP, so the
1638 * original dummy vCPU is used. This dummy vCPU must be round-robin'ed so that
1639 * the pCPUs are spread out. All interrupts for a multi-MSI device end up using
1640 * the same pCPU, even though the vCPUs will be spread out by later calls
1641 * to hv_irq_unmask(), but that is the best we can do now.
1642 *
1643 * With Hyper-V in Nov 2022, the HVCALL_RETARGET_INTERRUPT hypercall does *not*
1644 * cause Hyper-V to reselect the pCPU based on the specified vCPU. Such an
1645 * enhancement is planned for a future version. With that enhancement, the
1646 * dummy vCPU selection won't matter, and interrupts for the same multi-MSI
1647 * device will be spread across multiple pCPUs.
1648 */
1649
1650/*
1651 * Create MSI w/ dummy vCPU set targeting just one vCPU, overwritten
1652 * by subsequent retarget in hv_irq_unmask().
1653 */
1654static int hv_compose_msi_req_get_cpu(const struct cpumask *affinity)
1655{
1656 return cpumask_first_and(affinity, cpu_online_mask);
1657}
1658
1659/*
1660 * Make sure the dummy vCPU values for multi-MSI don't all point to vCPU0.
1661 */
1662static int hv_compose_multi_msi_req_get_cpu(void)
1663{
1664 static DEFINE_SPINLOCK(multi_msi_cpu_lock);
1665
1666 /* -1 means starting with CPU 0 */
1667 static int cpu_next = -1;
1668
1669 unsigned long flags;
1670 int cpu;
1671
1672 spin_lock_irqsave(&multi_msi_cpu_lock, flags);
1673
1674 cpu_next = cpumask_next_wrap(cpu_next, cpu_online_mask, nr_cpu_ids,
1675 false);
1676 cpu = cpu_next;
1677
1678 spin_unlock_irqrestore(&multi_msi_cpu_lock, flags);
1679
1680 return cpu;
1681}
1682
1683static u32 hv_compose_msi_req_v2(
1684 struct pci_create_interrupt2 *int_pkt, int cpu,
1685 u32 slot, u8 vector, u16 vector_count)
1686{
1687 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE2;
1688 int_pkt->wslot.slot = slot;
1689 int_pkt->int_desc.vector = vector;
1690 int_pkt->int_desc.vector_count = vector_count;
1691 int_pkt->int_desc.delivery_mode = DELIVERY_MODE;
1692 int_pkt->int_desc.processor_array[0] =
1693 hv_cpu_number_to_vp_number(cpu);
1694 int_pkt->int_desc.processor_count = 1;
1695
1696 return sizeof(*int_pkt);
1697}
1698
1699static u32 hv_compose_msi_req_v3(
1700 struct pci_create_interrupt3 *int_pkt, int cpu,
1701 u32 slot, u32 vector, u16 vector_count)
1702{
1703 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE3;
1704 int_pkt->wslot.slot = slot;
1705 int_pkt->int_desc.vector = vector;
1706 int_pkt->int_desc.reserved = 0;
1707 int_pkt->int_desc.vector_count = vector_count;
1708 int_pkt->int_desc.delivery_mode = DELIVERY_MODE;
1709 int_pkt->int_desc.processor_array[0] =
1710 hv_cpu_number_to_vp_number(cpu);
1711 int_pkt->int_desc.processor_count = 1;
1712
1713 return sizeof(*int_pkt);
1714}
1715
1716/**
1717 * hv_compose_msi_msg() - Supplies a valid MSI address/data
1718 * @data: Everything about this MSI
1719 * @msg: Buffer that is filled in by this function
1720 *
1721 * This function unpacks the IRQ looking for target CPU set, IDT
1722 * vector and mode and sends a message to the parent partition
1723 * asking for a mapping for that tuple in this partition. The
1724 * response supplies a data value and address to which that data
1725 * should be written to trigger that interrupt.
1726 */
1727static void hv_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
1728{
1729 struct hv_pcibus_device *hbus;
1730 struct vmbus_channel *channel;
1731 struct hv_pci_dev *hpdev;
1732 struct pci_bus *pbus;
1733 struct pci_dev *pdev;
1734 const struct cpumask *dest;
1735 struct compose_comp_ctxt comp;
1736 struct tran_int_desc *int_desc;
1737 struct msi_desc *msi_desc;
1738 /*
1739 * vector_count should be u16: see hv_msi_desc, hv_msi_desc2
1740 * and hv_msi_desc3. vector must be u32: see hv_msi_desc3.
1741 */
1742 u16 vector_count;
1743 u32 vector;
1744 struct {
1745 struct pci_packet pci_pkt;
1746 union {
1747 struct pci_create_interrupt v1;
1748 struct pci_create_interrupt2 v2;
1749 struct pci_create_interrupt3 v3;
1750 } int_pkts;
1751 } __packed ctxt;
1752 bool multi_msi;
1753 u64 trans_id;
1754 u32 size;
1755 int ret;
1756 int cpu;
1757
1758 msi_desc = irq_data_get_msi_desc(data);
1759 multi_msi = !msi_desc->pci.msi_attrib.is_msix &&
1760 msi_desc->nvec_used > 1;
1761
1762 /* Reuse the previous allocation */
1763 if (data->chip_data && multi_msi) {
1764 int_desc = data->chip_data;
1765 msg->address_hi = int_desc->address >> 32;
1766 msg->address_lo = int_desc->address & 0xffffffff;
1767 msg->data = int_desc->data;
1768 return;
1769 }
1770
1771 pdev = msi_desc_to_pci_dev(msi_desc);
1772 dest = irq_data_get_effective_affinity_mask(data);
1773 pbus = pdev->bus;
1774 hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
1775 channel = hbus->hdev->channel;
1776 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1777 if (!hpdev)
1778 goto return_null_message;
1779
1780 /* Free any previous message that might have already been composed. */
1781 if (data->chip_data && !multi_msi) {
1782 int_desc = data->chip_data;
1783 data->chip_data = NULL;
1784 hv_int_desc_free(hpdev, int_desc);
1785 }
1786
1787 int_desc = kzalloc(sizeof(*int_desc), GFP_ATOMIC);
1788 if (!int_desc)
1789 goto drop_reference;
1790
1791 if (multi_msi) {
1792 /*
1793 * If this is not the first MSI of Multi MSI, we already have
1794 * a mapping. Can exit early.
1795 */
1796 if (msi_desc->irq != data->irq) {
1797 data->chip_data = int_desc;
1798 int_desc->address = msi_desc->msg.address_lo |
1799 (u64)msi_desc->msg.address_hi << 32;
1800 int_desc->data = msi_desc->msg.data +
1801 (data->irq - msi_desc->irq);
1802 msg->address_hi = msi_desc->msg.address_hi;
1803 msg->address_lo = msi_desc->msg.address_lo;
1804 msg->data = int_desc->data;
1805 put_pcichild(hpdev);
1806 return;
1807 }
1808 /*
1809 * The vector we select here is a dummy value. The correct
1810 * value gets sent to the hypervisor in unmask(). This needs
1811 * to be aligned with the count, and also not zero. Multi-msi
1812 * is powers of 2 up to 32, so 32 will always work here.
1813 */
1814 vector = 32;
1815 vector_count = msi_desc->nvec_used;
1816 cpu = hv_compose_multi_msi_req_get_cpu();
1817 } else {
1818 vector = hv_msi_get_int_vector(data);
1819 vector_count = 1;
1820 cpu = hv_compose_msi_req_get_cpu(dest);
1821 }
1822
1823 /*
1824 * hv_compose_msi_req_v1 and v2 are for x86 only, meaning 'vector'
1825 * can't exceed u8. Cast 'vector' down to u8 for v1/v2 explicitly
1826 * for better readability.
1827 */
1828 memset(&ctxt, 0, sizeof(ctxt));
1829 init_completion(&comp.comp_pkt.host_event);
1830 ctxt.pci_pkt.completion_func = hv_pci_compose_compl;
1831 ctxt.pci_pkt.compl_ctxt = ∁
1832
1833 switch (hbus->protocol_version) {
1834 case PCI_PROTOCOL_VERSION_1_1:
1835 size = hv_compose_msi_req_v1(&ctxt.int_pkts.v1,
1836 hpdev->desc.win_slot.slot,
1837 (u8)vector,
1838 vector_count);
1839 break;
1840
1841 case PCI_PROTOCOL_VERSION_1_2:
1842 case PCI_PROTOCOL_VERSION_1_3:
1843 size = hv_compose_msi_req_v2(&ctxt.int_pkts.v2,
1844 cpu,
1845 hpdev->desc.win_slot.slot,
1846 (u8)vector,
1847 vector_count);
1848 break;
1849
1850 case PCI_PROTOCOL_VERSION_1_4:
1851 size = hv_compose_msi_req_v3(&ctxt.int_pkts.v3,
1852 cpu,
1853 hpdev->desc.win_slot.slot,
1854 vector,
1855 vector_count);
1856 break;
1857
1858 default:
1859 /* As we only negotiate protocol versions known to this driver,
1860 * this path should never hit. However, this is it not a hot
1861 * path so we print a message to aid future updates.
1862 */
1863 dev_err(&hbus->hdev->device,
1864 "Unexpected vPCI protocol, update driver.");
1865 goto free_int_desc;
1866 }
1867
1868 ret = vmbus_sendpacket_getid(hpdev->hbus->hdev->channel, &ctxt.int_pkts,
1869 size, (unsigned long)&ctxt.pci_pkt,
1870 &trans_id, VM_PKT_DATA_INBAND,
1871 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1872 if (ret) {
1873 dev_err(&hbus->hdev->device,
1874 "Sending request for interrupt failed: 0x%x",
1875 comp.comp_pkt.completion_status);
1876 goto free_int_desc;
1877 }
1878
1879 /*
1880 * Prevents hv_pci_onchannelcallback() from running concurrently
1881 * in the tasklet.
1882 */
1883 tasklet_disable_in_atomic(&channel->callback_event);
1884
1885 /*
1886 * Since this function is called with IRQ locks held, can't
1887 * do normal wait for completion; instead poll.
1888 */
1889 while (!try_wait_for_completion(&comp.comp_pkt.host_event)) {
1890 unsigned long flags;
1891
1892 /* 0xFFFF means an invalid PCI VENDOR ID. */
1893 if (hv_pcifront_get_vendor_id(hpdev) == 0xFFFF) {
1894 dev_err_once(&hbus->hdev->device,
1895 "the device has gone\n");
1896 goto enable_tasklet;
1897 }
1898
1899 /*
1900 * Make sure that the ring buffer data structure doesn't get
1901 * freed while we dereference the ring buffer pointer. Test
1902 * for the channel's onchannel_callback being NULL within a
1903 * sched_lock critical section. See also the inline comments
1904 * in vmbus_reset_channel_cb().
1905 */
1906 spin_lock_irqsave(&channel->sched_lock, flags);
1907 if (unlikely(channel->onchannel_callback == NULL)) {
1908 spin_unlock_irqrestore(&channel->sched_lock, flags);
1909 goto enable_tasklet;
1910 }
1911 hv_pci_onchannelcallback(hbus);
1912 spin_unlock_irqrestore(&channel->sched_lock, flags);
1913
1914 if (hpdev->state == hv_pcichild_ejecting) {
1915 dev_err_once(&hbus->hdev->device,
1916 "the device is being ejected\n");
1917 goto enable_tasklet;
1918 }
1919
1920 udelay(100);
1921 }
1922
1923 tasklet_enable(&channel->callback_event);
1924
1925 if (comp.comp_pkt.completion_status < 0) {
1926 dev_err(&hbus->hdev->device,
1927 "Request for interrupt failed: 0x%x",
1928 comp.comp_pkt.completion_status);
1929 goto free_int_desc;
1930 }
1931
1932 /*
1933 * Record the assignment so that this can be unwound later. Using
1934 * irq_set_chip_data() here would be appropriate, but the lock it takes
1935 * is already held.
1936 */
1937 *int_desc = comp.int_desc;
1938 data->chip_data = int_desc;
1939
1940 /* Pass up the result. */
1941 msg->address_hi = comp.int_desc.address >> 32;
1942 msg->address_lo = comp.int_desc.address & 0xffffffff;
1943 msg->data = comp.int_desc.data;
1944
1945 put_pcichild(hpdev);
1946 return;
1947
1948enable_tasklet:
1949 tasklet_enable(&channel->callback_event);
1950 /*
1951 * The completion packet on the stack becomes invalid after 'return';
1952 * remove the ID from the VMbus requestor if the identifier is still
1953 * mapped to/associated with the packet. (The identifier could have
1954 * been 're-used', i.e., already removed and (re-)mapped.)
1955 *
1956 * Cf. hv_pci_onchannelcallback().
1957 */
1958 vmbus_request_addr_match(channel, trans_id, (unsigned long)&ctxt.pci_pkt);
1959free_int_desc:
1960 kfree(int_desc);
1961drop_reference:
1962 put_pcichild(hpdev);
1963return_null_message:
1964 msg->address_hi = 0;
1965 msg->address_lo = 0;
1966 msg->data = 0;
1967}
1968
1969/* HW Interrupt Chip Descriptor */
1970static struct irq_chip hv_msi_irq_chip = {
1971 .name = "Hyper-V PCIe MSI",
1972 .irq_compose_msi_msg = hv_compose_msi_msg,
1973 .irq_set_affinity = irq_chip_set_affinity_parent,
1974#ifdef CONFIG_X86
1975 .irq_ack = irq_chip_ack_parent,
1976#elif defined(CONFIG_ARM64)
1977 .irq_eoi = irq_chip_eoi_parent,
1978#endif
1979 .irq_mask = hv_irq_mask,
1980 .irq_unmask = hv_irq_unmask,
1981};
1982
1983static struct msi_domain_ops hv_msi_ops = {
1984 .msi_prepare = hv_msi_prepare,
1985 .msi_free = hv_msi_free,
1986};
1987
1988/**
1989 * hv_pcie_init_irq_domain() - Initialize IRQ domain
1990 * @hbus: The root PCI bus
1991 *
1992 * This function creates an IRQ domain which will be used for
1993 * interrupts from devices that have been passed through. These
1994 * devices only support MSI and MSI-X, not line-based interrupts
1995 * or simulations of line-based interrupts through PCIe's
1996 * fabric-layer messages. Because interrupts are remapped, we
1997 * can support multi-message MSI here.
1998 *
1999 * Return: '0' on success and error value on failure
2000 */
2001static int hv_pcie_init_irq_domain(struct hv_pcibus_device *hbus)
2002{
2003 hbus->msi_info.chip = &hv_msi_irq_chip;
2004 hbus->msi_info.ops = &hv_msi_ops;
2005 hbus->msi_info.flags = (MSI_FLAG_USE_DEF_DOM_OPS |
2006 MSI_FLAG_USE_DEF_CHIP_OPS | MSI_FLAG_MULTI_PCI_MSI |
2007 MSI_FLAG_PCI_MSIX);
2008 hbus->msi_info.handler = FLOW_HANDLER;
2009 hbus->msi_info.handler_name = FLOW_NAME;
2010 hbus->msi_info.data = hbus;
2011 hbus->irq_domain = pci_msi_create_irq_domain(hbus->fwnode,
2012 &hbus->msi_info,
2013 hv_pci_get_root_domain());
2014 if (!hbus->irq_domain) {
2015 dev_err(&hbus->hdev->device,
2016 "Failed to build an MSI IRQ domain\n");
2017 return -ENODEV;
2018 }
2019
2020 dev_set_msi_domain(&hbus->bridge->dev, hbus->irq_domain);
2021
2022 return 0;
2023}
2024
2025/**
2026 * get_bar_size() - Get the address space consumed by a BAR
2027 * @bar_val: Value that a BAR returned after -1 was written
2028 * to it.
2029 *
2030 * This function returns the size of the BAR, rounded up to 1
2031 * page. It has to be rounded up because the hypervisor's page
2032 * table entry that maps the BAR into the VM can't specify an
2033 * offset within a page. The invariant is that the hypervisor
2034 * must place any BARs of smaller than page length at the
2035 * beginning of a page.
2036 *
2037 * Return: Size in bytes of the consumed MMIO space.
2038 */
2039static u64 get_bar_size(u64 bar_val)
2040{
2041 return round_up((1 + ~(bar_val & PCI_BASE_ADDRESS_MEM_MASK)),
2042 PAGE_SIZE);
2043}
2044
2045/**
2046 * survey_child_resources() - Total all MMIO requirements
2047 * @hbus: Root PCI bus, as understood by this driver
2048 */
2049static void survey_child_resources(struct hv_pcibus_device *hbus)
2050{
2051 struct hv_pci_dev *hpdev;
2052 resource_size_t bar_size = 0;
2053 unsigned long flags;
2054 struct completion *event;
2055 u64 bar_val;
2056 int i;
2057
2058 /* If nobody is waiting on the answer, don't compute it. */
2059 event = xchg(&hbus->survey_event, NULL);
2060 if (!event)
2061 return;
2062
2063 /* If the answer has already been computed, go with it. */
2064 if (hbus->low_mmio_space || hbus->high_mmio_space) {
2065 complete(event);
2066 return;
2067 }
2068
2069 spin_lock_irqsave(&hbus->device_list_lock, flags);
2070
2071 /*
2072 * Due to an interesting quirk of the PCI spec, all memory regions
2073 * for a child device are a power of 2 in size and aligned in memory,
2074 * so it's sufficient to just add them up without tracking alignment.
2075 */
2076 list_for_each_entry(hpdev, &hbus->children, list_entry) {
2077 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
2078 if (hpdev->probed_bar[i] & PCI_BASE_ADDRESS_SPACE_IO)
2079 dev_err(&hbus->hdev->device,
2080 "There's an I/O BAR in this list!\n");
2081
2082 if (hpdev->probed_bar[i] != 0) {
2083 /*
2084 * A probed BAR has all the upper bits set that
2085 * can be changed.
2086 */
2087
2088 bar_val = hpdev->probed_bar[i];
2089 if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
2090 bar_val |=
2091 ((u64)hpdev->probed_bar[++i] << 32);
2092 else
2093 bar_val |= 0xffffffff00000000ULL;
2094
2095 bar_size = get_bar_size(bar_val);
2096
2097 if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
2098 hbus->high_mmio_space += bar_size;
2099 else
2100 hbus->low_mmio_space += bar_size;
2101 }
2102 }
2103 }
2104
2105 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2106 complete(event);
2107}
2108
2109/**
2110 * prepopulate_bars() - Fill in BARs with defaults
2111 * @hbus: Root PCI bus, as understood by this driver
2112 *
2113 * The core PCI driver code seems much, much happier if the BARs
2114 * for a device have values upon first scan. So fill them in.
2115 * The algorithm below works down from large sizes to small,
2116 * attempting to pack the assignments optimally. The assumption,
2117 * enforced in other parts of the code, is that the beginning of
2118 * the memory-mapped I/O space will be aligned on the largest
2119 * BAR size.
2120 */
2121static void prepopulate_bars(struct hv_pcibus_device *hbus)
2122{
2123 resource_size_t high_size = 0;
2124 resource_size_t low_size = 0;
2125 resource_size_t high_base = 0;
2126 resource_size_t low_base = 0;
2127 resource_size_t bar_size;
2128 struct hv_pci_dev *hpdev;
2129 unsigned long flags;
2130 u64 bar_val;
2131 u32 command;
2132 bool high;
2133 int i;
2134
2135 if (hbus->low_mmio_space) {
2136 low_size = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
2137 low_base = hbus->low_mmio_res->start;
2138 }
2139
2140 if (hbus->high_mmio_space) {
2141 high_size = 1ULL <<
2142 (63 - __builtin_clzll(hbus->high_mmio_space));
2143 high_base = hbus->high_mmio_res->start;
2144 }
2145
2146 spin_lock_irqsave(&hbus->device_list_lock, flags);
2147
2148 /*
2149 * Clear the memory enable bit, in case it's already set. This occurs
2150 * in the suspend path of hibernation, where the device is suspended,
2151 * resumed and suspended again: see hibernation_snapshot() and
2152 * hibernation_platform_enter().
2153 *
2154 * If the memory enable bit is already set, Hyper-V silently ignores
2155 * the below BAR updates, and the related PCI device driver can not
2156 * work, because reading from the device register(s) always returns
2157 * 0xFFFFFFFF (PCI_ERROR_RESPONSE).
2158 */
2159 list_for_each_entry(hpdev, &hbus->children, list_entry) {
2160 _hv_pcifront_read_config(hpdev, PCI_COMMAND, 2, &command);
2161 command &= ~PCI_COMMAND_MEMORY;
2162 _hv_pcifront_write_config(hpdev, PCI_COMMAND, 2, command);
2163 }
2164
2165 /* Pick addresses for the BARs. */
2166 do {
2167 list_for_each_entry(hpdev, &hbus->children, list_entry) {
2168 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
2169 bar_val = hpdev->probed_bar[i];
2170 if (bar_val == 0)
2171 continue;
2172 high = bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64;
2173 if (high) {
2174 bar_val |=
2175 ((u64)hpdev->probed_bar[i + 1]
2176 << 32);
2177 } else {
2178 bar_val |= 0xffffffffULL << 32;
2179 }
2180 bar_size = get_bar_size(bar_val);
2181 if (high) {
2182 if (high_size != bar_size) {
2183 i++;
2184 continue;
2185 }
2186 _hv_pcifront_write_config(hpdev,
2187 PCI_BASE_ADDRESS_0 + (4 * i),
2188 4,
2189 (u32)(high_base & 0xffffff00));
2190 i++;
2191 _hv_pcifront_write_config(hpdev,
2192 PCI_BASE_ADDRESS_0 + (4 * i),
2193 4, (u32)(high_base >> 32));
2194 high_base += bar_size;
2195 } else {
2196 if (low_size != bar_size)
2197 continue;
2198 _hv_pcifront_write_config(hpdev,
2199 PCI_BASE_ADDRESS_0 + (4 * i),
2200 4,
2201 (u32)(low_base & 0xffffff00));
2202 low_base += bar_size;
2203 }
2204 }
2205 if (high_size <= 1 && low_size <= 1) {
2206 /*
2207 * No need to set the PCI_COMMAND_MEMORY bit as
2208 * the core PCI driver doesn't require the bit
2209 * to be pre-set. Actually here we intentionally
2210 * keep the bit off so that the PCI BAR probing
2211 * in the core PCI driver doesn't cause Hyper-V
2212 * to unnecessarily unmap/map the virtual BARs
2213 * from/to the physical BARs multiple times.
2214 * This reduces the VM boot time significantly
2215 * if the BAR sizes are huge.
2216 */
2217 break;
2218 }
2219 }
2220
2221 high_size >>= 1;
2222 low_size >>= 1;
2223 } while (high_size || low_size);
2224
2225 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2226}
2227
2228/*
2229 * Assign entries in sysfs pci slot directory.
2230 *
2231 * Note that this function does not need to lock the children list
2232 * because it is called from pci_devices_present_work which
2233 * is serialized with hv_eject_device_work because they are on the
2234 * same ordered workqueue. Therefore hbus->children list will not change
2235 * even when pci_create_slot sleeps.
2236 */
2237static void hv_pci_assign_slots(struct hv_pcibus_device *hbus)
2238{
2239 struct hv_pci_dev *hpdev;
2240 char name[SLOT_NAME_SIZE];
2241 int slot_nr;
2242
2243 list_for_each_entry(hpdev, &hbus->children, list_entry) {
2244 if (hpdev->pci_slot)
2245 continue;
2246
2247 slot_nr = PCI_SLOT(wslot_to_devfn(hpdev->desc.win_slot.slot));
2248 snprintf(name, SLOT_NAME_SIZE, "%u", hpdev->desc.ser);
2249 hpdev->pci_slot = pci_create_slot(hbus->bridge->bus, slot_nr,
2250 name, NULL);
2251 if (IS_ERR(hpdev->pci_slot)) {
2252 pr_warn("pci_create slot %s failed\n", name);
2253 hpdev->pci_slot = NULL;
2254 }
2255 }
2256}
2257
2258/*
2259 * Remove entries in sysfs pci slot directory.
2260 */
2261static void hv_pci_remove_slots(struct hv_pcibus_device *hbus)
2262{
2263 struct hv_pci_dev *hpdev;
2264
2265 list_for_each_entry(hpdev, &hbus->children, list_entry) {
2266 if (!hpdev->pci_slot)
2267 continue;
2268 pci_destroy_slot(hpdev->pci_slot);
2269 hpdev->pci_slot = NULL;
2270 }
2271}
2272
2273/*
2274 * Set NUMA node for the devices on the bus
2275 */
2276static void hv_pci_assign_numa_node(struct hv_pcibus_device *hbus)
2277{
2278 struct pci_dev *dev;
2279 struct pci_bus *bus = hbus->bridge->bus;
2280 struct hv_pci_dev *hv_dev;
2281
2282 list_for_each_entry(dev, &bus->devices, bus_list) {
2283 hv_dev = get_pcichild_wslot(hbus, devfn_to_wslot(dev->devfn));
2284 if (!hv_dev)
2285 continue;
2286
2287 if (hv_dev->desc.flags & HV_PCI_DEVICE_FLAG_NUMA_AFFINITY &&
2288 hv_dev->desc.virtual_numa_node < num_possible_nodes())
2289 /*
2290 * The kernel may boot with some NUMA nodes offline
2291 * (e.g. in a KDUMP kernel) or with NUMA disabled via
2292 * "numa=off". In those cases, adjust the host provided
2293 * NUMA node to a valid NUMA node used by the kernel.
2294 */
2295 set_dev_node(&dev->dev,
2296 numa_map_to_online_node(
2297 hv_dev->desc.virtual_numa_node));
2298
2299 put_pcichild(hv_dev);
2300 }
2301}
2302
2303/**
2304 * create_root_hv_pci_bus() - Expose a new root PCI bus
2305 * @hbus: Root PCI bus, as understood by this driver
2306 *
2307 * Return: 0 on success, -errno on failure
2308 */
2309static int create_root_hv_pci_bus(struct hv_pcibus_device *hbus)
2310{
2311 int error;
2312 struct pci_host_bridge *bridge = hbus->bridge;
2313
2314 bridge->dev.parent = &hbus->hdev->device;
2315 bridge->sysdata = &hbus->sysdata;
2316 bridge->ops = &hv_pcifront_ops;
2317
2318 error = pci_scan_root_bus_bridge(bridge);
2319 if (error)
2320 return error;
2321
2322 pci_lock_rescan_remove();
2323 hv_pci_assign_numa_node(hbus);
2324 pci_bus_assign_resources(bridge->bus);
2325 hv_pci_assign_slots(hbus);
2326 pci_bus_add_devices(bridge->bus);
2327 pci_unlock_rescan_remove();
2328 hbus->state = hv_pcibus_installed;
2329 return 0;
2330}
2331
2332struct q_res_req_compl {
2333 struct completion host_event;
2334 struct hv_pci_dev *hpdev;
2335};
2336
2337/**
2338 * q_resource_requirements() - Query Resource Requirements
2339 * @context: The completion context.
2340 * @resp: The response that came from the host.
2341 * @resp_packet_size: The size in bytes of resp.
2342 *
2343 * This function is invoked on completion of a Query Resource
2344 * Requirements packet.
2345 */
2346static void q_resource_requirements(void *context, struct pci_response *resp,
2347 int resp_packet_size)
2348{
2349 struct q_res_req_compl *completion = context;
2350 struct pci_q_res_req_response *q_res_req =
2351 (struct pci_q_res_req_response *)resp;
2352 s32 status;
2353 int i;
2354
2355 status = (resp_packet_size < sizeof(*q_res_req)) ? -1 : resp->status;
2356 if (status < 0) {
2357 dev_err(&completion->hpdev->hbus->hdev->device,
2358 "query resource requirements failed: %x\n",
2359 status);
2360 } else {
2361 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
2362 completion->hpdev->probed_bar[i] =
2363 q_res_req->probed_bar[i];
2364 }
2365 }
2366
2367 complete(&completion->host_event);
2368}
2369
2370/**
2371 * new_pcichild_device() - Create a new child device
2372 * @hbus: The internal struct tracking this root PCI bus.
2373 * @desc: The information supplied so far from the host
2374 * about the device.
2375 *
2376 * This function creates the tracking structure for a new child
2377 * device and kicks off the process of figuring out what it is.
2378 *
2379 * Return: Pointer to the new tracking struct
2380 */
2381static struct hv_pci_dev *new_pcichild_device(struct hv_pcibus_device *hbus,
2382 struct hv_pcidev_description *desc)
2383{
2384 struct hv_pci_dev *hpdev;
2385 struct pci_child_message *res_req;
2386 struct q_res_req_compl comp_pkt;
2387 struct {
2388 struct pci_packet init_packet;
2389 u8 buffer[sizeof(struct pci_child_message)];
2390 } pkt;
2391 unsigned long flags;
2392 int ret;
2393
2394 hpdev = kzalloc(sizeof(*hpdev), GFP_KERNEL);
2395 if (!hpdev)
2396 return NULL;
2397
2398 hpdev->hbus = hbus;
2399
2400 memset(&pkt, 0, sizeof(pkt));
2401 init_completion(&comp_pkt.host_event);
2402 comp_pkt.hpdev = hpdev;
2403 pkt.init_packet.compl_ctxt = &comp_pkt;
2404 pkt.init_packet.completion_func = q_resource_requirements;
2405 res_req = (struct pci_child_message *)&pkt.init_packet.message;
2406 res_req->message_type.type = PCI_QUERY_RESOURCE_REQUIREMENTS;
2407 res_req->wslot.slot = desc->win_slot.slot;
2408
2409 ret = vmbus_sendpacket(hbus->hdev->channel, res_req,
2410 sizeof(struct pci_child_message),
2411 (unsigned long)&pkt.init_packet,
2412 VM_PKT_DATA_INBAND,
2413 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2414 if (ret)
2415 goto error;
2416
2417 if (wait_for_response(hbus->hdev, &comp_pkt.host_event))
2418 goto error;
2419
2420 hpdev->desc = *desc;
2421 refcount_set(&hpdev->refs, 1);
2422 get_pcichild(hpdev);
2423 spin_lock_irqsave(&hbus->device_list_lock, flags);
2424
2425 list_add_tail(&hpdev->list_entry, &hbus->children);
2426 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2427 return hpdev;
2428
2429error:
2430 kfree(hpdev);
2431 return NULL;
2432}
2433
2434/**
2435 * get_pcichild_wslot() - Find device from slot
2436 * @hbus: Root PCI bus, as understood by this driver
2437 * @wslot: Location on the bus
2438 *
2439 * This function looks up a PCI device and returns the internal
2440 * representation of it. It acquires a reference on it, so that
2441 * the device won't be deleted while somebody is using it. The
2442 * caller is responsible for calling put_pcichild() to release
2443 * this reference.
2444 *
2445 * Return: Internal representation of a PCI device
2446 */
2447static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
2448 u32 wslot)
2449{
2450 unsigned long flags;
2451 struct hv_pci_dev *iter, *hpdev = NULL;
2452
2453 spin_lock_irqsave(&hbus->device_list_lock, flags);
2454 list_for_each_entry(iter, &hbus->children, list_entry) {
2455 if (iter->desc.win_slot.slot == wslot) {
2456 hpdev = iter;
2457 get_pcichild(hpdev);
2458 break;
2459 }
2460 }
2461 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2462
2463 return hpdev;
2464}
2465
2466/**
2467 * pci_devices_present_work() - Handle new list of child devices
2468 * @work: Work struct embedded in struct hv_dr_work
2469 *
2470 * "Bus Relations" is the Windows term for "children of this
2471 * bus." The terminology is preserved here for people trying to
2472 * debug the interaction between Hyper-V and Linux. This
2473 * function is called when the parent partition reports a list
2474 * of functions that should be observed under this PCI Express
2475 * port (bus).
2476 *
2477 * This function updates the list, and must tolerate being
2478 * called multiple times with the same information. The typical
2479 * number of child devices is one, with very atypical cases
2480 * involving three or four, so the algorithms used here can be
2481 * simple and inefficient.
2482 *
2483 * It must also treat the omission of a previously observed device as
2484 * notification that the device no longer exists.
2485 *
2486 * Note that this function is serialized with hv_eject_device_work(),
2487 * because both are pushed to the ordered workqueue hbus->wq.
2488 */
2489static void pci_devices_present_work(struct work_struct *work)
2490{
2491 u32 child_no;
2492 bool found;
2493 struct hv_pcidev_description *new_desc;
2494 struct hv_pci_dev *hpdev;
2495 struct hv_pcibus_device *hbus;
2496 struct list_head removed;
2497 struct hv_dr_work *dr_wrk;
2498 struct hv_dr_state *dr = NULL;
2499 unsigned long flags;
2500
2501 dr_wrk = container_of(work, struct hv_dr_work, wrk);
2502 hbus = dr_wrk->bus;
2503 kfree(dr_wrk);
2504
2505 INIT_LIST_HEAD(&removed);
2506
2507 /* Pull this off the queue and process it if it was the last one. */
2508 spin_lock_irqsave(&hbus->device_list_lock, flags);
2509 while (!list_empty(&hbus->dr_list)) {
2510 dr = list_first_entry(&hbus->dr_list, struct hv_dr_state,
2511 list_entry);
2512 list_del(&dr->list_entry);
2513
2514 /* Throw this away if the list still has stuff in it. */
2515 if (!list_empty(&hbus->dr_list)) {
2516 kfree(dr);
2517 continue;
2518 }
2519 }
2520 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2521
2522 if (!dr)
2523 return;
2524
2525 /* First, mark all existing children as reported missing. */
2526 spin_lock_irqsave(&hbus->device_list_lock, flags);
2527 list_for_each_entry(hpdev, &hbus->children, list_entry) {
2528 hpdev->reported_missing = true;
2529 }
2530 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2531
2532 /* Next, add back any reported devices. */
2533 for (child_no = 0; child_no < dr->device_count; child_no++) {
2534 found = false;
2535 new_desc = &dr->func[child_no];
2536
2537 spin_lock_irqsave(&hbus->device_list_lock, flags);
2538 list_for_each_entry(hpdev, &hbus->children, list_entry) {
2539 if ((hpdev->desc.win_slot.slot == new_desc->win_slot.slot) &&
2540 (hpdev->desc.v_id == new_desc->v_id) &&
2541 (hpdev->desc.d_id == new_desc->d_id) &&
2542 (hpdev->desc.ser == new_desc->ser)) {
2543 hpdev->reported_missing = false;
2544 found = true;
2545 }
2546 }
2547 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2548
2549 if (!found) {
2550 hpdev = new_pcichild_device(hbus, new_desc);
2551 if (!hpdev)
2552 dev_err(&hbus->hdev->device,
2553 "couldn't record a child device.\n");
2554 }
2555 }
2556
2557 /* Move missing children to a list on the stack. */
2558 spin_lock_irqsave(&hbus->device_list_lock, flags);
2559 do {
2560 found = false;
2561 list_for_each_entry(hpdev, &hbus->children, list_entry) {
2562 if (hpdev->reported_missing) {
2563 found = true;
2564 put_pcichild(hpdev);
2565 list_move_tail(&hpdev->list_entry, &removed);
2566 break;
2567 }
2568 }
2569 } while (found);
2570 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2571
2572 /* Delete everything that should no longer exist. */
2573 while (!list_empty(&removed)) {
2574 hpdev = list_first_entry(&removed, struct hv_pci_dev,
2575 list_entry);
2576 list_del(&hpdev->list_entry);
2577
2578 if (hpdev->pci_slot)
2579 pci_destroy_slot(hpdev->pci_slot);
2580
2581 put_pcichild(hpdev);
2582 }
2583
2584 switch (hbus->state) {
2585 case hv_pcibus_installed:
2586 /*
2587 * Tell the core to rescan bus
2588 * because there may have been changes.
2589 */
2590 pci_lock_rescan_remove();
2591 pci_scan_child_bus(hbus->bridge->bus);
2592 hv_pci_assign_numa_node(hbus);
2593 hv_pci_assign_slots(hbus);
2594 pci_unlock_rescan_remove();
2595 break;
2596
2597 case hv_pcibus_init:
2598 case hv_pcibus_probed:
2599 survey_child_resources(hbus);
2600 break;
2601
2602 default:
2603 break;
2604 }
2605
2606 kfree(dr);
2607}
2608
2609/**
2610 * hv_pci_start_relations_work() - Queue work to start device discovery
2611 * @hbus: Root PCI bus, as understood by this driver
2612 * @dr: The list of children returned from host
2613 *
2614 * Return: 0 on success, -errno on failure
2615 */
2616static int hv_pci_start_relations_work(struct hv_pcibus_device *hbus,
2617 struct hv_dr_state *dr)
2618{
2619 struct hv_dr_work *dr_wrk;
2620 unsigned long flags;
2621 bool pending_dr;
2622
2623 if (hbus->state == hv_pcibus_removing) {
2624 dev_info(&hbus->hdev->device,
2625 "PCI VMBus BUS_RELATIONS: ignored\n");
2626 return -ENOENT;
2627 }
2628
2629 dr_wrk = kzalloc(sizeof(*dr_wrk), GFP_NOWAIT);
2630 if (!dr_wrk)
2631 return -ENOMEM;
2632
2633 INIT_WORK(&dr_wrk->wrk, pci_devices_present_work);
2634 dr_wrk->bus = hbus;
2635
2636 spin_lock_irqsave(&hbus->device_list_lock, flags);
2637 /*
2638 * If pending_dr is true, we have already queued a work,
2639 * which will see the new dr. Otherwise, we need to
2640 * queue a new work.
2641 */
2642 pending_dr = !list_empty(&hbus->dr_list);
2643 list_add_tail(&dr->list_entry, &hbus->dr_list);
2644 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2645
2646 if (pending_dr)
2647 kfree(dr_wrk);
2648 else
2649 queue_work(hbus->wq, &dr_wrk->wrk);
2650
2651 return 0;
2652}
2653
2654/**
2655 * hv_pci_devices_present() - Handle list of new children
2656 * @hbus: Root PCI bus, as understood by this driver
2657 * @relations: Packet from host listing children
2658 *
2659 * Process a new list of devices on the bus. The list of devices is
2660 * discovered by VSP and sent to us via VSP message PCI_BUS_RELATIONS,
2661 * whenever a new list of devices for this bus appears.
2662 */
2663static void hv_pci_devices_present(struct hv_pcibus_device *hbus,
2664 struct pci_bus_relations *relations)
2665{
2666 struct hv_dr_state *dr;
2667 int i;
2668
2669 dr = kzalloc(struct_size(dr, func, relations->device_count),
2670 GFP_NOWAIT);
2671 if (!dr)
2672 return;
2673
2674 dr->device_count = relations->device_count;
2675 for (i = 0; i < dr->device_count; i++) {
2676 dr->func[i].v_id = relations->func[i].v_id;
2677 dr->func[i].d_id = relations->func[i].d_id;
2678 dr->func[i].rev = relations->func[i].rev;
2679 dr->func[i].prog_intf = relations->func[i].prog_intf;
2680 dr->func[i].subclass = relations->func[i].subclass;
2681 dr->func[i].base_class = relations->func[i].base_class;
2682 dr->func[i].subsystem_id = relations->func[i].subsystem_id;
2683 dr->func[i].win_slot = relations->func[i].win_slot;
2684 dr->func[i].ser = relations->func[i].ser;
2685 }
2686
2687 if (hv_pci_start_relations_work(hbus, dr))
2688 kfree(dr);
2689}
2690
2691/**
2692 * hv_pci_devices_present2() - Handle list of new children
2693 * @hbus: Root PCI bus, as understood by this driver
2694 * @relations: Packet from host listing children
2695 *
2696 * This function is the v2 version of hv_pci_devices_present()
2697 */
2698static void hv_pci_devices_present2(struct hv_pcibus_device *hbus,
2699 struct pci_bus_relations2 *relations)
2700{
2701 struct hv_dr_state *dr;
2702 int i;
2703
2704 dr = kzalloc(struct_size(dr, func, relations->device_count),
2705 GFP_NOWAIT);
2706 if (!dr)
2707 return;
2708
2709 dr->device_count = relations->device_count;
2710 for (i = 0; i < dr->device_count; i++) {
2711 dr->func[i].v_id = relations->func[i].v_id;
2712 dr->func[i].d_id = relations->func[i].d_id;
2713 dr->func[i].rev = relations->func[i].rev;
2714 dr->func[i].prog_intf = relations->func[i].prog_intf;
2715 dr->func[i].subclass = relations->func[i].subclass;
2716 dr->func[i].base_class = relations->func[i].base_class;
2717 dr->func[i].subsystem_id = relations->func[i].subsystem_id;
2718 dr->func[i].win_slot = relations->func[i].win_slot;
2719 dr->func[i].ser = relations->func[i].ser;
2720 dr->func[i].flags = relations->func[i].flags;
2721 dr->func[i].virtual_numa_node =
2722 relations->func[i].virtual_numa_node;
2723 }
2724
2725 if (hv_pci_start_relations_work(hbus, dr))
2726 kfree(dr);
2727}
2728
2729/**
2730 * hv_eject_device_work() - Asynchronously handles ejection
2731 * @work: Work struct embedded in internal device struct
2732 *
2733 * This function handles ejecting a device. Windows will
2734 * attempt to gracefully eject a device, waiting 60 seconds to
2735 * hear back from the guest OS that this completed successfully.
2736 * If this timer expires, the device will be forcibly removed.
2737 */
2738static void hv_eject_device_work(struct work_struct *work)
2739{
2740 struct pci_eject_response *ejct_pkt;
2741 struct hv_pcibus_device *hbus;
2742 struct hv_pci_dev *hpdev;
2743 struct pci_dev *pdev;
2744 unsigned long flags;
2745 int wslot;
2746 struct {
2747 struct pci_packet pkt;
2748 u8 buffer[sizeof(struct pci_eject_response)];
2749 } ctxt;
2750
2751 hpdev = container_of(work, struct hv_pci_dev, wrk);
2752 hbus = hpdev->hbus;
2753
2754 WARN_ON(hpdev->state != hv_pcichild_ejecting);
2755
2756 /*
2757 * Ejection can come before or after the PCI bus has been set up, so
2758 * attempt to find it and tear down the bus state, if it exists. This
2759 * must be done without constructs like pci_domain_nr(hbus->bridge->bus)
2760 * because hbus->bridge->bus may not exist yet.
2761 */
2762 wslot = wslot_to_devfn(hpdev->desc.win_slot.slot);
2763 pdev = pci_get_domain_bus_and_slot(hbus->bridge->domain_nr, 0, wslot);
2764 if (pdev) {
2765 pci_lock_rescan_remove();
2766 pci_stop_and_remove_bus_device(pdev);
2767 pci_dev_put(pdev);
2768 pci_unlock_rescan_remove();
2769 }
2770
2771 spin_lock_irqsave(&hbus->device_list_lock, flags);
2772 list_del(&hpdev->list_entry);
2773 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2774
2775 if (hpdev->pci_slot)
2776 pci_destroy_slot(hpdev->pci_slot);
2777
2778 memset(&ctxt, 0, sizeof(ctxt));
2779 ejct_pkt = (struct pci_eject_response *)&ctxt.pkt.message;
2780 ejct_pkt->message_type.type = PCI_EJECTION_COMPLETE;
2781 ejct_pkt->wslot.slot = hpdev->desc.win_slot.slot;
2782 vmbus_sendpacket(hbus->hdev->channel, ejct_pkt,
2783 sizeof(*ejct_pkt), 0,
2784 VM_PKT_DATA_INBAND, 0);
2785
2786 /* For the get_pcichild() in hv_pci_eject_device() */
2787 put_pcichild(hpdev);
2788 /* For the two refs got in new_pcichild_device() */
2789 put_pcichild(hpdev);
2790 put_pcichild(hpdev);
2791 /* hpdev has been freed. Do not use it any more. */
2792}
2793
2794/**
2795 * hv_pci_eject_device() - Handles device ejection
2796 * @hpdev: Internal device tracking struct
2797 *
2798 * This function is invoked when an ejection packet arrives. It
2799 * just schedules work so that we don't re-enter the packet
2800 * delivery code handling the ejection.
2801 */
2802static void hv_pci_eject_device(struct hv_pci_dev *hpdev)
2803{
2804 struct hv_pcibus_device *hbus = hpdev->hbus;
2805 struct hv_device *hdev = hbus->hdev;
2806
2807 if (hbus->state == hv_pcibus_removing) {
2808 dev_info(&hdev->device, "PCI VMBus EJECT: ignored\n");
2809 return;
2810 }
2811
2812 hpdev->state = hv_pcichild_ejecting;
2813 get_pcichild(hpdev);
2814 INIT_WORK(&hpdev->wrk, hv_eject_device_work);
2815 queue_work(hbus->wq, &hpdev->wrk);
2816}
2817
2818/**
2819 * hv_pci_onchannelcallback() - Handles incoming packets
2820 * @context: Internal bus tracking struct
2821 *
2822 * This function is invoked whenever the host sends a packet to
2823 * this channel (which is private to this root PCI bus).
2824 */
2825static void hv_pci_onchannelcallback(void *context)
2826{
2827 const int packet_size = 0x100;
2828 int ret;
2829 struct hv_pcibus_device *hbus = context;
2830 struct vmbus_channel *chan = hbus->hdev->channel;
2831 u32 bytes_recvd;
2832 u64 req_id, req_addr;
2833 struct vmpacket_descriptor *desc;
2834 unsigned char *buffer;
2835 int bufferlen = packet_size;
2836 struct pci_packet *comp_packet;
2837 struct pci_response *response;
2838 struct pci_incoming_message *new_message;
2839 struct pci_bus_relations *bus_rel;
2840 struct pci_bus_relations2 *bus_rel2;
2841 struct pci_dev_inval_block *inval;
2842 struct pci_dev_incoming *dev_message;
2843 struct hv_pci_dev *hpdev;
2844 unsigned long flags;
2845
2846 buffer = kmalloc(bufferlen, GFP_ATOMIC);
2847 if (!buffer)
2848 return;
2849
2850 while (1) {
2851 ret = vmbus_recvpacket_raw(chan, buffer, bufferlen,
2852 &bytes_recvd, &req_id);
2853
2854 if (ret == -ENOBUFS) {
2855 kfree(buffer);
2856 /* Handle large packet */
2857 bufferlen = bytes_recvd;
2858 buffer = kmalloc(bytes_recvd, GFP_ATOMIC);
2859 if (!buffer)
2860 return;
2861 continue;
2862 }
2863
2864 /* Zero length indicates there are no more packets. */
2865 if (ret || !bytes_recvd)
2866 break;
2867
2868 /*
2869 * All incoming packets must be at least as large as a
2870 * response.
2871 */
2872 if (bytes_recvd <= sizeof(struct pci_response))
2873 continue;
2874 desc = (struct vmpacket_descriptor *)buffer;
2875
2876 switch (desc->type) {
2877 case VM_PKT_COMP:
2878
2879 lock_requestor(chan, flags);
2880 req_addr = __vmbus_request_addr_match(chan, req_id,
2881 VMBUS_RQST_ADDR_ANY);
2882 if (req_addr == VMBUS_RQST_ERROR) {
2883 unlock_requestor(chan, flags);
2884 dev_err(&hbus->hdev->device,
2885 "Invalid transaction ID %llx\n",
2886 req_id);
2887 break;
2888 }
2889 comp_packet = (struct pci_packet *)req_addr;
2890 response = (struct pci_response *)buffer;
2891 /*
2892 * Call ->completion_func() within the critical section to make
2893 * sure that the packet pointer is still valid during the call:
2894 * here 'valid' means that there's a task still waiting for the
2895 * completion, and that the packet data is still on the waiting
2896 * task's stack. Cf. hv_compose_msi_msg().
2897 */
2898 comp_packet->completion_func(comp_packet->compl_ctxt,
2899 response,
2900 bytes_recvd);
2901 unlock_requestor(chan, flags);
2902 break;
2903
2904 case VM_PKT_DATA_INBAND:
2905
2906 new_message = (struct pci_incoming_message *)buffer;
2907 switch (new_message->message_type.type) {
2908 case PCI_BUS_RELATIONS:
2909
2910 bus_rel = (struct pci_bus_relations *)buffer;
2911 if (bytes_recvd < sizeof(*bus_rel) ||
2912 bytes_recvd <
2913 struct_size(bus_rel, func,
2914 bus_rel->device_count)) {
2915 dev_err(&hbus->hdev->device,
2916 "bus relations too small\n");
2917 break;
2918 }
2919
2920 hv_pci_devices_present(hbus, bus_rel);
2921 break;
2922
2923 case PCI_BUS_RELATIONS2:
2924
2925 bus_rel2 = (struct pci_bus_relations2 *)buffer;
2926 if (bytes_recvd < sizeof(*bus_rel2) ||
2927 bytes_recvd <
2928 struct_size(bus_rel2, func,
2929 bus_rel2->device_count)) {
2930 dev_err(&hbus->hdev->device,
2931 "bus relations v2 too small\n");
2932 break;
2933 }
2934
2935 hv_pci_devices_present2(hbus, bus_rel2);
2936 break;
2937
2938 case PCI_EJECT:
2939
2940 dev_message = (struct pci_dev_incoming *)buffer;
2941 if (bytes_recvd < sizeof(*dev_message)) {
2942 dev_err(&hbus->hdev->device,
2943 "eject message too small\n");
2944 break;
2945 }
2946 hpdev = get_pcichild_wslot(hbus,
2947 dev_message->wslot.slot);
2948 if (hpdev) {
2949 hv_pci_eject_device(hpdev);
2950 put_pcichild(hpdev);
2951 }
2952 break;
2953
2954 case PCI_INVALIDATE_BLOCK:
2955
2956 inval = (struct pci_dev_inval_block *)buffer;
2957 if (bytes_recvd < sizeof(*inval)) {
2958 dev_err(&hbus->hdev->device,
2959 "invalidate message too small\n");
2960 break;
2961 }
2962 hpdev = get_pcichild_wslot(hbus,
2963 inval->wslot.slot);
2964 if (hpdev) {
2965 if (hpdev->block_invalidate) {
2966 hpdev->block_invalidate(
2967 hpdev->invalidate_context,
2968 inval->block_mask);
2969 }
2970 put_pcichild(hpdev);
2971 }
2972 break;
2973
2974 default:
2975 dev_warn(&hbus->hdev->device,
2976 "Unimplemented protocol message %x\n",
2977 new_message->message_type.type);
2978 break;
2979 }
2980 break;
2981
2982 default:
2983 dev_err(&hbus->hdev->device,
2984 "unhandled packet type %d, tid %llx len %d\n",
2985 desc->type, req_id, bytes_recvd);
2986 break;
2987 }
2988 }
2989
2990 kfree(buffer);
2991}
2992
2993/**
2994 * hv_pci_protocol_negotiation() - Set up protocol
2995 * @hdev: VMBus's tracking struct for this root PCI bus.
2996 * @version: Array of supported channel protocol versions in
2997 * the order of probing - highest go first.
2998 * @num_version: Number of elements in the version array.
2999 *
3000 * This driver is intended to support running on Windows 10
3001 * (server) and later versions. It will not run on earlier
3002 * versions, as they assume that many of the operations which
3003 * Linux needs accomplished with a spinlock held were done via
3004 * asynchronous messaging via VMBus. Windows 10 increases the
3005 * surface area of PCI emulation so that these actions can take
3006 * place by suspending a virtual processor for their duration.
3007 *
3008 * This function negotiates the channel protocol version,
3009 * failing if the host doesn't support the necessary protocol
3010 * level.
3011 */
3012static int hv_pci_protocol_negotiation(struct hv_device *hdev,
3013 enum pci_protocol_version_t version[],
3014 int num_version)
3015{
3016 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3017 struct pci_version_request *version_req;
3018 struct hv_pci_compl comp_pkt;
3019 struct pci_packet *pkt;
3020 int ret;
3021 int i;
3022
3023 /*
3024 * Initiate the handshake with the host and negotiate
3025 * a version that the host can support. We start with the
3026 * highest version number and go down if the host cannot
3027 * support it.
3028 */
3029 pkt = kzalloc(sizeof(*pkt) + sizeof(*version_req), GFP_KERNEL);
3030 if (!pkt)
3031 return -ENOMEM;
3032
3033 init_completion(&comp_pkt.host_event);
3034 pkt->completion_func = hv_pci_generic_compl;
3035 pkt->compl_ctxt = &comp_pkt;
3036 version_req = (struct pci_version_request *)&pkt->message;
3037 version_req->message_type.type = PCI_QUERY_PROTOCOL_VERSION;
3038
3039 for (i = 0; i < num_version; i++) {
3040 version_req->protocol_version = version[i];
3041 ret = vmbus_sendpacket(hdev->channel, version_req,
3042 sizeof(struct pci_version_request),
3043 (unsigned long)pkt, VM_PKT_DATA_INBAND,
3044 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3045 if (!ret)
3046 ret = wait_for_response(hdev, &comp_pkt.host_event);
3047
3048 if (ret) {
3049 dev_err(&hdev->device,
3050 "PCI Pass-through VSP failed to request version: %d",
3051 ret);
3052 goto exit;
3053 }
3054
3055 if (comp_pkt.completion_status >= 0) {
3056 hbus->protocol_version = version[i];
3057 dev_info(&hdev->device,
3058 "PCI VMBus probing: Using version %#x\n",
3059 hbus->protocol_version);
3060 goto exit;
3061 }
3062
3063 if (comp_pkt.completion_status != STATUS_REVISION_MISMATCH) {
3064 dev_err(&hdev->device,
3065 "PCI Pass-through VSP failed version request: %#x",
3066 comp_pkt.completion_status);
3067 ret = -EPROTO;
3068 goto exit;
3069 }
3070
3071 reinit_completion(&comp_pkt.host_event);
3072 }
3073
3074 dev_err(&hdev->device,
3075 "PCI pass-through VSP failed to find supported version");
3076 ret = -EPROTO;
3077
3078exit:
3079 kfree(pkt);
3080 return ret;
3081}
3082
3083/**
3084 * hv_pci_free_bridge_windows() - Release memory regions for the
3085 * bus
3086 * @hbus: Root PCI bus, as understood by this driver
3087 */
3088static void hv_pci_free_bridge_windows(struct hv_pcibus_device *hbus)
3089{
3090 /*
3091 * Set the resources back to the way they looked when they
3092 * were allocated by setting IORESOURCE_BUSY again.
3093 */
3094
3095 if (hbus->low_mmio_space && hbus->low_mmio_res) {
3096 hbus->low_mmio_res->flags |= IORESOURCE_BUSY;
3097 vmbus_free_mmio(hbus->low_mmio_res->start,
3098 resource_size(hbus->low_mmio_res));
3099 }
3100
3101 if (hbus->high_mmio_space && hbus->high_mmio_res) {
3102 hbus->high_mmio_res->flags |= IORESOURCE_BUSY;
3103 vmbus_free_mmio(hbus->high_mmio_res->start,
3104 resource_size(hbus->high_mmio_res));
3105 }
3106}
3107
3108/**
3109 * hv_pci_allocate_bridge_windows() - Allocate memory regions
3110 * for the bus
3111 * @hbus: Root PCI bus, as understood by this driver
3112 *
3113 * This function calls vmbus_allocate_mmio(), which is itself a
3114 * bit of a compromise. Ideally, we might change the pnp layer
3115 * in the kernel such that it comprehends either PCI devices
3116 * which are "grandchildren of ACPI," with some intermediate bus
3117 * node (in this case, VMBus) or change it such that it
3118 * understands VMBus. The pnp layer, however, has been declared
3119 * deprecated, and not subject to change.
3120 *
3121 * The workaround, implemented here, is to ask VMBus to allocate
3122 * MMIO space for this bus. VMBus itself knows which ranges are
3123 * appropriate by looking at its own ACPI objects. Then, after
3124 * these ranges are claimed, they're modified to look like they
3125 * would have looked if the ACPI and pnp code had allocated
3126 * bridge windows. These descriptors have to exist in this form
3127 * in order to satisfy the code which will get invoked when the
3128 * endpoint PCI function driver calls request_mem_region() or
3129 * request_mem_region_exclusive().
3130 *
3131 * Return: 0 on success, -errno on failure
3132 */
3133static int hv_pci_allocate_bridge_windows(struct hv_pcibus_device *hbus)
3134{
3135 resource_size_t align;
3136 int ret;
3137
3138 if (hbus->low_mmio_space) {
3139 align = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
3140 ret = vmbus_allocate_mmio(&hbus->low_mmio_res, hbus->hdev, 0,
3141 (u64)(u32)0xffffffff,
3142 hbus->low_mmio_space,
3143 align, false);
3144 if (ret) {
3145 dev_err(&hbus->hdev->device,
3146 "Need %#llx of low MMIO space. Consider reconfiguring the VM.\n",
3147 hbus->low_mmio_space);
3148 return ret;
3149 }
3150
3151 /* Modify this resource to become a bridge window. */
3152 hbus->low_mmio_res->flags |= IORESOURCE_WINDOW;
3153 hbus->low_mmio_res->flags &= ~IORESOURCE_BUSY;
3154 pci_add_resource(&hbus->bridge->windows, hbus->low_mmio_res);
3155 }
3156
3157 if (hbus->high_mmio_space) {
3158 align = 1ULL << (63 - __builtin_clzll(hbus->high_mmio_space));
3159 ret = vmbus_allocate_mmio(&hbus->high_mmio_res, hbus->hdev,
3160 0x100000000, -1,
3161 hbus->high_mmio_space, align,
3162 false);
3163 if (ret) {
3164 dev_err(&hbus->hdev->device,
3165 "Need %#llx of high MMIO space. Consider reconfiguring the VM.\n",
3166 hbus->high_mmio_space);
3167 goto release_low_mmio;
3168 }
3169
3170 /* Modify this resource to become a bridge window. */
3171 hbus->high_mmio_res->flags |= IORESOURCE_WINDOW;
3172 hbus->high_mmio_res->flags &= ~IORESOURCE_BUSY;
3173 pci_add_resource(&hbus->bridge->windows, hbus->high_mmio_res);
3174 }
3175
3176 return 0;
3177
3178release_low_mmio:
3179 if (hbus->low_mmio_res) {
3180 vmbus_free_mmio(hbus->low_mmio_res->start,
3181 resource_size(hbus->low_mmio_res));
3182 }
3183
3184 return ret;
3185}
3186
3187/**
3188 * hv_allocate_config_window() - Find MMIO space for PCI Config
3189 * @hbus: Root PCI bus, as understood by this driver
3190 *
3191 * This function claims memory-mapped I/O space for accessing
3192 * configuration space for the functions on this bus.
3193 *
3194 * Return: 0 on success, -errno on failure
3195 */
3196static int hv_allocate_config_window(struct hv_pcibus_device *hbus)
3197{
3198 int ret;
3199
3200 /*
3201 * Set up a region of MMIO space to use for accessing configuration
3202 * space.
3203 */
3204 ret = vmbus_allocate_mmio(&hbus->mem_config, hbus->hdev, 0, -1,
3205 PCI_CONFIG_MMIO_LENGTH, 0x1000, false);
3206 if (ret)
3207 return ret;
3208
3209 /*
3210 * vmbus_allocate_mmio() gets used for allocating both device endpoint
3211 * resource claims (those which cannot be overlapped) and the ranges
3212 * which are valid for the children of this bus, which are intended
3213 * to be overlapped by those children. Set the flag on this claim
3214 * meaning that this region can't be overlapped.
3215 */
3216
3217 hbus->mem_config->flags |= IORESOURCE_BUSY;
3218
3219 return 0;
3220}
3221
3222static void hv_free_config_window(struct hv_pcibus_device *hbus)
3223{
3224 vmbus_free_mmio(hbus->mem_config->start, PCI_CONFIG_MMIO_LENGTH);
3225}
3226
3227static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs);
3228
3229/**
3230 * hv_pci_enter_d0() - Bring the "bus" into the D0 power state
3231 * @hdev: VMBus's tracking struct for this root PCI bus
3232 *
3233 * Return: 0 on success, -errno on failure
3234 */
3235static int hv_pci_enter_d0(struct hv_device *hdev)
3236{
3237 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3238 struct pci_bus_d0_entry *d0_entry;
3239 struct hv_pci_compl comp_pkt;
3240 struct pci_packet *pkt;
3241 int ret;
3242
3243 /*
3244 * Tell the host that the bus is ready to use, and moved into the
3245 * powered-on state. This includes telling the host which region
3246 * of memory-mapped I/O space has been chosen for configuration space
3247 * access.
3248 */
3249 pkt = kzalloc(sizeof(*pkt) + sizeof(*d0_entry), GFP_KERNEL);
3250 if (!pkt)
3251 return -ENOMEM;
3252
3253 init_completion(&comp_pkt.host_event);
3254 pkt->completion_func = hv_pci_generic_compl;
3255 pkt->compl_ctxt = &comp_pkt;
3256 d0_entry = (struct pci_bus_d0_entry *)&pkt->message;
3257 d0_entry->message_type.type = PCI_BUS_D0ENTRY;
3258 d0_entry->mmio_base = hbus->mem_config->start;
3259
3260 ret = vmbus_sendpacket(hdev->channel, d0_entry, sizeof(*d0_entry),
3261 (unsigned long)pkt, VM_PKT_DATA_INBAND,
3262 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3263 if (!ret)
3264 ret = wait_for_response(hdev, &comp_pkt.host_event);
3265
3266 if (ret)
3267 goto exit;
3268
3269 if (comp_pkt.completion_status < 0) {
3270 dev_err(&hdev->device,
3271 "PCI Pass-through VSP failed D0 Entry with status %x\n",
3272 comp_pkt.completion_status);
3273 ret = -EPROTO;
3274 goto exit;
3275 }
3276
3277 ret = 0;
3278
3279exit:
3280 kfree(pkt);
3281 return ret;
3282}
3283
3284/**
3285 * hv_pci_query_relations() - Ask host to send list of child
3286 * devices
3287 * @hdev: VMBus's tracking struct for this root PCI bus
3288 *
3289 * Return: 0 on success, -errno on failure
3290 */
3291static int hv_pci_query_relations(struct hv_device *hdev)
3292{
3293 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3294 struct pci_message message;
3295 struct completion comp;
3296 int ret;
3297
3298 /* Ask the host to send along the list of child devices */
3299 init_completion(&comp);
3300 if (cmpxchg(&hbus->survey_event, NULL, &comp))
3301 return -ENOTEMPTY;
3302
3303 memset(&message, 0, sizeof(message));
3304 message.type = PCI_QUERY_BUS_RELATIONS;
3305
3306 ret = vmbus_sendpacket(hdev->channel, &message, sizeof(message),
3307 0, VM_PKT_DATA_INBAND, 0);
3308 if (!ret)
3309 ret = wait_for_response(hdev, &comp);
3310
3311 return ret;
3312}
3313
3314/**
3315 * hv_send_resources_allocated() - Report local resource choices
3316 * @hdev: VMBus's tracking struct for this root PCI bus
3317 *
3318 * The host OS is expecting to be sent a request as a message
3319 * which contains all the resources that the device will use.
3320 * The response contains those same resources, "translated"
3321 * which is to say, the values which should be used by the
3322 * hardware, when it delivers an interrupt. (MMIO resources are
3323 * used in local terms.) This is nice for Windows, and lines up
3324 * with the FDO/PDO split, which doesn't exist in Linux. Linux
3325 * is deeply expecting to scan an emulated PCI configuration
3326 * space. So this message is sent here only to drive the state
3327 * machine on the host forward.
3328 *
3329 * Return: 0 on success, -errno on failure
3330 */
3331static int hv_send_resources_allocated(struct hv_device *hdev)
3332{
3333 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3334 struct pci_resources_assigned *res_assigned;
3335 struct pci_resources_assigned2 *res_assigned2;
3336 struct hv_pci_compl comp_pkt;
3337 struct hv_pci_dev *hpdev;
3338 struct pci_packet *pkt;
3339 size_t size_res;
3340 int wslot;
3341 int ret;
3342
3343 size_res = (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2)
3344 ? sizeof(*res_assigned) : sizeof(*res_assigned2);
3345
3346 pkt = kmalloc(sizeof(*pkt) + size_res, GFP_KERNEL);
3347 if (!pkt)
3348 return -ENOMEM;
3349
3350 ret = 0;
3351
3352 for (wslot = 0; wslot < 256; wslot++) {
3353 hpdev = get_pcichild_wslot(hbus, wslot);
3354 if (!hpdev)
3355 continue;
3356
3357 memset(pkt, 0, sizeof(*pkt) + size_res);
3358 init_completion(&comp_pkt.host_event);
3359 pkt->completion_func = hv_pci_generic_compl;
3360 pkt->compl_ctxt = &comp_pkt;
3361
3362 if (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2) {
3363 res_assigned =
3364 (struct pci_resources_assigned *)&pkt->message;
3365 res_assigned->message_type.type =
3366 PCI_RESOURCES_ASSIGNED;
3367 res_assigned->wslot.slot = hpdev->desc.win_slot.slot;
3368 } else {
3369 res_assigned2 =
3370 (struct pci_resources_assigned2 *)&pkt->message;
3371 res_assigned2->message_type.type =
3372 PCI_RESOURCES_ASSIGNED2;
3373 res_assigned2->wslot.slot = hpdev->desc.win_slot.slot;
3374 }
3375 put_pcichild(hpdev);
3376
3377 ret = vmbus_sendpacket(hdev->channel, &pkt->message,
3378 size_res, (unsigned long)pkt,
3379 VM_PKT_DATA_INBAND,
3380 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3381 if (!ret)
3382 ret = wait_for_response(hdev, &comp_pkt.host_event);
3383 if (ret)
3384 break;
3385
3386 if (comp_pkt.completion_status < 0) {
3387 ret = -EPROTO;
3388 dev_err(&hdev->device,
3389 "resource allocated returned 0x%x",
3390 comp_pkt.completion_status);
3391 break;
3392 }
3393
3394 hbus->wslot_res_allocated = wslot;
3395 }
3396
3397 kfree(pkt);
3398 return ret;
3399}
3400
3401/**
3402 * hv_send_resources_released() - Report local resources
3403 * released
3404 * @hdev: VMBus's tracking struct for this root PCI bus
3405 *
3406 * Return: 0 on success, -errno on failure
3407 */
3408static int hv_send_resources_released(struct hv_device *hdev)
3409{
3410 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3411 struct pci_child_message pkt;
3412 struct hv_pci_dev *hpdev;
3413 int wslot;
3414 int ret;
3415
3416 for (wslot = hbus->wslot_res_allocated; wslot >= 0; wslot--) {
3417 hpdev = get_pcichild_wslot(hbus, wslot);
3418 if (!hpdev)
3419 continue;
3420
3421 memset(&pkt, 0, sizeof(pkt));
3422 pkt.message_type.type = PCI_RESOURCES_RELEASED;
3423 pkt.wslot.slot = hpdev->desc.win_slot.slot;
3424
3425 put_pcichild(hpdev);
3426
3427 ret = vmbus_sendpacket(hdev->channel, &pkt, sizeof(pkt), 0,
3428 VM_PKT_DATA_INBAND, 0);
3429 if (ret)
3430 return ret;
3431
3432 hbus->wslot_res_allocated = wslot - 1;
3433 }
3434
3435 hbus->wslot_res_allocated = -1;
3436
3437 return 0;
3438}
3439
3440#define HVPCI_DOM_MAP_SIZE (64 * 1024)
3441static DECLARE_BITMAP(hvpci_dom_map, HVPCI_DOM_MAP_SIZE);
3442
3443/*
3444 * PCI domain number 0 is used by emulated devices on Gen1 VMs, so define 0
3445 * as invalid for passthrough PCI devices of this driver.
3446 */
3447#define HVPCI_DOM_INVALID 0
3448
3449/**
3450 * hv_get_dom_num() - Get a valid PCI domain number
3451 * Check if the PCI domain number is in use, and return another number if
3452 * it is in use.
3453 *
3454 * @dom: Requested domain number
3455 *
3456 * return: domain number on success, HVPCI_DOM_INVALID on failure
3457 */
3458static u16 hv_get_dom_num(u16 dom)
3459{
3460 unsigned int i;
3461
3462 if (test_and_set_bit(dom, hvpci_dom_map) == 0)
3463 return dom;
3464
3465 for_each_clear_bit(i, hvpci_dom_map, HVPCI_DOM_MAP_SIZE) {
3466 if (test_and_set_bit(i, hvpci_dom_map) == 0)
3467 return i;
3468 }
3469
3470 return HVPCI_DOM_INVALID;
3471}
3472
3473/**
3474 * hv_put_dom_num() - Mark the PCI domain number as free
3475 * @dom: Domain number to be freed
3476 */
3477static void hv_put_dom_num(u16 dom)
3478{
3479 clear_bit(dom, hvpci_dom_map);
3480}
3481
3482/**
3483 * hv_pci_probe() - New VMBus channel probe, for a root PCI bus
3484 * @hdev: VMBus's tracking struct for this root PCI bus
3485 * @dev_id: Identifies the device itself
3486 *
3487 * Return: 0 on success, -errno on failure
3488 */
3489static int hv_pci_probe(struct hv_device *hdev,
3490 const struct hv_vmbus_device_id *dev_id)
3491{
3492 struct pci_host_bridge *bridge;
3493 struct hv_pcibus_device *hbus;
3494 u16 dom_req, dom;
3495 char *name;
3496 bool enter_d0_retry = true;
3497 int ret;
3498
3499 /*
3500 * hv_pcibus_device contains the hypercall arguments for retargeting in
3501 * hv_irq_unmask(). Those must not cross a page boundary.
3502 */
3503 BUILD_BUG_ON(sizeof(*hbus) > HV_HYP_PAGE_SIZE);
3504
3505 bridge = devm_pci_alloc_host_bridge(&hdev->device, 0);
3506 if (!bridge)
3507 return -ENOMEM;
3508
3509 /*
3510 * With the recent 59bb47985c1d ("mm, sl[aou]b: guarantee natural
3511 * alignment for kmalloc(power-of-two)"), kzalloc() is able to allocate
3512 * a 4KB buffer that is guaranteed to be 4KB-aligned. Here the size and
3513 * alignment of hbus is important because hbus's field
3514 * retarget_msi_interrupt_params must not cross a 4KB page boundary.
3515 *
3516 * Here we prefer kzalloc to get_zeroed_page(), because a buffer
3517 * allocated by the latter is not tracked and scanned by kmemleak, and
3518 * hence kmemleak reports the pointer contained in the hbus buffer
3519 * (i.e. the hpdev struct, which is created in new_pcichild_device() and
3520 * is tracked by hbus->children) as memory leak (false positive).
3521 *
3522 * If the kernel doesn't have 59bb47985c1d, get_zeroed_page() *must* be
3523 * used to allocate the hbus buffer and we can avoid the kmemleak false
3524 * positive by using kmemleak_alloc() and kmemleak_free() to ask
3525 * kmemleak to track and scan the hbus buffer.
3526 */
3527 hbus = kzalloc(HV_HYP_PAGE_SIZE, GFP_KERNEL);
3528 if (!hbus)
3529 return -ENOMEM;
3530
3531 hbus->bridge = bridge;
3532 hbus->state = hv_pcibus_init;
3533 hbus->wslot_res_allocated = -1;
3534
3535 /*
3536 * The PCI bus "domain" is what is called "segment" in ACPI and other
3537 * specs. Pull it from the instance ID, to get something usually
3538 * unique. In rare cases of collision, we will find out another number
3539 * not in use.
3540 *
3541 * Note that, since this code only runs in a Hyper-V VM, Hyper-V
3542 * together with this guest driver can guarantee that (1) The only
3543 * domain used by Gen1 VMs for something that looks like a physical
3544 * PCI bus (which is actually emulated by the hypervisor) is domain 0.
3545 * (2) There will be no overlap between domains (after fixing possible
3546 * collisions) in the same VM.
3547 */
3548 dom_req = hdev->dev_instance.b[5] << 8 | hdev->dev_instance.b[4];
3549 dom = hv_get_dom_num(dom_req);
3550
3551 if (dom == HVPCI_DOM_INVALID) {
3552 dev_err(&hdev->device,
3553 "Unable to use dom# 0x%x or other numbers", dom_req);
3554 ret = -EINVAL;
3555 goto free_bus;
3556 }
3557
3558 if (dom != dom_req)
3559 dev_info(&hdev->device,
3560 "PCI dom# 0x%x has collision, using 0x%x",
3561 dom_req, dom);
3562
3563 hbus->bridge->domain_nr = dom;
3564#ifdef CONFIG_X86
3565 hbus->sysdata.domain = dom;
3566#elif defined(CONFIG_ARM64)
3567 /*
3568 * Set the PCI bus parent to be the corresponding VMbus
3569 * device. Then the VMbus device will be assigned as the
3570 * ACPI companion in pcibios_root_bridge_prepare() and
3571 * pci_dma_configure() will propagate device coherence
3572 * information to devices created on the bus.
3573 */
3574 hbus->sysdata.parent = hdev->device.parent;
3575#endif
3576
3577 hbus->hdev = hdev;
3578 INIT_LIST_HEAD(&hbus->children);
3579 INIT_LIST_HEAD(&hbus->dr_list);
3580 spin_lock_init(&hbus->config_lock);
3581 spin_lock_init(&hbus->device_list_lock);
3582 spin_lock_init(&hbus->retarget_msi_interrupt_lock);
3583 hbus->wq = alloc_ordered_workqueue("hv_pci_%x", 0,
3584 hbus->bridge->domain_nr);
3585 if (!hbus->wq) {
3586 ret = -ENOMEM;
3587 goto free_dom;
3588 }
3589
3590 hdev->channel->next_request_id_callback = vmbus_next_request_id;
3591 hdev->channel->request_addr_callback = vmbus_request_addr;
3592 hdev->channel->rqstor_size = HV_PCI_RQSTOR_SIZE;
3593
3594 ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
3595 hv_pci_onchannelcallback, hbus);
3596 if (ret)
3597 goto destroy_wq;
3598
3599 hv_set_drvdata(hdev, hbus);
3600
3601 ret = hv_pci_protocol_negotiation(hdev, pci_protocol_versions,
3602 ARRAY_SIZE(pci_protocol_versions));
3603 if (ret)
3604 goto close;
3605
3606 ret = hv_allocate_config_window(hbus);
3607 if (ret)
3608 goto close;
3609
3610 hbus->cfg_addr = ioremap(hbus->mem_config->start,
3611 PCI_CONFIG_MMIO_LENGTH);
3612 if (!hbus->cfg_addr) {
3613 dev_err(&hdev->device,
3614 "Unable to map a virtual address for config space\n");
3615 ret = -ENOMEM;
3616 goto free_config;
3617 }
3618
3619 name = kasprintf(GFP_KERNEL, "%pUL", &hdev->dev_instance);
3620 if (!name) {
3621 ret = -ENOMEM;
3622 goto unmap;
3623 }
3624
3625 hbus->fwnode = irq_domain_alloc_named_fwnode(name);
3626 kfree(name);
3627 if (!hbus->fwnode) {
3628 ret = -ENOMEM;
3629 goto unmap;
3630 }
3631
3632 ret = hv_pcie_init_irq_domain(hbus);
3633 if (ret)
3634 goto free_fwnode;
3635
3636retry:
3637 ret = hv_pci_query_relations(hdev);
3638 if (ret)
3639 goto free_irq_domain;
3640
3641 ret = hv_pci_enter_d0(hdev);
3642 /*
3643 * In certain case (Kdump) the pci device of interest was
3644 * not cleanly shut down and resource is still held on host
3645 * side, the host could return invalid device status.
3646 * We need to explicitly request host to release the resource
3647 * and try to enter D0 again.
3648 * Since the hv_pci_bus_exit() call releases structures
3649 * of all its child devices, we need to start the retry from
3650 * hv_pci_query_relations() call, requesting host to send
3651 * the synchronous child device relations message before this
3652 * information is needed in hv_send_resources_allocated()
3653 * call later.
3654 */
3655 if (ret == -EPROTO && enter_d0_retry) {
3656 enter_d0_retry = false;
3657
3658 dev_err(&hdev->device, "Retrying D0 Entry\n");
3659
3660 /*
3661 * Hv_pci_bus_exit() calls hv_send_resources_released()
3662 * to free up resources of its child devices.
3663 * In the kdump kernel we need to set the
3664 * wslot_res_allocated to 255 so it scans all child
3665 * devices to release resources allocated in the
3666 * normal kernel before panic happened.
3667 */
3668 hbus->wslot_res_allocated = 255;
3669 ret = hv_pci_bus_exit(hdev, true);
3670
3671 if (ret == 0)
3672 goto retry;
3673
3674 dev_err(&hdev->device,
3675 "Retrying D0 failed with ret %d\n", ret);
3676 }
3677 if (ret)
3678 goto free_irq_domain;
3679
3680 ret = hv_pci_allocate_bridge_windows(hbus);
3681 if (ret)
3682 goto exit_d0;
3683
3684 ret = hv_send_resources_allocated(hdev);
3685 if (ret)
3686 goto free_windows;
3687
3688 prepopulate_bars(hbus);
3689
3690 hbus->state = hv_pcibus_probed;
3691
3692 ret = create_root_hv_pci_bus(hbus);
3693 if (ret)
3694 goto free_windows;
3695
3696 return 0;
3697
3698free_windows:
3699 hv_pci_free_bridge_windows(hbus);
3700exit_d0:
3701 (void) hv_pci_bus_exit(hdev, true);
3702free_irq_domain:
3703 irq_domain_remove(hbus->irq_domain);
3704free_fwnode:
3705 irq_domain_free_fwnode(hbus->fwnode);
3706unmap:
3707 iounmap(hbus->cfg_addr);
3708free_config:
3709 hv_free_config_window(hbus);
3710close:
3711 vmbus_close(hdev->channel);
3712destroy_wq:
3713 destroy_workqueue(hbus->wq);
3714free_dom:
3715 hv_put_dom_num(hbus->bridge->domain_nr);
3716free_bus:
3717 kfree(hbus);
3718 return ret;
3719}
3720
3721static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs)
3722{
3723 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3724 struct vmbus_channel *chan = hdev->channel;
3725 struct {
3726 struct pci_packet teardown_packet;
3727 u8 buffer[sizeof(struct pci_message)];
3728 } pkt;
3729 struct hv_pci_compl comp_pkt;
3730 struct hv_pci_dev *hpdev, *tmp;
3731 unsigned long flags;
3732 u64 trans_id;
3733 int ret;
3734
3735 /*
3736 * After the host sends the RESCIND_CHANNEL message, it doesn't
3737 * access the per-channel ringbuffer any longer.
3738 */
3739 if (chan->rescind)
3740 return 0;
3741
3742 if (!keep_devs) {
3743 struct list_head removed;
3744
3745 /* Move all present children to the list on stack */
3746 INIT_LIST_HEAD(&removed);
3747 spin_lock_irqsave(&hbus->device_list_lock, flags);
3748 list_for_each_entry_safe(hpdev, tmp, &hbus->children, list_entry)
3749 list_move_tail(&hpdev->list_entry, &removed);
3750 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
3751
3752 /* Remove all children in the list */
3753 list_for_each_entry_safe(hpdev, tmp, &removed, list_entry) {
3754 list_del(&hpdev->list_entry);
3755 if (hpdev->pci_slot)
3756 pci_destroy_slot(hpdev->pci_slot);
3757 /* For the two refs got in new_pcichild_device() */
3758 put_pcichild(hpdev);
3759 put_pcichild(hpdev);
3760 }
3761 }
3762
3763 ret = hv_send_resources_released(hdev);
3764 if (ret) {
3765 dev_err(&hdev->device,
3766 "Couldn't send resources released packet(s)\n");
3767 return ret;
3768 }
3769
3770 memset(&pkt.teardown_packet, 0, sizeof(pkt.teardown_packet));
3771 init_completion(&comp_pkt.host_event);
3772 pkt.teardown_packet.completion_func = hv_pci_generic_compl;
3773 pkt.teardown_packet.compl_ctxt = &comp_pkt;
3774 pkt.teardown_packet.message[0].type = PCI_BUS_D0EXIT;
3775
3776 ret = vmbus_sendpacket_getid(chan, &pkt.teardown_packet.message,
3777 sizeof(struct pci_message),
3778 (unsigned long)&pkt.teardown_packet,
3779 &trans_id, VM_PKT_DATA_INBAND,
3780 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3781 if (ret)
3782 return ret;
3783
3784 if (wait_for_completion_timeout(&comp_pkt.host_event, 10 * HZ) == 0) {
3785 /*
3786 * The completion packet on the stack becomes invalid after
3787 * 'return'; remove the ID from the VMbus requestor if the
3788 * identifier is still mapped to/associated with the packet.
3789 *
3790 * Cf. hv_pci_onchannelcallback().
3791 */
3792 vmbus_request_addr_match(chan, trans_id,
3793 (unsigned long)&pkt.teardown_packet);
3794 return -ETIMEDOUT;
3795 }
3796
3797 return 0;
3798}
3799
3800/**
3801 * hv_pci_remove() - Remove routine for this VMBus channel
3802 * @hdev: VMBus's tracking struct for this root PCI bus
3803 *
3804 * Return: 0 on success, -errno on failure
3805 */
3806static int hv_pci_remove(struct hv_device *hdev)
3807{
3808 struct hv_pcibus_device *hbus;
3809 int ret;
3810
3811 hbus = hv_get_drvdata(hdev);
3812 if (hbus->state == hv_pcibus_installed) {
3813 tasklet_disable(&hdev->channel->callback_event);
3814 hbus->state = hv_pcibus_removing;
3815 tasklet_enable(&hdev->channel->callback_event);
3816 destroy_workqueue(hbus->wq);
3817 hbus->wq = NULL;
3818 /*
3819 * At this point, no work is running or can be scheduled
3820 * on hbus-wq. We can't race with hv_pci_devices_present()
3821 * or hv_pci_eject_device(), it's safe to proceed.
3822 */
3823
3824 /* Remove the bus from PCI's point of view. */
3825 pci_lock_rescan_remove();
3826 pci_stop_root_bus(hbus->bridge->bus);
3827 hv_pci_remove_slots(hbus);
3828 pci_remove_root_bus(hbus->bridge->bus);
3829 pci_unlock_rescan_remove();
3830 }
3831
3832 ret = hv_pci_bus_exit(hdev, false);
3833
3834 vmbus_close(hdev->channel);
3835
3836 iounmap(hbus->cfg_addr);
3837 hv_free_config_window(hbus);
3838 hv_pci_free_bridge_windows(hbus);
3839 irq_domain_remove(hbus->irq_domain);
3840 irq_domain_free_fwnode(hbus->fwnode);
3841
3842 hv_put_dom_num(hbus->bridge->domain_nr);
3843
3844 kfree(hbus);
3845 return ret;
3846}
3847
3848static int hv_pci_suspend(struct hv_device *hdev)
3849{
3850 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3851 enum hv_pcibus_state old_state;
3852 int ret;
3853
3854 /*
3855 * hv_pci_suspend() must make sure there are no pending work items
3856 * before calling vmbus_close(), since it runs in a process context
3857 * as a callback in dpm_suspend(). When it starts to run, the channel
3858 * callback hv_pci_onchannelcallback(), which runs in a tasklet
3859 * context, can be still running concurrently and scheduling new work
3860 * items onto hbus->wq in hv_pci_devices_present() and
3861 * hv_pci_eject_device(), and the work item handlers can access the
3862 * vmbus channel, which can be being closed by hv_pci_suspend(), e.g.
3863 * the work item handler pci_devices_present_work() ->
3864 * new_pcichild_device() writes to the vmbus channel.
3865 *
3866 * To eliminate the race, hv_pci_suspend() disables the channel
3867 * callback tasklet, sets hbus->state to hv_pcibus_removing, and
3868 * re-enables the tasklet. This way, when hv_pci_suspend() proceeds,
3869 * it knows that no new work item can be scheduled, and then it flushes
3870 * hbus->wq and safely closes the vmbus channel.
3871 */
3872 tasklet_disable(&hdev->channel->callback_event);
3873
3874 /* Change the hbus state to prevent new work items. */
3875 old_state = hbus->state;
3876 if (hbus->state == hv_pcibus_installed)
3877 hbus->state = hv_pcibus_removing;
3878
3879 tasklet_enable(&hdev->channel->callback_event);
3880
3881 if (old_state != hv_pcibus_installed)
3882 return -EINVAL;
3883
3884 flush_workqueue(hbus->wq);
3885
3886 ret = hv_pci_bus_exit(hdev, true);
3887 if (ret)
3888 return ret;
3889
3890 vmbus_close(hdev->channel);
3891
3892 return 0;
3893}
3894
3895static int hv_pci_restore_msi_msg(struct pci_dev *pdev, void *arg)
3896{
3897 struct irq_data *irq_data;
3898 struct msi_desc *entry;
3899 int ret = 0;
3900
3901 msi_lock_descs(&pdev->dev);
3902 msi_for_each_desc(entry, &pdev->dev, MSI_DESC_ASSOCIATED) {
3903 irq_data = irq_get_irq_data(entry->irq);
3904 if (WARN_ON_ONCE(!irq_data)) {
3905 ret = -EINVAL;
3906 break;
3907 }
3908
3909 hv_compose_msi_msg(irq_data, &entry->msg);
3910 }
3911 msi_unlock_descs(&pdev->dev);
3912
3913 return ret;
3914}
3915
3916/*
3917 * Upon resume, pci_restore_msi_state() -> ... -> __pci_write_msi_msg()
3918 * directly writes the MSI/MSI-X registers via MMIO, but since Hyper-V
3919 * doesn't trap and emulate the MMIO accesses, here hv_compose_msi_msg()
3920 * must be used to ask Hyper-V to re-create the IOMMU Interrupt Remapping
3921 * Table entries.
3922 */
3923static void hv_pci_restore_msi_state(struct hv_pcibus_device *hbus)
3924{
3925 pci_walk_bus(hbus->bridge->bus, hv_pci_restore_msi_msg, NULL);
3926}
3927
3928static int hv_pci_resume(struct hv_device *hdev)
3929{
3930 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3931 enum pci_protocol_version_t version[1];
3932 int ret;
3933
3934 hbus->state = hv_pcibus_init;
3935
3936 hdev->channel->next_request_id_callback = vmbus_next_request_id;
3937 hdev->channel->request_addr_callback = vmbus_request_addr;
3938 hdev->channel->rqstor_size = HV_PCI_RQSTOR_SIZE;
3939
3940 ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
3941 hv_pci_onchannelcallback, hbus);
3942 if (ret)
3943 return ret;
3944
3945 /* Only use the version that was in use before hibernation. */
3946 version[0] = hbus->protocol_version;
3947 ret = hv_pci_protocol_negotiation(hdev, version, 1);
3948 if (ret)
3949 goto out;
3950
3951 ret = hv_pci_query_relations(hdev);
3952 if (ret)
3953 goto out;
3954
3955 ret = hv_pci_enter_d0(hdev);
3956 if (ret)
3957 goto out;
3958
3959 ret = hv_send_resources_allocated(hdev);
3960 if (ret)
3961 goto out;
3962
3963 prepopulate_bars(hbus);
3964
3965 hv_pci_restore_msi_state(hbus);
3966
3967 hbus->state = hv_pcibus_installed;
3968 return 0;
3969out:
3970 vmbus_close(hdev->channel);
3971 return ret;
3972}
3973
3974static const struct hv_vmbus_device_id hv_pci_id_table[] = {
3975 /* PCI Pass-through Class ID */
3976 /* 44C4F61D-4444-4400-9D52-802E27EDE19F */
3977 { HV_PCIE_GUID, },
3978 { },
3979};
3980
3981MODULE_DEVICE_TABLE(vmbus, hv_pci_id_table);
3982
3983static struct hv_driver hv_pci_drv = {
3984 .name = "hv_pci",
3985 .id_table = hv_pci_id_table,
3986 .probe = hv_pci_probe,
3987 .remove = hv_pci_remove,
3988 .suspend = hv_pci_suspend,
3989 .resume = hv_pci_resume,
3990};
3991
3992static void __exit exit_hv_pci_drv(void)
3993{
3994 vmbus_driver_unregister(&hv_pci_drv);
3995
3996 hvpci_block_ops.read_block = NULL;
3997 hvpci_block_ops.write_block = NULL;
3998 hvpci_block_ops.reg_blk_invalidate = NULL;
3999}
4000
4001static int __init init_hv_pci_drv(void)
4002{
4003 int ret;
4004
4005 if (!hv_is_hyperv_initialized())
4006 return -ENODEV;
4007
4008 ret = hv_pci_irqchip_init();
4009 if (ret)
4010 return ret;
4011
4012 /* Set the invalid domain number's bit, so it will not be used */
4013 set_bit(HVPCI_DOM_INVALID, hvpci_dom_map);
4014
4015 /* Initialize PCI block r/w interface */
4016 hvpci_block_ops.read_block = hv_read_config_block;
4017 hvpci_block_ops.write_block = hv_write_config_block;
4018 hvpci_block_ops.reg_blk_invalidate = hv_register_block_invalidate;
4019
4020 return vmbus_driver_register(&hv_pci_drv);
4021}
4022
4023module_init(init_hv_pci_drv);
4024module_exit(exit_hv_pci_drv);
4025
4026MODULE_DESCRIPTION("Hyper-V PCI");
4027MODULE_LICENSE("GPL v2");