Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) Microsoft Corporation.
4 *
5 * Author:
6 * Jake Oshins <jakeo@microsoft.com>
7 *
8 * This driver acts as a paravirtual front-end for PCI Express root buses.
9 * When a PCI Express function (either an entire device or an SR-IOV
10 * Virtual Function) is being passed through to the VM, this driver exposes
11 * a new bus to the guest VM. This is modeled as a root PCI bus because
12 * no bridges are being exposed to the VM. In fact, with a "Generation 2"
13 * VM within Hyper-V, there may seem to be no PCI bus at all in the VM
14 * until a device as been exposed using this driver.
15 *
16 * Each root PCI bus has its own PCI domain, which is called "Segment" in
17 * the PCI Firmware Specifications. Thus while each device passed through
18 * to the VM using this front-end will appear at "device 0", the domain will
19 * be unique. Typically, each bus will have one PCI function on it, though
20 * this driver does support more than one.
21 *
22 * In order to map the interrupts from the device through to the guest VM,
23 * this driver also implements an IRQ Domain, which handles interrupts (either
24 * MSI or MSI-X) associated with the functions on the bus. As interrupts are
25 * set up, torn down, or reaffined, this driver communicates with the
26 * underlying hypervisor to adjust the mappings in the I/O MMU so that each
27 * interrupt will be delivered to the correct virtual processor at the right
28 * vector. This driver does not support level-triggered (line-based)
29 * interrupts, and will report that the Interrupt Line register in the
30 * function's configuration space is zero.
31 *
32 * The rest of this driver mostly maps PCI concepts onto underlying Hyper-V
33 * facilities. For instance, the configuration space of a function exposed
34 * by Hyper-V is mapped into a single page of memory space, and the
35 * read and write handlers for config space must be aware of this mechanism.
36 * Similarly, device setup and teardown involves messages sent to and from
37 * the PCI back-end driver in Hyper-V.
38 */
39
40#include <linux/kernel.h>
41#include <linux/module.h>
42#include <linux/pci.h>
43#include <linux/pci-ecam.h>
44#include <linux/delay.h>
45#include <linux/semaphore.h>
46#include <linux/irq.h>
47#include <linux/msi.h>
48#include <linux/hyperv.h>
49#include <linux/refcount.h>
50#include <linux/irqdomain.h>
51#include <linux/acpi.h>
52#include <asm/mshyperv.h>
53
54/*
55 * Protocol versions. The low word is the minor version, the high word the
56 * major version.
57 */
58
59#define PCI_MAKE_VERSION(major, minor) ((u32)(((major) << 16) | (minor)))
60#define PCI_MAJOR_VERSION(version) ((u32)(version) >> 16)
61#define PCI_MINOR_VERSION(version) ((u32)(version) & 0xff)
62
63enum pci_protocol_version_t {
64 PCI_PROTOCOL_VERSION_1_1 = PCI_MAKE_VERSION(1, 1), /* Win10 */
65 PCI_PROTOCOL_VERSION_1_2 = PCI_MAKE_VERSION(1, 2), /* RS1 */
66 PCI_PROTOCOL_VERSION_1_3 = PCI_MAKE_VERSION(1, 3), /* Vibranium */
67 PCI_PROTOCOL_VERSION_1_4 = PCI_MAKE_VERSION(1, 4), /* WS2022 */
68};
69
70#define CPU_AFFINITY_ALL -1ULL
71
72/*
73 * Supported protocol versions in the order of probing - highest go
74 * first.
75 */
76static enum pci_protocol_version_t pci_protocol_versions[] = {
77 PCI_PROTOCOL_VERSION_1_4,
78 PCI_PROTOCOL_VERSION_1_3,
79 PCI_PROTOCOL_VERSION_1_2,
80 PCI_PROTOCOL_VERSION_1_1,
81};
82
83#define PCI_CONFIG_MMIO_LENGTH 0x2000
84#define CFG_PAGE_OFFSET 0x1000
85#define CFG_PAGE_SIZE (PCI_CONFIG_MMIO_LENGTH - CFG_PAGE_OFFSET)
86
87#define MAX_SUPPORTED_MSI_MESSAGES 0x400
88
89#define STATUS_REVISION_MISMATCH 0xC0000059
90
91/* space for 32bit serial number as string */
92#define SLOT_NAME_SIZE 11
93
94/*
95 * Size of requestor for VMbus; the value is based on the observation
96 * that having more than one request outstanding is 'rare', and so 64
97 * should be generous in ensuring that we don't ever run out.
98 */
99#define HV_PCI_RQSTOR_SIZE 64
100
101/*
102 * Message Types
103 */
104
105enum pci_message_type {
106 /*
107 * Version 1.1
108 */
109 PCI_MESSAGE_BASE = 0x42490000,
110 PCI_BUS_RELATIONS = PCI_MESSAGE_BASE + 0,
111 PCI_QUERY_BUS_RELATIONS = PCI_MESSAGE_BASE + 1,
112 PCI_POWER_STATE_CHANGE = PCI_MESSAGE_BASE + 4,
113 PCI_QUERY_RESOURCE_REQUIREMENTS = PCI_MESSAGE_BASE + 5,
114 PCI_QUERY_RESOURCE_RESOURCES = PCI_MESSAGE_BASE + 6,
115 PCI_BUS_D0ENTRY = PCI_MESSAGE_BASE + 7,
116 PCI_BUS_D0EXIT = PCI_MESSAGE_BASE + 8,
117 PCI_READ_BLOCK = PCI_MESSAGE_BASE + 9,
118 PCI_WRITE_BLOCK = PCI_MESSAGE_BASE + 0xA,
119 PCI_EJECT = PCI_MESSAGE_BASE + 0xB,
120 PCI_QUERY_STOP = PCI_MESSAGE_BASE + 0xC,
121 PCI_REENABLE = PCI_MESSAGE_BASE + 0xD,
122 PCI_QUERY_STOP_FAILED = PCI_MESSAGE_BASE + 0xE,
123 PCI_EJECTION_COMPLETE = PCI_MESSAGE_BASE + 0xF,
124 PCI_RESOURCES_ASSIGNED = PCI_MESSAGE_BASE + 0x10,
125 PCI_RESOURCES_RELEASED = PCI_MESSAGE_BASE + 0x11,
126 PCI_INVALIDATE_BLOCK = PCI_MESSAGE_BASE + 0x12,
127 PCI_QUERY_PROTOCOL_VERSION = PCI_MESSAGE_BASE + 0x13,
128 PCI_CREATE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x14,
129 PCI_DELETE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x15,
130 PCI_RESOURCES_ASSIGNED2 = PCI_MESSAGE_BASE + 0x16,
131 PCI_CREATE_INTERRUPT_MESSAGE2 = PCI_MESSAGE_BASE + 0x17,
132 PCI_DELETE_INTERRUPT_MESSAGE2 = PCI_MESSAGE_BASE + 0x18, /* unused */
133 PCI_BUS_RELATIONS2 = PCI_MESSAGE_BASE + 0x19,
134 PCI_RESOURCES_ASSIGNED3 = PCI_MESSAGE_BASE + 0x1A,
135 PCI_CREATE_INTERRUPT_MESSAGE3 = PCI_MESSAGE_BASE + 0x1B,
136 PCI_MESSAGE_MAXIMUM
137};
138
139/*
140 * Structures defining the virtual PCI Express protocol.
141 */
142
143union pci_version {
144 struct {
145 u16 minor_version;
146 u16 major_version;
147 } parts;
148 u32 version;
149} __packed;
150
151/*
152 * Function numbers are 8-bits wide on Express, as interpreted through ARI,
153 * which is all this driver does. This representation is the one used in
154 * Windows, which is what is expected when sending this back and forth with
155 * the Hyper-V parent partition.
156 */
157union win_slot_encoding {
158 struct {
159 u32 dev:5;
160 u32 func:3;
161 u32 reserved:24;
162 } bits;
163 u32 slot;
164} __packed;
165
166/*
167 * Pretty much as defined in the PCI Specifications.
168 */
169struct pci_function_description {
170 u16 v_id; /* vendor ID */
171 u16 d_id; /* device ID */
172 u8 rev;
173 u8 prog_intf;
174 u8 subclass;
175 u8 base_class;
176 u32 subsystem_id;
177 union win_slot_encoding win_slot;
178 u32 ser; /* serial number */
179} __packed;
180
181enum pci_device_description_flags {
182 HV_PCI_DEVICE_FLAG_NONE = 0x0,
183 HV_PCI_DEVICE_FLAG_NUMA_AFFINITY = 0x1,
184};
185
186struct pci_function_description2 {
187 u16 v_id; /* vendor ID */
188 u16 d_id; /* device ID */
189 u8 rev;
190 u8 prog_intf;
191 u8 subclass;
192 u8 base_class;
193 u32 subsystem_id;
194 union win_slot_encoding win_slot;
195 u32 ser; /* serial number */
196 u32 flags;
197 u16 virtual_numa_node;
198 u16 reserved;
199} __packed;
200
201/**
202 * struct hv_msi_desc
203 * @vector: IDT entry
204 * @delivery_mode: As defined in Intel's Programmer's
205 * Reference Manual, Volume 3, Chapter 8.
206 * @vector_count: Number of contiguous entries in the
207 * Interrupt Descriptor Table that are
208 * occupied by this Message-Signaled
209 * Interrupt. For "MSI", as first defined
210 * in PCI 2.2, this can be between 1 and
211 * 32. For "MSI-X," as first defined in PCI
212 * 3.0, this must be 1, as each MSI-X table
213 * entry would have its own descriptor.
214 * @reserved: Empty space
215 * @cpu_mask: All the target virtual processors.
216 */
217struct hv_msi_desc {
218 u8 vector;
219 u8 delivery_mode;
220 u16 vector_count;
221 u32 reserved;
222 u64 cpu_mask;
223} __packed;
224
225/**
226 * struct hv_msi_desc2 - 1.2 version of hv_msi_desc
227 * @vector: IDT entry
228 * @delivery_mode: As defined in Intel's Programmer's
229 * Reference Manual, Volume 3, Chapter 8.
230 * @vector_count: Number of contiguous entries in the
231 * Interrupt Descriptor Table that are
232 * occupied by this Message-Signaled
233 * Interrupt. For "MSI", as first defined
234 * in PCI 2.2, this can be between 1 and
235 * 32. For "MSI-X," as first defined in PCI
236 * 3.0, this must be 1, as each MSI-X table
237 * entry would have its own descriptor.
238 * @processor_count: number of bits enabled in array.
239 * @processor_array: All the target virtual processors.
240 */
241struct hv_msi_desc2 {
242 u8 vector;
243 u8 delivery_mode;
244 u16 vector_count;
245 u16 processor_count;
246 u16 processor_array[32];
247} __packed;
248
249/*
250 * struct hv_msi_desc3 - 1.3 version of hv_msi_desc
251 * Everything is the same as in 'hv_msi_desc2' except that the size of the
252 * 'vector' field is larger to support bigger vector values. For ex: LPI
253 * vectors on ARM.
254 */
255struct hv_msi_desc3 {
256 u32 vector;
257 u8 delivery_mode;
258 u8 reserved;
259 u16 vector_count;
260 u16 processor_count;
261 u16 processor_array[32];
262} __packed;
263
264/**
265 * struct tran_int_desc
266 * @reserved: unused, padding
267 * @vector_count: same as in hv_msi_desc
268 * @data: This is the "data payload" value that is
269 * written by the device when it generates
270 * a message-signaled interrupt, either MSI
271 * or MSI-X.
272 * @address: This is the address to which the data
273 * payload is written on interrupt
274 * generation.
275 */
276struct tran_int_desc {
277 u16 reserved;
278 u16 vector_count;
279 u32 data;
280 u64 address;
281} __packed;
282
283/*
284 * A generic message format for virtual PCI.
285 * Specific message formats are defined later in the file.
286 */
287
288struct pci_message {
289 u32 type;
290} __packed;
291
292struct pci_child_message {
293 struct pci_message message_type;
294 union win_slot_encoding wslot;
295} __packed;
296
297struct pci_incoming_message {
298 struct vmpacket_descriptor hdr;
299 struct pci_message message_type;
300} __packed;
301
302struct pci_response {
303 struct vmpacket_descriptor hdr;
304 s32 status; /* negative values are failures */
305} __packed;
306
307struct pci_packet {
308 void (*completion_func)(void *context, struct pci_response *resp,
309 int resp_packet_size);
310 void *compl_ctxt;
311
312 struct pci_message message[];
313};
314
315/*
316 * Specific message types supporting the PCI protocol.
317 */
318
319/*
320 * Version negotiation message. Sent from the guest to the host.
321 * The guest is free to try different versions until the host
322 * accepts the version.
323 *
324 * pci_version: The protocol version requested.
325 * is_last_attempt: If TRUE, this is the last version guest will request.
326 * reservedz: Reserved field, set to zero.
327 */
328
329struct pci_version_request {
330 struct pci_message message_type;
331 u32 protocol_version;
332} __packed;
333
334/*
335 * Bus D0 Entry. This is sent from the guest to the host when the virtual
336 * bus (PCI Express port) is ready for action.
337 */
338
339struct pci_bus_d0_entry {
340 struct pci_message message_type;
341 u32 reserved;
342 u64 mmio_base;
343} __packed;
344
345struct pci_bus_relations {
346 struct pci_incoming_message incoming;
347 u32 device_count;
348 struct pci_function_description func[];
349} __packed;
350
351struct pci_bus_relations2 {
352 struct pci_incoming_message incoming;
353 u32 device_count;
354 struct pci_function_description2 func[];
355} __packed;
356
357struct pci_q_res_req_response {
358 struct vmpacket_descriptor hdr;
359 s32 status; /* negative values are failures */
360 u32 probed_bar[PCI_STD_NUM_BARS];
361} __packed;
362
363struct pci_set_power {
364 struct pci_message message_type;
365 union win_slot_encoding wslot;
366 u32 power_state; /* In Windows terms */
367 u32 reserved;
368} __packed;
369
370struct pci_set_power_response {
371 struct vmpacket_descriptor hdr;
372 s32 status; /* negative values are failures */
373 union win_slot_encoding wslot;
374 u32 resultant_state; /* In Windows terms */
375 u32 reserved;
376} __packed;
377
378struct pci_resources_assigned {
379 struct pci_message message_type;
380 union win_slot_encoding wslot;
381 u8 memory_range[0x14][6]; /* not used here */
382 u32 msi_descriptors;
383 u32 reserved[4];
384} __packed;
385
386struct pci_resources_assigned2 {
387 struct pci_message message_type;
388 union win_slot_encoding wslot;
389 u8 memory_range[0x14][6]; /* not used here */
390 u32 msi_descriptor_count;
391 u8 reserved[70];
392} __packed;
393
394struct pci_create_interrupt {
395 struct pci_message message_type;
396 union win_slot_encoding wslot;
397 struct hv_msi_desc int_desc;
398} __packed;
399
400struct pci_create_int_response {
401 struct pci_response response;
402 u32 reserved;
403 struct tran_int_desc int_desc;
404} __packed;
405
406struct pci_create_interrupt2 {
407 struct pci_message message_type;
408 union win_slot_encoding wslot;
409 struct hv_msi_desc2 int_desc;
410} __packed;
411
412struct pci_create_interrupt3 {
413 struct pci_message message_type;
414 union win_slot_encoding wslot;
415 struct hv_msi_desc3 int_desc;
416} __packed;
417
418struct pci_delete_interrupt {
419 struct pci_message message_type;
420 union win_slot_encoding wslot;
421 struct tran_int_desc int_desc;
422} __packed;
423
424/*
425 * Note: the VM must pass a valid block id, wslot and bytes_requested.
426 */
427struct pci_read_block {
428 struct pci_message message_type;
429 u32 block_id;
430 union win_slot_encoding wslot;
431 u32 bytes_requested;
432} __packed;
433
434struct pci_read_block_response {
435 struct vmpacket_descriptor hdr;
436 u32 status;
437 u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX];
438} __packed;
439
440/*
441 * Note: the VM must pass a valid block id, wslot and byte_count.
442 */
443struct pci_write_block {
444 struct pci_message message_type;
445 u32 block_id;
446 union win_slot_encoding wslot;
447 u32 byte_count;
448 u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX];
449} __packed;
450
451struct pci_dev_inval_block {
452 struct pci_incoming_message incoming;
453 union win_slot_encoding wslot;
454 u64 block_mask;
455} __packed;
456
457struct pci_dev_incoming {
458 struct pci_incoming_message incoming;
459 union win_slot_encoding wslot;
460} __packed;
461
462struct pci_eject_response {
463 struct pci_message message_type;
464 union win_slot_encoding wslot;
465 u32 status;
466} __packed;
467
468static int pci_ring_size = (4 * PAGE_SIZE);
469
470/*
471 * Driver specific state.
472 */
473
474enum hv_pcibus_state {
475 hv_pcibus_init = 0,
476 hv_pcibus_probed,
477 hv_pcibus_installed,
478 hv_pcibus_removing,
479 hv_pcibus_maximum
480};
481
482struct hv_pcibus_device {
483#ifdef CONFIG_X86
484 struct pci_sysdata sysdata;
485#elif defined(CONFIG_ARM64)
486 struct pci_config_window sysdata;
487#endif
488 struct pci_host_bridge *bridge;
489 struct fwnode_handle *fwnode;
490 /* Protocol version negotiated with the host */
491 enum pci_protocol_version_t protocol_version;
492
493 struct mutex state_lock;
494 enum hv_pcibus_state state;
495
496 struct hv_device *hdev;
497 resource_size_t low_mmio_space;
498 resource_size_t high_mmio_space;
499 struct resource *mem_config;
500 struct resource *low_mmio_res;
501 struct resource *high_mmio_res;
502 struct completion *survey_event;
503 struct pci_bus *pci_bus;
504 spinlock_t config_lock; /* Avoid two threads writing index page */
505 spinlock_t device_list_lock; /* Protect lists below */
506 void __iomem *cfg_addr;
507
508 struct list_head children;
509 struct list_head dr_list;
510
511 struct msi_domain_info msi_info;
512 struct irq_domain *irq_domain;
513
514 struct workqueue_struct *wq;
515
516 /* Highest slot of child device with resources allocated */
517 int wslot_res_allocated;
518 bool use_calls; /* Use hypercalls to access mmio cfg space */
519};
520
521/*
522 * Tracks "Device Relations" messages from the host, which must be both
523 * processed in order and deferred so that they don't run in the context
524 * of the incoming packet callback.
525 */
526struct hv_dr_work {
527 struct work_struct wrk;
528 struct hv_pcibus_device *bus;
529};
530
531struct hv_pcidev_description {
532 u16 v_id; /* vendor ID */
533 u16 d_id; /* device ID */
534 u8 rev;
535 u8 prog_intf;
536 u8 subclass;
537 u8 base_class;
538 u32 subsystem_id;
539 union win_slot_encoding win_slot;
540 u32 ser; /* serial number */
541 u32 flags;
542 u16 virtual_numa_node;
543};
544
545struct hv_dr_state {
546 struct list_head list_entry;
547 u32 device_count;
548 struct hv_pcidev_description func[] __counted_by(device_count);
549};
550
551struct hv_pci_dev {
552 /* List protected by pci_rescan_remove_lock */
553 struct list_head list_entry;
554 refcount_t refs;
555 struct pci_slot *pci_slot;
556 struct hv_pcidev_description desc;
557 bool reported_missing;
558 struct hv_pcibus_device *hbus;
559 struct work_struct wrk;
560
561 void (*block_invalidate)(void *context, u64 block_mask);
562 void *invalidate_context;
563
564 /*
565 * What would be observed if one wrote 0xFFFFFFFF to a BAR and then
566 * read it back, for each of the BAR offsets within config space.
567 */
568 u32 probed_bar[PCI_STD_NUM_BARS];
569};
570
571struct hv_pci_compl {
572 struct completion host_event;
573 s32 completion_status;
574};
575
576static void hv_pci_onchannelcallback(void *context);
577
578#ifdef CONFIG_X86
579#define DELIVERY_MODE APIC_DELIVERY_MODE_FIXED
580#define FLOW_HANDLER handle_edge_irq
581#define FLOW_NAME "edge"
582
583static int hv_pci_irqchip_init(void)
584{
585 return 0;
586}
587
588static struct irq_domain *hv_pci_get_root_domain(void)
589{
590 return x86_vector_domain;
591}
592
593static unsigned int hv_msi_get_int_vector(struct irq_data *data)
594{
595 struct irq_cfg *cfg = irqd_cfg(data);
596
597 return cfg->vector;
598}
599
600#define hv_msi_prepare pci_msi_prepare
601
602/**
603 * hv_arch_irq_unmask() - "Unmask" the IRQ by setting its current
604 * affinity.
605 * @data: Describes the IRQ
606 *
607 * Build new a destination for the MSI and make a hypercall to
608 * update the Interrupt Redirection Table. "Device Logical ID"
609 * is built out of this PCI bus's instance GUID and the function
610 * number of the device.
611 */
612static void hv_arch_irq_unmask(struct irq_data *data)
613{
614 struct msi_desc *msi_desc = irq_data_get_msi_desc(data);
615 struct hv_retarget_device_interrupt *params;
616 struct tran_int_desc *int_desc;
617 struct hv_pcibus_device *hbus;
618 const struct cpumask *dest;
619 cpumask_var_t tmp;
620 struct pci_bus *pbus;
621 struct pci_dev *pdev;
622 unsigned long flags;
623 u32 var_size = 0;
624 int cpu, nr_bank;
625 u64 res;
626
627 dest = irq_data_get_effective_affinity_mask(data);
628 pdev = msi_desc_to_pci_dev(msi_desc);
629 pbus = pdev->bus;
630 hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
631 int_desc = data->chip_data;
632 if (!int_desc) {
633 dev_warn(&hbus->hdev->device, "%s() can not unmask irq %u\n",
634 __func__, data->irq);
635 return;
636 }
637
638 local_irq_save(flags);
639
640 params = *this_cpu_ptr(hyperv_pcpu_input_arg);
641 memset(params, 0, sizeof(*params));
642 params->partition_id = HV_PARTITION_ID_SELF;
643 params->int_entry.source = HV_INTERRUPT_SOURCE_MSI;
644 params->int_entry.msi_entry.address.as_uint32 = int_desc->address & 0xffffffff;
645 params->int_entry.msi_entry.data.as_uint32 = int_desc->data;
646 params->device_id = (hbus->hdev->dev_instance.b[5] << 24) |
647 (hbus->hdev->dev_instance.b[4] << 16) |
648 (hbus->hdev->dev_instance.b[7] << 8) |
649 (hbus->hdev->dev_instance.b[6] & 0xf8) |
650 PCI_FUNC(pdev->devfn);
651 params->int_target.vector = hv_msi_get_int_vector(data);
652
653 if (hbus->protocol_version >= PCI_PROTOCOL_VERSION_1_2) {
654 /*
655 * PCI_PROTOCOL_VERSION_1_2 supports the VP_SET version of the
656 * HVCALL_RETARGET_INTERRUPT hypercall, which also coincides
657 * with >64 VP support.
658 * ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED
659 * is not sufficient for this hypercall.
660 */
661 params->int_target.flags |=
662 HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET;
663
664 if (!alloc_cpumask_var(&tmp, GFP_ATOMIC)) {
665 res = 1;
666 goto out;
667 }
668
669 cpumask_and(tmp, dest, cpu_online_mask);
670 nr_bank = cpumask_to_vpset(¶ms->int_target.vp_set, tmp);
671 free_cpumask_var(tmp);
672
673 if (nr_bank <= 0) {
674 res = 1;
675 goto out;
676 }
677
678 /*
679 * var-sized hypercall, var-size starts after vp_mask (thus
680 * vp_set.format does not count, but vp_set.valid_bank_mask
681 * does).
682 */
683 var_size = 1 + nr_bank;
684 } else {
685 for_each_cpu_and(cpu, dest, cpu_online_mask) {
686 params->int_target.vp_mask |=
687 (1ULL << hv_cpu_number_to_vp_number(cpu));
688 }
689 }
690
691 res = hv_do_hypercall(HVCALL_RETARGET_INTERRUPT | (var_size << 17),
692 params, NULL);
693
694out:
695 local_irq_restore(flags);
696
697 /*
698 * During hibernation, when a CPU is offlined, the kernel tries
699 * to move the interrupt to the remaining CPUs that haven't
700 * been offlined yet. In this case, the below hv_do_hypercall()
701 * always fails since the vmbus channel has been closed:
702 * refer to cpu_disable_common() -> fixup_irqs() ->
703 * irq_migrate_all_off_this_cpu() -> migrate_one_irq().
704 *
705 * Suppress the error message for hibernation because the failure
706 * during hibernation does not matter (at this time all the devices
707 * have been frozen). Note: the correct affinity info is still updated
708 * into the irqdata data structure in migrate_one_irq() ->
709 * irq_do_set_affinity(), so later when the VM resumes,
710 * hv_pci_restore_msi_state() is able to correctly restore the
711 * interrupt with the correct affinity.
712 */
713 if (!hv_result_success(res) && hbus->state != hv_pcibus_removing)
714 dev_err(&hbus->hdev->device,
715 "%s() failed: %#llx", __func__, res);
716}
717#elif defined(CONFIG_ARM64)
718/*
719 * SPI vectors to use for vPCI; arch SPIs range is [32, 1019], but leaving a bit
720 * of room at the start to allow for SPIs to be specified through ACPI and
721 * starting with a power of two to satisfy power of 2 multi-MSI requirement.
722 */
723#define HV_PCI_MSI_SPI_START 64
724#define HV_PCI_MSI_SPI_NR (1020 - HV_PCI_MSI_SPI_START)
725#define DELIVERY_MODE 0
726#define FLOW_HANDLER NULL
727#define FLOW_NAME NULL
728#define hv_msi_prepare NULL
729
730struct hv_pci_chip_data {
731 DECLARE_BITMAP(spi_map, HV_PCI_MSI_SPI_NR);
732 struct mutex map_lock;
733};
734
735/* Hyper-V vPCI MSI GIC IRQ domain */
736static struct irq_domain *hv_msi_gic_irq_domain;
737
738/* Hyper-V PCI MSI IRQ chip */
739static struct irq_chip hv_arm64_msi_irq_chip = {
740 .name = "MSI",
741 .irq_set_affinity = irq_chip_set_affinity_parent,
742 .irq_eoi = irq_chip_eoi_parent,
743 .irq_mask = irq_chip_mask_parent,
744 .irq_unmask = irq_chip_unmask_parent
745};
746
747static unsigned int hv_msi_get_int_vector(struct irq_data *irqd)
748{
749 return irqd->parent_data->hwirq;
750}
751
752/*
753 * @nr_bm_irqs: Indicates the number of IRQs that were allocated from
754 * the bitmap.
755 * @nr_dom_irqs: Indicates the number of IRQs that were allocated from
756 * the parent domain.
757 */
758static void hv_pci_vec_irq_free(struct irq_domain *domain,
759 unsigned int virq,
760 unsigned int nr_bm_irqs,
761 unsigned int nr_dom_irqs)
762{
763 struct hv_pci_chip_data *chip_data = domain->host_data;
764 struct irq_data *d = irq_domain_get_irq_data(domain, virq);
765 int first = d->hwirq - HV_PCI_MSI_SPI_START;
766 int i;
767
768 mutex_lock(&chip_data->map_lock);
769 bitmap_release_region(chip_data->spi_map,
770 first,
771 get_count_order(nr_bm_irqs));
772 mutex_unlock(&chip_data->map_lock);
773 for (i = 0; i < nr_dom_irqs; i++) {
774 if (i)
775 d = irq_domain_get_irq_data(domain, virq + i);
776 irq_domain_reset_irq_data(d);
777 }
778
779 irq_domain_free_irqs_parent(domain, virq, nr_dom_irqs);
780}
781
782static void hv_pci_vec_irq_domain_free(struct irq_domain *domain,
783 unsigned int virq,
784 unsigned int nr_irqs)
785{
786 hv_pci_vec_irq_free(domain, virq, nr_irqs, nr_irqs);
787}
788
789static int hv_pci_vec_alloc_device_irq(struct irq_domain *domain,
790 unsigned int nr_irqs,
791 irq_hw_number_t *hwirq)
792{
793 struct hv_pci_chip_data *chip_data = domain->host_data;
794 int index;
795
796 /* Find and allocate region from the SPI bitmap */
797 mutex_lock(&chip_data->map_lock);
798 index = bitmap_find_free_region(chip_data->spi_map,
799 HV_PCI_MSI_SPI_NR,
800 get_count_order(nr_irqs));
801 mutex_unlock(&chip_data->map_lock);
802 if (index < 0)
803 return -ENOSPC;
804
805 *hwirq = index + HV_PCI_MSI_SPI_START;
806
807 return 0;
808}
809
810static int hv_pci_vec_irq_gic_domain_alloc(struct irq_domain *domain,
811 unsigned int virq,
812 irq_hw_number_t hwirq)
813{
814 struct irq_fwspec fwspec;
815 struct irq_data *d;
816 int ret;
817
818 fwspec.fwnode = domain->parent->fwnode;
819 fwspec.param_count = 2;
820 fwspec.param[0] = hwirq;
821 fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
822
823 ret = irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
824 if (ret)
825 return ret;
826
827 /*
828 * Since the interrupt specifier is not coming from ACPI or DT, the
829 * trigger type will need to be set explicitly. Otherwise, it will be
830 * set to whatever is in the GIC configuration.
831 */
832 d = irq_domain_get_irq_data(domain->parent, virq);
833
834 return d->chip->irq_set_type(d, IRQ_TYPE_EDGE_RISING);
835}
836
837static int hv_pci_vec_irq_domain_alloc(struct irq_domain *domain,
838 unsigned int virq, unsigned int nr_irqs,
839 void *args)
840{
841 irq_hw_number_t hwirq;
842 unsigned int i;
843 int ret;
844
845 ret = hv_pci_vec_alloc_device_irq(domain, nr_irqs, &hwirq);
846 if (ret)
847 return ret;
848
849 for (i = 0; i < nr_irqs; i++) {
850 ret = hv_pci_vec_irq_gic_domain_alloc(domain, virq + i,
851 hwirq + i);
852 if (ret) {
853 hv_pci_vec_irq_free(domain, virq, nr_irqs, i);
854 return ret;
855 }
856
857 irq_domain_set_hwirq_and_chip(domain, virq + i,
858 hwirq + i,
859 &hv_arm64_msi_irq_chip,
860 domain->host_data);
861 pr_debug("pID:%d vID:%u\n", (int)(hwirq + i), virq + i);
862 }
863
864 return 0;
865}
866
867/*
868 * Pick the first cpu as the irq affinity that can be temporarily used for
869 * composing MSI from the hypervisor. GIC will eventually set the right
870 * affinity for the irq and the 'unmask' will retarget the interrupt to that
871 * cpu.
872 */
873static int hv_pci_vec_irq_domain_activate(struct irq_domain *domain,
874 struct irq_data *irqd, bool reserve)
875{
876 int cpu = cpumask_first(cpu_present_mask);
877
878 irq_data_update_effective_affinity(irqd, cpumask_of(cpu));
879
880 return 0;
881}
882
883static const struct irq_domain_ops hv_pci_domain_ops = {
884 .alloc = hv_pci_vec_irq_domain_alloc,
885 .free = hv_pci_vec_irq_domain_free,
886 .activate = hv_pci_vec_irq_domain_activate,
887};
888
889static int hv_pci_irqchip_init(void)
890{
891 static struct hv_pci_chip_data *chip_data;
892 struct fwnode_handle *fn = NULL;
893 int ret = -ENOMEM;
894
895 chip_data = kzalloc(sizeof(*chip_data), GFP_KERNEL);
896 if (!chip_data)
897 return ret;
898
899 mutex_init(&chip_data->map_lock);
900 fn = irq_domain_alloc_named_fwnode("hv_vpci_arm64");
901 if (!fn)
902 goto free_chip;
903
904 /*
905 * IRQ domain once enabled, should not be removed since there is no
906 * way to ensure that all the corresponding devices are also gone and
907 * no interrupts will be generated.
908 */
909 hv_msi_gic_irq_domain = acpi_irq_create_hierarchy(0, HV_PCI_MSI_SPI_NR,
910 fn, &hv_pci_domain_ops,
911 chip_data);
912
913 if (!hv_msi_gic_irq_domain) {
914 pr_err("Failed to create Hyper-V arm64 vPCI MSI IRQ domain\n");
915 goto free_chip;
916 }
917
918 return 0;
919
920free_chip:
921 kfree(chip_data);
922 if (fn)
923 irq_domain_free_fwnode(fn);
924
925 return ret;
926}
927
928static struct irq_domain *hv_pci_get_root_domain(void)
929{
930 return hv_msi_gic_irq_domain;
931}
932
933/*
934 * SPIs are used for interrupts of PCI devices and SPIs is managed via GICD
935 * registers which Hyper-V already supports, so no hypercall needed.
936 */
937static void hv_arch_irq_unmask(struct irq_data *data) { }
938#endif /* CONFIG_ARM64 */
939
940/**
941 * hv_pci_generic_compl() - Invoked for a completion packet
942 * @context: Set up by the sender of the packet.
943 * @resp: The response packet
944 * @resp_packet_size: Size in bytes of the packet
945 *
946 * This function is used to trigger an event and report status
947 * for any message for which the completion packet contains a
948 * status and nothing else.
949 */
950static void hv_pci_generic_compl(void *context, struct pci_response *resp,
951 int resp_packet_size)
952{
953 struct hv_pci_compl *comp_pkt = context;
954
955 comp_pkt->completion_status = resp->status;
956 complete(&comp_pkt->host_event);
957}
958
959static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
960 u32 wslot);
961
962static void get_pcichild(struct hv_pci_dev *hpdev)
963{
964 refcount_inc(&hpdev->refs);
965}
966
967static void put_pcichild(struct hv_pci_dev *hpdev)
968{
969 if (refcount_dec_and_test(&hpdev->refs))
970 kfree(hpdev);
971}
972
973/*
974 * There is no good way to get notified from vmbus_onoffer_rescind(),
975 * so let's use polling here, since this is not a hot path.
976 */
977static int wait_for_response(struct hv_device *hdev,
978 struct completion *comp)
979{
980 while (true) {
981 if (hdev->channel->rescind) {
982 dev_warn_once(&hdev->device, "The device is gone.\n");
983 return -ENODEV;
984 }
985
986 if (wait_for_completion_timeout(comp, HZ / 10))
987 break;
988 }
989
990 return 0;
991}
992
993/**
994 * devfn_to_wslot() - Convert from Linux PCI slot to Windows
995 * @devfn: The Linux representation of PCI slot
996 *
997 * Windows uses a slightly different representation of PCI slot.
998 *
999 * Return: The Windows representation
1000 */
1001static u32 devfn_to_wslot(int devfn)
1002{
1003 union win_slot_encoding wslot;
1004
1005 wslot.slot = 0;
1006 wslot.bits.dev = PCI_SLOT(devfn);
1007 wslot.bits.func = PCI_FUNC(devfn);
1008
1009 return wslot.slot;
1010}
1011
1012/**
1013 * wslot_to_devfn() - Convert from Windows PCI slot to Linux
1014 * @wslot: The Windows representation of PCI slot
1015 *
1016 * Windows uses a slightly different representation of PCI slot.
1017 *
1018 * Return: The Linux representation
1019 */
1020static int wslot_to_devfn(u32 wslot)
1021{
1022 union win_slot_encoding slot_no;
1023
1024 slot_no.slot = wslot;
1025 return PCI_DEVFN(slot_no.bits.dev, slot_no.bits.func);
1026}
1027
1028static void hv_pci_read_mmio(struct device *dev, phys_addr_t gpa, int size, u32 *val)
1029{
1030 struct hv_mmio_read_input *in;
1031 struct hv_mmio_read_output *out;
1032 u64 ret;
1033
1034 /*
1035 * Must be called with interrupts disabled so it is safe
1036 * to use the per-cpu input argument page. Use it for
1037 * both input and output.
1038 */
1039 in = *this_cpu_ptr(hyperv_pcpu_input_arg);
1040 out = *this_cpu_ptr(hyperv_pcpu_input_arg) + sizeof(*in);
1041 in->gpa = gpa;
1042 in->size = size;
1043
1044 ret = hv_do_hypercall(HVCALL_MMIO_READ, in, out);
1045 if (hv_result_success(ret)) {
1046 switch (size) {
1047 case 1:
1048 *val = *(u8 *)(out->data);
1049 break;
1050 case 2:
1051 *val = *(u16 *)(out->data);
1052 break;
1053 default:
1054 *val = *(u32 *)(out->data);
1055 break;
1056 }
1057 } else
1058 dev_err(dev, "MMIO read hypercall error %llx addr %llx size %d\n",
1059 ret, gpa, size);
1060}
1061
1062static void hv_pci_write_mmio(struct device *dev, phys_addr_t gpa, int size, u32 val)
1063{
1064 struct hv_mmio_write_input *in;
1065 u64 ret;
1066
1067 /*
1068 * Must be called with interrupts disabled so it is safe
1069 * to use the per-cpu input argument memory.
1070 */
1071 in = *this_cpu_ptr(hyperv_pcpu_input_arg);
1072 in->gpa = gpa;
1073 in->size = size;
1074 switch (size) {
1075 case 1:
1076 *(u8 *)(in->data) = val;
1077 break;
1078 case 2:
1079 *(u16 *)(in->data) = val;
1080 break;
1081 default:
1082 *(u32 *)(in->data) = val;
1083 break;
1084 }
1085
1086 ret = hv_do_hypercall(HVCALL_MMIO_WRITE, in, NULL);
1087 if (!hv_result_success(ret))
1088 dev_err(dev, "MMIO write hypercall error %llx addr %llx size %d\n",
1089 ret, gpa, size);
1090}
1091
1092/*
1093 * PCI Configuration Space for these root PCI buses is implemented as a pair
1094 * of pages in memory-mapped I/O space. Writing to the first page chooses
1095 * the PCI function being written or read. Once the first page has been
1096 * written to, the following page maps in the entire configuration space of
1097 * the function.
1098 */
1099
1100/**
1101 * _hv_pcifront_read_config() - Internal PCI config read
1102 * @hpdev: The PCI driver's representation of the device
1103 * @where: Offset within config space
1104 * @size: Size of the transfer
1105 * @val: Pointer to the buffer receiving the data
1106 */
1107static void _hv_pcifront_read_config(struct hv_pci_dev *hpdev, int where,
1108 int size, u32 *val)
1109{
1110 struct hv_pcibus_device *hbus = hpdev->hbus;
1111 struct device *dev = &hbus->hdev->device;
1112 int offset = where + CFG_PAGE_OFFSET;
1113 unsigned long flags;
1114
1115 /*
1116 * If the attempt is to read the IDs or the ROM BAR, simulate that.
1117 */
1118 if (where + size <= PCI_COMMAND) {
1119 memcpy(val, ((u8 *)&hpdev->desc.v_id) + where, size);
1120 } else if (where >= PCI_CLASS_REVISION && where + size <=
1121 PCI_CACHE_LINE_SIZE) {
1122 memcpy(val, ((u8 *)&hpdev->desc.rev) + where -
1123 PCI_CLASS_REVISION, size);
1124 } else if (where >= PCI_SUBSYSTEM_VENDOR_ID && where + size <=
1125 PCI_ROM_ADDRESS) {
1126 memcpy(val, (u8 *)&hpdev->desc.subsystem_id + where -
1127 PCI_SUBSYSTEM_VENDOR_ID, size);
1128 } else if (where >= PCI_ROM_ADDRESS && where + size <=
1129 PCI_CAPABILITY_LIST) {
1130 /* ROM BARs are unimplemented */
1131 *val = 0;
1132 } else if (where >= PCI_INTERRUPT_LINE && where + size <=
1133 PCI_INTERRUPT_PIN) {
1134 /*
1135 * Interrupt Line and Interrupt PIN are hard-wired to zero
1136 * because this front-end only supports message-signaled
1137 * interrupts.
1138 */
1139 *val = 0;
1140 } else if (where + size <= CFG_PAGE_SIZE) {
1141
1142 spin_lock_irqsave(&hbus->config_lock, flags);
1143 if (hbus->use_calls) {
1144 phys_addr_t addr = hbus->mem_config->start + offset;
1145
1146 hv_pci_write_mmio(dev, hbus->mem_config->start, 4,
1147 hpdev->desc.win_slot.slot);
1148 hv_pci_read_mmio(dev, addr, size, val);
1149 } else {
1150 void __iomem *addr = hbus->cfg_addr + offset;
1151
1152 /* Choose the function to be read. (See comment above) */
1153 writel(hpdev->desc.win_slot.slot, hbus->cfg_addr);
1154 /* Make sure the function was chosen before reading. */
1155 mb();
1156 /* Read from that function's config space. */
1157 switch (size) {
1158 case 1:
1159 *val = readb(addr);
1160 break;
1161 case 2:
1162 *val = readw(addr);
1163 break;
1164 default:
1165 *val = readl(addr);
1166 break;
1167 }
1168 /*
1169 * Make sure the read was done before we release the
1170 * spinlock allowing consecutive reads/writes.
1171 */
1172 mb();
1173 }
1174 spin_unlock_irqrestore(&hbus->config_lock, flags);
1175 } else {
1176 dev_err(dev, "Attempt to read beyond a function's config space.\n");
1177 }
1178}
1179
1180static u16 hv_pcifront_get_vendor_id(struct hv_pci_dev *hpdev)
1181{
1182 struct hv_pcibus_device *hbus = hpdev->hbus;
1183 struct device *dev = &hbus->hdev->device;
1184 u32 val;
1185 u16 ret;
1186 unsigned long flags;
1187
1188 spin_lock_irqsave(&hbus->config_lock, flags);
1189
1190 if (hbus->use_calls) {
1191 phys_addr_t addr = hbus->mem_config->start +
1192 CFG_PAGE_OFFSET + PCI_VENDOR_ID;
1193
1194 hv_pci_write_mmio(dev, hbus->mem_config->start, 4,
1195 hpdev->desc.win_slot.slot);
1196 hv_pci_read_mmio(dev, addr, 2, &val);
1197 ret = val; /* Truncates to 16 bits */
1198 } else {
1199 void __iomem *addr = hbus->cfg_addr + CFG_PAGE_OFFSET +
1200 PCI_VENDOR_ID;
1201 /* Choose the function to be read. (See comment above) */
1202 writel(hpdev->desc.win_slot.slot, hbus->cfg_addr);
1203 /* Make sure the function was chosen before we start reading. */
1204 mb();
1205 /* Read from that function's config space. */
1206 ret = readw(addr);
1207 /*
1208 * mb() is not required here, because the
1209 * spin_unlock_irqrestore() is a barrier.
1210 */
1211 }
1212
1213 spin_unlock_irqrestore(&hbus->config_lock, flags);
1214
1215 return ret;
1216}
1217
1218/**
1219 * _hv_pcifront_write_config() - Internal PCI config write
1220 * @hpdev: The PCI driver's representation of the device
1221 * @where: Offset within config space
1222 * @size: Size of the transfer
1223 * @val: The data being transferred
1224 */
1225static void _hv_pcifront_write_config(struct hv_pci_dev *hpdev, int where,
1226 int size, u32 val)
1227{
1228 struct hv_pcibus_device *hbus = hpdev->hbus;
1229 struct device *dev = &hbus->hdev->device;
1230 int offset = where + CFG_PAGE_OFFSET;
1231 unsigned long flags;
1232
1233 if (where >= PCI_SUBSYSTEM_VENDOR_ID &&
1234 where + size <= PCI_CAPABILITY_LIST) {
1235 /* SSIDs and ROM BARs are read-only */
1236 } else if (where >= PCI_COMMAND && where + size <= CFG_PAGE_SIZE) {
1237 spin_lock_irqsave(&hbus->config_lock, flags);
1238
1239 if (hbus->use_calls) {
1240 phys_addr_t addr = hbus->mem_config->start + offset;
1241
1242 hv_pci_write_mmio(dev, hbus->mem_config->start, 4,
1243 hpdev->desc.win_slot.slot);
1244 hv_pci_write_mmio(dev, addr, size, val);
1245 } else {
1246 void __iomem *addr = hbus->cfg_addr + offset;
1247
1248 /* Choose the function to write. (See comment above) */
1249 writel(hpdev->desc.win_slot.slot, hbus->cfg_addr);
1250 /* Make sure the function was chosen before writing. */
1251 wmb();
1252 /* Write to that function's config space. */
1253 switch (size) {
1254 case 1:
1255 writeb(val, addr);
1256 break;
1257 case 2:
1258 writew(val, addr);
1259 break;
1260 default:
1261 writel(val, addr);
1262 break;
1263 }
1264 /*
1265 * Make sure the write was done before we release the
1266 * spinlock allowing consecutive reads/writes.
1267 */
1268 mb();
1269 }
1270 spin_unlock_irqrestore(&hbus->config_lock, flags);
1271 } else {
1272 dev_err(dev, "Attempt to write beyond a function's config space.\n");
1273 }
1274}
1275
1276/**
1277 * hv_pcifront_read_config() - Read configuration space
1278 * @bus: PCI Bus structure
1279 * @devfn: Device/function
1280 * @where: Offset from base
1281 * @size: Byte/word/dword
1282 * @val: Value to be read
1283 *
1284 * Return: PCIBIOS_SUCCESSFUL on success
1285 * PCIBIOS_DEVICE_NOT_FOUND on failure
1286 */
1287static int hv_pcifront_read_config(struct pci_bus *bus, unsigned int devfn,
1288 int where, int size, u32 *val)
1289{
1290 struct hv_pcibus_device *hbus =
1291 container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
1292 struct hv_pci_dev *hpdev;
1293
1294 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
1295 if (!hpdev)
1296 return PCIBIOS_DEVICE_NOT_FOUND;
1297
1298 _hv_pcifront_read_config(hpdev, where, size, val);
1299
1300 put_pcichild(hpdev);
1301 return PCIBIOS_SUCCESSFUL;
1302}
1303
1304/**
1305 * hv_pcifront_write_config() - Write configuration space
1306 * @bus: PCI Bus structure
1307 * @devfn: Device/function
1308 * @where: Offset from base
1309 * @size: Byte/word/dword
1310 * @val: Value to be written to device
1311 *
1312 * Return: PCIBIOS_SUCCESSFUL on success
1313 * PCIBIOS_DEVICE_NOT_FOUND on failure
1314 */
1315static int hv_pcifront_write_config(struct pci_bus *bus, unsigned int devfn,
1316 int where, int size, u32 val)
1317{
1318 struct hv_pcibus_device *hbus =
1319 container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
1320 struct hv_pci_dev *hpdev;
1321
1322 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
1323 if (!hpdev)
1324 return PCIBIOS_DEVICE_NOT_FOUND;
1325
1326 _hv_pcifront_write_config(hpdev, where, size, val);
1327
1328 put_pcichild(hpdev);
1329 return PCIBIOS_SUCCESSFUL;
1330}
1331
1332/* PCIe operations */
1333static struct pci_ops hv_pcifront_ops = {
1334 .read = hv_pcifront_read_config,
1335 .write = hv_pcifront_write_config,
1336};
1337
1338/*
1339 * Paravirtual backchannel
1340 *
1341 * Hyper-V SR-IOV provides a backchannel mechanism in software for
1342 * communication between a VF driver and a PF driver. These
1343 * "configuration blocks" are similar in concept to PCI configuration space,
1344 * but instead of doing reads and writes in 32-bit chunks through a very slow
1345 * path, packets of up to 128 bytes can be sent or received asynchronously.
1346 *
1347 * Nearly every SR-IOV device contains just such a communications channel in
1348 * hardware, so using this one in software is usually optional. Using the
1349 * software channel, however, allows driver implementers to leverage software
1350 * tools that fuzz the communications channel looking for vulnerabilities.
1351 *
1352 * The usage model for these packets puts the responsibility for reading or
1353 * writing on the VF driver. The VF driver sends a read or a write packet,
1354 * indicating which "block" is being referred to by number.
1355 *
1356 * If the PF driver wishes to initiate communication, it can "invalidate" one or
1357 * more of the first 64 blocks. This invalidation is delivered via a callback
1358 * supplied by the VF driver by this driver.
1359 *
1360 * No protocol is implied, except that supplied by the PF and VF drivers.
1361 */
1362
1363struct hv_read_config_compl {
1364 struct hv_pci_compl comp_pkt;
1365 void *buf;
1366 unsigned int len;
1367 unsigned int bytes_returned;
1368};
1369
1370/**
1371 * hv_pci_read_config_compl() - Invoked when a response packet
1372 * for a read config block operation arrives.
1373 * @context: Identifies the read config operation
1374 * @resp: The response packet itself
1375 * @resp_packet_size: Size in bytes of the response packet
1376 */
1377static void hv_pci_read_config_compl(void *context, struct pci_response *resp,
1378 int resp_packet_size)
1379{
1380 struct hv_read_config_compl *comp = context;
1381 struct pci_read_block_response *read_resp =
1382 (struct pci_read_block_response *)resp;
1383 unsigned int data_len, hdr_len;
1384
1385 hdr_len = offsetof(struct pci_read_block_response, bytes);
1386 if (resp_packet_size < hdr_len) {
1387 comp->comp_pkt.completion_status = -1;
1388 goto out;
1389 }
1390
1391 data_len = resp_packet_size - hdr_len;
1392 if (data_len > 0 && read_resp->status == 0) {
1393 comp->bytes_returned = min(comp->len, data_len);
1394 memcpy(comp->buf, read_resp->bytes, comp->bytes_returned);
1395 } else {
1396 comp->bytes_returned = 0;
1397 }
1398
1399 comp->comp_pkt.completion_status = read_resp->status;
1400out:
1401 complete(&comp->comp_pkt.host_event);
1402}
1403
1404/**
1405 * hv_read_config_block() - Sends a read config block request to
1406 * the back-end driver running in the Hyper-V parent partition.
1407 * @pdev: The PCI driver's representation for this device.
1408 * @buf: Buffer into which the config block will be copied.
1409 * @len: Size in bytes of buf.
1410 * @block_id: Identifies the config block which has been requested.
1411 * @bytes_returned: Size which came back from the back-end driver.
1412 *
1413 * Return: 0 on success, -errno on failure
1414 */
1415static int hv_read_config_block(struct pci_dev *pdev, void *buf,
1416 unsigned int len, unsigned int block_id,
1417 unsigned int *bytes_returned)
1418{
1419 struct hv_pcibus_device *hbus =
1420 container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1421 sysdata);
1422 struct {
1423 struct pci_packet pkt;
1424 char buf[sizeof(struct pci_read_block)];
1425 } pkt;
1426 struct hv_read_config_compl comp_pkt;
1427 struct pci_read_block *read_blk;
1428 int ret;
1429
1430 if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX)
1431 return -EINVAL;
1432
1433 init_completion(&comp_pkt.comp_pkt.host_event);
1434 comp_pkt.buf = buf;
1435 comp_pkt.len = len;
1436
1437 memset(&pkt, 0, sizeof(pkt));
1438 pkt.pkt.completion_func = hv_pci_read_config_compl;
1439 pkt.pkt.compl_ctxt = &comp_pkt;
1440 read_blk = (struct pci_read_block *)&pkt.pkt.message;
1441 read_blk->message_type.type = PCI_READ_BLOCK;
1442 read_blk->wslot.slot = devfn_to_wslot(pdev->devfn);
1443 read_blk->block_id = block_id;
1444 read_blk->bytes_requested = len;
1445
1446 ret = vmbus_sendpacket(hbus->hdev->channel, read_blk,
1447 sizeof(*read_blk), (unsigned long)&pkt.pkt,
1448 VM_PKT_DATA_INBAND,
1449 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1450 if (ret)
1451 return ret;
1452
1453 ret = wait_for_response(hbus->hdev, &comp_pkt.comp_pkt.host_event);
1454 if (ret)
1455 return ret;
1456
1457 if (comp_pkt.comp_pkt.completion_status != 0 ||
1458 comp_pkt.bytes_returned == 0) {
1459 dev_err(&hbus->hdev->device,
1460 "Read Config Block failed: 0x%x, bytes_returned=%d\n",
1461 comp_pkt.comp_pkt.completion_status,
1462 comp_pkt.bytes_returned);
1463 return -EIO;
1464 }
1465
1466 *bytes_returned = comp_pkt.bytes_returned;
1467 return 0;
1468}
1469
1470/**
1471 * hv_pci_write_config_compl() - Invoked when a response packet for a write
1472 * config block operation arrives.
1473 * @context: Identifies the write config operation
1474 * @resp: The response packet itself
1475 * @resp_packet_size: Size in bytes of the response packet
1476 */
1477static void hv_pci_write_config_compl(void *context, struct pci_response *resp,
1478 int resp_packet_size)
1479{
1480 struct hv_pci_compl *comp_pkt = context;
1481
1482 comp_pkt->completion_status = resp->status;
1483 complete(&comp_pkt->host_event);
1484}
1485
1486/**
1487 * hv_write_config_block() - Sends a write config block request to the
1488 * back-end driver running in the Hyper-V parent partition.
1489 * @pdev: The PCI driver's representation for this device.
1490 * @buf: Buffer from which the config block will be copied.
1491 * @len: Size in bytes of buf.
1492 * @block_id: Identifies the config block which is being written.
1493 *
1494 * Return: 0 on success, -errno on failure
1495 */
1496static int hv_write_config_block(struct pci_dev *pdev, void *buf,
1497 unsigned int len, unsigned int block_id)
1498{
1499 struct hv_pcibus_device *hbus =
1500 container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1501 sysdata);
1502 struct {
1503 struct pci_packet pkt;
1504 char buf[sizeof(struct pci_write_block)];
1505 u32 reserved;
1506 } pkt;
1507 struct hv_pci_compl comp_pkt;
1508 struct pci_write_block *write_blk;
1509 u32 pkt_size;
1510 int ret;
1511
1512 if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX)
1513 return -EINVAL;
1514
1515 init_completion(&comp_pkt.host_event);
1516
1517 memset(&pkt, 0, sizeof(pkt));
1518 pkt.pkt.completion_func = hv_pci_write_config_compl;
1519 pkt.pkt.compl_ctxt = &comp_pkt;
1520 write_blk = (struct pci_write_block *)&pkt.pkt.message;
1521 write_blk->message_type.type = PCI_WRITE_BLOCK;
1522 write_blk->wslot.slot = devfn_to_wslot(pdev->devfn);
1523 write_blk->block_id = block_id;
1524 write_blk->byte_count = len;
1525 memcpy(write_blk->bytes, buf, len);
1526 pkt_size = offsetof(struct pci_write_block, bytes) + len;
1527 /*
1528 * This quirk is required on some hosts shipped around 2018, because
1529 * these hosts don't check the pkt_size correctly (new hosts have been
1530 * fixed since early 2019). The quirk is also safe on very old hosts
1531 * and new hosts, because, on them, what really matters is the length
1532 * specified in write_blk->byte_count.
1533 */
1534 pkt_size += sizeof(pkt.reserved);
1535
1536 ret = vmbus_sendpacket(hbus->hdev->channel, write_blk, pkt_size,
1537 (unsigned long)&pkt.pkt, VM_PKT_DATA_INBAND,
1538 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1539 if (ret)
1540 return ret;
1541
1542 ret = wait_for_response(hbus->hdev, &comp_pkt.host_event);
1543 if (ret)
1544 return ret;
1545
1546 if (comp_pkt.completion_status != 0) {
1547 dev_err(&hbus->hdev->device,
1548 "Write Config Block failed: 0x%x\n",
1549 comp_pkt.completion_status);
1550 return -EIO;
1551 }
1552
1553 return 0;
1554}
1555
1556/**
1557 * hv_register_block_invalidate() - Invoked when a config block invalidation
1558 * arrives from the back-end driver.
1559 * @pdev: The PCI driver's representation for this device.
1560 * @context: Identifies the device.
1561 * @block_invalidate: Identifies all of the blocks being invalidated.
1562 *
1563 * Return: 0 on success, -errno on failure
1564 */
1565static int hv_register_block_invalidate(struct pci_dev *pdev, void *context,
1566 void (*block_invalidate)(void *context,
1567 u64 block_mask))
1568{
1569 struct hv_pcibus_device *hbus =
1570 container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1571 sysdata);
1572 struct hv_pci_dev *hpdev;
1573
1574 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1575 if (!hpdev)
1576 return -ENODEV;
1577
1578 hpdev->block_invalidate = block_invalidate;
1579 hpdev->invalidate_context = context;
1580
1581 put_pcichild(hpdev);
1582 return 0;
1583
1584}
1585
1586/* Interrupt management hooks */
1587static void hv_int_desc_free(struct hv_pci_dev *hpdev,
1588 struct tran_int_desc *int_desc)
1589{
1590 struct pci_delete_interrupt *int_pkt;
1591 struct {
1592 struct pci_packet pkt;
1593 u8 buffer[sizeof(struct pci_delete_interrupt)];
1594 } ctxt;
1595
1596 if (!int_desc->vector_count) {
1597 kfree(int_desc);
1598 return;
1599 }
1600 memset(&ctxt, 0, sizeof(ctxt));
1601 int_pkt = (struct pci_delete_interrupt *)&ctxt.pkt.message;
1602 int_pkt->message_type.type =
1603 PCI_DELETE_INTERRUPT_MESSAGE;
1604 int_pkt->wslot.slot = hpdev->desc.win_slot.slot;
1605 int_pkt->int_desc = *int_desc;
1606 vmbus_sendpacket(hpdev->hbus->hdev->channel, int_pkt, sizeof(*int_pkt),
1607 0, VM_PKT_DATA_INBAND, 0);
1608 kfree(int_desc);
1609}
1610
1611/**
1612 * hv_msi_free() - Free the MSI.
1613 * @domain: The interrupt domain pointer
1614 * @info: Extra MSI-related context
1615 * @irq: Identifies the IRQ.
1616 *
1617 * The Hyper-V parent partition and hypervisor are tracking the
1618 * messages that are in use, keeping the interrupt redirection
1619 * table up to date. This callback sends a message that frees
1620 * the IRT entry and related tracking nonsense.
1621 */
1622static void hv_msi_free(struct irq_domain *domain, struct msi_domain_info *info,
1623 unsigned int irq)
1624{
1625 struct hv_pcibus_device *hbus;
1626 struct hv_pci_dev *hpdev;
1627 struct pci_dev *pdev;
1628 struct tran_int_desc *int_desc;
1629 struct irq_data *irq_data = irq_domain_get_irq_data(domain, irq);
1630 struct msi_desc *msi = irq_data_get_msi_desc(irq_data);
1631
1632 pdev = msi_desc_to_pci_dev(msi);
1633 hbus = info->data;
1634 int_desc = irq_data_get_irq_chip_data(irq_data);
1635 if (!int_desc)
1636 return;
1637
1638 irq_data->chip_data = NULL;
1639 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1640 if (!hpdev) {
1641 kfree(int_desc);
1642 return;
1643 }
1644
1645 hv_int_desc_free(hpdev, int_desc);
1646 put_pcichild(hpdev);
1647}
1648
1649static void hv_irq_mask(struct irq_data *data)
1650{
1651 pci_msi_mask_irq(data);
1652 if (data->parent_data->chip->irq_mask)
1653 irq_chip_mask_parent(data);
1654}
1655
1656static void hv_irq_unmask(struct irq_data *data)
1657{
1658 hv_arch_irq_unmask(data);
1659
1660 if (data->parent_data->chip->irq_unmask)
1661 irq_chip_unmask_parent(data);
1662 pci_msi_unmask_irq(data);
1663}
1664
1665struct compose_comp_ctxt {
1666 struct hv_pci_compl comp_pkt;
1667 struct tran_int_desc int_desc;
1668};
1669
1670static void hv_pci_compose_compl(void *context, struct pci_response *resp,
1671 int resp_packet_size)
1672{
1673 struct compose_comp_ctxt *comp_pkt = context;
1674 struct pci_create_int_response *int_resp =
1675 (struct pci_create_int_response *)resp;
1676
1677 if (resp_packet_size < sizeof(*int_resp)) {
1678 comp_pkt->comp_pkt.completion_status = -1;
1679 goto out;
1680 }
1681 comp_pkt->comp_pkt.completion_status = resp->status;
1682 comp_pkt->int_desc = int_resp->int_desc;
1683out:
1684 complete(&comp_pkt->comp_pkt.host_event);
1685}
1686
1687static u32 hv_compose_msi_req_v1(
1688 struct pci_create_interrupt *int_pkt,
1689 u32 slot, u8 vector, u16 vector_count)
1690{
1691 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE;
1692 int_pkt->wslot.slot = slot;
1693 int_pkt->int_desc.vector = vector;
1694 int_pkt->int_desc.vector_count = vector_count;
1695 int_pkt->int_desc.delivery_mode = DELIVERY_MODE;
1696
1697 /*
1698 * Create MSI w/ dummy vCPU set, overwritten by subsequent retarget in
1699 * hv_irq_unmask().
1700 */
1701 int_pkt->int_desc.cpu_mask = CPU_AFFINITY_ALL;
1702
1703 return sizeof(*int_pkt);
1704}
1705
1706/*
1707 * The vCPU selected by hv_compose_multi_msi_req_get_cpu() and
1708 * hv_compose_msi_req_get_cpu() is a "dummy" vCPU because the final vCPU to be
1709 * interrupted is specified later in hv_irq_unmask() and communicated to Hyper-V
1710 * via the HVCALL_RETARGET_INTERRUPT hypercall. But the choice of dummy vCPU is
1711 * not irrelevant because Hyper-V chooses the physical CPU to handle the
1712 * interrupts based on the vCPU specified in message sent to the vPCI VSP in
1713 * hv_compose_msi_msg(). Hyper-V's choice of pCPU is not visible to the guest,
1714 * but assigning too many vPCI device interrupts to the same pCPU can cause a
1715 * performance bottleneck. So we spread out the dummy vCPUs to influence Hyper-V
1716 * to spread out the pCPUs that it selects.
1717 *
1718 * For the single-MSI and MSI-X cases, it's OK for hv_compose_msi_req_get_cpu()
1719 * to always return the same dummy vCPU, because a second call to
1720 * hv_compose_msi_msg() contains the "real" vCPU, causing Hyper-V to choose a
1721 * new pCPU for the interrupt. But for the multi-MSI case, the second call to
1722 * hv_compose_msi_msg() exits without sending a message to the vPCI VSP, so the
1723 * original dummy vCPU is used. This dummy vCPU must be round-robin'ed so that
1724 * the pCPUs are spread out. All interrupts for a multi-MSI device end up using
1725 * the same pCPU, even though the vCPUs will be spread out by later calls
1726 * to hv_irq_unmask(), but that is the best we can do now.
1727 *
1728 * With Hyper-V in Nov 2022, the HVCALL_RETARGET_INTERRUPT hypercall does *not*
1729 * cause Hyper-V to reselect the pCPU based on the specified vCPU. Such an
1730 * enhancement is planned for a future version. With that enhancement, the
1731 * dummy vCPU selection won't matter, and interrupts for the same multi-MSI
1732 * device will be spread across multiple pCPUs.
1733 */
1734
1735/*
1736 * Create MSI w/ dummy vCPU set targeting just one vCPU, overwritten
1737 * by subsequent retarget in hv_irq_unmask().
1738 */
1739static int hv_compose_msi_req_get_cpu(const struct cpumask *affinity)
1740{
1741 return cpumask_first_and(affinity, cpu_online_mask);
1742}
1743
1744/*
1745 * Make sure the dummy vCPU values for multi-MSI don't all point to vCPU0.
1746 */
1747static int hv_compose_multi_msi_req_get_cpu(void)
1748{
1749 static DEFINE_SPINLOCK(multi_msi_cpu_lock);
1750
1751 /* -1 means starting with CPU 0 */
1752 static int cpu_next = -1;
1753
1754 unsigned long flags;
1755 int cpu;
1756
1757 spin_lock_irqsave(&multi_msi_cpu_lock, flags);
1758
1759 cpu_next = cpumask_next_wrap(cpu_next, cpu_online_mask, nr_cpu_ids,
1760 false);
1761 cpu = cpu_next;
1762
1763 spin_unlock_irqrestore(&multi_msi_cpu_lock, flags);
1764
1765 return cpu;
1766}
1767
1768static u32 hv_compose_msi_req_v2(
1769 struct pci_create_interrupt2 *int_pkt, int cpu,
1770 u32 slot, u8 vector, u16 vector_count)
1771{
1772 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE2;
1773 int_pkt->wslot.slot = slot;
1774 int_pkt->int_desc.vector = vector;
1775 int_pkt->int_desc.vector_count = vector_count;
1776 int_pkt->int_desc.delivery_mode = DELIVERY_MODE;
1777 int_pkt->int_desc.processor_array[0] =
1778 hv_cpu_number_to_vp_number(cpu);
1779 int_pkt->int_desc.processor_count = 1;
1780
1781 return sizeof(*int_pkt);
1782}
1783
1784static u32 hv_compose_msi_req_v3(
1785 struct pci_create_interrupt3 *int_pkt, int cpu,
1786 u32 slot, u32 vector, u16 vector_count)
1787{
1788 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE3;
1789 int_pkt->wslot.slot = slot;
1790 int_pkt->int_desc.vector = vector;
1791 int_pkt->int_desc.reserved = 0;
1792 int_pkt->int_desc.vector_count = vector_count;
1793 int_pkt->int_desc.delivery_mode = DELIVERY_MODE;
1794 int_pkt->int_desc.processor_array[0] =
1795 hv_cpu_number_to_vp_number(cpu);
1796 int_pkt->int_desc.processor_count = 1;
1797
1798 return sizeof(*int_pkt);
1799}
1800
1801/**
1802 * hv_compose_msi_msg() - Supplies a valid MSI address/data
1803 * @data: Everything about this MSI
1804 * @msg: Buffer that is filled in by this function
1805 *
1806 * This function unpacks the IRQ looking for target CPU set, IDT
1807 * vector and mode and sends a message to the parent partition
1808 * asking for a mapping for that tuple in this partition. The
1809 * response supplies a data value and address to which that data
1810 * should be written to trigger that interrupt.
1811 */
1812static void hv_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
1813{
1814 struct hv_pcibus_device *hbus;
1815 struct vmbus_channel *channel;
1816 struct hv_pci_dev *hpdev;
1817 struct pci_bus *pbus;
1818 struct pci_dev *pdev;
1819 const struct cpumask *dest;
1820 struct compose_comp_ctxt comp;
1821 struct tran_int_desc *int_desc;
1822 struct msi_desc *msi_desc;
1823 /*
1824 * vector_count should be u16: see hv_msi_desc, hv_msi_desc2
1825 * and hv_msi_desc3. vector must be u32: see hv_msi_desc3.
1826 */
1827 u16 vector_count;
1828 u32 vector;
1829 struct {
1830 struct pci_packet pci_pkt;
1831 union {
1832 struct pci_create_interrupt v1;
1833 struct pci_create_interrupt2 v2;
1834 struct pci_create_interrupt3 v3;
1835 } int_pkts;
1836 } __packed ctxt;
1837 bool multi_msi;
1838 u64 trans_id;
1839 u32 size;
1840 int ret;
1841 int cpu;
1842
1843 msi_desc = irq_data_get_msi_desc(data);
1844 multi_msi = !msi_desc->pci.msi_attrib.is_msix &&
1845 msi_desc->nvec_used > 1;
1846
1847 /* Reuse the previous allocation */
1848 if (data->chip_data && multi_msi) {
1849 int_desc = data->chip_data;
1850 msg->address_hi = int_desc->address >> 32;
1851 msg->address_lo = int_desc->address & 0xffffffff;
1852 msg->data = int_desc->data;
1853 return;
1854 }
1855
1856 pdev = msi_desc_to_pci_dev(msi_desc);
1857 dest = irq_data_get_effective_affinity_mask(data);
1858 pbus = pdev->bus;
1859 hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
1860 channel = hbus->hdev->channel;
1861 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1862 if (!hpdev)
1863 goto return_null_message;
1864
1865 /* Free any previous message that might have already been composed. */
1866 if (data->chip_data && !multi_msi) {
1867 int_desc = data->chip_data;
1868 data->chip_data = NULL;
1869 hv_int_desc_free(hpdev, int_desc);
1870 }
1871
1872 int_desc = kzalloc(sizeof(*int_desc), GFP_ATOMIC);
1873 if (!int_desc)
1874 goto drop_reference;
1875
1876 if (multi_msi) {
1877 /*
1878 * If this is not the first MSI of Multi MSI, we already have
1879 * a mapping. Can exit early.
1880 */
1881 if (msi_desc->irq != data->irq) {
1882 data->chip_data = int_desc;
1883 int_desc->address = msi_desc->msg.address_lo |
1884 (u64)msi_desc->msg.address_hi << 32;
1885 int_desc->data = msi_desc->msg.data +
1886 (data->irq - msi_desc->irq);
1887 msg->address_hi = msi_desc->msg.address_hi;
1888 msg->address_lo = msi_desc->msg.address_lo;
1889 msg->data = int_desc->data;
1890 put_pcichild(hpdev);
1891 return;
1892 }
1893 /*
1894 * The vector we select here is a dummy value. The correct
1895 * value gets sent to the hypervisor in unmask(). This needs
1896 * to be aligned with the count, and also not zero. Multi-msi
1897 * is powers of 2 up to 32, so 32 will always work here.
1898 */
1899 vector = 32;
1900 vector_count = msi_desc->nvec_used;
1901 cpu = hv_compose_multi_msi_req_get_cpu();
1902 } else {
1903 vector = hv_msi_get_int_vector(data);
1904 vector_count = 1;
1905 cpu = hv_compose_msi_req_get_cpu(dest);
1906 }
1907
1908 /*
1909 * hv_compose_msi_req_v1 and v2 are for x86 only, meaning 'vector'
1910 * can't exceed u8. Cast 'vector' down to u8 for v1/v2 explicitly
1911 * for better readability.
1912 */
1913 memset(&ctxt, 0, sizeof(ctxt));
1914 init_completion(&comp.comp_pkt.host_event);
1915 ctxt.pci_pkt.completion_func = hv_pci_compose_compl;
1916 ctxt.pci_pkt.compl_ctxt = ∁
1917
1918 switch (hbus->protocol_version) {
1919 case PCI_PROTOCOL_VERSION_1_1:
1920 size = hv_compose_msi_req_v1(&ctxt.int_pkts.v1,
1921 hpdev->desc.win_slot.slot,
1922 (u8)vector,
1923 vector_count);
1924 break;
1925
1926 case PCI_PROTOCOL_VERSION_1_2:
1927 case PCI_PROTOCOL_VERSION_1_3:
1928 size = hv_compose_msi_req_v2(&ctxt.int_pkts.v2,
1929 cpu,
1930 hpdev->desc.win_slot.slot,
1931 (u8)vector,
1932 vector_count);
1933 break;
1934
1935 case PCI_PROTOCOL_VERSION_1_4:
1936 size = hv_compose_msi_req_v3(&ctxt.int_pkts.v3,
1937 cpu,
1938 hpdev->desc.win_slot.slot,
1939 vector,
1940 vector_count);
1941 break;
1942
1943 default:
1944 /* As we only negotiate protocol versions known to this driver,
1945 * this path should never hit. However, this is it not a hot
1946 * path so we print a message to aid future updates.
1947 */
1948 dev_err(&hbus->hdev->device,
1949 "Unexpected vPCI protocol, update driver.");
1950 goto free_int_desc;
1951 }
1952
1953 ret = vmbus_sendpacket_getid(hpdev->hbus->hdev->channel, &ctxt.int_pkts,
1954 size, (unsigned long)&ctxt.pci_pkt,
1955 &trans_id, VM_PKT_DATA_INBAND,
1956 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1957 if (ret) {
1958 dev_err(&hbus->hdev->device,
1959 "Sending request for interrupt failed: 0x%x",
1960 comp.comp_pkt.completion_status);
1961 goto free_int_desc;
1962 }
1963
1964 /*
1965 * Prevents hv_pci_onchannelcallback() from running concurrently
1966 * in the tasklet.
1967 */
1968 tasklet_disable_in_atomic(&channel->callback_event);
1969
1970 /*
1971 * Since this function is called with IRQ locks held, can't
1972 * do normal wait for completion; instead poll.
1973 */
1974 while (!try_wait_for_completion(&comp.comp_pkt.host_event)) {
1975 unsigned long flags;
1976
1977 /* 0xFFFF means an invalid PCI VENDOR ID. */
1978 if (hv_pcifront_get_vendor_id(hpdev) == 0xFFFF) {
1979 dev_err_once(&hbus->hdev->device,
1980 "the device has gone\n");
1981 goto enable_tasklet;
1982 }
1983
1984 /*
1985 * Make sure that the ring buffer data structure doesn't get
1986 * freed while we dereference the ring buffer pointer. Test
1987 * for the channel's onchannel_callback being NULL within a
1988 * sched_lock critical section. See also the inline comments
1989 * in vmbus_reset_channel_cb().
1990 */
1991 spin_lock_irqsave(&channel->sched_lock, flags);
1992 if (unlikely(channel->onchannel_callback == NULL)) {
1993 spin_unlock_irqrestore(&channel->sched_lock, flags);
1994 goto enable_tasklet;
1995 }
1996 hv_pci_onchannelcallback(hbus);
1997 spin_unlock_irqrestore(&channel->sched_lock, flags);
1998
1999 udelay(100);
2000 }
2001
2002 tasklet_enable(&channel->callback_event);
2003
2004 if (comp.comp_pkt.completion_status < 0) {
2005 dev_err(&hbus->hdev->device,
2006 "Request for interrupt failed: 0x%x",
2007 comp.comp_pkt.completion_status);
2008 goto free_int_desc;
2009 }
2010
2011 /*
2012 * Record the assignment so that this can be unwound later. Using
2013 * irq_set_chip_data() here would be appropriate, but the lock it takes
2014 * is already held.
2015 */
2016 *int_desc = comp.int_desc;
2017 data->chip_data = int_desc;
2018
2019 /* Pass up the result. */
2020 msg->address_hi = comp.int_desc.address >> 32;
2021 msg->address_lo = comp.int_desc.address & 0xffffffff;
2022 msg->data = comp.int_desc.data;
2023
2024 put_pcichild(hpdev);
2025 return;
2026
2027enable_tasklet:
2028 tasklet_enable(&channel->callback_event);
2029 /*
2030 * The completion packet on the stack becomes invalid after 'return';
2031 * remove the ID from the VMbus requestor if the identifier is still
2032 * mapped to/associated with the packet. (The identifier could have
2033 * been 're-used', i.e., already removed and (re-)mapped.)
2034 *
2035 * Cf. hv_pci_onchannelcallback().
2036 */
2037 vmbus_request_addr_match(channel, trans_id, (unsigned long)&ctxt.pci_pkt);
2038free_int_desc:
2039 kfree(int_desc);
2040drop_reference:
2041 put_pcichild(hpdev);
2042return_null_message:
2043 msg->address_hi = 0;
2044 msg->address_lo = 0;
2045 msg->data = 0;
2046}
2047
2048/* HW Interrupt Chip Descriptor */
2049static struct irq_chip hv_msi_irq_chip = {
2050 .name = "Hyper-V PCIe MSI",
2051 .irq_compose_msi_msg = hv_compose_msi_msg,
2052 .irq_set_affinity = irq_chip_set_affinity_parent,
2053#ifdef CONFIG_X86
2054 .irq_ack = irq_chip_ack_parent,
2055#elif defined(CONFIG_ARM64)
2056 .irq_eoi = irq_chip_eoi_parent,
2057#endif
2058 .irq_mask = hv_irq_mask,
2059 .irq_unmask = hv_irq_unmask,
2060};
2061
2062static struct msi_domain_ops hv_msi_ops = {
2063 .msi_prepare = hv_msi_prepare,
2064 .msi_free = hv_msi_free,
2065};
2066
2067/**
2068 * hv_pcie_init_irq_domain() - Initialize IRQ domain
2069 * @hbus: The root PCI bus
2070 *
2071 * This function creates an IRQ domain which will be used for
2072 * interrupts from devices that have been passed through. These
2073 * devices only support MSI and MSI-X, not line-based interrupts
2074 * or simulations of line-based interrupts through PCIe's
2075 * fabric-layer messages. Because interrupts are remapped, we
2076 * can support multi-message MSI here.
2077 *
2078 * Return: '0' on success and error value on failure
2079 */
2080static int hv_pcie_init_irq_domain(struct hv_pcibus_device *hbus)
2081{
2082 hbus->msi_info.chip = &hv_msi_irq_chip;
2083 hbus->msi_info.ops = &hv_msi_ops;
2084 hbus->msi_info.flags = (MSI_FLAG_USE_DEF_DOM_OPS |
2085 MSI_FLAG_USE_DEF_CHIP_OPS | MSI_FLAG_MULTI_PCI_MSI |
2086 MSI_FLAG_PCI_MSIX);
2087 hbus->msi_info.handler = FLOW_HANDLER;
2088 hbus->msi_info.handler_name = FLOW_NAME;
2089 hbus->msi_info.data = hbus;
2090 hbus->irq_domain = pci_msi_create_irq_domain(hbus->fwnode,
2091 &hbus->msi_info,
2092 hv_pci_get_root_domain());
2093 if (!hbus->irq_domain) {
2094 dev_err(&hbus->hdev->device,
2095 "Failed to build an MSI IRQ domain\n");
2096 return -ENODEV;
2097 }
2098
2099 dev_set_msi_domain(&hbus->bridge->dev, hbus->irq_domain);
2100
2101 return 0;
2102}
2103
2104/**
2105 * get_bar_size() - Get the address space consumed by a BAR
2106 * @bar_val: Value that a BAR returned after -1 was written
2107 * to it.
2108 *
2109 * This function returns the size of the BAR, rounded up to 1
2110 * page. It has to be rounded up because the hypervisor's page
2111 * table entry that maps the BAR into the VM can't specify an
2112 * offset within a page. The invariant is that the hypervisor
2113 * must place any BARs of smaller than page length at the
2114 * beginning of a page.
2115 *
2116 * Return: Size in bytes of the consumed MMIO space.
2117 */
2118static u64 get_bar_size(u64 bar_val)
2119{
2120 return round_up((1 + ~(bar_val & PCI_BASE_ADDRESS_MEM_MASK)),
2121 PAGE_SIZE);
2122}
2123
2124/**
2125 * survey_child_resources() - Total all MMIO requirements
2126 * @hbus: Root PCI bus, as understood by this driver
2127 */
2128static void survey_child_resources(struct hv_pcibus_device *hbus)
2129{
2130 struct hv_pci_dev *hpdev;
2131 resource_size_t bar_size = 0;
2132 unsigned long flags;
2133 struct completion *event;
2134 u64 bar_val;
2135 int i;
2136
2137 /* If nobody is waiting on the answer, don't compute it. */
2138 event = xchg(&hbus->survey_event, NULL);
2139 if (!event)
2140 return;
2141
2142 /* If the answer has already been computed, go with it. */
2143 if (hbus->low_mmio_space || hbus->high_mmio_space) {
2144 complete(event);
2145 return;
2146 }
2147
2148 spin_lock_irqsave(&hbus->device_list_lock, flags);
2149
2150 /*
2151 * Due to an interesting quirk of the PCI spec, all memory regions
2152 * for a child device are a power of 2 in size and aligned in memory,
2153 * so it's sufficient to just add them up without tracking alignment.
2154 */
2155 list_for_each_entry(hpdev, &hbus->children, list_entry) {
2156 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
2157 if (hpdev->probed_bar[i] & PCI_BASE_ADDRESS_SPACE_IO)
2158 dev_err(&hbus->hdev->device,
2159 "There's an I/O BAR in this list!\n");
2160
2161 if (hpdev->probed_bar[i] != 0) {
2162 /*
2163 * A probed BAR has all the upper bits set that
2164 * can be changed.
2165 */
2166
2167 bar_val = hpdev->probed_bar[i];
2168 if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
2169 bar_val |=
2170 ((u64)hpdev->probed_bar[++i] << 32);
2171 else
2172 bar_val |= 0xffffffff00000000ULL;
2173
2174 bar_size = get_bar_size(bar_val);
2175
2176 if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
2177 hbus->high_mmio_space += bar_size;
2178 else
2179 hbus->low_mmio_space += bar_size;
2180 }
2181 }
2182 }
2183
2184 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2185 complete(event);
2186}
2187
2188/**
2189 * prepopulate_bars() - Fill in BARs with defaults
2190 * @hbus: Root PCI bus, as understood by this driver
2191 *
2192 * The core PCI driver code seems much, much happier if the BARs
2193 * for a device have values upon first scan. So fill them in.
2194 * The algorithm below works down from large sizes to small,
2195 * attempting to pack the assignments optimally. The assumption,
2196 * enforced in other parts of the code, is that the beginning of
2197 * the memory-mapped I/O space will be aligned on the largest
2198 * BAR size.
2199 */
2200static void prepopulate_bars(struct hv_pcibus_device *hbus)
2201{
2202 resource_size_t high_size = 0;
2203 resource_size_t low_size = 0;
2204 resource_size_t high_base = 0;
2205 resource_size_t low_base = 0;
2206 resource_size_t bar_size;
2207 struct hv_pci_dev *hpdev;
2208 unsigned long flags;
2209 u64 bar_val;
2210 u32 command;
2211 bool high;
2212 int i;
2213
2214 if (hbus->low_mmio_space) {
2215 low_size = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
2216 low_base = hbus->low_mmio_res->start;
2217 }
2218
2219 if (hbus->high_mmio_space) {
2220 high_size = 1ULL <<
2221 (63 - __builtin_clzll(hbus->high_mmio_space));
2222 high_base = hbus->high_mmio_res->start;
2223 }
2224
2225 spin_lock_irqsave(&hbus->device_list_lock, flags);
2226
2227 /*
2228 * Clear the memory enable bit, in case it's already set. This occurs
2229 * in the suspend path of hibernation, where the device is suspended,
2230 * resumed and suspended again: see hibernation_snapshot() and
2231 * hibernation_platform_enter().
2232 *
2233 * If the memory enable bit is already set, Hyper-V silently ignores
2234 * the below BAR updates, and the related PCI device driver can not
2235 * work, because reading from the device register(s) always returns
2236 * 0xFFFFFFFF (PCI_ERROR_RESPONSE).
2237 */
2238 list_for_each_entry(hpdev, &hbus->children, list_entry) {
2239 _hv_pcifront_read_config(hpdev, PCI_COMMAND, 2, &command);
2240 command &= ~PCI_COMMAND_MEMORY;
2241 _hv_pcifront_write_config(hpdev, PCI_COMMAND, 2, command);
2242 }
2243
2244 /* Pick addresses for the BARs. */
2245 do {
2246 list_for_each_entry(hpdev, &hbus->children, list_entry) {
2247 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
2248 bar_val = hpdev->probed_bar[i];
2249 if (bar_val == 0)
2250 continue;
2251 high = bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64;
2252 if (high) {
2253 bar_val |=
2254 ((u64)hpdev->probed_bar[i + 1]
2255 << 32);
2256 } else {
2257 bar_val |= 0xffffffffULL << 32;
2258 }
2259 bar_size = get_bar_size(bar_val);
2260 if (high) {
2261 if (high_size != bar_size) {
2262 i++;
2263 continue;
2264 }
2265 _hv_pcifront_write_config(hpdev,
2266 PCI_BASE_ADDRESS_0 + (4 * i),
2267 4,
2268 (u32)(high_base & 0xffffff00));
2269 i++;
2270 _hv_pcifront_write_config(hpdev,
2271 PCI_BASE_ADDRESS_0 + (4 * i),
2272 4, (u32)(high_base >> 32));
2273 high_base += bar_size;
2274 } else {
2275 if (low_size != bar_size)
2276 continue;
2277 _hv_pcifront_write_config(hpdev,
2278 PCI_BASE_ADDRESS_0 + (4 * i),
2279 4,
2280 (u32)(low_base & 0xffffff00));
2281 low_base += bar_size;
2282 }
2283 }
2284 if (high_size <= 1 && low_size <= 1) {
2285 /*
2286 * No need to set the PCI_COMMAND_MEMORY bit as
2287 * the core PCI driver doesn't require the bit
2288 * to be pre-set. Actually here we intentionally
2289 * keep the bit off so that the PCI BAR probing
2290 * in the core PCI driver doesn't cause Hyper-V
2291 * to unnecessarily unmap/map the virtual BARs
2292 * from/to the physical BARs multiple times.
2293 * This reduces the VM boot time significantly
2294 * if the BAR sizes are huge.
2295 */
2296 break;
2297 }
2298 }
2299
2300 high_size >>= 1;
2301 low_size >>= 1;
2302 } while (high_size || low_size);
2303
2304 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2305}
2306
2307/*
2308 * Assign entries in sysfs pci slot directory.
2309 *
2310 * Note that this function does not need to lock the children list
2311 * because it is called from pci_devices_present_work which
2312 * is serialized with hv_eject_device_work because they are on the
2313 * same ordered workqueue. Therefore hbus->children list will not change
2314 * even when pci_create_slot sleeps.
2315 */
2316static void hv_pci_assign_slots(struct hv_pcibus_device *hbus)
2317{
2318 struct hv_pci_dev *hpdev;
2319 char name[SLOT_NAME_SIZE];
2320 int slot_nr;
2321
2322 list_for_each_entry(hpdev, &hbus->children, list_entry) {
2323 if (hpdev->pci_slot)
2324 continue;
2325
2326 slot_nr = PCI_SLOT(wslot_to_devfn(hpdev->desc.win_slot.slot));
2327 snprintf(name, SLOT_NAME_SIZE, "%u", hpdev->desc.ser);
2328 hpdev->pci_slot = pci_create_slot(hbus->bridge->bus, slot_nr,
2329 name, NULL);
2330 if (IS_ERR(hpdev->pci_slot)) {
2331 pr_warn("pci_create slot %s failed\n", name);
2332 hpdev->pci_slot = NULL;
2333 }
2334 }
2335}
2336
2337/*
2338 * Remove entries in sysfs pci slot directory.
2339 */
2340static void hv_pci_remove_slots(struct hv_pcibus_device *hbus)
2341{
2342 struct hv_pci_dev *hpdev;
2343
2344 list_for_each_entry(hpdev, &hbus->children, list_entry) {
2345 if (!hpdev->pci_slot)
2346 continue;
2347 pci_destroy_slot(hpdev->pci_slot);
2348 hpdev->pci_slot = NULL;
2349 }
2350}
2351
2352/*
2353 * Set NUMA node for the devices on the bus
2354 */
2355static void hv_pci_assign_numa_node(struct hv_pcibus_device *hbus)
2356{
2357 struct pci_dev *dev;
2358 struct pci_bus *bus = hbus->bridge->bus;
2359 struct hv_pci_dev *hv_dev;
2360
2361 list_for_each_entry(dev, &bus->devices, bus_list) {
2362 hv_dev = get_pcichild_wslot(hbus, devfn_to_wslot(dev->devfn));
2363 if (!hv_dev)
2364 continue;
2365
2366 if (hv_dev->desc.flags & HV_PCI_DEVICE_FLAG_NUMA_AFFINITY &&
2367 hv_dev->desc.virtual_numa_node < num_possible_nodes())
2368 /*
2369 * The kernel may boot with some NUMA nodes offline
2370 * (e.g. in a KDUMP kernel) or with NUMA disabled via
2371 * "numa=off". In those cases, adjust the host provided
2372 * NUMA node to a valid NUMA node used by the kernel.
2373 */
2374 set_dev_node(&dev->dev,
2375 numa_map_to_online_node(
2376 hv_dev->desc.virtual_numa_node));
2377
2378 put_pcichild(hv_dev);
2379 }
2380}
2381
2382/**
2383 * create_root_hv_pci_bus() - Expose a new root PCI bus
2384 * @hbus: Root PCI bus, as understood by this driver
2385 *
2386 * Return: 0 on success, -errno on failure
2387 */
2388static int create_root_hv_pci_bus(struct hv_pcibus_device *hbus)
2389{
2390 int error;
2391 struct pci_host_bridge *bridge = hbus->bridge;
2392
2393 bridge->dev.parent = &hbus->hdev->device;
2394 bridge->sysdata = &hbus->sysdata;
2395 bridge->ops = &hv_pcifront_ops;
2396
2397 error = pci_scan_root_bus_bridge(bridge);
2398 if (error)
2399 return error;
2400
2401 pci_lock_rescan_remove();
2402 hv_pci_assign_numa_node(hbus);
2403 pci_bus_assign_resources(bridge->bus);
2404 hv_pci_assign_slots(hbus);
2405 pci_bus_add_devices(bridge->bus);
2406 pci_unlock_rescan_remove();
2407 hbus->state = hv_pcibus_installed;
2408 return 0;
2409}
2410
2411struct q_res_req_compl {
2412 struct completion host_event;
2413 struct hv_pci_dev *hpdev;
2414};
2415
2416/**
2417 * q_resource_requirements() - Query Resource Requirements
2418 * @context: The completion context.
2419 * @resp: The response that came from the host.
2420 * @resp_packet_size: The size in bytes of resp.
2421 *
2422 * This function is invoked on completion of a Query Resource
2423 * Requirements packet.
2424 */
2425static void q_resource_requirements(void *context, struct pci_response *resp,
2426 int resp_packet_size)
2427{
2428 struct q_res_req_compl *completion = context;
2429 struct pci_q_res_req_response *q_res_req =
2430 (struct pci_q_res_req_response *)resp;
2431 s32 status;
2432 int i;
2433
2434 status = (resp_packet_size < sizeof(*q_res_req)) ? -1 : resp->status;
2435 if (status < 0) {
2436 dev_err(&completion->hpdev->hbus->hdev->device,
2437 "query resource requirements failed: %x\n",
2438 status);
2439 } else {
2440 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
2441 completion->hpdev->probed_bar[i] =
2442 q_res_req->probed_bar[i];
2443 }
2444 }
2445
2446 complete(&completion->host_event);
2447}
2448
2449/**
2450 * new_pcichild_device() - Create a new child device
2451 * @hbus: The internal struct tracking this root PCI bus.
2452 * @desc: The information supplied so far from the host
2453 * about the device.
2454 *
2455 * This function creates the tracking structure for a new child
2456 * device and kicks off the process of figuring out what it is.
2457 *
2458 * Return: Pointer to the new tracking struct
2459 */
2460static struct hv_pci_dev *new_pcichild_device(struct hv_pcibus_device *hbus,
2461 struct hv_pcidev_description *desc)
2462{
2463 struct hv_pci_dev *hpdev;
2464 struct pci_child_message *res_req;
2465 struct q_res_req_compl comp_pkt;
2466 struct {
2467 struct pci_packet init_packet;
2468 u8 buffer[sizeof(struct pci_child_message)];
2469 } pkt;
2470 unsigned long flags;
2471 int ret;
2472
2473 hpdev = kzalloc(sizeof(*hpdev), GFP_KERNEL);
2474 if (!hpdev)
2475 return NULL;
2476
2477 hpdev->hbus = hbus;
2478
2479 memset(&pkt, 0, sizeof(pkt));
2480 init_completion(&comp_pkt.host_event);
2481 comp_pkt.hpdev = hpdev;
2482 pkt.init_packet.compl_ctxt = &comp_pkt;
2483 pkt.init_packet.completion_func = q_resource_requirements;
2484 res_req = (struct pci_child_message *)&pkt.init_packet.message;
2485 res_req->message_type.type = PCI_QUERY_RESOURCE_REQUIREMENTS;
2486 res_req->wslot.slot = desc->win_slot.slot;
2487
2488 ret = vmbus_sendpacket(hbus->hdev->channel, res_req,
2489 sizeof(struct pci_child_message),
2490 (unsigned long)&pkt.init_packet,
2491 VM_PKT_DATA_INBAND,
2492 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2493 if (ret)
2494 goto error;
2495
2496 if (wait_for_response(hbus->hdev, &comp_pkt.host_event))
2497 goto error;
2498
2499 hpdev->desc = *desc;
2500 refcount_set(&hpdev->refs, 1);
2501 get_pcichild(hpdev);
2502 spin_lock_irqsave(&hbus->device_list_lock, flags);
2503
2504 list_add_tail(&hpdev->list_entry, &hbus->children);
2505 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2506 return hpdev;
2507
2508error:
2509 kfree(hpdev);
2510 return NULL;
2511}
2512
2513/**
2514 * get_pcichild_wslot() - Find device from slot
2515 * @hbus: Root PCI bus, as understood by this driver
2516 * @wslot: Location on the bus
2517 *
2518 * This function looks up a PCI device and returns the internal
2519 * representation of it. It acquires a reference on it, so that
2520 * the device won't be deleted while somebody is using it. The
2521 * caller is responsible for calling put_pcichild() to release
2522 * this reference.
2523 *
2524 * Return: Internal representation of a PCI device
2525 */
2526static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
2527 u32 wslot)
2528{
2529 unsigned long flags;
2530 struct hv_pci_dev *iter, *hpdev = NULL;
2531
2532 spin_lock_irqsave(&hbus->device_list_lock, flags);
2533 list_for_each_entry(iter, &hbus->children, list_entry) {
2534 if (iter->desc.win_slot.slot == wslot) {
2535 hpdev = iter;
2536 get_pcichild(hpdev);
2537 break;
2538 }
2539 }
2540 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2541
2542 return hpdev;
2543}
2544
2545/**
2546 * pci_devices_present_work() - Handle new list of child devices
2547 * @work: Work struct embedded in struct hv_dr_work
2548 *
2549 * "Bus Relations" is the Windows term for "children of this
2550 * bus." The terminology is preserved here for people trying to
2551 * debug the interaction between Hyper-V and Linux. This
2552 * function is called when the parent partition reports a list
2553 * of functions that should be observed under this PCI Express
2554 * port (bus).
2555 *
2556 * This function updates the list, and must tolerate being
2557 * called multiple times with the same information. The typical
2558 * number of child devices is one, with very atypical cases
2559 * involving three or four, so the algorithms used here can be
2560 * simple and inefficient.
2561 *
2562 * It must also treat the omission of a previously observed device as
2563 * notification that the device no longer exists.
2564 *
2565 * Note that this function is serialized with hv_eject_device_work(),
2566 * because both are pushed to the ordered workqueue hbus->wq.
2567 */
2568static void pci_devices_present_work(struct work_struct *work)
2569{
2570 u32 child_no;
2571 bool found;
2572 struct hv_pcidev_description *new_desc;
2573 struct hv_pci_dev *hpdev;
2574 struct hv_pcibus_device *hbus;
2575 struct list_head removed;
2576 struct hv_dr_work *dr_wrk;
2577 struct hv_dr_state *dr = NULL;
2578 unsigned long flags;
2579
2580 dr_wrk = container_of(work, struct hv_dr_work, wrk);
2581 hbus = dr_wrk->bus;
2582 kfree(dr_wrk);
2583
2584 INIT_LIST_HEAD(&removed);
2585
2586 /* Pull this off the queue and process it if it was the last one. */
2587 spin_lock_irqsave(&hbus->device_list_lock, flags);
2588 while (!list_empty(&hbus->dr_list)) {
2589 dr = list_first_entry(&hbus->dr_list, struct hv_dr_state,
2590 list_entry);
2591 list_del(&dr->list_entry);
2592
2593 /* Throw this away if the list still has stuff in it. */
2594 if (!list_empty(&hbus->dr_list)) {
2595 kfree(dr);
2596 continue;
2597 }
2598 }
2599 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2600
2601 if (!dr)
2602 return;
2603
2604 mutex_lock(&hbus->state_lock);
2605
2606 /* First, mark all existing children as reported missing. */
2607 spin_lock_irqsave(&hbus->device_list_lock, flags);
2608 list_for_each_entry(hpdev, &hbus->children, list_entry) {
2609 hpdev->reported_missing = true;
2610 }
2611 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2612
2613 /* Next, add back any reported devices. */
2614 for (child_no = 0; child_no < dr->device_count; child_no++) {
2615 found = false;
2616 new_desc = &dr->func[child_no];
2617
2618 spin_lock_irqsave(&hbus->device_list_lock, flags);
2619 list_for_each_entry(hpdev, &hbus->children, list_entry) {
2620 if ((hpdev->desc.win_slot.slot == new_desc->win_slot.slot) &&
2621 (hpdev->desc.v_id == new_desc->v_id) &&
2622 (hpdev->desc.d_id == new_desc->d_id) &&
2623 (hpdev->desc.ser == new_desc->ser)) {
2624 hpdev->reported_missing = false;
2625 found = true;
2626 }
2627 }
2628 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2629
2630 if (!found) {
2631 hpdev = new_pcichild_device(hbus, new_desc);
2632 if (!hpdev)
2633 dev_err(&hbus->hdev->device,
2634 "couldn't record a child device.\n");
2635 }
2636 }
2637
2638 /* Move missing children to a list on the stack. */
2639 spin_lock_irqsave(&hbus->device_list_lock, flags);
2640 do {
2641 found = false;
2642 list_for_each_entry(hpdev, &hbus->children, list_entry) {
2643 if (hpdev->reported_missing) {
2644 found = true;
2645 put_pcichild(hpdev);
2646 list_move_tail(&hpdev->list_entry, &removed);
2647 break;
2648 }
2649 }
2650 } while (found);
2651 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2652
2653 /* Delete everything that should no longer exist. */
2654 while (!list_empty(&removed)) {
2655 hpdev = list_first_entry(&removed, struct hv_pci_dev,
2656 list_entry);
2657 list_del(&hpdev->list_entry);
2658
2659 if (hpdev->pci_slot)
2660 pci_destroy_slot(hpdev->pci_slot);
2661
2662 put_pcichild(hpdev);
2663 }
2664
2665 switch (hbus->state) {
2666 case hv_pcibus_installed:
2667 /*
2668 * Tell the core to rescan bus
2669 * because there may have been changes.
2670 */
2671 pci_lock_rescan_remove();
2672 pci_scan_child_bus(hbus->bridge->bus);
2673 hv_pci_assign_numa_node(hbus);
2674 hv_pci_assign_slots(hbus);
2675 pci_unlock_rescan_remove();
2676 break;
2677
2678 case hv_pcibus_init:
2679 case hv_pcibus_probed:
2680 survey_child_resources(hbus);
2681 break;
2682
2683 default:
2684 break;
2685 }
2686
2687 mutex_unlock(&hbus->state_lock);
2688
2689 kfree(dr);
2690}
2691
2692/**
2693 * hv_pci_start_relations_work() - Queue work to start device discovery
2694 * @hbus: Root PCI bus, as understood by this driver
2695 * @dr: The list of children returned from host
2696 *
2697 * Return: 0 on success, -errno on failure
2698 */
2699static int hv_pci_start_relations_work(struct hv_pcibus_device *hbus,
2700 struct hv_dr_state *dr)
2701{
2702 struct hv_dr_work *dr_wrk;
2703 unsigned long flags;
2704 bool pending_dr;
2705
2706 if (hbus->state == hv_pcibus_removing) {
2707 dev_info(&hbus->hdev->device,
2708 "PCI VMBus BUS_RELATIONS: ignored\n");
2709 return -ENOENT;
2710 }
2711
2712 dr_wrk = kzalloc(sizeof(*dr_wrk), GFP_NOWAIT);
2713 if (!dr_wrk)
2714 return -ENOMEM;
2715
2716 INIT_WORK(&dr_wrk->wrk, pci_devices_present_work);
2717 dr_wrk->bus = hbus;
2718
2719 spin_lock_irqsave(&hbus->device_list_lock, flags);
2720 /*
2721 * If pending_dr is true, we have already queued a work,
2722 * which will see the new dr. Otherwise, we need to
2723 * queue a new work.
2724 */
2725 pending_dr = !list_empty(&hbus->dr_list);
2726 list_add_tail(&dr->list_entry, &hbus->dr_list);
2727 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2728
2729 if (pending_dr)
2730 kfree(dr_wrk);
2731 else
2732 queue_work(hbus->wq, &dr_wrk->wrk);
2733
2734 return 0;
2735}
2736
2737/**
2738 * hv_pci_devices_present() - Handle list of new children
2739 * @hbus: Root PCI bus, as understood by this driver
2740 * @relations: Packet from host listing children
2741 *
2742 * Process a new list of devices on the bus. The list of devices is
2743 * discovered by VSP and sent to us via VSP message PCI_BUS_RELATIONS,
2744 * whenever a new list of devices for this bus appears.
2745 */
2746static void hv_pci_devices_present(struct hv_pcibus_device *hbus,
2747 struct pci_bus_relations *relations)
2748{
2749 struct hv_dr_state *dr;
2750 int i;
2751
2752 dr = kzalloc(struct_size(dr, func, relations->device_count),
2753 GFP_NOWAIT);
2754 if (!dr)
2755 return;
2756
2757 dr->device_count = relations->device_count;
2758 for (i = 0; i < dr->device_count; i++) {
2759 dr->func[i].v_id = relations->func[i].v_id;
2760 dr->func[i].d_id = relations->func[i].d_id;
2761 dr->func[i].rev = relations->func[i].rev;
2762 dr->func[i].prog_intf = relations->func[i].prog_intf;
2763 dr->func[i].subclass = relations->func[i].subclass;
2764 dr->func[i].base_class = relations->func[i].base_class;
2765 dr->func[i].subsystem_id = relations->func[i].subsystem_id;
2766 dr->func[i].win_slot = relations->func[i].win_slot;
2767 dr->func[i].ser = relations->func[i].ser;
2768 }
2769
2770 if (hv_pci_start_relations_work(hbus, dr))
2771 kfree(dr);
2772}
2773
2774/**
2775 * hv_pci_devices_present2() - Handle list of new children
2776 * @hbus: Root PCI bus, as understood by this driver
2777 * @relations: Packet from host listing children
2778 *
2779 * This function is the v2 version of hv_pci_devices_present()
2780 */
2781static void hv_pci_devices_present2(struct hv_pcibus_device *hbus,
2782 struct pci_bus_relations2 *relations)
2783{
2784 struct hv_dr_state *dr;
2785 int i;
2786
2787 dr = kzalloc(struct_size(dr, func, relations->device_count),
2788 GFP_NOWAIT);
2789 if (!dr)
2790 return;
2791
2792 dr->device_count = relations->device_count;
2793 for (i = 0; i < dr->device_count; i++) {
2794 dr->func[i].v_id = relations->func[i].v_id;
2795 dr->func[i].d_id = relations->func[i].d_id;
2796 dr->func[i].rev = relations->func[i].rev;
2797 dr->func[i].prog_intf = relations->func[i].prog_intf;
2798 dr->func[i].subclass = relations->func[i].subclass;
2799 dr->func[i].base_class = relations->func[i].base_class;
2800 dr->func[i].subsystem_id = relations->func[i].subsystem_id;
2801 dr->func[i].win_slot = relations->func[i].win_slot;
2802 dr->func[i].ser = relations->func[i].ser;
2803 dr->func[i].flags = relations->func[i].flags;
2804 dr->func[i].virtual_numa_node =
2805 relations->func[i].virtual_numa_node;
2806 }
2807
2808 if (hv_pci_start_relations_work(hbus, dr))
2809 kfree(dr);
2810}
2811
2812/**
2813 * hv_eject_device_work() - Asynchronously handles ejection
2814 * @work: Work struct embedded in internal device struct
2815 *
2816 * This function handles ejecting a device. Windows will
2817 * attempt to gracefully eject a device, waiting 60 seconds to
2818 * hear back from the guest OS that this completed successfully.
2819 * If this timer expires, the device will be forcibly removed.
2820 */
2821static void hv_eject_device_work(struct work_struct *work)
2822{
2823 struct pci_eject_response *ejct_pkt;
2824 struct hv_pcibus_device *hbus;
2825 struct hv_pci_dev *hpdev;
2826 struct pci_dev *pdev;
2827 unsigned long flags;
2828 int wslot;
2829 struct {
2830 struct pci_packet pkt;
2831 u8 buffer[sizeof(struct pci_eject_response)];
2832 } ctxt;
2833
2834 hpdev = container_of(work, struct hv_pci_dev, wrk);
2835 hbus = hpdev->hbus;
2836
2837 mutex_lock(&hbus->state_lock);
2838
2839 /*
2840 * Ejection can come before or after the PCI bus has been set up, so
2841 * attempt to find it and tear down the bus state, if it exists. This
2842 * must be done without constructs like pci_domain_nr(hbus->bridge->bus)
2843 * because hbus->bridge->bus may not exist yet.
2844 */
2845 wslot = wslot_to_devfn(hpdev->desc.win_slot.slot);
2846 pdev = pci_get_domain_bus_and_slot(hbus->bridge->domain_nr, 0, wslot);
2847 if (pdev) {
2848 pci_lock_rescan_remove();
2849 pci_stop_and_remove_bus_device(pdev);
2850 pci_dev_put(pdev);
2851 pci_unlock_rescan_remove();
2852 }
2853
2854 spin_lock_irqsave(&hbus->device_list_lock, flags);
2855 list_del(&hpdev->list_entry);
2856 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2857
2858 if (hpdev->pci_slot)
2859 pci_destroy_slot(hpdev->pci_slot);
2860
2861 memset(&ctxt, 0, sizeof(ctxt));
2862 ejct_pkt = (struct pci_eject_response *)&ctxt.pkt.message;
2863 ejct_pkt->message_type.type = PCI_EJECTION_COMPLETE;
2864 ejct_pkt->wslot.slot = hpdev->desc.win_slot.slot;
2865 vmbus_sendpacket(hbus->hdev->channel, ejct_pkt,
2866 sizeof(*ejct_pkt), 0,
2867 VM_PKT_DATA_INBAND, 0);
2868
2869 /* For the get_pcichild() in hv_pci_eject_device() */
2870 put_pcichild(hpdev);
2871 /* For the two refs got in new_pcichild_device() */
2872 put_pcichild(hpdev);
2873 put_pcichild(hpdev);
2874 /* hpdev has been freed. Do not use it any more. */
2875
2876 mutex_unlock(&hbus->state_lock);
2877}
2878
2879/**
2880 * hv_pci_eject_device() - Handles device ejection
2881 * @hpdev: Internal device tracking struct
2882 *
2883 * This function is invoked when an ejection packet arrives. It
2884 * just schedules work so that we don't re-enter the packet
2885 * delivery code handling the ejection.
2886 */
2887static void hv_pci_eject_device(struct hv_pci_dev *hpdev)
2888{
2889 struct hv_pcibus_device *hbus = hpdev->hbus;
2890 struct hv_device *hdev = hbus->hdev;
2891
2892 if (hbus->state == hv_pcibus_removing) {
2893 dev_info(&hdev->device, "PCI VMBus EJECT: ignored\n");
2894 return;
2895 }
2896
2897 get_pcichild(hpdev);
2898 INIT_WORK(&hpdev->wrk, hv_eject_device_work);
2899 queue_work(hbus->wq, &hpdev->wrk);
2900}
2901
2902/**
2903 * hv_pci_onchannelcallback() - Handles incoming packets
2904 * @context: Internal bus tracking struct
2905 *
2906 * This function is invoked whenever the host sends a packet to
2907 * this channel (which is private to this root PCI bus).
2908 */
2909static void hv_pci_onchannelcallback(void *context)
2910{
2911 const int packet_size = 0x100;
2912 int ret;
2913 struct hv_pcibus_device *hbus = context;
2914 struct vmbus_channel *chan = hbus->hdev->channel;
2915 u32 bytes_recvd;
2916 u64 req_id, req_addr;
2917 struct vmpacket_descriptor *desc;
2918 unsigned char *buffer;
2919 int bufferlen = packet_size;
2920 struct pci_packet *comp_packet;
2921 struct pci_response *response;
2922 struct pci_incoming_message *new_message;
2923 struct pci_bus_relations *bus_rel;
2924 struct pci_bus_relations2 *bus_rel2;
2925 struct pci_dev_inval_block *inval;
2926 struct pci_dev_incoming *dev_message;
2927 struct hv_pci_dev *hpdev;
2928 unsigned long flags;
2929
2930 buffer = kmalloc(bufferlen, GFP_ATOMIC);
2931 if (!buffer)
2932 return;
2933
2934 while (1) {
2935 ret = vmbus_recvpacket_raw(chan, buffer, bufferlen,
2936 &bytes_recvd, &req_id);
2937
2938 if (ret == -ENOBUFS) {
2939 kfree(buffer);
2940 /* Handle large packet */
2941 bufferlen = bytes_recvd;
2942 buffer = kmalloc(bytes_recvd, GFP_ATOMIC);
2943 if (!buffer)
2944 return;
2945 continue;
2946 }
2947
2948 /* Zero length indicates there are no more packets. */
2949 if (ret || !bytes_recvd)
2950 break;
2951
2952 /*
2953 * All incoming packets must be at least as large as a
2954 * response.
2955 */
2956 if (bytes_recvd <= sizeof(struct pci_response))
2957 continue;
2958 desc = (struct vmpacket_descriptor *)buffer;
2959
2960 switch (desc->type) {
2961 case VM_PKT_COMP:
2962
2963 lock_requestor(chan, flags);
2964 req_addr = __vmbus_request_addr_match(chan, req_id,
2965 VMBUS_RQST_ADDR_ANY);
2966 if (req_addr == VMBUS_RQST_ERROR) {
2967 unlock_requestor(chan, flags);
2968 dev_err(&hbus->hdev->device,
2969 "Invalid transaction ID %llx\n",
2970 req_id);
2971 break;
2972 }
2973 comp_packet = (struct pci_packet *)req_addr;
2974 response = (struct pci_response *)buffer;
2975 /*
2976 * Call ->completion_func() within the critical section to make
2977 * sure that the packet pointer is still valid during the call:
2978 * here 'valid' means that there's a task still waiting for the
2979 * completion, and that the packet data is still on the waiting
2980 * task's stack. Cf. hv_compose_msi_msg().
2981 */
2982 comp_packet->completion_func(comp_packet->compl_ctxt,
2983 response,
2984 bytes_recvd);
2985 unlock_requestor(chan, flags);
2986 break;
2987
2988 case VM_PKT_DATA_INBAND:
2989
2990 new_message = (struct pci_incoming_message *)buffer;
2991 switch (new_message->message_type.type) {
2992 case PCI_BUS_RELATIONS:
2993
2994 bus_rel = (struct pci_bus_relations *)buffer;
2995 if (bytes_recvd < sizeof(*bus_rel) ||
2996 bytes_recvd <
2997 struct_size(bus_rel, func,
2998 bus_rel->device_count)) {
2999 dev_err(&hbus->hdev->device,
3000 "bus relations too small\n");
3001 break;
3002 }
3003
3004 hv_pci_devices_present(hbus, bus_rel);
3005 break;
3006
3007 case PCI_BUS_RELATIONS2:
3008
3009 bus_rel2 = (struct pci_bus_relations2 *)buffer;
3010 if (bytes_recvd < sizeof(*bus_rel2) ||
3011 bytes_recvd <
3012 struct_size(bus_rel2, func,
3013 bus_rel2->device_count)) {
3014 dev_err(&hbus->hdev->device,
3015 "bus relations v2 too small\n");
3016 break;
3017 }
3018
3019 hv_pci_devices_present2(hbus, bus_rel2);
3020 break;
3021
3022 case PCI_EJECT:
3023
3024 dev_message = (struct pci_dev_incoming *)buffer;
3025 if (bytes_recvd < sizeof(*dev_message)) {
3026 dev_err(&hbus->hdev->device,
3027 "eject message too small\n");
3028 break;
3029 }
3030 hpdev = get_pcichild_wslot(hbus,
3031 dev_message->wslot.slot);
3032 if (hpdev) {
3033 hv_pci_eject_device(hpdev);
3034 put_pcichild(hpdev);
3035 }
3036 break;
3037
3038 case PCI_INVALIDATE_BLOCK:
3039
3040 inval = (struct pci_dev_inval_block *)buffer;
3041 if (bytes_recvd < sizeof(*inval)) {
3042 dev_err(&hbus->hdev->device,
3043 "invalidate message too small\n");
3044 break;
3045 }
3046 hpdev = get_pcichild_wslot(hbus,
3047 inval->wslot.slot);
3048 if (hpdev) {
3049 if (hpdev->block_invalidate) {
3050 hpdev->block_invalidate(
3051 hpdev->invalidate_context,
3052 inval->block_mask);
3053 }
3054 put_pcichild(hpdev);
3055 }
3056 break;
3057
3058 default:
3059 dev_warn(&hbus->hdev->device,
3060 "Unimplemented protocol message %x\n",
3061 new_message->message_type.type);
3062 break;
3063 }
3064 break;
3065
3066 default:
3067 dev_err(&hbus->hdev->device,
3068 "unhandled packet type %d, tid %llx len %d\n",
3069 desc->type, req_id, bytes_recvd);
3070 break;
3071 }
3072 }
3073
3074 kfree(buffer);
3075}
3076
3077/**
3078 * hv_pci_protocol_negotiation() - Set up protocol
3079 * @hdev: VMBus's tracking struct for this root PCI bus.
3080 * @version: Array of supported channel protocol versions in
3081 * the order of probing - highest go first.
3082 * @num_version: Number of elements in the version array.
3083 *
3084 * This driver is intended to support running on Windows 10
3085 * (server) and later versions. It will not run on earlier
3086 * versions, as they assume that many of the operations which
3087 * Linux needs accomplished with a spinlock held were done via
3088 * asynchronous messaging via VMBus. Windows 10 increases the
3089 * surface area of PCI emulation so that these actions can take
3090 * place by suspending a virtual processor for their duration.
3091 *
3092 * This function negotiates the channel protocol version,
3093 * failing if the host doesn't support the necessary protocol
3094 * level.
3095 */
3096static int hv_pci_protocol_negotiation(struct hv_device *hdev,
3097 enum pci_protocol_version_t version[],
3098 int num_version)
3099{
3100 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3101 struct pci_version_request *version_req;
3102 struct hv_pci_compl comp_pkt;
3103 struct pci_packet *pkt;
3104 int ret;
3105 int i;
3106
3107 /*
3108 * Initiate the handshake with the host and negotiate
3109 * a version that the host can support. We start with the
3110 * highest version number and go down if the host cannot
3111 * support it.
3112 */
3113 pkt = kzalloc(sizeof(*pkt) + sizeof(*version_req), GFP_KERNEL);
3114 if (!pkt)
3115 return -ENOMEM;
3116
3117 init_completion(&comp_pkt.host_event);
3118 pkt->completion_func = hv_pci_generic_compl;
3119 pkt->compl_ctxt = &comp_pkt;
3120 version_req = (struct pci_version_request *)&pkt->message;
3121 version_req->message_type.type = PCI_QUERY_PROTOCOL_VERSION;
3122
3123 for (i = 0; i < num_version; i++) {
3124 version_req->protocol_version = version[i];
3125 ret = vmbus_sendpacket(hdev->channel, version_req,
3126 sizeof(struct pci_version_request),
3127 (unsigned long)pkt, VM_PKT_DATA_INBAND,
3128 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3129 if (!ret)
3130 ret = wait_for_response(hdev, &comp_pkt.host_event);
3131
3132 if (ret) {
3133 dev_err(&hdev->device,
3134 "PCI Pass-through VSP failed to request version: %d",
3135 ret);
3136 goto exit;
3137 }
3138
3139 if (comp_pkt.completion_status >= 0) {
3140 hbus->protocol_version = version[i];
3141 dev_info(&hdev->device,
3142 "PCI VMBus probing: Using version %#x\n",
3143 hbus->protocol_version);
3144 goto exit;
3145 }
3146
3147 if (comp_pkt.completion_status != STATUS_REVISION_MISMATCH) {
3148 dev_err(&hdev->device,
3149 "PCI Pass-through VSP failed version request: %#x",
3150 comp_pkt.completion_status);
3151 ret = -EPROTO;
3152 goto exit;
3153 }
3154
3155 reinit_completion(&comp_pkt.host_event);
3156 }
3157
3158 dev_err(&hdev->device,
3159 "PCI pass-through VSP failed to find supported version");
3160 ret = -EPROTO;
3161
3162exit:
3163 kfree(pkt);
3164 return ret;
3165}
3166
3167/**
3168 * hv_pci_free_bridge_windows() - Release memory regions for the
3169 * bus
3170 * @hbus: Root PCI bus, as understood by this driver
3171 */
3172static void hv_pci_free_bridge_windows(struct hv_pcibus_device *hbus)
3173{
3174 /*
3175 * Set the resources back to the way they looked when they
3176 * were allocated by setting IORESOURCE_BUSY again.
3177 */
3178
3179 if (hbus->low_mmio_space && hbus->low_mmio_res) {
3180 hbus->low_mmio_res->flags |= IORESOURCE_BUSY;
3181 vmbus_free_mmio(hbus->low_mmio_res->start,
3182 resource_size(hbus->low_mmio_res));
3183 }
3184
3185 if (hbus->high_mmio_space && hbus->high_mmio_res) {
3186 hbus->high_mmio_res->flags |= IORESOURCE_BUSY;
3187 vmbus_free_mmio(hbus->high_mmio_res->start,
3188 resource_size(hbus->high_mmio_res));
3189 }
3190}
3191
3192/**
3193 * hv_pci_allocate_bridge_windows() - Allocate memory regions
3194 * for the bus
3195 * @hbus: Root PCI bus, as understood by this driver
3196 *
3197 * This function calls vmbus_allocate_mmio(), which is itself a
3198 * bit of a compromise. Ideally, we might change the pnp layer
3199 * in the kernel such that it comprehends either PCI devices
3200 * which are "grandchildren of ACPI," with some intermediate bus
3201 * node (in this case, VMBus) or change it such that it
3202 * understands VMBus. The pnp layer, however, has been declared
3203 * deprecated, and not subject to change.
3204 *
3205 * The workaround, implemented here, is to ask VMBus to allocate
3206 * MMIO space for this bus. VMBus itself knows which ranges are
3207 * appropriate by looking at its own ACPI objects. Then, after
3208 * these ranges are claimed, they're modified to look like they
3209 * would have looked if the ACPI and pnp code had allocated
3210 * bridge windows. These descriptors have to exist in this form
3211 * in order to satisfy the code which will get invoked when the
3212 * endpoint PCI function driver calls request_mem_region() or
3213 * request_mem_region_exclusive().
3214 *
3215 * Return: 0 on success, -errno on failure
3216 */
3217static int hv_pci_allocate_bridge_windows(struct hv_pcibus_device *hbus)
3218{
3219 resource_size_t align;
3220 int ret;
3221
3222 if (hbus->low_mmio_space) {
3223 align = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
3224 ret = vmbus_allocate_mmio(&hbus->low_mmio_res, hbus->hdev, 0,
3225 (u64)(u32)0xffffffff,
3226 hbus->low_mmio_space,
3227 align, false);
3228 if (ret) {
3229 dev_err(&hbus->hdev->device,
3230 "Need %#llx of low MMIO space. Consider reconfiguring the VM.\n",
3231 hbus->low_mmio_space);
3232 return ret;
3233 }
3234
3235 /* Modify this resource to become a bridge window. */
3236 hbus->low_mmio_res->flags |= IORESOURCE_WINDOW;
3237 hbus->low_mmio_res->flags &= ~IORESOURCE_BUSY;
3238 pci_add_resource(&hbus->bridge->windows, hbus->low_mmio_res);
3239 }
3240
3241 if (hbus->high_mmio_space) {
3242 align = 1ULL << (63 - __builtin_clzll(hbus->high_mmio_space));
3243 ret = vmbus_allocate_mmio(&hbus->high_mmio_res, hbus->hdev,
3244 0x100000000, -1,
3245 hbus->high_mmio_space, align,
3246 false);
3247 if (ret) {
3248 dev_err(&hbus->hdev->device,
3249 "Need %#llx of high MMIO space. Consider reconfiguring the VM.\n",
3250 hbus->high_mmio_space);
3251 goto release_low_mmio;
3252 }
3253
3254 /* Modify this resource to become a bridge window. */
3255 hbus->high_mmio_res->flags |= IORESOURCE_WINDOW;
3256 hbus->high_mmio_res->flags &= ~IORESOURCE_BUSY;
3257 pci_add_resource(&hbus->bridge->windows, hbus->high_mmio_res);
3258 }
3259
3260 return 0;
3261
3262release_low_mmio:
3263 if (hbus->low_mmio_res) {
3264 vmbus_free_mmio(hbus->low_mmio_res->start,
3265 resource_size(hbus->low_mmio_res));
3266 }
3267
3268 return ret;
3269}
3270
3271/**
3272 * hv_allocate_config_window() - Find MMIO space for PCI Config
3273 * @hbus: Root PCI bus, as understood by this driver
3274 *
3275 * This function claims memory-mapped I/O space for accessing
3276 * configuration space for the functions on this bus.
3277 *
3278 * Return: 0 on success, -errno on failure
3279 */
3280static int hv_allocate_config_window(struct hv_pcibus_device *hbus)
3281{
3282 int ret;
3283
3284 /*
3285 * Set up a region of MMIO space to use for accessing configuration
3286 * space.
3287 */
3288 ret = vmbus_allocate_mmio(&hbus->mem_config, hbus->hdev, 0, -1,
3289 PCI_CONFIG_MMIO_LENGTH, 0x1000, false);
3290 if (ret)
3291 return ret;
3292
3293 /*
3294 * vmbus_allocate_mmio() gets used for allocating both device endpoint
3295 * resource claims (those which cannot be overlapped) and the ranges
3296 * which are valid for the children of this bus, which are intended
3297 * to be overlapped by those children. Set the flag on this claim
3298 * meaning that this region can't be overlapped.
3299 */
3300
3301 hbus->mem_config->flags |= IORESOURCE_BUSY;
3302
3303 return 0;
3304}
3305
3306static void hv_free_config_window(struct hv_pcibus_device *hbus)
3307{
3308 vmbus_free_mmio(hbus->mem_config->start, PCI_CONFIG_MMIO_LENGTH);
3309}
3310
3311static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs);
3312
3313/**
3314 * hv_pci_enter_d0() - Bring the "bus" into the D0 power state
3315 * @hdev: VMBus's tracking struct for this root PCI bus
3316 *
3317 * Return: 0 on success, -errno on failure
3318 */
3319static int hv_pci_enter_d0(struct hv_device *hdev)
3320{
3321 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3322 struct pci_bus_d0_entry *d0_entry;
3323 struct hv_pci_compl comp_pkt;
3324 struct pci_packet *pkt;
3325 bool retry = true;
3326 int ret;
3327
3328enter_d0_retry:
3329 /*
3330 * Tell the host that the bus is ready to use, and moved into the
3331 * powered-on state. This includes telling the host which region
3332 * of memory-mapped I/O space has been chosen for configuration space
3333 * access.
3334 */
3335 pkt = kzalloc(sizeof(*pkt) + sizeof(*d0_entry), GFP_KERNEL);
3336 if (!pkt)
3337 return -ENOMEM;
3338
3339 init_completion(&comp_pkt.host_event);
3340 pkt->completion_func = hv_pci_generic_compl;
3341 pkt->compl_ctxt = &comp_pkt;
3342 d0_entry = (struct pci_bus_d0_entry *)&pkt->message;
3343 d0_entry->message_type.type = PCI_BUS_D0ENTRY;
3344 d0_entry->mmio_base = hbus->mem_config->start;
3345
3346 ret = vmbus_sendpacket(hdev->channel, d0_entry, sizeof(*d0_entry),
3347 (unsigned long)pkt, VM_PKT_DATA_INBAND,
3348 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3349 if (!ret)
3350 ret = wait_for_response(hdev, &comp_pkt.host_event);
3351
3352 if (ret)
3353 goto exit;
3354
3355 /*
3356 * In certain case (Kdump) the pci device of interest was
3357 * not cleanly shut down and resource is still held on host
3358 * side, the host could return invalid device status.
3359 * We need to explicitly request host to release the resource
3360 * and try to enter D0 again.
3361 */
3362 if (comp_pkt.completion_status < 0 && retry) {
3363 retry = false;
3364
3365 dev_err(&hdev->device, "Retrying D0 Entry\n");
3366
3367 /*
3368 * Hv_pci_bus_exit() calls hv_send_resource_released()
3369 * to free up resources of its child devices.
3370 * In the kdump kernel we need to set the
3371 * wslot_res_allocated to 255 so it scans all child
3372 * devices to release resources allocated in the
3373 * normal kernel before panic happened.
3374 */
3375 hbus->wslot_res_allocated = 255;
3376
3377 ret = hv_pci_bus_exit(hdev, true);
3378
3379 if (ret == 0) {
3380 kfree(pkt);
3381 goto enter_d0_retry;
3382 }
3383 dev_err(&hdev->device,
3384 "Retrying D0 failed with ret %d\n", ret);
3385 }
3386
3387 if (comp_pkt.completion_status < 0) {
3388 dev_err(&hdev->device,
3389 "PCI Pass-through VSP failed D0 Entry with status %x\n",
3390 comp_pkt.completion_status);
3391 ret = -EPROTO;
3392 goto exit;
3393 }
3394
3395 ret = 0;
3396
3397exit:
3398 kfree(pkt);
3399 return ret;
3400}
3401
3402/**
3403 * hv_pci_query_relations() - Ask host to send list of child
3404 * devices
3405 * @hdev: VMBus's tracking struct for this root PCI bus
3406 *
3407 * Return: 0 on success, -errno on failure
3408 */
3409static int hv_pci_query_relations(struct hv_device *hdev)
3410{
3411 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3412 struct pci_message message;
3413 struct completion comp;
3414 int ret;
3415
3416 /* Ask the host to send along the list of child devices */
3417 init_completion(&comp);
3418 if (cmpxchg(&hbus->survey_event, NULL, &comp))
3419 return -ENOTEMPTY;
3420
3421 memset(&message, 0, sizeof(message));
3422 message.type = PCI_QUERY_BUS_RELATIONS;
3423
3424 ret = vmbus_sendpacket(hdev->channel, &message, sizeof(message),
3425 0, VM_PKT_DATA_INBAND, 0);
3426 if (!ret)
3427 ret = wait_for_response(hdev, &comp);
3428
3429 /*
3430 * In the case of fast device addition/removal, it's possible that
3431 * vmbus_sendpacket() or wait_for_response() returns -ENODEV but we
3432 * already got a PCI_BUS_RELATIONS* message from the host and the
3433 * channel callback already scheduled a work to hbus->wq, which can be
3434 * running pci_devices_present_work() -> survey_child_resources() ->
3435 * complete(&hbus->survey_event), even after hv_pci_query_relations()
3436 * exits and the stack variable 'comp' is no longer valid; as a result,
3437 * a hang or a page fault may happen when the complete() calls
3438 * raw_spin_lock_irqsave(). Flush hbus->wq before we exit from
3439 * hv_pci_query_relations() to avoid the issues. Note: if 'ret' is
3440 * -ENODEV, there can't be any more work item scheduled to hbus->wq
3441 * after the flush_workqueue(): see vmbus_onoffer_rescind() ->
3442 * vmbus_reset_channel_cb(), vmbus_rescind_cleanup() ->
3443 * channel->rescind = true.
3444 */
3445 flush_workqueue(hbus->wq);
3446
3447 return ret;
3448}
3449
3450/**
3451 * hv_send_resources_allocated() - Report local resource choices
3452 * @hdev: VMBus's tracking struct for this root PCI bus
3453 *
3454 * The host OS is expecting to be sent a request as a message
3455 * which contains all the resources that the device will use.
3456 * The response contains those same resources, "translated"
3457 * which is to say, the values which should be used by the
3458 * hardware, when it delivers an interrupt. (MMIO resources are
3459 * used in local terms.) This is nice for Windows, and lines up
3460 * with the FDO/PDO split, which doesn't exist in Linux. Linux
3461 * is deeply expecting to scan an emulated PCI configuration
3462 * space. So this message is sent here only to drive the state
3463 * machine on the host forward.
3464 *
3465 * Return: 0 on success, -errno on failure
3466 */
3467static int hv_send_resources_allocated(struct hv_device *hdev)
3468{
3469 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3470 struct pci_resources_assigned *res_assigned;
3471 struct pci_resources_assigned2 *res_assigned2;
3472 struct hv_pci_compl comp_pkt;
3473 struct hv_pci_dev *hpdev;
3474 struct pci_packet *pkt;
3475 size_t size_res;
3476 int wslot;
3477 int ret;
3478
3479 size_res = (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2)
3480 ? sizeof(*res_assigned) : sizeof(*res_assigned2);
3481
3482 pkt = kmalloc(sizeof(*pkt) + size_res, GFP_KERNEL);
3483 if (!pkt)
3484 return -ENOMEM;
3485
3486 ret = 0;
3487
3488 for (wslot = 0; wslot < 256; wslot++) {
3489 hpdev = get_pcichild_wslot(hbus, wslot);
3490 if (!hpdev)
3491 continue;
3492
3493 memset(pkt, 0, sizeof(*pkt) + size_res);
3494 init_completion(&comp_pkt.host_event);
3495 pkt->completion_func = hv_pci_generic_compl;
3496 pkt->compl_ctxt = &comp_pkt;
3497
3498 if (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2) {
3499 res_assigned =
3500 (struct pci_resources_assigned *)&pkt->message;
3501 res_assigned->message_type.type =
3502 PCI_RESOURCES_ASSIGNED;
3503 res_assigned->wslot.slot = hpdev->desc.win_slot.slot;
3504 } else {
3505 res_assigned2 =
3506 (struct pci_resources_assigned2 *)&pkt->message;
3507 res_assigned2->message_type.type =
3508 PCI_RESOURCES_ASSIGNED2;
3509 res_assigned2->wslot.slot = hpdev->desc.win_slot.slot;
3510 }
3511 put_pcichild(hpdev);
3512
3513 ret = vmbus_sendpacket(hdev->channel, &pkt->message,
3514 size_res, (unsigned long)pkt,
3515 VM_PKT_DATA_INBAND,
3516 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3517 if (!ret)
3518 ret = wait_for_response(hdev, &comp_pkt.host_event);
3519 if (ret)
3520 break;
3521
3522 if (comp_pkt.completion_status < 0) {
3523 ret = -EPROTO;
3524 dev_err(&hdev->device,
3525 "resource allocated returned 0x%x",
3526 comp_pkt.completion_status);
3527 break;
3528 }
3529
3530 hbus->wslot_res_allocated = wslot;
3531 }
3532
3533 kfree(pkt);
3534 return ret;
3535}
3536
3537/**
3538 * hv_send_resources_released() - Report local resources
3539 * released
3540 * @hdev: VMBus's tracking struct for this root PCI bus
3541 *
3542 * Return: 0 on success, -errno on failure
3543 */
3544static int hv_send_resources_released(struct hv_device *hdev)
3545{
3546 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3547 struct pci_child_message pkt;
3548 struct hv_pci_dev *hpdev;
3549 int wslot;
3550 int ret;
3551
3552 for (wslot = hbus->wslot_res_allocated; wslot >= 0; wslot--) {
3553 hpdev = get_pcichild_wslot(hbus, wslot);
3554 if (!hpdev)
3555 continue;
3556
3557 memset(&pkt, 0, sizeof(pkt));
3558 pkt.message_type.type = PCI_RESOURCES_RELEASED;
3559 pkt.wslot.slot = hpdev->desc.win_slot.slot;
3560
3561 put_pcichild(hpdev);
3562
3563 ret = vmbus_sendpacket(hdev->channel, &pkt, sizeof(pkt), 0,
3564 VM_PKT_DATA_INBAND, 0);
3565 if (ret)
3566 return ret;
3567
3568 hbus->wslot_res_allocated = wslot - 1;
3569 }
3570
3571 hbus->wslot_res_allocated = -1;
3572
3573 return 0;
3574}
3575
3576#define HVPCI_DOM_MAP_SIZE (64 * 1024)
3577static DECLARE_BITMAP(hvpci_dom_map, HVPCI_DOM_MAP_SIZE);
3578
3579/*
3580 * PCI domain number 0 is used by emulated devices on Gen1 VMs, so define 0
3581 * as invalid for passthrough PCI devices of this driver.
3582 */
3583#define HVPCI_DOM_INVALID 0
3584
3585/**
3586 * hv_get_dom_num() - Get a valid PCI domain number
3587 * Check if the PCI domain number is in use, and return another number if
3588 * it is in use.
3589 *
3590 * @dom: Requested domain number
3591 *
3592 * return: domain number on success, HVPCI_DOM_INVALID on failure
3593 */
3594static u16 hv_get_dom_num(u16 dom)
3595{
3596 unsigned int i;
3597
3598 if (test_and_set_bit(dom, hvpci_dom_map) == 0)
3599 return dom;
3600
3601 for_each_clear_bit(i, hvpci_dom_map, HVPCI_DOM_MAP_SIZE) {
3602 if (test_and_set_bit(i, hvpci_dom_map) == 0)
3603 return i;
3604 }
3605
3606 return HVPCI_DOM_INVALID;
3607}
3608
3609/**
3610 * hv_put_dom_num() - Mark the PCI domain number as free
3611 * @dom: Domain number to be freed
3612 */
3613static void hv_put_dom_num(u16 dom)
3614{
3615 clear_bit(dom, hvpci_dom_map);
3616}
3617
3618/**
3619 * hv_pci_probe() - New VMBus channel probe, for a root PCI bus
3620 * @hdev: VMBus's tracking struct for this root PCI bus
3621 * @dev_id: Identifies the device itself
3622 *
3623 * Return: 0 on success, -errno on failure
3624 */
3625static int hv_pci_probe(struct hv_device *hdev,
3626 const struct hv_vmbus_device_id *dev_id)
3627{
3628 struct pci_host_bridge *bridge;
3629 struct hv_pcibus_device *hbus;
3630 u16 dom_req, dom;
3631 char *name;
3632 int ret;
3633
3634 bridge = devm_pci_alloc_host_bridge(&hdev->device, 0);
3635 if (!bridge)
3636 return -ENOMEM;
3637
3638 hbus = kzalloc(sizeof(*hbus), GFP_KERNEL);
3639 if (!hbus)
3640 return -ENOMEM;
3641
3642 hbus->bridge = bridge;
3643 mutex_init(&hbus->state_lock);
3644 hbus->state = hv_pcibus_init;
3645 hbus->wslot_res_allocated = -1;
3646
3647 /*
3648 * The PCI bus "domain" is what is called "segment" in ACPI and other
3649 * specs. Pull it from the instance ID, to get something usually
3650 * unique. In rare cases of collision, we will find out another number
3651 * not in use.
3652 *
3653 * Note that, since this code only runs in a Hyper-V VM, Hyper-V
3654 * together with this guest driver can guarantee that (1) The only
3655 * domain used by Gen1 VMs for something that looks like a physical
3656 * PCI bus (which is actually emulated by the hypervisor) is domain 0.
3657 * (2) There will be no overlap between domains (after fixing possible
3658 * collisions) in the same VM.
3659 */
3660 dom_req = hdev->dev_instance.b[5] << 8 | hdev->dev_instance.b[4];
3661 dom = hv_get_dom_num(dom_req);
3662
3663 if (dom == HVPCI_DOM_INVALID) {
3664 dev_err(&hdev->device,
3665 "Unable to use dom# 0x%x or other numbers", dom_req);
3666 ret = -EINVAL;
3667 goto free_bus;
3668 }
3669
3670 if (dom != dom_req)
3671 dev_info(&hdev->device,
3672 "PCI dom# 0x%x has collision, using 0x%x",
3673 dom_req, dom);
3674
3675 hbus->bridge->domain_nr = dom;
3676#ifdef CONFIG_X86
3677 hbus->sysdata.domain = dom;
3678 hbus->use_calls = !!(ms_hyperv.hints & HV_X64_USE_MMIO_HYPERCALLS);
3679#elif defined(CONFIG_ARM64)
3680 /*
3681 * Set the PCI bus parent to be the corresponding VMbus
3682 * device. Then the VMbus device will be assigned as the
3683 * ACPI companion in pcibios_root_bridge_prepare() and
3684 * pci_dma_configure() will propagate device coherence
3685 * information to devices created on the bus.
3686 */
3687 hbus->sysdata.parent = hdev->device.parent;
3688 hbus->use_calls = false;
3689#endif
3690
3691 hbus->hdev = hdev;
3692 INIT_LIST_HEAD(&hbus->children);
3693 INIT_LIST_HEAD(&hbus->dr_list);
3694 spin_lock_init(&hbus->config_lock);
3695 spin_lock_init(&hbus->device_list_lock);
3696 hbus->wq = alloc_ordered_workqueue("hv_pci_%x", 0,
3697 hbus->bridge->domain_nr);
3698 if (!hbus->wq) {
3699 ret = -ENOMEM;
3700 goto free_dom;
3701 }
3702
3703 hdev->channel->next_request_id_callback = vmbus_next_request_id;
3704 hdev->channel->request_addr_callback = vmbus_request_addr;
3705 hdev->channel->rqstor_size = HV_PCI_RQSTOR_SIZE;
3706
3707 ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
3708 hv_pci_onchannelcallback, hbus);
3709 if (ret)
3710 goto destroy_wq;
3711
3712 hv_set_drvdata(hdev, hbus);
3713
3714 ret = hv_pci_protocol_negotiation(hdev, pci_protocol_versions,
3715 ARRAY_SIZE(pci_protocol_versions));
3716 if (ret)
3717 goto close;
3718
3719 ret = hv_allocate_config_window(hbus);
3720 if (ret)
3721 goto close;
3722
3723 hbus->cfg_addr = ioremap(hbus->mem_config->start,
3724 PCI_CONFIG_MMIO_LENGTH);
3725 if (!hbus->cfg_addr) {
3726 dev_err(&hdev->device,
3727 "Unable to map a virtual address for config space\n");
3728 ret = -ENOMEM;
3729 goto free_config;
3730 }
3731
3732 name = kasprintf(GFP_KERNEL, "%pUL", &hdev->dev_instance);
3733 if (!name) {
3734 ret = -ENOMEM;
3735 goto unmap;
3736 }
3737
3738 hbus->fwnode = irq_domain_alloc_named_fwnode(name);
3739 kfree(name);
3740 if (!hbus->fwnode) {
3741 ret = -ENOMEM;
3742 goto unmap;
3743 }
3744
3745 ret = hv_pcie_init_irq_domain(hbus);
3746 if (ret)
3747 goto free_fwnode;
3748
3749 ret = hv_pci_query_relations(hdev);
3750 if (ret)
3751 goto free_irq_domain;
3752
3753 mutex_lock(&hbus->state_lock);
3754
3755 ret = hv_pci_enter_d0(hdev);
3756 if (ret)
3757 goto release_state_lock;
3758
3759 ret = hv_pci_allocate_bridge_windows(hbus);
3760 if (ret)
3761 goto exit_d0;
3762
3763 ret = hv_send_resources_allocated(hdev);
3764 if (ret)
3765 goto free_windows;
3766
3767 prepopulate_bars(hbus);
3768
3769 hbus->state = hv_pcibus_probed;
3770
3771 ret = create_root_hv_pci_bus(hbus);
3772 if (ret)
3773 goto free_windows;
3774
3775 mutex_unlock(&hbus->state_lock);
3776 return 0;
3777
3778free_windows:
3779 hv_pci_free_bridge_windows(hbus);
3780exit_d0:
3781 (void) hv_pci_bus_exit(hdev, true);
3782release_state_lock:
3783 mutex_unlock(&hbus->state_lock);
3784free_irq_domain:
3785 irq_domain_remove(hbus->irq_domain);
3786free_fwnode:
3787 irq_domain_free_fwnode(hbus->fwnode);
3788unmap:
3789 iounmap(hbus->cfg_addr);
3790free_config:
3791 hv_free_config_window(hbus);
3792close:
3793 vmbus_close(hdev->channel);
3794destroy_wq:
3795 destroy_workqueue(hbus->wq);
3796free_dom:
3797 hv_put_dom_num(hbus->bridge->domain_nr);
3798free_bus:
3799 kfree(hbus);
3800 return ret;
3801}
3802
3803static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs)
3804{
3805 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3806 struct vmbus_channel *chan = hdev->channel;
3807 struct {
3808 struct pci_packet teardown_packet;
3809 u8 buffer[sizeof(struct pci_message)];
3810 } pkt;
3811 struct hv_pci_compl comp_pkt;
3812 struct hv_pci_dev *hpdev, *tmp;
3813 unsigned long flags;
3814 u64 trans_id;
3815 int ret;
3816
3817 /*
3818 * After the host sends the RESCIND_CHANNEL message, it doesn't
3819 * access the per-channel ringbuffer any longer.
3820 */
3821 if (chan->rescind)
3822 return 0;
3823
3824 if (!keep_devs) {
3825 struct list_head removed;
3826
3827 /* Move all present children to the list on stack */
3828 INIT_LIST_HEAD(&removed);
3829 spin_lock_irqsave(&hbus->device_list_lock, flags);
3830 list_for_each_entry_safe(hpdev, tmp, &hbus->children, list_entry)
3831 list_move_tail(&hpdev->list_entry, &removed);
3832 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
3833
3834 /* Remove all children in the list */
3835 list_for_each_entry_safe(hpdev, tmp, &removed, list_entry) {
3836 list_del(&hpdev->list_entry);
3837 if (hpdev->pci_slot)
3838 pci_destroy_slot(hpdev->pci_slot);
3839 /* For the two refs got in new_pcichild_device() */
3840 put_pcichild(hpdev);
3841 put_pcichild(hpdev);
3842 }
3843 }
3844
3845 ret = hv_send_resources_released(hdev);
3846 if (ret) {
3847 dev_err(&hdev->device,
3848 "Couldn't send resources released packet(s)\n");
3849 return ret;
3850 }
3851
3852 memset(&pkt.teardown_packet, 0, sizeof(pkt.teardown_packet));
3853 init_completion(&comp_pkt.host_event);
3854 pkt.teardown_packet.completion_func = hv_pci_generic_compl;
3855 pkt.teardown_packet.compl_ctxt = &comp_pkt;
3856 pkt.teardown_packet.message[0].type = PCI_BUS_D0EXIT;
3857
3858 ret = vmbus_sendpacket_getid(chan, &pkt.teardown_packet.message,
3859 sizeof(struct pci_message),
3860 (unsigned long)&pkt.teardown_packet,
3861 &trans_id, VM_PKT_DATA_INBAND,
3862 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3863 if (ret)
3864 return ret;
3865
3866 if (wait_for_completion_timeout(&comp_pkt.host_event, 10 * HZ) == 0) {
3867 /*
3868 * The completion packet on the stack becomes invalid after
3869 * 'return'; remove the ID from the VMbus requestor if the
3870 * identifier is still mapped to/associated with the packet.
3871 *
3872 * Cf. hv_pci_onchannelcallback().
3873 */
3874 vmbus_request_addr_match(chan, trans_id,
3875 (unsigned long)&pkt.teardown_packet);
3876 return -ETIMEDOUT;
3877 }
3878
3879 return 0;
3880}
3881
3882/**
3883 * hv_pci_remove() - Remove routine for this VMBus channel
3884 * @hdev: VMBus's tracking struct for this root PCI bus
3885 */
3886static void hv_pci_remove(struct hv_device *hdev)
3887{
3888 struct hv_pcibus_device *hbus;
3889
3890 hbus = hv_get_drvdata(hdev);
3891 if (hbus->state == hv_pcibus_installed) {
3892 tasklet_disable(&hdev->channel->callback_event);
3893 hbus->state = hv_pcibus_removing;
3894 tasklet_enable(&hdev->channel->callback_event);
3895 destroy_workqueue(hbus->wq);
3896 hbus->wq = NULL;
3897 /*
3898 * At this point, no work is running or can be scheduled
3899 * on hbus-wq. We can't race with hv_pci_devices_present()
3900 * or hv_pci_eject_device(), it's safe to proceed.
3901 */
3902
3903 /* Remove the bus from PCI's point of view. */
3904 pci_lock_rescan_remove();
3905 pci_stop_root_bus(hbus->bridge->bus);
3906 hv_pci_remove_slots(hbus);
3907 pci_remove_root_bus(hbus->bridge->bus);
3908 pci_unlock_rescan_remove();
3909 }
3910
3911 hv_pci_bus_exit(hdev, false);
3912
3913 vmbus_close(hdev->channel);
3914
3915 iounmap(hbus->cfg_addr);
3916 hv_free_config_window(hbus);
3917 hv_pci_free_bridge_windows(hbus);
3918 irq_domain_remove(hbus->irq_domain);
3919 irq_domain_free_fwnode(hbus->fwnode);
3920
3921 hv_put_dom_num(hbus->bridge->domain_nr);
3922
3923 kfree(hbus);
3924}
3925
3926static int hv_pci_suspend(struct hv_device *hdev)
3927{
3928 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3929 enum hv_pcibus_state old_state;
3930 int ret;
3931
3932 /*
3933 * hv_pci_suspend() must make sure there are no pending work items
3934 * before calling vmbus_close(), since it runs in a process context
3935 * as a callback in dpm_suspend(). When it starts to run, the channel
3936 * callback hv_pci_onchannelcallback(), which runs in a tasklet
3937 * context, can be still running concurrently and scheduling new work
3938 * items onto hbus->wq in hv_pci_devices_present() and
3939 * hv_pci_eject_device(), and the work item handlers can access the
3940 * vmbus channel, which can be being closed by hv_pci_suspend(), e.g.
3941 * the work item handler pci_devices_present_work() ->
3942 * new_pcichild_device() writes to the vmbus channel.
3943 *
3944 * To eliminate the race, hv_pci_suspend() disables the channel
3945 * callback tasklet, sets hbus->state to hv_pcibus_removing, and
3946 * re-enables the tasklet. This way, when hv_pci_suspend() proceeds,
3947 * it knows that no new work item can be scheduled, and then it flushes
3948 * hbus->wq and safely closes the vmbus channel.
3949 */
3950 tasklet_disable(&hdev->channel->callback_event);
3951
3952 /* Change the hbus state to prevent new work items. */
3953 old_state = hbus->state;
3954 if (hbus->state == hv_pcibus_installed)
3955 hbus->state = hv_pcibus_removing;
3956
3957 tasklet_enable(&hdev->channel->callback_event);
3958
3959 if (old_state != hv_pcibus_installed)
3960 return -EINVAL;
3961
3962 flush_workqueue(hbus->wq);
3963
3964 ret = hv_pci_bus_exit(hdev, true);
3965 if (ret)
3966 return ret;
3967
3968 vmbus_close(hdev->channel);
3969
3970 return 0;
3971}
3972
3973static int hv_pci_restore_msi_msg(struct pci_dev *pdev, void *arg)
3974{
3975 struct irq_data *irq_data;
3976 struct msi_desc *entry;
3977 int ret = 0;
3978
3979 if (!pdev->msi_enabled && !pdev->msix_enabled)
3980 return 0;
3981
3982 msi_lock_descs(&pdev->dev);
3983 msi_for_each_desc(entry, &pdev->dev, MSI_DESC_ASSOCIATED) {
3984 irq_data = irq_get_irq_data(entry->irq);
3985 if (WARN_ON_ONCE(!irq_data)) {
3986 ret = -EINVAL;
3987 break;
3988 }
3989
3990 hv_compose_msi_msg(irq_data, &entry->msg);
3991 }
3992 msi_unlock_descs(&pdev->dev);
3993
3994 return ret;
3995}
3996
3997/*
3998 * Upon resume, pci_restore_msi_state() -> ... -> __pci_write_msi_msg()
3999 * directly writes the MSI/MSI-X registers via MMIO, but since Hyper-V
4000 * doesn't trap and emulate the MMIO accesses, here hv_compose_msi_msg()
4001 * must be used to ask Hyper-V to re-create the IOMMU Interrupt Remapping
4002 * Table entries.
4003 */
4004static void hv_pci_restore_msi_state(struct hv_pcibus_device *hbus)
4005{
4006 pci_walk_bus(hbus->bridge->bus, hv_pci_restore_msi_msg, NULL);
4007}
4008
4009static int hv_pci_resume(struct hv_device *hdev)
4010{
4011 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
4012 enum pci_protocol_version_t version[1];
4013 int ret;
4014
4015 hbus->state = hv_pcibus_init;
4016
4017 hdev->channel->next_request_id_callback = vmbus_next_request_id;
4018 hdev->channel->request_addr_callback = vmbus_request_addr;
4019 hdev->channel->rqstor_size = HV_PCI_RQSTOR_SIZE;
4020
4021 ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
4022 hv_pci_onchannelcallback, hbus);
4023 if (ret)
4024 return ret;
4025
4026 /* Only use the version that was in use before hibernation. */
4027 version[0] = hbus->protocol_version;
4028 ret = hv_pci_protocol_negotiation(hdev, version, 1);
4029 if (ret)
4030 goto out;
4031
4032 ret = hv_pci_query_relations(hdev);
4033 if (ret)
4034 goto out;
4035
4036 mutex_lock(&hbus->state_lock);
4037
4038 ret = hv_pci_enter_d0(hdev);
4039 if (ret)
4040 goto release_state_lock;
4041
4042 ret = hv_send_resources_allocated(hdev);
4043 if (ret)
4044 goto release_state_lock;
4045
4046 prepopulate_bars(hbus);
4047
4048 hv_pci_restore_msi_state(hbus);
4049
4050 hbus->state = hv_pcibus_installed;
4051 mutex_unlock(&hbus->state_lock);
4052 return 0;
4053
4054release_state_lock:
4055 mutex_unlock(&hbus->state_lock);
4056out:
4057 vmbus_close(hdev->channel);
4058 return ret;
4059}
4060
4061static const struct hv_vmbus_device_id hv_pci_id_table[] = {
4062 /* PCI Pass-through Class ID */
4063 /* 44C4F61D-4444-4400-9D52-802E27EDE19F */
4064 { HV_PCIE_GUID, },
4065 { },
4066};
4067
4068MODULE_DEVICE_TABLE(vmbus, hv_pci_id_table);
4069
4070static struct hv_driver hv_pci_drv = {
4071 .name = "hv_pci",
4072 .id_table = hv_pci_id_table,
4073 .probe = hv_pci_probe,
4074 .remove = hv_pci_remove,
4075 .suspend = hv_pci_suspend,
4076 .resume = hv_pci_resume,
4077};
4078
4079static void __exit exit_hv_pci_drv(void)
4080{
4081 vmbus_driver_unregister(&hv_pci_drv);
4082
4083 hvpci_block_ops.read_block = NULL;
4084 hvpci_block_ops.write_block = NULL;
4085 hvpci_block_ops.reg_blk_invalidate = NULL;
4086}
4087
4088static int __init init_hv_pci_drv(void)
4089{
4090 int ret;
4091
4092 if (!hv_is_hyperv_initialized())
4093 return -ENODEV;
4094
4095 ret = hv_pci_irqchip_init();
4096 if (ret)
4097 return ret;
4098
4099 /* Set the invalid domain number's bit, so it will not be used */
4100 set_bit(HVPCI_DOM_INVALID, hvpci_dom_map);
4101
4102 /* Initialize PCI block r/w interface */
4103 hvpci_block_ops.read_block = hv_read_config_block;
4104 hvpci_block_ops.write_block = hv_write_config_block;
4105 hvpci_block_ops.reg_blk_invalidate = hv_register_block_invalidate;
4106
4107 return vmbus_driver_register(&hv_pci_drv);
4108}
4109
4110module_init(init_hv_pci_drv);
4111module_exit(exit_hv_pci_drv);
4112
4113MODULE_DESCRIPTION("Hyper-V PCI");
4114MODULE_LICENSE("GPL v2");
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) Microsoft Corporation.
4 *
5 * Author:
6 * Jake Oshins <jakeo@microsoft.com>
7 *
8 * This driver acts as a paravirtual front-end for PCI Express root buses.
9 * When a PCI Express function (either an entire device or an SR-IOV
10 * Virtual Function) is being passed through to the VM, this driver exposes
11 * a new bus to the guest VM. This is modeled as a root PCI bus because
12 * no bridges are being exposed to the VM. In fact, with a "Generation 2"
13 * VM within Hyper-V, there may seem to be no PCI bus at all in the VM
14 * until a device as been exposed using this driver.
15 *
16 * Each root PCI bus has its own PCI domain, which is called "Segment" in
17 * the PCI Firmware Specifications. Thus while each device passed through
18 * to the VM using this front-end will appear at "device 0", the domain will
19 * be unique. Typically, each bus will have one PCI function on it, though
20 * this driver does support more than one.
21 *
22 * In order to map the interrupts from the device through to the guest VM,
23 * this driver also implements an IRQ Domain, which handles interrupts (either
24 * MSI or MSI-X) associated with the functions on the bus. As interrupts are
25 * set up, torn down, or reaffined, this driver communicates with the
26 * underlying hypervisor to adjust the mappings in the I/O MMU so that each
27 * interrupt will be delivered to the correct virtual processor at the right
28 * vector. This driver does not support level-triggered (line-based)
29 * interrupts, and will report that the Interrupt Line register in the
30 * function's configuration space is zero.
31 *
32 * The rest of this driver mostly maps PCI concepts onto underlying Hyper-V
33 * facilities. For instance, the configuration space of a function exposed
34 * by Hyper-V is mapped into a single page of memory space, and the
35 * read and write handlers for config space must be aware of this mechanism.
36 * Similarly, device setup and teardown involves messages sent to and from
37 * the PCI back-end driver in Hyper-V.
38 */
39
40#include <linux/kernel.h>
41#include <linux/module.h>
42#include <linux/pci.h>
43#include <linux/pci-ecam.h>
44#include <linux/delay.h>
45#include <linux/semaphore.h>
46#include <linux/irq.h>
47#include <linux/msi.h>
48#include <linux/hyperv.h>
49#include <linux/refcount.h>
50#include <linux/irqdomain.h>
51#include <linux/acpi.h>
52#include <linux/sizes.h>
53#include <asm/mshyperv.h>
54
55/*
56 * Protocol versions. The low word is the minor version, the high word the
57 * major version.
58 */
59
60#define PCI_MAKE_VERSION(major, minor) ((u32)(((major) << 16) | (minor)))
61#define PCI_MAJOR_VERSION(version) ((u32)(version) >> 16)
62#define PCI_MINOR_VERSION(version) ((u32)(version) & 0xff)
63
64enum pci_protocol_version_t {
65 PCI_PROTOCOL_VERSION_1_1 = PCI_MAKE_VERSION(1, 1), /* Win10 */
66 PCI_PROTOCOL_VERSION_1_2 = PCI_MAKE_VERSION(1, 2), /* RS1 */
67 PCI_PROTOCOL_VERSION_1_3 = PCI_MAKE_VERSION(1, 3), /* Vibranium */
68 PCI_PROTOCOL_VERSION_1_4 = PCI_MAKE_VERSION(1, 4), /* WS2022 */
69};
70
71#define CPU_AFFINITY_ALL -1ULL
72
73/*
74 * Supported protocol versions in the order of probing - highest go
75 * first.
76 */
77static enum pci_protocol_version_t pci_protocol_versions[] = {
78 PCI_PROTOCOL_VERSION_1_4,
79 PCI_PROTOCOL_VERSION_1_3,
80 PCI_PROTOCOL_VERSION_1_2,
81 PCI_PROTOCOL_VERSION_1_1,
82};
83
84#define PCI_CONFIG_MMIO_LENGTH 0x2000
85#define CFG_PAGE_OFFSET 0x1000
86#define CFG_PAGE_SIZE (PCI_CONFIG_MMIO_LENGTH - CFG_PAGE_OFFSET)
87
88#define MAX_SUPPORTED_MSI_MESSAGES 0x400
89
90#define STATUS_REVISION_MISMATCH 0xC0000059
91
92/* space for 32bit serial number as string */
93#define SLOT_NAME_SIZE 11
94
95/*
96 * Size of requestor for VMbus; the value is based on the observation
97 * that having more than one request outstanding is 'rare', and so 64
98 * should be generous in ensuring that we don't ever run out.
99 */
100#define HV_PCI_RQSTOR_SIZE 64
101
102/*
103 * Message Types
104 */
105
106enum pci_message_type {
107 /*
108 * Version 1.1
109 */
110 PCI_MESSAGE_BASE = 0x42490000,
111 PCI_BUS_RELATIONS = PCI_MESSAGE_BASE + 0,
112 PCI_QUERY_BUS_RELATIONS = PCI_MESSAGE_BASE + 1,
113 PCI_POWER_STATE_CHANGE = PCI_MESSAGE_BASE + 4,
114 PCI_QUERY_RESOURCE_REQUIREMENTS = PCI_MESSAGE_BASE + 5,
115 PCI_QUERY_RESOURCE_RESOURCES = PCI_MESSAGE_BASE + 6,
116 PCI_BUS_D0ENTRY = PCI_MESSAGE_BASE + 7,
117 PCI_BUS_D0EXIT = PCI_MESSAGE_BASE + 8,
118 PCI_READ_BLOCK = PCI_MESSAGE_BASE + 9,
119 PCI_WRITE_BLOCK = PCI_MESSAGE_BASE + 0xA,
120 PCI_EJECT = PCI_MESSAGE_BASE + 0xB,
121 PCI_QUERY_STOP = PCI_MESSAGE_BASE + 0xC,
122 PCI_REENABLE = PCI_MESSAGE_BASE + 0xD,
123 PCI_QUERY_STOP_FAILED = PCI_MESSAGE_BASE + 0xE,
124 PCI_EJECTION_COMPLETE = PCI_MESSAGE_BASE + 0xF,
125 PCI_RESOURCES_ASSIGNED = PCI_MESSAGE_BASE + 0x10,
126 PCI_RESOURCES_RELEASED = PCI_MESSAGE_BASE + 0x11,
127 PCI_INVALIDATE_BLOCK = PCI_MESSAGE_BASE + 0x12,
128 PCI_QUERY_PROTOCOL_VERSION = PCI_MESSAGE_BASE + 0x13,
129 PCI_CREATE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x14,
130 PCI_DELETE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x15,
131 PCI_RESOURCES_ASSIGNED2 = PCI_MESSAGE_BASE + 0x16,
132 PCI_CREATE_INTERRUPT_MESSAGE2 = PCI_MESSAGE_BASE + 0x17,
133 PCI_DELETE_INTERRUPT_MESSAGE2 = PCI_MESSAGE_BASE + 0x18, /* unused */
134 PCI_BUS_RELATIONS2 = PCI_MESSAGE_BASE + 0x19,
135 PCI_RESOURCES_ASSIGNED3 = PCI_MESSAGE_BASE + 0x1A,
136 PCI_CREATE_INTERRUPT_MESSAGE3 = PCI_MESSAGE_BASE + 0x1B,
137 PCI_MESSAGE_MAXIMUM
138};
139
140/*
141 * Structures defining the virtual PCI Express protocol.
142 */
143
144union pci_version {
145 struct {
146 u16 minor_version;
147 u16 major_version;
148 } parts;
149 u32 version;
150} __packed;
151
152/*
153 * Function numbers are 8-bits wide on Express, as interpreted through ARI,
154 * which is all this driver does. This representation is the one used in
155 * Windows, which is what is expected when sending this back and forth with
156 * the Hyper-V parent partition.
157 */
158union win_slot_encoding {
159 struct {
160 u32 dev:5;
161 u32 func:3;
162 u32 reserved:24;
163 } bits;
164 u32 slot;
165} __packed;
166
167/*
168 * Pretty much as defined in the PCI Specifications.
169 */
170struct pci_function_description {
171 u16 v_id; /* vendor ID */
172 u16 d_id; /* device ID */
173 u8 rev;
174 u8 prog_intf;
175 u8 subclass;
176 u8 base_class;
177 u32 subsystem_id;
178 union win_slot_encoding win_slot;
179 u32 ser; /* serial number */
180} __packed;
181
182enum pci_device_description_flags {
183 HV_PCI_DEVICE_FLAG_NONE = 0x0,
184 HV_PCI_DEVICE_FLAG_NUMA_AFFINITY = 0x1,
185};
186
187struct pci_function_description2 {
188 u16 v_id; /* vendor ID */
189 u16 d_id; /* device ID */
190 u8 rev;
191 u8 prog_intf;
192 u8 subclass;
193 u8 base_class;
194 u32 subsystem_id;
195 union win_slot_encoding win_slot;
196 u32 ser; /* serial number */
197 u32 flags;
198 u16 virtual_numa_node;
199 u16 reserved;
200} __packed;
201
202/**
203 * struct hv_msi_desc
204 * @vector: IDT entry
205 * @delivery_mode: As defined in Intel's Programmer's
206 * Reference Manual, Volume 3, Chapter 8.
207 * @vector_count: Number of contiguous entries in the
208 * Interrupt Descriptor Table that are
209 * occupied by this Message-Signaled
210 * Interrupt. For "MSI", as first defined
211 * in PCI 2.2, this can be between 1 and
212 * 32. For "MSI-X," as first defined in PCI
213 * 3.0, this must be 1, as each MSI-X table
214 * entry would have its own descriptor.
215 * @reserved: Empty space
216 * @cpu_mask: All the target virtual processors.
217 */
218struct hv_msi_desc {
219 u8 vector;
220 u8 delivery_mode;
221 u16 vector_count;
222 u32 reserved;
223 u64 cpu_mask;
224} __packed;
225
226/**
227 * struct hv_msi_desc2 - 1.2 version of hv_msi_desc
228 * @vector: IDT entry
229 * @delivery_mode: As defined in Intel's Programmer's
230 * Reference Manual, Volume 3, Chapter 8.
231 * @vector_count: Number of contiguous entries in the
232 * Interrupt Descriptor Table that are
233 * occupied by this Message-Signaled
234 * Interrupt. For "MSI", as first defined
235 * in PCI 2.2, this can be between 1 and
236 * 32. For "MSI-X," as first defined in PCI
237 * 3.0, this must be 1, as each MSI-X table
238 * entry would have its own descriptor.
239 * @processor_count: number of bits enabled in array.
240 * @processor_array: All the target virtual processors.
241 */
242struct hv_msi_desc2 {
243 u8 vector;
244 u8 delivery_mode;
245 u16 vector_count;
246 u16 processor_count;
247 u16 processor_array[32];
248} __packed;
249
250/*
251 * struct hv_msi_desc3 - 1.3 version of hv_msi_desc
252 * Everything is the same as in 'hv_msi_desc2' except that the size of the
253 * 'vector' field is larger to support bigger vector values. For ex: LPI
254 * vectors on ARM.
255 */
256struct hv_msi_desc3 {
257 u32 vector;
258 u8 delivery_mode;
259 u8 reserved;
260 u16 vector_count;
261 u16 processor_count;
262 u16 processor_array[32];
263} __packed;
264
265/**
266 * struct tran_int_desc
267 * @reserved: unused, padding
268 * @vector_count: same as in hv_msi_desc
269 * @data: This is the "data payload" value that is
270 * written by the device when it generates
271 * a message-signaled interrupt, either MSI
272 * or MSI-X.
273 * @address: This is the address to which the data
274 * payload is written on interrupt
275 * generation.
276 */
277struct tran_int_desc {
278 u16 reserved;
279 u16 vector_count;
280 u32 data;
281 u64 address;
282} __packed;
283
284/*
285 * A generic message format for virtual PCI.
286 * Specific message formats are defined later in the file.
287 */
288
289struct pci_message {
290 u32 type;
291} __packed;
292
293struct pci_child_message {
294 struct pci_message message_type;
295 union win_slot_encoding wslot;
296} __packed;
297
298struct pci_incoming_message {
299 struct vmpacket_descriptor hdr;
300 struct pci_message message_type;
301} __packed;
302
303struct pci_response {
304 struct vmpacket_descriptor hdr;
305 s32 status; /* negative values are failures */
306} __packed;
307
308struct pci_packet {
309 void (*completion_func)(void *context, struct pci_response *resp,
310 int resp_packet_size);
311 void *compl_ctxt;
312
313 struct pci_message message[];
314};
315
316/*
317 * Specific message types supporting the PCI protocol.
318 */
319
320/*
321 * Version negotiation message. Sent from the guest to the host.
322 * The guest is free to try different versions until the host
323 * accepts the version.
324 *
325 * pci_version: The protocol version requested.
326 * is_last_attempt: If TRUE, this is the last version guest will request.
327 * reservedz: Reserved field, set to zero.
328 */
329
330struct pci_version_request {
331 struct pci_message message_type;
332 u32 protocol_version;
333} __packed;
334
335/*
336 * Bus D0 Entry. This is sent from the guest to the host when the virtual
337 * bus (PCI Express port) is ready for action.
338 */
339
340struct pci_bus_d0_entry {
341 struct pci_message message_type;
342 u32 reserved;
343 u64 mmio_base;
344} __packed;
345
346struct pci_bus_relations {
347 struct pci_incoming_message incoming;
348 u32 device_count;
349 struct pci_function_description func[];
350} __packed;
351
352struct pci_bus_relations2 {
353 struct pci_incoming_message incoming;
354 u32 device_count;
355 struct pci_function_description2 func[];
356} __packed;
357
358struct pci_q_res_req_response {
359 struct vmpacket_descriptor hdr;
360 s32 status; /* negative values are failures */
361 u32 probed_bar[PCI_STD_NUM_BARS];
362} __packed;
363
364struct pci_set_power {
365 struct pci_message message_type;
366 union win_slot_encoding wslot;
367 u32 power_state; /* In Windows terms */
368 u32 reserved;
369} __packed;
370
371struct pci_set_power_response {
372 struct vmpacket_descriptor hdr;
373 s32 status; /* negative values are failures */
374 union win_slot_encoding wslot;
375 u32 resultant_state; /* In Windows terms */
376 u32 reserved;
377} __packed;
378
379struct pci_resources_assigned {
380 struct pci_message message_type;
381 union win_slot_encoding wslot;
382 u8 memory_range[0x14][6]; /* not used here */
383 u32 msi_descriptors;
384 u32 reserved[4];
385} __packed;
386
387struct pci_resources_assigned2 {
388 struct pci_message message_type;
389 union win_slot_encoding wslot;
390 u8 memory_range[0x14][6]; /* not used here */
391 u32 msi_descriptor_count;
392 u8 reserved[70];
393} __packed;
394
395struct pci_create_interrupt {
396 struct pci_message message_type;
397 union win_slot_encoding wslot;
398 struct hv_msi_desc int_desc;
399} __packed;
400
401struct pci_create_int_response {
402 struct pci_response response;
403 u32 reserved;
404 struct tran_int_desc int_desc;
405} __packed;
406
407struct pci_create_interrupt2 {
408 struct pci_message message_type;
409 union win_slot_encoding wslot;
410 struct hv_msi_desc2 int_desc;
411} __packed;
412
413struct pci_create_interrupt3 {
414 struct pci_message message_type;
415 union win_slot_encoding wslot;
416 struct hv_msi_desc3 int_desc;
417} __packed;
418
419struct pci_delete_interrupt {
420 struct pci_message message_type;
421 union win_slot_encoding wslot;
422 struct tran_int_desc int_desc;
423} __packed;
424
425/*
426 * Note: the VM must pass a valid block id, wslot and bytes_requested.
427 */
428struct pci_read_block {
429 struct pci_message message_type;
430 u32 block_id;
431 union win_slot_encoding wslot;
432 u32 bytes_requested;
433} __packed;
434
435struct pci_read_block_response {
436 struct vmpacket_descriptor hdr;
437 u32 status;
438 u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX];
439} __packed;
440
441/*
442 * Note: the VM must pass a valid block id, wslot and byte_count.
443 */
444struct pci_write_block {
445 struct pci_message message_type;
446 u32 block_id;
447 union win_slot_encoding wslot;
448 u32 byte_count;
449 u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX];
450} __packed;
451
452struct pci_dev_inval_block {
453 struct pci_incoming_message incoming;
454 union win_slot_encoding wslot;
455 u64 block_mask;
456} __packed;
457
458struct pci_dev_incoming {
459 struct pci_incoming_message incoming;
460 union win_slot_encoding wslot;
461} __packed;
462
463struct pci_eject_response {
464 struct pci_message message_type;
465 union win_slot_encoding wslot;
466 u32 status;
467} __packed;
468
469static int pci_ring_size = VMBUS_RING_SIZE(SZ_16K);
470
471/*
472 * Driver specific state.
473 */
474
475enum hv_pcibus_state {
476 hv_pcibus_init = 0,
477 hv_pcibus_probed,
478 hv_pcibus_installed,
479 hv_pcibus_removing,
480 hv_pcibus_maximum
481};
482
483struct hv_pcibus_device {
484#ifdef CONFIG_X86
485 struct pci_sysdata sysdata;
486#elif defined(CONFIG_ARM64)
487 struct pci_config_window sysdata;
488#endif
489 struct pci_host_bridge *bridge;
490 struct fwnode_handle *fwnode;
491 /* Protocol version negotiated with the host */
492 enum pci_protocol_version_t protocol_version;
493
494 struct mutex state_lock;
495 enum hv_pcibus_state state;
496
497 struct hv_device *hdev;
498 resource_size_t low_mmio_space;
499 resource_size_t high_mmio_space;
500 struct resource *mem_config;
501 struct resource *low_mmio_res;
502 struct resource *high_mmio_res;
503 struct completion *survey_event;
504 struct pci_bus *pci_bus;
505 spinlock_t config_lock; /* Avoid two threads writing index page */
506 spinlock_t device_list_lock; /* Protect lists below */
507 void __iomem *cfg_addr;
508
509 struct list_head children;
510 struct list_head dr_list;
511
512 struct msi_domain_info msi_info;
513 struct irq_domain *irq_domain;
514
515 struct workqueue_struct *wq;
516
517 /* Highest slot of child device with resources allocated */
518 int wslot_res_allocated;
519 bool use_calls; /* Use hypercalls to access mmio cfg space */
520};
521
522/*
523 * Tracks "Device Relations" messages from the host, which must be both
524 * processed in order and deferred so that they don't run in the context
525 * of the incoming packet callback.
526 */
527struct hv_dr_work {
528 struct work_struct wrk;
529 struct hv_pcibus_device *bus;
530};
531
532struct hv_pcidev_description {
533 u16 v_id; /* vendor ID */
534 u16 d_id; /* device ID */
535 u8 rev;
536 u8 prog_intf;
537 u8 subclass;
538 u8 base_class;
539 u32 subsystem_id;
540 union win_slot_encoding win_slot;
541 u32 ser; /* serial number */
542 u32 flags;
543 u16 virtual_numa_node;
544};
545
546struct hv_dr_state {
547 struct list_head list_entry;
548 u32 device_count;
549 struct hv_pcidev_description func[] __counted_by(device_count);
550};
551
552struct hv_pci_dev {
553 /* List protected by pci_rescan_remove_lock */
554 struct list_head list_entry;
555 refcount_t refs;
556 struct pci_slot *pci_slot;
557 struct hv_pcidev_description desc;
558 bool reported_missing;
559 struct hv_pcibus_device *hbus;
560 struct work_struct wrk;
561
562 void (*block_invalidate)(void *context, u64 block_mask);
563 void *invalidate_context;
564
565 /*
566 * What would be observed if one wrote 0xFFFFFFFF to a BAR and then
567 * read it back, for each of the BAR offsets within config space.
568 */
569 u32 probed_bar[PCI_STD_NUM_BARS];
570};
571
572struct hv_pci_compl {
573 struct completion host_event;
574 s32 completion_status;
575};
576
577static void hv_pci_onchannelcallback(void *context);
578
579#ifdef CONFIG_X86
580#define DELIVERY_MODE APIC_DELIVERY_MODE_FIXED
581#define FLOW_HANDLER handle_edge_irq
582#define FLOW_NAME "edge"
583
584static int hv_pci_irqchip_init(void)
585{
586 return 0;
587}
588
589static struct irq_domain *hv_pci_get_root_domain(void)
590{
591 return x86_vector_domain;
592}
593
594static unsigned int hv_msi_get_int_vector(struct irq_data *data)
595{
596 struct irq_cfg *cfg = irqd_cfg(data);
597
598 return cfg->vector;
599}
600
601#define hv_msi_prepare pci_msi_prepare
602
603/**
604 * hv_arch_irq_unmask() - "Unmask" the IRQ by setting its current
605 * affinity.
606 * @data: Describes the IRQ
607 *
608 * Build new a destination for the MSI and make a hypercall to
609 * update the Interrupt Redirection Table. "Device Logical ID"
610 * is built out of this PCI bus's instance GUID and the function
611 * number of the device.
612 */
613static void hv_arch_irq_unmask(struct irq_data *data)
614{
615 struct msi_desc *msi_desc = irq_data_get_msi_desc(data);
616 struct hv_retarget_device_interrupt *params;
617 struct tran_int_desc *int_desc;
618 struct hv_pcibus_device *hbus;
619 const struct cpumask *dest;
620 cpumask_var_t tmp;
621 struct pci_bus *pbus;
622 struct pci_dev *pdev;
623 unsigned long flags;
624 u32 var_size = 0;
625 int cpu, nr_bank;
626 u64 res;
627
628 dest = irq_data_get_effective_affinity_mask(data);
629 pdev = msi_desc_to_pci_dev(msi_desc);
630 pbus = pdev->bus;
631 hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
632 int_desc = data->chip_data;
633 if (!int_desc) {
634 dev_warn(&hbus->hdev->device, "%s() can not unmask irq %u\n",
635 __func__, data->irq);
636 return;
637 }
638
639 local_irq_save(flags);
640
641 params = *this_cpu_ptr(hyperv_pcpu_input_arg);
642 memset(params, 0, sizeof(*params));
643 params->partition_id = HV_PARTITION_ID_SELF;
644 params->int_entry.source = HV_INTERRUPT_SOURCE_MSI;
645 params->int_entry.msi_entry.address.as_uint32 = int_desc->address & 0xffffffff;
646 params->int_entry.msi_entry.data.as_uint32 = int_desc->data;
647 params->device_id = (hbus->hdev->dev_instance.b[5] << 24) |
648 (hbus->hdev->dev_instance.b[4] << 16) |
649 (hbus->hdev->dev_instance.b[7] << 8) |
650 (hbus->hdev->dev_instance.b[6] & 0xf8) |
651 PCI_FUNC(pdev->devfn);
652 params->int_target.vector = hv_msi_get_int_vector(data);
653
654 if (hbus->protocol_version >= PCI_PROTOCOL_VERSION_1_2) {
655 /*
656 * PCI_PROTOCOL_VERSION_1_2 supports the VP_SET version of the
657 * HVCALL_RETARGET_INTERRUPT hypercall, which also coincides
658 * with >64 VP support.
659 * ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED
660 * is not sufficient for this hypercall.
661 */
662 params->int_target.flags |=
663 HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET;
664
665 if (!alloc_cpumask_var(&tmp, GFP_ATOMIC)) {
666 res = 1;
667 goto out;
668 }
669
670 cpumask_and(tmp, dest, cpu_online_mask);
671 nr_bank = cpumask_to_vpset(¶ms->int_target.vp_set, tmp);
672 free_cpumask_var(tmp);
673
674 if (nr_bank <= 0) {
675 res = 1;
676 goto out;
677 }
678
679 /*
680 * var-sized hypercall, var-size starts after vp_mask (thus
681 * vp_set.format does not count, but vp_set.valid_bank_mask
682 * does).
683 */
684 var_size = 1 + nr_bank;
685 } else {
686 for_each_cpu_and(cpu, dest, cpu_online_mask) {
687 params->int_target.vp_mask |=
688 (1ULL << hv_cpu_number_to_vp_number(cpu));
689 }
690 }
691
692 res = hv_do_hypercall(HVCALL_RETARGET_INTERRUPT | (var_size << 17),
693 params, NULL);
694
695out:
696 local_irq_restore(flags);
697
698 /*
699 * During hibernation, when a CPU is offlined, the kernel tries
700 * to move the interrupt to the remaining CPUs that haven't
701 * been offlined yet. In this case, the below hv_do_hypercall()
702 * always fails since the vmbus channel has been closed:
703 * refer to cpu_disable_common() -> fixup_irqs() ->
704 * irq_migrate_all_off_this_cpu() -> migrate_one_irq().
705 *
706 * Suppress the error message for hibernation because the failure
707 * during hibernation does not matter (at this time all the devices
708 * have been frozen). Note: the correct affinity info is still updated
709 * into the irqdata data structure in migrate_one_irq() ->
710 * irq_do_set_affinity(), so later when the VM resumes,
711 * hv_pci_restore_msi_state() is able to correctly restore the
712 * interrupt with the correct affinity.
713 */
714 if (!hv_result_success(res) && hbus->state != hv_pcibus_removing)
715 dev_err(&hbus->hdev->device,
716 "%s() failed: %#llx", __func__, res);
717}
718#elif defined(CONFIG_ARM64)
719/*
720 * SPI vectors to use for vPCI; arch SPIs range is [32, 1019], but leaving a bit
721 * of room at the start to allow for SPIs to be specified through ACPI and
722 * starting with a power of two to satisfy power of 2 multi-MSI requirement.
723 */
724#define HV_PCI_MSI_SPI_START 64
725#define HV_PCI_MSI_SPI_NR (1020 - HV_PCI_MSI_SPI_START)
726#define DELIVERY_MODE 0
727#define FLOW_HANDLER NULL
728#define FLOW_NAME NULL
729#define hv_msi_prepare NULL
730
731struct hv_pci_chip_data {
732 DECLARE_BITMAP(spi_map, HV_PCI_MSI_SPI_NR);
733 struct mutex map_lock;
734};
735
736/* Hyper-V vPCI MSI GIC IRQ domain */
737static struct irq_domain *hv_msi_gic_irq_domain;
738
739/* Hyper-V PCI MSI IRQ chip */
740static struct irq_chip hv_arm64_msi_irq_chip = {
741 .name = "MSI",
742 .irq_set_affinity = irq_chip_set_affinity_parent,
743 .irq_eoi = irq_chip_eoi_parent,
744 .irq_mask = irq_chip_mask_parent,
745 .irq_unmask = irq_chip_unmask_parent
746};
747
748static unsigned int hv_msi_get_int_vector(struct irq_data *irqd)
749{
750 return irqd->parent_data->hwirq;
751}
752
753/*
754 * @nr_bm_irqs: Indicates the number of IRQs that were allocated from
755 * the bitmap.
756 * @nr_dom_irqs: Indicates the number of IRQs that were allocated from
757 * the parent domain.
758 */
759static void hv_pci_vec_irq_free(struct irq_domain *domain,
760 unsigned int virq,
761 unsigned int nr_bm_irqs,
762 unsigned int nr_dom_irqs)
763{
764 struct hv_pci_chip_data *chip_data = domain->host_data;
765 struct irq_data *d = irq_domain_get_irq_data(domain, virq);
766 int first = d->hwirq - HV_PCI_MSI_SPI_START;
767 int i;
768
769 mutex_lock(&chip_data->map_lock);
770 bitmap_release_region(chip_data->spi_map,
771 first,
772 get_count_order(nr_bm_irqs));
773 mutex_unlock(&chip_data->map_lock);
774 for (i = 0; i < nr_dom_irqs; i++) {
775 if (i)
776 d = irq_domain_get_irq_data(domain, virq + i);
777 irq_domain_reset_irq_data(d);
778 }
779
780 irq_domain_free_irqs_parent(domain, virq, nr_dom_irqs);
781}
782
783static void hv_pci_vec_irq_domain_free(struct irq_domain *domain,
784 unsigned int virq,
785 unsigned int nr_irqs)
786{
787 hv_pci_vec_irq_free(domain, virq, nr_irqs, nr_irqs);
788}
789
790static int hv_pci_vec_alloc_device_irq(struct irq_domain *domain,
791 unsigned int nr_irqs,
792 irq_hw_number_t *hwirq)
793{
794 struct hv_pci_chip_data *chip_data = domain->host_data;
795 int index;
796
797 /* Find and allocate region from the SPI bitmap */
798 mutex_lock(&chip_data->map_lock);
799 index = bitmap_find_free_region(chip_data->spi_map,
800 HV_PCI_MSI_SPI_NR,
801 get_count_order(nr_irqs));
802 mutex_unlock(&chip_data->map_lock);
803 if (index < 0)
804 return -ENOSPC;
805
806 *hwirq = index + HV_PCI_MSI_SPI_START;
807
808 return 0;
809}
810
811static int hv_pci_vec_irq_gic_domain_alloc(struct irq_domain *domain,
812 unsigned int virq,
813 irq_hw_number_t hwirq)
814{
815 struct irq_fwspec fwspec;
816 struct irq_data *d;
817 int ret;
818
819 fwspec.fwnode = domain->parent->fwnode;
820 fwspec.param_count = 2;
821 fwspec.param[0] = hwirq;
822 fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
823
824 ret = irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
825 if (ret)
826 return ret;
827
828 /*
829 * Since the interrupt specifier is not coming from ACPI or DT, the
830 * trigger type will need to be set explicitly. Otherwise, it will be
831 * set to whatever is in the GIC configuration.
832 */
833 d = irq_domain_get_irq_data(domain->parent, virq);
834
835 return d->chip->irq_set_type(d, IRQ_TYPE_EDGE_RISING);
836}
837
838static int hv_pci_vec_irq_domain_alloc(struct irq_domain *domain,
839 unsigned int virq, unsigned int nr_irqs,
840 void *args)
841{
842 irq_hw_number_t hwirq;
843 unsigned int i;
844 int ret;
845
846 ret = hv_pci_vec_alloc_device_irq(domain, nr_irqs, &hwirq);
847 if (ret)
848 return ret;
849
850 for (i = 0; i < nr_irqs; i++) {
851 ret = hv_pci_vec_irq_gic_domain_alloc(domain, virq + i,
852 hwirq + i);
853 if (ret) {
854 hv_pci_vec_irq_free(domain, virq, nr_irqs, i);
855 return ret;
856 }
857
858 irq_domain_set_hwirq_and_chip(domain, virq + i,
859 hwirq + i,
860 &hv_arm64_msi_irq_chip,
861 domain->host_data);
862 pr_debug("pID:%d vID:%u\n", (int)(hwirq + i), virq + i);
863 }
864
865 return 0;
866}
867
868/*
869 * Pick the first cpu as the irq affinity that can be temporarily used for
870 * composing MSI from the hypervisor. GIC will eventually set the right
871 * affinity for the irq and the 'unmask' will retarget the interrupt to that
872 * cpu.
873 */
874static int hv_pci_vec_irq_domain_activate(struct irq_domain *domain,
875 struct irq_data *irqd, bool reserve)
876{
877 int cpu = cpumask_first(cpu_present_mask);
878
879 irq_data_update_effective_affinity(irqd, cpumask_of(cpu));
880
881 return 0;
882}
883
884static const struct irq_domain_ops hv_pci_domain_ops = {
885 .alloc = hv_pci_vec_irq_domain_alloc,
886 .free = hv_pci_vec_irq_domain_free,
887 .activate = hv_pci_vec_irq_domain_activate,
888};
889
890static int hv_pci_irqchip_init(void)
891{
892 static struct hv_pci_chip_data *chip_data;
893 struct fwnode_handle *fn = NULL;
894 int ret = -ENOMEM;
895
896 chip_data = kzalloc(sizeof(*chip_data), GFP_KERNEL);
897 if (!chip_data)
898 return ret;
899
900 mutex_init(&chip_data->map_lock);
901 fn = irq_domain_alloc_named_fwnode("hv_vpci_arm64");
902 if (!fn)
903 goto free_chip;
904
905 /*
906 * IRQ domain once enabled, should not be removed since there is no
907 * way to ensure that all the corresponding devices are also gone and
908 * no interrupts will be generated.
909 */
910 hv_msi_gic_irq_domain = acpi_irq_create_hierarchy(0, HV_PCI_MSI_SPI_NR,
911 fn, &hv_pci_domain_ops,
912 chip_data);
913
914 if (!hv_msi_gic_irq_domain) {
915 pr_err("Failed to create Hyper-V arm64 vPCI MSI IRQ domain\n");
916 goto free_chip;
917 }
918
919 return 0;
920
921free_chip:
922 kfree(chip_data);
923 if (fn)
924 irq_domain_free_fwnode(fn);
925
926 return ret;
927}
928
929static struct irq_domain *hv_pci_get_root_domain(void)
930{
931 return hv_msi_gic_irq_domain;
932}
933
934/*
935 * SPIs are used for interrupts of PCI devices and SPIs is managed via GICD
936 * registers which Hyper-V already supports, so no hypercall needed.
937 */
938static void hv_arch_irq_unmask(struct irq_data *data) { }
939#endif /* CONFIG_ARM64 */
940
941/**
942 * hv_pci_generic_compl() - Invoked for a completion packet
943 * @context: Set up by the sender of the packet.
944 * @resp: The response packet
945 * @resp_packet_size: Size in bytes of the packet
946 *
947 * This function is used to trigger an event and report status
948 * for any message for which the completion packet contains a
949 * status and nothing else.
950 */
951static void hv_pci_generic_compl(void *context, struct pci_response *resp,
952 int resp_packet_size)
953{
954 struct hv_pci_compl *comp_pkt = context;
955
956 comp_pkt->completion_status = resp->status;
957 complete(&comp_pkt->host_event);
958}
959
960static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
961 u32 wslot);
962
963static void get_pcichild(struct hv_pci_dev *hpdev)
964{
965 refcount_inc(&hpdev->refs);
966}
967
968static void put_pcichild(struct hv_pci_dev *hpdev)
969{
970 if (refcount_dec_and_test(&hpdev->refs))
971 kfree(hpdev);
972}
973
974/*
975 * There is no good way to get notified from vmbus_onoffer_rescind(),
976 * so let's use polling here, since this is not a hot path.
977 */
978static int wait_for_response(struct hv_device *hdev,
979 struct completion *comp)
980{
981 while (true) {
982 if (hdev->channel->rescind) {
983 dev_warn_once(&hdev->device, "The device is gone.\n");
984 return -ENODEV;
985 }
986
987 if (wait_for_completion_timeout(comp, HZ / 10))
988 break;
989 }
990
991 return 0;
992}
993
994/**
995 * devfn_to_wslot() - Convert from Linux PCI slot to Windows
996 * @devfn: The Linux representation of PCI slot
997 *
998 * Windows uses a slightly different representation of PCI slot.
999 *
1000 * Return: The Windows representation
1001 */
1002static u32 devfn_to_wslot(int devfn)
1003{
1004 union win_slot_encoding wslot;
1005
1006 wslot.slot = 0;
1007 wslot.bits.dev = PCI_SLOT(devfn);
1008 wslot.bits.func = PCI_FUNC(devfn);
1009
1010 return wslot.slot;
1011}
1012
1013/**
1014 * wslot_to_devfn() - Convert from Windows PCI slot to Linux
1015 * @wslot: The Windows representation of PCI slot
1016 *
1017 * Windows uses a slightly different representation of PCI slot.
1018 *
1019 * Return: The Linux representation
1020 */
1021static int wslot_to_devfn(u32 wslot)
1022{
1023 union win_slot_encoding slot_no;
1024
1025 slot_no.slot = wslot;
1026 return PCI_DEVFN(slot_no.bits.dev, slot_no.bits.func);
1027}
1028
1029static void hv_pci_read_mmio(struct device *dev, phys_addr_t gpa, int size, u32 *val)
1030{
1031 struct hv_mmio_read_input *in;
1032 struct hv_mmio_read_output *out;
1033 u64 ret;
1034
1035 /*
1036 * Must be called with interrupts disabled so it is safe
1037 * to use the per-cpu input argument page. Use it for
1038 * both input and output.
1039 */
1040 in = *this_cpu_ptr(hyperv_pcpu_input_arg);
1041 out = *this_cpu_ptr(hyperv_pcpu_input_arg) + sizeof(*in);
1042 in->gpa = gpa;
1043 in->size = size;
1044
1045 ret = hv_do_hypercall(HVCALL_MMIO_READ, in, out);
1046 if (hv_result_success(ret)) {
1047 switch (size) {
1048 case 1:
1049 *val = *(u8 *)(out->data);
1050 break;
1051 case 2:
1052 *val = *(u16 *)(out->data);
1053 break;
1054 default:
1055 *val = *(u32 *)(out->data);
1056 break;
1057 }
1058 } else
1059 dev_err(dev, "MMIO read hypercall error %llx addr %llx size %d\n",
1060 ret, gpa, size);
1061}
1062
1063static void hv_pci_write_mmio(struct device *dev, phys_addr_t gpa, int size, u32 val)
1064{
1065 struct hv_mmio_write_input *in;
1066 u64 ret;
1067
1068 /*
1069 * Must be called with interrupts disabled so it is safe
1070 * to use the per-cpu input argument memory.
1071 */
1072 in = *this_cpu_ptr(hyperv_pcpu_input_arg);
1073 in->gpa = gpa;
1074 in->size = size;
1075 switch (size) {
1076 case 1:
1077 *(u8 *)(in->data) = val;
1078 break;
1079 case 2:
1080 *(u16 *)(in->data) = val;
1081 break;
1082 default:
1083 *(u32 *)(in->data) = val;
1084 break;
1085 }
1086
1087 ret = hv_do_hypercall(HVCALL_MMIO_WRITE, in, NULL);
1088 if (!hv_result_success(ret))
1089 dev_err(dev, "MMIO write hypercall error %llx addr %llx size %d\n",
1090 ret, gpa, size);
1091}
1092
1093/*
1094 * PCI Configuration Space for these root PCI buses is implemented as a pair
1095 * of pages in memory-mapped I/O space. Writing to the first page chooses
1096 * the PCI function being written or read. Once the first page has been
1097 * written to, the following page maps in the entire configuration space of
1098 * the function.
1099 */
1100
1101/**
1102 * _hv_pcifront_read_config() - Internal PCI config read
1103 * @hpdev: The PCI driver's representation of the device
1104 * @where: Offset within config space
1105 * @size: Size of the transfer
1106 * @val: Pointer to the buffer receiving the data
1107 */
1108static void _hv_pcifront_read_config(struct hv_pci_dev *hpdev, int where,
1109 int size, u32 *val)
1110{
1111 struct hv_pcibus_device *hbus = hpdev->hbus;
1112 struct device *dev = &hbus->hdev->device;
1113 int offset = where + CFG_PAGE_OFFSET;
1114 unsigned long flags;
1115
1116 /*
1117 * If the attempt is to read the IDs or the ROM BAR, simulate that.
1118 */
1119 if (where + size <= PCI_COMMAND) {
1120 memcpy(val, ((u8 *)&hpdev->desc.v_id) + where, size);
1121 } else if (where >= PCI_CLASS_REVISION && where + size <=
1122 PCI_CACHE_LINE_SIZE) {
1123 memcpy(val, ((u8 *)&hpdev->desc.rev) + where -
1124 PCI_CLASS_REVISION, size);
1125 } else if (where >= PCI_SUBSYSTEM_VENDOR_ID && where + size <=
1126 PCI_ROM_ADDRESS) {
1127 memcpy(val, (u8 *)&hpdev->desc.subsystem_id + where -
1128 PCI_SUBSYSTEM_VENDOR_ID, size);
1129 } else if (where >= PCI_ROM_ADDRESS && where + size <=
1130 PCI_CAPABILITY_LIST) {
1131 /* ROM BARs are unimplemented */
1132 *val = 0;
1133 } else if ((where >= PCI_INTERRUPT_LINE && where + size <= PCI_INTERRUPT_PIN) ||
1134 (where >= PCI_INTERRUPT_PIN && where + size <= PCI_MIN_GNT)) {
1135 /*
1136 * Interrupt Line and Interrupt PIN are hard-wired to zero
1137 * because this front-end only supports message-signaled
1138 * interrupts.
1139 */
1140 *val = 0;
1141 } else if (where + size <= CFG_PAGE_SIZE) {
1142
1143 spin_lock_irqsave(&hbus->config_lock, flags);
1144 if (hbus->use_calls) {
1145 phys_addr_t addr = hbus->mem_config->start + offset;
1146
1147 hv_pci_write_mmio(dev, hbus->mem_config->start, 4,
1148 hpdev->desc.win_slot.slot);
1149 hv_pci_read_mmio(dev, addr, size, val);
1150 } else {
1151 void __iomem *addr = hbus->cfg_addr + offset;
1152
1153 /* Choose the function to be read. (See comment above) */
1154 writel(hpdev->desc.win_slot.slot, hbus->cfg_addr);
1155 /* Make sure the function was chosen before reading. */
1156 mb();
1157 /* Read from that function's config space. */
1158 switch (size) {
1159 case 1:
1160 *val = readb(addr);
1161 break;
1162 case 2:
1163 *val = readw(addr);
1164 break;
1165 default:
1166 *val = readl(addr);
1167 break;
1168 }
1169 /*
1170 * Make sure the read was done before we release the
1171 * spinlock allowing consecutive reads/writes.
1172 */
1173 mb();
1174 }
1175 spin_unlock_irqrestore(&hbus->config_lock, flags);
1176 } else {
1177 dev_err(dev, "Attempt to read beyond a function's config space.\n");
1178 }
1179}
1180
1181static u16 hv_pcifront_get_vendor_id(struct hv_pci_dev *hpdev)
1182{
1183 struct hv_pcibus_device *hbus = hpdev->hbus;
1184 struct device *dev = &hbus->hdev->device;
1185 u32 val;
1186 u16 ret;
1187 unsigned long flags;
1188
1189 spin_lock_irqsave(&hbus->config_lock, flags);
1190
1191 if (hbus->use_calls) {
1192 phys_addr_t addr = hbus->mem_config->start +
1193 CFG_PAGE_OFFSET + PCI_VENDOR_ID;
1194
1195 hv_pci_write_mmio(dev, hbus->mem_config->start, 4,
1196 hpdev->desc.win_slot.slot);
1197 hv_pci_read_mmio(dev, addr, 2, &val);
1198 ret = val; /* Truncates to 16 bits */
1199 } else {
1200 void __iomem *addr = hbus->cfg_addr + CFG_PAGE_OFFSET +
1201 PCI_VENDOR_ID;
1202 /* Choose the function to be read. (See comment above) */
1203 writel(hpdev->desc.win_slot.slot, hbus->cfg_addr);
1204 /* Make sure the function was chosen before we start reading. */
1205 mb();
1206 /* Read from that function's config space. */
1207 ret = readw(addr);
1208 /*
1209 * mb() is not required here, because the
1210 * spin_unlock_irqrestore() is a barrier.
1211 */
1212 }
1213
1214 spin_unlock_irqrestore(&hbus->config_lock, flags);
1215
1216 return ret;
1217}
1218
1219/**
1220 * _hv_pcifront_write_config() - Internal PCI config write
1221 * @hpdev: The PCI driver's representation of the device
1222 * @where: Offset within config space
1223 * @size: Size of the transfer
1224 * @val: The data being transferred
1225 */
1226static void _hv_pcifront_write_config(struct hv_pci_dev *hpdev, int where,
1227 int size, u32 val)
1228{
1229 struct hv_pcibus_device *hbus = hpdev->hbus;
1230 struct device *dev = &hbus->hdev->device;
1231 int offset = where + CFG_PAGE_OFFSET;
1232 unsigned long flags;
1233
1234 if (where >= PCI_SUBSYSTEM_VENDOR_ID &&
1235 where + size <= PCI_CAPABILITY_LIST) {
1236 /* SSIDs and ROM BARs are read-only */
1237 } else if (where >= PCI_COMMAND && where + size <= CFG_PAGE_SIZE) {
1238 spin_lock_irqsave(&hbus->config_lock, flags);
1239
1240 if (hbus->use_calls) {
1241 phys_addr_t addr = hbus->mem_config->start + offset;
1242
1243 hv_pci_write_mmio(dev, hbus->mem_config->start, 4,
1244 hpdev->desc.win_slot.slot);
1245 hv_pci_write_mmio(dev, addr, size, val);
1246 } else {
1247 void __iomem *addr = hbus->cfg_addr + offset;
1248
1249 /* Choose the function to write. (See comment above) */
1250 writel(hpdev->desc.win_slot.slot, hbus->cfg_addr);
1251 /* Make sure the function was chosen before writing. */
1252 wmb();
1253 /* Write to that function's config space. */
1254 switch (size) {
1255 case 1:
1256 writeb(val, addr);
1257 break;
1258 case 2:
1259 writew(val, addr);
1260 break;
1261 default:
1262 writel(val, addr);
1263 break;
1264 }
1265 /*
1266 * Make sure the write was done before we release the
1267 * spinlock allowing consecutive reads/writes.
1268 */
1269 mb();
1270 }
1271 spin_unlock_irqrestore(&hbus->config_lock, flags);
1272 } else {
1273 dev_err(dev, "Attempt to write beyond a function's config space.\n");
1274 }
1275}
1276
1277/**
1278 * hv_pcifront_read_config() - Read configuration space
1279 * @bus: PCI Bus structure
1280 * @devfn: Device/function
1281 * @where: Offset from base
1282 * @size: Byte/word/dword
1283 * @val: Value to be read
1284 *
1285 * Return: PCIBIOS_SUCCESSFUL on success
1286 * PCIBIOS_DEVICE_NOT_FOUND on failure
1287 */
1288static int hv_pcifront_read_config(struct pci_bus *bus, unsigned int devfn,
1289 int where, int size, u32 *val)
1290{
1291 struct hv_pcibus_device *hbus =
1292 container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
1293 struct hv_pci_dev *hpdev;
1294
1295 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
1296 if (!hpdev)
1297 return PCIBIOS_DEVICE_NOT_FOUND;
1298
1299 _hv_pcifront_read_config(hpdev, where, size, val);
1300
1301 put_pcichild(hpdev);
1302 return PCIBIOS_SUCCESSFUL;
1303}
1304
1305/**
1306 * hv_pcifront_write_config() - Write configuration space
1307 * @bus: PCI Bus structure
1308 * @devfn: Device/function
1309 * @where: Offset from base
1310 * @size: Byte/word/dword
1311 * @val: Value to be written to device
1312 *
1313 * Return: PCIBIOS_SUCCESSFUL on success
1314 * PCIBIOS_DEVICE_NOT_FOUND on failure
1315 */
1316static int hv_pcifront_write_config(struct pci_bus *bus, unsigned int devfn,
1317 int where, int size, u32 val)
1318{
1319 struct hv_pcibus_device *hbus =
1320 container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
1321 struct hv_pci_dev *hpdev;
1322
1323 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
1324 if (!hpdev)
1325 return PCIBIOS_DEVICE_NOT_FOUND;
1326
1327 _hv_pcifront_write_config(hpdev, where, size, val);
1328
1329 put_pcichild(hpdev);
1330 return PCIBIOS_SUCCESSFUL;
1331}
1332
1333/* PCIe operations */
1334static struct pci_ops hv_pcifront_ops = {
1335 .read = hv_pcifront_read_config,
1336 .write = hv_pcifront_write_config,
1337};
1338
1339/*
1340 * Paravirtual backchannel
1341 *
1342 * Hyper-V SR-IOV provides a backchannel mechanism in software for
1343 * communication between a VF driver and a PF driver. These
1344 * "configuration blocks" are similar in concept to PCI configuration space,
1345 * but instead of doing reads and writes in 32-bit chunks through a very slow
1346 * path, packets of up to 128 bytes can be sent or received asynchronously.
1347 *
1348 * Nearly every SR-IOV device contains just such a communications channel in
1349 * hardware, so using this one in software is usually optional. Using the
1350 * software channel, however, allows driver implementers to leverage software
1351 * tools that fuzz the communications channel looking for vulnerabilities.
1352 *
1353 * The usage model for these packets puts the responsibility for reading or
1354 * writing on the VF driver. The VF driver sends a read or a write packet,
1355 * indicating which "block" is being referred to by number.
1356 *
1357 * If the PF driver wishes to initiate communication, it can "invalidate" one or
1358 * more of the first 64 blocks. This invalidation is delivered via a callback
1359 * supplied by the VF driver by this driver.
1360 *
1361 * No protocol is implied, except that supplied by the PF and VF drivers.
1362 */
1363
1364struct hv_read_config_compl {
1365 struct hv_pci_compl comp_pkt;
1366 void *buf;
1367 unsigned int len;
1368 unsigned int bytes_returned;
1369};
1370
1371/**
1372 * hv_pci_read_config_compl() - Invoked when a response packet
1373 * for a read config block operation arrives.
1374 * @context: Identifies the read config operation
1375 * @resp: The response packet itself
1376 * @resp_packet_size: Size in bytes of the response packet
1377 */
1378static void hv_pci_read_config_compl(void *context, struct pci_response *resp,
1379 int resp_packet_size)
1380{
1381 struct hv_read_config_compl *comp = context;
1382 struct pci_read_block_response *read_resp =
1383 (struct pci_read_block_response *)resp;
1384 unsigned int data_len, hdr_len;
1385
1386 hdr_len = offsetof(struct pci_read_block_response, bytes);
1387 if (resp_packet_size < hdr_len) {
1388 comp->comp_pkt.completion_status = -1;
1389 goto out;
1390 }
1391
1392 data_len = resp_packet_size - hdr_len;
1393 if (data_len > 0 && read_resp->status == 0) {
1394 comp->bytes_returned = min(comp->len, data_len);
1395 memcpy(comp->buf, read_resp->bytes, comp->bytes_returned);
1396 } else {
1397 comp->bytes_returned = 0;
1398 }
1399
1400 comp->comp_pkt.completion_status = read_resp->status;
1401out:
1402 complete(&comp->comp_pkt.host_event);
1403}
1404
1405/**
1406 * hv_read_config_block() - Sends a read config block request to
1407 * the back-end driver running in the Hyper-V parent partition.
1408 * @pdev: The PCI driver's representation for this device.
1409 * @buf: Buffer into which the config block will be copied.
1410 * @len: Size in bytes of buf.
1411 * @block_id: Identifies the config block which has been requested.
1412 * @bytes_returned: Size which came back from the back-end driver.
1413 *
1414 * Return: 0 on success, -errno on failure
1415 */
1416static int hv_read_config_block(struct pci_dev *pdev, void *buf,
1417 unsigned int len, unsigned int block_id,
1418 unsigned int *bytes_returned)
1419{
1420 struct hv_pcibus_device *hbus =
1421 container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1422 sysdata);
1423 struct {
1424 struct pci_packet pkt;
1425 char buf[sizeof(struct pci_read_block)];
1426 } pkt;
1427 struct hv_read_config_compl comp_pkt;
1428 struct pci_read_block *read_blk;
1429 int ret;
1430
1431 if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX)
1432 return -EINVAL;
1433
1434 init_completion(&comp_pkt.comp_pkt.host_event);
1435 comp_pkt.buf = buf;
1436 comp_pkt.len = len;
1437
1438 memset(&pkt, 0, sizeof(pkt));
1439 pkt.pkt.completion_func = hv_pci_read_config_compl;
1440 pkt.pkt.compl_ctxt = &comp_pkt;
1441 read_blk = (struct pci_read_block *)&pkt.pkt.message;
1442 read_blk->message_type.type = PCI_READ_BLOCK;
1443 read_blk->wslot.slot = devfn_to_wslot(pdev->devfn);
1444 read_blk->block_id = block_id;
1445 read_blk->bytes_requested = len;
1446
1447 ret = vmbus_sendpacket(hbus->hdev->channel, read_blk,
1448 sizeof(*read_blk), (unsigned long)&pkt.pkt,
1449 VM_PKT_DATA_INBAND,
1450 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1451 if (ret)
1452 return ret;
1453
1454 ret = wait_for_response(hbus->hdev, &comp_pkt.comp_pkt.host_event);
1455 if (ret)
1456 return ret;
1457
1458 if (comp_pkt.comp_pkt.completion_status != 0 ||
1459 comp_pkt.bytes_returned == 0) {
1460 dev_err(&hbus->hdev->device,
1461 "Read Config Block failed: 0x%x, bytes_returned=%d\n",
1462 comp_pkt.comp_pkt.completion_status,
1463 comp_pkt.bytes_returned);
1464 return -EIO;
1465 }
1466
1467 *bytes_returned = comp_pkt.bytes_returned;
1468 return 0;
1469}
1470
1471/**
1472 * hv_pci_write_config_compl() - Invoked when a response packet for a write
1473 * config block operation arrives.
1474 * @context: Identifies the write config operation
1475 * @resp: The response packet itself
1476 * @resp_packet_size: Size in bytes of the response packet
1477 */
1478static void hv_pci_write_config_compl(void *context, struct pci_response *resp,
1479 int resp_packet_size)
1480{
1481 struct hv_pci_compl *comp_pkt = context;
1482
1483 comp_pkt->completion_status = resp->status;
1484 complete(&comp_pkt->host_event);
1485}
1486
1487/**
1488 * hv_write_config_block() - Sends a write config block request to the
1489 * back-end driver running in the Hyper-V parent partition.
1490 * @pdev: The PCI driver's representation for this device.
1491 * @buf: Buffer from which the config block will be copied.
1492 * @len: Size in bytes of buf.
1493 * @block_id: Identifies the config block which is being written.
1494 *
1495 * Return: 0 on success, -errno on failure
1496 */
1497static int hv_write_config_block(struct pci_dev *pdev, void *buf,
1498 unsigned int len, unsigned int block_id)
1499{
1500 struct hv_pcibus_device *hbus =
1501 container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1502 sysdata);
1503 struct {
1504 struct pci_packet pkt;
1505 char buf[sizeof(struct pci_write_block)];
1506 u32 reserved;
1507 } pkt;
1508 struct hv_pci_compl comp_pkt;
1509 struct pci_write_block *write_blk;
1510 u32 pkt_size;
1511 int ret;
1512
1513 if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX)
1514 return -EINVAL;
1515
1516 init_completion(&comp_pkt.host_event);
1517
1518 memset(&pkt, 0, sizeof(pkt));
1519 pkt.pkt.completion_func = hv_pci_write_config_compl;
1520 pkt.pkt.compl_ctxt = &comp_pkt;
1521 write_blk = (struct pci_write_block *)&pkt.pkt.message;
1522 write_blk->message_type.type = PCI_WRITE_BLOCK;
1523 write_blk->wslot.slot = devfn_to_wslot(pdev->devfn);
1524 write_blk->block_id = block_id;
1525 write_blk->byte_count = len;
1526 memcpy(write_blk->bytes, buf, len);
1527 pkt_size = offsetof(struct pci_write_block, bytes) + len;
1528 /*
1529 * This quirk is required on some hosts shipped around 2018, because
1530 * these hosts don't check the pkt_size correctly (new hosts have been
1531 * fixed since early 2019). The quirk is also safe on very old hosts
1532 * and new hosts, because, on them, what really matters is the length
1533 * specified in write_blk->byte_count.
1534 */
1535 pkt_size += sizeof(pkt.reserved);
1536
1537 ret = vmbus_sendpacket(hbus->hdev->channel, write_blk, pkt_size,
1538 (unsigned long)&pkt.pkt, VM_PKT_DATA_INBAND,
1539 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1540 if (ret)
1541 return ret;
1542
1543 ret = wait_for_response(hbus->hdev, &comp_pkt.host_event);
1544 if (ret)
1545 return ret;
1546
1547 if (comp_pkt.completion_status != 0) {
1548 dev_err(&hbus->hdev->device,
1549 "Write Config Block failed: 0x%x\n",
1550 comp_pkt.completion_status);
1551 return -EIO;
1552 }
1553
1554 return 0;
1555}
1556
1557/**
1558 * hv_register_block_invalidate() - Invoked when a config block invalidation
1559 * arrives from the back-end driver.
1560 * @pdev: The PCI driver's representation for this device.
1561 * @context: Identifies the device.
1562 * @block_invalidate: Identifies all of the blocks being invalidated.
1563 *
1564 * Return: 0 on success, -errno on failure
1565 */
1566static int hv_register_block_invalidate(struct pci_dev *pdev, void *context,
1567 void (*block_invalidate)(void *context,
1568 u64 block_mask))
1569{
1570 struct hv_pcibus_device *hbus =
1571 container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1572 sysdata);
1573 struct hv_pci_dev *hpdev;
1574
1575 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1576 if (!hpdev)
1577 return -ENODEV;
1578
1579 hpdev->block_invalidate = block_invalidate;
1580 hpdev->invalidate_context = context;
1581
1582 put_pcichild(hpdev);
1583 return 0;
1584
1585}
1586
1587/* Interrupt management hooks */
1588static void hv_int_desc_free(struct hv_pci_dev *hpdev,
1589 struct tran_int_desc *int_desc)
1590{
1591 struct pci_delete_interrupt *int_pkt;
1592 struct {
1593 struct pci_packet pkt;
1594 u8 buffer[sizeof(struct pci_delete_interrupt)];
1595 } ctxt;
1596
1597 if (!int_desc->vector_count) {
1598 kfree(int_desc);
1599 return;
1600 }
1601 memset(&ctxt, 0, sizeof(ctxt));
1602 int_pkt = (struct pci_delete_interrupt *)&ctxt.pkt.message;
1603 int_pkt->message_type.type =
1604 PCI_DELETE_INTERRUPT_MESSAGE;
1605 int_pkt->wslot.slot = hpdev->desc.win_slot.slot;
1606 int_pkt->int_desc = *int_desc;
1607 vmbus_sendpacket(hpdev->hbus->hdev->channel, int_pkt, sizeof(*int_pkt),
1608 0, VM_PKT_DATA_INBAND, 0);
1609 kfree(int_desc);
1610}
1611
1612/**
1613 * hv_msi_free() - Free the MSI.
1614 * @domain: The interrupt domain pointer
1615 * @info: Extra MSI-related context
1616 * @irq: Identifies the IRQ.
1617 *
1618 * The Hyper-V parent partition and hypervisor are tracking the
1619 * messages that are in use, keeping the interrupt redirection
1620 * table up to date. This callback sends a message that frees
1621 * the IRT entry and related tracking nonsense.
1622 */
1623static void hv_msi_free(struct irq_domain *domain, struct msi_domain_info *info,
1624 unsigned int irq)
1625{
1626 struct hv_pcibus_device *hbus;
1627 struct hv_pci_dev *hpdev;
1628 struct pci_dev *pdev;
1629 struct tran_int_desc *int_desc;
1630 struct irq_data *irq_data = irq_domain_get_irq_data(domain, irq);
1631 struct msi_desc *msi = irq_data_get_msi_desc(irq_data);
1632
1633 pdev = msi_desc_to_pci_dev(msi);
1634 hbus = info->data;
1635 int_desc = irq_data_get_irq_chip_data(irq_data);
1636 if (!int_desc)
1637 return;
1638
1639 irq_data->chip_data = NULL;
1640 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1641 if (!hpdev) {
1642 kfree(int_desc);
1643 return;
1644 }
1645
1646 hv_int_desc_free(hpdev, int_desc);
1647 put_pcichild(hpdev);
1648}
1649
1650static void hv_irq_mask(struct irq_data *data)
1651{
1652 pci_msi_mask_irq(data);
1653 if (data->parent_data->chip->irq_mask)
1654 irq_chip_mask_parent(data);
1655}
1656
1657static void hv_irq_unmask(struct irq_data *data)
1658{
1659 hv_arch_irq_unmask(data);
1660
1661 if (data->parent_data->chip->irq_unmask)
1662 irq_chip_unmask_parent(data);
1663 pci_msi_unmask_irq(data);
1664}
1665
1666struct compose_comp_ctxt {
1667 struct hv_pci_compl comp_pkt;
1668 struct tran_int_desc int_desc;
1669};
1670
1671static void hv_pci_compose_compl(void *context, struct pci_response *resp,
1672 int resp_packet_size)
1673{
1674 struct compose_comp_ctxt *comp_pkt = context;
1675 struct pci_create_int_response *int_resp =
1676 (struct pci_create_int_response *)resp;
1677
1678 if (resp_packet_size < sizeof(*int_resp)) {
1679 comp_pkt->comp_pkt.completion_status = -1;
1680 goto out;
1681 }
1682 comp_pkt->comp_pkt.completion_status = resp->status;
1683 comp_pkt->int_desc = int_resp->int_desc;
1684out:
1685 complete(&comp_pkt->comp_pkt.host_event);
1686}
1687
1688static u32 hv_compose_msi_req_v1(
1689 struct pci_create_interrupt *int_pkt,
1690 u32 slot, u8 vector, u16 vector_count)
1691{
1692 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE;
1693 int_pkt->wslot.slot = slot;
1694 int_pkt->int_desc.vector = vector;
1695 int_pkt->int_desc.vector_count = vector_count;
1696 int_pkt->int_desc.delivery_mode = DELIVERY_MODE;
1697
1698 /*
1699 * Create MSI w/ dummy vCPU set, overwritten by subsequent retarget in
1700 * hv_irq_unmask().
1701 */
1702 int_pkt->int_desc.cpu_mask = CPU_AFFINITY_ALL;
1703
1704 return sizeof(*int_pkt);
1705}
1706
1707/*
1708 * The vCPU selected by hv_compose_multi_msi_req_get_cpu() and
1709 * hv_compose_msi_req_get_cpu() is a "dummy" vCPU because the final vCPU to be
1710 * interrupted is specified later in hv_irq_unmask() and communicated to Hyper-V
1711 * via the HVCALL_RETARGET_INTERRUPT hypercall. But the choice of dummy vCPU is
1712 * not irrelevant because Hyper-V chooses the physical CPU to handle the
1713 * interrupts based on the vCPU specified in message sent to the vPCI VSP in
1714 * hv_compose_msi_msg(). Hyper-V's choice of pCPU is not visible to the guest,
1715 * but assigning too many vPCI device interrupts to the same pCPU can cause a
1716 * performance bottleneck. So we spread out the dummy vCPUs to influence Hyper-V
1717 * to spread out the pCPUs that it selects.
1718 *
1719 * For the single-MSI and MSI-X cases, it's OK for hv_compose_msi_req_get_cpu()
1720 * to always return the same dummy vCPU, because a second call to
1721 * hv_compose_msi_msg() contains the "real" vCPU, causing Hyper-V to choose a
1722 * new pCPU for the interrupt. But for the multi-MSI case, the second call to
1723 * hv_compose_msi_msg() exits without sending a message to the vPCI VSP, so the
1724 * original dummy vCPU is used. This dummy vCPU must be round-robin'ed so that
1725 * the pCPUs are spread out. All interrupts for a multi-MSI device end up using
1726 * the same pCPU, even though the vCPUs will be spread out by later calls
1727 * to hv_irq_unmask(), but that is the best we can do now.
1728 *
1729 * With Hyper-V in Nov 2022, the HVCALL_RETARGET_INTERRUPT hypercall does *not*
1730 * cause Hyper-V to reselect the pCPU based on the specified vCPU. Such an
1731 * enhancement is planned for a future version. With that enhancement, the
1732 * dummy vCPU selection won't matter, and interrupts for the same multi-MSI
1733 * device will be spread across multiple pCPUs.
1734 */
1735
1736/*
1737 * Create MSI w/ dummy vCPU set targeting just one vCPU, overwritten
1738 * by subsequent retarget in hv_irq_unmask().
1739 */
1740static int hv_compose_msi_req_get_cpu(const struct cpumask *affinity)
1741{
1742 return cpumask_first_and(affinity, cpu_online_mask);
1743}
1744
1745/*
1746 * Make sure the dummy vCPU values for multi-MSI don't all point to vCPU0.
1747 */
1748static int hv_compose_multi_msi_req_get_cpu(void)
1749{
1750 static DEFINE_SPINLOCK(multi_msi_cpu_lock);
1751
1752 /* -1 means starting with CPU 0 */
1753 static int cpu_next = -1;
1754
1755 unsigned long flags;
1756 int cpu;
1757
1758 spin_lock_irqsave(&multi_msi_cpu_lock, flags);
1759
1760 cpu_next = cpumask_next_wrap(cpu_next, cpu_online_mask, nr_cpu_ids,
1761 false);
1762 cpu = cpu_next;
1763
1764 spin_unlock_irqrestore(&multi_msi_cpu_lock, flags);
1765
1766 return cpu;
1767}
1768
1769static u32 hv_compose_msi_req_v2(
1770 struct pci_create_interrupt2 *int_pkt, int cpu,
1771 u32 slot, u8 vector, u16 vector_count)
1772{
1773 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE2;
1774 int_pkt->wslot.slot = slot;
1775 int_pkt->int_desc.vector = vector;
1776 int_pkt->int_desc.vector_count = vector_count;
1777 int_pkt->int_desc.delivery_mode = DELIVERY_MODE;
1778 int_pkt->int_desc.processor_array[0] =
1779 hv_cpu_number_to_vp_number(cpu);
1780 int_pkt->int_desc.processor_count = 1;
1781
1782 return sizeof(*int_pkt);
1783}
1784
1785static u32 hv_compose_msi_req_v3(
1786 struct pci_create_interrupt3 *int_pkt, int cpu,
1787 u32 slot, u32 vector, u16 vector_count)
1788{
1789 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE3;
1790 int_pkt->wslot.slot = slot;
1791 int_pkt->int_desc.vector = vector;
1792 int_pkt->int_desc.reserved = 0;
1793 int_pkt->int_desc.vector_count = vector_count;
1794 int_pkt->int_desc.delivery_mode = DELIVERY_MODE;
1795 int_pkt->int_desc.processor_array[0] =
1796 hv_cpu_number_to_vp_number(cpu);
1797 int_pkt->int_desc.processor_count = 1;
1798
1799 return sizeof(*int_pkt);
1800}
1801
1802/**
1803 * hv_compose_msi_msg() - Supplies a valid MSI address/data
1804 * @data: Everything about this MSI
1805 * @msg: Buffer that is filled in by this function
1806 *
1807 * This function unpacks the IRQ looking for target CPU set, IDT
1808 * vector and mode and sends a message to the parent partition
1809 * asking for a mapping for that tuple in this partition. The
1810 * response supplies a data value and address to which that data
1811 * should be written to trigger that interrupt.
1812 */
1813static void hv_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
1814{
1815 struct hv_pcibus_device *hbus;
1816 struct vmbus_channel *channel;
1817 struct hv_pci_dev *hpdev;
1818 struct pci_bus *pbus;
1819 struct pci_dev *pdev;
1820 const struct cpumask *dest;
1821 struct compose_comp_ctxt comp;
1822 struct tran_int_desc *int_desc;
1823 struct msi_desc *msi_desc;
1824 /*
1825 * vector_count should be u16: see hv_msi_desc, hv_msi_desc2
1826 * and hv_msi_desc3. vector must be u32: see hv_msi_desc3.
1827 */
1828 u16 vector_count;
1829 u32 vector;
1830 struct {
1831 struct pci_packet pci_pkt;
1832 union {
1833 struct pci_create_interrupt v1;
1834 struct pci_create_interrupt2 v2;
1835 struct pci_create_interrupt3 v3;
1836 } int_pkts;
1837 } __packed ctxt;
1838 bool multi_msi;
1839 u64 trans_id;
1840 u32 size;
1841 int ret;
1842 int cpu;
1843
1844 msi_desc = irq_data_get_msi_desc(data);
1845 multi_msi = !msi_desc->pci.msi_attrib.is_msix &&
1846 msi_desc->nvec_used > 1;
1847
1848 /* Reuse the previous allocation */
1849 if (data->chip_data && multi_msi) {
1850 int_desc = data->chip_data;
1851 msg->address_hi = int_desc->address >> 32;
1852 msg->address_lo = int_desc->address & 0xffffffff;
1853 msg->data = int_desc->data;
1854 return;
1855 }
1856
1857 pdev = msi_desc_to_pci_dev(msi_desc);
1858 dest = irq_data_get_effective_affinity_mask(data);
1859 pbus = pdev->bus;
1860 hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
1861 channel = hbus->hdev->channel;
1862 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1863 if (!hpdev)
1864 goto return_null_message;
1865
1866 /* Free any previous message that might have already been composed. */
1867 if (data->chip_data && !multi_msi) {
1868 int_desc = data->chip_data;
1869 data->chip_data = NULL;
1870 hv_int_desc_free(hpdev, int_desc);
1871 }
1872
1873 int_desc = kzalloc(sizeof(*int_desc), GFP_ATOMIC);
1874 if (!int_desc)
1875 goto drop_reference;
1876
1877 if (multi_msi) {
1878 /*
1879 * If this is not the first MSI of Multi MSI, we already have
1880 * a mapping. Can exit early.
1881 */
1882 if (msi_desc->irq != data->irq) {
1883 data->chip_data = int_desc;
1884 int_desc->address = msi_desc->msg.address_lo |
1885 (u64)msi_desc->msg.address_hi << 32;
1886 int_desc->data = msi_desc->msg.data +
1887 (data->irq - msi_desc->irq);
1888 msg->address_hi = msi_desc->msg.address_hi;
1889 msg->address_lo = msi_desc->msg.address_lo;
1890 msg->data = int_desc->data;
1891 put_pcichild(hpdev);
1892 return;
1893 }
1894 /*
1895 * The vector we select here is a dummy value. The correct
1896 * value gets sent to the hypervisor in unmask(). This needs
1897 * to be aligned with the count, and also not zero. Multi-msi
1898 * is powers of 2 up to 32, so 32 will always work here.
1899 */
1900 vector = 32;
1901 vector_count = msi_desc->nvec_used;
1902 cpu = hv_compose_multi_msi_req_get_cpu();
1903 } else {
1904 vector = hv_msi_get_int_vector(data);
1905 vector_count = 1;
1906 cpu = hv_compose_msi_req_get_cpu(dest);
1907 }
1908
1909 /*
1910 * hv_compose_msi_req_v1 and v2 are for x86 only, meaning 'vector'
1911 * can't exceed u8. Cast 'vector' down to u8 for v1/v2 explicitly
1912 * for better readability.
1913 */
1914 memset(&ctxt, 0, sizeof(ctxt));
1915 init_completion(&comp.comp_pkt.host_event);
1916 ctxt.pci_pkt.completion_func = hv_pci_compose_compl;
1917 ctxt.pci_pkt.compl_ctxt = ∁
1918
1919 switch (hbus->protocol_version) {
1920 case PCI_PROTOCOL_VERSION_1_1:
1921 size = hv_compose_msi_req_v1(&ctxt.int_pkts.v1,
1922 hpdev->desc.win_slot.slot,
1923 (u8)vector,
1924 vector_count);
1925 break;
1926
1927 case PCI_PROTOCOL_VERSION_1_2:
1928 case PCI_PROTOCOL_VERSION_1_3:
1929 size = hv_compose_msi_req_v2(&ctxt.int_pkts.v2,
1930 cpu,
1931 hpdev->desc.win_slot.slot,
1932 (u8)vector,
1933 vector_count);
1934 break;
1935
1936 case PCI_PROTOCOL_VERSION_1_4:
1937 size = hv_compose_msi_req_v3(&ctxt.int_pkts.v3,
1938 cpu,
1939 hpdev->desc.win_slot.slot,
1940 vector,
1941 vector_count);
1942 break;
1943
1944 default:
1945 /* As we only negotiate protocol versions known to this driver,
1946 * this path should never hit. However, this is it not a hot
1947 * path so we print a message to aid future updates.
1948 */
1949 dev_err(&hbus->hdev->device,
1950 "Unexpected vPCI protocol, update driver.");
1951 goto free_int_desc;
1952 }
1953
1954 ret = vmbus_sendpacket_getid(hpdev->hbus->hdev->channel, &ctxt.int_pkts,
1955 size, (unsigned long)&ctxt.pci_pkt,
1956 &trans_id, VM_PKT_DATA_INBAND,
1957 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1958 if (ret) {
1959 dev_err(&hbus->hdev->device,
1960 "Sending request for interrupt failed: 0x%x",
1961 comp.comp_pkt.completion_status);
1962 goto free_int_desc;
1963 }
1964
1965 /*
1966 * Prevents hv_pci_onchannelcallback() from running concurrently
1967 * in the tasklet.
1968 */
1969 tasklet_disable_in_atomic(&channel->callback_event);
1970
1971 /*
1972 * Since this function is called with IRQ locks held, can't
1973 * do normal wait for completion; instead poll.
1974 */
1975 while (!try_wait_for_completion(&comp.comp_pkt.host_event)) {
1976 unsigned long flags;
1977
1978 /* 0xFFFF means an invalid PCI VENDOR ID. */
1979 if (hv_pcifront_get_vendor_id(hpdev) == 0xFFFF) {
1980 dev_err_once(&hbus->hdev->device,
1981 "the device has gone\n");
1982 goto enable_tasklet;
1983 }
1984
1985 /*
1986 * Make sure that the ring buffer data structure doesn't get
1987 * freed while we dereference the ring buffer pointer. Test
1988 * for the channel's onchannel_callback being NULL within a
1989 * sched_lock critical section. See also the inline comments
1990 * in vmbus_reset_channel_cb().
1991 */
1992 spin_lock_irqsave(&channel->sched_lock, flags);
1993 if (unlikely(channel->onchannel_callback == NULL)) {
1994 spin_unlock_irqrestore(&channel->sched_lock, flags);
1995 goto enable_tasklet;
1996 }
1997 hv_pci_onchannelcallback(hbus);
1998 spin_unlock_irqrestore(&channel->sched_lock, flags);
1999
2000 udelay(100);
2001 }
2002
2003 tasklet_enable(&channel->callback_event);
2004
2005 if (comp.comp_pkt.completion_status < 0) {
2006 dev_err(&hbus->hdev->device,
2007 "Request for interrupt failed: 0x%x",
2008 comp.comp_pkt.completion_status);
2009 goto free_int_desc;
2010 }
2011
2012 /*
2013 * Record the assignment so that this can be unwound later. Using
2014 * irq_set_chip_data() here would be appropriate, but the lock it takes
2015 * is already held.
2016 */
2017 *int_desc = comp.int_desc;
2018 data->chip_data = int_desc;
2019
2020 /* Pass up the result. */
2021 msg->address_hi = comp.int_desc.address >> 32;
2022 msg->address_lo = comp.int_desc.address & 0xffffffff;
2023 msg->data = comp.int_desc.data;
2024
2025 put_pcichild(hpdev);
2026 return;
2027
2028enable_tasklet:
2029 tasklet_enable(&channel->callback_event);
2030 /*
2031 * The completion packet on the stack becomes invalid after 'return';
2032 * remove the ID from the VMbus requestor if the identifier is still
2033 * mapped to/associated with the packet. (The identifier could have
2034 * been 're-used', i.e., already removed and (re-)mapped.)
2035 *
2036 * Cf. hv_pci_onchannelcallback().
2037 */
2038 vmbus_request_addr_match(channel, trans_id, (unsigned long)&ctxt.pci_pkt);
2039free_int_desc:
2040 kfree(int_desc);
2041drop_reference:
2042 put_pcichild(hpdev);
2043return_null_message:
2044 msg->address_hi = 0;
2045 msg->address_lo = 0;
2046 msg->data = 0;
2047}
2048
2049/* HW Interrupt Chip Descriptor */
2050static struct irq_chip hv_msi_irq_chip = {
2051 .name = "Hyper-V PCIe MSI",
2052 .irq_compose_msi_msg = hv_compose_msi_msg,
2053 .irq_set_affinity = irq_chip_set_affinity_parent,
2054#ifdef CONFIG_X86
2055 .irq_ack = irq_chip_ack_parent,
2056#elif defined(CONFIG_ARM64)
2057 .irq_eoi = irq_chip_eoi_parent,
2058#endif
2059 .irq_mask = hv_irq_mask,
2060 .irq_unmask = hv_irq_unmask,
2061};
2062
2063static struct msi_domain_ops hv_msi_ops = {
2064 .msi_prepare = hv_msi_prepare,
2065 .msi_free = hv_msi_free,
2066};
2067
2068/**
2069 * hv_pcie_init_irq_domain() - Initialize IRQ domain
2070 * @hbus: The root PCI bus
2071 *
2072 * This function creates an IRQ domain which will be used for
2073 * interrupts from devices that have been passed through. These
2074 * devices only support MSI and MSI-X, not line-based interrupts
2075 * or simulations of line-based interrupts through PCIe's
2076 * fabric-layer messages. Because interrupts are remapped, we
2077 * can support multi-message MSI here.
2078 *
2079 * Return: '0' on success and error value on failure
2080 */
2081static int hv_pcie_init_irq_domain(struct hv_pcibus_device *hbus)
2082{
2083 hbus->msi_info.chip = &hv_msi_irq_chip;
2084 hbus->msi_info.ops = &hv_msi_ops;
2085 hbus->msi_info.flags = (MSI_FLAG_USE_DEF_DOM_OPS |
2086 MSI_FLAG_USE_DEF_CHIP_OPS | MSI_FLAG_MULTI_PCI_MSI |
2087 MSI_FLAG_PCI_MSIX);
2088 hbus->msi_info.handler = FLOW_HANDLER;
2089 hbus->msi_info.handler_name = FLOW_NAME;
2090 hbus->msi_info.data = hbus;
2091 hbus->irq_domain = pci_msi_create_irq_domain(hbus->fwnode,
2092 &hbus->msi_info,
2093 hv_pci_get_root_domain());
2094 if (!hbus->irq_domain) {
2095 dev_err(&hbus->hdev->device,
2096 "Failed to build an MSI IRQ domain\n");
2097 return -ENODEV;
2098 }
2099
2100 dev_set_msi_domain(&hbus->bridge->dev, hbus->irq_domain);
2101
2102 return 0;
2103}
2104
2105/**
2106 * get_bar_size() - Get the address space consumed by a BAR
2107 * @bar_val: Value that a BAR returned after -1 was written
2108 * to it.
2109 *
2110 * This function returns the size of the BAR, rounded up to 1
2111 * page. It has to be rounded up because the hypervisor's page
2112 * table entry that maps the BAR into the VM can't specify an
2113 * offset within a page. The invariant is that the hypervisor
2114 * must place any BARs of smaller than page length at the
2115 * beginning of a page.
2116 *
2117 * Return: Size in bytes of the consumed MMIO space.
2118 */
2119static u64 get_bar_size(u64 bar_val)
2120{
2121 return round_up((1 + ~(bar_val & PCI_BASE_ADDRESS_MEM_MASK)),
2122 PAGE_SIZE);
2123}
2124
2125/**
2126 * survey_child_resources() - Total all MMIO requirements
2127 * @hbus: Root PCI bus, as understood by this driver
2128 */
2129static void survey_child_resources(struct hv_pcibus_device *hbus)
2130{
2131 struct hv_pci_dev *hpdev;
2132 resource_size_t bar_size = 0;
2133 unsigned long flags;
2134 struct completion *event;
2135 u64 bar_val;
2136 int i;
2137
2138 /* If nobody is waiting on the answer, don't compute it. */
2139 event = xchg(&hbus->survey_event, NULL);
2140 if (!event)
2141 return;
2142
2143 /* If the answer has already been computed, go with it. */
2144 if (hbus->low_mmio_space || hbus->high_mmio_space) {
2145 complete(event);
2146 return;
2147 }
2148
2149 spin_lock_irqsave(&hbus->device_list_lock, flags);
2150
2151 /*
2152 * Due to an interesting quirk of the PCI spec, all memory regions
2153 * for a child device are a power of 2 in size and aligned in memory,
2154 * so it's sufficient to just add them up without tracking alignment.
2155 */
2156 list_for_each_entry(hpdev, &hbus->children, list_entry) {
2157 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
2158 if (hpdev->probed_bar[i] & PCI_BASE_ADDRESS_SPACE_IO)
2159 dev_err(&hbus->hdev->device,
2160 "There's an I/O BAR in this list!\n");
2161
2162 if (hpdev->probed_bar[i] != 0) {
2163 /*
2164 * A probed BAR has all the upper bits set that
2165 * can be changed.
2166 */
2167
2168 bar_val = hpdev->probed_bar[i];
2169 if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
2170 bar_val |=
2171 ((u64)hpdev->probed_bar[++i] << 32);
2172 else
2173 bar_val |= 0xffffffff00000000ULL;
2174
2175 bar_size = get_bar_size(bar_val);
2176
2177 if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
2178 hbus->high_mmio_space += bar_size;
2179 else
2180 hbus->low_mmio_space += bar_size;
2181 }
2182 }
2183 }
2184
2185 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2186 complete(event);
2187}
2188
2189/**
2190 * prepopulate_bars() - Fill in BARs with defaults
2191 * @hbus: Root PCI bus, as understood by this driver
2192 *
2193 * The core PCI driver code seems much, much happier if the BARs
2194 * for a device have values upon first scan. So fill them in.
2195 * The algorithm below works down from large sizes to small,
2196 * attempting to pack the assignments optimally. The assumption,
2197 * enforced in other parts of the code, is that the beginning of
2198 * the memory-mapped I/O space will be aligned on the largest
2199 * BAR size.
2200 */
2201static void prepopulate_bars(struct hv_pcibus_device *hbus)
2202{
2203 resource_size_t high_size = 0;
2204 resource_size_t low_size = 0;
2205 resource_size_t high_base = 0;
2206 resource_size_t low_base = 0;
2207 resource_size_t bar_size;
2208 struct hv_pci_dev *hpdev;
2209 unsigned long flags;
2210 u64 bar_val;
2211 u32 command;
2212 bool high;
2213 int i;
2214
2215 if (hbus->low_mmio_space) {
2216 low_size = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
2217 low_base = hbus->low_mmio_res->start;
2218 }
2219
2220 if (hbus->high_mmio_space) {
2221 high_size = 1ULL <<
2222 (63 - __builtin_clzll(hbus->high_mmio_space));
2223 high_base = hbus->high_mmio_res->start;
2224 }
2225
2226 spin_lock_irqsave(&hbus->device_list_lock, flags);
2227
2228 /*
2229 * Clear the memory enable bit, in case it's already set. This occurs
2230 * in the suspend path of hibernation, where the device is suspended,
2231 * resumed and suspended again: see hibernation_snapshot() and
2232 * hibernation_platform_enter().
2233 *
2234 * If the memory enable bit is already set, Hyper-V silently ignores
2235 * the below BAR updates, and the related PCI device driver can not
2236 * work, because reading from the device register(s) always returns
2237 * 0xFFFFFFFF (PCI_ERROR_RESPONSE).
2238 */
2239 list_for_each_entry(hpdev, &hbus->children, list_entry) {
2240 _hv_pcifront_read_config(hpdev, PCI_COMMAND, 2, &command);
2241 command &= ~PCI_COMMAND_MEMORY;
2242 _hv_pcifront_write_config(hpdev, PCI_COMMAND, 2, command);
2243 }
2244
2245 /* Pick addresses for the BARs. */
2246 do {
2247 list_for_each_entry(hpdev, &hbus->children, list_entry) {
2248 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
2249 bar_val = hpdev->probed_bar[i];
2250 if (bar_val == 0)
2251 continue;
2252 high = bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64;
2253 if (high) {
2254 bar_val |=
2255 ((u64)hpdev->probed_bar[i + 1]
2256 << 32);
2257 } else {
2258 bar_val |= 0xffffffffULL << 32;
2259 }
2260 bar_size = get_bar_size(bar_val);
2261 if (high) {
2262 if (high_size != bar_size) {
2263 i++;
2264 continue;
2265 }
2266 _hv_pcifront_write_config(hpdev,
2267 PCI_BASE_ADDRESS_0 + (4 * i),
2268 4,
2269 (u32)(high_base & 0xffffff00));
2270 i++;
2271 _hv_pcifront_write_config(hpdev,
2272 PCI_BASE_ADDRESS_0 + (4 * i),
2273 4, (u32)(high_base >> 32));
2274 high_base += bar_size;
2275 } else {
2276 if (low_size != bar_size)
2277 continue;
2278 _hv_pcifront_write_config(hpdev,
2279 PCI_BASE_ADDRESS_0 + (4 * i),
2280 4,
2281 (u32)(low_base & 0xffffff00));
2282 low_base += bar_size;
2283 }
2284 }
2285 if (high_size <= 1 && low_size <= 1) {
2286 /*
2287 * No need to set the PCI_COMMAND_MEMORY bit as
2288 * the core PCI driver doesn't require the bit
2289 * to be pre-set. Actually here we intentionally
2290 * keep the bit off so that the PCI BAR probing
2291 * in the core PCI driver doesn't cause Hyper-V
2292 * to unnecessarily unmap/map the virtual BARs
2293 * from/to the physical BARs multiple times.
2294 * This reduces the VM boot time significantly
2295 * if the BAR sizes are huge.
2296 */
2297 break;
2298 }
2299 }
2300
2301 high_size >>= 1;
2302 low_size >>= 1;
2303 } while (high_size || low_size);
2304
2305 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2306}
2307
2308/*
2309 * Assign entries in sysfs pci slot directory.
2310 *
2311 * Note that this function does not need to lock the children list
2312 * because it is called from pci_devices_present_work which
2313 * is serialized with hv_eject_device_work because they are on the
2314 * same ordered workqueue. Therefore hbus->children list will not change
2315 * even when pci_create_slot sleeps.
2316 */
2317static void hv_pci_assign_slots(struct hv_pcibus_device *hbus)
2318{
2319 struct hv_pci_dev *hpdev;
2320 char name[SLOT_NAME_SIZE];
2321 int slot_nr;
2322
2323 list_for_each_entry(hpdev, &hbus->children, list_entry) {
2324 if (hpdev->pci_slot)
2325 continue;
2326
2327 slot_nr = PCI_SLOT(wslot_to_devfn(hpdev->desc.win_slot.slot));
2328 snprintf(name, SLOT_NAME_SIZE, "%u", hpdev->desc.ser);
2329 hpdev->pci_slot = pci_create_slot(hbus->bridge->bus, slot_nr,
2330 name, NULL);
2331 if (IS_ERR(hpdev->pci_slot)) {
2332 pr_warn("pci_create slot %s failed\n", name);
2333 hpdev->pci_slot = NULL;
2334 }
2335 }
2336}
2337
2338/*
2339 * Remove entries in sysfs pci slot directory.
2340 */
2341static void hv_pci_remove_slots(struct hv_pcibus_device *hbus)
2342{
2343 struct hv_pci_dev *hpdev;
2344
2345 list_for_each_entry(hpdev, &hbus->children, list_entry) {
2346 if (!hpdev->pci_slot)
2347 continue;
2348 pci_destroy_slot(hpdev->pci_slot);
2349 hpdev->pci_slot = NULL;
2350 }
2351}
2352
2353/*
2354 * Set NUMA node for the devices on the bus
2355 */
2356static void hv_pci_assign_numa_node(struct hv_pcibus_device *hbus)
2357{
2358 struct pci_dev *dev;
2359 struct pci_bus *bus = hbus->bridge->bus;
2360 struct hv_pci_dev *hv_dev;
2361
2362 list_for_each_entry(dev, &bus->devices, bus_list) {
2363 hv_dev = get_pcichild_wslot(hbus, devfn_to_wslot(dev->devfn));
2364 if (!hv_dev)
2365 continue;
2366
2367 if (hv_dev->desc.flags & HV_PCI_DEVICE_FLAG_NUMA_AFFINITY &&
2368 hv_dev->desc.virtual_numa_node < num_possible_nodes())
2369 /*
2370 * The kernel may boot with some NUMA nodes offline
2371 * (e.g. in a KDUMP kernel) or with NUMA disabled via
2372 * "numa=off". In those cases, adjust the host provided
2373 * NUMA node to a valid NUMA node used by the kernel.
2374 */
2375 set_dev_node(&dev->dev,
2376 numa_map_to_online_node(
2377 hv_dev->desc.virtual_numa_node));
2378
2379 put_pcichild(hv_dev);
2380 }
2381}
2382
2383/**
2384 * create_root_hv_pci_bus() - Expose a new root PCI bus
2385 * @hbus: Root PCI bus, as understood by this driver
2386 *
2387 * Return: 0 on success, -errno on failure
2388 */
2389static int create_root_hv_pci_bus(struct hv_pcibus_device *hbus)
2390{
2391 int error;
2392 struct pci_host_bridge *bridge = hbus->bridge;
2393
2394 bridge->dev.parent = &hbus->hdev->device;
2395 bridge->sysdata = &hbus->sysdata;
2396 bridge->ops = &hv_pcifront_ops;
2397
2398 error = pci_scan_root_bus_bridge(bridge);
2399 if (error)
2400 return error;
2401
2402 pci_lock_rescan_remove();
2403 hv_pci_assign_numa_node(hbus);
2404 pci_bus_assign_resources(bridge->bus);
2405 hv_pci_assign_slots(hbus);
2406 pci_bus_add_devices(bridge->bus);
2407 pci_unlock_rescan_remove();
2408 hbus->state = hv_pcibus_installed;
2409 return 0;
2410}
2411
2412struct q_res_req_compl {
2413 struct completion host_event;
2414 struct hv_pci_dev *hpdev;
2415};
2416
2417/**
2418 * q_resource_requirements() - Query Resource Requirements
2419 * @context: The completion context.
2420 * @resp: The response that came from the host.
2421 * @resp_packet_size: The size in bytes of resp.
2422 *
2423 * This function is invoked on completion of a Query Resource
2424 * Requirements packet.
2425 */
2426static void q_resource_requirements(void *context, struct pci_response *resp,
2427 int resp_packet_size)
2428{
2429 struct q_res_req_compl *completion = context;
2430 struct pci_q_res_req_response *q_res_req =
2431 (struct pci_q_res_req_response *)resp;
2432 s32 status;
2433 int i;
2434
2435 status = (resp_packet_size < sizeof(*q_res_req)) ? -1 : resp->status;
2436 if (status < 0) {
2437 dev_err(&completion->hpdev->hbus->hdev->device,
2438 "query resource requirements failed: %x\n",
2439 status);
2440 } else {
2441 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
2442 completion->hpdev->probed_bar[i] =
2443 q_res_req->probed_bar[i];
2444 }
2445 }
2446
2447 complete(&completion->host_event);
2448}
2449
2450/**
2451 * new_pcichild_device() - Create a new child device
2452 * @hbus: The internal struct tracking this root PCI bus.
2453 * @desc: The information supplied so far from the host
2454 * about the device.
2455 *
2456 * This function creates the tracking structure for a new child
2457 * device and kicks off the process of figuring out what it is.
2458 *
2459 * Return: Pointer to the new tracking struct
2460 */
2461static struct hv_pci_dev *new_pcichild_device(struct hv_pcibus_device *hbus,
2462 struct hv_pcidev_description *desc)
2463{
2464 struct hv_pci_dev *hpdev;
2465 struct pci_child_message *res_req;
2466 struct q_res_req_compl comp_pkt;
2467 struct {
2468 struct pci_packet init_packet;
2469 u8 buffer[sizeof(struct pci_child_message)];
2470 } pkt;
2471 unsigned long flags;
2472 int ret;
2473
2474 hpdev = kzalloc(sizeof(*hpdev), GFP_KERNEL);
2475 if (!hpdev)
2476 return NULL;
2477
2478 hpdev->hbus = hbus;
2479
2480 memset(&pkt, 0, sizeof(pkt));
2481 init_completion(&comp_pkt.host_event);
2482 comp_pkt.hpdev = hpdev;
2483 pkt.init_packet.compl_ctxt = &comp_pkt;
2484 pkt.init_packet.completion_func = q_resource_requirements;
2485 res_req = (struct pci_child_message *)&pkt.init_packet.message;
2486 res_req->message_type.type = PCI_QUERY_RESOURCE_REQUIREMENTS;
2487 res_req->wslot.slot = desc->win_slot.slot;
2488
2489 ret = vmbus_sendpacket(hbus->hdev->channel, res_req,
2490 sizeof(struct pci_child_message),
2491 (unsigned long)&pkt.init_packet,
2492 VM_PKT_DATA_INBAND,
2493 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2494 if (ret)
2495 goto error;
2496
2497 if (wait_for_response(hbus->hdev, &comp_pkt.host_event))
2498 goto error;
2499
2500 hpdev->desc = *desc;
2501 refcount_set(&hpdev->refs, 1);
2502 get_pcichild(hpdev);
2503 spin_lock_irqsave(&hbus->device_list_lock, flags);
2504
2505 list_add_tail(&hpdev->list_entry, &hbus->children);
2506 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2507 return hpdev;
2508
2509error:
2510 kfree(hpdev);
2511 return NULL;
2512}
2513
2514/**
2515 * get_pcichild_wslot() - Find device from slot
2516 * @hbus: Root PCI bus, as understood by this driver
2517 * @wslot: Location on the bus
2518 *
2519 * This function looks up a PCI device and returns the internal
2520 * representation of it. It acquires a reference on it, so that
2521 * the device won't be deleted while somebody is using it. The
2522 * caller is responsible for calling put_pcichild() to release
2523 * this reference.
2524 *
2525 * Return: Internal representation of a PCI device
2526 */
2527static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
2528 u32 wslot)
2529{
2530 unsigned long flags;
2531 struct hv_pci_dev *iter, *hpdev = NULL;
2532
2533 spin_lock_irqsave(&hbus->device_list_lock, flags);
2534 list_for_each_entry(iter, &hbus->children, list_entry) {
2535 if (iter->desc.win_slot.slot == wslot) {
2536 hpdev = iter;
2537 get_pcichild(hpdev);
2538 break;
2539 }
2540 }
2541 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2542
2543 return hpdev;
2544}
2545
2546/**
2547 * pci_devices_present_work() - Handle new list of child devices
2548 * @work: Work struct embedded in struct hv_dr_work
2549 *
2550 * "Bus Relations" is the Windows term for "children of this
2551 * bus." The terminology is preserved here for people trying to
2552 * debug the interaction between Hyper-V and Linux. This
2553 * function is called when the parent partition reports a list
2554 * of functions that should be observed under this PCI Express
2555 * port (bus).
2556 *
2557 * This function updates the list, and must tolerate being
2558 * called multiple times with the same information. The typical
2559 * number of child devices is one, with very atypical cases
2560 * involving three or four, so the algorithms used here can be
2561 * simple and inefficient.
2562 *
2563 * It must also treat the omission of a previously observed device as
2564 * notification that the device no longer exists.
2565 *
2566 * Note that this function is serialized with hv_eject_device_work(),
2567 * because both are pushed to the ordered workqueue hbus->wq.
2568 */
2569static void pci_devices_present_work(struct work_struct *work)
2570{
2571 u32 child_no;
2572 bool found;
2573 struct hv_pcidev_description *new_desc;
2574 struct hv_pci_dev *hpdev;
2575 struct hv_pcibus_device *hbus;
2576 struct list_head removed;
2577 struct hv_dr_work *dr_wrk;
2578 struct hv_dr_state *dr = NULL;
2579 unsigned long flags;
2580
2581 dr_wrk = container_of(work, struct hv_dr_work, wrk);
2582 hbus = dr_wrk->bus;
2583 kfree(dr_wrk);
2584
2585 INIT_LIST_HEAD(&removed);
2586
2587 /* Pull this off the queue and process it if it was the last one. */
2588 spin_lock_irqsave(&hbus->device_list_lock, flags);
2589 while (!list_empty(&hbus->dr_list)) {
2590 dr = list_first_entry(&hbus->dr_list, struct hv_dr_state,
2591 list_entry);
2592 list_del(&dr->list_entry);
2593
2594 /* Throw this away if the list still has stuff in it. */
2595 if (!list_empty(&hbus->dr_list)) {
2596 kfree(dr);
2597 continue;
2598 }
2599 }
2600 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2601
2602 if (!dr)
2603 return;
2604
2605 mutex_lock(&hbus->state_lock);
2606
2607 /* First, mark all existing children as reported missing. */
2608 spin_lock_irqsave(&hbus->device_list_lock, flags);
2609 list_for_each_entry(hpdev, &hbus->children, list_entry) {
2610 hpdev->reported_missing = true;
2611 }
2612 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2613
2614 /* Next, add back any reported devices. */
2615 for (child_no = 0; child_no < dr->device_count; child_no++) {
2616 found = false;
2617 new_desc = &dr->func[child_no];
2618
2619 spin_lock_irqsave(&hbus->device_list_lock, flags);
2620 list_for_each_entry(hpdev, &hbus->children, list_entry) {
2621 if ((hpdev->desc.win_slot.slot == new_desc->win_slot.slot) &&
2622 (hpdev->desc.v_id == new_desc->v_id) &&
2623 (hpdev->desc.d_id == new_desc->d_id) &&
2624 (hpdev->desc.ser == new_desc->ser)) {
2625 hpdev->reported_missing = false;
2626 found = true;
2627 }
2628 }
2629 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2630
2631 if (!found) {
2632 hpdev = new_pcichild_device(hbus, new_desc);
2633 if (!hpdev)
2634 dev_err(&hbus->hdev->device,
2635 "couldn't record a child device.\n");
2636 }
2637 }
2638
2639 /* Move missing children to a list on the stack. */
2640 spin_lock_irqsave(&hbus->device_list_lock, flags);
2641 do {
2642 found = false;
2643 list_for_each_entry(hpdev, &hbus->children, list_entry) {
2644 if (hpdev->reported_missing) {
2645 found = true;
2646 put_pcichild(hpdev);
2647 list_move_tail(&hpdev->list_entry, &removed);
2648 break;
2649 }
2650 }
2651 } while (found);
2652 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2653
2654 /* Delete everything that should no longer exist. */
2655 while (!list_empty(&removed)) {
2656 hpdev = list_first_entry(&removed, struct hv_pci_dev,
2657 list_entry);
2658 list_del(&hpdev->list_entry);
2659
2660 if (hpdev->pci_slot)
2661 pci_destroy_slot(hpdev->pci_slot);
2662
2663 put_pcichild(hpdev);
2664 }
2665
2666 switch (hbus->state) {
2667 case hv_pcibus_installed:
2668 /*
2669 * Tell the core to rescan bus
2670 * because there may have been changes.
2671 */
2672 pci_lock_rescan_remove();
2673 pci_scan_child_bus(hbus->bridge->bus);
2674 hv_pci_assign_numa_node(hbus);
2675 hv_pci_assign_slots(hbus);
2676 pci_unlock_rescan_remove();
2677 break;
2678
2679 case hv_pcibus_init:
2680 case hv_pcibus_probed:
2681 survey_child_resources(hbus);
2682 break;
2683
2684 default:
2685 break;
2686 }
2687
2688 mutex_unlock(&hbus->state_lock);
2689
2690 kfree(dr);
2691}
2692
2693/**
2694 * hv_pci_start_relations_work() - Queue work to start device discovery
2695 * @hbus: Root PCI bus, as understood by this driver
2696 * @dr: The list of children returned from host
2697 *
2698 * Return: 0 on success, -errno on failure
2699 */
2700static int hv_pci_start_relations_work(struct hv_pcibus_device *hbus,
2701 struct hv_dr_state *dr)
2702{
2703 struct hv_dr_work *dr_wrk;
2704 unsigned long flags;
2705 bool pending_dr;
2706
2707 if (hbus->state == hv_pcibus_removing) {
2708 dev_info(&hbus->hdev->device,
2709 "PCI VMBus BUS_RELATIONS: ignored\n");
2710 return -ENOENT;
2711 }
2712
2713 dr_wrk = kzalloc(sizeof(*dr_wrk), GFP_NOWAIT);
2714 if (!dr_wrk)
2715 return -ENOMEM;
2716
2717 INIT_WORK(&dr_wrk->wrk, pci_devices_present_work);
2718 dr_wrk->bus = hbus;
2719
2720 spin_lock_irqsave(&hbus->device_list_lock, flags);
2721 /*
2722 * If pending_dr is true, we have already queued a work,
2723 * which will see the new dr. Otherwise, we need to
2724 * queue a new work.
2725 */
2726 pending_dr = !list_empty(&hbus->dr_list);
2727 list_add_tail(&dr->list_entry, &hbus->dr_list);
2728 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2729
2730 if (pending_dr)
2731 kfree(dr_wrk);
2732 else
2733 queue_work(hbus->wq, &dr_wrk->wrk);
2734
2735 return 0;
2736}
2737
2738/**
2739 * hv_pci_devices_present() - Handle list of new children
2740 * @hbus: Root PCI bus, as understood by this driver
2741 * @relations: Packet from host listing children
2742 *
2743 * Process a new list of devices on the bus. The list of devices is
2744 * discovered by VSP and sent to us via VSP message PCI_BUS_RELATIONS,
2745 * whenever a new list of devices for this bus appears.
2746 */
2747static void hv_pci_devices_present(struct hv_pcibus_device *hbus,
2748 struct pci_bus_relations *relations)
2749{
2750 struct hv_dr_state *dr;
2751 int i;
2752
2753 dr = kzalloc(struct_size(dr, func, relations->device_count),
2754 GFP_NOWAIT);
2755 if (!dr)
2756 return;
2757
2758 dr->device_count = relations->device_count;
2759 for (i = 0; i < dr->device_count; i++) {
2760 dr->func[i].v_id = relations->func[i].v_id;
2761 dr->func[i].d_id = relations->func[i].d_id;
2762 dr->func[i].rev = relations->func[i].rev;
2763 dr->func[i].prog_intf = relations->func[i].prog_intf;
2764 dr->func[i].subclass = relations->func[i].subclass;
2765 dr->func[i].base_class = relations->func[i].base_class;
2766 dr->func[i].subsystem_id = relations->func[i].subsystem_id;
2767 dr->func[i].win_slot = relations->func[i].win_slot;
2768 dr->func[i].ser = relations->func[i].ser;
2769 }
2770
2771 if (hv_pci_start_relations_work(hbus, dr))
2772 kfree(dr);
2773}
2774
2775/**
2776 * hv_pci_devices_present2() - Handle list of new children
2777 * @hbus: Root PCI bus, as understood by this driver
2778 * @relations: Packet from host listing children
2779 *
2780 * This function is the v2 version of hv_pci_devices_present()
2781 */
2782static void hv_pci_devices_present2(struct hv_pcibus_device *hbus,
2783 struct pci_bus_relations2 *relations)
2784{
2785 struct hv_dr_state *dr;
2786 int i;
2787
2788 dr = kzalloc(struct_size(dr, func, relations->device_count),
2789 GFP_NOWAIT);
2790 if (!dr)
2791 return;
2792
2793 dr->device_count = relations->device_count;
2794 for (i = 0; i < dr->device_count; i++) {
2795 dr->func[i].v_id = relations->func[i].v_id;
2796 dr->func[i].d_id = relations->func[i].d_id;
2797 dr->func[i].rev = relations->func[i].rev;
2798 dr->func[i].prog_intf = relations->func[i].prog_intf;
2799 dr->func[i].subclass = relations->func[i].subclass;
2800 dr->func[i].base_class = relations->func[i].base_class;
2801 dr->func[i].subsystem_id = relations->func[i].subsystem_id;
2802 dr->func[i].win_slot = relations->func[i].win_slot;
2803 dr->func[i].ser = relations->func[i].ser;
2804 dr->func[i].flags = relations->func[i].flags;
2805 dr->func[i].virtual_numa_node =
2806 relations->func[i].virtual_numa_node;
2807 }
2808
2809 if (hv_pci_start_relations_work(hbus, dr))
2810 kfree(dr);
2811}
2812
2813/**
2814 * hv_eject_device_work() - Asynchronously handles ejection
2815 * @work: Work struct embedded in internal device struct
2816 *
2817 * This function handles ejecting a device. Windows will
2818 * attempt to gracefully eject a device, waiting 60 seconds to
2819 * hear back from the guest OS that this completed successfully.
2820 * If this timer expires, the device will be forcibly removed.
2821 */
2822static void hv_eject_device_work(struct work_struct *work)
2823{
2824 struct pci_eject_response *ejct_pkt;
2825 struct hv_pcibus_device *hbus;
2826 struct hv_pci_dev *hpdev;
2827 struct pci_dev *pdev;
2828 unsigned long flags;
2829 int wslot;
2830 struct {
2831 struct pci_packet pkt;
2832 u8 buffer[sizeof(struct pci_eject_response)];
2833 } ctxt;
2834
2835 hpdev = container_of(work, struct hv_pci_dev, wrk);
2836 hbus = hpdev->hbus;
2837
2838 mutex_lock(&hbus->state_lock);
2839
2840 /*
2841 * Ejection can come before or after the PCI bus has been set up, so
2842 * attempt to find it and tear down the bus state, if it exists. This
2843 * must be done without constructs like pci_domain_nr(hbus->bridge->bus)
2844 * because hbus->bridge->bus may not exist yet.
2845 */
2846 wslot = wslot_to_devfn(hpdev->desc.win_slot.slot);
2847 pdev = pci_get_domain_bus_and_slot(hbus->bridge->domain_nr, 0, wslot);
2848 if (pdev) {
2849 pci_lock_rescan_remove();
2850 pci_stop_and_remove_bus_device(pdev);
2851 pci_dev_put(pdev);
2852 pci_unlock_rescan_remove();
2853 }
2854
2855 spin_lock_irqsave(&hbus->device_list_lock, flags);
2856 list_del(&hpdev->list_entry);
2857 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2858
2859 if (hpdev->pci_slot)
2860 pci_destroy_slot(hpdev->pci_slot);
2861
2862 memset(&ctxt, 0, sizeof(ctxt));
2863 ejct_pkt = (struct pci_eject_response *)&ctxt.pkt.message;
2864 ejct_pkt->message_type.type = PCI_EJECTION_COMPLETE;
2865 ejct_pkt->wslot.slot = hpdev->desc.win_slot.slot;
2866 vmbus_sendpacket(hbus->hdev->channel, ejct_pkt,
2867 sizeof(*ejct_pkt), 0,
2868 VM_PKT_DATA_INBAND, 0);
2869
2870 /* For the get_pcichild() in hv_pci_eject_device() */
2871 put_pcichild(hpdev);
2872 /* For the two refs got in new_pcichild_device() */
2873 put_pcichild(hpdev);
2874 put_pcichild(hpdev);
2875 /* hpdev has been freed. Do not use it any more. */
2876
2877 mutex_unlock(&hbus->state_lock);
2878}
2879
2880/**
2881 * hv_pci_eject_device() - Handles device ejection
2882 * @hpdev: Internal device tracking struct
2883 *
2884 * This function is invoked when an ejection packet arrives. It
2885 * just schedules work so that we don't re-enter the packet
2886 * delivery code handling the ejection.
2887 */
2888static void hv_pci_eject_device(struct hv_pci_dev *hpdev)
2889{
2890 struct hv_pcibus_device *hbus = hpdev->hbus;
2891 struct hv_device *hdev = hbus->hdev;
2892
2893 if (hbus->state == hv_pcibus_removing) {
2894 dev_info(&hdev->device, "PCI VMBus EJECT: ignored\n");
2895 return;
2896 }
2897
2898 get_pcichild(hpdev);
2899 INIT_WORK(&hpdev->wrk, hv_eject_device_work);
2900 queue_work(hbus->wq, &hpdev->wrk);
2901}
2902
2903/**
2904 * hv_pci_onchannelcallback() - Handles incoming packets
2905 * @context: Internal bus tracking struct
2906 *
2907 * This function is invoked whenever the host sends a packet to
2908 * this channel (which is private to this root PCI bus).
2909 */
2910static void hv_pci_onchannelcallback(void *context)
2911{
2912 const int packet_size = 0x100;
2913 int ret;
2914 struct hv_pcibus_device *hbus = context;
2915 struct vmbus_channel *chan = hbus->hdev->channel;
2916 u32 bytes_recvd;
2917 u64 req_id, req_addr;
2918 struct vmpacket_descriptor *desc;
2919 unsigned char *buffer;
2920 int bufferlen = packet_size;
2921 struct pci_packet *comp_packet;
2922 struct pci_response *response;
2923 struct pci_incoming_message *new_message;
2924 struct pci_bus_relations *bus_rel;
2925 struct pci_bus_relations2 *bus_rel2;
2926 struct pci_dev_inval_block *inval;
2927 struct pci_dev_incoming *dev_message;
2928 struct hv_pci_dev *hpdev;
2929 unsigned long flags;
2930
2931 buffer = kmalloc(bufferlen, GFP_ATOMIC);
2932 if (!buffer)
2933 return;
2934
2935 while (1) {
2936 ret = vmbus_recvpacket_raw(chan, buffer, bufferlen,
2937 &bytes_recvd, &req_id);
2938
2939 if (ret == -ENOBUFS) {
2940 kfree(buffer);
2941 /* Handle large packet */
2942 bufferlen = bytes_recvd;
2943 buffer = kmalloc(bytes_recvd, GFP_ATOMIC);
2944 if (!buffer)
2945 return;
2946 continue;
2947 }
2948
2949 /* Zero length indicates there are no more packets. */
2950 if (ret || !bytes_recvd)
2951 break;
2952
2953 /*
2954 * All incoming packets must be at least as large as a
2955 * response.
2956 */
2957 if (bytes_recvd <= sizeof(struct pci_response))
2958 continue;
2959 desc = (struct vmpacket_descriptor *)buffer;
2960
2961 switch (desc->type) {
2962 case VM_PKT_COMP:
2963
2964 lock_requestor(chan, flags);
2965 req_addr = __vmbus_request_addr_match(chan, req_id,
2966 VMBUS_RQST_ADDR_ANY);
2967 if (req_addr == VMBUS_RQST_ERROR) {
2968 unlock_requestor(chan, flags);
2969 dev_err(&hbus->hdev->device,
2970 "Invalid transaction ID %llx\n",
2971 req_id);
2972 break;
2973 }
2974 comp_packet = (struct pci_packet *)req_addr;
2975 response = (struct pci_response *)buffer;
2976 /*
2977 * Call ->completion_func() within the critical section to make
2978 * sure that the packet pointer is still valid during the call:
2979 * here 'valid' means that there's a task still waiting for the
2980 * completion, and that the packet data is still on the waiting
2981 * task's stack. Cf. hv_compose_msi_msg().
2982 */
2983 comp_packet->completion_func(comp_packet->compl_ctxt,
2984 response,
2985 bytes_recvd);
2986 unlock_requestor(chan, flags);
2987 break;
2988
2989 case VM_PKT_DATA_INBAND:
2990
2991 new_message = (struct pci_incoming_message *)buffer;
2992 switch (new_message->message_type.type) {
2993 case PCI_BUS_RELATIONS:
2994
2995 bus_rel = (struct pci_bus_relations *)buffer;
2996 if (bytes_recvd < sizeof(*bus_rel) ||
2997 bytes_recvd <
2998 struct_size(bus_rel, func,
2999 bus_rel->device_count)) {
3000 dev_err(&hbus->hdev->device,
3001 "bus relations too small\n");
3002 break;
3003 }
3004
3005 hv_pci_devices_present(hbus, bus_rel);
3006 break;
3007
3008 case PCI_BUS_RELATIONS2:
3009
3010 bus_rel2 = (struct pci_bus_relations2 *)buffer;
3011 if (bytes_recvd < sizeof(*bus_rel2) ||
3012 bytes_recvd <
3013 struct_size(bus_rel2, func,
3014 bus_rel2->device_count)) {
3015 dev_err(&hbus->hdev->device,
3016 "bus relations v2 too small\n");
3017 break;
3018 }
3019
3020 hv_pci_devices_present2(hbus, bus_rel2);
3021 break;
3022
3023 case PCI_EJECT:
3024
3025 dev_message = (struct pci_dev_incoming *)buffer;
3026 if (bytes_recvd < sizeof(*dev_message)) {
3027 dev_err(&hbus->hdev->device,
3028 "eject message too small\n");
3029 break;
3030 }
3031 hpdev = get_pcichild_wslot(hbus,
3032 dev_message->wslot.slot);
3033 if (hpdev) {
3034 hv_pci_eject_device(hpdev);
3035 put_pcichild(hpdev);
3036 }
3037 break;
3038
3039 case PCI_INVALIDATE_BLOCK:
3040
3041 inval = (struct pci_dev_inval_block *)buffer;
3042 if (bytes_recvd < sizeof(*inval)) {
3043 dev_err(&hbus->hdev->device,
3044 "invalidate message too small\n");
3045 break;
3046 }
3047 hpdev = get_pcichild_wslot(hbus,
3048 inval->wslot.slot);
3049 if (hpdev) {
3050 if (hpdev->block_invalidate) {
3051 hpdev->block_invalidate(
3052 hpdev->invalidate_context,
3053 inval->block_mask);
3054 }
3055 put_pcichild(hpdev);
3056 }
3057 break;
3058
3059 default:
3060 dev_warn(&hbus->hdev->device,
3061 "Unimplemented protocol message %x\n",
3062 new_message->message_type.type);
3063 break;
3064 }
3065 break;
3066
3067 default:
3068 dev_err(&hbus->hdev->device,
3069 "unhandled packet type %d, tid %llx len %d\n",
3070 desc->type, req_id, bytes_recvd);
3071 break;
3072 }
3073 }
3074
3075 kfree(buffer);
3076}
3077
3078/**
3079 * hv_pci_protocol_negotiation() - Set up protocol
3080 * @hdev: VMBus's tracking struct for this root PCI bus.
3081 * @version: Array of supported channel protocol versions in
3082 * the order of probing - highest go first.
3083 * @num_version: Number of elements in the version array.
3084 *
3085 * This driver is intended to support running on Windows 10
3086 * (server) and later versions. It will not run on earlier
3087 * versions, as they assume that many of the operations which
3088 * Linux needs accomplished with a spinlock held were done via
3089 * asynchronous messaging via VMBus. Windows 10 increases the
3090 * surface area of PCI emulation so that these actions can take
3091 * place by suspending a virtual processor for their duration.
3092 *
3093 * This function negotiates the channel protocol version,
3094 * failing if the host doesn't support the necessary protocol
3095 * level.
3096 */
3097static int hv_pci_protocol_negotiation(struct hv_device *hdev,
3098 enum pci_protocol_version_t version[],
3099 int num_version)
3100{
3101 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3102 struct pci_version_request *version_req;
3103 struct hv_pci_compl comp_pkt;
3104 struct pci_packet *pkt;
3105 int ret;
3106 int i;
3107
3108 /*
3109 * Initiate the handshake with the host and negotiate
3110 * a version that the host can support. We start with the
3111 * highest version number and go down if the host cannot
3112 * support it.
3113 */
3114 pkt = kzalloc(sizeof(*pkt) + sizeof(*version_req), GFP_KERNEL);
3115 if (!pkt)
3116 return -ENOMEM;
3117
3118 init_completion(&comp_pkt.host_event);
3119 pkt->completion_func = hv_pci_generic_compl;
3120 pkt->compl_ctxt = &comp_pkt;
3121 version_req = (struct pci_version_request *)&pkt->message;
3122 version_req->message_type.type = PCI_QUERY_PROTOCOL_VERSION;
3123
3124 for (i = 0; i < num_version; i++) {
3125 version_req->protocol_version = version[i];
3126 ret = vmbus_sendpacket(hdev->channel, version_req,
3127 sizeof(struct pci_version_request),
3128 (unsigned long)pkt, VM_PKT_DATA_INBAND,
3129 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3130 if (!ret)
3131 ret = wait_for_response(hdev, &comp_pkt.host_event);
3132
3133 if (ret) {
3134 dev_err(&hdev->device,
3135 "PCI Pass-through VSP failed to request version: %d",
3136 ret);
3137 goto exit;
3138 }
3139
3140 if (comp_pkt.completion_status >= 0) {
3141 hbus->protocol_version = version[i];
3142 dev_info(&hdev->device,
3143 "PCI VMBus probing: Using version %#x\n",
3144 hbus->protocol_version);
3145 goto exit;
3146 }
3147
3148 if (comp_pkt.completion_status != STATUS_REVISION_MISMATCH) {
3149 dev_err(&hdev->device,
3150 "PCI Pass-through VSP failed version request: %#x",
3151 comp_pkt.completion_status);
3152 ret = -EPROTO;
3153 goto exit;
3154 }
3155
3156 reinit_completion(&comp_pkt.host_event);
3157 }
3158
3159 dev_err(&hdev->device,
3160 "PCI pass-through VSP failed to find supported version");
3161 ret = -EPROTO;
3162
3163exit:
3164 kfree(pkt);
3165 return ret;
3166}
3167
3168/**
3169 * hv_pci_free_bridge_windows() - Release memory regions for the
3170 * bus
3171 * @hbus: Root PCI bus, as understood by this driver
3172 */
3173static void hv_pci_free_bridge_windows(struct hv_pcibus_device *hbus)
3174{
3175 /*
3176 * Set the resources back to the way they looked when they
3177 * were allocated by setting IORESOURCE_BUSY again.
3178 */
3179
3180 if (hbus->low_mmio_space && hbus->low_mmio_res) {
3181 hbus->low_mmio_res->flags |= IORESOURCE_BUSY;
3182 vmbus_free_mmio(hbus->low_mmio_res->start,
3183 resource_size(hbus->low_mmio_res));
3184 }
3185
3186 if (hbus->high_mmio_space && hbus->high_mmio_res) {
3187 hbus->high_mmio_res->flags |= IORESOURCE_BUSY;
3188 vmbus_free_mmio(hbus->high_mmio_res->start,
3189 resource_size(hbus->high_mmio_res));
3190 }
3191}
3192
3193/**
3194 * hv_pci_allocate_bridge_windows() - Allocate memory regions
3195 * for the bus
3196 * @hbus: Root PCI bus, as understood by this driver
3197 *
3198 * This function calls vmbus_allocate_mmio(), which is itself a
3199 * bit of a compromise. Ideally, we might change the pnp layer
3200 * in the kernel such that it comprehends either PCI devices
3201 * which are "grandchildren of ACPI," with some intermediate bus
3202 * node (in this case, VMBus) or change it such that it
3203 * understands VMBus. The pnp layer, however, has been declared
3204 * deprecated, and not subject to change.
3205 *
3206 * The workaround, implemented here, is to ask VMBus to allocate
3207 * MMIO space for this bus. VMBus itself knows which ranges are
3208 * appropriate by looking at its own ACPI objects. Then, after
3209 * these ranges are claimed, they're modified to look like they
3210 * would have looked if the ACPI and pnp code had allocated
3211 * bridge windows. These descriptors have to exist in this form
3212 * in order to satisfy the code which will get invoked when the
3213 * endpoint PCI function driver calls request_mem_region() or
3214 * request_mem_region_exclusive().
3215 *
3216 * Return: 0 on success, -errno on failure
3217 */
3218static int hv_pci_allocate_bridge_windows(struct hv_pcibus_device *hbus)
3219{
3220 resource_size_t align;
3221 int ret;
3222
3223 if (hbus->low_mmio_space) {
3224 align = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
3225 ret = vmbus_allocate_mmio(&hbus->low_mmio_res, hbus->hdev, 0,
3226 (u64)(u32)0xffffffff,
3227 hbus->low_mmio_space,
3228 align, false);
3229 if (ret) {
3230 dev_err(&hbus->hdev->device,
3231 "Need %#llx of low MMIO space. Consider reconfiguring the VM.\n",
3232 hbus->low_mmio_space);
3233 return ret;
3234 }
3235
3236 /* Modify this resource to become a bridge window. */
3237 hbus->low_mmio_res->flags |= IORESOURCE_WINDOW;
3238 hbus->low_mmio_res->flags &= ~IORESOURCE_BUSY;
3239 pci_add_resource(&hbus->bridge->windows, hbus->low_mmio_res);
3240 }
3241
3242 if (hbus->high_mmio_space) {
3243 align = 1ULL << (63 - __builtin_clzll(hbus->high_mmio_space));
3244 ret = vmbus_allocate_mmio(&hbus->high_mmio_res, hbus->hdev,
3245 0x100000000, -1,
3246 hbus->high_mmio_space, align,
3247 false);
3248 if (ret) {
3249 dev_err(&hbus->hdev->device,
3250 "Need %#llx of high MMIO space. Consider reconfiguring the VM.\n",
3251 hbus->high_mmio_space);
3252 goto release_low_mmio;
3253 }
3254
3255 /* Modify this resource to become a bridge window. */
3256 hbus->high_mmio_res->flags |= IORESOURCE_WINDOW;
3257 hbus->high_mmio_res->flags &= ~IORESOURCE_BUSY;
3258 pci_add_resource(&hbus->bridge->windows, hbus->high_mmio_res);
3259 }
3260
3261 return 0;
3262
3263release_low_mmio:
3264 if (hbus->low_mmio_res) {
3265 vmbus_free_mmio(hbus->low_mmio_res->start,
3266 resource_size(hbus->low_mmio_res));
3267 }
3268
3269 return ret;
3270}
3271
3272/**
3273 * hv_allocate_config_window() - Find MMIO space for PCI Config
3274 * @hbus: Root PCI bus, as understood by this driver
3275 *
3276 * This function claims memory-mapped I/O space for accessing
3277 * configuration space for the functions on this bus.
3278 *
3279 * Return: 0 on success, -errno on failure
3280 */
3281static int hv_allocate_config_window(struct hv_pcibus_device *hbus)
3282{
3283 int ret;
3284
3285 /*
3286 * Set up a region of MMIO space to use for accessing configuration
3287 * space.
3288 */
3289 ret = vmbus_allocate_mmio(&hbus->mem_config, hbus->hdev, 0, -1,
3290 PCI_CONFIG_MMIO_LENGTH, 0x1000, false);
3291 if (ret)
3292 return ret;
3293
3294 /*
3295 * vmbus_allocate_mmio() gets used for allocating both device endpoint
3296 * resource claims (those which cannot be overlapped) and the ranges
3297 * which are valid for the children of this bus, which are intended
3298 * to be overlapped by those children. Set the flag on this claim
3299 * meaning that this region can't be overlapped.
3300 */
3301
3302 hbus->mem_config->flags |= IORESOURCE_BUSY;
3303
3304 return 0;
3305}
3306
3307static void hv_free_config_window(struct hv_pcibus_device *hbus)
3308{
3309 vmbus_free_mmio(hbus->mem_config->start, PCI_CONFIG_MMIO_LENGTH);
3310}
3311
3312static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs);
3313
3314/**
3315 * hv_pci_enter_d0() - Bring the "bus" into the D0 power state
3316 * @hdev: VMBus's tracking struct for this root PCI bus
3317 *
3318 * Return: 0 on success, -errno on failure
3319 */
3320static int hv_pci_enter_d0(struct hv_device *hdev)
3321{
3322 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3323 struct pci_bus_d0_entry *d0_entry;
3324 struct hv_pci_compl comp_pkt;
3325 struct pci_packet *pkt;
3326 bool retry = true;
3327 int ret;
3328
3329enter_d0_retry:
3330 /*
3331 * Tell the host that the bus is ready to use, and moved into the
3332 * powered-on state. This includes telling the host which region
3333 * of memory-mapped I/O space has been chosen for configuration space
3334 * access.
3335 */
3336 pkt = kzalloc(sizeof(*pkt) + sizeof(*d0_entry), GFP_KERNEL);
3337 if (!pkt)
3338 return -ENOMEM;
3339
3340 init_completion(&comp_pkt.host_event);
3341 pkt->completion_func = hv_pci_generic_compl;
3342 pkt->compl_ctxt = &comp_pkt;
3343 d0_entry = (struct pci_bus_d0_entry *)&pkt->message;
3344 d0_entry->message_type.type = PCI_BUS_D0ENTRY;
3345 d0_entry->mmio_base = hbus->mem_config->start;
3346
3347 ret = vmbus_sendpacket(hdev->channel, d0_entry, sizeof(*d0_entry),
3348 (unsigned long)pkt, VM_PKT_DATA_INBAND,
3349 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3350 if (!ret)
3351 ret = wait_for_response(hdev, &comp_pkt.host_event);
3352
3353 if (ret)
3354 goto exit;
3355
3356 /*
3357 * In certain case (Kdump) the pci device of interest was
3358 * not cleanly shut down and resource is still held on host
3359 * side, the host could return invalid device status.
3360 * We need to explicitly request host to release the resource
3361 * and try to enter D0 again.
3362 */
3363 if (comp_pkt.completion_status < 0 && retry) {
3364 retry = false;
3365
3366 dev_err(&hdev->device, "Retrying D0 Entry\n");
3367
3368 /*
3369 * Hv_pci_bus_exit() calls hv_send_resource_released()
3370 * to free up resources of its child devices.
3371 * In the kdump kernel we need to set the
3372 * wslot_res_allocated to 255 so it scans all child
3373 * devices to release resources allocated in the
3374 * normal kernel before panic happened.
3375 */
3376 hbus->wslot_res_allocated = 255;
3377
3378 ret = hv_pci_bus_exit(hdev, true);
3379
3380 if (ret == 0) {
3381 kfree(pkt);
3382 goto enter_d0_retry;
3383 }
3384 dev_err(&hdev->device,
3385 "Retrying D0 failed with ret %d\n", ret);
3386 }
3387
3388 if (comp_pkt.completion_status < 0) {
3389 dev_err(&hdev->device,
3390 "PCI Pass-through VSP failed D0 Entry with status %x\n",
3391 comp_pkt.completion_status);
3392 ret = -EPROTO;
3393 goto exit;
3394 }
3395
3396 ret = 0;
3397
3398exit:
3399 kfree(pkt);
3400 return ret;
3401}
3402
3403/**
3404 * hv_pci_query_relations() - Ask host to send list of child
3405 * devices
3406 * @hdev: VMBus's tracking struct for this root PCI bus
3407 *
3408 * Return: 0 on success, -errno on failure
3409 */
3410static int hv_pci_query_relations(struct hv_device *hdev)
3411{
3412 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3413 struct pci_message message;
3414 struct completion comp;
3415 int ret;
3416
3417 /* Ask the host to send along the list of child devices */
3418 init_completion(&comp);
3419 if (cmpxchg(&hbus->survey_event, NULL, &comp))
3420 return -ENOTEMPTY;
3421
3422 memset(&message, 0, sizeof(message));
3423 message.type = PCI_QUERY_BUS_RELATIONS;
3424
3425 ret = vmbus_sendpacket(hdev->channel, &message, sizeof(message),
3426 0, VM_PKT_DATA_INBAND, 0);
3427 if (!ret)
3428 ret = wait_for_response(hdev, &comp);
3429
3430 /*
3431 * In the case of fast device addition/removal, it's possible that
3432 * vmbus_sendpacket() or wait_for_response() returns -ENODEV but we
3433 * already got a PCI_BUS_RELATIONS* message from the host and the
3434 * channel callback already scheduled a work to hbus->wq, which can be
3435 * running pci_devices_present_work() -> survey_child_resources() ->
3436 * complete(&hbus->survey_event), even after hv_pci_query_relations()
3437 * exits and the stack variable 'comp' is no longer valid; as a result,
3438 * a hang or a page fault may happen when the complete() calls
3439 * raw_spin_lock_irqsave(). Flush hbus->wq before we exit from
3440 * hv_pci_query_relations() to avoid the issues. Note: if 'ret' is
3441 * -ENODEV, there can't be any more work item scheduled to hbus->wq
3442 * after the flush_workqueue(): see vmbus_onoffer_rescind() ->
3443 * vmbus_reset_channel_cb(), vmbus_rescind_cleanup() ->
3444 * channel->rescind = true.
3445 */
3446 flush_workqueue(hbus->wq);
3447
3448 return ret;
3449}
3450
3451/**
3452 * hv_send_resources_allocated() - Report local resource choices
3453 * @hdev: VMBus's tracking struct for this root PCI bus
3454 *
3455 * The host OS is expecting to be sent a request as a message
3456 * which contains all the resources that the device will use.
3457 * The response contains those same resources, "translated"
3458 * which is to say, the values which should be used by the
3459 * hardware, when it delivers an interrupt. (MMIO resources are
3460 * used in local terms.) This is nice for Windows, and lines up
3461 * with the FDO/PDO split, which doesn't exist in Linux. Linux
3462 * is deeply expecting to scan an emulated PCI configuration
3463 * space. So this message is sent here only to drive the state
3464 * machine on the host forward.
3465 *
3466 * Return: 0 on success, -errno on failure
3467 */
3468static int hv_send_resources_allocated(struct hv_device *hdev)
3469{
3470 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3471 struct pci_resources_assigned *res_assigned;
3472 struct pci_resources_assigned2 *res_assigned2;
3473 struct hv_pci_compl comp_pkt;
3474 struct hv_pci_dev *hpdev;
3475 struct pci_packet *pkt;
3476 size_t size_res;
3477 int wslot;
3478 int ret;
3479
3480 size_res = (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2)
3481 ? sizeof(*res_assigned) : sizeof(*res_assigned2);
3482
3483 pkt = kmalloc(sizeof(*pkt) + size_res, GFP_KERNEL);
3484 if (!pkt)
3485 return -ENOMEM;
3486
3487 ret = 0;
3488
3489 for (wslot = 0; wslot < 256; wslot++) {
3490 hpdev = get_pcichild_wslot(hbus, wslot);
3491 if (!hpdev)
3492 continue;
3493
3494 memset(pkt, 0, sizeof(*pkt) + size_res);
3495 init_completion(&comp_pkt.host_event);
3496 pkt->completion_func = hv_pci_generic_compl;
3497 pkt->compl_ctxt = &comp_pkt;
3498
3499 if (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2) {
3500 res_assigned =
3501 (struct pci_resources_assigned *)&pkt->message;
3502 res_assigned->message_type.type =
3503 PCI_RESOURCES_ASSIGNED;
3504 res_assigned->wslot.slot = hpdev->desc.win_slot.slot;
3505 } else {
3506 res_assigned2 =
3507 (struct pci_resources_assigned2 *)&pkt->message;
3508 res_assigned2->message_type.type =
3509 PCI_RESOURCES_ASSIGNED2;
3510 res_assigned2->wslot.slot = hpdev->desc.win_slot.slot;
3511 }
3512 put_pcichild(hpdev);
3513
3514 ret = vmbus_sendpacket(hdev->channel, &pkt->message,
3515 size_res, (unsigned long)pkt,
3516 VM_PKT_DATA_INBAND,
3517 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3518 if (!ret)
3519 ret = wait_for_response(hdev, &comp_pkt.host_event);
3520 if (ret)
3521 break;
3522
3523 if (comp_pkt.completion_status < 0) {
3524 ret = -EPROTO;
3525 dev_err(&hdev->device,
3526 "resource allocated returned 0x%x",
3527 comp_pkt.completion_status);
3528 break;
3529 }
3530
3531 hbus->wslot_res_allocated = wslot;
3532 }
3533
3534 kfree(pkt);
3535 return ret;
3536}
3537
3538/**
3539 * hv_send_resources_released() - Report local resources
3540 * released
3541 * @hdev: VMBus's tracking struct for this root PCI bus
3542 *
3543 * Return: 0 on success, -errno on failure
3544 */
3545static int hv_send_resources_released(struct hv_device *hdev)
3546{
3547 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3548 struct pci_child_message pkt;
3549 struct hv_pci_dev *hpdev;
3550 int wslot;
3551 int ret;
3552
3553 for (wslot = hbus->wslot_res_allocated; wslot >= 0; wslot--) {
3554 hpdev = get_pcichild_wslot(hbus, wslot);
3555 if (!hpdev)
3556 continue;
3557
3558 memset(&pkt, 0, sizeof(pkt));
3559 pkt.message_type.type = PCI_RESOURCES_RELEASED;
3560 pkt.wslot.slot = hpdev->desc.win_slot.slot;
3561
3562 put_pcichild(hpdev);
3563
3564 ret = vmbus_sendpacket(hdev->channel, &pkt, sizeof(pkt), 0,
3565 VM_PKT_DATA_INBAND, 0);
3566 if (ret)
3567 return ret;
3568
3569 hbus->wslot_res_allocated = wslot - 1;
3570 }
3571
3572 hbus->wslot_res_allocated = -1;
3573
3574 return 0;
3575}
3576
3577#define HVPCI_DOM_MAP_SIZE (64 * 1024)
3578static DECLARE_BITMAP(hvpci_dom_map, HVPCI_DOM_MAP_SIZE);
3579
3580/*
3581 * PCI domain number 0 is used by emulated devices on Gen1 VMs, so define 0
3582 * as invalid for passthrough PCI devices of this driver.
3583 */
3584#define HVPCI_DOM_INVALID 0
3585
3586/**
3587 * hv_get_dom_num() - Get a valid PCI domain number
3588 * Check if the PCI domain number is in use, and return another number if
3589 * it is in use.
3590 *
3591 * @dom: Requested domain number
3592 *
3593 * return: domain number on success, HVPCI_DOM_INVALID on failure
3594 */
3595static u16 hv_get_dom_num(u16 dom)
3596{
3597 unsigned int i;
3598
3599 if (test_and_set_bit(dom, hvpci_dom_map) == 0)
3600 return dom;
3601
3602 for_each_clear_bit(i, hvpci_dom_map, HVPCI_DOM_MAP_SIZE) {
3603 if (test_and_set_bit(i, hvpci_dom_map) == 0)
3604 return i;
3605 }
3606
3607 return HVPCI_DOM_INVALID;
3608}
3609
3610/**
3611 * hv_put_dom_num() - Mark the PCI domain number as free
3612 * @dom: Domain number to be freed
3613 */
3614static void hv_put_dom_num(u16 dom)
3615{
3616 clear_bit(dom, hvpci_dom_map);
3617}
3618
3619/**
3620 * hv_pci_probe() - New VMBus channel probe, for a root PCI bus
3621 * @hdev: VMBus's tracking struct for this root PCI bus
3622 * @dev_id: Identifies the device itself
3623 *
3624 * Return: 0 on success, -errno on failure
3625 */
3626static int hv_pci_probe(struct hv_device *hdev,
3627 const struct hv_vmbus_device_id *dev_id)
3628{
3629 struct pci_host_bridge *bridge;
3630 struct hv_pcibus_device *hbus;
3631 u16 dom_req, dom;
3632 char *name;
3633 int ret;
3634
3635 bridge = devm_pci_alloc_host_bridge(&hdev->device, 0);
3636 if (!bridge)
3637 return -ENOMEM;
3638
3639 hbus = kzalloc(sizeof(*hbus), GFP_KERNEL);
3640 if (!hbus)
3641 return -ENOMEM;
3642
3643 hbus->bridge = bridge;
3644 mutex_init(&hbus->state_lock);
3645 hbus->state = hv_pcibus_init;
3646 hbus->wslot_res_allocated = -1;
3647
3648 /*
3649 * The PCI bus "domain" is what is called "segment" in ACPI and other
3650 * specs. Pull it from the instance ID, to get something usually
3651 * unique. In rare cases of collision, we will find out another number
3652 * not in use.
3653 *
3654 * Note that, since this code only runs in a Hyper-V VM, Hyper-V
3655 * together with this guest driver can guarantee that (1) The only
3656 * domain used by Gen1 VMs for something that looks like a physical
3657 * PCI bus (which is actually emulated by the hypervisor) is domain 0.
3658 * (2) There will be no overlap between domains (after fixing possible
3659 * collisions) in the same VM.
3660 */
3661 dom_req = hdev->dev_instance.b[5] << 8 | hdev->dev_instance.b[4];
3662 dom = hv_get_dom_num(dom_req);
3663
3664 if (dom == HVPCI_DOM_INVALID) {
3665 dev_err(&hdev->device,
3666 "Unable to use dom# 0x%x or other numbers", dom_req);
3667 ret = -EINVAL;
3668 goto free_bus;
3669 }
3670
3671 if (dom != dom_req)
3672 dev_info(&hdev->device,
3673 "PCI dom# 0x%x has collision, using 0x%x",
3674 dom_req, dom);
3675
3676 hbus->bridge->domain_nr = dom;
3677#ifdef CONFIG_X86
3678 hbus->sysdata.domain = dom;
3679 hbus->use_calls = !!(ms_hyperv.hints & HV_X64_USE_MMIO_HYPERCALLS);
3680#elif defined(CONFIG_ARM64)
3681 /*
3682 * Set the PCI bus parent to be the corresponding VMbus
3683 * device. Then the VMbus device will be assigned as the
3684 * ACPI companion in pcibios_root_bridge_prepare() and
3685 * pci_dma_configure() will propagate device coherence
3686 * information to devices created on the bus.
3687 */
3688 hbus->sysdata.parent = hdev->device.parent;
3689 hbus->use_calls = false;
3690#endif
3691
3692 hbus->hdev = hdev;
3693 INIT_LIST_HEAD(&hbus->children);
3694 INIT_LIST_HEAD(&hbus->dr_list);
3695 spin_lock_init(&hbus->config_lock);
3696 spin_lock_init(&hbus->device_list_lock);
3697 hbus->wq = alloc_ordered_workqueue("hv_pci_%x", 0,
3698 hbus->bridge->domain_nr);
3699 if (!hbus->wq) {
3700 ret = -ENOMEM;
3701 goto free_dom;
3702 }
3703
3704 hdev->channel->next_request_id_callback = vmbus_next_request_id;
3705 hdev->channel->request_addr_callback = vmbus_request_addr;
3706 hdev->channel->rqstor_size = HV_PCI_RQSTOR_SIZE;
3707
3708 ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
3709 hv_pci_onchannelcallback, hbus);
3710 if (ret)
3711 goto destroy_wq;
3712
3713 hv_set_drvdata(hdev, hbus);
3714
3715 ret = hv_pci_protocol_negotiation(hdev, pci_protocol_versions,
3716 ARRAY_SIZE(pci_protocol_versions));
3717 if (ret)
3718 goto close;
3719
3720 ret = hv_allocate_config_window(hbus);
3721 if (ret)
3722 goto close;
3723
3724 hbus->cfg_addr = ioremap(hbus->mem_config->start,
3725 PCI_CONFIG_MMIO_LENGTH);
3726 if (!hbus->cfg_addr) {
3727 dev_err(&hdev->device,
3728 "Unable to map a virtual address for config space\n");
3729 ret = -ENOMEM;
3730 goto free_config;
3731 }
3732
3733 name = kasprintf(GFP_KERNEL, "%pUL", &hdev->dev_instance);
3734 if (!name) {
3735 ret = -ENOMEM;
3736 goto unmap;
3737 }
3738
3739 hbus->fwnode = irq_domain_alloc_named_fwnode(name);
3740 kfree(name);
3741 if (!hbus->fwnode) {
3742 ret = -ENOMEM;
3743 goto unmap;
3744 }
3745
3746 ret = hv_pcie_init_irq_domain(hbus);
3747 if (ret)
3748 goto free_fwnode;
3749
3750 ret = hv_pci_query_relations(hdev);
3751 if (ret)
3752 goto free_irq_domain;
3753
3754 mutex_lock(&hbus->state_lock);
3755
3756 ret = hv_pci_enter_d0(hdev);
3757 if (ret)
3758 goto release_state_lock;
3759
3760 ret = hv_pci_allocate_bridge_windows(hbus);
3761 if (ret)
3762 goto exit_d0;
3763
3764 ret = hv_send_resources_allocated(hdev);
3765 if (ret)
3766 goto free_windows;
3767
3768 prepopulate_bars(hbus);
3769
3770 hbus->state = hv_pcibus_probed;
3771
3772 ret = create_root_hv_pci_bus(hbus);
3773 if (ret)
3774 goto free_windows;
3775
3776 mutex_unlock(&hbus->state_lock);
3777 return 0;
3778
3779free_windows:
3780 hv_pci_free_bridge_windows(hbus);
3781exit_d0:
3782 (void) hv_pci_bus_exit(hdev, true);
3783release_state_lock:
3784 mutex_unlock(&hbus->state_lock);
3785free_irq_domain:
3786 irq_domain_remove(hbus->irq_domain);
3787free_fwnode:
3788 irq_domain_free_fwnode(hbus->fwnode);
3789unmap:
3790 iounmap(hbus->cfg_addr);
3791free_config:
3792 hv_free_config_window(hbus);
3793close:
3794 vmbus_close(hdev->channel);
3795destroy_wq:
3796 destroy_workqueue(hbus->wq);
3797free_dom:
3798 hv_put_dom_num(hbus->bridge->domain_nr);
3799free_bus:
3800 kfree(hbus);
3801 return ret;
3802}
3803
3804static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs)
3805{
3806 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3807 struct vmbus_channel *chan = hdev->channel;
3808 struct {
3809 struct pci_packet teardown_packet;
3810 u8 buffer[sizeof(struct pci_message)];
3811 } pkt;
3812 struct hv_pci_compl comp_pkt;
3813 struct hv_pci_dev *hpdev, *tmp;
3814 unsigned long flags;
3815 u64 trans_id;
3816 int ret;
3817
3818 /*
3819 * After the host sends the RESCIND_CHANNEL message, it doesn't
3820 * access the per-channel ringbuffer any longer.
3821 */
3822 if (chan->rescind)
3823 return 0;
3824
3825 if (!keep_devs) {
3826 struct list_head removed;
3827
3828 /* Move all present children to the list on stack */
3829 INIT_LIST_HEAD(&removed);
3830 spin_lock_irqsave(&hbus->device_list_lock, flags);
3831 list_for_each_entry_safe(hpdev, tmp, &hbus->children, list_entry)
3832 list_move_tail(&hpdev->list_entry, &removed);
3833 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
3834
3835 /* Remove all children in the list */
3836 list_for_each_entry_safe(hpdev, tmp, &removed, list_entry) {
3837 list_del(&hpdev->list_entry);
3838 if (hpdev->pci_slot)
3839 pci_destroy_slot(hpdev->pci_slot);
3840 /* For the two refs got in new_pcichild_device() */
3841 put_pcichild(hpdev);
3842 put_pcichild(hpdev);
3843 }
3844 }
3845
3846 ret = hv_send_resources_released(hdev);
3847 if (ret) {
3848 dev_err(&hdev->device,
3849 "Couldn't send resources released packet(s)\n");
3850 return ret;
3851 }
3852
3853 memset(&pkt.teardown_packet, 0, sizeof(pkt.teardown_packet));
3854 init_completion(&comp_pkt.host_event);
3855 pkt.teardown_packet.completion_func = hv_pci_generic_compl;
3856 pkt.teardown_packet.compl_ctxt = &comp_pkt;
3857 pkt.teardown_packet.message[0].type = PCI_BUS_D0EXIT;
3858
3859 ret = vmbus_sendpacket_getid(chan, &pkt.teardown_packet.message,
3860 sizeof(struct pci_message),
3861 (unsigned long)&pkt.teardown_packet,
3862 &trans_id, VM_PKT_DATA_INBAND,
3863 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3864 if (ret)
3865 return ret;
3866
3867 if (wait_for_completion_timeout(&comp_pkt.host_event, 10 * HZ) == 0) {
3868 /*
3869 * The completion packet on the stack becomes invalid after
3870 * 'return'; remove the ID from the VMbus requestor if the
3871 * identifier is still mapped to/associated with the packet.
3872 *
3873 * Cf. hv_pci_onchannelcallback().
3874 */
3875 vmbus_request_addr_match(chan, trans_id,
3876 (unsigned long)&pkt.teardown_packet);
3877 return -ETIMEDOUT;
3878 }
3879
3880 return 0;
3881}
3882
3883/**
3884 * hv_pci_remove() - Remove routine for this VMBus channel
3885 * @hdev: VMBus's tracking struct for this root PCI bus
3886 */
3887static void hv_pci_remove(struct hv_device *hdev)
3888{
3889 struct hv_pcibus_device *hbus;
3890
3891 hbus = hv_get_drvdata(hdev);
3892 if (hbus->state == hv_pcibus_installed) {
3893 tasklet_disable(&hdev->channel->callback_event);
3894 hbus->state = hv_pcibus_removing;
3895 tasklet_enable(&hdev->channel->callback_event);
3896 destroy_workqueue(hbus->wq);
3897 hbus->wq = NULL;
3898 /*
3899 * At this point, no work is running or can be scheduled
3900 * on hbus-wq. We can't race with hv_pci_devices_present()
3901 * or hv_pci_eject_device(), it's safe to proceed.
3902 */
3903
3904 /* Remove the bus from PCI's point of view. */
3905 pci_lock_rescan_remove();
3906 pci_stop_root_bus(hbus->bridge->bus);
3907 hv_pci_remove_slots(hbus);
3908 pci_remove_root_bus(hbus->bridge->bus);
3909 pci_unlock_rescan_remove();
3910 }
3911
3912 hv_pci_bus_exit(hdev, false);
3913
3914 vmbus_close(hdev->channel);
3915
3916 iounmap(hbus->cfg_addr);
3917 hv_free_config_window(hbus);
3918 hv_pci_free_bridge_windows(hbus);
3919 irq_domain_remove(hbus->irq_domain);
3920 irq_domain_free_fwnode(hbus->fwnode);
3921
3922 hv_put_dom_num(hbus->bridge->domain_nr);
3923
3924 kfree(hbus);
3925}
3926
3927static int hv_pci_suspend(struct hv_device *hdev)
3928{
3929 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3930 enum hv_pcibus_state old_state;
3931 int ret;
3932
3933 /*
3934 * hv_pci_suspend() must make sure there are no pending work items
3935 * before calling vmbus_close(), since it runs in a process context
3936 * as a callback in dpm_suspend(). When it starts to run, the channel
3937 * callback hv_pci_onchannelcallback(), which runs in a tasklet
3938 * context, can be still running concurrently and scheduling new work
3939 * items onto hbus->wq in hv_pci_devices_present() and
3940 * hv_pci_eject_device(), and the work item handlers can access the
3941 * vmbus channel, which can be being closed by hv_pci_suspend(), e.g.
3942 * the work item handler pci_devices_present_work() ->
3943 * new_pcichild_device() writes to the vmbus channel.
3944 *
3945 * To eliminate the race, hv_pci_suspend() disables the channel
3946 * callback tasklet, sets hbus->state to hv_pcibus_removing, and
3947 * re-enables the tasklet. This way, when hv_pci_suspend() proceeds,
3948 * it knows that no new work item can be scheduled, and then it flushes
3949 * hbus->wq and safely closes the vmbus channel.
3950 */
3951 tasklet_disable(&hdev->channel->callback_event);
3952
3953 /* Change the hbus state to prevent new work items. */
3954 old_state = hbus->state;
3955 if (hbus->state == hv_pcibus_installed)
3956 hbus->state = hv_pcibus_removing;
3957
3958 tasklet_enable(&hdev->channel->callback_event);
3959
3960 if (old_state != hv_pcibus_installed)
3961 return -EINVAL;
3962
3963 flush_workqueue(hbus->wq);
3964
3965 ret = hv_pci_bus_exit(hdev, true);
3966 if (ret)
3967 return ret;
3968
3969 vmbus_close(hdev->channel);
3970
3971 return 0;
3972}
3973
3974static int hv_pci_restore_msi_msg(struct pci_dev *pdev, void *arg)
3975{
3976 struct irq_data *irq_data;
3977 struct msi_desc *entry;
3978 int ret = 0;
3979
3980 if (!pdev->msi_enabled && !pdev->msix_enabled)
3981 return 0;
3982
3983 msi_lock_descs(&pdev->dev);
3984 msi_for_each_desc(entry, &pdev->dev, MSI_DESC_ASSOCIATED) {
3985 irq_data = irq_get_irq_data(entry->irq);
3986 if (WARN_ON_ONCE(!irq_data)) {
3987 ret = -EINVAL;
3988 break;
3989 }
3990
3991 hv_compose_msi_msg(irq_data, &entry->msg);
3992 }
3993 msi_unlock_descs(&pdev->dev);
3994
3995 return ret;
3996}
3997
3998/*
3999 * Upon resume, pci_restore_msi_state() -> ... -> __pci_write_msi_msg()
4000 * directly writes the MSI/MSI-X registers via MMIO, but since Hyper-V
4001 * doesn't trap and emulate the MMIO accesses, here hv_compose_msi_msg()
4002 * must be used to ask Hyper-V to re-create the IOMMU Interrupt Remapping
4003 * Table entries.
4004 */
4005static void hv_pci_restore_msi_state(struct hv_pcibus_device *hbus)
4006{
4007 pci_walk_bus(hbus->bridge->bus, hv_pci_restore_msi_msg, NULL);
4008}
4009
4010static int hv_pci_resume(struct hv_device *hdev)
4011{
4012 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
4013 enum pci_protocol_version_t version[1];
4014 int ret;
4015
4016 hbus->state = hv_pcibus_init;
4017
4018 hdev->channel->next_request_id_callback = vmbus_next_request_id;
4019 hdev->channel->request_addr_callback = vmbus_request_addr;
4020 hdev->channel->rqstor_size = HV_PCI_RQSTOR_SIZE;
4021
4022 ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
4023 hv_pci_onchannelcallback, hbus);
4024 if (ret)
4025 return ret;
4026
4027 /* Only use the version that was in use before hibernation. */
4028 version[0] = hbus->protocol_version;
4029 ret = hv_pci_protocol_negotiation(hdev, version, 1);
4030 if (ret)
4031 goto out;
4032
4033 ret = hv_pci_query_relations(hdev);
4034 if (ret)
4035 goto out;
4036
4037 mutex_lock(&hbus->state_lock);
4038
4039 ret = hv_pci_enter_d0(hdev);
4040 if (ret)
4041 goto release_state_lock;
4042
4043 ret = hv_send_resources_allocated(hdev);
4044 if (ret)
4045 goto release_state_lock;
4046
4047 prepopulate_bars(hbus);
4048
4049 hv_pci_restore_msi_state(hbus);
4050
4051 hbus->state = hv_pcibus_installed;
4052 mutex_unlock(&hbus->state_lock);
4053 return 0;
4054
4055release_state_lock:
4056 mutex_unlock(&hbus->state_lock);
4057out:
4058 vmbus_close(hdev->channel);
4059 return ret;
4060}
4061
4062static const struct hv_vmbus_device_id hv_pci_id_table[] = {
4063 /* PCI Pass-through Class ID */
4064 /* 44C4F61D-4444-4400-9D52-802E27EDE19F */
4065 { HV_PCIE_GUID, },
4066 { },
4067};
4068
4069MODULE_DEVICE_TABLE(vmbus, hv_pci_id_table);
4070
4071static struct hv_driver hv_pci_drv = {
4072 .name = "hv_pci",
4073 .id_table = hv_pci_id_table,
4074 .probe = hv_pci_probe,
4075 .remove = hv_pci_remove,
4076 .suspend = hv_pci_suspend,
4077 .resume = hv_pci_resume,
4078};
4079
4080static void __exit exit_hv_pci_drv(void)
4081{
4082 vmbus_driver_unregister(&hv_pci_drv);
4083
4084 hvpci_block_ops.read_block = NULL;
4085 hvpci_block_ops.write_block = NULL;
4086 hvpci_block_ops.reg_blk_invalidate = NULL;
4087}
4088
4089static int __init init_hv_pci_drv(void)
4090{
4091 int ret;
4092
4093 if (!hv_is_hyperv_initialized())
4094 return -ENODEV;
4095
4096 ret = hv_pci_irqchip_init();
4097 if (ret)
4098 return ret;
4099
4100 /* Set the invalid domain number's bit, so it will not be used */
4101 set_bit(HVPCI_DOM_INVALID, hvpci_dom_map);
4102
4103 /* Initialize PCI block r/w interface */
4104 hvpci_block_ops.read_block = hv_read_config_block;
4105 hvpci_block_ops.write_block = hv_write_config_block;
4106 hvpci_block_ops.reg_blk_invalidate = hv_register_block_invalidate;
4107
4108 return vmbus_driver_register(&hv_pci_drv);
4109}
4110
4111module_init(init_hv_pci_drv);
4112module_exit(exit_hv_pci_drv);
4113
4114MODULE_DESCRIPTION("Hyper-V PCI");
4115MODULE_LICENSE("GPL v2");