Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Freescale Memory Controller kernel module
4 *
5 * Support Power-based SoCs including MPC85xx, MPC86xx, MPC83xx and
6 * ARM-based Layerscape SoCs including LS2xxx and LS1021A. Originally
7 * split out from mpc85xx_edac EDAC driver.
8 *
9 * Parts Copyrighted (c) 2013 by Freescale Semiconductor, Inc.
10 *
11 * Author: Dave Jiang <djiang@mvista.com>
12 *
13 * 2006-2007 (c) MontaVista Software, Inc.
14 */
15#include <linux/module.h>
16#include <linux/init.h>
17#include <linux/interrupt.h>
18#include <linux/ctype.h>
19#include <linux/io.h>
20#include <linux/mod_devicetable.h>
21#include <linux/edac.h>
22#include <linux/smp.h>
23#include <linux/gfp.h>
24
25#include <linux/of.h>
26#include <linux/of_address.h>
27#include "edac_module.h"
28#include "fsl_ddr_edac.h"
29
30#define EDAC_MOD_STR "fsl_ddr_edac"
31
32static int edac_mc_idx;
33
34static u32 orig_ddr_err_disable;
35static u32 orig_ddr_err_sbe;
36static bool little_endian;
37
38static inline u32 ddr_in32(void __iomem *addr)
39{
40 return little_endian ? ioread32(addr) : ioread32be(addr);
41}
42
43static inline void ddr_out32(void __iomem *addr, u32 value)
44{
45 if (little_endian)
46 iowrite32(value, addr);
47 else
48 iowrite32be(value, addr);
49}
50
51#ifdef CONFIG_EDAC_DEBUG
52/************************ MC SYSFS parts ***********************************/
53
54#define to_mci(k) container_of(k, struct mem_ctl_info, dev)
55
56static ssize_t fsl_mc_inject_data_hi_show(struct device *dev,
57 struct device_attribute *mattr,
58 char *data)
59{
60 struct mem_ctl_info *mci = to_mci(dev);
61 struct fsl_mc_pdata *pdata = mci->pvt_info;
62 return sprintf(data, "0x%08x",
63 ddr_in32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_HI));
64}
65
66static ssize_t fsl_mc_inject_data_lo_show(struct device *dev,
67 struct device_attribute *mattr,
68 char *data)
69{
70 struct mem_ctl_info *mci = to_mci(dev);
71 struct fsl_mc_pdata *pdata = mci->pvt_info;
72 return sprintf(data, "0x%08x",
73 ddr_in32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_LO));
74}
75
76static ssize_t fsl_mc_inject_ctrl_show(struct device *dev,
77 struct device_attribute *mattr,
78 char *data)
79{
80 struct mem_ctl_info *mci = to_mci(dev);
81 struct fsl_mc_pdata *pdata = mci->pvt_info;
82 return sprintf(data, "0x%08x",
83 ddr_in32(pdata->mc_vbase + FSL_MC_ECC_ERR_INJECT));
84}
85
86static ssize_t fsl_mc_inject_data_hi_store(struct device *dev,
87 struct device_attribute *mattr,
88 const char *data, size_t count)
89{
90 struct mem_ctl_info *mci = to_mci(dev);
91 struct fsl_mc_pdata *pdata = mci->pvt_info;
92 unsigned long val;
93 int rc;
94
95 if (isdigit(*data)) {
96 rc = kstrtoul(data, 0, &val);
97 if (rc)
98 return rc;
99
100 ddr_out32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_HI, val);
101 return count;
102 }
103 return 0;
104}
105
106static ssize_t fsl_mc_inject_data_lo_store(struct device *dev,
107 struct device_attribute *mattr,
108 const char *data, size_t count)
109{
110 struct mem_ctl_info *mci = to_mci(dev);
111 struct fsl_mc_pdata *pdata = mci->pvt_info;
112 unsigned long val;
113 int rc;
114
115 if (isdigit(*data)) {
116 rc = kstrtoul(data, 0, &val);
117 if (rc)
118 return rc;
119
120 ddr_out32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_LO, val);
121 return count;
122 }
123 return 0;
124}
125
126static ssize_t fsl_mc_inject_ctrl_store(struct device *dev,
127 struct device_attribute *mattr,
128 const char *data, size_t count)
129{
130 struct mem_ctl_info *mci = to_mci(dev);
131 struct fsl_mc_pdata *pdata = mci->pvt_info;
132 unsigned long val;
133 int rc;
134
135 if (isdigit(*data)) {
136 rc = kstrtoul(data, 0, &val);
137 if (rc)
138 return rc;
139
140 ddr_out32(pdata->mc_vbase + FSL_MC_ECC_ERR_INJECT, val);
141 return count;
142 }
143 return 0;
144}
145
146static DEVICE_ATTR(inject_data_hi, S_IRUGO | S_IWUSR,
147 fsl_mc_inject_data_hi_show, fsl_mc_inject_data_hi_store);
148static DEVICE_ATTR(inject_data_lo, S_IRUGO | S_IWUSR,
149 fsl_mc_inject_data_lo_show, fsl_mc_inject_data_lo_store);
150static DEVICE_ATTR(inject_ctrl, S_IRUGO | S_IWUSR,
151 fsl_mc_inject_ctrl_show, fsl_mc_inject_ctrl_store);
152#endif /* CONFIG_EDAC_DEBUG */
153
154static struct attribute *fsl_ddr_dev_attrs[] = {
155#ifdef CONFIG_EDAC_DEBUG
156 &dev_attr_inject_data_hi.attr,
157 &dev_attr_inject_data_lo.attr,
158 &dev_attr_inject_ctrl.attr,
159#endif
160 NULL
161};
162
163ATTRIBUTE_GROUPS(fsl_ddr_dev);
164
165/**************************** MC Err device ***************************/
166
167/*
168 * Taken from table 8-55 in the MPC8641 User's Manual and/or 9-61 in the
169 * MPC8572 User's Manual. Each line represents a syndrome bit column as a
170 * 64-bit value, but split into an upper and lower 32-bit chunk. The labels
171 * below correspond to Freescale's manuals.
172 */
173static unsigned int ecc_table[16] = {
174 /* MSB LSB */
175 /* [0:31] [32:63] */
176 0xf00fe11e, 0xc33c0ff7, /* Syndrome bit 7 */
177 0x00ff00ff, 0x00fff0ff,
178 0x0f0f0f0f, 0x0f0fff00,
179 0x11113333, 0x7777000f,
180 0x22224444, 0x8888222f,
181 0x44448888, 0xffff4441,
182 0x8888ffff, 0x11118882,
183 0xffff1111, 0x22221114, /* Syndrome bit 0 */
184};
185
186/*
187 * Calculate the correct ECC value for a 64-bit value specified by high:low
188 */
189static u8 calculate_ecc(u32 high, u32 low)
190{
191 u32 mask_low;
192 u32 mask_high;
193 int bit_cnt;
194 u8 ecc = 0;
195 int i;
196 int j;
197
198 for (i = 0; i < 8; i++) {
199 mask_high = ecc_table[i * 2];
200 mask_low = ecc_table[i * 2 + 1];
201 bit_cnt = 0;
202
203 for (j = 0; j < 32; j++) {
204 if ((mask_high >> j) & 1)
205 bit_cnt ^= (high >> j) & 1;
206 if ((mask_low >> j) & 1)
207 bit_cnt ^= (low >> j) & 1;
208 }
209
210 ecc |= bit_cnt << i;
211 }
212
213 return ecc;
214}
215
216/*
217 * Create the syndrome code which is generated if the data line specified by
218 * 'bit' failed. Eg generate an 8-bit codes seen in Table 8-55 in the MPC8641
219 * User's Manual and 9-61 in the MPC8572 User's Manual.
220 */
221static u8 syndrome_from_bit(unsigned int bit) {
222 int i;
223 u8 syndrome = 0;
224
225 /*
226 * Cycle through the upper or lower 32-bit portion of each value in
227 * ecc_table depending on if 'bit' is in the upper or lower half of
228 * 64-bit data.
229 */
230 for (i = bit < 32; i < 16; i += 2)
231 syndrome |= ((ecc_table[i] >> (bit % 32)) & 1) << (i / 2);
232
233 return syndrome;
234}
235
236/*
237 * Decode data and ecc syndrome to determine what went wrong
238 * Note: This can only decode single-bit errors
239 */
240static void sbe_ecc_decode(u32 cap_high, u32 cap_low, u32 cap_ecc,
241 int *bad_data_bit, int *bad_ecc_bit)
242{
243 int i;
244 u8 syndrome;
245
246 *bad_data_bit = -1;
247 *bad_ecc_bit = -1;
248
249 /*
250 * Calculate the ECC of the captured data and XOR it with the captured
251 * ECC to find an ECC syndrome value we can search for
252 */
253 syndrome = calculate_ecc(cap_high, cap_low) ^ cap_ecc;
254
255 /* Check if a data line is stuck... */
256 for (i = 0; i < 64; i++) {
257 if (syndrome == syndrome_from_bit(i)) {
258 *bad_data_bit = i;
259 return;
260 }
261 }
262
263 /* If data is correct, check ECC bits for errors... */
264 for (i = 0; i < 8; i++) {
265 if ((syndrome >> i) & 0x1) {
266 *bad_ecc_bit = i;
267 return;
268 }
269 }
270}
271
272#define make64(high, low) (((u64)(high) << 32) | (low))
273
274static void fsl_mc_check(struct mem_ctl_info *mci)
275{
276 struct fsl_mc_pdata *pdata = mci->pvt_info;
277 struct csrow_info *csrow;
278 u32 bus_width;
279 u32 err_detect;
280 u32 syndrome;
281 u64 err_addr;
282 u32 pfn;
283 int row_index;
284 u32 cap_high;
285 u32 cap_low;
286 int bad_data_bit;
287 int bad_ecc_bit;
288
289 err_detect = ddr_in32(pdata->mc_vbase + FSL_MC_ERR_DETECT);
290 if (!err_detect)
291 return;
292
293 fsl_mc_printk(mci, KERN_ERR, "Err Detect Register: %#8.8x\n",
294 err_detect);
295
296 /* no more processing if not ECC bit errors */
297 if (!(err_detect & (DDR_EDE_SBE | DDR_EDE_MBE))) {
298 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DETECT, err_detect);
299 return;
300 }
301
302 syndrome = ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_ECC);
303
304 /* Mask off appropriate bits of syndrome based on bus width */
305 bus_width = (ddr_in32(pdata->mc_vbase + FSL_MC_DDR_SDRAM_CFG) &
306 DSC_DBW_MASK) ? 32 : 64;
307 if (bus_width == 64)
308 syndrome &= 0xff;
309 else
310 syndrome &= 0xffff;
311
312 err_addr = make64(
313 ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_EXT_ADDRESS),
314 ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_ADDRESS));
315 pfn = err_addr >> PAGE_SHIFT;
316
317 for (row_index = 0; row_index < mci->nr_csrows; row_index++) {
318 csrow = mci->csrows[row_index];
319 if ((pfn >= csrow->first_page) && (pfn <= csrow->last_page))
320 break;
321 }
322
323 cap_high = ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_DATA_HI);
324 cap_low = ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_DATA_LO);
325
326 /*
327 * Analyze single-bit errors on 64-bit wide buses
328 * TODO: Add support for 32-bit wide buses
329 */
330 if ((err_detect & DDR_EDE_SBE) && (bus_width == 64)) {
331 sbe_ecc_decode(cap_high, cap_low, syndrome,
332 &bad_data_bit, &bad_ecc_bit);
333
334 if (bad_data_bit != -1)
335 fsl_mc_printk(mci, KERN_ERR,
336 "Faulty Data bit: %d\n", bad_data_bit);
337 if (bad_ecc_bit != -1)
338 fsl_mc_printk(mci, KERN_ERR,
339 "Faulty ECC bit: %d\n", bad_ecc_bit);
340
341 fsl_mc_printk(mci, KERN_ERR,
342 "Expected Data / ECC:\t%#8.8x_%08x / %#2.2x\n",
343 cap_high ^ (1 << (bad_data_bit - 32)),
344 cap_low ^ (1 << bad_data_bit),
345 syndrome ^ (1 << bad_ecc_bit));
346 }
347
348 fsl_mc_printk(mci, KERN_ERR,
349 "Captured Data / ECC:\t%#8.8x_%08x / %#2.2x\n",
350 cap_high, cap_low, syndrome);
351 fsl_mc_printk(mci, KERN_ERR, "Err addr: %#8.8llx\n", err_addr);
352 fsl_mc_printk(mci, KERN_ERR, "PFN: %#8.8x\n", pfn);
353
354 /* we are out of range */
355 if (row_index == mci->nr_csrows)
356 fsl_mc_printk(mci, KERN_ERR, "PFN out of range!\n");
357
358 if (err_detect & DDR_EDE_SBE)
359 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1,
360 pfn, err_addr & ~PAGE_MASK, syndrome,
361 row_index, 0, -1,
362 mci->ctl_name, "");
363
364 if (err_detect & DDR_EDE_MBE)
365 edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1,
366 pfn, err_addr & ~PAGE_MASK, syndrome,
367 row_index, 0, -1,
368 mci->ctl_name, "");
369
370 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DETECT, err_detect);
371}
372
373static irqreturn_t fsl_mc_isr(int irq, void *dev_id)
374{
375 struct mem_ctl_info *mci = dev_id;
376 struct fsl_mc_pdata *pdata = mci->pvt_info;
377 u32 err_detect;
378
379 err_detect = ddr_in32(pdata->mc_vbase + FSL_MC_ERR_DETECT);
380 if (!err_detect)
381 return IRQ_NONE;
382
383 fsl_mc_check(mci);
384
385 return IRQ_HANDLED;
386}
387
388static void fsl_ddr_init_csrows(struct mem_ctl_info *mci)
389{
390 struct fsl_mc_pdata *pdata = mci->pvt_info;
391 struct csrow_info *csrow;
392 struct dimm_info *dimm;
393 u32 sdram_ctl;
394 u32 sdtype;
395 enum mem_type mtype;
396 u32 cs_bnds;
397 int index;
398
399 sdram_ctl = ddr_in32(pdata->mc_vbase + FSL_MC_DDR_SDRAM_CFG);
400
401 sdtype = sdram_ctl & DSC_SDTYPE_MASK;
402 if (sdram_ctl & DSC_RD_EN) {
403 switch (sdtype) {
404 case 0x02000000:
405 mtype = MEM_RDDR;
406 break;
407 case 0x03000000:
408 mtype = MEM_RDDR2;
409 break;
410 case 0x07000000:
411 mtype = MEM_RDDR3;
412 break;
413 case 0x05000000:
414 mtype = MEM_RDDR4;
415 break;
416 default:
417 mtype = MEM_UNKNOWN;
418 break;
419 }
420 } else {
421 switch (sdtype) {
422 case 0x02000000:
423 mtype = MEM_DDR;
424 break;
425 case 0x03000000:
426 mtype = MEM_DDR2;
427 break;
428 case 0x07000000:
429 mtype = MEM_DDR3;
430 break;
431 case 0x05000000:
432 mtype = MEM_DDR4;
433 break;
434 default:
435 mtype = MEM_UNKNOWN;
436 break;
437 }
438 }
439
440 for (index = 0; index < mci->nr_csrows; index++) {
441 u32 start;
442 u32 end;
443
444 csrow = mci->csrows[index];
445 dimm = csrow->channels[0]->dimm;
446
447 cs_bnds = ddr_in32(pdata->mc_vbase + FSL_MC_CS_BNDS_0 +
448 (index * FSL_MC_CS_BNDS_OFS));
449
450 start = (cs_bnds & 0xffff0000) >> 16;
451 end = (cs_bnds & 0x0000ffff);
452
453 if (start == end)
454 continue; /* not populated */
455
456 start <<= (24 - PAGE_SHIFT);
457 end <<= (24 - PAGE_SHIFT);
458 end |= (1 << (24 - PAGE_SHIFT)) - 1;
459
460 csrow->first_page = start;
461 csrow->last_page = end;
462
463 dimm->nr_pages = end + 1 - start;
464 dimm->grain = 8;
465 dimm->mtype = mtype;
466 dimm->dtype = DEV_UNKNOWN;
467 if (sdram_ctl & DSC_X32_EN)
468 dimm->dtype = DEV_X32;
469 dimm->edac_mode = EDAC_SECDED;
470 }
471}
472
473int fsl_mc_err_probe(struct platform_device *op)
474{
475 struct mem_ctl_info *mci;
476 struct edac_mc_layer layers[2];
477 struct fsl_mc_pdata *pdata;
478 struct resource r;
479 u32 sdram_ctl;
480 int res;
481
482 if (!devres_open_group(&op->dev, fsl_mc_err_probe, GFP_KERNEL))
483 return -ENOMEM;
484
485 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
486 layers[0].size = 4;
487 layers[0].is_virt_csrow = true;
488 layers[1].type = EDAC_MC_LAYER_CHANNEL;
489 layers[1].size = 1;
490 layers[1].is_virt_csrow = false;
491 mci = edac_mc_alloc(edac_mc_idx, ARRAY_SIZE(layers), layers,
492 sizeof(*pdata));
493 if (!mci) {
494 devres_release_group(&op->dev, fsl_mc_err_probe);
495 return -ENOMEM;
496 }
497
498 pdata = mci->pvt_info;
499 pdata->name = "fsl_mc_err";
500 mci->pdev = &op->dev;
501 pdata->edac_idx = edac_mc_idx++;
502 dev_set_drvdata(mci->pdev, mci);
503 mci->ctl_name = pdata->name;
504 mci->dev_name = pdata->name;
505
506 /*
507 * Get the endianness of DDR controller registers.
508 * Default is big endian.
509 */
510 little_endian = of_property_read_bool(op->dev.of_node, "little-endian");
511
512 res = of_address_to_resource(op->dev.of_node, 0, &r);
513 if (res) {
514 pr_err("%s: Unable to get resource for MC err regs\n",
515 __func__);
516 goto err;
517 }
518
519 if (!devm_request_mem_region(&op->dev, r.start, resource_size(&r),
520 pdata->name)) {
521 pr_err("%s: Error while requesting mem region\n",
522 __func__);
523 res = -EBUSY;
524 goto err;
525 }
526
527 pdata->mc_vbase = devm_ioremap(&op->dev, r.start, resource_size(&r));
528 if (!pdata->mc_vbase) {
529 pr_err("%s: Unable to setup MC err regs\n", __func__);
530 res = -ENOMEM;
531 goto err;
532 }
533
534 sdram_ctl = ddr_in32(pdata->mc_vbase + FSL_MC_DDR_SDRAM_CFG);
535 if (!(sdram_ctl & DSC_ECC_EN)) {
536 /* no ECC */
537 pr_warn("%s: No ECC DIMMs discovered\n", __func__);
538 res = -ENODEV;
539 goto err;
540 }
541
542 edac_dbg(3, "init mci\n");
543 mci->mtype_cap = MEM_FLAG_DDR | MEM_FLAG_RDDR |
544 MEM_FLAG_DDR2 | MEM_FLAG_RDDR2 |
545 MEM_FLAG_DDR3 | MEM_FLAG_RDDR3 |
546 MEM_FLAG_DDR4 | MEM_FLAG_RDDR4;
547 mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED;
548 mci->edac_cap = EDAC_FLAG_SECDED;
549 mci->mod_name = EDAC_MOD_STR;
550
551 if (edac_op_state == EDAC_OPSTATE_POLL)
552 mci->edac_check = fsl_mc_check;
553
554 mci->ctl_page_to_phys = NULL;
555
556 mci->scrub_mode = SCRUB_SW_SRC;
557
558 fsl_ddr_init_csrows(mci);
559
560 /* store the original error disable bits */
561 orig_ddr_err_disable = ddr_in32(pdata->mc_vbase + FSL_MC_ERR_DISABLE);
562 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DISABLE, 0);
563
564 /* clear all error bits */
565 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DETECT, ~0);
566
567 res = edac_mc_add_mc_with_groups(mci, fsl_ddr_dev_groups);
568 if (res) {
569 edac_dbg(3, "failed edac_mc_add_mc()\n");
570 goto err;
571 }
572
573 if (edac_op_state == EDAC_OPSTATE_INT) {
574 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_INT_EN,
575 DDR_EIE_MBEE | DDR_EIE_SBEE);
576
577 /* store the original error management threshold */
578 orig_ddr_err_sbe = ddr_in32(pdata->mc_vbase +
579 FSL_MC_ERR_SBE) & 0xff0000;
580
581 /* set threshold to 1 error per interrupt */
582 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_SBE, 0x10000);
583
584 /* register interrupts */
585 pdata->irq = platform_get_irq(op, 0);
586 res = devm_request_irq(&op->dev, pdata->irq,
587 fsl_mc_isr,
588 IRQF_SHARED,
589 "[EDAC] MC err", mci);
590 if (res < 0) {
591 pr_err("%s: Unable to request irq %d for FSL DDR DRAM ERR\n",
592 __func__, pdata->irq);
593 res = -ENODEV;
594 goto err2;
595 }
596
597 pr_info(EDAC_MOD_STR " acquired irq %d for MC\n",
598 pdata->irq);
599 }
600
601 devres_remove_group(&op->dev, fsl_mc_err_probe);
602 edac_dbg(3, "success\n");
603 pr_info(EDAC_MOD_STR " MC err registered\n");
604
605 return 0;
606
607err2:
608 edac_mc_del_mc(&op->dev);
609err:
610 devres_release_group(&op->dev, fsl_mc_err_probe);
611 edac_mc_free(mci);
612 return res;
613}
614
615void fsl_mc_err_remove(struct platform_device *op)
616{
617 struct mem_ctl_info *mci = dev_get_drvdata(&op->dev);
618 struct fsl_mc_pdata *pdata = mci->pvt_info;
619
620 edac_dbg(0, "\n");
621
622 if (edac_op_state == EDAC_OPSTATE_INT) {
623 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_INT_EN, 0);
624 }
625
626 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DISABLE,
627 orig_ddr_err_disable);
628 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_SBE, orig_ddr_err_sbe);
629
630 edac_mc_del_mc(&op->dev);
631 edac_mc_free(mci);
632}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Freescale Memory Controller kernel module
4 *
5 * Support Power-based SoCs including MPC85xx, MPC86xx, MPC83xx and
6 * ARM-based Layerscape SoCs including LS2xxx and LS1021A. Originally
7 * split out from mpc85xx_edac EDAC driver.
8 *
9 * Parts Copyrighted (c) 2013 by Freescale Semiconductor, Inc.
10 *
11 * Author: Dave Jiang <djiang@mvista.com>
12 *
13 * 2006-2007 (c) MontaVista Software, Inc.
14 */
15#include <linux/module.h>
16#include <linux/init.h>
17#include <linux/interrupt.h>
18#include <linux/ctype.h>
19#include <linux/io.h>
20#include <linux/mod_devicetable.h>
21#include <linux/edac.h>
22#include <linux/smp.h>
23#include <linux/gfp.h>
24
25#include <linux/of_platform.h>
26#include <linux/of_device.h>
27#include <linux/of_address.h>
28#include "edac_module.h"
29#include "fsl_ddr_edac.h"
30
31#define EDAC_MOD_STR "fsl_ddr_edac"
32
33static int edac_mc_idx;
34
35static u32 orig_ddr_err_disable;
36static u32 orig_ddr_err_sbe;
37static bool little_endian;
38
39static inline u32 ddr_in32(void __iomem *addr)
40{
41 return little_endian ? ioread32(addr) : ioread32be(addr);
42}
43
44static inline void ddr_out32(void __iomem *addr, u32 value)
45{
46 if (little_endian)
47 iowrite32(value, addr);
48 else
49 iowrite32be(value, addr);
50}
51
52#ifdef CONFIG_EDAC_DEBUG
53/************************ MC SYSFS parts ***********************************/
54
55#define to_mci(k) container_of(k, struct mem_ctl_info, dev)
56
57static ssize_t fsl_mc_inject_data_hi_show(struct device *dev,
58 struct device_attribute *mattr,
59 char *data)
60{
61 struct mem_ctl_info *mci = to_mci(dev);
62 struct fsl_mc_pdata *pdata = mci->pvt_info;
63 return sprintf(data, "0x%08x",
64 ddr_in32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_HI));
65}
66
67static ssize_t fsl_mc_inject_data_lo_show(struct device *dev,
68 struct device_attribute *mattr,
69 char *data)
70{
71 struct mem_ctl_info *mci = to_mci(dev);
72 struct fsl_mc_pdata *pdata = mci->pvt_info;
73 return sprintf(data, "0x%08x",
74 ddr_in32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_LO));
75}
76
77static ssize_t fsl_mc_inject_ctrl_show(struct device *dev,
78 struct device_attribute *mattr,
79 char *data)
80{
81 struct mem_ctl_info *mci = to_mci(dev);
82 struct fsl_mc_pdata *pdata = mci->pvt_info;
83 return sprintf(data, "0x%08x",
84 ddr_in32(pdata->mc_vbase + FSL_MC_ECC_ERR_INJECT));
85}
86
87static ssize_t fsl_mc_inject_data_hi_store(struct device *dev,
88 struct device_attribute *mattr,
89 const char *data, size_t count)
90{
91 struct mem_ctl_info *mci = to_mci(dev);
92 struct fsl_mc_pdata *pdata = mci->pvt_info;
93 unsigned long val;
94 int rc;
95
96 if (isdigit(*data)) {
97 rc = kstrtoul(data, 0, &val);
98 if (rc)
99 return rc;
100
101 ddr_out32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_HI, val);
102 return count;
103 }
104 return 0;
105}
106
107static ssize_t fsl_mc_inject_data_lo_store(struct device *dev,
108 struct device_attribute *mattr,
109 const char *data, size_t count)
110{
111 struct mem_ctl_info *mci = to_mci(dev);
112 struct fsl_mc_pdata *pdata = mci->pvt_info;
113 unsigned long val;
114 int rc;
115
116 if (isdigit(*data)) {
117 rc = kstrtoul(data, 0, &val);
118 if (rc)
119 return rc;
120
121 ddr_out32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_LO, val);
122 return count;
123 }
124 return 0;
125}
126
127static ssize_t fsl_mc_inject_ctrl_store(struct device *dev,
128 struct device_attribute *mattr,
129 const char *data, size_t count)
130{
131 struct mem_ctl_info *mci = to_mci(dev);
132 struct fsl_mc_pdata *pdata = mci->pvt_info;
133 unsigned long val;
134 int rc;
135
136 if (isdigit(*data)) {
137 rc = kstrtoul(data, 0, &val);
138 if (rc)
139 return rc;
140
141 ddr_out32(pdata->mc_vbase + FSL_MC_ECC_ERR_INJECT, val);
142 return count;
143 }
144 return 0;
145}
146
147static DEVICE_ATTR(inject_data_hi, S_IRUGO | S_IWUSR,
148 fsl_mc_inject_data_hi_show, fsl_mc_inject_data_hi_store);
149static DEVICE_ATTR(inject_data_lo, S_IRUGO | S_IWUSR,
150 fsl_mc_inject_data_lo_show, fsl_mc_inject_data_lo_store);
151static DEVICE_ATTR(inject_ctrl, S_IRUGO | S_IWUSR,
152 fsl_mc_inject_ctrl_show, fsl_mc_inject_ctrl_store);
153#endif /* CONFIG_EDAC_DEBUG */
154
155static struct attribute *fsl_ddr_dev_attrs[] = {
156#ifdef CONFIG_EDAC_DEBUG
157 &dev_attr_inject_data_hi.attr,
158 &dev_attr_inject_data_lo.attr,
159 &dev_attr_inject_ctrl.attr,
160#endif
161 NULL
162};
163
164ATTRIBUTE_GROUPS(fsl_ddr_dev);
165
166/**************************** MC Err device ***************************/
167
168/*
169 * Taken from table 8-55 in the MPC8641 User's Manual and/or 9-61 in the
170 * MPC8572 User's Manual. Each line represents a syndrome bit column as a
171 * 64-bit value, but split into an upper and lower 32-bit chunk. The labels
172 * below correspond to Freescale's manuals.
173 */
174static unsigned int ecc_table[16] = {
175 /* MSB LSB */
176 /* [0:31] [32:63] */
177 0xf00fe11e, 0xc33c0ff7, /* Syndrome bit 7 */
178 0x00ff00ff, 0x00fff0ff,
179 0x0f0f0f0f, 0x0f0fff00,
180 0x11113333, 0x7777000f,
181 0x22224444, 0x8888222f,
182 0x44448888, 0xffff4441,
183 0x8888ffff, 0x11118882,
184 0xffff1111, 0x22221114, /* Syndrome bit 0 */
185};
186
187/*
188 * Calculate the correct ECC value for a 64-bit value specified by high:low
189 */
190static u8 calculate_ecc(u32 high, u32 low)
191{
192 u32 mask_low;
193 u32 mask_high;
194 int bit_cnt;
195 u8 ecc = 0;
196 int i;
197 int j;
198
199 for (i = 0; i < 8; i++) {
200 mask_high = ecc_table[i * 2];
201 mask_low = ecc_table[i * 2 + 1];
202 bit_cnt = 0;
203
204 for (j = 0; j < 32; j++) {
205 if ((mask_high >> j) & 1)
206 bit_cnt ^= (high >> j) & 1;
207 if ((mask_low >> j) & 1)
208 bit_cnt ^= (low >> j) & 1;
209 }
210
211 ecc |= bit_cnt << i;
212 }
213
214 return ecc;
215}
216
217/*
218 * Create the syndrome code which is generated if the data line specified by
219 * 'bit' failed. Eg generate an 8-bit codes seen in Table 8-55 in the MPC8641
220 * User's Manual and 9-61 in the MPC8572 User's Manual.
221 */
222static u8 syndrome_from_bit(unsigned int bit) {
223 int i;
224 u8 syndrome = 0;
225
226 /*
227 * Cycle through the upper or lower 32-bit portion of each value in
228 * ecc_table depending on if 'bit' is in the upper or lower half of
229 * 64-bit data.
230 */
231 for (i = bit < 32; i < 16; i += 2)
232 syndrome |= ((ecc_table[i] >> (bit % 32)) & 1) << (i / 2);
233
234 return syndrome;
235}
236
237/*
238 * Decode data and ecc syndrome to determine what went wrong
239 * Note: This can only decode single-bit errors
240 */
241static void sbe_ecc_decode(u32 cap_high, u32 cap_low, u32 cap_ecc,
242 int *bad_data_bit, int *bad_ecc_bit)
243{
244 int i;
245 u8 syndrome;
246
247 *bad_data_bit = -1;
248 *bad_ecc_bit = -1;
249
250 /*
251 * Calculate the ECC of the captured data and XOR it with the captured
252 * ECC to find an ECC syndrome value we can search for
253 */
254 syndrome = calculate_ecc(cap_high, cap_low) ^ cap_ecc;
255
256 /* Check if a data line is stuck... */
257 for (i = 0; i < 64; i++) {
258 if (syndrome == syndrome_from_bit(i)) {
259 *bad_data_bit = i;
260 return;
261 }
262 }
263
264 /* If data is correct, check ECC bits for errors... */
265 for (i = 0; i < 8; i++) {
266 if ((syndrome >> i) & 0x1) {
267 *bad_ecc_bit = i;
268 return;
269 }
270 }
271}
272
273#define make64(high, low) (((u64)(high) << 32) | (low))
274
275static void fsl_mc_check(struct mem_ctl_info *mci)
276{
277 struct fsl_mc_pdata *pdata = mci->pvt_info;
278 struct csrow_info *csrow;
279 u32 bus_width;
280 u32 err_detect;
281 u32 syndrome;
282 u64 err_addr;
283 u32 pfn;
284 int row_index;
285 u32 cap_high;
286 u32 cap_low;
287 int bad_data_bit;
288 int bad_ecc_bit;
289
290 err_detect = ddr_in32(pdata->mc_vbase + FSL_MC_ERR_DETECT);
291 if (!err_detect)
292 return;
293
294 fsl_mc_printk(mci, KERN_ERR, "Err Detect Register: %#8.8x\n",
295 err_detect);
296
297 /* no more processing if not ECC bit errors */
298 if (!(err_detect & (DDR_EDE_SBE | DDR_EDE_MBE))) {
299 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DETECT, err_detect);
300 return;
301 }
302
303 syndrome = ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_ECC);
304
305 /* Mask off appropriate bits of syndrome based on bus width */
306 bus_width = (ddr_in32(pdata->mc_vbase + FSL_MC_DDR_SDRAM_CFG) &
307 DSC_DBW_MASK) ? 32 : 64;
308 if (bus_width == 64)
309 syndrome &= 0xff;
310 else
311 syndrome &= 0xffff;
312
313 err_addr = make64(
314 ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_EXT_ADDRESS),
315 ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_ADDRESS));
316 pfn = err_addr >> PAGE_SHIFT;
317
318 for (row_index = 0; row_index < mci->nr_csrows; row_index++) {
319 csrow = mci->csrows[row_index];
320 if ((pfn >= csrow->first_page) && (pfn <= csrow->last_page))
321 break;
322 }
323
324 cap_high = ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_DATA_HI);
325 cap_low = ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_DATA_LO);
326
327 /*
328 * Analyze single-bit errors on 64-bit wide buses
329 * TODO: Add support for 32-bit wide buses
330 */
331 if ((err_detect & DDR_EDE_SBE) && (bus_width == 64)) {
332 sbe_ecc_decode(cap_high, cap_low, syndrome,
333 &bad_data_bit, &bad_ecc_bit);
334
335 if (bad_data_bit != -1)
336 fsl_mc_printk(mci, KERN_ERR,
337 "Faulty Data bit: %d\n", bad_data_bit);
338 if (bad_ecc_bit != -1)
339 fsl_mc_printk(mci, KERN_ERR,
340 "Faulty ECC bit: %d\n", bad_ecc_bit);
341
342 fsl_mc_printk(mci, KERN_ERR,
343 "Expected Data / ECC:\t%#8.8x_%08x / %#2.2x\n",
344 cap_high ^ (1 << (bad_data_bit - 32)),
345 cap_low ^ (1 << bad_data_bit),
346 syndrome ^ (1 << bad_ecc_bit));
347 }
348
349 fsl_mc_printk(mci, KERN_ERR,
350 "Captured Data / ECC:\t%#8.8x_%08x / %#2.2x\n",
351 cap_high, cap_low, syndrome);
352 fsl_mc_printk(mci, KERN_ERR, "Err addr: %#8.8llx\n", err_addr);
353 fsl_mc_printk(mci, KERN_ERR, "PFN: %#8.8x\n", pfn);
354
355 /* we are out of range */
356 if (row_index == mci->nr_csrows)
357 fsl_mc_printk(mci, KERN_ERR, "PFN out of range!\n");
358
359 if (err_detect & DDR_EDE_SBE)
360 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1,
361 pfn, err_addr & ~PAGE_MASK, syndrome,
362 row_index, 0, -1,
363 mci->ctl_name, "");
364
365 if (err_detect & DDR_EDE_MBE)
366 edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1,
367 pfn, err_addr & ~PAGE_MASK, syndrome,
368 row_index, 0, -1,
369 mci->ctl_name, "");
370
371 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DETECT, err_detect);
372}
373
374static irqreturn_t fsl_mc_isr(int irq, void *dev_id)
375{
376 struct mem_ctl_info *mci = dev_id;
377 struct fsl_mc_pdata *pdata = mci->pvt_info;
378 u32 err_detect;
379
380 err_detect = ddr_in32(pdata->mc_vbase + FSL_MC_ERR_DETECT);
381 if (!err_detect)
382 return IRQ_NONE;
383
384 fsl_mc_check(mci);
385
386 return IRQ_HANDLED;
387}
388
389static void fsl_ddr_init_csrows(struct mem_ctl_info *mci)
390{
391 struct fsl_mc_pdata *pdata = mci->pvt_info;
392 struct csrow_info *csrow;
393 struct dimm_info *dimm;
394 u32 sdram_ctl;
395 u32 sdtype;
396 enum mem_type mtype;
397 u32 cs_bnds;
398 int index;
399
400 sdram_ctl = ddr_in32(pdata->mc_vbase + FSL_MC_DDR_SDRAM_CFG);
401
402 sdtype = sdram_ctl & DSC_SDTYPE_MASK;
403 if (sdram_ctl & DSC_RD_EN) {
404 switch (sdtype) {
405 case 0x02000000:
406 mtype = MEM_RDDR;
407 break;
408 case 0x03000000:
409 mtype = MEM_RDDR2;
410 break;
411 case 0x07000000:
412 mtype = MEM_RDDR3;
413 break;
414 case 0x05000000:
415 mtype = MEM_RDDR4;
416 break;
417 default:
418 mtype = MEM_UNKNOWN;
419 break;
420 }
421 } else {
422 switch (sdtype) {
423 case 0x02000000:
424 mtype = MEM_DDR;
425 break;
426 case 0x03000000:
427 mtype = MEM_DDR2;
428 break;
429 case 0x07000000:
430 mtype = MEM_DDR3;
431 break;
432 case 0x05000000:
433 mtype = MEM_DDR4;
434 break;
435 default:
436 mtype = MEM_UNKNOWN;
437 break;
438 }
439 }
440
441 for (index = 0; index < mci->nr_csrows; index++) {
442 u32 start;
443 u32 end;
444
445 csrow = mci->csrows[index];
446 dimm = csrow->channels[0]->dimm;
447
448 cs_bnds = ddr_in32(pdata->mc_vbase + FSL_MC_CS_BNDS_0 +
449 (index * FSL_MC_CS_BNDS_OFS));
450
451 start = (cs_bnds & 0xffff0000) >> 16;
452 end = (cs_bnds & 0x0000ffff);
453
454 if (start == end)
455 continue; /* not populated */
456
457 start <<= (24 - PAGE_SHIFT);
458 end <<= (24 - PAGE_SHIFT);
459 end |= (1 << (24 - PAGE_SHIFT)) - 1;
460
461 csrow->first_page = start;
462 csrow->last_page = end;
463
464 dimm->nr_pages = end + 1 - start;
465 dimm->grain = 8;
466 dimm->mtype = mtype;
467 dimm->dtype = DEV_UNKNOWN;
468 if (sdram_ctl & DSC_X32_EN)
469 dimm->dtype = DEV_X32;
470 dimm->edac_mode = EDAC_SECDED;
471 }
472}
473
474int fsl_mc_err_probe(struct platform_device *op)
475{
476 struct mem_ctl_info *mci;
477 struct edac_mc_layer layers[2];
478 struct fsl_mc_pdata *pdata;
479 struct resource r;
480 u32 sdram_ctl;
481 int res;
482
483 if (!devres_open_group(&op->dev, fsl_mc_err_probe, GFP_KERNEL))
484 return -ENOMEM;
485
486 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
487 layers[0].size = 4;
488 layers[0].is_virt_csrow = true;
489 layers[1].type = EDAC_MC_LAYER_CHANNEL;
490 layers[1].size = 1;
491 layers[1].is_virt_csrow = false;
492 mci = edac_mc_alloc(edac_mc_idx, ARRAY_SIZE(layers), layers,
493 sizeof(*pdata));
494 if (!mci) {
495 devres_release_group(&op->dev, fsl_mc_err_probe);
496 return -ENOMEM;
497 }
498
499 pdata = mci->pvt_info;
500 pdata->name = "fsl_mc_err";
501 mci->pdev = &op->dev;
502 pdata->edac_idx = edac_mc_idx++;
503 dev_set_drvdata(mci->pdev, mci);
504 mci->ctl_name = pdata->name;
505 mci->dev_name = pdata->name;
506
507 /*
508 * Get the endianness of DDR controller registers.
509 * Default is big endian.
510 */
511 little_endian = of_property_read_bool(op->dev.of_node, "little-endian");
512
513 res = of_address_to_resource(op->dev.of_node, 0, &r);
514 if (res) {
515 pr_err("%s: Unable to get resource for MC err regs\n",
516 __func__);
517 goto err;
518 }
519
520 if (!devm_request_mem_region(&op->dev, r.start, resource_size(&r),
521 pdata->name)) {
522 pr_err("%s: Error while requesting mem region\n",
523 __func__);
524 res = -EBUSY;
525 goto err;
526 }
527
528 pdata->mc_vbase = devm_ioremap(&op->dev, r.start, resource_size(&r));
529 if (!pdata->mc_vbase) {
530 pr_err("%s: Unable to setup MC err regs\n", __func__);
531 res = -ENOMEM;
532 goto err;
533 }
534
535 sdram_ctl = ddr_in32(pdata->mc_vbase + FSL_MC_DDR_SDRAM_CFG);
536 if (!(sdram_ctl & DSC_ECC_EN)) {
537 /* no ECC */
538 pr_warn("%s: No ECC DIMMs discovered\n", __func__);
539 res = -ENODEV;
540 goto err;
541 }
542
543 edac_dbg(3, "init mci\n");
544 mci->mtype_cap = MEM_FLAG_DDR | MEM_FLAG_RDDR |
545 MEM_FLAG_DDR2 | MEM_FLAG_RDDR2 |
546 MEM_FLAG_DDR3 | MEM_FLAG_RDDR3 |
547 MEM_FLAG_DDR4 | MEM_FLAG_RDDR4;
548 mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED;
549 mci->edac_cap = EDAC_FLAG_SECDED;
550 mci->mod_name = EDAC_MOD_STR;
551
552 if (edac_op_state == EDAC_OPSTATE_POLL)
553 mci->edac_check = fsl_mc_check;
554
555 mci->ctl_page_to_phys = NULL;
556
557 mci->scrub_mode = SCRUB_SW_SRC;
558
559 fsl_ddr_init_csrows(mci);
560
561 /* store the original error disable bits */
562 orig_ddr_err_disable = ddr_in32(pdata->mc_vbase + FSL_MC_ERR_DISABLE);
563 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DISABLE, 0);
564
565 /* clear all error bits */
566 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DETECT, ~0);
567
568 res = edac_mc_add_mc_with_groups(mci, fsl_ddr_dev_groups);
569 if (res) {
570 edac_dbg(3, "failed edac_mc_add_mc()\n");
571 goto err;
572 }
573
574 if (edac_op_state == EDAC_OPSTATE_INT) {
575 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_INT_EN,
576 DDR_EIE_MBEE | DDR_EIE_SBEE);
577
578 /* store the original error management threshold */
579 orig_ddr_err_sbe = ddr_in32(pdata->mc_vbase +
580 FSL_MC_ERR_SBE) & 0xff0000;
581
582 /* set threshold to 1 error per interrupt */
583 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_SBE, 0x10000);
584
585 /* register interrupts */
586 pdata->irq = platform_get_irq(op, 0);
587 res = devm_request_irq(&op->dev, pdata->irq,
588 fsl_mc_isr,
589 IRQF_SHARED,
590 "[EDAC] MC err", mci);
591 if (res < 0) {
592 pr_err("%s: Unable to request irq %d for FSL DDR DRAM ERR\n",
593 __func__, pdata->irq);
594 res = -ENODEV;
595 goto err2;
596 }
597
598 pr_info(EDAC_MOD_STR " acquired irq %d for MC\n",
599 pdata->irq);
600 }
601
602 devres_remove_group(&op->dev, fsl_mc_err_probe);
603 edac_dbg(3, "success\n");
604 pr_info(EDAC_MOD_STR " MC err registered\n");
605
606 return 0;
607
608err2:
609 edac_mc_del_mc(&op->dev);
610err:
611 devres_release_group(&op->dev, fsl_mc_err_probe);
612 edac_mc_free(mci);
613 return res;
614}
615
616int fsl_mc_err_remove(struct platform_device *op)
617{
618 struct mem_ctl_info *mci = dev_get_drvdata(&op->dev);
619 struct fsl_mc_pdata *pdata = mci->pvt_info;
620
621 edac_dbg(0, "\n");
622
623 if (edac_op_state == EDAC_OPSTATE_INT) {
624 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_INT_EN, 0);
625 }
626
627 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DISABLE,
628 orig_ddr_err_disable);
629 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_SBE, orig_ddr_err_sbe);
630
631 edac_mc_del_mc(&op->dev);
632 edac_mc_free(mci);
633 return 0;
634}