Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Freescale Memory Controller kernel module
4 *
5 * Support Power-based SoCs including MPC85xx, MPC86xx, MPC83xx and
6 * ARM-based Layerscape SoCs including LS2xxx and LS1021A. Originally
7 * split out from mpc85xx_edac EDAC driver.
8 *
9 * Parts Copyrighted (c) 2013 by Freescale Semiconductor, Inc.
10 *
11 * Author: Dave Jiang <djiang@mvista.com>
12 *
13 * 2006-2007 (c) MontaVista Software, Inc.
14 */
15#include <linux/module.h>
16#include <linux/init.h>
17#include <linux/interrupt.h>
18#include <linux/ctype.h>
19#include <linux/io.h>
20#include <linux/mod_devicetable.h>
21#include <linux/edac.h>
22#include <linux/smp.h>
23#include <linux/gfp.h>
24
25#include <linux/of.h>
26#include <linux/of_address.h>
27#include "edac_module.h"
28#include "fsl_ddr_edac.h"
29
30#define EDAC_MOD_STR "fsl_ddr_edac"
31
32static int edac_mc_idx;
33
34static u32 orig_ddr_err_disable;
35static u32 orig_ddr_err_sbe;
36static bool little_endian;
37
38static inline u32 ddr_in32(void __iomem *addr)
39{
40 return little_endian ? ioread32(addr) : ioread32be(addr);
41}
42
43static inline void ddr_out32(void __iomem *addr, u32 value)
44{
45 if (little_endian)
46 iowrite32(value, addr);
47 else
48 iowrite32be(value, addr);
49}
50
51#ifdef CONFIG_EDAC_DEBUG
52/************************ MC SYSFS parts ***********************************/
53
54#define to_mci(k) container_of(k, struct mem_ctl_info, dev)
55
56static ssize_t fsl_mc_inject_data_hi_show(struct device *dev,
57 struct device_attribute *mattr,
58 char *data)
59{
60 struct mem_ctl_info *mci = to_mci(dev);
61 struct fsl_mc_pdata *pdata = mci->pvt_info;
62 return sprintf(data, "0x%08x",
63 ddr_in32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_HI));
64}
65
66static ssize_t fsl_mc_inject_data_lo_show(struct device *dev,
67 struct device_attribute *mattr,
68 char *data)
69{
70 struct mem_ctl_info *mci = to_mci(dev);
71 struct fsl_mc_pdata *pdata = mci->pvt_info;
72 return sprintf(data, "0x%08x",
73 ddr_in32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_LO));
74}
75
76static ssize_t fsl_mc_inject_ctrl_show(struct device *dev,
77 struct device_attribute *mattr,
78 char *data)
79{
80 struct mem_ctl_info *mci = to_mci(dev);
81 struct fsl_mc_pdata *pdata = mci->pvt_info;
82 return sprintf(data, "0x%08x",
83 ddr_in32(pdata->mc_vbase + FSL_MC_ECC_ERR_INJECT));
84}
85
86static ssize_t fsl_mc_inject_data_hi_store(struct device *dev,
87 struct device_attribute *mattr,
88 const char *data, size_t count)
89{
90 struct mem_ctl_info *mci = to_mci(dev);
91 struct fsl_mc_pdata *pdata = mci->pvt_info;
92 unsigned long val;
93 int rc;
94
95 if (isdigit(*data)) {
96 rc = kstrtoul(data, 0, &val);
97 if (rc)
98 return rc;
99
100 ddr_out32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_HI, val);
101 return count;
102 }
103 return 0;
104}
105
106static ssize_t fsl_mc_inject_data_lo_store(struct device *dev,
107 struct device_attribute *mattr,
108 const char *data, size_t count)
109{
110 struct mem_ctl_info *mci = to_mci(dev);
111 struct fsl_mc_pdata *pdata = mci->pvt_info;
112 unsigned long val;
113 int rc;
114
115 if (isdigit(*data)) {
116 rc = kstrtoul(data, 0, &val);
117 if (rc)
118 return rc;
119
120 ddr_out32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_LO, val);
121 return count;
122 }
123 return 0;
124}
125
126static ssize_t fsl_mc_inject_ctrl_store(struct device *dev,
127 struct device_attribute *mattr,
128 const char *data, size_t count)
129{
130 struct mem_ctl_info *mci = to_mci(dev);
131 struct fsl_mc_pdata *pdata = mci->pvt_info;
132 unsigned long val;
133 int rc;
134
135 if (isdigit(*data)) {
136 rc = kstrtoul(data, 0, &val);
137 if (rc)
138 return rc;
139
140 ddr_out32(pdata->mc_vbase + FSL_MC_ECC_ERR_INJECT, val);
141 return count;
142 }
143 return 0;
144}
145
146static DEVICE_ATTR(inject_data_hi, S_IRUGO | S_IWUSR,
147 fsl_mc_inject_data_hi_show, fsl_mc_inject_data_hi_store);
148static DEVICE_ATTR(inject_data_lo, S_IRUGO | S_IWUSR,
149 fsl_mc_inject_data_lo_show, fsl_mc_inject_data_lo_store);
150static DEVICE_ATTR(inject_ctrl, S_IRUGO | S_IWUSR,
151 fsl_mc_inject_ctrl_show, fsl_mc_inject_ctrl_store);
152#endif /* CONFIG_EDAC_DEBUG */
153
154static struct attribute *fsl_ddr_dev_attrs[] = {
155#ifdef CONFIG_EDAC_DEBUG
156 &dev_attr_inject_data_hi.attr,
157 &dev_attr_inject_data_lo.attr,
158 &dev_attr_inject_ctrl.attr,
159#endif
160 NULL
161};
162
163ATTRIBUTE_GROUPS(fsl_ddr_dev);
164
165/**************************** MC Err device ***************************/
166
167/*
168 * Taken from table 8-55 in the MPC8641 User's Manual and/or 9-61 in the
169 * MPC8572 User's Manual. Each line represents a syndrome bit column as a
170 * 64-bit value, but split into an upper and lower 32-bit chunk. The labels
171 * below correspond to Freescale's manuals.
172 */
173static unsigned int ecc_table[16] = {
174 /* MSB LSB */
175 /* [0:31] [32:63] */
176 0xf00fe11e, 0xc33c0ff7, /* Syndrome bit 7 */
177 0x00ff00ff, 0x00fff0ff,
178 0x0f0f0f0f, 0x0f0fff00,
179 0x11113333, 0x7777000f,
180 0x22224444, 0x8888222f,
181 0x44448888, 0xffff4441,
182 0x8888ffff, 0x11118882,
183 0xffff1111, 0x22221114, /* Syndrome bit 0 */
184};
185
186/*
187 * Calculate the correct ECC value for a 64-bit value specified by high:low
188 */
189static u8 calculate_ecc(u32 high, u32 low)
190{
191 u32 mask_low;
192 u32 mask_high;
193 int bit_cnt;
194 u8 ecc = 0;
195 int i;
196 int j;
197
198 for (i = 0; i < 8; i++) {
199 mask_high = ecc_table[i * 2];
200 mask_low = ecc_table[i * 2 + 1];
201 bit_cnt = 0;
202
203 for (j = 0; j < 32; j++) {
204 if ((mask_high >> j) & 1)
205 bit_cnt ^= (high >> j) & 1;
206 if ((mask_low >> j) & 1)
207 bit_cnt ^= (low >> j) & 1;
208 }
209
210 ecc |= bit_cnt << i;
211 }
212
213 return ecc;
214}
215
216/*
217 * Create the syndrome code which is generated if the data line specified by
218 * 'bit' failed. Eg generate an 8-bit codes seen in Table 8-55 in the MPC8641
219 * User's Manual and 9-61 in the MPC8572 User's Manual.
220 */
221static u8 syndrome_from_bit(unsigned int bit) {
222 int i;
223 u8 syndrome = 0;
224
225 /*
226 * Cycle through the upper or lower 32-bit portion of each value in
227 * ecc_table depending on if 'bit' is in the upper or lower half of
228 * 64-bit data.
229 */
230 for (i = bit < 32; i < 16; i += 2)
231 syndrome |= ((ecc_table[i] >> (bit % 32)) & 1) << (i / 2);
232
233 return syndrome;
234}
235
236/*
237 * Decode data and ecc syndrome to determine what went wrong
238 * Note: This can only decode single-bit errors
239 */
240static void sbe_ecc_decode(u32 cap_high, u32 cap_low, u32 cap_ecc,
241 int *bad_data_bit, int *bad_ecc_bit)
242{
243 int i;
244 u8 syndrome;
245
246 *bad_data_bit = -1;
247 *bad_ecc_bit = -1;
248
249 /*
250 * Calculate the ECC of the captured data and XOR it with the captured
251 * ECC to find an ECC syndrome value we can search for
252 */
253 syndrome = calculate_ecc(cap_high, cap_low) ^ cap_ecc;
254
255 /* Check if a data line is stuck... */
256 for (i = 0; i < 64; i++) {
257 if (syndrome == syndrome_from_bit(i)) {
258 *bad_data_bit = i;
259 return;
260 }
261 }
262
263 /* If data is correct, check ECC bits for errors... */
264 for (i = 0; i < 8; i++) {
265 if ((syndrome >> i) & 0x1) {
266 *bad_ecc_bit = i;
267 return;
268 }
269 }
270}
271
272#define make64(high, low) (((u64)(high) << 32) | (low))
273
274static void fsl_mc_check(struct mem_ctl_info *mci)
275{
276 struct fsl_mc_pdata *pdata = mci->pvt_info;
277 struct csrow_info *csrow;
278 u32 bus_width;
279 u32 err_detect;
280 u32 syndrome;
281 u64 err_addr;
282 u32 pfn;
283 int row_index;
284 u32 cap_high;
285 u32 cap_low;
286 int bad_data_bit;
287 int bad_ecc_bit;
288
289 err_detect = ddr_in32(pdata->mc_vbase + FSL_MC_ERR_DETECT);
290 if (!err_detect)
291 return;
292
293 fsl_mc_printk(mci, KERN_ERR, "Err Detect Register: %#8.8x\n",
294 err_detect);
295
296 /* no more processing if not ECC bit errors */
297 if (!(err_detect & (DDR_EDE_SBE | DDR_EDE_MBE))) {
298 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DETECT, err_detect);
299 return;
300 }
301
302 syndrome = ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_ECC);
303
304 /* Mask off appropriate bits of syndrome based on bus width */
305 bus_width = (ddr_in32(pdata->mc_vbase + FSL_MC_DDR_SDRAM_CFG) &
306 DSC_DBW_MASK) ? 32 : 64;
307 if (bus_width == 64)
308 syndrome &= 0xff;
309 else
310 syndrome &= 0xffff;
311
312 err_addr = make64(
313 ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_EXT_ADDRESS),
314 ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_ADDRESS));
315 pfn = err_addr >> PAGE_SHIFT;
316
317 for (row_index = 0; row_index < mci->nr_csrows; row_index++) {
318 csrow = mci->csrows[row_index];
319 if ((pfn >= csrow->first_page) && (pfn <= csrow->last_page))
320 break;
321 }
322
323 cap_high = ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_DATA_HI);
324 cap_low = ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_DATA_LO);
325
326 /*
327 * Analyze single-bit errors on 64-bit wide buses
328 * TODO: Add support for 32-bit wide buses
329 */
330 if ((err_detect & DDR_EDE_SBE) && (bus_width == 64)) {
331 sbe_ecc_decode(cap_high, cap_low, syndrome,
332 &bad_data_bit, &bad_ecc_bit);
333
334 if (bad_data_bit != -1)
335 fsl_mc_printk(mci, KERN_ERR,
336 "Faulty Data bit: %d\n", bad_data_bit);
337 if (bad_ecc_bit != -1)
338 fsl_mc_printk(mci, KERN_ERR,
339 "Faulty ECC bit: %d\n", bad_ecc_bit);
340
341 fsl_mc_printk(mci, KERN_ERR,
342 "Expected Data / ECC:\t%#8.8x_%08x / %#2.2x\n",
343 cap_high ^ (1 << (bad_data_bit - 32)),
344 cap_low ^ (1 << bad_data_bit),
345 syndrome ^ (1 << bad_ecc_bit));
346 }
347
348 fsl_mc_printk(mci, KERN_ERR,
349 "Captured Data / ECC:\t%#8.8x_%08x / %#2.2x\n",
350 cap_high, cap_low, syndrome);
351 fsl_mc_printk(mci, KERN_ERR, "Err addr: %#8.8llx\n", err_addr);
352 fsl_mc_printk(mci, KERN_ERR, "PFN: %#8.8x\n", pfn);
353
354 /* we are out of range */
355 if (row_index == mci->nr_csrows)
356 fsl_mc_printk(mci, KERN_ERR, "PFN out of range!\n");
357
358 if (err_detect & DDR_EDE_SBE)
359 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1,
360 pfn, err_addr & ~PAGE_MASK, syndrome,
361 row_index, 0, -1,
362 mci->ctl_name, "");
363
364 if (err_detect & DDR_EDE_MBE)
365 edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1,
366 pfn, err_addr & ~PAGE_MASK, syndrome,
367 row_index, 0, -1,
368 mci->ctl_name, "");
369
370 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DETECT, err_detect);
371}
372
373static irqreturn_t fsl_mc_isr(int irq, void *dev_id)
374{
375 struct mem_ctl_info *mci = dev_id;
376 struct fsl_mc_pdata *pdata = mci->pvt_info;
377 u32 err_detect;
378
379 err_detect = ddr_in32(pdata->mc_vbase + FSL_MC_ERR_DETECT);
380 if (!err_detect)
381 return IRQ_NONE;
382
383 fsl_mc_check(mci);
384
385 return IRQ_HANDLED;
386}
387
388static void fsl_ddr_init_csrows(struct mem_ctl_info *mci)
389{
390 struct fsl_mc_pdata *pdata = mci->pvt_info;
391 struct csrow_info *csrow;
392 struct dimm_info *dimm;
393 u32 sdram_ctl;
394 u32 sdtype;
395 enum mem_type mtype;
396 u32 cs_bnds;
397 int index;
398
399 sdram_ctl = ddr_in32(pdata->mc_vbase + FSL_MC_DDR_SDRAM_CFG);
400
401 sdtype = sdram_ctl & DSC_SDTYPE_MASK;
402 if (sdram_ctl & DSC_RD_EN) {
403 switch (sdtype) {
404 case 0x02000000:
405 mtype = MEM_RDDR;
406 break;
407 case 0x03000000:
408 mtype = MEM_RDDR2;
409 break;
410 case 0x07000000:
411 mtype = MEM_RDDR3;
412 break;
413 case 0x05000000:
414 mtype = MEM_RDDR4;
415 break;
416 default:
417 mtype = MEM_UNKNOWN;
418 break;
419 }
420 } else {
421 switch (sdtype) {
422 case 0x02000000:
423 mtype = MEM_DDR;
424 break;
425 case 0x03000000:
426 mtype = MEM_DDR2;
427 break;
428 case 0x07000000:
429 mtype = MEM_DDR3;
430 break;
431 case 0x05000000:
432 mtype = MEM_DDR4;
433 break;
434 default:
435 mtype = MEM_UNKNOWN;
436 break;
437 }
438 }
439
440 for (index = 0; index < mci->nr_csrows; index++) {
441 u32 start;
442 u32 end;
443
444 csrow = mci->csrows[index];
445 dimm = csrow->channels[0]->dimm;
446
447 cs_bnds = ddr_in32(pdata->mc_vbase + FSL_MC_CS_BNDS_0 +
448 (index * FSL_MC_CS_BNDS_OFS));
449
450 start = (cs_bnds & 0xffff0000) >> 16;
451 end = (cs_bnds & 0x0000ffff);
452
453 if (start == end)
454 continue; /* not populated */
455
456 start <<= (24 - PAGE_SHIFT);
457 end <<= (24 - PAGE_SHIFT);
458 end |= (1 << (24 - PAGE_SHIFT)) - 1;
459
460 csrow->first_page = start;
461 csrow->last_page = end;
462
463 dimm->nr_pages = end + 1 - start;
464 dimm->grain = 8;
465 dimm->mtype = mtype;
466 dimm->dtype = DEV_UNKNOWN;
467 if (sdram_ctl & DSC_X32_EN)
468 dimm->dtype = DEV_X32;
469 dimm->edac_mode = EDAC_SECDED;
470 }
471}
472
473int fsl_mc_err_probe(struct platform_device *op)
474{
475 struct mem_ctl_info *mci;
476 struct edac_mc_layer layers[2];
477 struct fsl_mc_pdata *pdata;
478 struct resource r;
479 u32 sdram_ctl;
480 int res;
481
482 if (!devres_open_group(&op->dev, fsl_mc_err_probe, GFP_KERNEL))
483 return -ENOMEM;
484
485 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
486 layers[0].size = 4;
487 layers[0].is_virt_csrow = true;
488 layers[1].type = EDAC_MC_LAYER_CHANNEL;
489 layers[1].size = 1;
490 layers[1].is_virt_csrow = false;
491 mci = edac_mc_alloc(edac_mc_idx, ARRAY_SIZE(layers), layers,
492 sizeof(*pdata));
493 if (!mci) {
494 devres_release_group(&op->dev, fsl_mc_err_probe);
495 return -ENOMEM;
496 }
497
498 pdata = mci->pvt_info;
499 pdata->name = "fsl_mc_err";
500 mci->pdev = &op->dev;
501 pdata->edac_idx = edac_mc_idx++;
502 dev_set_drvdata(mci->pdev, mci);
503 mci->ctl_name = pdata->name;
504 mci->dev_name = pdata->name;
505
506 /*
507 * Get the endianness of DDR controller registers.
508 * Default is big endian.
509 */
510 little_endian = of_property_read_bool(op->dev.of_node, "little-endian");
511
512 res = of_address_to_resource(op->dev.of_node, 0, &r);
513 if (res) {
514 pr_err("%s: Unable to get resource for MC err regs\n",
515 __func__);
516 goto err;
517 }
518
519 if (!devm_request_mem_region(&op->dev, r.start, resource_size(&r),
520 pdata->name)) {
521 pr_err("%s: Error while requesting mem region\n",
522 __func__);
523 res = -EBUSY;
524 goto err;
525 }
526
527 pdata->mc_vbase = devm_ioremap(&op->dev, r.start, resource_size(&r));
528 if (!pdata->mc_vbase) {
529 pr_err("%s: Unable to setup MC err regs\n", __func__);
530 res = -ENOMEM;
531 goto err;
532 }
533
534 sdram_ctl = ddr_in32(pdata->mc_vbase + FSL_MC_DDR_SDRAM_CFG);
535 if (!(sdram_ctl & DSC_ECC_EN)) {
536 /* no ECC */
537 pr_warn("%s: No ECC DIMMs discovered\n", __func__);
538 res = -ENODEV;
539 goto err;
540 }
541
542 edac_dbg(3, "init mci\n");
543 mci->mtype_cap = MEM_FLAG_DDR | MEM_FLAG_RDDR |
544 MEM_FLAG_DDR2 | MEM_FLAG_RDDR2 |
545 MEM_FLAG_DDR3 | MEM_FLAG_RDDR3 |
546 MEM_FLAG_DDR4 | MEM_FLAG_RDDR4;
547 mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED;
548 mci->edac_cap = EDAC_FLAG_SECDED;
549 mci->mod_name = EDAC_MOD_STR;
550
551 if (edac_op_state == EDAC_OPSTATE_POLL)
552 mci->edac_check = fsl_mc_check;
553
554 mci->ctl_page_to_phys = NULL;
555
556 mci->scrub_mode = SCRUB_SW_SRC;
557
558 fsl_ddr_init_csrows(mci);
559
560 /* store the original error disable bits */
561 orig_ddr_err_disable = ddr_in32(pdata->mc_vbase + FSL_MC_ERR_DISABLE);
562 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DISABLE, 0);
563
564 /* clear all error bits */
565 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DETECT, ~0);
566
567 res = edac_mc_add_mc_with_groups(mci, fsl_ddr_dev_groups);
568 if (res) {
569 edac_dbg(3, "failed edac_mc_add_mc()\n");
570 goto err;
571 }
572
573 if (edac_op_state == EDAC_OPSTATE_INT) {
574 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_INT_EN,
575 DDR_EIE_MBEE | DDR_EIE_SBEE);
576
577 /* store the original error management threshold */
578 orig_ddr_err_sbe = ddr_in32(pdata->mc_vbase +
579 FSL_MC_ERR_SBE) & 0xff0000;
580
581 /* set threshold to 1 error per interrupt */
582 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_SBE, 0x10000);
583
584 /* register interrupts */
585 pdata->irq = platform_get_irq(op, 0);
586 res = devm_request_irq(&op->dev, pdata->irq,
587 fsl_mc_isr,
588 IRQF_SHARED,
589 "[EDAC] MC err", mci);
590 if (res < 0) {
591 pr_err("%s: Unable to request irq %d for FSL DDR DRAM ERR\n",
592 __func__, pdata->irq);
593 res = -ENODEV;
594 goto err2;
595 }
596
597 pr_info(EDAC_MOD_STR " acquired irq %d for MC\n",
598 pdata->irq);
599 }
600
601 devres_remove_group(&op->dev, fsl_mc_err_probe);
602 edac_dbg(3, "success\n");
603 pr_info(EDAC_MOD_STR " MC err registered\n");
604
605 return 0;
606
607err2:
608 edac_mc_del_mc(&op->dev);
609err:
610 devres_release_group(&op->dev, fsl_mc_err_probe);
611 edac_mc_free(mci);
612 return res;
613}
614
615void fsl_mc_err_remove(struct platform_device *op)
616{
617 struct mem_ctl_info *mci = dev_get_drvdata(&op->dev);
618 struct fsl_mc_pdata *pdata = mci->pvt_info;
619
620 edac_dbg(0, "\n");
621
622 if (edac_op_state == EDAC_OPSTATE_INT) {
623 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_INT_EN, 0);
624 }
625
626 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DISABLE,
627 orig_ddr_err_disable);
628 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_SBE, orig_ddr_err_sbe);
629
630 edac_mc_del_mc(&op->dev);
631 edac_mc_free(mci);
632}
1/*
2 * Freescale Memory Controller kernel module
3 *
4 * Support Power-based SoCs including MPC85xx, MPC86xx, MPC83xx and
5 * ARM-based Layerscape SoCs including LS2xxx. Originally split
6 * out from mpc85xx_edac EDAC driver.
7 *
8 * Parts Copyrighted (c) 2013 by Freescale Semiconductor, Inc.
9 *
10 * Author: Dave Jiang <djiang@mvista.com>
11 *
12 * 2006-2007 (c) MontaVista Software, Inc. This file is licensed under
13 * the terms of the GNU General Public License version 2. This program
14 * is licensed "as is" without any warranty of any kind, whether express
15 * or implied.
16 */
17#include <linux/module.h>
18#include <linux/init.h>
19#include <linux/interrupt.h>
20#include <linux/ctype.h>
21#include <linux/io.h>
22#include <linux/mod_devicetable.h>
23#include <linux/edac.h>
24#include <linux/smp.h>
25#include <linux/gfp.h>
26
27#include <linux/of_platform.h>
28#include <linux/of_device.h>
29#include <linux/of_address.h>
30#include "edac_module.h"
31#include "fsl_ddr_edac.h"
32
33#define EDAC_MOD_STR "fsl_ddr_edac"
34
35static int edac_mc_idx;
36
37static u32 orig_ddr_err_disable;
38static u32 orig_ddr_err_sbe;
39static bool little_endian;
40
41static inline u32 ddr_in32(void __iomem *addr)
42{
43 return little_endian ? ioread32(addr) : ioread32be(addr);
44}
45
46static inline void ddr_out32(void __iomem *addr, u32 value)
47{
48 if (little_endian)
49 iowrite32(value, addr);
50 else
51 iowrite32be(value, addr);
52}
53
54/************************ MC SYSFS parts ***********************************/
55
56#define to_mci(k) container_of(k, struct mem_ctl_info, dev)
57
58static ssize_t fsl_mc_inject_data_hi_show(struct device *dev,
59 struct device_attribute *mattr,
60 char *data)
61{
62 struct mem_ctl_info *mci = to_mci(dev);
63 struct fsl_mc_pdata *pdata = mci->pvt_info;
64 return sprintf(data, "0x%08x",
65 ddr_in32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_HI));
66}
67
68static ssize_t fsl_mc_inject_data_lo_show(struct device *dev,
69 struct device_attribute *mattr,
70 char *data)
71{
72 struct mem_ctl_info *mci = to_mci(dev);
73 struct fsl_mc_pdata *pdata = mci->pvt_info;
74 return sprintf(data, "0x%08x",
75 ddr_in32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_LO));
76}
77
78static ssize_t fsl_mc_inject_ctrl_show(struct device *dev,
79 struct device_attribute *mattr,
80 char *data)
81{
82 struct mem_ctl_info *mci = to_mci(dev);
83 struct fsl_mc_pdata *pdata = mci->pvt_info;
84 return sprintf(data, "0x%08x",
85 ddr_in32(pdata->mc_vbase + FSL_MC_ECC_ERR_INJECT));
86}
87
88static ssize_t fsl_mc_inject_data_hi_store(struct device *dev,
89 struct device_attribute *mattr,
90 const char *data, size_t count)
91{
92 struct mem_ctl_info *mci = to_mci(dev);
93 struct fsl_mc_pdata *pdata = mci->pvt_info;
94 unsigned long val;
95 int rc;
96
97 if (isdigit(*data)) {
98 rc = kstrtoul(data, 0, &val);
99 if (rc)
100 return rc;
101
102 ddr_out32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_HI, val);
103 return count;
104 }
105 return 0;
106}
107
108static ssize_t fsl_mc_inject_data_lo_store(struct device *dev,
109 struct device_attribute *mattr,
110 const char *data, size_t count)
111{
112 struct mem_ctl_info *mci = to_mci(dev);
113 struct fsl_mc_pdata *pdata = mci->pvt_info;
114 unsigned long val;
115 int rc;
116
117 if (isdigit(*data)) {
118 rc = kstrtoul(data, 0, &val);
119 if (rc)
120 return rc;
121
122 ddr_out32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_LO, val);
123 return count;
124 }
125 return 0;
126}
127
128static ssize_t fsl_mc_inject_ctrl_store(struct device *dev,
129 struct device_attribute *mattr,
130 const char *data, size_t count)
131{
132 struct mem_ctl_info *mci = to_mci(dev);
133 struct fsl_mc_pdata *pdata = mci->pvt_info;
134 unsigned long val;
135 int rc;
136
137 if (isdigit(*data)) {
138 rc = kstrtoul(data, 0, &val);
139 if (rc)
140 return rc;
141
142 ddr_out32(pdata->mc_vbase + FSL_MC_ECC_ERR_INJECT, val);
143 return count;
144 }
145 return 0;
146}
147
148static DEVICE_ATTR(inject_data_hi, S_IRUGO | S_IWUSR,
149 fsl_mc_inject_data_hi_show, fsl_mc_inject_data_hi_store);
150static DEVICE_ATTR(inject_data_lo, S_IRUGO | S_IWUSR,
151 fsl_mc_inject_data_lo_show, fsl_mc_inject_data_lo_store);
152static DEVICE_ATTR(inject_ctrl, S_IRUGO | S_IWUSR,
153 fsl_mc_inject_ctrl_show, fsl_mc_inject_ctrl_store);
154
155static struct attribute *fsl_ddr_dev_attrs[] = {
156 &dev_attr_inject_data_hi.attr,
157 &dev_attr_inject_data_lo.attr,
158 &dev_attr_inject_ctrl.attr,
159 NULL
160};
161
162ATTRIBUTE_GROUPS(fsl_ddr_dev);
163
164/**************************** MC Err device ***************************/
165
166/*
167 * Taken from table 8-55 in the MPC8641 User's Manual and/or 9-61 in the
168 * MPC8572 User's Manual. Each line represents a syndrome bit column as a
169 * 64-bit value, but split into an upper and lower 32-bit chunk. The labels
170 * below correspond to Freescale's manuals.
171 */
172static unsigned int ecc_table[16] = {
173 /* MSB LSB */
174 /* [0:31] [32:63] */
175 0xf00fe11e, 0xc33c0ff7, /* Syndrome bit 7 */
176 0x00ff00ff, 0x00fff0ff,
177 0x0f0f0f0f, 0x0f0fff00,
178 0x11113333, 0x7777000f,
179 0x22224444, 0x8888222f,
180 0x44448888, 0xffff4441,
181 0x8888ffff, 0x11118882,
182 0xffff1111, 0x22221114, /* Syndrome bit 0 */
183};
184
185/*
186 * Calculate the correct ECC value for a 64-bit value specified by high:low
187 */
188static u8 calculate_ecc(u32 high, u32 low)
189{
190 u32 mask_low;
191 u32 mask_high;
192 int bit_cnt;
193 u8 ecc = 0;
194 int i;
195 int j;
196
197 for (i = 0; i < 8; i++) {
198 mask_high = ecc_table[i * 2];
199 mask_low = ecc_table[i * 2 + 1];
200 bit_cnt = 0;
201
202 for (j = 0; j < 32; j++) {
203 if ((mask_high >> j) & 1)
204 bit_cnt ^= (high >> j) & 1;
205 if ((mask_low >> j) & 1)
206 bit_cnt ^= (low >> j) & 1;
207 }
208
209 ecc |= bit_cnt << i;
210 }
211
212 return ecc;
213}
214
215/*
216 * Create the syndrome code which is generated if the data line specified by
217 * 'bit' failed. Eg generate an 8-bit codes seen in Table 8-55 in the MPC8641
218 * User's Manual and 9-61 in the MPC8572 User's Manual.
219 */
220static u8 syndrome_from_bit(unsigned int bit) {
221 int i;
222 u8 syndrome = 0;
223
224 /*
225 * Cycle through the upper or lower 32-bit portion of each value in
226 * ecc_table depending on if 'bit' is in the upper or lower half of
227 * 64-bit data.
228 */
229 for (i = bit < 32; i < 16; i += 2)
230 syndrome |= ((ecc_table[i] >> (bit % 32)) & 1) << (i / 2);
231
232 return syndrome;
233}
234
235/*
236 * Decode data and ecc syndrome to determine what went wrong
237 * Note: This can only decode single-bit errors
238 */
239static void sbe_ecc_decode(u32 cap_high, u32 cap_low, u32 cap_ecc,
240 int *bad_data_bit, int *bad_ecc_bit)
241{
242 int i;
243 u8 syndrome;
244
245 *bad_data_bit = -1;
246 *bad_ecc_bit = -1;
247
248 /*
249 * Calculate the ECC of the captured data and XOR it with the captured
250 * ECC to find an ECC syndrome value we can search for
251 */
252 syndrome = calculate_ecc(cap_high, cap_low) ^ cap_ecc;
253
254 /* Check if a data line is stuck... */
255 for (i = 0; i < 64; i++) {
256 if (syndrome == syndrome_from_bit(i)) {
257 *bad_data_bit = i;
258 return;
259 }
260 }
261
262 /* If data is correct, check ECC bits for errors... */
263 for (i = 0; i < 8; i++) {
264 if ((syndrome >> i) & 0x1) {
265 *bad_ecc_bit = i;
266 return;
267 }
268 }
269}
270
271#define make64(high, low) (((u64)(high) << 32) | (low))
272
273static void fsl_mc_check(struct mem_ctl_info *mci)
274{
275 struct fsl_mc_pdata *pdata = mci->pvt_info;
276 struct csrow_info *csrow;
277 u32 bus_width;
278 u32 err_detect;
279 u32 syndrome;
280 u64 err_addr;
281 u32 pfn;
282 int row_index;
283 u32 cap_high;
284 u32 cap_low;
285 int bad_data_bit;
286 int bad_ecc_bit;
287
288 err_detect = ddr_in32(pdata->mc_vbase + FSL_MC_ERR_DETECT);
289 if (!err_detect)
290 return;
291
292 fsl_mc_printk(mci, KERN_ERR, "Err Detect Register: %#8.8x\n",
293 err_detect);
294
295 /* no more processing if not ECC bit errors */
296 if (!(err_detect & (DDR_EDE_SBE | DDR_EDE_MBE))) {
297 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DETECT, err_detect);
298 return;
299 }
300
301 syndrome = ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_ECC);
302
303 /* Mask off appropriate bits of syndrome based on bus width */
304 bus_width = (ddr_in32(pdata->mc_vbase + FSL_MC_DDR_SDRAM_CFG) &
305 DSC_DBW_MASK) ? 32 : 64;
306 if (bus_width == 64)
307 syndrome &= 0xff;
308 else
309 syndrome &= 0xffff;
310
311 err_addr = make64(
312 ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_EXT_ADDRESS),
313 ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_ADDRESS));
314 pfn = err_addr >> PAGE_SHIFT;
315
316 for (row_index = 0; row_index < mci->nr_csrows; row_index++) {
317 csrow = mci->csrows[row_index];
318 if ((pfn >= csrow->first_page) && (pfn <= csrow->last_page))
319 break;
320 }
321
322 cap_high = ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_DATA_HI);
323 cap_low = ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_DATA_LO);
324
325 /*
326 * Analyze single-bit errors on 64-bit wide buses
327 * TODO: Add support for 32-bit wide buses
328 */
329 if ((err_detect & DDR_EDE_SBE) && (bus_width == 64)) {
330 sbe_ecc_decode(cap_high, cap_low, syndrome,
331 &bad_data_bit, &bad_ecc_bit);
332
333 if (bad_data_bit != -1)
334 fsl_mc_printk(mci, KERN_ERR,
335 "Faulty Data bit: %d\n", bad_data_bit);
336 if (bad_ecc_bit != -1)
337 fsl_mc_printk(mci, KERN_ERR,
338 "Faulty ECC bit: %d\n", bad_ecc_bit);
339
340 fsl_mc_printk(mci, KERN_ERR,
341 "Expected Data / ECC:\t%#8.8x_%08x / %#2.2x\n",
342 cap_high ^ (1 << (bad_data_bit - 32)),
343 cap_low ^ (1 << bad_data_bit),
344 syndrome ^ (1 << bad_ecc_bit));
345 }
346
347 fsl_mc_printk(mci, KERN_ERR,
348 "Captured Data / ECC:\t%#8.8x_%08x / %#2.2x\n",
349 cap_high, cap_low, syndrome);
350 fsl_mc_printk(mci, KERN_ERR, "Err addr: %#8.8llx\n", err_addr);
351 fsl_mc_printk(mci, KERN_ERR, "PFN: %#8.8x\n", pfn);
352
353 /* we are out of range */
354 if (row_index == mci->nr_csrows)
355 fsl_mc_printk(mci, KERN_ERR, "PFN out of range!\n");
356
357 if (err_detect & DDR_EDE_SBE)
358 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1,
359 pfn, err_addr & ~PAGE_MASK, syndrome,
360 row_index, 0, -1,
361 mci->ctl_name, "");
362
363 if (err_detect & DDR_EDE_MBE)
364 edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1,
365 pfn, err_addr & ~PAGE_MASK, syndrome,
366 row_index, 0, -1,
367 mci->ctl_name, "");
368
369 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DETECT, err_detect);
370}
371
372static irqreturn_t fsl_mc_isr(int irq, void *dev_id)
373{
374 struct mem_ctl_info *mci = dev_id;
375 struct fsl_mc_pdata *pdata = mci->pvt_info;
376 u32 err_detect;
377
378 err_detect = ddr_in32(pdata->mc_vbase + FSL_MC_ERR_DETECT);
379 if (!err_detect)
380 return IRQ_NONE;
381
382 fsl_mc_check(mci);
383
384 return IRQ_HANDLED;
385}
386
387static void fsl_ddr_init_csrows(struct mem_ctl_info *mci)
388{
389 struct fsl_mc_pdata *pdata = mci->pvt_info;
390 struct csrow_info *csrow;
391 struct dimm_info *dimm;
392 u32 sdram_ctl;
393 u32 sdtype;
394 enum mem_type mtype;
395 u32 cs_bnds;
396 int index;
397
398 sdram_ctl = ddr_in32(pdata->mc_vbase + FSL_MC_DDR_SDRAM_CFG);
399
400 sdtype = sdram_ctl & DSC_SDTYPE_MASK;
401 if (sdram_ctl & DSC_RD_EN) {
402 switch (sdtype) {
403 case 0x02000000:
404 mtype = MEM_RDDR;
405 break;
406 case 0x03000000:
407 mtype = MEM_RDDR2;
408 break;
409 case 0x07000000:
410 mtype = MEM_RDDR3;
411 break;
412 case 0x05000000:
413 mtype = MEM_RDDR4;
414 break;
415 default:
416 mtype = MEM_UNKNOWN;
417 break;
418 }
419 } else {
420 switch (sdtype) {
421 case 0x02000000:
422 mtype = MEM_DDR;
423 break;
424 case 0x03000000:
425 mtype = MEM_DDR2;
426 break;
427 case 0x07000000:
428 mtype = MEM_DDR3;
429 break;
430 case 0x05000000:
431 mtype = MEM_DDR4;
432 break;
433 default:
434 mtype = MEM_UNKNOWN;
435 break;
436 }
437 }
438
439 for (index = 0; index < mci->nr_csrows; index++) {
440 u32 start;
441 u32 end;
442
443 csrow = mci->csrows[index];
444 dimm = csrow->channels[0]->dimm;
445
446 cs_bnds = ddr_in32(pdata->mc_vbase + FSL_MC_CS_BNDS_0 +
447 (index * FSL_MC_CS_BNDS_OFS));
448
449 start = (cs_bnds & 0xffff0000) >> 16;
450 end = (cs_bnds & 0x0000ffff);
451
452 if (start == end)
453 continue; /* not populated */
454
455 start <<= (24 - PAGE_SHIFT);
456 end <<= (24 - PAGE_SHIFT);
457 end |= (1 << (24 - PAGE_SHIFT)) - 1;
458
459 csrow->first_page = start;
460 csrow->last_page = end;
461
462 dimm->nr_pages = end + 1 - start;
463 dimm->grain = 8;
464 dimm->mtype = mtype;
465 dimm->dtype = DEV_UNKNOWN;
466 if (sdram_ctl & DSC_X32_EN)
467 dimm->dtype = DEV_X32;
468 dimm->edac_mode = EDAC_SECDED;
469 }
470}
471
472int fsl_mc_err_probe(struct platform_device *op)
473{
474 struct mem_ctl_info *mci;
475 struct edac_mc_layer layers[2];
476 struct fsl_mc_pdata *pdata;
477 struct resource r;
478 u32 sdram_ctl;
479 int res;
480
481 if (!devres_open_group(&op->dev, fsl_mc_err_probe, GFP_KERNEL))
482 return -ENOMEM;
483
484 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
485 layers[0].size = 4;
486 layers[0].is_virt_csrow = true;
487 layers[1].type = EDAC_MC_LAYER_CHANNEL;
488 layers[1].size = 1;
489 layers[1].is_virt_csrow = false;
490 mci = edac_mc_alloc(edac_mc_idx, ARRAY_SIZE(layers), layers,
491 sizeof(*pdata));
492 if (!mci) {
493 devres_release_group(&op->dev, fsl_mc_err_probe);
494 return -ENOMEM;
495 }
496
497 pdata = mci->pvt_info;
498 pdata->name = "fsl_mc_err";
499 mci->pdev = &op->dev;
500 pdata->edac_idx = edac_mc_idx++;
501 dev_set_drvdata(mci->pdev, mci);
502 mci->ctl_name = pdata->name;
503 mci->dev_name = pdata->name;
504
505 /*
506 * Get the endianness of DDR controller registers.
507 * Default is big endian.
508 */
509 little_endian = of_property_read_bool(op->dev.of_node, "little-endian");
510
511 res = of_address_to_resource(op->dev.of_node, 0, &r);
512 if (res) {
513 pr_err("%s: Unable to get resource for MC err regs\n",
514 __func__);
515 goto err;
516 }
517
518 if (!devm_request_mem_region(&op->dev, r.start, resource_size(&r),
519 pdata->name)) {
520 pr_err("%s: Error while requesting mem region\n",
521 __func__);
522 res = -EBUSY;
523 goto err;
524 }
525
526 pdata->mc_vbase = devm_ioremap(&op->dev, r.start, resource_size(&r));
527 if (!pdata->mc_vbase) {
528 pr_err("%s: Unable to setup MC err regs\n", __func__);
529 res = -ENOMEM;
530 goto err;
531 }
532
533 sdram_ctl = ddr_in32(pdata->mc_vbase + FSL_MC_DDR_SDRAM_CFG);
534 if (!(sdram_ctl & DSC_ECC_EN)) {
535 /* no ECC */
536 pr_warn("%s: No ECC DIMMs discovered\n", __func__);
537 res = -ENODEV;
538 goto err;
539 }
540
541 edac_dbg(3, "init mci\n");
542 mci->mtype_cap = MEM_FLAG_DDR | MEM_FLAG_RDDR |
543 MEM_FLAG_DDR2 | MEM_FLAG_RDDR2 |
544 MEM_FLAG_DDR3 | MEM_FLAG_RDDR3 |
545 MEM_FLAG_DDR4 | MEM_FLAG_RDDR4;
546 mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED;
547 mci->edac_cap = EDAC_FLAG_SECDED;
548 mci->mod_name = EDAC_MOD_STR;
549
550 if (edac_op_state == EDAC_OPSTATE_POLL)
551 mci->edac_check = fsl_mc_check;
552
553 mci->ctl_page_to_phys = NULL;
554
555 mci->scrub_mode = SCRUB_SW_SRC;
556
557 fsl_ddr_init_csrows(mci);
558
559 /* store the original error disable bits */
560 orig_ddr_err_disable = ddr_in32(pdata->mc_vbase + FSL_MC_ERR_DISABLE);
561 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DISABLE, 0);
562
563 /* clear all error bits */
564 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DETECT, ~0);
565
566 res = edac_mc_add_mc_with_groups(mci, fsl_ddr_dev_groups);
567 if (res) {
568 edac_dbg(3, "failed edac_mc_add_mc()\n");
569 goto err;
570 }
571
572 if (edac_op_state == EDAC_OPSTATE_INT) {
573 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_INT_EN,
574 DDR_EIE_MBEE | DDR_EIE_SBEE);
575
576 /* store the original error management threshold */
577 orig_ddr_err_sbe = ddr_in32(pdata->mc_vbase +
578 FSL_MC_ERR_SBE) & 0xff0000;
579
580 /* set threshold to 1 error per interrupt */
581 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_SBE, 0x10000);
582
583 /* register interrupts */
584 pdata->irq = platform_get_irq(op, 0);
585 res = devm_request_irq(&op->dev, pdata->irq,
586 fsl_mc_isr,
587 IRQF_SHARED,
588 "[EDAC] MC err", mci);
589 if (res < 0) {
590 pr_err("%s: Unable to request irq %d for FSL DDR DRAM ERR\n",
591 __func__, pdata->irq);
592 res = -ENODEV;
593 goto err2;
594 }
595
596 pr_info(EDAC_MOD_STR " acquired irq %d for MC\n",
597 pdata->irq);
598 }
599
600 devres_remove_group(&op->dev, fsl_mc_err_probe);
601 edac_dbg(3, "success\n");
602 pr_info(EDAC_MOD_STR " MC err registered\n");
603
604 return 0;
605
606err2:
607 edac_mc_del_mc(&op->dev);
608err:
609 devres_release_group(&op->dev, fsl_mc_err_probe);
610 edac_mc_free(mci);
611 return res;
612}
613
614int fsl_mc_err_remove(struct platform_device *op)
615{
616 struct mem_ctl_info *mci = dev_get_drvdata(&op->dev);
617 struct fsl_mc_pdata *pdata = mci->pvt_info;
618
619 edac_dbg(0, "\n");
620
621 if (edac_op_state == EDAC_OPSTATE_INT) {
622 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_INT_EN, 0);
623 }
624
625 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DISABLE,
626 orig_ddr_err_disable);
627 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_SBE, orig_ddr_err_sbe);
628
629 edac_mc_del_mc(&op->dev);
630 edac_mc_free(mci);
631 return 0;
632}