Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2//
   3// regmap based irq_chip
   4//
   5// Copyright 2011 Wolfson Microelectronics plc
   6//
   7// Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
   8
   9#include <linux/device.h>
  10#include <linux/export.h>
  11#include <linux/interrupt.h>
  12#include <linux/irq.h>
  13#include <linux/irqdomain.h>
  14#include <linux/pm_runtime.h>
  15#include <linux/regmap.h>
  16#include <linux/slab.h>
  17
  18#include "internal.h"
  19
  20struct regmap_irq_chip_data {
  21	struct mutex lock;
  22	struct irq_chip irq_chip;
  23
  24	struct regmap *map;
  25	const struct regmap_irq_chip *chip;
  26
  27	int irq_base;
  28	struct irq_domain *domain;
  29
  30	int irq;
  31	int wake_count;
  32
 
 
 
  33	void *status_reg_buf;
  34	unsigned int *main_status_buf;
  35	unsigned int *status_buf;
  36	unsigned int *mask_buf;
  37	unsigned int *mask_buf_def;
  38	unsigned int *wake_buf;
  39	unsigned int *type_buf;
  40	unsigned int *type_buf_def;
 
  41	unsigned int **config_buf;
  42
  43	unsigned int irq_reg_stride;
  44
  45	unsigned int (*get_irq_reg)(struct regmap_irq_chip_data *data,
  46				    unsigned int base, int index);
  47
  48	unsigned int clear_status:1;
  49};
  50
  51static inline const
  52struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
  53				     int irq)
  54{
  55	return &data->chip->irqs[irq];
  56}
  57
  58static bool regmap_irq_can_bulk_read_status(struct regmap_irq_chip_data *data)
  59{
  60	struct regmap *map = data->map;
  61
  62	/*
  63	 * While possible that a user-defined ->get_irq_reg() callback might
  64	 * be linear enough to support bulk reads, most of the time it won't.
  65	 * Therefore only allow them if the default callback is being used.
  66	 */
  67	return data->irq_reg_stride == 1 && map->reg_stride == 1 &&
  68	       data->get_irq_reg == regmap_irq_get_irq_reg_linear &&
  69	       !map->use_single_read;
  70}
  71
  72static void regmap_irq_lock(struct irq_data *data)
  73{
  74	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
  75
  76	mutex_lock(&d->lock);
  77}
  78
  79static void regmap_irq_sync_unlock(struct irq_data *data)
  80{
  81	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
  82	struct regmap *map = d->map;
  83	int i, j, ret;
  84	u32 reg;
  85	u32 val;
  86
  87	if (d->chip->runtime_pm) {
  88		ret = pm_runtime_get_sync(map->dev);
  89		if (ret < 0)
  90			dev_err(map->dev, "IRQ sync failed to resume: %d\n",
  91				ret);
  92	}
  93
  94	if (d->clear_status) {
  95		for (i = 0; i < d->chip->num_regs; i++) {
  96			reg = d->get_irq_reg(d, d->chip->status_base, i);
  97
  98			ret = regmap_read(map, reg, &val);
  99			if (ret)
 100				dev_err(d->map->dev,
 101					"Failed to clear the interrupt status bits\n");
 102		}
 103
 104		d->clear_status = false;
 105	}
 106
 107	/*
 108	 * If there's been a change in the mask write it back to the
 109	 * hardware.  We rely on the use of the regmap core cache to
 110	 * suppress pointless writes.
 111	 */
 112	for (i = 0; i < d->chip->num_regs; i++) {
 113		if (d->chip->handle_mask_sync)
 114			d->chip->handle_mask_sync(i, d->mask_buf_def[i],
 115						  d->mask_buf[i],
 116						  d->chip->irq_drv_data);
 117
 118		if (d->chip->mask_base && !d->chip->handle_mask_sync) {
 119			reg = d->get_irq_reg(d, d->chip->mask_base, i);
 120			ret = regmap_update_bits(d->map, reg,
 121						 d->mask_buf_def[i],
 122						 d->mask_buf[i]);
 123			if (ret)
 124				dev_err(d->map->dev, "Failed to sync masks in %x\n", reg);
 
 
 
 125		}
 126
 127		if (d->chip->unmask_base && !d->chip->handle_mask_sync) {
 128			reg = d->get_irq_reg(d, d->chip->unmask_base, i);
 129			ret = regmap_update_bits(d->map, reg,
 130					d->mask_buf_def[i], ~d->mask_buf[i]);
 131			if (ret)
 132				dev_err(d->map->dev, "Failed to sync masks in %x\n",
 133					reg);
 134		}
 135
 136		reg = d->get_irq_reg(d, d->chip->wake_base, i);
 137		if (d->wake_buf) {
 138			if (d->chip->wake_invert)
 139				ret = regmap_update_bits(d->map, reg,
 140							 d->mask_buf_def[i],
 141							 ~d->wake_buf[i]);
 142			else
 143				ret = regmap_update_bits(d->map, reg,
 144							 d->mask_buf_def[i],
 145							 d->wake_buf[i]);
 146			if (ret != 0)
 147				dev_err(d->map->dev,
 148					"Failed to sync wakes in %x: %d\n",
 149					reg, ret);
 150		}
 151
 152		if (!d->chip->init_ack_masked)
 153			continue;
 154		/*
 155		 * Ack all the masked interrupts unconditionally,
 156		 * OR if there is masked interrupt which hasn't been Acked,
 157		 * it'll be ignored in irq handler, then may introduce irq storm
 158		 */
 159		if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
 160			reg = d->get_irq_reg(d, d->chip->ack_base, i);
 161
 162			/* some chips ack by write 0 */
 163			if (d->chip->ack_invert)
 164				ret = regmap_write(map, reg, ~d->mask_buf[i]);
 165			else
 166				ret = regmap_write(map, reg, d->mask_buf[i]);
 167			if (d->chip->clear_ack) {
 168				if (d->chip->ack_invert && !ret)
 169					ret = regmap_write(map, reg, UINT_MAX);
 170				else if (!ret)
 171					ret = regmap_write(map, reg, 0);
 172			}
 173			if (ret != 0)
 174				dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
 175					reg, ret);
 176		}
 177	}
 178
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 179	for (i = 0; i < d->chip->num_config_bases; i++) {
 180		for (j = 0; j < d->chip->num_config_regs; j++) {
 181			reg = d->get_irq_reg(d, d->chip->config_base[i], j);
 182			ret = regmap_write(map, reg, d->config_buf[i][j]);
 183			if (ret)
 184				dev_err(d->map->dev,
 185					"Failed to write config %x: %d\n",
 186					reg, ret);
 187		}
 188	}
 189
 190	if (d->chip->runtime_pm)
 191		pm_runtime_put(map->dev);
 192
 193	/* If we've changed our wakeup count propagate it to the parent */
 194	if (d->wake_count < 0)
 195		for (i = d->wake_count; i < 0; i++)
 196			irq_set_irq_wake(d->irq, 0);
 197	else if (d->wake_count > 0)
 198		for (i = 0; i < d->wake_count; i++)
 199			irq_set_irq_wake(d->irq, 1);
 200
 201	d->wake_count = 0;
 202
 203	mutex_unlock(&d->lock);
 204}
 205
 206static void regmap_irq_enable(struct irq_data *data)
 207{
 208	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
 209	struct regmap *map = d->map;
 210	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
 211	unsigned int reg = irq_data->reg_offset / map->reg_stride;
 212	unsigned int mask;
 213
 214	/*
 215	 * The type_in_mask flag means that the underlying hardware uses
 216	 * separate mask bits for each interrupt trigger type, but we want
 217	 * to have a single logical interrupt with a configurable type.
 218	 *
 219	 * If the interrupt we're enabling defines any supported types
 220	 * then instead of using the regular mask bits for this interrupt,
 221	 * use the value previously written to the type buffer at the
 222	 * corresponding offset in regmap_irq_set_type().
 223	 */
 224	if (d->chip->type_in_mask && irq_data->type.types_supported)
 225		mask = d->type_buf[reg] & irq_data->mask;
 226	else
 227		mask = irq_data->mask;
 228
 229	if (d->chip->clear_on_unmask)
 230		d->clear_status = true;
 231
 232	d->mask_buf[reg] &= ~mask;
 233}
 234
 235static void regmap_irq_disable(struct irq_data *data)
 236{
 237	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
 238	struct regmap *map = d->map;
 239	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
 240
 241	d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
 242}
 243
 244static int regmap_irq_set_type(struct irq_data *data, unsigned int type)
 245{
 246	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
 247	struct regmap *map = d->map;
 248	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
 249	int reg, ret;
 250	const struct regmap_irq_type *t = &irq_data->type;
 251
 252	if ((t->types_supported & type) != type)
 253		return 0;
 254
 255	reg = t->type_reg_offset / map->reg_stride;
 256
 257	if (d->chip->type_in_mask) {
 258		ret = regmap_irq_set_type_config_simple(&d->type_buf, type,
 259							irq_data, reg, d->chip->irq_drv_data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 260		if (ret)
 261			return ret;
 262	}
 263
 264	if (d->chip->set_type_config) {
 265		ret = d->chip->set_type_config(d->config_buf, type, irq_data,
 266					       reg, d->chip->irq_drv_data);
 267		if (ret)
 268			return ret;
 269	}
 270
 271	return 0;
 272}
 273
 274static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
 275{
 276	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
 277	struct regmap *map = d->map;
 278	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
 279
 280	if (on) {
 281		if (d->wake_buf)
 282			d->wake_buf[irq_data->reg_offset / map->reg_stride]
 283				&= ~irq_data->mask;
 284		d->wake_count++;
 285	} else {
 286		if (d->wake_buf)
 287			d->wake_buf[irq_data->reg_offset / map->reg_stride]
 288				|= irq_data->mask;
 289		d->wake_count--;
 290	}
 291
 292	return 0;
 293}
 294
 295static const struct irq_chip regmap_irq_chip = {
 296	.irq_bus_lock		= regmap_irq_lock,
 297	.irq_bus_sync_unlock	= regmap_irq_sync_unlock,
 298	.irq_disable		= regmap_irq_disable,
 299	.irq_enable		= regmap_irq_enable,
 300	.irq_set_type		= regmap_irq_set_type,
 301	.irq_set_wake		= regmap_irq_set_wake,
 302};
 303
 304static inline int read_sub_irq_data(struct regmap_irq_chip_data *data,
 305					   unsigned int b)
 306{
 307	const struct regmap_irq_chip *chip = data->chip;
 308	struct regmap *map = data->map;
 309	struct regmap_irq_sub_irq_map *subreg;
 310	unsigned int reg;
 311	int i, ret = 0;
 312
 313	if (!chip->sub_reg_offsets) {
 314		reg = data->get_irq_reg(data, chip->status_base, b);
 315		ret = regmap_read(map, reg, &data->status_buf[b]);
 316	} else {
 317		/*
 318		 * Note we can't use ->get_irq_reg() here because the offsets
 319		 * in 'subreg' are *not* interchangeable with indices.
 320		 */
 321		subreg = &chip->sub_reg_offsets[b];
 322		for (i = 0; i < subreg->num_regs; i++) {
 323			unsigned int offset = subreg->offset[i];
 324			unsigned int index = offset / map->reg_stride;
 325
 326			ret = regmap_read(map, chip->status_base + offset,
 327					  &data->status_buf[index]);
 
 
 
 
 
 
 
 328			if (ret)
 329				break;
 330		}
 331	}
 332	return ret;
 333}
 334
 335static irqreturn_t regmap_irq_thread(int irq, void *d)
 336{
 337	struct regmap_irq_chip_data *data = d;
 338	const struct regmap_irq_chip *chip = data->chip;
 339	struct regmap *map = data->map;
 340	int ret, i;
 341	bool handled = false;
 342	u32 reg;
 343
 344	if (chip->handle_pre_irq)
 345		chip->handle_pre_irq(chip->irq_drv_data);
 346
 347	if (chip->runtime_pm) {
 348		ret = pm_runtime_get_sync(map->dev);
 349		if (ret < 0) {
 350			dev_err(map->dev, "IRQ thread failed to resume: %d\n",
 351				ret);
 352			goto exit;
 353		}
 354	}
 355
 356	/*
 357	 * Read only registers with active IRQs if the chip has 'main status
 358	 * register'. Else read in the statuses, using a single bulk read if
 359	 * possible in order to reduce the I/O overheads.
 360	 */
 361
 362	if (chip->no_status) {
 363		/* no status register so default to all active */
 364		memset32(data->status_buf, GENMASK(31, 0), chip->num_regs);
 365	} else if (chip->num_main_regs) {
 366		unsigned int max_main_bits;
 367		unsigned long size;
 368
 369		size = chip->num_regs * sizeof(unsigned int);
 370
 371		max_main_bits = (chip->num_main_status_bits) ?
 372				 chip->num_main_status_bits : chip->num_regs;
 373		/* Clear the status buf as we don't read all status regs */
 374		memset(data->status_buf, 0, size);
 375
 376		/* We could support bulk read for main status registers
 377		 * but I don't expect to see devices with really many main
 378		 * status registers so let's only support single reads for the
 379		 * sake of simplicity. and add bulk reads only if needed
 380		 */
 381		for (i = 0; i < chip->num_main_regs; i++) {
 382			reg = data->get_irq_reg(data, chip->main_status, i);
 
 
 
 
 
 
 
 
 
 
 383			ret = regmap_read(map, reg, &data->main_status_buf[i]);
 384			if (ret) {
 385				dev_err(map->dev,
 386					"Failed to read IRQ status %d\n",
 387					ret);
 388				goto exit;
 389			}
 390		}
 391
 392		/* Read sub registers with active IRQs */
 393		for (i = 0; i < chip->num_main_regs; i++) {
 394			unsigned int b;
 395			const unsigned long mreg = data->main_status_buf[i];
 396
 397			for_each_set_bit(b, &mreg, map->format.val_bytes * 8) {
 398				if (i * map->format.val_bytes * 8 + b >
 399				    max_main_bits)
 400					break;
 401				ret = read_sub_irq_data(data, b);
 402
 403				if (ret != 0) {
 404					dev_err(map->dev,
 405						"Failed to read IRQ status %d\n",
 406						ret);
 407					goto exit;
 408				}
 409			}
 410
 411		}
 412	} else if (regmap_irq_can_bulk_read_status(data)) {
 413
 414		u8 *buf8 = data->status_reg_buf;
 415		u16 *buf16 = data->status_reg_buf;
 416		u32 *buf32 = data->status_reg_buf;
 417
 418		BUG_ON(!data->status_reg_buf);
 419
 420		ret = regmap_bulk_read(map, chip->status_base,
 421				       data->status_reg_buf,
 422				       chip->num_regs);
 423		if (ret != 0) {
 424			dev_err(map->dev, "Failed to read IRQ status: %d\n",
 425				ret);
 426			goto exit;
 427		}
 428
 429		for (i = 0; i < data->chip->num_regs; i++) {
 430			switch (map->format.val_bytes) {
 431			case 1:
 432				data->status_buf[i] = buf8[i];
 433				break;
 434			case 2:
 435				data->status_buf[i] = buf16[i];
 436				break;
 437			case 4:
 438				data->status_buf[i] = buf32[i];
 439				break;
 440			default:
 441				BUG();
 442				goto exit;
 443			}
 444		}
 445
 446	} else {
 447		for (i = 0; i < data->chip->num_regs; i++) {
 448			unsigned int reg = data->get_irq_reg(data,
 449					data->chip->status_base, i);
 450			ret = regmap_read(map, reg, &data->status_buf[i]);
 451
 452			if (ret != 0) {
 453				dev_err(map->dev,
 454					"Failed to read IRQ status: %d\n",
 455					ret);
 456				goto exit;
 457			}
 458		}
 459	}
 460
 461	if (chip->status_invert)
 462		for (i = 0; i < data->chip->num_regs; i++)
 463			data->status_buf[i] = ~data->status_buf[i];
 464
 465	/*
 466	 * Ignore masked IRQs and ack if we need to; we ack early so
 467	 * there is no race between handling and acknowledging the
 468	 * interrupt.  We assume that typically few of the interrupts
 469	 * will fire simultaneously so don't worry about overhead from
 470	 * doing a write per register.
 471	 */
 472	for (i = 0; i < data->chip->num_regs; i++) {
 473		data->status_buf[i] &= ~data->mask_buf[i];
 474
 475		if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
 476			reg = data->get_irq_reg(data, data->chip->ack_base, i);
 477
 478			if (chip->ack_invert)
 479				ret = regmap_write(map, reg,
 480						~data->status_buf[i]);
 481			else
 482				ret = regmap_write(map, reg,
 483						data->status_buf[i]);
 484			if (chip->clear_ack) {
 485				if (chip->ack_invert && !ret)
 486					ret = regmap_write(map, reg, UINT_MAX);
 487				else if (!ret)
 488					ret = regmap_write(map, reg, 0);
 489			}
 490			if (ret != 0)
 491				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
 492					reg, ret);
 493		}
 494	}
 495
 496	for (i = 0; i < chip->num_irqs; i++) {
 497		if (data->status_buf[chip->irqs[i].reg_offset /
 498				     map->reg_stride] & chip->irqs[i].mask) {
 499			handle_nested_irq(irq_find_mapping(data->domain, i));
 500			handled = true;
 501		}
 502	}
 503
 504exit:
 505	if (chip->handle_post_irq)
 506		chip->handle_post_irq(chip->irq_drv_data);
 507
 508	if (chip->runtime_pm)
 509		pm_runtime_put(map->dev);
 510
 
 
 
 511	if (handled)
 512		return IRQ_HANDLED;
 513	else
 514		return IRQ_NONE;
 515}
 516
 517static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
 518			  irq_hw_number_t hw)
 519{
 520	struct regmap_irq_chip_data *data = h->host_data;
 521
 522	irq_set_chip_data(virq, data);
 523	irq_set_chip(virq, &data->irq_chip);
 524	irq_set_nested_thread(virq, 1);
 525	irq_set_parent(virq, data->irq);
 526	irq_set_noprobe(virq);
 527
 528	return 0;
 529}
 530
 531static const struct irq_domain_ops regmap_domain_ops = {
 532	.map	= regmap_irq_map,
 533	.xlate	= irq_domain_xlate_onetwocell,
 534};
 535
 536/**
 537 * regmap_irq_get_irq_reg_linear() - Linear IRQ register mapping callback.
 538 * @data: Data for the &struct regmap_irq_chip
 539 * @base: Base register
 540 * @index: Register index
 541 *
 542 * Returns the register address corresponding to the given @base and @index
 543 * by the formula ``base + index * regmap_stride * irq_reg_stride``.
 544 */
 545unsigned int regmap_irq_get_irq_reg_linear(struct regmap_irq_chip_data *data,
 546					   unsigned int base, int index)
 547{
 
 548	struct regmap *map = data->map;
 549
 
 
 
 
 
 
 
 
 
 
 
 550	return base + index * map->reg_stride * data->irq_reg_stride;
 551}
 552EXPORT_SYMBOL_GPL(regmap_irq_get_irq_reg_linear);
 553
 554/**
 555 * regmap_irq_set_type_config_simple() - Simple IRQ type configuration callback.
 556 * @buf: Buffer containing configuration register values, this is a 2D array of
 557 *       `num_config_bases` rows, each of `num_config_regs` elements.
 558 * @type: The requested IRQ type.
 559 * @irq_data: The IRQ being configured.
 560 * @idx: Index of the irq's config registers within each array `buf[i]`
 561 * @irq_drv_data: Driver specific IRQ data
 562 *
 563 * This is a &struct regmap_irq_chip->set_type_config callback suitable for
 564 * chips with one config register. Register values are updated according to
 565 * the &struct regmap_irq_type data associated with an IRQ.
 566 */
 567int regmap_irq_set_type_config_simple(unsigned int **buf, unsigned int type,
 568				      const struct regmap_irq *irq_data,
 569				      int idx, void *irq_drv_data)
 570{
 571	const struct regmap_irq_type *t = &irq_data->type;
 572
 573	if (t->type_reg_mask)
 574		buf[0][idx] &= ~t->type_reg_mask;
 575	else
 576		buf[0][idx] &= ~(t->type_falling_val |
 577				 t->type_rising_val |
 578				 t->type_level_low_val |
 579				 t->type_level_high_val);
 580
 581	switch (type) {
 582	case IRQ_TYPE_EDGE_FALLING:
 583		buf[0][idx] |= t->type_falling_val;
 584		break;
 585
 586	case IRQ_TYPE_EDGE_RISING:
 587		buf[0][idx] |= t->type_rising_val;
 588		break;
 589
 590	case IRQ_TYPE_EDGE_BOTH:
 591		buf[0][idx] |= (t->type_falling_val |
 592				t->type_rising_val);
 593		break;
 594
 595	case IRQ_TYPE_LEVEL_HIGH:
 596		buf[0][idx] |= t->type_level_high_val;
 597		break;
 598
 599	case IRQ_TYPE_LEVEL_LOW:
 600		buf[0][idx] |= t->type_level_low_val;
 601		break;
 602
 603	default:
 604		return -EINVAL;
 605	}
 606
 607	return 0;
 608}
 609EXPORT_SYMBOL_GPL(regmap_irq_set_type_config_simple);
 610
 611/**
 612 * regmap_add_irq_chip_fwnode() - Use standard regmap IRQ controller handling
 613 *
 614 * @fwnode: The firmware node where the IRQ domain should be added to.
 615 * @map: The regmap for the device.
 616 * @irq: The IRQ the device uses to signal interrupts.
 617 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
 618 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
 619 * @chip: Configuration for the interrupt controller.
 620 * @data: Runtime data structure for the controller, allocated on success.
 621 *
 622 * Returns 0 on success or an errno on failure.
 623 *
 624 * In order for this to be efficient the chip really should use a
 625 * register cache.  The chip driver is responsible for restoring the
 626 * register values used by the IRQ controller over suspend and resume.
 627 */
 628int regmap_add_irq_chip_fwnode(struct fwnode_handle *fwnode,
 629			       struct regmap *map, int irq,
 630			       int irq_flags, int irq_base,
 631			       const struct regmap_irq_chip *chip,
 632			       struct regmap_irq_chip_data **data)
 633{
 634	struct regmap_irq_chip_data *d;
 635	int i;
 636	int ret = -ENOMEM;
 
 
 637	u32 reg;
 638
 639	if (chip->num_regs <= 0)
 640		return -EINVAL;
 641
 642	if (chip->clear_on_unmask && (chip->ack_base || chip->use_ack))
 643		return -EINVAL;
 644
 645	if (chip->mask_base && chip->unmask_base && !chip->mask_unmask_non_inverted)
 646		return -EINVAL;
 647
 648	for (i = 0; i < chip->num_irqs; i++) {
 649		if (chip->irqs[i].reg_offset % map->reg_stride)
 650			return -EINVAL;
 651		if (chip->irqs[i].reg_offset / map->reg_stride >=
 652		    chip->num_regs)
 653			return -EINVAL;
 654	}
 655
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 656	if (irq_base) {
 657		irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
 658		if (irq_base < 0) {
 659			dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
 660				 irq_base);
 661			return irq_base;
 662		}
 663	}
 664
 665	d = kzalloc(sizeof(*d), GFP_KERNEL);
 666	if (!d)
 667		return -ENOMEM;
 668
 669	if (chip->num_main_regs) {
 670		d->main_status_buf = kcalloc(chip->num_main_regs,
 671					     sizeof(*d->main_status_buf),
 672					     GFP_KERNEL);
 673
 674		if (!d->main_status_buf)
 675			goto err_alloc;
 676	}
 677
 678	d->status_buf = kcalloc(chip->num_regs, sizeof(*d->status_buf),
 679				GFP_KERNEL);
 680	if (!d->status_buf)
 681		goto err_alloc;
 682
 683	d->mask_buf = kcalloc(chip->num_regs, sizeof(*d->mask_buf),
 684			      GFP_KERNEL);
 685	if (!d->mask_buf)
 686		goto err_alloc;
 687
 688	d->mask_buf_def = kcalloc(chip->num_regs, sizeof(*d->mask_buf_def),
 689				  GFP_KERNEL);
 690	if (!d->mask_buf_def)
 691		goto err_alloc;
 692
 693	if (chip->wake_base) {
 694		d->wake_buf = kcalloc(chip->num_regs, sizeof(*d->wake_buf),
 695				      GFP_KERNEL);
 696		if (!d->wake_buf)
 697			goto err_alloc;
 698	}
 699
 700	if (chip->type_in_mask) {
 701		d->type_buf_def = kcalloc(chip->num_regs,
 
 
 
 
 
 
 
 702					  sizeof(*d->type_buf_def), GFP_KERNEL);
 703		if (!d->type_buf_def)
 704			goto err_alloc;
 705
 706		d->type_buf = kcalloc(chip->num_regs, sizeof(*d->type_buf), GFP_KERNEL);
 
 707		if (!d->type_buf)
 708			goto err_alloc;
 709	}
 710
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 711	if (chip->num_config_bases && chip->num_config_regs) {
 712		/*
 713		 * Create config_buf[num_config_bases][num_config_regs]
 714		 */
 715		d->config_buf = kcalloc(chip->num_config_bases,
 716					sizeof(*d->config_buf), GFP_KERNEL);
 717		if (!d->config_buf)
 718			goto err_alloc;
 719
 720		for (i = 0; i < chip->num_config_bases; i++) {
 721			d->config_buf[i] = kcalloc(chip->num_config_regs,
 722						   sizeof(**d->config_buf),
 723						   GFP_KERNEL);
 724			if (!d->config_buf[i])
 725				goto err_alloc;
 726		}
 727	}
 728
 729	d->irq_chip = regmap_irq_chip;
 730	d->irq_chip.name = chip->name;
 731	d->irq = irq;
 732	d->map = map;
 733	d->chip = chip;
 734	d->irq_base = irq_base;
 735
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 736	if (chip->irq_reg_stride)
 737		d->irq_reg_stride = chip->irq_reg_stride;
 738	else
 739		d->irq_reg_stride = 1;
 740
 741	if (chip->get_irq_reg)
 742		d->get_irq_reg = chip->get_irq_reg;
 743	else
 744		d->get_irq_reg = regmap_irq_get_irq_reg_linear;
 745
 746	if (regmap_irq_can_bulk_read_status(d)) {
 747		d->status_reg_buf = kmalloc_array(chip->num_regs,
 748						  map->format.val_bytes,
 749						  GFP_KERNEL);
 750		if (!d->status_reg_buf)
 751			goto err_alloc;
 752	}
 753
 754	mutex_init(&d->lock);
 755
 756	for (i = 0; i < chip->num_irqs; i++)
 757		d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
 758			|= chip->irqs[i].mask;
 759
 760	/* Mask all the interrupts by default */
 761	for (i = 0; i < chip->num_regs; i++) {
 762		d->mask_buf[i] = d->mask_buf_def[i];
 763
 764		if (chip->handle_mask_sync) {
 765			ret = chip->handle_mask_sync(i, d->mask_buf_def[i],
 766						     d->mask_buf[i],
 767						     chip->irq_drv_data);
 768			if (ret)
 769				goto err_alloc;
 770		}
 771
 772		if (chip->mask_base && !chip->handle_mask_sync) {
 773			reg = d->get_irq_reg(d, chip->mask_base, i);
 774			ret = regmap_update_bits(d->map, reg,
 775						 d->mask_buf_def[i],
 776						 d->mask_buf[i]);
 777			if (ret) {
 778				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
 779					reg, ret);
 780				goto err_alloc;
 
 781			}
 782		}
 783
 784		if (chip->unmask_base && !chip->handle_mask_sync) {
 785			reg = d->get_irq_reg(d, chip->unmask_base, i);
 786			ret = regmap_update_bits(d->map, reg,
 787					d->mask_buf_def[i], ~d->mask_buf[i]);
 788			if (ret) {
 789				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
 790					reg, ret);
 791				goto err_alloc;
 792			}
 793		}
 794
 795		if (!chip->init_ack_masked)
 796			continue;
 797
 798		/* Ack masked but set interrupts */
 799		if (d->chip->no_status) {
 800			/* no status register so default to all active */
 801			d->status_buf[i] = GENMASK(31, 0);
 802		} else {
 803			reg = d->get_irq_reg(d, d->chip->status_base, i);
 804			ret = regmap_read(map, reg, &d->status_buf[i]);
 805			if (ret != 0) {
 806				dev_err(map->dev, "Failed to read IRQ status: %d\n",
 807					ret);
 808				goto err_alloc;
 809			}
 810		}
 811
 812		if (chip->status_invert)
 813			d->status_buf[i] = ~d->status_buf[i];
 814
 815		if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
 816			reg = d->get_irq_reg(d, d->chip->ack_base, i);
 817			if (chip->ack_invert)
 818				ret = regmap_write(map, reg,
 819					~(d->status_buf[i] & d->mask_buf[i]));
 820			else
 821				ret = regmap_write(map, reg,
 822					d->status_buf[i] & d->mask_buf[i]);
 823			if (chip->clear_ack) {
 824				if (chip->ack_invert && !ret)
 825					ret = regmap_write(map, reg, UINT_MAX);
 826				else if (!ret)
 827					ret = regmap_write(map, reg, 0);
 828			}
 829			if (ret != 0) {
 830				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
 831					reg, ret);
 832				goto err_alloc;
 833			}
 834		}
 835	}
 836
 837	/* Wake is disabled by default */
 838	if (d->wake_buf) {
 839		for (i = 0; i < chip->num_regs; i++) {
 840			d->wake_buf[i] = d->mask_buf_def[i];
 841			reg = d->get_irq_reg(d, d->chip->wake_base, i);
 842
 843			if (chip->wake_invert)
 844				ret = regmap_update_bits(d->map, reg,
 845							 d->mask_buf_def[i],
 846							 0);
 847			else
 848				ret = regmap_update_bits(d->map, reg,
 849							 d->mask_buf_def[i],
 850							 d->wake_buf[i]);
 851			if (ret != 0) {
 852				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
 853					reg, ret);
 854				goto err_alloc;
 855			}
 856		}
 857	}
 858
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 859	if (irq_base)
 860		d->domain = irq_domain_create_legacy(fwnode, chip->num_irqs,
 861						     irq_base, 0,
 862						     &regmap_domain_ops, d);
 863	else
 864		d->domain = irq_domain_create_linear(fwnode, chip->num_irqs,
 865						     &regmap_domain_ops, d);
 866	if (!d->domain) {
 867		dev_err(map->dev, "Failed to create IRQ domain\n");
 868		ret = -ENOMEM;
 869		goto err_alloc;
 870	}
 871
 872	ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
 873				   irq_flags | IRQF_ONESHOT,
 874				   chip->name, d);
 875	if (ret != 0) {
 876		dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
 877			irq, chip->name, ret);
 878		goto err_domain;
 879	}
 880
 881	*data = d;
 882
 883	return 0;
 884
 885err_domain:
 886	/* Should really dispose of the domain but... */
 887err_alloc:
 888	kfree(d->type_buf);
 889	kfree(d->type_buf_def);
 890	kfree(d->wake_buf);
 891	kfree(d->mask_buf_def);
 892	kfree(d->mask_buf);
 893	kfree(d->status_buf);
 894	kfree(d->status_reg_buf);
 
 
 
 
 
 895	if (d->config_buf) {
 896		for (i = 0; i < chip->num_config_bases; i++)
 897			kfree(d->config_buf[i]);
 898		kfree(d->config_buf);
 899	}
 900	kfree(d);
 901	return ret;
 902}
 903EXPORT_SYMBOL_GPL(regmap_add_irq_chip_fwnode);
 904
 905/**
 906 * regmap_add_irq_chip() - Use standard regmap IRQ controller handling
 907 *
 908 * @map: The regmap for the device.
 909 * @irq: The IRQ the device uses to signal interrupts.
 910 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
 911 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
 912 * @chip: Configuration for the interrupt controller.
 913 * @data: Runtime data structure for the controller, allocated on success.
 914 *
 915 * Returns 0 on success or an errno on failure.
 916 *
 917 * This is the same as regmap_add_irq_chip_fwnode, except that the firmware
 918 * node of the regmap is used.
 919 */
 920int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
 921			int irq_base, const struct regmap_irq_chip *chip,
 922			struct regmap_irq_chip_data **data)
 923{
 924	return regmap_add_irq_chip_fwnode(dev_fwnode(map->dev), map, irq,
 925					  irq_flags, irq_base, chip, data);
 926}
 927EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
 928
 929/**
 930 * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip
 931 *
 932 * @irq: Primary IRQ for the device
 933 * @d: &regmap_irq_chip_data allocated by regmap_add_irq_chip()
 934 *
 935 * This function also disposes of all mapped IRQs on the chip.
 936 */
 937void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
 938{
 939	unsigned int virq;
 940	int i, hwirq;
 941
 942	if (!d)
 943		return;
 944
 945	free_irq(irq, d);
 946
 947	/* Dispose all virtual irq from irq domain before removing it */
 948	for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) {
 949		/* Ignore hwirq if holes in the IRQ list */
 950		if (!d->chip->irqs[hwirq].mask)
 951			continue;
 952
 953		/*
 954		 * Find the virtual irq of hwirq on chip and if it is
 955		 * there then dispose it
 956		 */
 957		virq = irq_find_mapping(d->domain, hwirq);
 958		if (virq)
 959			irq_dispose_mapping(virq);
 960	}
 961
 962	irq_domain_remove(d->domain);
 963	kfree(d->type_buf);
 964	kfree(d->type_buf_def);
 965	kfree(d->wake_buf);
 966	kfree(d->mask_buf_def);
 967	kfree(d->mask_buf);
 968	kfree(d->status_reg_buf);
 969	kfree(d->status_buf);
 970	if (d->config_buf) {
 971		for (i = 0; i < d->chip->num_config_bases; i++)
 972			kfree(d->config_buf[i]);
 973		kfree(d->config_buf);
 974	}
 975	kfree(d);
 976}
 977EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
 978
 979static void devm_regmap_irq_chip_release(struct device *dev, void *res)
 980{
 981	struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res;
 982
 983	regmap_del_irq_chip(d->irq, d);
 984}
 985
 986static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data)
 987
 988{
 989	struct regmap_irq_chip_data **r = res;
 990
 991	if (!r || !*r) {
 992		WARN_ON(!r || !*r);
 993		return 0;
 994	}
 995	return *r == data;
 996}
 997
 998/**
 999 * devm_regmap_add_irq_chip_fwnode() - Resource managed regmap_add_irq_chip_fwnode()
1000 *
1001 * @dev: The device pointer on which irq_chip belongs to.
1002 * @fwnode: The firmware node where the IRQ domain should be added to.
1003 * @map: The regmap for the device.
1004 * @irq: The IRQ the device uses to signal interrupts
1005 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1006 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1007 * @chip: Configuration for the interrupt controller.
1008 * @data: Runtime data structure for the controller, allocated on success
1009 *
1010 * Returns 0 on success or an errno on failure.
1011 *
1012 * The &regmap_irq_chip_data will be automatically released when the device is
1013 * unbound.
1014 */
1015int devm_regmap_add_irq_chip_fwnode(struct device *dev,
1016				    struct fwnode_handle *fwnode,
1017				    struct regmap *map, int irq,
1018				    int irq_flags, int irq_base,
1019				    const struct regmap_irq_chip *chip,
1020				    struct regmap_irq_chip_data **data)
1021{
1022	struct regmap_irq_chip_data **ptr, *d;
1023	int ret;
1024
1025	ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr),
1026			   GFP_KERNEL);
1027	if (!ptr)
1028		return -ENOMEM;
1029
1030	ret = regmap_add_irq_chip_fwnode(fwnode, map, irq, irq_flags, irq_base,
1031					 chip, &d);
1032	if (ret < 0) {
1033		devres_free(ptr);
1034		return ret;
1035	}
1036
1037	*ptr = d;
1038	devres_add(dev, ptr);
1039	*data = d;
1040	return 0;
1041}
1042EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip_fwnode);
1043
1044/**
1045 * devm_regmap_add_irq_chip() - Resource managed regmap_add_irq_chip()
1046 *
1047 * @dev: The device pointer on which irq_chip belongs to.
1048 * @map: The regmap for the device.
1049 * @irq: The IRQ the device uses to signal interrupts
1050 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1051 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1052 * @chip: Configuration for the interrupt controller.
1053 * @data: Runtime data structure for the controller, allocated on success
1054 *
1055 * Returns 0 on success or an errno on failure.
1056 *
1057 * The &regmap_irq_chip_data will be automatically released when the device is
1058 * unbound.
1059 */
1060int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq,
1061			     int irq_flags, int irq_base,
1062			     const struct regmap_irq_chip *chip,
1063			     struct regmap_irq_chip_data **data)
1064{
1065	return devm_regmap_add_irq_chip_fwnode(dev, dev_fwnode(map->dev), map,
1066					       irq, irq_flags, irq_base, chip,
1067					       data);
1068}
1069EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip);
1070
1071/**
1072 * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip()
1073 *
1074 * @dev: Device for which the resource was allocated.
1075 * @irq: Primary IRQ for the device.
1076 * @data: &regmap_irq_chip_data allocated by regmap_add_irq_chip().
1077 *
1078 * A resource managed version of regmap_del_irq_chip().
1079 */
1080void devm_regmap_del_irq_chip(struct device *dev, int irq,
1081			      struct regmap_irq_chip_data *data)
1082{
1083	int rc;
1084
1085	WARN_ON(irq != data->irq);
1086	rc = devres_release(dev, devm_regmap_irq_chip_release,
1087			    devm_regmap_irq_chip_match, data);
1088
1089	if (rc != 0)
1090		WARN_ON(rc);
1091}
1092EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip);
1093
1094/**
1095 * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip
1096 *
1097 * @data: regmap irq controller to operate on.
1098 *
1099 * Useful for drivers to request their own IRQs.
1100 */
1101int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
1102{
1103	WARN_ON(!data->irq_base);
1104	return data->irq_base;
1105}
1106EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
1107
1108/**
1109 * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ
1110 *
1111 * @data: regmap irq controller to operate on.
1112 * @irq: index of the interrupt requested in the chip IRQs.
1113 *
1114 * Useful for drivers to request their own IRQs.
1115 */
1116int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
1117{
1118	/* Handle holes in the IRQ list */
1119	if (!data->chip->irqs[irq].mask)
1120		return -EINVAL;
1121
1122	return irq_create_mapping(data->domain, irq);
1123}
1124EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
1125
1126/**
1127 * regmap_irq_get_domain() - Retrieve the irq_domain for the chip
1128 *
1129 * @data: regmap_irq controller to operate on.
1130 *
1131 * Useful for drivers to request their own IRQs and for integration
1132 * with subsystems.  For ease of integration NULL is accepted as a
1133 * domain, allowing devices to just call this even if no domain is
1134 * allocated.
1135 */
1136struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
1137{
1138	if (data)
1139		return data->domain;
1140	else
1141		return NULL;
1142}
1143EXPORT_SYMBOL_GPL(regmap_irq_get_domain);
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2//
   3// regmap based irq_chip
   4//
   5// Copyright 2011 Wolfson Microelectronics plc
   6//
   7// Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
   8
   9#include <linux/device.h>
  10#include <linux/export.h>
  11#include <linux/interrupt.h>
  12#include <linux/irq.h>
  13#include <linux/irqdomain.h>
  14#include <linux/pm_runtime.h>
  15#include <linux/regmap.h>
  16#include <linux/slab.h>
  17
  18#include "internal.h"
  19
  20struct regmap_irq_chip_data {
  21	struct mutex lock;
  22	struct irq_chip irq_chip;
  23
  24	struct regmap *map;
  25	const struct regmap_irq_chip *chip;
  26
  27	int irq_base;
  28	struct irq_domain *domain;
  29
  30	int irq;
  31	int wake_count;
  32
  33	unsigned int mask_base;
  34	unsigned int unmask_base;
  35
  36	void *status_reg_buf;
  37	unsigned int *main_status_buf;
  38	unsigned int *status_buf;
  39	unsigned int *mask_buf;
  40	unsigned int *mask_buf_def;
  41	unsigned int *wake_buf;
  42	unsigned int *type_buf;
  43	unsigned int *type_buf_def;
  44	unsigned int **virt_buf;
  45	unsigned int **config_buf;
  46
  47	unsigned int irq_reg_stride;
  48
  49	unsigned int (*get_irq_reg)(struct regmap_irq_chip_data *data,
  50				    unsigned int base, int index);
  51
  52	unsigned int clear_status:1;
  53};
  54
  55static inline const
  56struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
  57				     int irq)
  58{
  59	return &data->chip->irqs[irq];
  60}
  61
  62static bool regmap_irq_can_bulk_read_status(struct regmap_irq_chip_data *data)
  63{
  64	struct regmap *map = data->map;
  65
  66	/*
  67	 * While possible that a user-defined ->get_irq_reg() callback might
  68	 * be linear enough to support bulk reads, most of the time it won't.
  69	 * Therefore only allow them if the default callback is being used.
  70	 */
  71	return data->irq_reg_stride == 1 && map->reg_stride == 1 &&
  72	       data->get_irq_reg == regmap_irq_get_irq_reg_linear &&
  73	       !map->use_single_read;
  74}
  75
  76static void regmap_irq_lock(struct irq_data *data)
  77{
  78	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
  79
  80	mutex_lock(&d->lock);
  81}
  82
  83static void regmap_irq_sync_unlock(struct irq_data *data)
  84{
  85	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
  86	struct regmap *map = d->map;
  87	int i, j, ret;
  88	u32 reg;
  89	u32 val;
  90
  91	if (d->chip->runtime_pm) {
  92		ret = pm_runtime_get_sync(map->dev);
  93		if (ret < 0)
  94			dev_err(map->dev, "IRQ sync failed to resume: %d\n",
  95				ret);
  96	}
  97
  98	if (d->clear_status) {
  99		for (i = 0; i < d->chip->num_regs; i++) {
 100			reg = d->get_irq_reg(d, d->chip->status_base, i);
 101
 102			ret = regmap_read(map, reg, &val);
 103			if (ret)
 104				dev_err(d->map->dev,
 105					"Failed to clear the interrupt status bits\n");
 106		}
 107
 108		d->clear_status = false;
 109	}
 110
 111	/*
 112	 * If there's been a change in the mask write it back to the
 113	 * hardware.  We rely on the use of the regmap core cache to
 114	 * suppress pointless writes.
 115	 */
 116	for (i = 0; i < d->chip->num_regs; i++) {
 117		if (d->mask_base) {
 118			if (d->chip->handle_mask_sync)
 119				d->chip->handle_mask_sync(d->map, i,
 120							  d->mask_buf_def[i],
 121							  d->mask_buf[i],
 122							  d->chip->irq_drv_data);
 123			else {
 124				reg = d->get_irq_reg(d, d->mask_base, i);
 125				ret = regmap_update_bits(d->map, reg,
 126						d->mask_buf_def[i],
 127						d->mask_buf[i]);
 128				if (ret)
 129					dev_err(d->map->dev, "Failed to sync masks in %x\n",
 130						reg);
 131			}
 132		}
 133
 134		if (d->unmask_base) {
 135			reg = d->get_irq_reg(d, d->unmask_base, i);
 136			ret = regmap_update_bits(d->map, reg,
 137					d->mask_buf_def[i], ~d->mask_buf[i]);
 138			if (ret)
 139				dev_err(d->map->dev, "Failed to sync masks in %x\n",
 140					reg);
 141		}
 142
 143		reg = d->get_irq_reg(d, d->chip->wake_base, i);
 144		if (d->wake_buf) {
 145			if (d->chip->wake_invert)
 146				ret = regmap_update_bits(d->map, reg,
 147							 d->mask_buf_def[i],
 148							 ~d->wake_buf[i]);
 149			else
 150				ret = regmap_update_bits(d->map, reg,
 151							 d->mask_buf_def[i],
 152							 d->wake_buf[i]);
 153			if (ret != 0)
 154				dev_err(d->map->dev,
 155					"Failed to sync wakes in %x: %d\n",
 156					reg, ret);
 157		}
 158
 159		if (!d->chip->init_ack_masked)
 160			continue;
 161		/*
 162		 * Ack all the masked interrupts unconditionally,
 163		 * OR if there is masked interrupt which hasn't been Acked,
 164		 * it'll be ignored in irq handler, then may introduce irq storm
 165		 */
 166		if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
 167			reg = d->get_irq_reg(d, d->chip->ack_base, i);
 168
 169			/* some chips ack by write 0 */
 170			if (d->chip->ack_invert)
 171				ret = regmap_write(map, reg, ~d->mask_buf[i]);
 172			else
 173				ret = regmap_write(map, reg, d->mask_buf[i]);
 174			if (d->chip->clear_ack) {
 175				if (d->chip->ack_invert && !ret)
 176					ret = regmap_write(map, reg, UINT_MAX);
 177				else if (!ret)
 178					ret = regmap_write(map, reg, 0);
 179			}
 180			if (ret != 0)
 181				dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
 182					reg, ret);
 183		}
 184	}
 185
 186	/* Don't update the type bits if we're using mask bits for irq type. */
 187	if (!d->chip->type_in_mask) {
 188		for (i = 0; i < d->chip->num_type_reg; i++) {
 189			if (!d->type_buf_def[i])
 190				continue;
 191			reg = d->get_irq_reg(d, d->chip->type_base, i);
 192			if (d->chip->type_invert)
 193				ret = regmap_update_bits(d->map, reg,
 194					d->type_buf_def[i], ~d->type_buf[i]);
 195			else
 196				ret = regmap_update_bits(d->map, reg,
 197					d->type_buf_def[i], d->type_buf[i]);
 198			if (ret != 0)
 199				dev_err(d->map->dev, "Failed to sync type in %x\n",
 200					reg);
 201		}
 202	}
 203
 204	if (d->chip->num_virt_regs) {
 205		for (i = 0; i < d->chip->num_virt_regs; i++) {
 206			for (j = 0; j < d->chip->num_regs; j++) {
 207				reg = d->get_irq_reg(d, d->chip->virt_reg_base[i],
 208						     j);
 209				ret = regmap_write(map, reg, d->virt_buf[i][j]);
 210				if (ret != 0)
 211					dev_err(d->map->dev,
 212						"Failed to write virt 0x%x: %d\n",
 213						reg, ret);
 214			}
 215		}
 216	}
 217
 218	for (i = 0; i < d->chip->num_config_bases; i++) {
 219		for (j = 0; j < d->chip->num_config_regs; j++) {
 220			reg = d->get_irq_reg(d, d->chip->config_base[i], j);
 221			ret = regmap_write(map, reg, d->config_buf[i][j]);
 222			if (ret)
 223				dev_err(d->map->dev,
 224					"Failed to write config %x: %d\n",
 225					reg, ret);
 226		}
 227	}
 228
 229	if (d->chip->runtime_pm)
 230		pm_runtime_put(map->dev);
 231
 232	/* If we've changed our wakeup count propagate it to the parent */
 233	if (d->wake_count < 0)
 234		for (i = d->wake_count; i < 0; i++)
 235			irq_set_irq_wake(d->irq, 0);
 236	else if (d->wake_count > 0)
 237		for (i = 0; i < d->wake_count; i++)
 238			irq_set_irq_wake(d->irq, 1);
 239
 240	d->wake_count = 0;
 241
 242	mutex_unlock(&d->lock);
 243}
 244
 245static void regmap_irq_enable(struct irq_data *data)
 246{
 247	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
 248	struct regmap *map = d->map;
 249	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
 250	unsigned int reg = irq_data->reg_offset / map->reg_stride;
 251	unsigned int mask;
 252
 253	/*
 254	 * The type_in_mask flag means that the underlying hardware uses
 255	 * separate mask bits for each interrupt trigger type, but we want
 256	 * to have a single logical interrupt with a configurable type.
 257	 *
 258	 * If the interrupt we're enabling defines any supported types
 259	 * then instead of using the regular mask bits for this interrupt,
 260	 * use the value previously written to the type buffer at the
 261	 * corresponding offset in regmap_irq_set_type().
 262	 */
 263	if (d->chip->type_in_mask && irq_data->type.types_supported)
 264		mask = d->type_buf[reg] & irq_data->mask;
 265	else
 266		mask = irq_data->mask;
 267
 268	if (d->chip->clear_on_unmask)
 269		d->clear_status = true;
 270
 271	d->mask_buf[reg] &= ~mask;
 272}
 273
 274static void regmap_irq_disable(struct irq_data *data)
 275{
 276	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
 277	struct regmap *map = d->map;
 278	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
 279
 280	d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
 281}
 282
 283static int regmap_irq_set_type(struct irq_data *data, unsigned int type)
 284{
 285	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
 286	struct regmap *map = d->map;
 287	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
 288	int reg, ret;
 289	const struct regmap_irq_type *t = &irq_data->type;
 290
 291	if ((t->types_supported & type) != type)
 292		return 0;
 293
 294	reg = t->type_reg_offset / map->reg_stride;
 295
 296	if (t->type_reg_mask)
 297		d->type_buf[reg] &= ~t->type_reg_mask;
 298	else
 299		d->type_buf[reg] &= ~(t->type_falling_val |
 300				      t->type_rising_val |
 301				      t->type_level_low_val |
 302				      t->type_level_high_val);
 303	switch (type) {
 304	case IRQ_TYPE_EDGE_FALLING:
 305		d->type_buf[reg] |= t->type_falling_val;
 306		break;
 307
 308	case IRQ_TYPE_EDGE_RISING:
 309		d->type_buf[reg] |= t->type_rising_val;
 310		break;
 311
 312	case IRQ_TYPE_EDGE_BOTH:
 313		d->type_buf[reg] |= (t->type_falling_val |
 314					t->type_rising_val);
 315		break;
 316
 317	case IRQ_TYPE_LEVEL_HIGH:
 318		d->type_buf[reg] |= t->type_level_high_val;
 319		break;
 320
 321	case IRQ_TYPE_LEVEL_LOW:
 322		d->type_buf[reg] |= t->type_level_low_val;
 323		break;
 324	default:
 325		return -EINVAL;
 326	}
 327
 328	if (d->chip->set_type_virt) {
 329		ret = d->chip->set_type_virt(d->virt_buf, type, data->hwirq,
 330					     reg);
 331		if (ret)
 332			return ret;
 333	}
 334
 335	if (d->chip->set_type_config) {
 336		ret = d->chip->set_type_config(d->config_buf, type,
 337					       irq_data, reg);
 338		if (ret)
 339			return ret;
 340	}
 341
 342	return 0;
 343}
 344
 345static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
 346{
 347	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
 348	struct regmap *map = d->map;
 349	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
 350
 351	if (on) {
 352		if (d->wake_buf)
 353			d->wake_buf[irq_data->reg_offset / map->reg_stride]
 354				&= ~irq_data->mask;
 355		d->wake_count++;
 356	} else {
 357		if (d->wake_buf)
 358			d->wake_buf[irq_data->reg_offset / map->reg_stride]
 359				|= irq_data->mask;
 360		d->wake_count--;
 361	}
 362
 363	return 0;
 364}
 365
 366static const struct irq_chip regmap_irq_chip = {
 367	.irq_bus_lock		= regmap_irq_lock,
 368	.irq_bus_sync_unlock	= regmap_irq_sync_unlock,
 369	.irq_disable		= regmap_irq_disable,
 370	.irq_enable		= regmap_irq_enable,
 371	.irq_set_type		= regmap_irq_set_type,
 372	.irq_set_wake		= regmap_irq_set_wake,
 373};
 374
 375static inline int read_sub_irq_data(struct regmap_irq_chip_data *data,
 376					   unsigned int b)
 377{
 378	const struct regmap_irq_chip *chip = data->chip;
 379	struct regmap *map = data->map;
 380	struct regmap_irq_sub_irq_map *subreg;
 381	unsigned int reg;
 382	int i, ret = 0;
 383
 384	if (!chip->sub_reg_offsets) {
 385		reg = data->get_irq_reg(data, chip->status_base, b);
 386		ret = regmap_read(map, reg, &data->status_buf[b]);
 387	} else {
 388		/*
 389		 * Note we can't use ->get_irq_reg() here because the offsets
 390		 * in 'subreg' are *not* interchangeable with indices.
 391		 */
 392		subreg = &chip->sub_reg_offsets[b];
 393		for (i = 0; i < subreg->num_regs; i++) {
 394			unsigned int offset = subreg->offset[i];
 395			unsigned int index = offset / map->reg_stride;
 396
 397			if (chip->not_fixed_stride)
 398				ret = regmap_read(map,
 399						chip->status_base + offset,
 400						&data->status_buf[b]);
 401			else
 402				ret = regmap_read(map,
 403						chip->status_base + offset,
 404						&data->status_buf[index]);
 405
 406			if (ret)
 407				break;
 408		}
 409	}
 410	return ret;
 411}
 412
 413static irqreturn_t regmap_irq_thread(int irq, void *d)
 414{
 415	struct regmap_irq_chip_data *data = d;
 416	const struct regmap_irq_chip *chip = data->chip;
 417	struct regmap *map = data->map;
 418	int ret, i;
 419	bool handled = false;
 420	u32 reg;
 421
 422	if (chip->handle_pre_irq)
 423		chip->handle_pre_irq(chip->irq_drv_data);
 424
 425	if (chip->runtime_pm) {
 426		ret = pm_runtime_get_sync(map->dev);
 427		if (ret < 0) {
 428			dev_err(map->dev, "IRQ thread failed to resume: %d\n",
 429				ret);
 430			goto exit;
 431		}
 432	}
 433
 434	/*
 435	 * Read only registers with active IRQs if the chip has 'main status
 436	 * register'. Else read in the statuses, using a single bulk read if
 437	 * possible in order to reduce the I/O overheads.
 438	 */
 439
 440	if (chip->num_main_regs) {
 
 
 
 441		unsigned int max_main_bits;
 442		unsigned long size;
 443
 444		size = chip->num_regs * sizeof(unsigned int);
 445
 446		max_main_bits = (chip->num_main_status_bits) ?
 447				 chip->num_main_status_bits : chip->num_regs;
 448		/* Clear the status buf as we don't read all status regs */
 449		memset(data->status_buf, 0, size);
 450
 451		/* We could support bulk read for main status registers
 452		 * but I don't expect to see devices with really many main
 453		 * status registers so let's only support single reads for the
 454		 * sake of simplicity. and add bulk reads only if needed
 455		 */
 456		for (i = 0; i < chip->num_main_regs; i++) {
 457			/*
 458			 * For not_fixed_stride, don't use ->get_irq_reg().
 459			 * It would produce an incorrect result.
 460			 */
 461			if (data->chip->not_fixed_stride)
 462				reg = chip->main_status +
 463					i * map->reg_stride * data->irq_reg_stride;
 464			else
 465				reg = data->get_irq_reg(data,
 466							chip->main_status, i);
 467
 468			ret = regmap_read(map, reg, &data->main_status_buf[i]);
 469			if (ret) {
 470				dev_err(map->dev,
 471					"Failed to read IRQ status %d\n",
 472					ret);
 473				goto exit;
 474			}
 475		}
 476
 477		/* Read sub registers with active IRQs */
 478		for (i = 0; i < chip->num_main_regs; i++) {
 479			unsigned int b;
 480			const unsigned long mreg = data->main_status_buf[i];
 481
 482			for_each_set_bit(b, &mreg, map->format.val_bytes * 8) {
 483				if (i * map->format.val_bytes * 8 + b >
 484				    max_main_bits)
 485					break;
 486				ret = read_sub_irq_data(data, b);
 487
 488				if (ret != 0) {
 489					dev_err(map->dev,
 490						"Failed to read IRQ status %d\n",
 491						ret);
 492					goto exit;
 493				}
 494			}
 495
 496		}
 497	} else if (regmap_irq_can_bulk_read_status(data)) {
 498
 499		u8 *buf8 = data->status_reg_buf;
 500		u16 *buf16 = data->status_reg_buf;
 501		u32 *buf32 = data->status_reg_buf;
 502
 503		BUG_ON(!data->status_reg_buf);
 504
 505		ret = regmap_bulk_read(map, chip->status_base,
 506				       data->status_reg_buf,
 507				       chip->num_regs);
 508		if (ret != 0) {
 509			dev_err(map->dev, "Failed to read IRQ status: %d\n",
 510				ret);
 511			goto exit;
 512		}
 513
 514		for (i = 0; i < data->chip->num_regs; i++) {
 515			switch (map->format.val_bytes) {
 516			case 1:
 517				data->status_buf[i] = buf8[i];
 518				break;
 519			case 2:
 520				data->status_buf[i] = buf16[i];
 521				break;
 522			case 4:
 523				data->status_buf[i] = buf32[i];
 524				break;
 525			default:
 526				BUG();
 527				goto exit;
 528			}
 529		}
 530
 531	} else {
 532		for (i = 0; i < data->chip->num_regs; i++) {
 533			unsigned int reg = data->get_irq_reg(data,
 534					data->chip->status_base, i);
 535			ret = regmap_read(map, reg, &data->status_buf[i]);
 536
 537			if (ret != 0) {
 538				dev_err(map->dev,
 539					"Failed to read IRQ status: %d\n",
 540					ret);
 541				goto exit;
 542			}
 543		}
 544	}
 545
 546	if (chip->status_invert)
 547		for (i = 0; i < data->chip->num_regs; i++)
 548			data->status_buf[i] = ~data->status_buf[i];
 549
 550	/*
 551	 * Ignore masked IRQs and ack if we need to; we ack early so
 552	 * there is no race between handling and acknowledging the
 553	 * interrupt.  We assume that typically few of the interrupts
 554	 * will fire simultaneously so don't worry about overhead from
 555	 * doing a write per register.
 556	 */
 557	for (i = 0; i < data->chip->num_regs; i++) {
 558		data->status_buf[i] &= ~data->mask_buf[i];
 559
 560		if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
 561			reg = data->get_irq_reg(data, data->chip->ack_base, i);
 562
 563			if (chip->ack_invert)
 564				ret = regmap_write(map, reg,
 565						~data->status_buf[i]);
 566			else
 567				ret = regmap_write(map, reg,
 568						data->status_buf[i]);
 569			if (chip->clear_ack) {
 570				if (chip->ack_invert && !ret)
 571					ret = regmap_write(map, reg, UINT_MAX);
 572				else if (!ret)
 573					ret = regmap_write(map, reg, 0);
 574			}
 575			if (ret != 0)
 576				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
 577					reg, ret);
 578		}
 579	}
 580
 581	for (i = 0; i < chip->num_irqs; i++) {
 582		if (data->status_buf[chip->irqs[i].reg_offset /
 583				     map->reg_stride] & chip->irqs[i].mask) {
 584			handle_nested_irq(irq_find_mapping(data->domain, i));
 585			handled = true;
 586		}
 587	}
 588
 589exit:
 
 
 
 590	if (chip->runtime_pm)
 591		pm_runtime_put(map->dev);
 592
 593	if (chip->handle_post_irq)
 594		chip->handle_post_irq(chip->irq_drv_data);
 595
 596	if (handled)
 597		return IRQ_HANDLED;
 598	else
 599		return IRQ_NONE;
 600}
 601
 602static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
 603			  irq_hw_number_t hw)
 604{
 605	struct regmap_irq_chip_data *data = h->host_data;
 606
 607	irq_set_chip_data(virq, data);
 608	irq_set_chip(virq, &data->irq_chip);
 609	irq_set_nested_thread(virq, 1);
 610	irq_set_parent(virq, data->irq);
 611	irq_set_noprobe(virq);
 612
 613	return 0;
 614}
 615
 616static const struct irq_domain_ops regmap_domain_ops = {
 617	.map	= regmap_irq_map,
 618	.xlate	= irq_domain_xlate_onetwocell,
 619};
 620
 621/**
 622 * regmap_irq_get_irq_reg_linear() - Linear IRQ register mapping callback.
 623 * @data: Data for the &struct regmap_irq_chip
 624 * @base: Base register
 625 * @index: Register index
 626 *
 627 * Returns the register address corresponding to the given @base and @index
 628 * by the formula ``base + index * regmap_stride * irq_reg_stride``.
 629 */
 630unsigned int regmap_irq_get_irq_reg_linear(struct regmap_irq_chip_data *data,
 631					   unsigned int base, int index)
 632{
 633	const struct regmap_irq_chip *chip = data->chip;
 634	struct regmap *map = data->map;
 635
 636	/*
 637	 * FIXME: This is for backward compatibility and should be removed
 638	 * when not_fixed_stride is dropped (it's only used by qcom-pm8008).
 639	 */
 640	if (chip->not_fixed_stride && chip->sub_reg_offsets) {
 641		struct regmap_irq_sub_irq_map *subreg;
 642
 643		subreg = &chip->sub_reg_offsets[0];
 644		return base + subreg->offset[0];
 645	}
 646
 647	return base + index * map->reg_stride * data->irq_reg_stride;
 648}
 649EXPORT_SYMBOL_GPL(regmap_irq_get_irq_reg_linear);
 650
 651/**
 652 * regmap_irq_set_type_config_simple() - Simple IRQ type configuration callback.
 653 * @buf: Buffer containing configuration register values, this is a 2D array of
 654 *       `num_config_bases` rows, each of `num_config_regs` elements.
 655 * @type: The requested IRQ type.
 656 * @irq_data: The IRQ being configured.
 657 * @idx: Index of the irq's config registers within each array `buf[i]`
 
 658 *
 659 * This is a &struct regmap_irq_chip->set_type_config callback suitable for
 660 * chips with one config register. Register values are updated according to
 661 * the &struct regmap_irq_type data associated with an IRQ.
 662 */
 663int regmap_irq_set_type_config_simple(unsigned int **buf, unsigned int type,
 664				      const struct regmap_irq *irq_data, int idx)
 
 665{
 666	const struct regmap_irq_type *t = &irq_data->type;
 667
 668	if (t->type_reg_mask)
 669		buf[0][idx] &= ~t->type_reg_mask;
 670	else
 671		buf[0][idx] &= ~(t->type_falling_val |
 672				 t->type_rising_val |
 673				 t->type_level_low_val |
 674				 t->type_level_high_val);
 675
 676	switch (type) {
 677	case IRQ_TYPE_EDGE_FALLING:
 678		buf[0][idx] |= t->type_falling_val;
 679		break;
 680
 681	case IRQ_TYPE_EDGE_RISING:
 682		buf[0][idx] |= t->type_rising_val;
 683		break;
 684
 685	case IRQ_TYPE_EDGE_BOTH:
 686		buf[0][idx] |= (t->type_falling_val |
 687				t->type_rising_val);
 688		break;
 689
 690	case IRQ_TYPE_LEVEL_HIGH:
 691		buf[0][idx] |= t->type_level_high_val;
 692		break;
 693
 694	case IRQ_TYPE_LEVEL_LOW:
 695		buf[0][idx] |= t->type_level_low_val;
 696		break;
 697
 698	default:
 699		return -EINVAL;
 700	}
 701
 702	return 0;
 703}
 704EXPORT_SYMBOL_GPL(regmap_irq_set_type_config_simple);
 705
 706/**
 707 * regmap_add_irq_chip_fwnode() - Use standard regmap IRQ controller handling
 708 *
 709 * @fwnode: The firmware node where the IRQ domain should be added to.
 710 * @map: The regmap for the device.
 711 * @irq: The IRQ the device uses to signal interrupts.
 712 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
 713 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
 714 * @chip: Configuration for the interrupt controller.
 715 * @data: Runtime data structure for the controller, allocated on success.
 716 *
 717 * Returns 0 on success or an errno on failure.
 718 *
 719 * In order for this to be efficient the chip really should use a
 720 * register cache.  The chip driver is responsible for restoring the
 721 * register values used by the IRQ controller over suspend and resume.
 722 */
 723int regmap_add_irq_chip_fwnode(struct fwnode_handle *fwnode,
 724			       struct regmap *map, int irq,
 725			       int irq_flags, int irq_base,
 726			       const struct regmap_irq_chip *chip,
 727			       struct regmap_irq_chip_data **data)
 728{
 729	struct regmap_irq_chip_data *d;
 730	int i;
 731	int ret = -ENOMEM;
 732	int num_type_reg;
 733	int num_regs;
 734	u32 reg;
 735
 736	if (chip->num_regs <= 0)
 737		return -EINVAL;
 738
 739	if (chip->clear_on_unmask && (chip->ack_base || chip->use_ack))
 740		return -EINVAL;
 741
 
 
 
 742	for (i = 0; i < chip->num_irqs; i++) {
 743		if (chip->irqs[i].reg_offset % map->reg_stride)
 744			return -EINVAL;
 745		if (chip->irqs[i].reg_offset / map->reg_stride >=
 746		    chip->num_regs)
 747			return -EINVAL;
 748	}
 749
 750	if (chip->not_fixed_stride) {
 751		dev_warn(map->dev, "not_fixed_stride is deprecated; use ->get_irq_reg() instead");
 752
 753		for (i = 0; i < chip->num_regs; i++)
 754			if (chip->sub_reg_offsets[i].num_regs != 1)
 755				return -EINVAL;
 756	}
 757
 758	if (chip->num_type_reg)
 759		dev_warn(map->dev, "type registers are deprecated; use config registers instead");
 760
 761	if (chip->num_virt_regs || chip->virt_reg_base || chip->set_type_virt)
 762		dev_warn(map->dev, "virtual registers are deprecated; use config registers instead");
 763
 764	if (irq_base) {
 765		irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
 766		if (irq_base < 0) {
 767			dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
 768				 irq_base);
 769			return irq_base;
 770		}
 771	}
 772
 773	d = kzalloc(sizeof(*d), GFP_KERNEL);
 774	if (!d)
 775		return -ENOMEM;
 776
 777	if (chip->num_main_regs) {
 778		d->main_status_buf = kcalloc(chip->num_main_regs,
 779					     sizeof(*d->main_status_buf),
 780					     GFP_KERNEL);
 781
 782		if (!d->main_status_buf)
 783			goto err_alloc;
 784	}
 785
 786	d->status_buf = kcalloc(chip->num_regs, sizeof(*d->status_buf),
 787				GFP_KERNEL);
 788	if (!d->status_buf)
 789		goto err_alloc;
 790
 791	d->mask_buf = kcalloc(chip->num_regs, sizeof(*d->mask_buf),
 792			      GFP_KERNEL);
 793	if (!d->mask_buf)
 794		goto err_alloc;
 795
 796	d->mask_buf_def = kcalloc(chip->num_regs, sizeof(*d->mask_buf_def),
 797				  GFP_KERNEL);
 798	if (!d->mask_buf_def)
 799		goto err_alloc;
 800
 801	if (chip->wake_base) {
 802		d->wake_buf = kcalloc(chip->num_regs, sizeof(*d->wake_buf),
 803				      GFP_KERNEL);
 804		if (!d->wake_buf)
 805			goto err_alloc;
 806	}
 807
 808	/*
 809	 * Use num_config_regs if defined, otherwise fall back to num_type_reg
 810	 * to maintain backward compatibility.
 811	 */
 812	num_type_reg = chip->num_config_regs ? chip->num_config_regs
 813			: chip->num_type_reg;
 814	num_regs = chip->type_in_mask ? chip->num_regs : num_type_reg;
 815	if (num_regs) {
 816		d->type_buf_def = kcalloc(num_regs,
 817					  sizeof(*d->type_buf_def), GFP_KERNEL);
 818		if (!d->type_buf_def)
 819			goto err_alloc;
 820
 821		d->type_buf = kcalloc(num_regs, sizeof(*d->type_buf),
 822				      GFP_KERNEL);
 823		if (!d->type_buf)
 824			goto err_alloc;
 825	}
 826
 827	if (chip->num_virt_regs) {
 828		/*
 829		 * Create virt_buf[chip->num_extra_config_regs][chip->num_regs]
 830		 */
 831		d->virt_buf = kcalloc(chip->num_virt_regs, sizeof(*d->virt_buf),
 832				      GFP_KERNEL);
 833		if (!d->virt_buf)
 834			goto err_alloc;
 835
 836		for (i = 0; i < chip->num_virt_regs; i++) {
 837			d->virt_buf[i] = kcalloc(chip->num_regs,
 838						 sizeof(**d->virt_buf),
 839						 GFP_KERNEL);
 840			if (!d->virt_buf[i])
 841				goto err_alloc;
 842		}
 843	}
 844
 845	if (chip->num_config_bases && chip->num_config_regs) {
 846		/*
 847		 * Create config_buf[num_config_bases][num_config_regs]
 848		 */
 849		d->config_buf = kcalloc(chip->num_config_bases,
 850					sizeof(*d->config_buf), GFP_KERNEL);
 851		if (!d->config_buf)
 852			goto err_alloc;
 853
 854		for (i = 0; i < chip->num_config_regs; i++) {
 855			d->config_buf[i] = kcalloc(chip->num_config_regs,
 856						   sizeof(**d->config_buf),
 857						   GFP_KERNEL);
 858			if (!d->config_buf[i])
 859				goto err_alloc;
 860		}
 861	}
 862
 863	d->irq_chip = regmap_irq_chip;
 864	d->irq_chip.name = chip->name;
 865	d->irq = irq;
 866	d->map = map;
 867	d->chip = chip;
 868	d->irq_base = irq_base;
 869
 870	if (chip->mask_base && chip->unmask_base &&
 871	    !chip->mask_unmask_non_inverted) {
 872		/*
 873		 * Chips that specify both mask_base and unmask_base used to
 874		 * get inverted mask behavior by default, with no way to ask
 875		 * for the normal, non-inverted behavior. This "inverted by
 876		 * default" behavior is deprecated, but we have to support it
 877		 * until existing drivers have been fixed.
 878		 *
 879		 * Existing drivers should be updated by swapping mask_base
 880		 * and unmask_base and setting mask_unmask_non_inverted=true.
 881		 * New drivers should always set the flag.
 882		 */
 883		dev_warn(map->dev, "mask_base and unmask_base are inverted, please fix it");
 884
 885		/* Might as well warn about mask_invert while we're at it... */
 886		if (chip->mask_invert)
 887			dev_warn(map->dev, "mask_invert=true ignored");
 888
 889		d->mask_base = chip->unmask_base;
 890		d->unmask_base = chip->mask_base;
 891	} else if (chip->mask_invert) {
 892		/*
 893		 * Swap the roles of mask_base and unmask_base if the bits are
 894		 * inverted. This is deprecated, drivers should use unmask_base
 895		 * directly.
 896		 */
 897		dev_warn(map->dev, "mask_invert=true is deprecated; please switch to unmask_base");
 898
 899		d->mask_base = chip->unmask_base;
 900		d->unmask_base = chip->mask_base;
 901	} else {
 902		d->mask_base = chip->mask_base;
 903		d->unmask_base = chip->unmask_base;
 904	}
 905
 906	if (chip->irq_reg_stride)
 907		d->irq_reg_stride = chip->irq_reg_stride;
 908	else
 909		d->irq_reg_stride = 1;
 910
 911	if (chip->get_irq_reg)
 912		d->get_irq_reg = chip->get_irq_reg;
 913	else
 914		d->get_irq_reg = regmap_irq_get_irq_reg_linear;
 915
 916	if (regmap_irq_can_bulk_read_status(d)) {
 917		d->status_reg_buf = kmalloc_array(chip->num_regs,
 918						  map->format.val_bytes,
 919						  GFP_KERNEL);
 920		if (!d->status_reg_buf)
 921			goto err_alloc;
 922	}
 923
 924	mutex_init(&d->lock);
 925
 926	for (i = 0; i < chip->num_irqs; i++)
 927		d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
 928			|= chip->irqs[i].mask;
 929
 930	/* Mask all the interrupts by default */
 931	for (i = 0; i < chip->num_regs; i++) {
 932		d->mask_buf[i] = d->mask_buf_def[i];
 933
 934		if (d->mask_base) {
 935			if (chip->handle_mask_sync) {
 936				ret = chip->handle_mask_sync(d->map, i,
 937							     d->mask_buf_def[i],
 938							     d->mask_buf[i],
 939							     chip->irq_drv_data);
 940				if (ret)
 941					goto err_alloc;
 942			} else {
 943				reg = d->get_irq_reg(d, d->mask_base, i);
 944				ret = regmap_update_bits(d->map, reg,
 945						d->mask_buf_def[i],
 946						d->mask_buf[i]);
 947				if (ret) {
 948					dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
 949						reg, ret);
 950					goto err_alloc;
 951				}
 952			}
 953		}
 954
 955		if (d->unmask_base) {
 956			reg = d->get_irq_reg(d, d->unmask_base, i);
 957			ret = regmap_update_bits(d->map, reg,
 958					d->mask_buf_def[i], ~d->mask_buf[i]);
 959			if (ret) {
 960				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
 961					reg, ret);
 962				goto err_alloc;
 963			}
 964		}
 965
 966		if (!chip->init_ack_masked)
 967			continue;
 968
 969		/* Ack masked but set interrupts */
 970		reg = d->get_irq_reg(d, d->chip->status_base, i);
 971		ret = regmap_read(map, reg, &d->status_buf[i]);
 972		if (ret != 0) {
 973			dev_err(map->dev, "Failed to read IRQ status: %d\n",
 974				ret);
 975			goto err_alloc;
 
 
 
 
 
 976		}
 977
 978		if (chip->status_invert)
 979			d->status_buf[i] = ~d->status_buf[i];
 980
 981		if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
 982			reg = d->get_irq_reg(d, d->chip->ack_base, i);
 983			if (chip->ack_invert)
 984				ret = regmap_write(map, reg,
 985					~(d->status_buf[i] & d->mask_buf[i]));
 986			else
 987				ret = regmap_write(map, reg,
 988					d->status_buf[i] & d->mask_buf[i]);
 989			if (chip->clear_ack) {
 990				if (chip->ack_invert && !ret)
 991					ret = regmap_write(map, reg, UINT_MAX);
 992				else if (!ret)
 993					ret = regmap_write(map, reg, 0);
 994			}
 995			if (ret != 0) {
 996				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
 997					reg, ret);
 998				goto err_alloc;
 999			}
1000		}
1001	}
1002
1003	/* Wake is disabled by default */
1004	if (d->wake_buf) {
1005		for (i = 0; i < chip->num_regs; i++) {
1006			d->wake_buf[i] = d->mask_buf_def[i];
1007			reg = d->get_irq_reg(d, d->chip->wake_base, i);
1008
1009			if (chip->wake_invert)
1010				ret = regmap_update_bits(d->map, reg,
1011							 d->mask_buf_def[i],
1012							 0);
1013			else
1014				ret = regmap_update_bits(d->map, reg,
1015							 d->mask_buf_def[i],
1016							 d->wake_buf[i]);
1017			if (ret != 0) {
1018				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
1019					reg, ret);
1020				goto err_alloc;
1021			}
1022		}
1023	}
1024
1025	if (chip->num_type_reg && !chip->type_in_mask) {
1026		for (i = 0; i < chip->num_type_reg; ++i) {
1027			reg = d->get_irq_reg(d, d->chip->type_base, i);
1028
1029			ret = regmap_read(map, reg, &d->type_buf_def[i]);
1030
1031			if (d->chip->type_invert)
1032				d->type_buf_def[i] = ~d->type_buf_def[i];
1033
1034			if (ret) {
1035				dev_err(map->dev, "Failed to get type defaults at 0x%x: %d\n",
1036					reg, ret);
1037				goto err_alloc;
1038			}
1039		}
1040	}
1041
1042	if (irq_base)
1043		d->domain = irq_domain_create_legacy(fwnode, chip->num_irqs,
1044						     irq_base, 0,
1045						     &regmap_domain_ops, d);
1046	else
1047		d->domain = irq_domain_create_linear(fwnode, chip->num_irqs,
1048						     &regmap_domain_ops, d);
1049	if (!d->domain) {
1050		dev_err(map->dev, "Failed to create IRQ domain\n");
1051		ret = -ENOMEM;
1052		goto err_alloc;
1053	}
1054
1055	ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
1056				   irq_flags | IRQF_ONESHOT,
1057				   chip->name, d);
1058	if (ret != 0) {
1059		dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
1060			irq, chip->name, ret);
1061		goto err_domain;
1062	}
1063
1064	*data = d;
1065
1066	return 0;
1067
1068err_domain:
1069	/* Should really dispose of the domain but... */
1070err_alloc:
1071	kfree(d->type_buf);
1072	kfree(d->type_buf_def);
1073	kfree(d->wake_buf);
1074	kfree(d->mask_buf_def);
1075	kfree(d->mask_buf);
1076	kfree(d->status_buf);
1077	kfree(d->status_reg_buf);
1078	if (d->virt_buf) {
1079		for (i = 0; i < chip->num_virt_regs; i++)
1080			kfree(d->virt_buf[i]);
1081		kfree(d->virt_buf);
1082	}
1083	if (d->config_buf) {
1084		for (i = 0; i < chip->num_config_bases; i++)
1085			kfree(d->config_buf[i]);
1086		kfree(d->config_buf);
1087	}
1088	kfree(d);
1089	return ret;
1090}
1091EXPORT_SYMBOL_GPL(regmap_add_irq_chip_fwnode);
1092
1093/**
1094 * regmap_add_irq_chip() - Use standard regmap IRQ controller handling
1095 *
1096 * @map: The regmap for the device.
1097 * @irq: The IRQ the device uses to signal interrupts.
1098 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1099 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1100 * @chip: Configuration for the interrupt controller.
1101 * @data: Runtime data structure for the controller, allocated on success.
1102 *
1103 * Returns 0 on success or an errno on failure.
1104 *
1105 * This is the same as regmap_add_irq_chip_fwnode, except that the firmware
1106 * node of the regmap is used.
1107 */
1108int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
1109			int irq_base, const struct regmap_irq_chip *chip,
1110			struct regmap_irq_chip_data **data)
1111{
1112	return regmap_add_irq_chip_fwnode(dev_fwnode(map->dev), map, irq,
1113					  irq_flags, irq_base, chip, data);
1114}
1115EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
1116
1117/**
1118 * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip
1119 *
1120 * @irq: Primary IRQ for the device
1121 * @d: &regmap_irq_chip_data allocated by regmap_add_irq_chip()
1122 *
1123 * This function also disposes of all mapped IRQs on the chip.
1124 */
1125void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
1126{
1127	unsigned int virq;
1128	int i, hwirq;
1129
1130	if (!d)
1131		return;
1132
1133	free_irq(irq, d);
1134
1135	/* Dispose all virtual irq from irq domain before removing it */
1136	for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) {
1137		/* Ignore hwirq if holes in the IRQ list */
1138		if (!d->chip->irqs[hwirq].mask)
1139			continue;
1140
1141		/*
1142		 * Find the virtual irq of hwirq on chip and if it is
1143		 * there then dispose it
1144		 */
1145		virq = irq_find_mapping(d->domain, hwirq);
1146		if (virq)
1147			irq_dispose_mapping(virq);
1148	}
1149
1150	irq_domain_remove(d->domain);
1151	kfree(d->type_buf);
1152	kfree(d->type_buf_def);
1153	kfree(d->wake_buf);
1154	kfree(d->mask_buf_def);
1155	kfree(d->mask_buf);
1156	kfree(d->status_reg_buf);
1157	kfree(d->status_buf);
1158	if (d->config_buf) {
1159		for (i = 0; i < d->chip->num_config_bases; i++)
1160			kfree(d->config_buf[i]);
1161		kfree(d->config_buf);
1162	}
1163	kfree(d);
1164}
1165EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
1166
1167static void devm_regmap_irq_chip_release(struct device *dev, void *res)
1168{
1169	struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res;
1170
1171	regmap_del_irq_chip(d->irq, d);
1172}
1173
1174static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data)
1175
1176{
1177	struct regmap_irq_chip_data **r = res;
1178
1179	if (!r || !*r) {
1180		WARN_ON(!r || !*r);
1181		return 0;
1182	}
1183	return *r == data;
1184}
1185
1186/**
1187 * devm_regmap_add_irq_chip_fwnode() - Resource managed regmap_add_irq_chip_fwnode()
1188 *
1189 * @dev: The device pointer on which irq_chip belongs to.
1190 * @fwnode: The firmware node where the IRQ domain should be added to.
1191 * @map: The regmap for the device.
1192 * @irq: The IRQ the device uses to signal interrupts
1193 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1194 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1195 * @chip: Configuration for the interrupt controller.
1196 * @data: Runtime data structure for the controller, allocated on success
1197 *
1198 * Returns 0 on success or an errno on failure.
1199 *
1200 * The &regmap_irq_chip_data will be automatically released when the device is
1201 * unbound.
1202 */
1203int devm_regmap_add_irq_chip_fwnode(struct device *dev,
1204				    struct fwnode_handle *fwnode,
1205				    struct regmap *map, int irq,
1206				    int irq_flags, int irq_base,
1207				    const struct regmap_irq_chip *chip,
1208				    struct regmap_irq_chip_data **data)
1209{
1210	struct regmap_irq_chip_data **ptr, *d;
1211	int ret;
1212
1213	ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr),
1214			   GFP_KERNEL);
1215	if (!ptr)
1216		return -ENOMEM;
1217
1218	ret = regmap_add_irq_chip_fwnode(fwnode, map, irq, irq_flags, irq_base,
1219					 chip, &d);
1220	if (ret < 0) {
1221		devres_free(ptr);
1222		return ret;
1223	}
1224
1225	*ptr = d;
1226	devres_add(dev, ptr);
1227	*data = d;
1228	return 0;
1229}
1230EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip_fwnode);
1231
1232/**
1233 * devm_regmap_add_irq_chip() - Resource managed regmap_add_irq_chip()
1234 *
1235 * @dev: The device pointer on which irq_chip belongs to.
1236 * @map: The regmap for the device.
1237 * @irq: The IRQ the device uses to signal interrupts
1238 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1239 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1240 * @chip: Configuration for the interrupt controller.
1241 * @data: Runtime data structure for the controller, allocated on success
1242 *
1243 * Returns 0 on success or an errno on failure.
1244 *
1245 * The &regmap_irq_chip_data will be automatically released when the device is
1246 * unbound.
1247 */
1248int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq,
1249			     int irq_flags, int irq_base,
1250			     const struct regmap_irq_chip *chip,
1251			     struct regmap_irq_chip_data **data)
1252{
1253	return devm_regmap_add_irq_chip_fwnode(dev, dev_fwnode(map->dev), map,
1254					       irq, irq_flags, irq_base, chip,
1255					       data);
1256}
1257EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip);
1258
1259/**
1260 * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip()
1261 *
1262 * @dev: Device for which the resource was allocated.
1263 * @irq: Primary IRQ for the device.
1264 * @data: &regmap_irq_chip_data allocated by regmap_add_irq_chip().
1265 *
1266 * A resource managed version of regmap_del_irq_chip().
1267 */
1268void devm_regmap_del_irq_chip(struct device *dev, int irq,
1269			      struct regmap_irq_chip_data *data)
1270{
1271	int rc;
1272
1273	WARN_ON(irq != data->irq);
1274	rc = devres_release(dev, devm_regmap_irq_chip_release,
1275			    devm_regmap_irq_chip_match, data);
1276
1277	if (rc != 0)
1278		WARN_ON(rc);
1279}
1280EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip);
1281
1282/**
1283 * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip
1284 *
1285 * @data: regmap irq controller to operate on.
1286 *
1287 * Useful for drivers to request their own IRQs.
1288 */
1289int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
1290{
1291	WARN_ON(!data->irq_base);
1292	return data->irq_base;
1293}
1294EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
1295
1296/**
1297 * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ
1298 *
1299 * @data: regmap irq controller to operate on.
1300 * @irq: index of the interrupt requested in the chip IRQs.
1301 *
1302 * Useful for drivers to request their own IRQs.
1303 */
1304int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
1305{
1306	/* Handle holes in the IRQ list */
1307	if (!data->chip->irqs[irq].mask)
1308		return -EINVAL;
1309
1310	return irq_create_mapping(data->domain, irq);
1311}
1312EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
1313
1314/**
1315 * regmap_irq_get_domain() - Retrieve the irq_domain for the chip
1316 *
1317 * @data: regmap_irq controller to operate on.
1318 *
1319 * Useful for drivers to request their own IRQs and for integration
1320 * with subsystems.  For ease of integration NULL is accepted as a
1321 * domain, allowing devices to just call this even if no domain is
1322 * allocated.
1323 */
1324struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
1325{
1326	if (data)
1327		return data->domain;
1328	else
1329		return NULL;
1330}
1331EXPORT_SYMBOL_GPL(regmap_irq_get_domain);