Loading...
1// SPDX-License-Identifier: GPL-2.0
2//
3// regmap based irq_chip
4//
5// Copyright 2011 Wolfson Microelectronics plc
6//
7// Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8
9#include <linux/device.h>
10#include <linux/export.h>
11#include <linux/interrupt.h>
12#include <linux/irq.h>
13#include <linux/irqdomain.h>
14#include <linux/pm_runtime.h>
15#include <linux/regmap.h>
16#include <linux/slab.h>
17
18#include "internal.h"
19
20struct regmap_irq_chip_data {
21 struct mutex lock;
22 struct irq_chip irq_chip;
23
24 struct regmap *map;
25 const struct regmap_irq_chip *chip;
26
27 int irq_base;
28 struct irq_domain *domain;
29
30 int irq;
31 int wake_count;
32
33 void *status_reg_buf;
34 unsigned int *main_status_buf;
35 unsigned int *status_buf;
36 unsigned int *mask_buf;
37 unsigned int *mask_buf_def;
38 unsigned int *wake_buf;
39 unsigned int *type_buf;
40 unsigned int *type_buf_def;
41 unsigned int **config_buf;
42
43 unsigned int irq_reg_stride;
44
45 unsigned int (*get_irq_reg)(struct regmap_irq_chip_data *data,
46 unsigned int base, int index);
47
48 unsigned int clear_status:1;
49};
50
51static inline const
52struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
53 int irq)
54{
55 return &data->chip->irqs[irq];
56}
57
58static bool regmap_irq_can_bulk_read_status(struct regmap_irq_chip_data *data)
59{
60 struct regmap *map = data->map;
61
62 /*
63 * While possible that a user-defined ->get_irq_reg() callback might
64 * be linear enough to support bulk reads, most of the time it won't.
65 * Therefore only allow them if the default callback is being used.
66 */
67 return data->irq_reg_stride == 1 && map->reg_stride == 1 &&
68 data->get_irq_reg == regmap_irq_get_irq_reg_linear &&
69 !map->use_single_read;
70}
71
72static void regmap_irq_lock(struct irq_data *data)
73{
74 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
75
76 mutex_lock(&d->lock);
77}
78
79static void regmap_irq_sync_unlock(struct irq_data *data)
80{
81 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
82 struct regmap *map = d->map;
83 int i, j, ret;
84 u32 reg;
85 u32 val;
86
87 if (d->chip->runtime_pm) {
88 ret = pm_runtime_get_sync(map->dev);
89 if (ret < 0)
90 dev_err(map->dev, "IRQ sync failed to resume: %d\n",
91 ret);
92 }
93
94 if (d->clear_status) {
95 for (i = 0; i < d->chip->num_regs; i++) {
96 reg = d->get_irq_reg(d, d->chip->status_base, i);
97
98 ret = regmap_read(map, reg, &val);
99 if (ret)
100 dev_err(d->map->dev,
101 "Failed to clear the interrupt status bits\n");
102 }
103
104 d->clear_status = false;
105 }
106
107 /*
108 * If there's been a change in the mask write it back to the
109 * hardware. We rely on the use of the regmap core cache to
110 * suppress pointless writes.
111 */
112 for (i = 0; i < d->chip->num_regs; i++) {
113 if (d->chip->handle_mask_sync)
114 d->chip->handle_mask_sync(i, d->mask_buf_def[i],
115 d->mask_buf[i],
116 d->chip->irq_drv_data);
117
118 if (d->chip->mask_base && !d->chip->handle_mask_sync) {
119 reg = d->get_irq_reg(d, d->chip->mask_base, i);
120 ret = regmap_update_bits(d->map, reg,
121 d->mask_buf_def[i],
122 d->mask_buf[i]);
123 if (ret)
124 dev_err(d->map->dev, "Failed to sync masks in %x\n", reg);
125 }
126
127 if (d->chip->unmask_base && !d->chip->handle_mask_sync) {
128 reg = d->get_irq_reg(d, d->chip->unmask_base, i);
129 ret = regmap_update_bits(d->map, reg,
130 d->mask_buf_def[i], ~d->mask_buf[i]);
131 if (ret)
132 dev_err(d->map->dev, "Failed to sync masks in %x\n",
133 reg);
134 }
135
136 reg = d->get_irq_reg(d, d->chip->wake_base, i);
137 if (d->wake_buf) {
138 if (d->chip->wake_invert)
139 ret = regmap_update_bits(d->map, reg,
140 d->mask_buf_def[i],
141 ~d->wake_buf[i]);
142 else
143 ret = regmap_update_bits(d->map, reg,
144 d->mask_buf_def[i],
145 d->wake_buf[i]);
146 if (ret != 0)
147 dev_err(d->map->dev,
148 "Failed to sync wakes in %x: %d\n",
149 reg, ret);
150 }
151
152 if (!d->chip->init_ack_masked)
153 continue;
154 /*
155 * Ack all the masked interrupts unconditionally,
156 * OR if there is masked interrupt which hasn't been Acked,
157 * it'll be ignored in irq handler, then may introduce irq storm
158 */
159 if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
160 reg = d->get_irq_reg(d, d->chip->ack_base, i);
161
162 /* some chips ack by write 0 */
163 if (d->chip->ack_invert)
164 ret = regmap_write(map, reg, ~d->mask_buf[i]);
165 else
166 ret = regmap_write(map, reg, d->mask_buf[i]);
167 if (d->chip->clear_ack) {
168 if (d->chip->ack_invert && !ret)
169 ret = regmap_write(map, reg, UINT_MAX);
170 else if (!ret)
171 ret = regmap_write(map, reg, 0);
172 }
173 if (ret != 0)
174 dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
175 reg, ret);
176 }
177 }
178
179 for (i = 0; i < d->chip->num_config_bases; i++) {
180 for (j = 0; j < d->chip->num_config_regs; j++) {
181 reg = d->get_irq_reg(d, d->chip->config_base[i], j);
182 ret = regmap_write(map, reg, d->config_buf[i][j]);
183 if (ret)
184 dev_err(d->map->dev,
185 "Failed to write config %x: %d\n",
186 reg, ret);
187 }
188 }
189
190 if (d->chip->runtime_pm)
191 pm_runtime_put(map->dev);
192
193 /* If we've changed our wakeup count propagate it to the parent */
194 if (d->wake_count < 0)
195 for (i = d->wake_count; i < 0; i++)
196 irq_set_irq_wake(d->irq, 0);
197 else if (d->wake_count > 0)
198 for (i = 0; i < d->wake_count; i++)
199 irq_set_irq_wake(d->irq, 1);
200
201 d->wake_count = 0;
202
203 mutex_unlock(&d->lock);
204}
205
206static void regmap_irq_enable(struct irq_data *data)
207{
208 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
209 struct regmap *map = d->map;
210 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
211 unsigned int reg = irq_data->reg_offset / map->reg_stride;
212 unsigned int mask;
213
214 /*
215 * The type_in_mask flag means that the underlying hardware uses
216 * separate mask bits for each interrupt trigger type, but we want
217 * to have a single logical interrupt with a configurable type.
218 *
219 * If the interrupt we're enabling defines any supported types
220 * then instead of using the regular mask bits for this interrupt,
221 * use the value previously written to the type buffer at the
222 * corresponding offset in regmap_irq_set_type().
223 */
224 if (d->chip->type_in_mask && irq_data->type.types_supported)
225 mask = d->type_buf[reg] & irq_data->mask;
226 else
227 mask = irq_data->mask;
228
229 if (d->chip->clear_on_unmask)
230 d->clear_status = true;
231
232 d->mask_buf[reg] &= ~mask;
233}
234
235static void regmap_irq_disable(struct irq_data *data)
236{
237 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
238 struct regmap *map = d->map;
239 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
240
241 d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
242}
243
244static int regmap_irq_set_type(struct irq_data *data, unsigned int type)
245{
246 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
247 struct regmap *map = d->map;
248 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
249 int reg, ret;
250 const struct regmap_irq_type *t = &irq_data->type;
251
252 if ((t->types_supported & type) != type)
253 return 0;
254
255 reg = t->type_reg_offset / map->reg_stride;
256
257 if (d->chip->type_in_mask) {
258 ret = regmap_irq_set_type_config_simple(&d->type_buf, type,
259 irq_data, reg, d->chip->irq_drv_data);
260 if (ret)
261 return ret;
262 }
263
264 if (d->chip->set_type_config) {
265 ret = d->chip->set_type_config(d->config_buf, type, irq_data,
266 reg, d->chip->irq_drv_data);
267 if (ret)
268 return ret;
269 }
270
271 return 0;
272}
273
274static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
275{
276 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
277 struct regmap *map = d->map;
278 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
279
280 if (on) {
281 if (d->wake_buf)
282 d->wake_buf[irq_data->reg_offset / map->reg_stride]
283 &= ~irq_data->mask;
284 d->wake_count++;
285 } else {
286 if (d->wake_buf)
287 d->wake_buf[irq_data->reg_offset / map->reg_stride]
288 |= irq_data->mask;
289 d->wake_count--;
290 }
291
292 return 0;
293}
294
295static const struct irq_chip regmap_irq_chip = {
296 .irq_bus_lock = regmap_irq_lock,
297 .irq_bus_sync_unlock = regmap_irq_sync_unlock,
298 .irq_disable = regmap_irq_disable,
299 .irq_enable = regmap_irq_enable,
300 .irq_set_type = regmap_irq_set_type,
301 .irq_set_wake = regmap_irq_set_wake,
302};
303
304static inline int read_sub_irq_data(struct regmap_irq_chip_data *data,
305 unsigned int b)
306{
307 const struct regmap_irq_chip *chip = data->chip;
308 struct regmap *map = data->map;
309 struct regmap_irq_sub_irq_map *subreg;
310 unsigned int reg;
311 int i, ret = 0;
312
313 if (!chip->sub_reg_offsets) {
314 reg = data->get_irq_reg(data, chip->status_base, b);
315 ret = regmap_read(map, reg, &data->status_buf[b]);
316 } else {
317 /*
318 * Note we can't use ->get_irq_reg() here because the offsets
319 * in 'subreg' are *not* interchangeable with indices.
320 */
321 subreg = &chip->sub_reg_offsets[b];
322 for (i = 0; i < subreg->num_regs; i++) {
323 unsigned int offset = subreg->offset[i];
324 unsigned int index = offset / map->reg_stride;
325
326 ret = regmap_read(map, chip->status_base + offset,
327 &data->status_buf[index]);
328 if (ret)
329 break;
330 }
331 }
332 return ret;
333}
334
335static irqreturn_t regmap_irq_thread(int irq, void *d)
336{
337 struct regmap_irq_chip_data *data = d;
338 const struct regmap_irq_chip *chip = data->chip;
339 struct regmap *map = data->map;
340 int ret, i;
341 bool handled = false;
342 u32 reg;
343
344 if (chip->handle_pre_irq)
345 chip->handle_pre_irq(chip->irq_drv_data);
346
347 if (chip->runtime_pm) {
348 ret = pm_runtime_get_sync(map->dev);
349 if (ret < 0) {
350 dev_err(map->dev, "IRQ thread failed to resume: %d\n",
351 ret);
352 goto exit;
353 }
354 }
355
356 /*
357 * Read only registers with active IRQs if the chip has 'main status
358 * register'. Else read in the statuses, using a single bulk read if
359 * possible in order to reduce the I/O overheads.
360 */
361
362 if (chip->no_status) {
363 /* no status register so default to all active */
364 memset32(data->status_buf, GENMASK(31, 0), chip->num_regs);
365 } else if (chip->num_main_regs) {
366 unsigned int max_main_bits;
367 unsigned long size;
368
369 size = chip->num_regs * sizeof(unsigned int);
370
371 max_main_bits = (chip->num_main_status_bits) ?
372 chip->num_main_status_bits : chip->num_regs;
373 /* Clear the status buf as we don't read all status regs */
374 memset(data->status_buf, 0, size);
375
376 /* We could support bulk read for main status registers
377 * but I don't expect to see devices with really many main
378 * status registers so let's only support single reads for the
379 * sake of simplicity. and add bulk reads only if needed
380 */
381 for (i = 0; i < chip->num_main_regs; i++) {
382 reg = data->get_irq_reg(data, chip->main_status, i);
383 ret = regmap_read(map, reg, &data->main_status_buf[i]);
384 if (ret) {
385 dev_err(map->dev,
386 "Failed to read IRQ status %d\n",
387 ret);
388 goto exit;
389 }
390 }
391
392 /* Read sub registers with active IRQs */
393 for (i = 0; i < chip->num_main_regs; i++) {
394 unsigned int b;
395 const unsigned long mreg = data->main_status_buf[i];
396
397 for_each_set_bit(b, &mreg, map->format.val_bytes * 8) {
398 if (i * map->format.val_bytes * 8 + b >
399 max_main_bits)
400 break;
401 ret = read_sub_irq_data(data, b);
402
403 if (ret != 0) {
404 dev_err(map->dev,
405 "Failed to read IRQ status %d\n",
406 ret);
407 goto exit;
408 }
409 }
410
411 }
412 } else if (regmap_irq_can_bulk_read_status(data)) {
413
414 u8 *buf8 = data->status_reg_buf;
415 u16 *buf16 = data->status_reg_buf;
416 u32 *buf32 = data->status_reg_buf;
417
418 BUG_ON(!data->status_reg_buf);
419
420 ret = regmap_bulk_read(map, chip->status_base,
421 data->status_reg_buf,
422 chip->num_regs);
423 if (ret != 0) {
424 dev_err(map->dev, "Failed to read IRQ status: %d\n",
425 ret);
426 goto exit;
427 }
428
429 for (i = 0; i < data->chip->num_regs; i++) {
430 switch (map->format.val_bytes) {
431 case 1:
432 data->status_buf[i] = buf8[i];
433 break;
434 case 2:
435 data->status_buf[i] = buf16[i];
436 break;
437 case 4:
438 data->status_buf[i] = buf32[i];
439 break;
440 default:
441 BUG();
442 goto exit;
443 }
444 }
445
446 } else {
447 for (i = 0; i < data->chip->num_regs; i++) {
448 unsigned int reg = data->get_irq_reg(data,
449 data->chip->status_base, i);
450 ret = regmap_read(map, reg, &data->status_buf[i]);
451
452 if (ret != 0) {
453 dev_err(map->dev,
454 "Failed to read IRQ status: %d\n",
455 ret);
456 goto exit;
457 }
458 }
459 }
460
461 if (chip->status_invert)
462 for (i = 0; i < data->chip->num_regs; i++)
463 data->status_buf[i] = ~data->status_buf[i];
464
465 /*
466 * Ignore masked IRQs and ack if we need to; we ack early so
467 * there is no race between handling and acknowledging the
468 * interrupt. We assume that typically few of the interrupts
469 * will fire simultaneously so don't worry about overhead from
470 * doing a write per register.
471 */
472 for (i = 0; i < data->chip->num_regs; i++) {
473 data->status_buf[i] &= ~data->mask_buf[i];
474
475 if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
476 reg = data->get_irq_reg(data, data->chip->ack_base, i);
477
478 if (chip->ack_invert)
479 ret = regmap_write(map, reg,
480 ~data->status_buf[i]);
481 else
482 ret = regmap_write(map, reg,
483 data->status_buf[i]);
484 if (chip->clear_ack) {
485 if (chip->ack_invert && !ret)
486 ret = regmap_write(map, reg, UINT_MAX);
487 else if (!ret)
488 ret = regmap_write(map, reg, 0);
489 }
490 if (ret != 0)
491 dev_err(map->dev, "Failed to ack 0x%x: %d\n",
492 reg, ret);
493 }
494 }
495
496 for (i = 0; i < chip->num_irqs; i++) {
497 if (data->status_buf[chip->irqs[i].reg_offset /
498 map->reg_stride] & chip->irqs[i].mask) {
499 handle_nested_irq(irq_find_mapping(data->domain, i));
500 handled = true;
501 }
502 }
503
504exit:
505 if (chip->handle_post_irq)
506 chip->handle_post_irq(chip->irq_drv_data);
507
508 if (chip->runtime_pm)
509 pm_runtime_put(map->dev);
510
511 if (handled)
512 return IRQ_HANDLED;
513 else
514 return IRQ_NONE;
515}
516
517static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
518 irq_hw_number_t hw)
519{
520 struct regmap_irq_chip_data *data = h->host_data;
521
522 irq_set_chip_data(virq, data);
523 irq_set_chip(virq, &data->irq_chip);
524 irq_set_nested_thread(virq, 1);
525 irq_set_parent(virq, data->irq);
526 irq_set_noprobe(virq);
527
528 return 0;
529}
530
531static const struct irq_domain_ops regmap_domain_ops = {
532 .map = regmap_irq_map,
533 .xlate = irq_domain_xlate_onetwocell,
534};
535
536/**
537 * regmap_irq_get_irq_reg_linear() - Linear IRQ register mapping callback.
538 * @data: Data for the &struct regmap_irq_chip
539 * @base: Base register
540 * @index: Register index
541 *
542 * Returns the register address corresponding to the given @base and @index
543 * by the formula ``base + index * regmap_stride * irq_reg_stride``.
544 */
545unsigned int regmap_irq_get_irq_reg_linear(struct regmap_irq_chip_data *data,
546 unsigned int base, int index)
547{
548 struct regmap *map = data->map;
549
550 return base + index * map->reg_stride * data->irq_reg_stride;
551}
552EXPORT_SYMBOL_GPL(regmap_irq_get_irq_reg_linear);
553
554/**
555 * regmap_irq_set_type_config_simple() - Simple IRQ type configuration callback.
556 * @buf: Buffer containing configuration register values, this is a 2D array of
557 * `num_config_bases` rows, each of `num_config_regs` elements.
558 * @type: The requested IRQ type.
559 * @irq_data: The IRQ being configured.
560 * @idx: Index of the irq's config registers within each array `buf[i]`
561 * @irq_drv_data: Driver specific IRQ data
562 *
563 * This is a &struct regmap_irq_chip->set_type_config callback suitable for
564 * chips with one config register. Register values are updated according to
565 * the &struct regmap_irq_type data associated with an IRQ.
566 */
567int regmap_irq_set_type_config_simple(unsigned int **buf, unsigned int type,
568 const struct regmap_irq *irq_data,
569 int idx, void *irq_drv_data)
570{
571 const struct regmap_irq_type *t = &irq_data->type;
572
573 if (t->type_reg_mask)
574 buf[0][idx] &= ~t->type_reg_mask;
575 else
576 buf[0][idx] &= ~(t->type_falling_val |
577 t->type_rising_val |
578 t->type_level_low_val |
579 t->type_level_high_val);
580
581 switch (type) {
582 case IRQ_TYPE_EDGE_FALLING:
583 buf[0][idx] |= t->type_falling_val;
584 break;
585
586 case IRQ_TYPE_EDGE_RISING:
587 buf[0][idx] |= t->type_rising_val;
588 break;
589
590 case IRQ_TYPE_EDGE_BOTH:
591 buf[0][idx] |= (t->type_falling_val |
592 t->type_rising_val);
593 break;
594
595 case IRQ_TYPE_LEVEL_HIGH:
596 buf[0][idx] |= t->type_level_high_val;
597 break;
598
599 case IRQ_TYPE_LEVEL_LOW:
600 buf[0][idx] |= t->type_level_low_val;
601 break;
602
603 default:
604 return -EINVAL;
605 }
606
607 return 0;
608}
609EXPORT_SYMBOL_GPL(regmap_irq_set_type_config_simple);
610
611/**
612 * regmap_add_irq_chip_fwnode() - Use standard regmap IRQ controller handling
613 *
614 * @fwnode: The firmware node where the IRQ domain should be added to.
615 * @map: The regmap for the device.
616 * @irq: The IRQ the device uses to signal interrupts.
617 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
618 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
619 * @chip: Configuration for the interrupt controller.
620 * @data: Runtime data structure for the controller, allocated on success.
621 *
622 * Returns 0 on success or an errno on failure.
623 *
624 * In order for this to be efficient the chip really should use a
625 * register cache. The chip driver is responsible for restoring the
626 * register values used by the IRQ controller over suspend and resume.
627 */
628int regmap_add_irq_chip_fwnode(struct fwnode_handle *fwnode,
629 struct regmap *map, int irq,
630 int irq_flags, int irq_base,
631 const struct regmap_irq_chip *chip,
632 struct regmap_irq_chip_data **data)
633{
634 struct regmap_irq_chip_data *d;
635 int i;
636 int ret = -ENOMEM;
637 u32 reg;
638
639 if (chip->num_regs <= 0)
640 return -EINVAL;
641
642 if (chip->clear_on_unmask && (chip->ack_base || chip->use_ack))
643 return -EINVAL;
644
645 if (chip->mask_base && chip->unmask_base && !chip->mask_unmask_non_inverted)
646 return -EINVAL;
647
648 for (i = 0; i < chip->num_irqs; i++) {
649 if (chip->irqs[i].reg_offset % map->reg_stride)
650 return -EINVAL;
651 if (chip->irqs[i].reg_offset / map->reg_stride >=
652 chip->num_regs)
653 return -EINVAL;
654 }
655
656 if (irq_base) {
657 irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
658 if (irq_base < 0) {
659 dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
660 irq_base);
661 return irq_base;
662 }
663 }
664
665 d = kzalloc(sizeof(*d), GFP_KERNEL);
666 if (!d)
667 return -ENOMEM;
668
669 if (chip->num_main_regs) {
670 d->main_status_buf = kcalloc(chip->num_main_regs,
671 sizeof(*d->main_status_buf),
672 GFP_KERNEL);
673
674 if (!d->main_status_buf)
675 goto err_alloc;
676 }
677
678 d->status_buf = kcalloc(chip->num_regs, sizeof(*d->status_buf),
679 GFP_KERNEL);
680 if (!d->status_buf)
681 goto err_alloc;
682
683 d->mask_buf = kcalloc(chip->num_regs, sizeof(*d->mask_buf),
684 GFP_KERNEL);
685 if (!d->mask_buf)
686 goto err_alloc;
687
688 d->mask_buf_def = kcalloc(chip->num_regs, sizeof(*d->mask_buf_def),
689 GFP_KERNEL);
690 if (!d->mask_buf_def)
691 goto err_alloc;
692
693 if (chip->wake_base) {
694 d->wake_buf = kcalloc(chip->num_regs, sizeof(*d->wake_buf),
695 GFP_KERNEL);
696 if (!d->wake_buf)
697 goto err_alloc;
698 }
699
700 if (chip->type_in_mask) {
701 d->type_buf_def = kcalloc(chip->num_regs,
702 sizeof(*d->type_buf_def), GFP_KERNEL);
703 if (!d->type_buf_def)
704 goto err_alloc;
705
706 d->type_buf = kcalloc(chip->num_regs, sizeof(*d->type_buf), GFP_KERNEL);
707 if (!d->type_buf)
708 goto err_alloc;
709 }
710
711 if (chip->num_config_bases && chip->num_config_regs) {
712 /*
713 * Create config_buf[num_config_bases][num_config_regs]
714 */
715 d->config_buf = kcalloc(chip->num_config_bases,
716 sizeof(*d->config_buf), GFP_KERNEL);
717 if (!d->config_buf)
718 goto err_alloc;
719
720 for (i = 0; i < chip->num_config_bases; i++) {
721 d->config_buf[i] = kcalloc(chip->num_config_regs,
722 sizeof(**d->config_buf),
723 GFP_KERNEL);
724 if (!d->config_buf[i])
725 goto err_alloc;
726 }
727 }
728
729 d->irq_chip = regmap_irq_chip;
730 d->irq_chip.name = chip->name;
731 d->irq = irq;
732 d->map = map;
733 d->chip = chip;
734 d->irq_base = irq_base;
735
736 if (chip->irq_reg_stride)
737 d->irq_reg_stride = chip->irq_reg_stride;
738 else
739 d->irq_reg_stride = 1;
740
741 if (chip->get_irq_reg)
742 d->get_irq_reg = chip->get_irq_reg;
743 else
744 d->get_irq_reg = regmap_irq_get_irq_reg_linear;
745
746 if (regmap_irq_can_bulk_read_status(d)) {
747 d->status_reg_buf = kmalloc_array(chip->num_regs,
748 map->format.val_bytes,
749 GFP_KERNEL);
750 if (!d->status_reg_buf)
751 goto err_alloc;
752 }
753
754 mutex_init(&d->lock);
755
756 for (i = 0; i < chip->num_irqs; i++)
757 d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
758 |= chip->irqs[i].mask;
759
760 /* Mask all the interrupts by default */
761 for (i = 0; i < chip->num_regs; i++) {
762 d->mask_buf[i] = d->mask_buf_def[i];
763
764 if (chip->handle_mask_sync) {
765 ret = chip->handle_mask_sync(i, d->mask_buf_def[i],
766 d->mask_buf[i],
767 chip->irq_drv_data);
768 if (ret)
769 goto err_alloc;
770 }
771
772 if (chip->mask_base && !chip->handle_mask_sync) {
773 reg = d->get_irq_reg(d, chip->mask_base, i);
774 ret = regmap_update_bits(d->map, reg,
775 d->mask_buf_def[i],
776 d->mask_buf[i]);
777 if (ret) {
778 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
779 reg, ret);
780 goto err_alloc;
781 }
782 }
783
784 if (chip->unmask_base && !chip->handle_mask_sync) {
785 reg = d->get_irq_reg(d, chip->unmask_base, i);
786 ret = regmap_update_bits(d->map, reg,
787 d->mask_buf_def[i], ~d->mask_buf[i]);
788 if (ret) {
789 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
790 reg, ret);
791 goto err_alloc;
792 }
793 }
794
795 if (!chip->init_ack_masked)
796 continue;
797
798 /* Ack masked but set interrupts */
799 if (d->chip->no_status) {
800 /* no status register so default to all active */
801 d->status_buf[i] = GENMASK(31, 0);
802 } else {
803 reg = d->get_irq_reg(d, d->chip->status_base, i);
804 ret = regmap_read(map, reg, &d->status_buf[i]);
805 if (ret != 0) {
806 dev_err(map->dev, "Failed to read IRQ status: %d\n",
807 ret);
808 goto err_alloc;
809 }
810 }
811
812 if (chip->status_invert)
813 d->status_buf[i] = ~d->status_buf[i];
814
815 if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
816 reg = d->get_irq_reg(d, d->chip->ack_base, i);
817 if (chip->ack_invert)
818 ret = regmap_write(map, reg,
819 ~(d->status_buf[i] & d->mask_buf[i]));
820 else
821 ret = regmap_write(map, reg,
822 d->status_buf[i] & d->mask_buf[i]);
823 if (chip->clear_ack) {
824 if (chip->ack_invert && !ret)
825 ret = regmap_write(map, reg, UINT_MAX);
826 else if (!ret)
827 ret = regmap_write(map, reg, 0);
828 }
829 if (ret != 0) {
830 dev_err(map->dev, "Failed to ack 0x%x: %d\n",
831 reg, ret);
832 goto err_alloc;
833 }
834 }
835 }
836
837 /* Wake is disabled by default */
838 if (d->wake_buf) {
839 for (i = 0; i < chip->num_regs; i++) {
840 d->wake_buf[i] = d->mask_buf_def[i];
841 reg = d->get_irq_reg(d, d->chip->wake_base, i);
842
843 if (chip->wake_invert)
844 ret = regmap_update_bits(d->map, reg,
845 d->mask_buf_def[i],
846 0);
847 else
848 ret = regmap_update_bits(d->map, reg,
849 d->mask_buf_def[i],
850 d->wake_buf[i]);
851 if (ret != 0) {
852 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
853 reg, ret);
854 goto err_alloc;
855 }
856 }
857 }
858
859 if (irq_base)
860 d->domain = irq_domain_create_legacy(fwnode, chip->num_irqs,
861 irq_base, 0,
862 ®map_domain_ops, d);
863 else
864 d->domain = irq_domain_create_linear(fwnode, chip->num_irqs,
865 ®map_domain_ops, d);
866 if (!d->domain) {
867 dev_err(map->dev, "Failed to create IRQ domain\n");
868 ret = -ENOMEM;
869 goto err_alloc;
870 }
871
872 ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
873 irq_flags | IRQF_ONESHOT,
874 chip->name, d);
875 if (ret != 0) {
876 dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
877 irq, chip->name, ret);
878 goto err_domain;
879 }
880
881 *data = d;
882
883 return 0;
884
885err_domain:
886 /* Should really dispose of the domain but... */
887err_alloc:
888 kfree(d->type_buf);
889 kfree(d->type_buf_def);
890 kfree(d->wake_buf);
891 kfree(d->mask_buf_def);
892 kfree(d->mask_buf);
893 kfree(d->status_buf);
894 kfree(d->status_reg_buf);
895 if (d->config_buf) {
896 for (i = 0; i < chip->num_config_bases; i++)
897 kfree(d->config_buf[i]);
898 kfree(d->config_buf);
899 }
900 kfree(d);
901 return ret;
902}
903EXPORT_SYMBOL_GPL(regmap_add_irq_chip_fwnode);
904
905/**
906 * regmap_add_irq_chip() - Use standard regmap IRQ controller handling
907 *
908 * @map: The regmap for the device.
909 * @irq: The IRQ the device uses to signal interrupts.
910 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
911 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
912 * @chip: Configuration for the interrupt controller.
913 * @data: Runtime data structure for the controller, allocated on success.
914 *
915 * Returns 0 on success or an errno on failure.
916 *
917 * This is the same as regmap_add_irq_chip_fwnode, except that the firmware
918 * node of the regmap is used.
919 */
920int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
921 int irq_base, const struct regmap_irq_chip *chip,
922 struct regmap_irq_chip_data **data)
923{
924 return regmap_add_irq_chip_fwnode(dev_fwnode(map->dev), map, irq,
925 irq_flags, irq_base, chip, data);
926}
927EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
928
929/**
930 * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip
931 *
932 * @irq: Primary IRQ for the device
933 * @d: ®map_irq_chip_data allocated by regmap_add_irq_chip()
934 *
935 * This function also disposes of all mapped IRQs on the chip.
936 */
937void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
938{
939 unsigned int virq;
940 int i, hwirq;
941
942 if (!d)
943 return;
944
945 free_irq(irq, d);
946
947 /* Dispose all virtual irq from irq domain before removing it */
948 for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) {
949 /* Ignore hwirq if holes in the IRQ list */
950 if (!d->chip->irqs[hwirq].mask)
951 continue;
952
953 /*
954 * Find the virtual irq of hwirq on chip and if it is
955 * there then dispose it
956 */
957 virq = irq_find_mapping(d->domain, hwirq);
958 if (virq)
959 irq_dispose_mapping(virq);
960 }
961
962 irq_domain_remove(d->domain);
963 kfree(d->type_buf);
964 kfree(d->type_buf_def);
965 kfree(d->wake_buf);
966 kfree(d->mask_buf_def);
967 kfree(d->mask_buf);
968 kfree(d->status_reg_buf);
969 kfree(d->status_buf);
970 if (d->config_buf) {
971 for (i = 0; i < d->chip->num_config_bases; i++)
972 kfree(d->config_buf[i]);
973 kfree(d->config_buf);
974 }
975 kfree(d);
976}
977EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
978
979static void devm_regmap_irq_chip_release(struct device *dev, void *res)
980{
981 struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res;
982
983 regmap_del_irq_chip(d->irq, d);
984}
985
986static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data)
987
988{
989 struct regmap_irq_chip_data **r = res;
990
991 if (!r || !*r) {
992 WARN_ON(!r || !*r);
993 return 0;
994 }
995 return *r == data;
996}
997
998/**
999 * devm_regmap_add_irq_chip_fwnode() - Resource managed regmap_add_irq_chip_fwnode()
1000 *
1001 * @dev: The device pointer on which irq_chip belongs to.
1002 * @fwnode: The firmware node where the IRQ domain should be added to.
1003 * @map: The regmap for the device.
1004 * @irq: The IRQ the device uses to signal interrupts
1005 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1006 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1007 * @chip: Configuration for the interrupt controller.
1008 * @data: Runtime data structure for the controller, allocated on success
1009 *
1010 * Returns 0 on success or an errno on failure.
1011 *
1012 * The ®map_irq_chip_data will be automatically released when the device is
1013 * unbound.
1014 */
1015int devm_regmap_add_irq_chip_fwnode(struct device *dev,
1016 struct fwnode_handle *fwnode,
1017 struct regmap *map, int irq,
1018 int irq_flags, int irq_base,
1019 const struct regmap_irq_chip *chip,
1020 struct regmap_irq_chip_data **data)
1021{
1022 struct regmap_irq_chip_data **ptr, *d;
1023 int ret;
1024
1025 ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr),
1026 GFP_KERNEL);
1027 if (!ptr)
1028 return -ENOMEM;
1029
1030 ret = regmap_add_irq_chip_fwnode(fwnode, map, irq, irq_flags, irq_base,
1031 chip, &d);
1032 if (ret < 0) {
1033 devres_free(ptr);
1034 return ret;
1035 }
1036
1037 *ptr = d;
1038 devres_add(dev, ptr);
1039 *data = d;
1040 return 0;
1041}
1042EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip_fwnode);
1043
1044/**
1045 * devm_regmap_add_irq_chip() - Resource managed regmap_add_irq_chip()
1046 *
1047 * @dev: The device pointer on which irq_chip belongs to.
1048 * @map: The regmap for the device.
1049 * @irq: The IRQ the device uses to signal interrupts
1050 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1051 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1052 * @chip: Configuration for the interrupt controller.
1053 * @data: Runtime data structure for the controller, allocated on success
1054 *
1055 * Returns 0 on success or an errno on failure.
1056 *
1057 * The ®map_irq_chip_data will be automatically released when the device is
1058 * unbound.
1059 */
1060int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq,
1061 int irq_flags, int irq_base,
1062 const struct regmap_irq_chip *chip,
1063 struct regmap_irq_chip_data **data)
1064{
1065 return devm_regmap_add_irq_chip_fwnode(dev, dev_fwnode(map->dev), map,
1066 irq, irq_flags, irq_base, chip,
1067 data);
1068}
1069EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip);
1070
1071/**
1072 * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip()
1073 *
1074 * @dev: Device for which the resource was allocated.
1075 * @irq: Primary IRQ for the device.
1076 * @data: ®map_irq_chip_data allocated by regmap_add_irq_chip().
1077 *
1078 * A resource managed version of regmap_del_irq_chip().
1079 */
1080void devm_regmap_del_irq_chip(struct device *dev, int irq,
1081 struct regmap_irq_chip_data *data)
1082{
1083 int rc;
1084
1085 WARN_ON(irq != data->irq);
1086 rc = devres_release(dev, devm_regmap_irq_chip_release,
1087 devm_regmap_irq_chip_match, data);
1088
1089 if (rc != 0)
1090 WARN_ON(rc);
1091}
1092EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip);
1093
1094/**
1095 * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip
1096 *
1097 * @data: regmap irq controller to operate on.
1098 *
1099 * Useful for drivers to request their own IRQs.
1100 */
1101int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
1102{
1103 WARN_ON(!data->irq_base);
1104 return data->irq_base;
1105}
1106EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
1107
1108/**
1109 * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ
1110 *
1111 * @data: regmap irq controller to operate on.
1112 * @irq: index of the interrupt requested in the chip IRQs.
1113 *
1114 * Useful for drivers to request their own IRQs.
1115 */
1116int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
1117{
1118 /* Handle holes in the IRQ list */
1119 if (!data->chip->irqs[irq].mask)
1120 return -EINVAL;
1121
1122 return irq_create_mapping(data->domain, irq);
1123}
1124EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
1125
1126/**
1127 * regmap_irq_get_domain() - Retrieve the irq_domain for the chip
1128 *
1129 * @data: regmap_irq controller to operate on.
1130 *
1131 * Useful for drivers to request their own IRQs and for integration
1132 * with subsystems. For ease of integration NULL is accepted as a
1133 * domain, allowing devices to just call this even if no domain is
1134 * allocated.
1135 */
1136struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
1137{
1138 if (data)
1139 return data->domain;
1140 else
1141 return NULL;
1142}
1143EXPORT_SYMBOL_GPL(regmap_irq_get_domain);
1// SPDX-License-Identifier: GPL-2.0
2//
3// regmap based irq_chip
4//
5// Copyright 2011 Wolfson Microelectronics plc
6//
7// Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8
9#include <linux/device.h>
10#include <linux/export.h>
11#include <linux/interrupt.h>
12#include <linux/irq.h>
13#include <linux/irqdomain.h>
14#include <linux/pm_runtime.h>
15#include <linux/regmap.h>
16#include <linux/slab.h>
17
18#include "internal.h"
19
20struct regmap_irq_chip_data {
21 struct mutex lock;
22 struct irq_chip irq_chip;
23
24 struct regmap *map;
25 const struct regmap_irq_chip *chip;
26
27 int irq_base;
28 struct irq_domain *domain;
29
30 int irq;
31 int wake_count;
32
33 void *status_reg_buf;
34 unsigned int *main_status_buf;
35 unsigned int *status_buf;
36 unsigned int *mask_buf;
37 unsigned int *mask_buf_def;
38 unsigned int *wake_buf;
39 unsigned int *type_buf;
40 unsigned int *type_buf_def;
41
42 unsigned int irq_reg_stride;
43 unsigned int type_reg_stride;
44
45 bool clear_status:1;
46};
47
48static inline const
49struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
50 int irq)
51{
52 return &data->chip->irqs[irq];
53}
54
55static void regmap_irq_lock(struct irq_data *data)
56{
57 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
58
59 mutex_lock(&d->lock);
60}
61
62static int regmap_irq_update_bits(struct regmap_irq_chip_data *d,
63 unsigned int reg, unsigned int mask,
64 unsigned int val)
65{
66 if (d->chip->mask_writeonly)
67 return regmap_write_bits(d->map, reg, mask, val);
68 else
69 return regmap_update_bits(d->map, reg, mask, val);
70}
71
72static void regmap_irq_sync_unlock(struct irq_data *data)
73{
74 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
75 struct regmap *map = d->map;
76 int i, ret;
77 u32 reg;
78 u32 unmask_offset;
79 u32 val;
80
81 if (d->chip->runtime_pm) {
82 ret = pm_runtime_get_sync(map->dev);
83 if (ret < 0)
84 dev_err(map->dev, "IRQ sync failed to resume: %d\n",
85 ret);
86 }
87
88 if (d->clear_status) {
89 for (i = 0; i < d->chip->num_regs; i++) {
90 reg = d->chip->status_base +
91 (i * map->reg_stride * d->irq_reg_stride);
92
93 ret = regmap_read(map, reg, &val);
94 if (ret)
95 dev_err(d->map->dev,
96 "Failed to clear the interrupt status bits\n");
97 }
98
99 d->clear_status = false;
100 }
101
102 /*
103 * If there's been a change in the mask write it back to the
104 * hardware. We rely on the use of the regmap core cache to
105 * suppress pointless writes.
106 */
107 for (i = 0; i < d->chip->num_regs; i++) {
108 if (!d->chip->mask_base)
109 continue;
110
111 reg = d->chip->mask_base +
112 (i * map->reg_stride * d->irq_reg_stride);
113 if (d->chip->mask_invert) {
114 ret = regmap_irq_update_bits(d, reg,
115 d->mask_buf_def[i], ~d->mask_buf[i]);
116 } else if (d->chip->unmask_base) {
117 /* set mask with mask_base register */
118 ret = regmap_irq_update_bits(d, reg,
119 d->mask_buf_def[i], ~d->mask_buf[i]);
120 if (ret < 0)
121 dev_err(d->map->dev,
122 "Failed to sync unmasks in %x\n",
123 reg);
124 unmask_offset = d->chip->unmask_base -
125 d->chip->mask_base;
126 /* clear mask with unmask_base register */
127 ret = regmap_irq_update_bits(d,
128 reg + unmask_offset,
129 d->mask_buf_def[i],
130 d->mask_buf[i]);
131 } else {
132 ret = regmap_irq_update_bits(d, reg,
133 d->mask_buf_def[i], d->mask_buf[i]);
134 }
135 if (ret != 0)
136 dev_err(d->map->dev, "Failed to sync masks in %x\n",
137 reg);
138
139 reg = d->chip->wake_base +
140 (i * map->reg_stride * d->irq_reg_stride);
141 if (d->wake_buf) {
142 if (d->chip->wake_invert)
143 ret = regmap_irq_update_bits(d, reg,
144 d->mask_buf_def[i],
145 ~d->wake_buf[i]);
146 else
147 ret = regmap_irq_update_bits(d, reg,
148 d->mask_buf_def[i],
149 d->wake_buf[i]);
150 if (ret != 0)
151 dev_err(d->map->dev,
152 "Failed to sync wakes in %x: %d\n",
153 reg, ret);
154 }
155
156 if (!d->chip->init_ack_masked)
157 continue;
158 /*
159 * Ack all the masked interrupts unconditionally,
160 * OR if there is masked interrupt which hasn't been Acked,
161 * it'll be ignored in irq handler, then may introduce irq storm
162 */
163 if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
164 reg = d->chip->ack_base +
165 (i * map->reg_stride * d->irq_reg_stride);
166 /* some chips ack by write 0 */
167 if (d->chip->ack_invert)
168 ret = regmap_write(map, reg, ~d->mask_buf[i]);
169 else
170 ret = regmap_write(map, reg, d->mask_buf[i]);
171 if (ret != 0)
172 dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
173 reg, ret);
174 }
175 }
176
177 /* Don't update the type bits if we're using mask bits for irq type. */
178 if (!d->chip->type_in_mask) {
179 for (i = 0; i < d->chip->num_type_reg; i++) {
180 if (!d->type_buf_def[i])
181 continue;
182 reg = d->chip->type_base +
183 (i * map->reg_stride * d->type_reg_stride);
184 if (d->chip->type_invert)
185 ret = regmap_irq_update_bits(d, reg,
186 d->type_buf_def[i], ~d->type_buf[i]);
187 else
188 ret = regmap_irq_update_bits(d, reg,
189 d->type_buf_def[i], d->type_buf[i]);
190 if (ret != 0)
191 dev_err(d->map->dev, "Failed to sync type in %x\n",
192 reg);
193 }
194 }
195
196 if (d->chip->runtime_pm)
197 pm_runtime_put(map->dev);
198
199 /* If we've changed our wakeup count propagate it to the parent */
200 if (d->wake_count < 0)
201 for (i = d->wake_count; i < 0; i++)
202 irq_set_irq_wake(d->irq, 0);
203 else if (d->wake_count > 0)
204 for (i = 0; i < d->wake_count; i++)
205 irq_set_irq_wake(d->irq, 1);
206
207 d->wake_count = 0;
208
209 mutex_unlock(&d->lock);
210}
211
212static void regmap_irq_enable(struct irq_data *data)
213{
214 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
215 struct regmap *map = d->map;
216 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
217 unsigned int mask, type;
218
219 type = irq_data->type.type_falling_val | irq_data->type.type_rising_val;
220
221 /*
222 * The type_in_mask flag means that the underlying hardware uses
223 * separate mask bits for rising and falling edge interrupts, but
224 * we want to make them into a single virtual interrupt with
225 * configurable edge.
226 *
227 * If the interrupt we're enabling defines the falling or rising
228 * masks then instead of using the regular mask bits for this
229 * interrupt, use the value previously written to the type buffer
230 * at the corresponding offset in regmap_irq_set_type().
231 */
232 if (d->chip->type_in_mask && type)
233 mask = d->type_buf[irq_data->reg_offset / map->reg_stride];
234 else
235 mask = irq_data->mask;
236
237 if (d->chip->clear_on_unmask)
238 d->clear_status = true;
239
240 d->mask_buf[irq_data->reg_offset / map->reg_stride] &= ~mask;
241}
242
243static void regmap_irq_disable(struct irq_data *data)
244{
245 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
246 struct regmap *map = d->map;
247 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
248
249 d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
250}
251
252static int regmap_irq_set_type(struct irq_data *data, unsigned int type)
253{
254 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
255 struct regmap *map = d->map;
256 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
257 int reg;
258 const struct regmap_irq_type *t = &irq_data->type;
259
260 if ((t->types_supported & type) != type)
261 return 0;
262
263 reg = t->type_reg_offset / map->reg_stride;
264
265 if (t->type_reg_mask)
266 d->type_buf[reg] &= ~t->type_reg_mask;
267 else
268 d->type_buf[reg] &= ~(t->type_falling_val |
269 t->type_rising_val |
270 t->type_level_low_val |
271 t->type_level_high_val);
272 switch (type) {
273 case IRQ_TYPE_EDGE_FALLING:
274 d->type_buf[reg] |= t->type_falling_val;
275 break;
276
277 case IRQ_TYPE_EDGE_RISING:
278 d->type_buf[reg] |= t->type_rising_val;
279 break;
280
281 case IRQ_TYPE_EDGE_BOTH:
282 d->type_buf[reg] |= (t->type_falling_val |
283 t->type_rising_val);
284 break;
285
286 case IRQ_TYPE_LEVEL_HIGH:
287 d->type_buf[reg] |= t->type_level_high_val;
288 break;
289
290 case IRQ_TYPE_LEVEL_LOW:
291 d->type_buf[reg] |= t->type_level_low_val;
292 break;
293 default:
294 return -EINVAL;
295 }
296 return 0;
297}
298
299static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
300{
301 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
302 struct regmap *map = d->map;
303 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
304
305 if (on) {
306 if (d->wake_buf)
307 d->wake_buf[irq_data->reg_offset / map->reg_stride]
308 &= ~irq_data->mask;
309 d->wake_count++;
310 } else {
311 if (d->wake_buf)
312 d->wake_buf[irq_data->reg_offset / map->reg_stride]
313 |= irq_data->mask;
314 d->wake_count--;
315 }
316
317 return 0;
318}
319
320static const struct irq_chip regmap_irq_chip = {
321 .irq_bus_lock = regmap_irq_lock,
322 .irq_bus_sync_unlock = regmap_irq_sync_unlock,
323 .irq_disable = regmap_irq_disable,
324 .irq_enable = regmap_irq_enable,
325 .irq_set_type = regmap_irq_set_type,
326 .irq_set_wake = regmap_irq_set_wake,
327};
328
329static inline int read_sub_irq_data(struct regmap_irq_chip_data *data,
330 unsigned int b)
331{
332 const struct regmap_irq_chip *chip = data->chip;
333 struct regmap *map = data->map;
334 struct regmap_irq_sub_irq_map *subreg;
335 int i, ret = 0;
336
337 if (!chip->sub_reg_offsets) {
338 /* Assume linear mapping */
339 ret = regmap_read(map, chip->status_base +
340 (b * map->reg_stride * data->irq_reg_stride),
341 &data->status_buf[b]);
342 } else {
343 subreg = &chip->sub_reg_offsets[b];
344 for (i = 0; i < subreg->num_regs; i++) {
345 unsigned int offset = subreg->offset[i];
346
347 ret = regmap_read(map, chip->status_base + offset,
348 &data->status_buf[offset]);
349 if (ret)
350 break;
351 }
352 }
353 return ret;
354}
355
356static irqreturn_t regmap_irq_thread(int irq, void *d)
357{
358 struct regmap_irq_chip_data *data = d;
359 const struct regmap_irq_chip *chip = data->chip;
360 struct regmap *map = data->map;
361 int ret, i;
362 bool handled = false;
363 u32 reg;
364
365 if (chip->handle_pre_irq)
366 chip->handle_pre_irq(chip->irq_drv_data);
367
368 if (chip->runtime_pm) {
369 ret = pm_runtime_get_sync(map->dev);
370 if (ret < 0) {
371 dev_err(map->dev, "IRQ thread failed to resume: %d\n",
372 ret);
373 goto exit;
374 }
375 }
376
377 /*
378 * Read only registers with active IRQs if the chip has 'main status
379 * register'. Else read in the statuses, using a single bulk read if
380 * possible in order to reduce the I/O overheads.
381 */
382
383 if (chip->num_main_regs) {
384 unsigned int max_main_bits;
385 unsigned long size;
386
387 size = chip->num_regs * sizeof(unsigned int);
388
389 max_main_bits = (chip->num_main_status_bits) ?
390 chip->num_main_status_bits : chip->num_regs;
391 /* Clear the status buf as we don't read all status regs */
392 memset(data->status_buf, 0, size);
393
394 /* We could support bulk read for main status registers
395 * but I don't expect to see devices with really many main
396 * status registers so let's only support single reads for the
397 * sake of simplicity. and add bulk reads only if needed
398 */
399 for (i = 0; i < chip->num_main_regs; i++) {
400 ret = regmap_read(map, chip->main_status +
401 (i * map->reg_stride
402 * data->irq_reg_stride),
403 &data->main_status_buf[i]);
404 if (ret) {
405 dev_err(map->dev,
406 "Failed to read IRQ status %d\n",
407 ret);
408 goto exit;
409 }
410 }
411
412 /* Read sub registers with active IRQs */
413 for (i = 0; i < chip->num_main_regs; i++) {
414 unsigned int b;
415 const unsigned long mreg = data->main_status_buf[i];
416
417 for_each_set_bit(b, &mreg, map->format.val_bytes * 8) {
418 if (i * map->format.val_bytes * 8 + b >
419 max_main_bits)
420 break;
421 ret = read_sub_irq_data(data, b);
422
423 if (ret != 0) {
424 dev_err(map->dev,
425 "Failed to read IRQ status %d\n",
426 ret);
427 goto exit;
428 }
429 }
430
431 }
432 } else if (!map->use_single_read && map->reg_stride == 1 &&
433 data->irq_reg_stride == 1) {
434
435 u8 *buf8 = data->status_reg_buf;
436 u16 *buf16 = data->status_reg_buf;
437 u32 *buf32 = data->status_reg_buf;
438
439 BUG_ON(!data->status_reg_buf);
440
441 ret = regmap_bulk_read(map, chip->status_base,
442 data->status_reg_buf,
443 chip->num_regs);
444 if (ret != 0) {
445 dev_err(map->dev, "Failed to read IRQ status: %d\n",
446 ret);
447 goto exit;
448 }
449
450 for (i = 0; i < data->chip->num_regs; i++) {
451 switch (map->format.val_bytes) {
452 case 1:
453 data->status_buf[i] = buf8[i];
454 break;
455 case 2:
456 data->status_buf[i] = buf16[i];
457 break;
458 case 4:
459 data->status_buf[i] = buf32[i];
460 break;
461 default:
462 BUG();
463 goto exit;
464 }
465 }
466
467 } else {
468 for (i = 0; i < data->chip->num_regs; i++) {
469 ret = regmap_read(map, chip->status_base +
470 (i * map->reg_stride
471 * data->irq_reg_stride),
472 &data->status_buf[i]);
473
474 if (ret != 0) {
475 dev_err(map->dev,
476 "Failed to read IRQ status: %d\n",
477 ret);
478 goto exit;
479 }
480 }
481 }
482
483 /*
484 * Ignore masked IRQs and ack if we need to; we ack early so
485 * there is no race between handling and acknowleding the
486 * interrupt. We assume that typically few of the interrupts
487 * will fire simultaneously so don't worry about overhead from
488 * doing a write per register.
489 */
490 for (i = 0; i < data->chip->num_regs; i++) {
491 data->status_buf[i] &= ~data->mask_buf[i];
492
493 if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
494 reg = chip->ack_base +
495 (i * map->reg_stride * data->irq_reg_stride);
496 ret = regmap_write(map, reg, data->status_buf[i]);
497 if (ret != 0)
498 dev_err(map->dev, "Failed to ack 0x%x: %d\n",
499 reg, ret);
500 }
501 }
502
503 for (i = 0; i < chip->num_irqs; i++) {
504 if (data->status_buf[chip->irqs[i].reg_offset /
505 map->reg_stride] & chip->irqs[i].mask) {
506 handle_nested_irq(irq_find_mapping(data->domain, i));
507 handled = true;
508 }
509 }
510
511exit:
512 if (chip->runtime_pm)
513 pm_runtime_put(map->dev);
514
515 if (chip->handle_post_irq)
516 chip->handle_post_irq(chip->irq_drv_data);
517
518 if (handled)
519 return IRQ_HANDLED;
520 else
521 return IRQ_NONE;
522}
523
524static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
525 irq_hw_number_t hw)
526{
527 struct regmap_irq_chip_data *data = h->host_data;
528
529 irq_set_chip_data(virq, data);
530 irq_set_chip(virq, &data->irq_chip);
531 irq_set_nested_thread(virq, 1);
532 irq_set_parent(virq, data->irq);
533 irq_set_noprobe(virq);
534
535 return 0;
536}
537
538static const struct irq_domain_ops regmap_domain_ops = {
539 .map = regmap_irq_map,
540 .xlate = irq_domain_xlate_onetwocell,
541};
542
543/**
544 * regmap_add_irq_chip() - Use standard regmap IRQ controller handling
545 *
546 * @map: The regmap for the device.
547 * @irq: The IRQ the device uses to signal interrupts.
548 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
549 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
550 * @chip: Configuration for the interrupt controller.
551 * @data: Runtime data structure for the controller, allocated on success.
552 *
553 * Returns 0 on success or an errno on failure.
554 *
555 * In order for this to be efficient the chip really should use a
556 * register cache. The chip driver is responsible for restoring the
557 * register values used by the IRQ controller over suspend and resume.
558 */
559int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
560 int irq_base, const struct regmap_irq_chip *chip,
561 struct regmap_irq_chip_data **data)
562{
563 struct regmap_irq_chip_data *d;
564 int i;
565 int ret = -ENOMEM;
566 int num_type_reg;
567 u32 reg;
568 u32 unmask_offset;
569
570 if (chip->num_regs <= 0)
571 return -EINVAL;
572
573 if (chip->clear_on_unmask && (chip->ack_base || chip->use_ack))
574 return -EINVAL;
575
576 for (i = 0; i < chip->num_irqs; i++) {
577 if (chip->irqs[i].reg_offset % map->reg_stride)
578 return -EINVAL;
579 if (chip->irqs[i].reg_offset / map->reg_stride >=
580 chip->num_regs)
581 return -EINVAL;
582 }
583
584 if (irq_base) {
585 irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
586 if (irq_base < 0) {
587 dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
588 irq_base);
589 return irq_base;
590 }
591 }
592
593 d = kzalloc(sizeof(*d), GFP_KERNEL);
594 if (!d)
595 return -ENOMEM;
596
597 if (chip->num_main_regs) {
598 d->main_status_buf = kcalloc(chip->num_main_regs,
599 sizeof(unsigned int),
600 GFP_KERNEL);
601
602 if (!d->main_status_buf)
603 goto err_alloc;
604 }
605
606 d->status_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
607 GFP_KERNEL);
608 if (!d->status_buf)
609 goto err_alloc;
610
611 d->mask_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
612 GFP_KERNEL);
613 if (!d->mask_buf)
614 goto err_alloc;
615
616 d->mask_buf_def = kcalloc(chip->num_regs, sizeof(unsigned int),
617 GFP_KERNEL);
618 if (!d->mask_buf_def)
619 goto err_alloc;
620
621 if (chip->wake_base) {
622 d->wake_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
623 GFP_KERNEL);
624 if (!d->wake_buf)
625 goto err_alloc;
626 }
627
628 num_type_reg = chip->type_in_mask ? chip->num_regs : chip->num_type_reg;
629 if (num_type_reg) {
630 d->type_buf_def = kcalloc(num_type_reg,
631 sizeof(unsigned int), GFP_KERNEL);
632 if (!d->type_buf_def)
633 goto err_alloc;
634
635 d->type_buf = kcalloc(num_type_reg, sizeof(unsigned int),
636 GFP_KERNEL);
637 if (!d->type_buf)
638 goto err_alloc;
639 }
640
641 d->irq_chip = regmap_irq_chip;
642 d->irq_chip.name = chip->name;
643 d->irq = irq;
644 d->map = map;
645 d->chip = chip;
646 d->irq_base = irq_base;
647
648 if (chip->irq_reg_stride)
649 d->irq_reg_stride = chip->irq_reg_stride;
650 else
651 d->irq_reg_stride = 1;
652
653 if (chip->type_reg_stride)
654 d->type_reg_stride = chip->type_reg_stride;
655 else
656 d->type_reg_stride = 1;
657
658 if (!map->use_single_read && map->reg_stride == 1 &&
659 d->irq_reg_stride == 1) {
660 d->status_reg_buf = kmalloc_array(chip->num_regs,
661 map->format.val_bytes,
662 GFP_KERNEL);
663 if (!d->status_reg_buf)
664 goto err_alloc;
665 }
666
667 mutex_init(&d->lock);
668
669 for (i = 0; i < chip->num_irqs; i++)
670 d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
671 |= chip->irqs[i].mask;
672
673 /* Mask all the interrupts by default */
674 for (i = 0; i < chip->num_regs; i++) {
675 d->mask_buf[i] = d->mask_buf_def[i];
676 if (!chip->mask_base)
677 continue;
678
679 reg = chip->mask_base +
680 (i * map->reg_stride * d->irq_reg_stride);
681 if (chip->mask_invert)
682 ret = regmap_irq_update_bits(d, reg,
683 d->mask_buf[i], ~d->mask_buf[i]);
684 else if (d->chip->unmask_base) {
685 unmask_offset = d->chip->unmask_base -
686 d->chip->mask_base;
687 ret = regmap_irq_update_bits(d,
688 reg + unmask_offset,
689 d->mask_buf[i],
690 d->mask_buf[i]);
691 } else
692 ret = regmap_irq_update_bits(d, reg,
693 d->mask_buf[i], d->mask_buf[i]);
694 if (ret != 0) {
695 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
696 reg, ret);
697 goto err_alloc;
698 }
699
700 if (!chip->init_ack_masked)
701 continue;
702
703 /* Ack masked but set interrupts */
704 reg = chip->status_base +
705 (i * map->reg_stride * d->irq_reg_stride);
706 ret = regmap_read(map, reg, &d->status_buf[i]);
707 if (ret != 0) {
708 dev_err(map->dev, "Failed to read IRQ status: %d\n",
709 ret);
710 goto err_alloc;
711 }
712
713 if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
714 reg = chip->ack_base +
715 (i * map->reg_stride * d->irq_reg_stride);
716 if (chip->ack_invert)
717 ret = regmap_write(map, reg,
718 ~(d->status_buf[i] & d->mask_buf[i]));
719 else
720 ret = regmap_write(map, reg,
721 d->status_buf[i] & d->mask_buf[i]);
722 if (ret != 0) {
723 dev_err(map->dev, "Failed to ack 0x%x: %d\n",
724 reg, ret);
725 goto err_alloc;
726 }
727 }
728 }
729
730 /* Wake is disabled by default */
731 if (d->wake_buf) {
732 for (i = 0; i < chip->num_regs; i++) {
733 d->wake_buf[i] = d->mask_buf_def[i];
734 reg = chip->wake_base +
735 (i * map->reg_stride * d->irq_reg_stride);
736
737 if (chip->wake_invert)
738 ret = regmap_irq_update_bits(d, reg,
739 d->mask_buf_def[i],
740 0);
741 else
742 ret = regmap_irq_update_bits(d, reg,
743 d->mask_buf_def[i],
744 d->wake_buf[i]);
745 if (ret != 0) {
746 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
747 reg, ret);
748 goto err_alloc;
749 }
750 }
751 }
752
753 if (chip->num_type_reg && !chip->type_in_mask) {
754 for (i = 0; i < chip->num_type_reg; ++i) {
755 reg = chip->type_base +
756 (i * map->reg_stride * d->type_reg_stride);
757
758 ret = regmap_read(map, reg, &d->type_buf_def[i]);
759
760 if (d->chip->type_invert)
761 d->type_buf_def[i] = ~d->type_buf_def[i];
762
763 if (ret) {
764 dev_err(map->dev, "Failed to get type defaults at 0x%x: %d\n",
765 reg, ret);
766 goto err_alloc;
767 }
768 }
769 }
770
771 if (irq_base)
772 d->domain = irq_domain_add_legacy(map->dev->of_node,
773 chip->num_irqs, irq_base, 0,
774 ®map_domain_ops, d);
775 else
776 d->domain = irq_domain_add_linear(map->dev->of_node,
777 chip->num_irqs,
778 ®map_domain_ops, d);
779 if (!d->domain) {
780 dev_err(map->dev, "Failed to create IRQ domain\n");
781 ret = -ENOMEM;
782 goto err_alloc;
783 }
784
785 ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
786 irq_flags | IRQF_ONESHOT,
787 chip->name, d);
788 if (ret != 0) {
789 dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
790 irq, chip->name, ret);
791 goto err_domain;
792 }
793
794 *data = d;
795
796 return 0;
797
798err_domain:
799 /* Should really dispose of the domain but... */
800err_alloc:
801 kfree(d->type_buf);
802 kfree(d->type_buf_def);
803 kfree(d->wake_buf);
804 kfree(d->mask_buf_def);
805 kfree(d->mask_buf);
806 kfree(d->status_buf);
807 kfree(d->status_reg_buf);
808 kfree(d);
809 return ret;
810}
811EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
812
813/**
814 * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip
815 *
816 * @irq: Primary IRQ for the device
817 * @d: ®map_irq_chip_data allocated by regmap_add_irq_chip()
818 *
819 * This function also disposes of all mapped IRQs on the chip.
820 */
821void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
822{
823 unsigned int virq;
824 int hwirq;
825
826 if (!d)
827 return;
828
829 free_irq(irq, d);
830
831 /* Dispose all virtual irq from irq domain before removing it */
832 for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) {
833 /* Ignore hwirq if holes in the IRQ list */
834 if (!d->chip->irqs[hwirq].mask)
835 continue;
836
837 /*
838 * Find the virtual irq of hwirq on chip and if it is
839 * there then dispose it
840 */
841 virq = irq_find_mapping(d->domain, hwirq);
842 if (virq)
843 irq_dispose_mapping(virq);
844 }
845
846 irq_domain_remove(d->domain);
847 kfree(d->type_buf);
848 kfree(d->type_buf_def);
849 kfree(d->wake_buf);
850 kfree(d->mask_buf_def);
851 kfree(d->mask_buf);
852 kfree(d->status_reg_buf);
853 kfree(d->status_buf);
854 kfree(d);
855}
856EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
857
858static void devm_regmap_irq_chip_release(struct device *dev, void *res)
859{
860 struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res;
861
862 regmap_del_irq_chip(d->irq, d);
863}
864
865static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data)
866
867{
868 struct regmap_irq_chip_data **r = res;
869
870 if (!r || !*r) {
871 WARN_ON(!r || !*r);
872 return 0;
873 }
874 return *r == data;
875}
876
877/**
878 * devm_regmap_add_irq_chip() - Resource manager regmap_add_irq_chip()
879 *
880 * @dev: The device pointer on which irq_chip belongs to.
881 * @map: The regmap for the device.
882 * @irq: The IRQ the device uses to signal interrupts
883 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
884 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
885 * @chip: Configuration for the interrupt controller.
886 * @data: Runtime data structure for the controller, allocated on success
887 *
888 * Returns 0 on success or an errno on failure.
889 *
890 * The ®map_irq_chip_data will be automatically released when the device is
891 * unbound.
892 */
893int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq,
894 int irq_flags, int irq_base,
895 const struct regmap_irq_chip *chip,
896 struct regmap_irq_chip_data **data)
897{
898 struct regmap_irq_chip_data **ptr, *d;
899 int ret;
900
901 ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr),
902 GFP_KERNEL);
903 if (!ptr)
904 return -ENOMEM;
905
906 ret = regmap_add_irq_chip(map, irq, irq_flags, irq_base,
907 chip, &d);
908 if (ret < 0) {
909 devres_free(ptr);
910 return ret;
911 }
912
913 *ptr = d;
914 devres_add(dev, ptr);
915 *data = d;
916 return 0;
917}
918EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip);
919
920/**
921 * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip()
922 *
923 * @dev: Device for which which resource was allocated.
924 * @irq: Primary IRQ for the device.
925 * @data: ®map_irq_chip_data allocated by regmap_add_irq_chip().
926 *
927 * A resource managed version of regmap_del_irq_chip().
928 */
929void devm_regmap_del_irq_chip(struct device *dev, int irq,
930 struct regmap_irq_chip_data *data)
931{
932 int rc;
933
934 WARN_ON(irq != data->irq);
935 rc = devres_release(dev, devm_regmap_irq_chip_release,
936 devm_regmap_irq_chip_match, data);
937
938 if (rc != 0)
939 WARN_ON(rc);
940}
941EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip);
942
943/**
944 * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip
945 *
946 * @data: regmap irq controller to operate on.
947 *
948 * Useful for drivers to request their own IRQs.
949 */
950int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
951{
952 WARN_ON(!data->irq_base);
953 return data->irq_base;
954}
955EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
956
957/**
958 * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ
959 *
960 * @data: regmap irq controller to operate on.
961 * @irq: index of the interrupt requested in the chip IRQs.
962 *
963 * Useful for drivers to request their own IRQs.
964 */
965int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
966{
967 /* Handle holes in the IRQ list */
968 if (!data->chip->irqs[irq].mask)
969 return -EINVAL;
970
971 return irq_create_mapping(data->domain, irq);
972}
973EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
974
975/**
976 * regmap_irq_get_domain() - Retrieve the irq_domain for the chip
977 *
978 * @data: regmap_irq controller to operate on.
979 *
980 * Useful for drivers to request their own IRQs and for integration
981 * with subsystems. For ease of integration NULL is accepted as a
982 * domain, allowing devices to just call this even if no domain is
983 * allocated.
984 */
985struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
986{
987 if (data)
988 return data->domain;
989 else
990 return NULL;
991}
992EXPORT_SYMBOL_GPL(regmap_irq_get_domain);