Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * scan.c - support for transforming the ACPI namespace into individual objects
4 */
5
6#define pr_fmt(fmt) "ACPI: " fmt
7
8#include <linux/module.h>
9#include <linux/init.h>
10#include <linux/slab.h>
11#include <linux/kernel.h>
12#include <linux/acpi.h>
13#include <linux/acpi_iort.h>
14#include <linux/acpi_viot.h>
15#include <linux/iommu.h>
16#include <linux/signal.h>
17#include <linux/kthread.h>
18#include <linux/dmi.h>
19#include <linux/dma-map-ops.h>
20#include <linux/platform_data/x86/apple.h>
21#include <linux/pgtable.h>
22#include <linux/crc32.h>
23#include <linux/dma-direct.h>
24
25#include "internal.h"
26#include "sleep.h"
27
28#define ACPI_BUS_CLASS "system_bus"
29#define ACPI_BUS_HID "LNXSYBUS"
30#define ACPI_BUS_DEVICE_NAME "System Bus"
31
32#define INVALID_ACPI_HANDLE ((acpi_handle)ZERO_PAGE(0))
33
34static const char *dummy_hid = "device";
35
36static LIST_HEAD(acpi_dep_list);
37static DEFINE_MUTEX(acpi_dep_list_lock);
38LIST_HEAD(acpi_bus_id_list);
39static DEFINE_MUTEX(acpi_scan_lock);
40static LIST_HEAD(acpi_scan_handlers_list);
41DEFINE_MUTEX(acpi_device_lock);
42LIST_HEAD(acpi_wakeup_device_list);
43static DEFINE_MUTEX(acpi_hp_context_lock);
44
45/*
46 * The UART device described by the SPCR table is the only object which needs
47 * special-casing. Everything else is covered by ACPI namespace paths in STAO
48 * table.
49 */
50static u64 spcr_uart_addr;
51
52void acpi_scan_lock_acquire(void)
53{
54 mutex_lock(&acpi_scan_lock);
55}
56EXPORT_SYMBOL_GPL(acpi_scan_lock_acquire);
57
58void acpi_scan_lock_release(void)
59{
60 mutex_unlock(&acpi_scan_lock);
61}
62EXPORT_SYMBOL_GPL(acpi_scan_lock_release);
63
64void acpi_lock_hp_context(void)
65{
66 mutex_lock(&acpi_hp_context_lock);
67}
68
69void acpi_unlock_hp_context(void)
70{
71 mutex_unlock(&acpi_hp_context_lock);
72}
73
74void acpi_initialize_hp_context(struct acpi_device *adev,
75 struct acpi_hotplug_context *hp,
76 int (*notify)(struct acpi_device *, u32),
77 void (*uevent)(struct acpi_device *, u32))
78{
79 acpi_lock_hp_context();
80 hp->notify = notify;
81 hp->uevent = uevent;
82 acpi_set_hp_context(adev, hp);
83 acpi_unlock_hp_context();
84}
85EXPORT_SYMBOL_GPL(acpi_initialize_hp_context);
86
87int acpi_scan_add_handler(struct acpi_scan_handler *handler)
88{
89 if (!handler)
90 return -EINVAL;
91
92 list_add_tail(&handler->list_node, &acpi_scan_handlers_list);
93 return 0;
94}
95
96int acpi_scan_add_handler_with_hotplug(struct acpi_scan_handler *handler,
97 const char *hotplug_profile_name)
98{
99 int error;
100
101 error = acpi_scan_add_handler(handler);
102 if (error)
103 return error;
104
105 acpi_sysfs_add_hotplug_profile(&handler->hotplug, hotplug_profile_name);
106 return 0;
107}
108
109bool acpi_scan_is_offline(struct acpi_device *adev, bool uevent)
110{
111 struct acpi_device_physical_node *pn;
112 bool offline = true;
113 char *envp[] = { "EVENT=offline", NULL };
114
115 /*
116 * acpi_container_offline() calls this for all of the container's
117 * children under the container's physical_node_lock lock.
118 */
119 mutex_lock_nested(&adev->physical_node_lock, SINGLE_DEPTH_NESTING);
120
121 list_for_each_entry(pn, &adev->physical_node_list, node)
122 if (device_supports_offline(pn->dev) && !pn->dev->offline) {
123 if (uevent)
124 kobject_uevent_env(&pn->dev->kobj, KOBJ_CHANGE, envp);
125
126 offline = false;
127 break;
128 }
129
130 mutex_unlock(&adev->physical_node_lock);
131 return offline;
132}
133
134static acpi_status acpi_bus_offline(acpi_handle handle, u32 lvl, void *data,
135 void **ret_p)
136{
137 struct acpi_device *device = acpi_fetch_acpi_dev(handle);
138 struct acpi_device_physical_node *pn;
139 bool second_pass = (bool)data;
140 acpi_status status = AE_OK;
141
142 if (!device)
143 return AE_OK;
144
145 if (device->handler && !device->handler->hotplug.enabled) {
146 *ret_p = &device->dev;
147 return AE_SUPPORT;
148 }
149
150 mutex_lock(&device->physical_node_lock);
151
152 list_for_each_entry(pn, &device->physical_node_list, node) {
153 int ret;
154
155 if (second_pass) {
156 /* Skip devices offlined by the first pass. */
157 if (pn->put_online)
158 continue;
159 } else {
160 pn->put_online = false;
161 }
162 ret = device_offline(pn->dev);
163 if (ret >= 0) {
164 pn->put_online = !ret;
165 } else {
166 *ret_p = pn->dev;
167 if (second_pass) {
168 status = AE_ERROR;
169 break;
170 }
171 }
172 }
173
174 mutex_unlock(&device->physical_node_lock);
175
176 return status;
177}
178
179static acpi_status acpi_bus_online(acpi_handle handle, u32 lvl, void *data,
180 void **ret_p)
181{
182 struct acpi_device *device = acpi_fetch_acpi_dev(handle);
183 struct acpi_device_physical_node *pn;
184
185 if (!device)
186 return AE_OK;
187
188 mutex_lock(&device->physical_node_lock);
189
190 list_for_each_entry(pn, &device->physical_node_list, node)
191 if (pn->put_online) {
192 device_online(pn->dev);
193 pn->put_online = false;
194 }
195
196 mutex_unlock(&device->physical_node_lock);
197
198 return AE_OK;
199}
200
201static int acpi_scan_try_to_offline(struct acpi_device *device)
202{
203 acpi_handle handle = device->handle;
204 struct device *errdev = NULL;
205 acpi_status status;
206
207 /*
208 * Carry out two passes here and ignore errors in the first pass,
209 * because if the devices in question are memory blocks and
210 * CONFIG_MEMCG is set, one of the blocks may hold data structures
211 * that the other blocks depend on, but it is not known in advance which
212 * block holds them.
213 *
214 * If the first pass is successful, the second one isn't needed, though.
215 */
216 status = acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
217 NULL, acpi_bus_offline, (void *)false,
218 (void **)&errdev);
219 if (status == AE_SUPPORT) {
220 dev_warn(errdev, "Offline disabled.\n");
221 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
222 acpi_bus_online, NULL, NULL, NULL);
223 return -EPERM;
224 }
225 acpi_bus_offline(handle, 0, (void *)false, (void **)&errdev);
226 if (errdev) {
227 errdev = NULL;
228 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
229 NULL, acpi_bus_offline, (void *)true,
230 (void **)&errdev);
231 if (!errdev)
232 acpi_bus_offline(handle, 0, (void *)true,
233 (void **)&errdev);
234
235 if (errdev) {
236 dev_warn(errdev, "Offline failed.\n");
237 acpi_bus_online(handle, 0, NULL, NULL);
238 acpi_walk_namespace(ACPI_TYPE_ANY, handle,
239 ACPI_UINT32_MAX, acpi_bus_online,
240 NULL, NULL, NULL);
241 return -EBUSY;
242 }
243 }
244 return 0;
245}
246
247static int acpi_scan_hot_remove(struct acpi_device *device)
248{
249 acpi_handle handle = device->handle;
250 unsigned long long sta;
251 acpi_status status;
252
253 if (device->handler && device->handler->hotplug.demand_offline) {
254 if (!acpi_scan_is_offline(device, true))
255 return -EBUSY;
256 } else {
257 int error = acpi_scan_try_to_offline(device);
258 if (error)
259 return error;
260 }
261
262 acpi_handle_debug(handle, "Ejecting\n");
263
264 acpi_bus_trim(device);
265
266 acpi_evaluate_lck(handle, 0);
267 /*
268 * TBD: _EJD support.
269 */
270 status = acpi_evaluate_ej0(handle);
271 if (status == AE_NOT_FOUND)
272 return -ENODEV;
273 else if (ACPI_FAILURE(status))
274 return -EIO;
275
276 /*
277 * Verify if eject was indeed successful. If not, log an error
278 * message. No need to call _OST since _EJ0 call was made OK.
279 */
280 status = acpi_evaluate_integer(handle, "_STA", NULL, &sta);
281 if (ACPI_FAILURE(status)) {
282 acpi_handle_warn(handle,
283 "Status check after eject failed (0x%x)\n", status);
284 } else if (sta & ACPI_STA_DEVICE_ENABLED) {
285 acpi_handle_warn(handle,
286 "Eject incomplete - status 0x%llx\n", sta);
287 }
288
289 return 0;
290}
291
292static int acpi_scan_device_not_enumerated(struct acpi_device *adev)
293{
294 if (!acpi_device_enumerated(adev)) {
295 dev_warn(&adev->dev, "Still not enumerated\n");
296 return -EALREADY;
297 }
298 acpi_bus_trim(adev);
299 return 0;
300}
301
302static int acpi_scan_device_check(struct acpi_device *adev)
303{
304 int error;
305
306 acpi_bus_get_status(adev);
307 if (acpi_device_is_present(adev)) {
308 /*
309 * This function is only called for device objects for which
310 * matching scan handlers exist. The only situation in which
311 * the scan handler is not attached to this device object yet
312 * is when the device has just appeared (either it wasn't
313 * present at all before or it was removed and then added
314 * again).
315 */
316 if (adev->handler) {
317 dev_warn(&adev->dev, "Already enumerated\n");
318 return -EALREADY;
319 }
320 error = acpi_bus_scan(adev->handle);
321 if (error) {
322 dev_warn(&adev->dev, "Namespace scan failure\n");
323 return error;
324 }
325 if (!adev->handler) {
326 dev_warn(&adev->dev, "Enumeration failure\n");
327 error = -ENODEV;
328 }
329 } else {
330 error = acpi_scan_device_not_enumerated(adev);
331 }
332 return error;
333}
334
335static int acpi_scan_bus_check(struct acpi_device *adev, void *not_used)
336{
337 struct acpi_scan_handler *handler = adev->handler;
338 int error;
339
340 acpi_bus_get_status(adev);
341 if (!acpi_device_is_present(adev)) {
342 acpi_scan_device_not_enumerated(adev);
343 return 0;
344 }
345 if (handler && handler->hotplug.scan_dependent)
346 return handler->hotplug.scan_dependent(adev);
347
348 error = acpi_bus_scan(adev->handle);
349 if (error) {
350 dev_warn(&adev->dev, "Namespace scan failure\n");
351 return error;
352 }
353 return acpi_dev_for_each_child(adev, acpi_scan_bus_check, NULL);
354}
355
356static int acpi_generic_hotplug_event(struct acpi_device *adev, u32 type)
357{
358 switch (type) {
359 case ACPI_NOTIFY_BUS_CHECK:
360 return acpi_scan_bus_check(adev, NULL);
361 case ACPI_NOTIFY_DEVICE_CHECK:
362 return acpi_scan_device_check(adev);
363 case ACPI_NOTIFY_EJECT_REQUEST:
364 case ACPI_OST_EC_OSPM_EJECT:
365 if (adev->handler && !adev->handler->hotplug.enabled) {
366 dev_info(&adev->dev, "Eject disabled\n");
367 return -EPERM;
368 }
369 acpi_evaluate_ost(adev->handle, ACPI_NOTIFY_EJECT_REQUEST,
370 ACPI_OST_SC_EJECT_IN_PROGRESS, NULL);
371 return acpi_scan_hot_remove(adev);
372 }
373 return -EINVAL;
374}
375
376void acpi_device_hotplug(struct acpi_device *adev, u32 src)
377{
378 u32 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
379 int error = -ENODEV;
380
381 lock_device_hotplug();
382 mutex_lock(&acpi_scan_lock);
383
384 /*
385 * The device object's ACPI handle cannot become invalid as long as we
386 * are holding acpi_scan_lock, but it might have become invalid before
387 * that lock was acquired.
388 */
389 if (adev->handle == INVALID_ACPI_HANDLE)
390 goto err_out;
391
392 if (adev->flags.is_dock_station) {
393 error = dock_notify(adev, src);
394 } else if (adev->flags.hotplug_notify) {
395 error = acpi_generic_hotplug_event(adev, src);
396 } else {
397 int (*notify)(struct acpi_device *, u32);
398
399 acpi_lock_hp_context();
400 notify = adev->hp ? adev->hp->notify : NULL;
401 acpi_unlock_hp_context();
402 /*
403 * There may be additional notify handlers for device objects
404 * without the .event() callback, so ignore them here.
405 */
406 if (notify)
407 error = notify(adev, src);
408 else
409 goto out;
410 }
411 switch (error) {
412 case 0:
413 ost_code = ACPI_OST_SC_SUCCESS;
414 break;
415 case -EPERM:
416 ost_code = ACPI_OST_SC_EJECT_NOT_SUPPORTED;
417 break;
418 case -EBUSY:
419 ost_code = ACPI_OST_SC_DEVICE_BUSY;
420 break;
421 default:
422 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
423 break;
424 }
425
426 err_out:
427 acpi_evaluate_ost(adev->handle, src, ost_code, NULL);
428
429 out:
430 acpi_put_acpi_dev(adev);
431 mutex_unlock(&acpi_scan_lock);
432 unlock_device_hotplug();
433}
434
435static void acpi_free_power_resources_lists(struct acpi_device *device)
436{
437 int i;
438
439 if (device->wakeup.flags.valid)
440 acpi_power_resources_list_free(&device->wakeup.resources);
441
442 if (!device->power.flags.power_resources)
443 return;
444
445 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) {
446 struct acpi_device_power_state *ps = &device->power.states[i];
447 acpi_power_resources_list_free(&ps->resources);
448 }
449}
450
451static void acpi_device_release(struct device *dev)
452{
453 struct acpi_device *acpi_dev = to_acpi_device(dev);
454
455 acpi_free_properties(acpi_dev);
456 acpi_free_pnp_ids(&acpi_dev->pnp);
457 acpi_free_power_resources_lists(acpi_dev);
458 kfree(acpi_dev);
459}
460
461static void acpi_device_del(struct acpi_device *device)
462{
463 struct acpi_device_bus_id *acpi_device_bus_id;
464
465 mutex_lock(&acpi_device_lock);
466
467 list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node)
468 if (!strcmp(acpi_device_bus_id->bus_id,
469 acpi_device_hid(device))) {
470 ida_free(&acpi_device_bus_id->instance_ida,
471 device->pnp.instance_no);
472 if (ida_is_empty(&acpi_device_bus_id->instance_ida)) {
473 list_del(&acpi_device_bus_id->node);
474 kfree_const(acpi_device_bus_id->bus_id);
475 kfree(acpi_device_bus_id);
476 }
477 break;
478 }
479
480 list_del(&device->wakeup_list);
481
482 mutex_unlock(&acpi_device_lock);
483
484 acpi_power_add_remove_device(device, false);
485 acpi_device_remove_files(device);
486 if (device->remove)
487 device->remove(device);
488
489 device_del(&device->dev);
490}
491
492static BLOCKING_NOTIFIER_HEAD(acpi_reconfig_chain);
493
494static LIST_HEAD(acpi_device_del_list);
495static DEFINE_MUTEX(acpi_device_del_lock);
496
497static void acpi_device_del_work_fn(struct work_struct *work_not_used)
498{
499 for (;;) {
500 struct acpi_device *adev;
501
502 mutex_lock(&acpi_device_del_lock);
503
504 if (list_empty(&acpi_device_del_list)) {
505 mutex_unlock(&acpi_device_del_lock);
506 break;
507 }
508 adev = list_first_entry(&acpi_device_del_list,
509 struct acpi_device, del_list);
510 list_del(&adev->del_list);
511
512 mutex_unlock(&acpi_device_del_lock);
513
514 blocking_notifier_call_chain(&acpi_reconfig_chain,
515 ACPI_RECONFIG_DEVICE_REMOVE, adev);
516
517 acpi_device_del(adev);
518 /*
519 * Drop references to all power resources that might have been
520 * used by the device.
521 */
522 acpi_power_transition(adev, ACPI_STATE_D3_COLD);
523 acpi_dev_put(adev);
524 }
525}
526
527/**
528 * acpi_scan_drop_device - Drop an ACPI device object.
529 * @handle: Handle of an ACPI namespace node, not used.
530 * @context: Address of the ACPI device object to drop.
531 *
532 * This is invoked by acpi_ns_delete_node() during the removal of the ACPI
533 * namespace node the device object pointed to by @context is attached to.
534 *
535 * The unregistration is carried out asynchronously to avoid running
536 * acpi_device_del() under the ACPICA's namespace mutex and the list is used to
537 * ensure the correct ordering (the device objects must be unregistered in the
538 * same order in which the corresponding namespace nodes are deleted).
539 */
540static void acpi_scan_drop_device(acpi_handle handle, void *context)
541{
542 static DECLARE_WORK(work, acpi_device_del_work_fn);
543 struct acpi_device *adev = context;
544
545 mutex_lock(&acpi_device_del_lock);
546
547 /*
548 * Use the ACPI hotplug workqueue which is ordered, so this work item
549 * won't run after any hotplug work items submitted subsequently. That
550 * prevents attempts to register device objects identical to those being
551 * deleted from happening concurrently (such attempts result from
552 * hotplug events handled via the ACPI hotplug workqueue). It also will
553 * run after all of the work items submitted previously, which helps
554 * those work items to ensure that they are not accessing stale device
555 * objects.
556 */
557 if (list_empty(&acpi_device_del_list))
558 acpi_queue_hotplug_work(&work);
559
560 list_add_tail(&adev->del_list, &acpi_device_del_list);
561 /* Make acpi_ns_validate_handle() return NULL for this handle. */
562 adev->handle = INVALID_ACPI_HANDLE;
563
564 mutex_unlock(&acpi_device_del_lock);
565}
566
567static struct acpi_device *handle_to_device(acpi_handle handle,
568 void (*callback)(void *))
569{
570 struct acpi_device *adev = NULL;
571 acpi_status status;
572
573 status = acpi_get_data_full(handle, acpi_scan_drop_device,
574 (void **)&adev, callback);
575 if (ACPI_FAILURE(status) || !adev) {
576 acpi_handle_debug(handle, "No context!\n");
577 return NULL;
578 }
579 return adev;
580}
581
582/**
583 * acpi_fetch_acpi_dev - Retrieve ACPI device object.
584 * @handle: ACPI handle associated with the requested ACPI device object.
585 *
586 * Return a pointer to the ACPI device object associated with @handle, if
587 * present, or NULL otherwise.
588 */
589struct acpi_device *acpi_fetch_acpi_dev(acpi_handle handle)
590{
591 return handle_to_device(handle, NULL);
592}
593EXPORT_SYMBOL_GPL(acpi_fetch_acpi_dev);
594
595static void get_acpi_device(void *dev)
596{
597 acpi_dev_get(dev);
598}
599
600/**
601 * acpi_get_acpi_dev - Retrieve ACPI device object and reference count it.
602 * @handle: ACPI handle associated with the requested ACPI device object.
603 *
604 * Return a pointer to the ACPI device object associated with @handle and bump
605 * up that object's reference counter (under the ACPI Namespace lock), if
606 * present, or return NULL otherwise.
607 *
608 * The ACPI device object reference acquired by this function needs to be
609 * dropped via acpi_dev_put().
610 */
611struct acpi_device *acpi_get_acpi_dev(acpi_handle handle)
612{
613 return handle_to_device(handle, get_acpi_device);
614}
615EXPORT_SYMBOL_GPL(acpi_get_acpi_dev);
616
617static struct acpi_device_bus_id *acpi_device_bus_id_match(const char *dev_id)
618{
619 struct acpi_device_bus_id *acpi_device_bus_id;
620
621 /* Find suitable bus_id and instance number in acpi_bus_id_list. */
622 list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) {
623 if (!strcmp(acpi_device_bus_id->bus_id, dev_id))
624 return acpi_device_bus_id;
625 }
626 return NULL;
627}
628
629static int acpi_device_set_name(struct acpi_device *device,
630 struct acpi_device_bus_id *acpi_device_bus_id)
631{
632 struct ida *instance_ida = &acpi_device_bus_id->instance_ida;
633 int result;
634
635 result = ida_alloc(instance_ida, GFP_KERNEL);
636 if (result < 0)
637 return result;
638
639 device->pnp.instance_no = result;
640 dev_set_name(&device->dev, "%s:%02x", acpi_device_bus_id->bus_id, result);
641 return 0;
642}
643
644int acpi_tie_acpi_dev(struct acpi_device *adev)
645{
646 acpi_handle handle = adev->handle;
647 acpi_status status;
648
649 if (!handle)
650 return 0;
651
652 status = acpi_attach_data(handle, acpi_scan_drop_device, adev);
653 if (ACPI_FAILURE(status)) {
654 acpi_handle_err(handle, "Unable to attach device data\n");
655 return -ENODEV;
656 }
657
658 return 0;
659}
660
661static void acpi_store_pld_crc(struct acpi_device *adev)
662{
663 struct acpi_pld_info *pld;
664 acpi_status status;
665
666 status = acpi_get_physical_device_location(adev->handle, &pld);
667 if (ACPI_FAILURE(status))
668 return;
669
670 adev->pld_crc = crc32(~0, pld, sizeof(*pld));
671 ACPI_FREE(pld);
672}
673
674int acpi_device_add(struct acpi_device *device)
675{
676 struct acpi_device_bus_id *acpi_device_bus_id;
677 int result;
678
679 /*
680 * Linkage
681 * -------
682 * Link this device to its parent and siblings.
683 */
684 INIT_LIST_HEAD(&device->wakeup_list);
685 INIT_LIST_HEAD(&device->physical_node_list);
686 INIT_LIST_HEAD(&device->del_list);
687 mutex_init(&device->physical_node_lock);
688
689 mutex_lock(&acpi_device_lock);
690
691 acpi_device_bus_id = acpi_device_bus_id_match(acpi_device_hid(device));
692 if (acpi_device_bus_id) {
693 result = acpi_device_set_name(device, acpi_device_bus_id);
694 if (result)
695 goto err_unlock;
696 } else {
697 acpi_device_bus_id = kzalloc(sizeof(*acpi_device_bus_id),
698 GFP_KERNEL);
699 if (!acpi_device_bus_id) {
700 result = -ENOMEM;
701 goto err_unlock;
702 }
703 acpi_device_bus_id->bus_id =
704 kstrdup_const(acpi_device_hid(device), GFP_KERNEL);
705 if (!acpi_device_bus_id->bus_id) {
706 kfree(acpi_device_bus_id);
707 result = -ENOMEM;
708 goto err_unlock;
709 }
710
711 ida_init(&acpi_device_bus_id->instance_ida);
712
713 result = acpi_device_set_name(device, acpi_device_bus_id);
714 if (result) {
715 kfree_const(acpi_device_bus_id->bus_id);
716 kfree(acpi_device_bus_id);
717 goto err_unlock;
718 }
719
720 list_add_tail(&acpi_device_bus_id->node, &acpi_bus_id_list);
721 }
722
723 if (device->wakeup.flags.valid)
724 list_add_tail(&device->wakeup_list, &acpi_wakeup_device_list);
725
726 acpi_store_pld_crc(device);
727
728 mutex_unlock(&acpi_device_lock);
729
730 result = device_add(&device->dev);
731 if (result) {
732 dev_err(&device->dev, "Error registering device\n");
733 goto err;
734 }
735
736 result = acpi_device_setup_files(device);
737 if (result)
738 pr_err("Error creating sysfs interface for device %s\n",
739 dev_name(&device->dev));
740
741 return 0;
742
743err:
744 mutex_lock(&acpi_device_lock);
745
746 list_del(&device->wakeup_list);
747
748err_unlock:
749 mutex_unlock(&acpi_device_lock);
750
751 acpi_detach_data(device->handle, acpi_scan_drop_device);
752
753 return result;
754}
755
756/* --------------------------------------------------------------------------
757 Device Enumeration
758 -------------------------------------------------------------------------- */
759static bool acpi_info_matches_ids(struct acpi_device_info *info,
760 const char * const ids[])
761{
762 struct acpi_pnp_device_id_list *cid_list = NULL;
763 int i, index;
764
765 if (!(info->valid & ACPI_VALID_HID))
766 return false;
767
768 index = match_string(ids, -1, info->hardware_id.string);
769 if (index >= 0)
770 return true;
771
772 if (info->valid & ACPI_VALID_CID)
773 cid_list = &info->compatible_id_list;
774
775 if (!cid_list)
776 return false;
777
778 for (i = 0; i < cid_list->count; i++) {
779 index = match_string(ids, -1, cid_list->ids[i].string);
780 if (index >= 0)
781 return true;
782 }
783
784 return false;
785}
786
787/* List of HIDs for which we ignore matching ACPI devices, when checking _DEP lists. */
788static const char * const acpi_ignore_dep_ids[] = {
789 "PNP0D80", /* Windows-compatible System Power Management Controller */
790 "INT33BD", /* Intel Baytrail Mailbox Device */
791 "LATT2021", /* Lattice FW Update Client Driver */
792 NULL
793};
794
795/* List of HIDs for which we honor deps of matching ACPI devs, when checking _DEP lists. */
796static const char * const acpi_honor_dep_ids[] = {
797 "INT3472", /* Camera sensor PMIC / clk and regulator info */
798 "INTC1059", /* IVSC (TGL) driver must be loaded to allow i2c access to camera sensors */
799 "INTC1095", /* IVSC (ADL) driver must be loaded to allow i2c access to camera sensors */
800 "INTC100A", /* IVSC (RPL) driver must be loaded to allow i2c access to camera sensors */
801 NULL
802};
803
804static struct acpi_device *acpi_find_parent_acpi_dev(acpi_handle handle)
805{
806 struct acpi_device *adev;
807
808 /*
809 * Fixed hardware devices do not appear in the namespace and do not
810 * have handles, but we fabricate acpi_devices for them, so we have
811 * to deal with them specially.
812 */
813 if (!handle)
814 return acpi_root;
815
816 do {
817 acpi_status status;
818
819 status = acpi_get_parent(handle, &handle);
820 if (ACPI_FAILURE(status)) {
821 if (status != AE_NULL_ENTRY)
822 return acpi_root;
823
824 return NULL;
825 }
826 adev = acpi_fetch_acpi_dev(handle);
827 } while (!adev);
828 return adev;
829}
830
831acpi_status
832acpi_bus_get_ejd(acpi_handle handle, acpi_handle *ejd)
833{
834 acpi_status status;
835 acpi_handle tmp;
836 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
837 union acpi_object *obj;
838
839 status = acpi_get_handle(handle, "_EJD", &tmp);
840 if (ACPI_FAILURE(status))
841 return status;
842
843 status = acpi_evaluate_object(handle, "_EJD", NULL, &buffer);
844 if (ACPI_SUCCESS(status)) {
845 obj = buffer.pointer;
846 status = acpi_get_handle(ACPI_ROOT_OBJECT, obj->string.pointer,
847 ejd);
848 kfree(buffer.pointer);
849 }
850 return status;
851}
852EXPORT_SYMBOL_GPL(acpi_bus_get_ejd);
853
854static int acpi_bus_extract_wakeup_device_power_package(struct acpi_device *dev)
855{
856 acpi_handle handle = dev->handle;
857 struct acpi_device_wakeup *wakeup = &dev->wakeup;
858 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
859 union acpi_object *package = NULL;
860 union acpi_object *element = NULL;
861 acpi_status status;
862 int err = -ENODATA;
863
864 INIT_LIST_HEAD(&wakeup->resources);
865
866 /* _PRW */
867 status = acpi_evaluate_object(handle, "_PRW", NULL, &buffer);
868 if (ACPI_FAILURE(status)) {
869 acpi_handle_info(handle, "_PRW evaluation failed: %s\n",
870 acpi_format_exception(status));
871 return err;
872 }
873
874 package = (union acpi_object *)buffer.pointer;
875
876 if (!package || package->package.count < 2)
877 goto out;
878
879 element = &(package->package.elements[0]);
880 if (!element)
881 goto out;
882
883 if (element->type == ACPI_TYPE_PACKAGE) {
884 if ((element->package.count < 2) ||
885 (element->package.elements[0].type !=
886 ACPI_TYPE_LOCAL_REFERENCE)
887 || (element->package.elements[1].type != ACPI_TYPE_INTEGER))
888 goto out;
889
890 wakeup->gpe_device =
891 element->package.elements[0].reference.handle;
892 wakeup->gpe_number =
893 (u32) element->package.elements[1].integer.value;
894 } else if (element->type == ACPI_TYPE_INTEGER) {
895 wakeup->gpe_device = NULL;
896 wakeup->gpe_number = element->integer.value;
897 } else {
898 goto out;
899 }
900
901 element = &(package->package.elements[1]);
902 if (element->type != ACPI_TYPE_INTEGER)
903 goto out;
904
905 wakeup->sleep_state = element->integer.value;
906
907 err = acpi_extract_power_resources(package, 2, &wakeup->resources);
908 if (err)
909 goto out;
910
911 if (!list_empty(&wakeup->resources)) {
912 int sleep_state;
913
914 err = acpi_power_wakeup_list_init(&wakeup->resources,
915 &sleep_state);
916 if (err) {
917 acpi_handle_warn(handle, "Retrieving current states "
918 "of wakeup power resources failed\n");
919 acpi_power_resources_list_free(&wakeup->resources);
920 goto out;
921 }
922 if (sleep_state < wakeup->sleep_state) {
923 acpi_handle_warn(handle, "Overriding _PRW sleep state "
924 "(S%d) by S%d from power resources\n",
925 (int)wakeup->sleep_state, sleep_state);
926 wakeup->sleep_state = sleep_state;
927 }
928 }
929
930 out:
931 kfree(buffer.pointer);
932 return err;
933}
934
935/* Do not use a button for S5 wakeup */
936#define ACPI_AVOID_WAKE_FROM_S5 BIT(0)
937
938static bool acpi_wakeup_gpe_init(struct acpi_device *device)
939{
940 static const struct acpi_device_id button_device_ids[] = {
941 {"PNP0C0C", 0}, /* Power button */
942 {"PNP0C0D", ACPI_AVOID_WAKE_FROM_S5}, /* Lid */
943 {"PNP0C0E", ACPI_AVOID_WAKE_FROM_S5}, /* Sleep button */
944 {"", 0},
945 };
946 struct acpi_device_wakeup *wakeup = &device->wakeup;
947 const struct acpi_device_id *match;
948 acpi_status status;
949
950 wakeup->flags.notifier_present = 0;
951
952 /* Power button, Lid switch always enable wakeup */
953 match = acpi_match_acpi_device(button_device_ids, device);
954 if (match) {
955 if ((match->driver_data & ACPI_AVOID_WAKE_FROM_S5) &&
956 wakeup->sleep_state == ACPI_STATE_S5)
957 wakeup->sleep_state = ACPI_STATE_S4;
958 acpi_mark_gpe_for_wake(wakeup->gpe_device, wakeup->gpe_number);
959 device_set_wakeup_capable(&device->dev, true);
960 return true;
961 }
962
963 status = acpi_setup_gpe_for_wake(device->handle, wakeup->gpe_device,
964 wakeup->gpe_number);
965 return ACPI_SUCCESS(status);
966}
967
968static void acpi_bus_get_wakeup_device_flags(struct acpi_device *device)
969{
970 int err;
971
972 /* Presence of _PRW indicates wake capable */
973 if (!acpi_has_method(device->handle, "_PRW"))
974 return;
975
976 err = acpi_bus_extract_wakeup_device_power_package(device);
977 if (err) {
978 dev_err(&device->dev, "Unable to extract wakeup power resources");
979 return;
980 }
981
982 device->wakeup.flags.valid = acpi_wakeup_gpe_init(device);
983 device->wakeup.prepare_count = 0;
984 /*
985 * Call _PSW/_DSW object to disable its ability to wake the sleeping
986 * system for the ACPI device with the _PRW object.
987 * The _PSW object is deprecated in ACPI 3.0 and is replaced by _DSW.
988 * So it is necessary to call _DSW object first. Only when it is not
989 * present will the _PSW object used.
990 */
991 err = acpi_device_sleep_wake(device, 0, 0, 0);
992 if (err)
993 pr_debug("error in _DSW or _PSW evaluation\n");
994}
995
996static void acpi_bus_init_power_state(struct acpi_device *device, int state)
997{
998 struct acpi_device_power_state *ps = &device->power.states[state];
999 char pathname[5] = { '_', 'P', 'R', '0' + state, '\0' };
1000 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1001 acpi_status status;
1002
1003 INIT_LIST_HEAD(&ps->resources);
1004
1005 /* Evaluate "_PRx" to get referenced power resources */
1006 status = acpi_evaluate_object(device->handle, pathname, NULL, &buffer);
1007 if (ACPI_SUCCESS(status)) {
1008 union acpi_object *package = buffer.pointer;
1009
1010 if (buffer.length && package
1011 && package->type == ACPI_TYPE_PACKAGE
1012 && package->package.count)
1013 acpi_extract_power_resources(package, 0, &ps->resources);
1014
1015 ACPI_FREE(buffer.pointer);
1016 }
1017
1018 /* Evaluate "_PSx" to see if we can do explicit sets */
1019 pathname[2] = 'S';
1020 if (acpi_has_method(device->handle, pathname))
1021 ps->flags.explicit_set = 1;
1022
1023 /* State is valid if there are means to put the device into it. */
1024 if (!list_empty(&ps->resources) || ps->flags.explicit_set)
1025 ps->flags.valid = 1;
1026
1027 ps->power = -1; /* Unknown - driver assigned */
1028 ps->latency = -1; /* Unknown - driver assigned */
1029}
1030
1031static void acpi_bus_get_power_flags(struct acpi_device *device)
1032{
1033 unsigned long long dsc = ACPI_STATE_D0;
1034 u32 i;
1035
1036 /* Presence of _PS0|_PR0 indicates 'power manageable' */
1037 if (!acpi_has_method(device->handle, "_PS0") &&
1038 !acpi_has_method(device->handle, "_PR0"))
1039 return;
1040
1041 device->flags.power_manageable = 1;
1042
1043 /*
1044 * Power Management Flags
1045 */
1046 if (acpi_has_method(device->handle, "_PSC"))
1047 device->power.flags.explicit_get = 1;
1048
1049 if (acpi_has_method(device->handle, "_IRC"))
1050 device->power.flags.inrush_current = 1;
1051
1052 if (acpi_has_method(device->handle, "_DSW"))
1053 device->power.flags.dsw_present = 1;
1054
1055 acpi_evaluate_integer(device->handle, "_DSC", NULL, &dsc);
1056 device->power.state_for_enumeration = dsc;
1057
1058 /*
1059 * Enumerate supported power management states
1060 */
1061 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++)
1062 acpi_bus_init_power_state(device, i);
1063
1064 INIT_LIST_HEAD(&device->power.states[ACPI_STATE_D3_COLD].resources);
1065
1066 /* Set the defaults for D0 and D3hot (always supported). */
1067 device->power.states[ACPI_STATE_D0].flags.valid = 1;
1068 device->power.states[ACPI_STATE_D0].power = 100;
1069 device->power.states[ACPI_STATE_D3_HOT].flags.valid = 1;
1070
1071 /*
1072 * Use power resources only if the D0 list of them is populated, because
1073 * some platforms may provide _PR3 only to indicate D3cold support and
1074 * in those cases the power resources list returned by it may be bogus.
1075 */
1076 if (!list_empty(&device->power.states[ACPI_STATE_D0].resources)) {
1077 device->power.flags.power_resources = 1;
1078 /*
1079 * D3cold is supported if the D3hot list of power resources is
1080 * not empty.
1081 */
1082 if (!list_empty(&device->power.states[ACPI_STATE_D3_HOT].resources))
1083 device->power.states[ACPI_STATE_D3_COLD].flags.valid = 1;
1084 }
1085
1086 if (acpi_bus_init_power(device))
1087 device->flags.power_manageable = 0;
1088}
1089
1090static void acpi_bus_get_flags(struct acpi_device *device)
1091{
1092 /* Presence of _STA indicates 'dynamic_status' */
1093 if (acpi_has_method(device->handle, "_STA"))
1094 device->flags.dynamic_status = 1;
1095
1096 /* Presence of _RMV indicates 'removable' */
1097 if (acpi_has_method(device->handle, "_RMV"))
1098 device->flags.removable = 1;
1099
1100 /* Presence of _EJD|_EJ0 indicates 'ejectable' */
1101 if (acpi_has_method(device->handle, "_EJD") ||
1102 acpi_has_method(device->handle, "_EJ0"))
1103 device->flags.ejectable = 1;
1104}
1105
1106static void acpi_device_get_busid(struct acpi_device *device)
1107{
1108 char bus_id[5] = { '?', 0 };
1109 struct acpi_buffer buffer = { sizeof(bus_id), bus_id };
1110 int i = 0;
1111
1112 /*
1113 * Bus ID
1114 * ------
1115 * The device's Bus ID is simply the object name.
1116 * TBD: Shouldn't this value be unique (within the ACPI namespace)?
1117 */
1118 if (!acpi_dev_parent(device)) {
1119 strcpy(device->pnp.bus_id, "ACPI");
1120 return;
1121 }
1122
1123 switch (device->device_type) {
1124 case ACPI_BUS_TYPE_POWER_BUTTON:
1125 strcpy(device->pnp.bus_id, "PWRF");
1126 break;
1127 case ACPI_BUS_TYPE_SLEEP_BUTTON:
1128 strcpy(device->pnp.bus_id, "SLPF");
1129 break;
1130 case ACPI_BUS_TYPE_ECDT_EC:
1131 strcpy(device->pnp.bus_id, "ECDT");
1132 break;
1133 default:
1134 acpi_get_name(device->handle, ACPI_SINGLE_NAME, &buffer);
1135 /* Clean up trailing underscores (if any) */
1136 for (i = 3; i > 1; i--) {
1137 if (bus_id[i] == '_')
1138 bus_id[i] = '\0';
1139 else
1140 break;
1141 }
1142 strcpy(device->pnp.bus_id, bus_id);
1143 break;
1144 }
1145}
1146
1147/*
1148 * acpi_ata_match - see if an acpi object is an ATA device
1149 *
1150 * If an acpi object has one of the ACPI ATA methods defined,
1151 * then we can safely call it an ATA device.
1152 */
1153bool acpi_ata_match(acpi_handle handle)
1154{
1155 return acpi_has_method(handle, "_GTF") ||
1156 acpi_has_method(handle, "_GTM") ||
1157 acpi_has_method(handle, "_STM") ||
1158 acpi_has_method(handle, "_SDD");
1159}
1160
1161/*
1162 * acpi_bay_match - see if an acpi object is an ejectable driver bay
1163 *
1164 * If an acpi object is ejectable and has one of the ACPI ATA methods defined,
1165 * then we can safely call it an ejectable drive bay
1166 */
1167bool acpi_bay_match(acpi_handle handle)
1168{
1169 acpi_handle phandle;
1170
1171 if (!acpi_has_method(handle, "_EJ0"))
1172 return false;
1173 if (acpi_ata_match(handle))
1174 return true;
1175 if (ACPI_FAILURE(acpi_get_parent(handle, &phandle)))
1176 return false;
1177
1178 return acpi_ata_match(phandle);
1179}
1180
1181bool acpi_device_is_battery(struct acpi_device *adev)
1182{
1183 struct acpi_hardware_id *hwid;
1184
1185 list_for_each_entry(hwid, &adev->pnp.ids, list)
1186 if (!strcmp("PNP0C0A", hwid->id))
1187 return true;
1188
1189 return false;
1190}
1191
1192static bool is_ejectable_bay(struct acpi_device *adev)
1193{
1194 acpi_handle handle = adev->handle;
1195
1196 if (acpi_has_method(handle, "_EJ0") && acpi_device_is_battery(adev))
1197 return true;
1198
1199 return acpi_bay_match(handle);
1200}
1201
1202/*
1203 * acpi_dock_match - see if an acpi object has a _DCK method
1204 */
1205bool acpi_dock_match(acpi_handle handle)
1206{
1207 return acpi_has_method(handle, "_DCK");
1208}
1209
1210static acpi_status
1211acpi_backlight_cap_match(acpi_handle handle, u32 level, void *context,
1212 void **return_value)
1213{
1214 long *cap = context;
1215
1216 if (acpi_has_method(handle, "_BCM") &&
1217 acpi_has_method(handle, "_BCL")) {
1218 acpi_handle_debug(handle, "Found generic backlight support\n");
1219 *cap |= ACPI_VIDEO_BACKLIGHT;
1220 /* We have backlight support, no need to scan further */
1221 return AE_CTRL_TERMINATE;
1222 }
1223 return 0;
1224}
1225
1226/* Returns true if the ACPI object is a video device which can be
1227 * handled by video.ko.
1228 * The device will get a Linux specific CID added in scan.c to
1229 * identify the device as an ACPI graphics device
1230 * Be aware that the graphics device may not be physically present
1231 * Use acpi_video_get_capabilities() to detect general ACPI video
1232 * capabilities of present cards
1233 */
1234long acpi_is_video_device(acpi_handle handle)
1235{
1236 long video_caps = 0;
1237
1238 /* Is this device able to support video switching ? */
1239 if (acpi_has_method(handle, "_DOD") || acpi_has_method(handle, "_DOS"))
1240 video_caps |= ACPI_VIDEO_OUTPUT_SWITCHING;
1241
1242 /* Is this device able to retrieve a video ROM ? */
1243 if (acpi_has_method(handle, "_ROM"))
1244 video_caps |= ACPI_VIDEO_ROM_AVAILABLE;
1245
1246 /* Is this device able to configure which video head to be POSTed ? */
1247 if (acpi_has_method(handle, "_VPO") &&
1248 acpi_has_method(handle, "_GPD") &&
1249 acpi_has_method(handle, "_SPD"))
1250 video_caps |= ACPI_VIDEO_DEVICE_POSTING;
1251
1252 /* Only check for backlight functionality if one of the above hit. */
1253 if (video_caps)
1254 acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
1255 ACPI_UINT32_MAX, acpi_backlight_cap_match, NULL,
1256 &video_caps, NULL);
1257
1258 return video_caps;
1259}
1260EXPORT_SYMBOL(acpi_is_video_device);
1261
1262const char *acpi_device_hid(struct acpi_device *device)
1263{
1264 struct acpi_hardware_id *hid;
1265
1266 if (list_empty(&device->pnp.ids))
1267 return dummy_hid;
1268
1269 hid = list_first_entry(&device->pnp.ids, struct acpi_hardware_id, list);
1270 return hid->id;
1271}
1272EXPORT_SYMBOL(acpi_device_hid);
1273
1274static void acpi_add_id(struct acpi_device_pnp *pnp, const char *dev_id)
1275{
1276 struct acpi_hardware_id *id;
1277
1278 id = kmalloc(sizeof(*id), GFP_KERNEL);
1279 if (!id)
1280 return;
1281
1282 id->id = kstrdup_const(dev_id, GFP_KERNEL);
1283 if (!id->id) {
1284 kfree(id);
1285 return;
1286 }
1287
1288 list_add_tail(&id->list, &pnp->ids);
1289 pnp->type.hardware_id = 1;
1290}
1291
1292/*
1293 * Old IBM workstations have a DSDT bug wherein the SMBus object
1294 * lacks the SMBUS01 HID and the methods do not have the necessary "_"
1295 * prefix. Work around this.
1296 */
1297static bool acpi_ibm_smbus_match(acpi_handle handle)
1298{
1299 char node_name[ACPI_PATH_SEGMENT_LENGTH];
1300 struct acpi_buffer path = { sizeof(node_name), node_name };
1301
1302 if (!dmi_name_in_vendors("IBM"))
1303 return false;
1304
1305 /* Look for SMBS object */
1306 if (ACPI_FAILURE(acpi_get_name(handle, ACPI_SINGLE_NAME, &path)) ||
1307 strcmp("SMBS", path.pointer))
1308 return false;
1309
1310 /* Does it have the necessary (but misnamed) methods? */
1311 if (acpi_has_method(handle, "SBI") &&
1312 acpi_has_method(handle, "SBR") &&
1313 acpi_has_method(handle, "SBW"))
1314 return true;
1315
1316 return false;
1317}
1318
1319static bool acpi_object_is_system_bus(acpi_handle handle)
1320{
1321 acpi_handle tmp;
1322
1323 if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_SB", &tmp)) &&
1324 tmp == handle)
1325 return true;
1326 if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_TZ", &tmp)) &&
1327 tmp == handle)
1328 return true;
1329
1330 return false;
1331}
1332
1333static void acpi_set_pnp_ids(acpi_handle handle, struct acpi_device_pnp *pnp,
1334 int device_type)
1335{
1336 struct acpi_device_info *info = NULL;
1337 struct acpi_pnp_device_id_list *cid_list;
1338 int i;
1339
1340 switch (device_type) {
1341 case ACPI_BUS_TYPE_DEVICE:
1342 if (handle == ACPI_ROOT_OBJECT) {
1343 acpi_add_id(pnp, ACPI_SYSTEM_HID);
1344 break;
1345 }
1346
1347 acpi_get_object_info(handle, &info);
1348 if (!info) {
1349 pr_err("%s: Error reading device info\n", __func__);
1350 return;
1351 }
1352
1353 if (info->valid & ACPI_VALID_HID) {
1354 acpi_add_id(pnp, info->hardware_id.string);
1355 pnp->type.platform_id = 1;
1356 }
1357 if (info->valid & ACPI_VALID_CID) {
1358 cid_list = &info->compatible_id_list;
1359 for (i = 0; i < cid_list->count; i++)
1360 acpi_add_id(pnp, cid_list->ids[i].string);
1361 }
1362 if (info->valid & ACPI_VALID_ADR) {
1363 pnp->bus_address = info->address;
1364 pnp->type.bus_address = 1;
1365 }
1366 if (info->valid & ACPI_VALID_UID)
1367 pnp->unique_id = kstrdup(info->unique_id.string,
1368 GFP_KERNEL);
1369 if (info->valid & ACPI_VALID_CLS)
1370 acpi_add_id(pnp, info->class_code.string);
1371
1372 kfree(info);
1373
1374 /*
1375 * Some devices don't reliably have _HIDs & _CIDs, so add
1376 * synthetic HIDs to make sure drivers can find them.
1377 */
1378 if (acpi_is_video_device(handle)) {
1379 acpi_add_id(pnp, ACPI_VIDEO_HID);
1380 pnp->type.backlight = 1;
1381 break;
1382 }
1383 if (acpi_bay_match(handle))
1384 acpi_add_id(pnp, ACPI_BAY_HID);
1385 else if (acpi_dock_match(handle))
1386 acpi_add_id(pnp, ACPI_DOCK_HID);
1387 else if (acpi_ibm_smbus_match(handle))
1388 acpi_add_id(pnp, ACPI_SMBUS_IBM_HID);
1389 else if (list_empty(&pnp->ids) &&
1390 acpi_object_is_system_bus(handle)) {
1391 /* \_SB, \_TZ, LNXSYBUS */
1392 acpi_add_id(pnp, ACPI_BUS_HID);
1393 strcpy(pnp->device_name, ACPI_BUS_DEVICE_NAME);
1394 strcpy(pnp->device_class, ACPI_BUS_CLASS);
1395 }
1396
1397 break;
1398 case ACPI_BUS_TYPE_POWER:
1399 acpi_add_id(pnp, ACPI_POWER_HID);
1400 break;
1401 case ACPI_BUS_TYPE_PROCESSOR:
1402 acpi_add_id(pnp, ACPI_PROCESSOR_OBJECT_HID);
1403 break;
1404 case ACPI_BUS_TYPE_THERMAL:
1405 acpi_add_id(pnp, ACPI_THERMAL_HID);
1406 break;
1407 case ACPI_BUS_TYPE_POWER_BUTTON:
1408 acpi_add_id(pnp, ACPI_BUTTON_HID_POWERF);
1409 break;
1410 case ACPI_BUS_TYPE_SLEEP_BUTTON:
1411 acpi_add_id(pnp, ACPI_BUTTON_HID_SLEEPF);
1412 break;
1413 case ACPI_BUS_TYPE_ECDT_EC:
1414 acpi_add_id(pnp, ACPI_ECDT_HID);
1415 break;
1416 }
1417}
1418
1419void acpi_free_pnp_ids(struct acpi_device_pnp *pnp)
1420{
1421 struct acpi_hardware_id *id, *tmp;
1422
1423 list_for_each_entry_safe(id, tmp, &pnp->ids, list) {
1424 kfree_const(id->id);
1425 kfree(id);
1426 }
1427 kfree(pnp->unique_id);
1428}
1429
1430/**
1431 * acpi_dma_supported - Check DMA support for the specified device.
1432 * @adev: The pointer to acpi device
1433 *
1434 * Return false if DMA is not supported. Otherwise, return true
1435 */
1436bool acpi_dma_supported(const struct acpi_device *adev)
1437{
1438 if (!adev)
1439 return false;
1440
1441 if (adev->flags.cca_seen)
1442 return true;
1443
1444 /*
1445 * Per ACPI 6.0 sec 6.2.17, assume devices can do cache-coherent
1446 * DMA on "Intel platforms". Presumably that includes all x86 and
1447 * ia64, and other arches will set CONFIG_ACPI_CCA_REQUIRED=y.
1448 */
1449 if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1450 return true;
1451
1452 return false;
1453}
1454
1455/**
1456 * acpi_get_dma_attr - Check the supported DMA attr for the specified device.
1457 * @adev: The pointer to acpi device
1458 *
1459 * Return enum dev_dma_attr.
1460 */
1461enum dev_dma_attr acpi_get_dma_attr(struct acpi_device *adev)
1462{
1463 if (!acpi_dma_supported(adev))
1464 return DEV_DMA_NOT_SUPPORTED;
1465
1466 if (adev->flags.coherent_dma)
1467 return DEV_DMA_COHERENT;
1468 else
1469 return DEV_DMA_NON_COHERENT;
1470}
1471
1472/**
1473 * acpi_dma_get_range() - Get device DMA parameters.
1474 *
1475 * @dev: device to configure
1476 * @map: pointer to DMA ranges result
1477 *
1478 * Evaluate DMA regions and return pointer to DMA regions on
1479 * parsing success; it does not update the passed in values on failure.
1480 *
1481 * Return 0 on success, < 0 on failure.
1482 */
1483int acpi_dma_get_range(struct device *dev, const struct bus_dma_region **map)
1484{
1485 struct acpi_device *adev;
1486 LIST_HEAD(list);
1487 struct resource_entry *rentry;
1488 int ret;
1489 struct device *dma_dev = dev;
1490 struct bus_dma_region *r;
1491
1492 /*
1493 * Walk the device tree chasing an ACPI companion with a _DMA
1494 * object while we go. Stop if we find a device with an ACPI
1495 * companion containing a _DMA method.
1496 */
1497 do {
1498 adev = ACPI_COMPANION(dma_dev);
1499 if (adev && acpi_has_method(adev->handle, METHOD_NAME__DMA))
1500 break;
1501
1502 dma_dev = dma_dev->parent;
1503 } while (dma_dev);
1504
1505 if (!dma_dev)
1506 return -ENODEV;
1507
1508 if (!acpi_has_method(adev->handle, METHOD_NAME__CRS)) {
1509 acpi_handle_warn(adev->handle, "_DMA is valid only if _CRS is present\n");
1510 return -EINVAL;
1511 }
1512
1513 ret = acpi_dev_get_dma_resources(adev, &list);
1514 if (ret > 0) {
1515 r = kcalloc(ret + 1, sizeof(*r), GFP_KERNEL);
1516 if (!r) {
1517 ret = -ENOMEM;
1518 goto out;
1519 }
1520
1521 *map = r;
1522
1523 list_for_each_entry(rentry, &list, node) {
1524 if (rentry->res->start >= rentry->res->end) {
1525 kfree(*map);
1526 *map = NULL;
1527 ret = -EINVAL;
1528 dev_dbg(dma_dev, "Invalid DMA regions configuration\n");
1529 goto out;
1530 }
1531
1532 r->cpu_start = rentry->res->start;
1533 r->dma_start = rentry->res->start - rentry->offset;
1534 r->size = resource_size(rentry->res);
1535 r++;
1536 }
1537 }
1538 out:
1539 acpi_dev_free_resource_list(&list);
1540
1541 return ret >= 0 ? 0 : ret;
1542}
1543
1544#ifdef CONFIG_IOMMU_API
1545int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1546 struct fwnode_handle *fwnode,
1547 const struct iommu_ops *ops)
1548{
1549 int ret = iommu_fwspec_init(dev, fwnode, ops);
1550
1551 if (!ret)
1552 ret = iommu_fwspec_add_ids(dev, &id, 1);
1553
1554 return ret;
1555}
1556
1557static inline const struct iommu_ops *acpi_iommu_fwspec_ops(struct device *dev)
1558{
1559 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
1560
1561 return fwspec ? fwspec->ops : NULL;
1562}
1563
1564static int acpi_iommu_configure_id(struct device *dev, const u32 *id_in)
1565{
1566 int err;
1567 const struct iommu_ops *ops;
1568
1569 /* Serialise to make dev->iommu stable under our potential fwspec */
1570 mutex_lock(&iommu_probe_device_lock);
1571 /*
1572 * If we already translated the fwspec there is nothing left to do,
1573 * return the iommu_ops.
1574 */
1575 ops = acpi_iommu_fwspec_ops(dev);
1576 if (ops) {
1577 mutex_unlock(&iommu_probe_device_lock);
1578 return 0;
1579 }
1580
1581 err = iort_iommu_configure_id(dev, id_in);
1582 if (err && err != -EPROBE_DEFER)
1583 err = viot_iommu_configure(dev);
1584 mutex_unlock(&iommu_probe_device_lock);
1585
1586 /*
1587 * If we have reason to believe the IOMMU driver missed the initial
1588 * iommu_probe_device() call for dev, replay it to get things in order.
1589 */
1590 if (!err && dev->bus)
1591 err = iommu_probe_device(dev);
1592
1593 /* Ignore all other errors apart from EPROBE_DEFER */
1594 if (err == -EPROBE_DEFER) {
1595 return err;
1596 } else if (err) {
1597 dev_dbg(dev, "Adding to IOMMU failed: %d\n", err);
1598 return -ENODEV;
1599 }
1600 if (!acpi_iommu_fwspec_ops(dev))
1601 return -ENODEV;
1602 return 0;
1603}
1604
1605#else /* !CONFIG_IOMMU_API */
1606
1607int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1608 struct fwnode_handle *fwnode,
1609 const struct iommu_ops *ops)
1610{
1611 return -ENODEV;
1612}
1613
1614static int acpi_iommu_configure_id(struct device *dev, const u32 *id_in)
1615{
1616 return -ENODEV;
1617}
1618
1619#endif /* !CONFIG_IOMMU_API */
1620
1621/**
1622 * acpi_dma_configure_id - Set-up DMA configuration for the device.
1623 * @dev: The pointer to the device
1624 * @attr: device dma attributes
1625 * @input_id: input device id const value pointer
1626 */
1627int acpi_dma_configure_id(struct device *dev, enum dev_dma_attr attr,
1628 const u32 *input_id)
1629{
1630 int ret;
1631
1632 if (attr == DEV_DMA_NOT_SUPPORTED) {
1633 set_dma_ops(dev, &dma_dummy_ops);
1634 return 0;
1635 }
1636
1637 acpi_arch_dma_setup(dev);
1638
1639 ret = acpi_iommu_configure_id(dev, input_id);
1640 if (ret == -EPROBE_DEFER)
1641 return -EPROBE_DEFER;
1642
1643 /*
1644 * Historically this routine doesn't fail driver probing due to errors
1645 * in acpi_iommu_configure_id()
1646 */
1647
1648 arch_setup_dma_ops(dev, 0, U64_MAX, attr == DEV_DMA_COHERENT);
1649
1650 return 0;
1651}
1652EXPORT_SYMBOL_GPL(acpi_dma_configure_id);
1653
1654static void acpi_init_coherency(struct acpi_device *adev)
1655{
1656 unsigned long long cca = 0;
1657 acpi_status status;
1658 struct acpi_device *parent = acpi_dev_parent(adev);
1659
1660 if (parent && parent->flags.cca_seen) {
1661 /*
1662 * From ACPI spec, OSPM will ignore _CCA if an ancestor
1663 * already saw one.
1664 */
1665 adev->flags.cca_seen = 1;
1666 cca = parent->flags.coherent_dma;
1667 } else {
1668 status = acpi_evaluate_integer(adev->handle, "_CCA",
1669 NULL, &cca);
1670 if (ACPI_SUCCESS(status))
1671 adev->flags.cca_seen = 1;
1672 else if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1673 /*
1674 * If architecture does not specify that _CCA is
1675 * required for DMA-able devices (e.g. x86),
1676 * we default to _CCA=1.
1677 */
1678 cca = 1;
1679 else
1680 acpi_handle_debug(adev->handle,
1681 "ACPI device is missing _CCA.\n");
1682 }
1683
1684 adev->flags.coherent_dma = cca;
1685}
1686
1687static int acpi_check_serial_bus_slave(struct acpi_resource *ares, void *data)
1688{
1689 bool *is_serial_bus_slave_p = data;
1690
1691 if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
1692 return 1;
1693
1694 *is_serial_bus_slave_p = true;
1695
1696 /* no need to do more checking */
1697 return -1;
1698}
1699
1700static bool acpi_is_indirect_io_slave(struct acpi_device *device)
1701{
1702 struct acpi_device *parent = acpi_dev_parent(device);
1703 static const struct acpi_device_id indirect_io_hosts[] = {
1704 {"HISI0191", 0},
1705 {}
1706 };
1707
1708 return parent && !acpi_match_device_ids(parent, indirect_io_hosts);
1709}
1710
1711static bool acpi_device_enumeration_by_parent(struct acpi_device *device)
1712{
1713 struct list_head resource_list;
1714 bool is_serial_bus_slave = false;
1715 static const struct acpi_device_id ignore_serial_bus_ids[] = {
1716 /*
1717 * These devices have multiple SerialBus resources and a client
1718 * device must be instantiated for each of them, each with
1719 * its own device id.
1720 * Normally we only instantiate one client device for the first
1721 * resource, using the ACPI HID as id. These special cases are handled
1722 * by the drivers/platform/x86/serial-multi-instantiate.c driver, which
1723 * knows which client device id to use for each resource.
1724 */
1725 {"BSG1160", },
1726 {"BSG2150", },
1727 {"CSC3551", },
1728 {"CSC3556", },
1729 {"INT33FE", },
1730 {"INT3515", },
1731 /* Non-conforming _HID for Cirrus Logic already released */
1732 {"CLSA0100", },
1733 {"CLSA0101", },
1734 /*
1735 * Some ACPI devs contain SerialBus resources even though they are not
1736 * attached to a serial bus at all.
1737 */
1738 {ACPI_VIDEO_HID, },
1739 {"MSHW0028", },
1740 /*
1741 * HIDs of device with an UartSerialBusV2 resource for which userspace
1742 * expects a regular tty cdev to be created (instead of the in kernel
1743 * serdev) and which have a kernel driver which expects a platform_dev
1744 * such as the rfkill-gpio driver.
1745 */
1746 {"BCM4752", },
1747 {"LNV4752", },
1748 {}
1749 };
1750
1751 if (acpi_is_indirect_io_slave(device))
1752 return true;
1753
1754 /* Macs use device properties in lieu of _CRS resources */
1755 if (x86_apple_machine &&
1756 (fwnode_property_present(&device->fwnode, "spiSclkPeriod") ||
1757 fwnode_property_present(&device->fwnode, "i2cAddress") ||
1758 fwnode_property_present(&device->fwnode, "baud")))
1759 return true;
1760
1761 if (!acpi_match_device_ids(device, ignore_serial_bus_ids))
1762 return false;
1763
1764 INIT_LIST_HEAD(&resource_list);
1765 acpi_dev_get_resources(device, &resource_list,
1766 acpi_check_serial_bus_slave,
1767 &is_serial_bus_slave);
1768 acpi_dev_free_resource_list(&resource_list);
1769
1770 return is_serial_bus_slave;
1771}
1772
1773void acpi_init_device_object(struct acpi_device *device, acpi_handle handle,
1774 int type, void (*release)(struct device *))
1775{
1776 struct acpi_device *parent = acpi_find_parent_acpi_dev(handle);
1777
1778 INIT_LIST_HEAD(&device->pnp.ids);
1779 device->device_type = type;
1780 device->handle = handle;
1781 device->dev.parent = parent ? &parent->dev : NULL;
1782 device->dev.release = release;
1783 device->dev.bus = &acpi_bus_type;
1784 fwnode_init(&device->fwnode, &acpi_device_fwnode_ops);
1785 acpi_set_device_status(device, ACPI_STA_DEFAULT);
1786 acpi_device_get_busid(device);
1787 acpi_set_pnp_ids(handle, &device->pnp, type);
1788 acpi_init_properties(device);
1789 acpi_bus_get_flags(device);
1790 device->flags.match_driver = false;
1791 device->flags.initialized = true;
1792 device->flags.enumeration_by_parent =
1793 acpi_device_enumeration_by_parent(device);
1794 acpi_device_clear_enumerated(device);
1795 device_initialize(&device->dev);
1796 dev_set_uevent_suppress(&device->dev, true);
1797 acpi_init_coherency(device);
1798}
1799
1800static void acpi_scan_dep_init(struct acpi_device *adev)
1801{
1802 struct acpi_dep_data *dep;
1803
1804 list_for_each_entry(dep, &acpi_dep_list, node) {
1805 if (dep->consumer == adev->handle) {
1806 if (dep->honor_dep)
1807 adev->flags.honor_deps = 1;
1808
1809 adev->dep_unmet++;
1810 }
1811 }
1812}
1813
1814void acpi_device_add_finalize(struct acpi_device *device)
1815{
1816 dev_set_uevent_suppress(&device->dev, false);
1817 kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1818}
1819
1820static void acpi_scan_init_status(struct acpi_device *adev)
1821{
1822 if (acpi_bus_get_status(adev))
1823 acpi_set_device_status(adev, 0);
1824}
1825
1826static int acpi_add_single_object(struct acpi_device **child,
1827 acpi_handle handle, int type, bool dep_init)
1828{
1829 struct acpi_device *device;
1830 bool release_dep_lock = false;
1831 int result;
1832
1833 device = kzalloc(sizeof(struct acpi_device), GFP_KERNEL);
1834 if (!device)
1835 return -ENOMEM;
1836
1837 acpi_init_device_object(device, handle, type, acpi_device_release);
1838 /*
1839 * Getting the status is delayed till here so that we can call
1840 * acpi_bus_get_status() and use its quirk handling. Note that
1841 * this must be done before the get power-/wakeup_dev-flags calls.
1842 */
1843 if (type == ACPI_BUS_TYPE_DEVICE || type == ACPI_BUS_TYPE_PROCESSOR) {
1844 if (dep_init) {
1845 mutex_lock(&acpi_dep_list_lock);
1846 /*
1847 * Hold the lock until the acpi_tie_acpi_dev() call
1848 * below to prevent concurrent acpi_scan_clear_dep()
1849 * from deleting a dependency list entry without
1850 * updating dep_unmet for the device.
1851 */
1852 release_dep_lock = true;
1853 acpi_scan_dep_init(device);
1854 }
1855 acpi_scan_init_status(device);
1856 }
1857
1858 acpi_bus_get_power_flags(device);
1859 acpi_bus_get_wakeup_device_flags(device);
1860
1861 result = acpi_tie_acpi_dev(device);
1862
1863 if (release_dep_lock)
1864 mutex_unlock(&acpi_dep_list_lock);
1865
1866 if (!result)
1867 result = acpi_device_add(device);
1868
1869 if (result) {
1870 acpi_device_release(&device->dev);
1871 return result;
1872 }
1873
1874 acpi_power_add_remove_device(device, true);
1875 acpi_device_add_finalize(device);
1876
1877 acpi_handle_debug(handle, "Added as %s, parent %s\n",
1878 dev_name(&device->dev), device->dev.parent ?
1879 dev_name(device->dev.parent) : "(null)");
1880
1881 *child = device;
1882 return 0;
1883}
1884
1885static acpi_status acpi_get_resource_memory(struct acpi_resource *ares,
1886 void *context)
1887{
1888 struct resource *res = context;
1889
1890 if (acpi_dev_resource_memory(ares, res))
1891 return AE_CTRL_TERMINATE;
1892
1893 return AE_OK;
1894}
1895
1896static bool acpi_device_should_be_hidden(acpi_handle handle)
1897{
1898 acpi_status status;
1899 struct resource res;
1900
1901 /* Check if it should ignore the UART device */
1902 if (!(spcr_uart_addr && acpi_has_method(handle, METHOD_NAME__CRS)))
1903 return false;
1904
1905 /*
1906 * The UART device described in SPCR table is assumed to have only one
1907 * memory resource present. So we only look for the first one here.
1908 */
1909 status = acpi_walk_resources(handle, METHOD_NAME__CRS,
1910 acpi_get_resource_memory, &res);
1911 if (ACPI_FAILURE(status) || res.start != spcr_uart_addr)
1912 return false;
1913
1914 acpi_handle_info(handle, "The UART device @%pa in SPCR table will be hidden\n",
1915 &res.start);
1916
1917 return true;
1918}
1919
1920bool acpi_device_is_present(const struct acpi_device *adev)
1921{
1922 return adev->status.present || adev->status.functional;
1923}
1924
1925static bool acpi_scan_handler_matching(struct acpi_scan_handler *handler,
1926 const char *idstr,
1927 const struct acpi_device_id **matchid)
1928{
1929 const struct acpi_device_id *devid;
1930
1931 if (handler->match)
1932 return handler->match(idstr, matchid);
1933
1934 for (devid = handler->ids; devid->id[0]; devid++)
1935 if (!strcmp((char *)devid->id, idstr)) {
1936 if (matchid)
1937 *matchid = devid;
1938
1939 return true;
1940 }
1941
1942 return false;
1943}
1944
1945static struct acpi_scan_handler *acpi_scan_match_handler(const char *idstr,
1946 const struct acpi_device_id **matchid)
1947{
1948 struct acpi_scan_handler *handler;
1949
1950 list_for_each_entry(handler, &acpi_scan_handlers_list, list_node)
1951 if (acpi_scan_handler_matching(handler, idstr, matchid))
1952 return handler;
1953
1954 return NULL;
1955}
1956
1957void acpi_scan_hotplug_enabled(struct acpi_hotplug_profile *hotplug, bool val)
1958{
1959 if (!!hotplug->enabled == !!val)
1960 return;
1961
1962 mutex_lock(&acpi_scan_lock);
1963
1964 hotplug->enabled = val;
1965
1966 mutex_unlock(&acpi_scan_lock);
1967}
1968
1969static void acpi_scan_init_hotplug(struct acpi_device *adev)
1970{
1971 struct acpi_hardware_id *hwid;
1972
1973 if (acpi_dock_match(adev->handle) || is_ejectable_bay(adev)) {
1974 acpi_dock_add(adev);
1975 return;
1976 }
1977 list_for_each_entry(hwid, &adev->pnp.ids, list) {
1978 struct acpi_scan_handler *handler;
1979
1980 handler = acpi_scan_match_handler(hwid->id, NULL);
1981 if (handler) {
1982 adev->flags.hotplug_notify = true;
1983 break;
1984 }
1985 }
1986}
1987
1988static u32 acpi_scan_check_dep(acpi_handle handle)
1989{
1990 struct acpi_handle_list dep_devices;
1991 u32 count;
1992 int i;
1993
1994 /*
1995 * Check for _HID here to avoid deferring the enumeration of:
1996 * 1. PCI devices.
1997 * 2. ACPI nodes describing USB ports.
1998 * Still, checking for _HID catches more then just these cases ...
1999 */
2000 if (!acpi_has_method(handle, "_DEP") || !acpi_has_method(handle, "_HID"))
2001 return 0;
2002
2003 if (!acpi_evaluate_reference(handle, "_DEP", NULL, &dep_devices)) {
2004 acpi_handle_debug(handle, "Failed to evaluate _DEP.\n");
2005 return 0;
2006 }
2007
2008 for (count = 0, i = 0; i < dep_devices.count; i++) {
2009 struct acpi_device_info *info;
2010 struct acpi_dep_data *dep;
2011 bool skip, honor_dep;
2012 acpi_status status;
2013
2014 status = acpi_get_object_info(dep_devices.handles[i], &info);
2015 if (ACPI_FAILURE(status)) {
2016 acpi_handle_debug(handle, "Error reading _DEP device info\n");
2017 continue;
2018 }
2019
2020 skip = acpi_info_matches_ids(info, acpi_ignore_dep_ids);
2021 honor_dep = acpi_info_matches_ids(info, acpi_honor_dep_ids);
2022 kfree(info);
2023
2024 if (skip)
2025 continue;
2026
2027 dep = kzalloc(sizeof(*dep), GFP_KERNEL);
2028 if (!dep)
2029 continue;
2030
2031 count++;
2032
2033 dep->supplier = dep_devices.handles[i];
2034 dep->consumer = handle;
2035 dep->honor_dep = honor_dep;
2036
2037 mutex_lock(&acpi_dep_list_lock);
2038 list_add_tail(&dep->node , &acpi_dep_list);
2039 mutex_unlock(&acpi_dep_list_lock);
2040 }
2041
2042 acpi_handle_list_free(&dep_devices);
2043 return count;
2044}
2045
2046static acpi_status acpi_scan_check_crs_csi2_cb(acpi_handle handle, u32 a, void *b, void **c)
2047{
2048 acpi_mipi_check_crs_csi2(handle);
2049 return AE_OK;
2050}
2051
2052static acpi_status acpi_bus_check_add(acpi_handle handle, bool first_pass,
2053 struct acpi_device **adev_p)
2054{
2055 struct acpi_device *device = acpi_fetch_acpi_dev(handle);
2056 acpi_object_type acpi_type;
2057 int type;
2058
2059 if (device)
2060 goto out;
2061
2062 if (ACPI_FAILURE(acpi_get_type(handle, &acpi_type)))
2063 return AE_OK;
2064
2065 switch (acpi_type) {
2066 case ACPI_TYPE_DEVICE:
2067 if (acpi_device_should_be_hidden(handle))
2068 return AE_OK;
2069
2070 if (first_pass) {
2071 acpi_mipi_check_crs_csi2(handle);
2072
2073 /* Bail out if there are dependencies. */
2074 if (acpi_scan_check_dep(handle) > 0) {
2075 /*
2076 * The entire CSI-2 connection graph needs to be
2077 * extracted before any drivers or scan handlers
2078 * are bound to struct device objects, so scan
2079 * _CRS CSI-2 resource descriptors for all
2080 * devices below the current handle.
2081 */
2082 acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
2083 ACPI_UINT32_MAX,
2084 acpi_scan_check_crs_csi2_cb,
2085 NULL, NULL, NULL);
2086 return AE_CTRL_DEPTH;
2087 }
2088 }
2089
2090 fallthrough;
2091 case ACPI_TYPE_ANY: /* for ACPI_ROOT_OBJECT */
2092 type = ACPI_BUS_TYPE_DEVICE;
2093 break;
2094
2095 case ACPI_TYPE_PROCESSOR:
2096 type = ACPI_BUS_TYPE_PROCESSOR;
2097 break;
2098
2099 case ACPI_TYPE_THERMAL:
2100 type = ACPI_BUS_TYPE_THERMAL;
2101 break;
2102
2103 case ACPI_TYPE_POWER:
2104 acpi_add_power_resource(handle);
2105 fallthrough;
2106 default:
2107 return AE_OK;
2108 }
2109
2110 /*
2111 * If first_pass is true at this point, the device has no dependencies,
2112 * or the creation of the device object would have been postponed above.
2113 */
2114 acpi_add_single_object(&device, handle, type, !first_pass);
2115 if (!device)
2116 return AE_CTRL_DEPTH;
2117
2118 acpi_scan_init_hotplug(device);
2119
2120out:
2121 if (!*adev_p)
2122 *adev_p = device;
2123
2124 return AE_OK;
2125}
2126
2127static acpi_status acpi_bus_check_add_1(acpi_handle handle, u32 lvl_not_used,
2128 void *not_used, void **ret_p)
2129{
2130 return acpi_bus_check_add(handle, true, (struct acpi_device **)ret_p);
2131}
2132
2133static acpi_status acpi_bus_check_add_2(acpi_handle handle, u32 lvl_not_used,
2134 void *not_used, void **ret_p)
2135{
2136 return acpi_bus_check_add(handle, false, (struct acpi_device **)ret_p);
2137}
2138
2139static void acpi_default_enumeration(struct acpi_device *device)
2140{
2141 /*
2142 * Do not enumerate devices with enumeration_by_parent flag set as
2143 * they will be enumerated by their respective parents.
2144 */
2145 if (!device->flags.enumeration_by_parent) {
2146 acpi_create_platform_device(device, NULL);
2147 acpi_device_set_enumerated(device);
2148 } else {
2149 blocking_notifier_call_chain(&acpi_reconfig_chain,
2150 ACPI_RECONFIG_DEVICE_ADD, device);
2151 }
2152}
2153
2154static const struct acpi_device_id generic_device_ids[] = {
2155 {ACPI_DT_NAMESPACE_HID, },
2156 {"", },
2157};
2158
2159static int acpi_generic_device_attach(struct acpi_device *adev,
2160 const struct acpi_device_id *not_used)
2161{
2162 /*
2163 * Since ACPI_DT_NAMESPACE_HID is the only ID handled here, the test
2164 * below can be unconditional.
2165 */
2166 if (adev->data.of_compatible)
2167 acpi_default_enumeration(adev);
2168
2169 return 1;
2170}
2171
2172static struct acpi_scan_handler generic_device_handler = {
2173 .ids = generic_device_ids,
2174 .attach = acpi_generic_device_attach,
2175};
2176
2177static int acpi_scan_attach_handler(struct acpi_device *device)
2178{
2179 struct acpi_hardware_id *hwid;
2180 int ret = 0;
2181
2182 list_for_each_entry(hwid, &device->pnp.ids, list) {
2183 const struct acpi_device_id *devid;
2184 struct acpi_scan_handler *handler;
2185
2186 handler = acpi_scan_match_handler(hwid->id, &devid);
2187 if (handler) {
2188 if (!handler->attach) {
2189 device->pnp.type.platform_id = 0;
2190 continue;
2191 }
2192 device->handler = handler;
2193 ret = handler->attach(device, devid);
2194 if (ret > 0)
2195 break;
2196
2197 device->handler = NULL;
2198 if (ret < 0)
2199 break;
2200 }
2201 }
2202
2203 return ret;
2204}
2205
2206static int acpi_bus_attach(struct acpi_device *device, void *first_pass)
2207{
2208 bool skip = !first_pass && device->flags.visited;
2209 acpi_handle ejd;
2210 int ret;
2211
2212 if (skip)
2213 goto ok;
2214
2215 if (ACPI_SUCCESS(acpi_bus_get_ejd(device->handle, &ejd)))
2216 register_dock_dependent_device(device, ejd);
2217
2218 acpi_bus_get_status(device);
2219 /* Skip devices that are not ready for enumeration (e.g. not present) */
2220 if (!acpi_dev_ready_for_enumeration(device)) {
2221 device->flags.initialized = false;
2222 acpi_device_clear_enumerated(device);
2223 device->flags.power_manageable = 0;
2224 return 0;
2225 }
2226 if (device->handler)
2227 goto ok;
2228
2229 if (!device->flags.initialized) {
2230 device->flags.power_manageable =
2231 device->power.states[ACPI_STATE_D0].flags.valid;
2232 if (acpi_bus_init_power(device))
2233 device->flags.power_manageable = 0;
2234
2235 device->flags.initialized = true;
2236 } else if (device->flags.visited) {
2237 goto ok;
2238 }
2239
2240 ret = acpi_scan_attach_handler(device);
2241 if (ret < 0)
2242 return 0;
2243
2244 device->flags.match_driver = true;
2245 if (ret > 0 && !device->flags.enumeration_by_parent) {
2246 acpi_device_set_enumerated(device);
2247 goto ok;
2248 }
2249
2250 ret = device_attach(&device->dev);
2251 if (ret < 0)
2252 return 0;
2253
2254 if (device->pnp.type.platform_id || device->flags.enumeration_by_parent)
2255 acpi_default_enumeration(device);
2256 else
2257 acpi_device_set_enumerated(device);
2258
2259ok:
2260 acpi_dev_for_each_child(device, acpi_bus_attach, first_pass);
2261
2262 if (!skip && device->handler && device->handler->hotplug.notify_online)
2263 device->handler->hotplug.notify_online(device);
2264
2265 return 0;
2266}
2267
2268static int acpi_dev_get_next_consumer_dev_cb(struct acpi_dep_data *dep, void *data)
2269{
2270 struct acpi_device **adev_p = data;
2271 struct acpi_device *adev = *adev_p;
2272
2273 /*
2274 * If we're passed a 'previous' consumer device then we need to skip
2275 * any consumers until we meet the previous one, and then NULL @data
2276 * so the next one can be returned.
2277 */
2278 if (adev) {
2279 if (dep->consumer == adev->handle)
2280 *adev_p = NULL;
2281
2282 return 0;
2283 }
2284
2285 adev = acpi_get_acpi_dev(dep->consumer);
2286 if (adev) {
2287 *(struct acpi_device **)data = adev;
2288 return 1;
2289 }
2290 /* Continue parsing if the device object is not present. */
2291 return 0;
2292}
2293
2294struct acpi_scan_clear_dep_work {
2295 struct work_struct work;
2296 struct acpi_device *adev;
2297};
2298
2299static void acpi_scan_clear_dep_fn(struct work_struct *work)
2300{
2301 struct acpi_scan_clear_dep_work *cdw;
2302
2303 cdw = container_of(work, struct acpi_scan_clear_dep_work, work);
2304
2305 acpi_scan_lock_acquire();
2306 acpi_bus_attach(cdw->adev, (void *)true);
2307 acpi_scan_lock_release();
2308
2309 acpi_dev_put(cdw->adev);
2310 kfree(cdw);
2311}
2312
2313static bool acpi_scan_clear_dep_queue(struct acpi_device *adev)
2314{
2315 struct acpi_scan_clear_dep_work *cdw;
2316
2317 if (adev->dep_unmet)
2318 return false;
2319
2320 cdw = kmalloc(sizeof(*cdw), GFP_KERNEL);
2321 if (!cdw)
2322 return false;
2323
2324 cdw->adev = adev;
2325 INIT_WORK(&cdw->work, acpi_scan_clear_dep_fn);
2326 /*
2327 * Since the work function may block on the lock until the entire
2328 * initial enumeration of devices is complete, put it into the unbound
2329 * workqueue.
2330 */
2331 queue_work(system_unbound_wq, &cdw->work);
2332
2333 return true;
2334}
2335
2336static void acpi_scan_delete_dep_data(struct acpi_dep_data *dep)
2337{
2338 list_del(&dep->node);
2339 kfree(dep);
2340}
2341
2342static int acpi_scan_clear_dep(struct acpi_dep_data *dep, void *data)
2343{
2344 struct acpi_device *adev = acpi_get_acpi_dev(dep->consumer);
2345
2346 if (adev) {
2347 adev->dep_unmet--;
2348 if (!acpi_scan_clear_dep_queue(adev))
2349 acpi_dev_put(adev);
2350 }
2351
2352 if (dep->free_when_met)
2353 acpi_scan_delete_dep_data(dep);
2354 else
2355 dep->met = true;
2356
2357 return 0;
2358}
2359
2360/**
2361 * acpi_walk_dep_device_list - Apply a callback to every entry in acpi_dep_list
2362 * @handle: The ACPI handle of the supplier device
2363 * @callback: Pointer to the callback function to apply
2364 * @data: Pointer to some data to pass to the callback
2365 *
2366 * The return value of the callback determines this function's behaviour. If 0
2367 * is returned we continue to iterate over acpi_dep_list. If a positive value
2368 * is returned then the loop is broken but this function returns 0. If a
2369 * negative value is returned by the callback then the loop is broken and that
2370 * value is returned as the final error.
2371 */
2372static int acpi_walk_dep_device_list(acpi_handle handle,
2373 int (*callback)(struct acpi_dep_data *, void *),
2374 void *data)
2375{
2376 struct acpi_dep_data *dep, *tmp;
2377 int ret = 0;
2378
2379 mutex_lock(&acpi_dep_list_lock);
2380 list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) {
2381 if (dep->supplier == handle) {
2382 ret = callback(dep, data);
2383 if (ret)
2384 break;
2385 }
2386 }
2387 mutex_unlock(&acpi_dep_list_lock);
2388
2389 return ret > 0 ? 0 : ret;
2390}
2391
2392/**
2393 * acpi_dev_clear_dependencies - Inform consumers that the device is now active
2394 * @supplier: Pointer to the supplier &struct acpi_device
2395 *
2396 * Clear dependencies on the given device.
2397 */
2398void acpi_dev_clear_dependencies(struct acpi_device *supplier)
2399{
2400 acpi_walk_dep_device_list(supplier->handle, acpi_scan_clear_dep, NULL);
2401}
2402EXPORT_SYMBOL_GPL(acpi_dev_clear_dependencies);
2403
2404/**
2405 * acpi_dev_ready_for_enumeration - Check if the ACPI device is ready for enumeration
2406 * @device: Pointer to the &struct acpi_device to check
2407 *
2408 * Check if the device is present and has no unmet dependencies.
2409 *
2410 * Return true if the device is ready for enumeratino. Otherwise, return false.
2411 */
2412bool acpi_dev_ready_for_enumeration(const struct acpi_device *device)
2413{
2414 if (device->flags.honor_deps && device->dep_unmet)
2415 return false;
2416
2417 return acpi_device_is_present(device);
2418}
2419EXPORT_SYMBOL_GPL(acpi_dev_ready_for_enumeration);
2420
2421/**
2422 * acpi_dev_get_next_consumer_dev - Return the next adev dependent on @supplier
2423 * @supplier: Pointer to the dependee device
2424 * @start: Pointer to the current dependent device
2425 *
2426 * Returns the next &struct acpi_device which declares itself dependent on
2427 * @supplier via the _DEP buffer, parsed from the acpi_dep_list.
2428 *
2429 * If the returned adev is not passed as @start to this function, the caller is
2430 * responsible for putting the reference to adev when it is no longer needed.
2431 */
2432struct acpi_device *acpi_dev_get_next_consumer_dev(struct acpi_device *supplier,
2433 struct acpi_device *start)
2434{
2435 struct acpi_device *adev = start;
2436
2437 acpi_walk_dep_device_list(supplier->handle,
2438 acpi_dev_get_next_consumer_dev_cb, &adev);
2439
2440 acpi_dev_put(start);
2441
2442 if (adev == start)
2443 return NULL;
2444
2445 return adev;
2446}
2447EXPORT_SYMBOL_GPL(acpi_dev_get_next_consumer_dev);
2448
2449static void acpi_scan_postponed_branch(acpi_handle handle)
2450{
2451 struct acpi_device *adev = NULL;
2452
2453 if (ACPI_FAILURE(acpi_bus_check_add(handle, false, &adev)))
2454 return;
2455
2456 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2457 acpi_bus_check_add_2, NULL, NULL, (void **)&adev);
2458
2459 /*
2460 * Populate the ACPI _CRS CSI-2 software nodes for the ACPI devices that
2461 * have been added above.
2462 */
2463 acpi_mipi_init_crs_csi2_swnodes();
2464
2465 acpi_bus_attach(adev, NULL);
2466}
2467
2468static void acpi_scan_postponed(void)
2469{
2470 struct acpi_dep_data *dep, *tmp;
2471
2472 mutex_lock(&acpi_dep_list_lock);
2473
2474 list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) {
2475 acpi_handle handle = dep->consumer;
2476
2477 /*
2478 * In case there are multiple acpi_dep_list entries with the
2479 * same consumer, skip the current entry if the consumer device
2480 * object corresponding to it is present already.
2481 */
2482 if (!acpi_fetch_acpi_dev(handle)) {
2483 /*
2484 * Even though the lock is released here, tmp is
2485 * guaranteed to be valid, because none of the list
2486 * entries following dep is marked as "free when met"
2487 * and so they cannot be deleted.
2488 */
2489 mutex_unlock(&acpi_dep_list_lock);
2490
2491 acpi_scan_postponed_branch(handle);
2492
2493 mutex_lock(&acpi_dep_list_lock);
2494 }
2495
2496 if (dep->met)
2497 acpi_scan_delete_dep_data(dep);
2498 else
2499 dep->free_when_met = true;
2500 }
2501
2502 mutex_unlock(&acpi_dep_list_lock);
2503}
2504
2505/**
2506 * acpi_bus_scan - Add ACPI device node objects in a given namespace scope.
2507 * @handle: Root of the namespace scope to scan.
2508 *
2509 * Scan a given ACPI tree (probably recently hot-plugged) and create and add
2510 * found devices.
2511 *
2512 * If no devices were found, -ENODEV is returned, but it does not mean that
2513 * there has been a real error. There just have been no suitable ACPI objects
2514 * in the table trunk from which the kernel could create a device and add an
2515 * appropriate driver.
2516 *
2517 * Must be called under acpi_scan_lock.
2518 */
2519int acpi_bus_scan(acpi_handle handle)
2520{
2521 struct acpi_device *device = NULL;
2522
2523 /* Pass 1: Avoid enumerating devices with missing dependencies. */
2524
2525 if (ACPI_SUCCESS(acpi_bus_check_add(handle, true, &device)))
2526 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2527 acpi_bus_check_add_1, NULL, NULL,
2528 (void **)&device);
2529
2530 if (!device)
2531 return -ENODEV;
2532
2533 /*
2534 * Set up ACPI _CRS CSI-2 software nodes using information extracted
2535 * from the _CRS CSI-2 resource descriptors during the ACPI namespace
2536 * walk above and MIPI DisCo for Imaging device properties.
2537 */
2538 acpi_mipi_scan_crs_csi2();
2539 acpi_mipi_init_crs_csi2_swnodes();
2540
2541 acpi_bus_attach(device, (void *)true);
2542
2543 /* Pass 2: Enumerate all of the remaining devices. */
2544
2545 acpi_scan_postponed();
2546
2547 acpi_mipi_crs_csi2_cleanup();
2548
2549 return 0;
2550}
2551EXPORT_SYMBOL(acpi_bus_scan);
2552
2553static int acpi_bus_trim_one(struct acpi_device *adev, void *not_used)
2554{
2555 struct acpi_scan_handler *handler = adev->handler;
2556
2557 acpi_dev_for_each_child_reverse(adev, acpi_bus_trim_one, NULL);
2558
2559 adev->flags.match_driver = false;
2560 if (handler) {
2561 if (handler->detach)
2562 handler->detach(adev);
2563
2564 adev->handler = NULL;
2565 } else {
2566 device_release_driver(&adev->dev);
2567 }
2568 /*
2569 * Most likely, the device is going away, so put it into D3cold before
2570 * that.
2571 */
2572 acpi_device_set_power(adev, ACPI_STATE_D3_COLD);
2573 adev->flags.initialized = false;
2574 acpi_device_clear_enumerated(adev);
2575
2576 return 0;
2577}
2578
2579/**
2580 * acpi_bus_trim - Detach scan handlers and drivers from ACPI device objects.
2581 * @adev: Root of the ACPI namespace scope to walk.
2582 *
2583 * Must be called under acpi_scan_lock.
2584 */
2585void acpi_bus_trim(struct acpi_device *adev)
2586{
2587 acpi_bus_trim_one(adev, NULL);
2588}
2589EXPORT_SYMBOL_GPL(acpi_bus_trim);
2590
2591int acpi_bus_register_early_device(int type)
2592{
2593 struct acpi_device *device = NULL;
2594 int result;
2595
2596 result = acpi_add_single_object(&device, NULL, type, false);
2597 if (result)
2598 return result;
2599
2600 device->flags.match_driver = true;
2601 return device_attach(&device->dev);
2602}
2603EXPORT_SYMBOL_GPL(acpi_bus_register_early_device);
2604
2605static void acpi_bus_scan_fixed(void)
2606{
2607 if (!(acpi_gbl_FADT.flags & ACPI_FADT_POWER_BUTTON)) {
2608 struct acpi_device *adev = NULL;
2609
2610 acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_POWER_BUTTON,
2611 false);
2612 if (adev) {
2613 adev->flags.match_driver = true;
2614 if (device_attach(&adev->dev) >= 0)
2615 device_init_wakeup(&adev->dev, true);
2616 else
2617 dev_dbg(&adev->dev, "No driver\n");
2618 }
2619 }
2620
2621 if (!(acpi_gbl_FADT.flags & ACPI_FADT_SLEEP_BUTTON)) {
2622 struct acpi_device *adev = NULL;
2623
2624 acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_SLEEP_BUTTON,
2625 false);
2626 if (adev) {
2627 adev->flags.match_driver = true;
2628 if (device_attach(&adev->dev) < 0)
2629 dev_dbg(&adev->dev, "No driver\n");
2630 }
2631 }
2632}
2633
2634static void __init acpi_get_spcr_uart_addr(void)
2635{
2636 acpi_status status;
2637 struct acpi_table_spcr *spcr_ptr;
2638
2639 status = acpi_get_table(ACPI_SIG_SPCR, 0,
2640 (struct acpi_table_header **)&spcr_ptr);
2641 if (ACPI_FAILURE(status)) {
2642 pr_warn("STAO table present, but SPCR is missing\n");
2643 return;
2644 }
2645
2646 spcr_uart_addr = spcr_ptr->serial_port.address;
2647 acpi_put_table((struct acpi_table_header *)spcr_ptr);
2648}
2649
2650static bool acpi_scan_initialized;
2651
2652void __init acpi_scan_init(void)
2653{
2654 acpi_status status;
2655 struct acpi_table_stao *stao_ptr;
2656
2657 acpi_pci_root_init();
2658 acpi_pci_link_init();
2659 acpi_processor_init();
2660 acpi_platform_init();
2661 acpi_lpss_init();
2662 acpi_apd_init();
2663 acpi_cmos_rtc_init();
2664 acpi_container_init();
2665 acpi_memory_hotplug_init();
2666 acpi_watchdog_init();
2667 acpi_pnp_init();
2668 acpi_int340x_thermal_init();
2669 acpi_init_lpit();
2670
2671 acpi_scan_add_handler(&generic_device_handler);
2672
2673 /*
2674 * If there is STAO table, check whether it needs to ignore the UART
2675 * device in SPCR table.
2676 */
2677 status = acpi_get_table(ACPI_SIG_STAO, 0,
2678 (struct acpi_table_header **)&stao_ptr);
2679 if (ACPI_SUCCESS(status)) {
2680 if (stao_ptr->header.length > sizeof(struct acpi_table_stao))
2681 pr_info("STAO Name List not yet supported.\n");
2682
2683 if (stao_ptr->ignore_uart)
2684 acpi_get_spcr_uart_addr();
2685
2686 acpi_put_table((struct acpi_table_header *)stao_ptr);
2687 }
2688
2689 acpi_gpe_apply_masked_gpes();
2690 acpi_update_all_gpes();
2691
2692 /*
2693 * Although we call __add_memory() that is documented to require the
2694 * device_hotplug_lock, it is not necessary here because this is an
2695 * early code when userspace or any other code path cannot trigger
2696 * hotplug/hotunplug operations.
2697 */
2698 mutex_lock(&acpi_scan_lock);
2699 /*
2700 * Enumerate devices in the ACPI namespace.
2701 */
2702 if (acpi_bus_scan(ACPI_ROOT_OBJECT))
2703 goto unlock;
2704
2705 acpi_root = acpi_fetch_acpi_dev(ACPI_ROOT_OBJECT);
2706 if (!acpi_root)
2707 goto unlock;
2708
2709 /* Fixed feature devices do not exist on HW-reduced platform */
2710 if (!acpi_gbl_reduced_hardware)
2711 acpi_bus_scan_fixed();
2712
2713 acpi_turn_off_unused_power_resources();
2714
2715 acpi_scan_initialized = true;
2716
2717unlock:
2718 mutex_unlock(&acpi_scan_lock);
2719}
2720
2721static struct acpi_probe_entry *ape;
2722static int acpi_probe_count;
2723static DEFINE_MUTEX(acpi_probe_mutex);
2724
2725static int __init acpi_match_madt(union acpi_subtable_headers *header,
2726 const unsigned long end)
2727{
2728 if (!ape->subtable_valid || ape->subtable_valid(&header->common, ape))
2729 if (!ape->probe_subtbl(header, end))
2730 acpi_probe_count++;
2731
2732 return 0;
2733}
2734
2735int __init __acpi_probe_device_table(struct acpi_probe_entry *ap_head, int nr)
2736{
2737 int count = 0;
2738
2739 if (acpi_disabled)
2740 return 0;
2741
2742 mutex_lock(&acpi_probe_mutex);
2743 for (ape = ap_head; nr; ape++, nr--) {
2744 if (ACPI_COMPARE_NAMESEG(ACPI_SIG_MADT, ape->id)) {
2745 acpi_probe_count = 0;
2746 acpi_table_parse_madt(ape->type, acpi_match_madt, 0);
2747 count += acpi_probe_count;
2748 } else {
2749 int res;
2750 res = acpi_table_parse(ape->id, ape->probe_table);
2751 if (!res)
2752 count++;
2753 }
2754 }
2755 mutex_unlock(&acpi_probe_mutex);
2756
2757 return count;
2758}
2759
2760static void acpi_table_events_fn(struct work_struct *work)
2761{
2762 acpi_scan_lock_acquire();
2763 acpi_bus_scan(ACPI_ROOT_OBJECT);
2764 acpi_scan_lock_release();
2765
2766 kfree(work);
2767}
2768
2769void acpi_scan_table_notify(void)
2770{
2771 struct work_struct *work;
2772
2773 if (!acpi_scan_initialized)
2774 return;
2775
2776 work = kmalloc(sizeof(*work), GFP_KERNEL);
2777 if (!work)
2778 return;
2779
2780 INIT_WORK(work, acpi_table_events_fn);
2781 schedule_work(work);
2782}
2783
2784int acpi_reconfig_notifier_register(struct notifier_block *nb)
2785{
2786 return blocking_notifier_chain_register(&acpi_reconfig_chain, nb);
2787}
2788EXPORT_SYMBOL(acpi_reconfig_notifier_register);
2789
2790int acpi_reconfig_notifier_unregister(struct notifier_block *nb)
2791{
2792 return blocking_notifier_chain_unregister(&acpi_reconfig_chain, nb);
2793}
2794EXPORT_SYMBOL(acpi_reconfig_notifier_unregister);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * scan.c - support for transforming the ACPI namespace into individual objects
4 */
5
6#define pr_fmt(fmt) "ACPI: " fmt
7
8#include <linux/module.h>
9#include <linux/init.h>
10#include <linux/slab.h>
11#include <linux/kernel.h>
12#include <linux/acpi.h>
13#include <linux/acpi_iort.h>
14#include <linux/acpi_viot.h>
15#include <linux/iommu.h>
16#include <linux/signal.h>
17#include <linux/kthread.h>
18#include <linux/dmi.h>
19#include <linux/dma-map-ops.h>
20#include <linux/platform_data/x86/apple.h>
21#include <linux/pgtable.h>
22#include <linux/crc32.h>
23#include <linux/dma-direct.h>
24
25#include "internal.h"
26
27extern struct acpi_device *acpi_root;
28
29#define ACPI_BUS_CLASS "system_bus"
30#define ACPI_BUS_HID "LNXSYBUS"
31#define ACPI_BUS_DEVICE_NAME "System Bus"
32
33#define INVALID_ACPI_HANDLE ((acpi_handle)ZERO_PAGE(0))
34
35static const char *dummy_hid = "device";
36
37static LIST_HEAD(acpi_dep_list);
38static DEFINE_MUTEX(acpi_dep_list_lock);
39LIST_HEAD(acpi_bus_id_list);
40static DEFINE_MUTEX(acpi_scan_lock);
41static LIST_HEAD(acpi_scan_handlers_list);
42DEFINE_MUTEX(acpi_device_lock);
43LIST_HEAD(acpi_wakeup_device_list);
44static DEFINE_MUTEX(acpi_hp_context_lock);
45
46/*
47 * The UART device described by the SPCR table is the only object which needs
48 * special-casing. Everything else is covered by ACPI namespace paths in STAO
49 * table.
50 */
51static u64 spcr_uart_addr;
52
53void acpi_scan_lock_acquire(void)
54{
55 mutex_lock(&acpi_scan_lock);
56}
57EXPORT_SYMBOL_GPL(acpi_scan_lock_acquire);
58
59void acpi_scan_lock_release(void)
60{
61 mutex_unlock(&acpi_scan_lock);
62}
63EXPORT_SYMBOL_GPL(acpi_scan_lock_release);
64
65void acpi_lock_hp_context(void)
66{
67 mutex_lock(&acpi_hp_context_lock);
68}
69
70void acpi_unlock_hp_context(void)
71{
72 mutex_unlock(&acpi_hp_context_lock);
73}
74
75void acpi_initialize_hp_context(struct acpi_device *adev,
76 struct acpi_hotplug_context *hp,
77 int (*notify)(struct acpi_device *, u32),
78 void (*uevent)(struct acpi_device *, u32))
79{
80 acpi_lock_hp_context();
81 hp->notify = notify;
82 hp->uevent = uevent;
83 acpi_set_hp_context(adev, hp);
84 acpi_unlock_hp_context();
85}
86EXPORT_SYMBOL_GPL(acpi_initialize_hp_context);
87
88int acpi_scan_add_handler(struct acpi_scan_handler *handler)
89{
90 if (!handler)
91 return -EINVAL;
92
93 list_add_tail(&handler->list_node, &acpi_scan_handlers_list);
94 return 0;
95}
96
97int acpi_scan_add_handler_with_hotplug(struct acpi_scan_handler *handler,
98 const char *hotplug_profile_name)
99{
100 int error;
101
102 error = acpi_scan_add_handler(handler);
103 if (error)
104 return error;
105
106 acpi_sysfs_add_hotplug_profile(&handler->hotplug, hotplug_profile_name);
107 return 0;
108}
109
110bool acpi_scan_is_offline(struct acpi_device *adev, bool uevent)
111{
112 struct acpi_device_physical_node *pn;
113 bool offline = true;
114 char *envp[] = { "EVENT=offline", NULL };
115
116 /*
117 * acpi_container_offline() calls this for all of the container's
118 * children under the container's physical_node_lock lock.
119 */
120 mutex_lock_nested(&adev->physical_node_lock, SINGLE_DEPTH_NESTING);
121
122 list_for_each_entry(pn, &adev->physical_node_list, node)
123 if (device_supports_offline(pn->dev) && !pn->dev->offline) {
124 if (uevent)
125 kobject_uevent_env(&pn->dev->kobj, KOBJ_CHANGE, envp);
126
127 offline = false;
128 break;
129 }
130
131 mutex_unlock(&adev->physical_node_lock);
132 return offline;
133}
134
135static acpi_status acpi_bus_offline(acpi_handle handle, u32 lvl, void *data,
136 void **ret_p)
137{
138 struct acpi_device *device = acpi_fetch_acpi_dev(handle);
139 struct acpi_device_physical_node *pn;
140 bool second_pass = (bool)data;
141 acpi_status status = AE_OK;
142
143 if (!device)
144 return AE_OK;
145
146 if (device->handler && !device->handler->hotplug.enabled) {
147 *ret_p = &device->dev;
148 return AE_SUPPORT;
149 }
150
151 mutex_lock(&device->physical_node_lock);
152
153 list_for_each_entry(pn, &device->physical_node_list, node) {
154 int ret;
155
156 if (second_pass) {
157 /* Skip devices offlined by the first pass. */
158 if (pn->put_online)
159 continue;
160 } else {
161 pn->put_online = false;
162 }
163 ret = device_offline(pn->dev);
164 if (ret >= 0) {
165 pn->put_online = !ret;
166 } else {
167 *ret_p = pn->dev;
168 if (second_pass) {
169 status = AE_ERROR;
170 break;
171 }
172 }
173 }
174
175 mutex_unlock(&device->physical_node_lock);
176
177 return status;
178}
179
180static acpi_status acpi_bus_online(acpi_handle handle, u32 lvl, void *data,
181 void **ret_p)
182{
183 struct acpi_device *device = acpi_fetch_acpi_dev(handle);
184 struct acpi_device_physical_node *pn;
185
186 if (!device)
187 return AE_OK;
188
189 mutex_lock(&device->physical_node_lock);
190
191 list_for_each_entry(pn, &device->physical_node_list, node)
192 if (pn->put_online) {
193 device_online(pn->dev);
194 pn->put_online = false;
195 }
196
197 mutex_unlock(&device->physical_node_lock);
198
199 return AE_OK;
200}
201
202static int acpi_scan_try_to_offline(struct acpi_device *device)
203{
204 acpi_handle handle = device->handle;
205 struct device *errdev = NULL;
206 acpi_status status;
207
208 /*
209 * Carry out two passes here and ignore errors in the first pass,
210 * because if the devices in question are memory blocks and
211 * CONFIG_MEMCG is set, one of the blocks may hold data structures
212 * that the other blocks depend on, but it is not known in advance which
213 * block holds them.
214 *
215 * If the first pass is successful, the second one isn't needed, though.
216 */
217 status = acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
218 NULL, acpi_bus_offline, (void *)false,
219 (void **)&errdev);
220 if (status == AE_SUPPORT) {
221 dev_warn(errdev, "Offline disabled.\n");
222 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
223 acpi_bus_online, NULL, NULL, NULL);
224 return -EPERM;
225 }
226 acpi_bus_offline(handle, 0, (void *)false, (void **)&errdev);
227 if (errdev) {
228 errdev = NULL;
229 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
230 NULL, acpi_bus_offline, (void *)true,
231 (void **)&errdev);
232 if (!errdev)
233 acpi_bus_offline(handle, 0, (void *)true,
234 (void **)&errdev);
235
236 if (errdev) {
237 dev_warn(errdev, "Offline failed.\n");
238 acpi_bus_online(handle, 0, NULL, NULL);
239 acpi_walk_namespace(ACPI_TYPE_ANY, handle,
240 ACPI_UINT32_MAX, acpi_bus_online,
241 NULL, NULL, NULL);
242 return -EBUSY;
243 }
244 }
245 return 0;
246}
247
248static int acpi_scan_hot_remove(struct acpi_device *device)
249{
250 acpi_handle handle = device->handle;
251 unsigned long long sta;
252 acpi_status status;
253
254 if (device->handler && device->handler->hotplug.demand_offline) {
255 if (!acpi_scan_is_offline(device, true))
256 return -EBUSY;
257 } else {
258 int error = acpi_scan_try_to_offline(device);
259 if (error)
260 return error;
261 }
262
263 acpi_handle_debug(handle, "Ejecting\n");
264
265 acpi_bus_trim(device);
266
267 acpi_evaluate_lck(handle, 0);
268 /*
269 * TBD: _EJD support.
270 */
271 status = acpi_evaluate_ej0(handle);
272 if (status == AE_NOT_FOUND)
273 return -ENODEV;
274 else if (ACPI_FAILURE(status))
275 return -EIO;
276
277 /*
278 * Verify if eject was indeed successful. If not, log an error
279 * message. No need to call _OST since _EJ0 call was made OK.
280 */
281 status = acpi_evaluate_integer(handle, "_STA", NULL, &sta);
282 if (ACPI_FAILURE(status)) {
283 acpi_handle_warn(handle,
284 "Status check after eject failed (0x%x)\n", status);
285 } else if (sta & ACPI_STA_DEVICE_ENABLED) {
286 acpi_handle_warn(handle,
287 "Eject incomplete - status 0x%llx\n", sta);
288 }
289
290 return 0;
291}
292
293static int acpi_scan_device_not_present(struct acpi_device *adev)
294{
295 if (!acpi_device_enumerated(adev)) {
296 dev_warn(&adev->dev, "Still not present\n");
297 return -EALREADY;
298 }
299 acpi_bus_trim(adev);
300 return 0;
301}
302
303static int acpi_scan_device_check(struct acpi_device *adev)
304{
305 int error;
306
307 acpi_bus_get_status(adev);
308 if (adev->status.present || adev->status.functional) {
309 /*
310 * This function is only called for device objects for which
311 * matching scan handlers exist. The only situation in which
312 * the scan handler is not attached to this device object yet
313 * is when the device has just appeared (either it wasn't
314 * present at all before or it was removed and then added
315 * again).
316 */
317 if (adev->handler) {
318 dev_warn(&adev->dev, "Already enumerated\n");
319 return -EALREADY;
320 }
321 error = acpi_bus_scan(adev->handle);
322 if (error) {
323 dev_warn(&adev->dev, "Namespace scan failure\n");
324 return error;
325 }
326 if (!adev->handler) {
327 dev_warn(&adev->dev, "Enumeration failure\n");
328 error = -ENODEV;
329 }
330 } else {
331 error = acpi_scan_device_not_present(adev);
332 }
333 return error;
334}
335
336static int acpi_scan_bus_check(struct acpi_device *adev, void *not_used)
337{
338 struct acpi_scan_handler *handler = adev->handler;
339 int error;
340
341 acpi_bus_get_status(adev);
342 if (!(adev->status.present || adev->status.functional)) {
343 acpi_scan_device_not_present(adev);
344 return 0;
345 }
346 if (handler && handler->hotplug.scan_dependent)
347 return handler->hotplug.scan_dependent(adev);
348
349 error = acpi_bus_scan(adev->handle);
350 if (error) {
351 dev_warn(&adev->dev, "Namespace scan failure\n");
352 return error;
353 }
354 return acpi_dev_for_each_child(adev, acpi_scan_bus_check, NULL);
355}
356
357static int acpi_generic_hotplug_event(struct acpi_device *adev, u32 type)
358{
359 switch (type) {
360 case ACPI_NOTIFY_BUS_CHECK:
361 return acpi_scan_bus_check(adev, NULL);
362 case ACPI_NOTIFY_DEVICE_CHECK:
363 return acpi_scan_device_check(adev);
364 case ACPI_NOTIFY_EJECT_REQUEST:
365 case ACPI_OST_EC_OSPM_EJECT:
366 if (adev->handler && !adev->handler->hotplug.enabled) {
367 dev_info(&adev->dev, "Eject disabled\n");
368 return -EPERM;
369 }
370 acpi_evaluate_ost(adev->handle, ACPI_NOTIFY_EJECT_REQUEST,
371 ACPI_OST_SC_EJECT_IN_PROGRESS, NULL);
372 return acpi_scan_hot_remove(adev);
373 }
374 return -EINVAL;
375}
376
377void acpi_device_hotplug(struct acpi_device *adev, u32 src)
378{
379 u32 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
380 int error = -ENODEV;
381
382 lock_device_hotplug();
383 mutex_lock(&acpi_scan_lock);
384
385 /*
386 * The device object's ACPI handle cannot become invalid as long as we
387 * are holding acpi_scan_lock, but it might have become invalid before
388 * that lock was acquired.
389 */
390 if (adev->handle == INVALID_ACPI_HANDLE)
391 goto err_out;
392
393 if (adev->flags.is_dock_station) {
394 error = dock_notify(adev, src);
395 } else if (adev->flags.hotplug_notify) {
396 error = acpi_generic_hotplug_event(adev, src);
397 } else {
398 int (*notify)(struct acpi_device *, u32);
399
400 acpi_lock_hp_context();
401 notify = adev->hp ? adev->hp->notify : NULL;
402 acpi_unlock_hp_context();
403 /*
404 * There may be additional notify handlers for device objects
405 * without the .event() callback, so ignore them here.
406 */
407 if (notify)
408 error = notify(adev, src);
409 else
410 goto out;
411 }
412 switch (error) {
413 case 0:
414 ost_code = ACPI_OST_SC_SUCCESS;
415 break;
416 case -EPERM:
417 ost_code = ACPI_OST_SC_EJECT_NOT_SUPPORTED;
418 break;
419 case -EBUSY:
420 ost_code = ACPI_OST_SC_DEVICE_BUSY;
421 break;
422 default:
423 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
424 break;
425 }
426
427 err_out:
428 acpi_evaluate_ost(adev->handle, src, ost_code, NULL);
429
430 out:
431 acpi_put_acpi_dev(adev);
432 mutex_unlock(&acpi_scan_lock);
433 unlock_device_hotplug();
434}
435
436static void acpi_free_power_resources_lists(struct acpi_device *device)
437{
438 int i;
439
440 if (device->wakeup.flags.valid)
441 acpi_power_resources_list_free(&device->wakeup.resources);
442
443 if (!device->power.flags.power_resources)
444 return;
445
446 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) {
447 struct acpi_device_power_state *ps = &device->power.states[i];
448 acpi_power_resources_list_free(&ps->resources);
449 }
450}
451
452static void acpi_device_release(struct device *dev)
453{
454 struct acpi_device *acpi_dev = to_acpi_device(dev);
455
456 acpi_free_properties(acpi_dev);
457 acpi_free_pnp_ids(&acpi_dev->pnp);
458 acpi_free_power_resources_lists(acpi_dev);
459 kfree(acpi_dev);
460}
461
462static void acpi_device_del(struct acpi_device *device)
463{
464 struct acpi_device_bus_id *acpi_device_bus_id;
465
466 mutex_lock(&acpi_device_lock);
467
468 list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node)
469 if (!strcmp(acpi_device_bus_id->bus_id,
470 acpi_device_hid(device))) {
471 ida_free(&acpi_device_bus_id->instance_ida,
472 device->pnp.instance_no);
473 if (ida_is_empty(&acpi_device_bus_id->instance_ida)) {
474 list_del(&acpi_device_bus_id->node);
475 kfree_const(acpi_device_bus_id->bus_id);
476 kfree(acpi_device_bus_id);
477 }
478 break;
479 }
480
481 list_del(&device->wakeup_list);
482
483 mutex_unlock(&acpi_device_lock);
484
485 acpi_power_add_remove_device(device, false);
486 acpi_device_remove_files(device);
487 if (device->remove)
488 device->remove(device);
489
490 device_del(&device->dev);
491}
492
493static BLOCKING_NOTIFIER_HEAD(acpi_reconfig_chain);
494
495static LIST_HEAD(acpi_device_del_list);
496static DEFINE_MUTEX(acpi_device_del_lock);
497
498static void acpi_device_del_work_fn(struct work_struct *work_not_used)
499{
500 for (;;) {
501 struct acpi_device *adev;
502
503 mutex_lock(&acpi_device_del_lock);
504
505 if (list_empty(&acpi_device_del_list)) {
506 mutex_unlock(&acpi_device_del_lock);
507 break;
508 }
509 adev = list_first_entry(&acpi_device_del_list,
510 struct acpi_device, del_list);
511 list_del(&adev->del_list);
512
513 mutex_unlock(&acpi_device_del_lock);
514
515 blocking_notifier_call_chain(&acpi_reconfig_chain,
516 ACPI_RECONFIG_DEVICE_REMOVE, adev);
517
518 acpi_device_del(adev);
519 /*
520 * Drop references to all power resources that might have been
521 * used by the device.
522 */
523 acpi_power_transition(adev, ACPI_STATE_D3_COLD);
524 acpi_dev_put(adev);
525 }
526}
527
528/**
529 * acpi_scan_drop_device - Drop an ACPI device object.
530 * @handle: Handle of an ACPI namespace node, not used.
531 * @context: Address of the ACPI device object to drop.
532 *
533 * This is invoked by acpi_ns_delete_node() during the removal of the ACPI
534 * namespace node the device object pointed to by @context is attached to.
535 *
536 * The unregistration is carried out asynchronously to avoid running
537 * acpi_device_del() under the ACPICA's namespace mutex and the list is used to
538 * ensure the correct ordering (the device objects must be unregistered in the
539 * same order in which the corresponding namespace nodes are deleted).
540 */
541static void acpi_scan_drop_device(acpi_handle handle, void *context)
542{
543 static DECLARE_WORK(work, acpi_device_del_work_fn);
544 struct acpi_device *adev = context;
545
546 mutex_lock(&acpi_device_del_lock);
547
548 /*
549 * Use the ACPI hotplug workqueue which is ordered, so this work item
550 * won't run after any hotplug work items submitted subsequently. That
551 * prevents attempts to register device objects identical to those being
552 * deleted from happening concurrently (such attempts result from
553 * hotplug events handled via the ACPI hotplug workqueue). It also will
554 * run after all of the work items submitted previously, which helps
555 * those work items to ensure that they are not accessing stale device
556 * objects.
557 */
558 if (list_empty(&acpi_device_del_list))
559 acpi_queue_hotplug_work(&work);
560
561 list_add_tail(&adev->del_list, &acpi_device_del_list);
562 /* Make acpi_ns_validate_handle() return NULL for this handle. */
563 adev->handle = INVALID_ACPI_HANDLE;
564
565 mutex_unlock(&acpi_device_del_lock);
566}
567
568static struct acpi_device *handle_to_device(acpi_handle handle,
569 void (*callback)(void *))
570{
571 struct acpi_device *adev = NULL;
572 acpi_status status;
573
574 status = acpi_get_data_full(handle, acpi_scan_drop_device,
575 (void **)&adev, callback);
576 if (ACPI_FAILURE(status) || !adev) {
577 acpi_handle_debug(handle, "No context!\n");
578 return NULL;
579 }
580 return adev;
581}
582
583/**
584 * acpi_fetch_acpi_dev - Retrieve ACPI device object.
585 * @handle: ACPI handle associated with the requested ACPI device object.
586 *
587 * Return a pointer to the ACPI device object associated with @handle, if
588 * present, or NULL otherwise.
589 */
590struct acpi_device *acpi_fetch_acpi_dev(acpi_handle handle)
591{
592 return handle_to_device(handle, NULL);
593}
594EXPORT_SYMBOL_GPL(acpi_fetch_acpi_dev);
595
596static void get_acpi_device(void *dev)
597{
598 acpi_dev_get(dev);
599}
600
601/**
602 * acpi_get_acpi_dev - Retrieve ACPI device object and reference count it.
603 * @handle: ACPI handle associated with the requested ACPI device object.
604 *
605 * Return a pointer to the ACPI device object associated with @handle and bump
606 * up that object's reference counter (under the ACPI Namespace lock), if
607 * present, or return NULL otherwise.
608 *
609 * The ACPI device object reference acquired by this function needs to be
610 * dropped via acpi_dev_put().
611 */
612struct acpi_device *acpi_get_acpi_dev(acpi_handle handle)
613{
614 return handle_to_device(handle, get_acpi_device);
615}
616EXPORT_SYMBOL_GPL(acpi_get_acpi_dev);
617
618static struct acpi_device_bus_id *acpi_device_bus_id_match(const char *dev_id)
619{
620 struct acpi_device_bus_id *acpi_device_bus_id;
621
622 /* Find suitable bus_id and instance number in acpi_bus_id_list. */
623 list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) {
624 if (!strcmp(acpi_device_bus_id->bus_id, dev_id))
625 return acpi_device_bus_id;
626 }
627 return NULL;
628}
629
630static int acpi_device_set_name(struct acpi_device *device,
631 struct acpi_device_bus_id *acpi_device_bus_id)
632{
633 struct ida *instance_ida = &acpi_device_bus_id->instance_ida;
634 int result;
635
636 result = ida_alloc(instance_ida, GFP_KERNEL);
637 if (result < 0)
638 return result;
639
640 device->pnp.instance_no = result;
641 dev_set_name(&device->dev, "%s:%02x", acpi_device_bus_id->bus_id, result);
642 return 0;
643}
644
645int acpi_tie_acpi_dev(struct acpi_device *adev)
646{
647 acpi_handle handle = adev->handle;
648 acpi_status status;
649
650 if (!handle)
651 return 0;
652
653 status = acpi_attach_data(handle, acpi_scan_drop_device, adev);
654 if (ACPI_FAILURE(status)) {
655 acpi_handle_err(handle, "Unable to attach device data\n");
656 return -ENODEV;
657 }
658
659 return 0;
660}
661
662static void acpi_store_pld_crc(struct acpi_device *adev)
663{
664 struct acpi_pld_info *pld;
665 acpi_status status;
666
667 status = acpi_get_physical_device_location(adev->handle, &pld);
668 if (ACPI_FAILURE(status))
669 return;
670
671 adev->pld_crc = crc32(~0, pld, sizeof(*pld));
672 ACPI_FREE(pld);
673}
674
675int acpi_device_add(struct acpi_device *device)
676{
677 struct acpi_device_bus_id *acpi_device_bus_id;
678 int result;
679
680 /*
681 * Linkage
682 * -------
683 * Link this device to its parent and siblings.
684 */
685 INIT_LIST_HEAD(&device->wakeup_list);
686 INIT_LIST_HEAD(&device->physical_node_list);
687 INIT_LIST_HEAD(&device->del_list);
688 mutex_init(&device->physical_node_lock);
689
690 mutex_lock(&acpi_device_lock);
691
692 acpi_device_bus_id = acpi_device_bus_id_match(acpi_device_hid(device));
693 if (acpi_device_bus_id) {
694 result = acpi_device_set_name(device, acpi_device_bus_id);
695 if (result)
696 goto err_unlock;
697 } else {
698 acpi_device_bus_id = kzalloc(sizeof(*acpi_device_bus_id),
699 GFP_KERNEL);
700 if (!acpi_device_bus_id) {
701 result = -ENOMEM;
702 goto err_unlock;
703 }
704 acpi_device_bus_id->bus_id =
705 kstrdup_const(acpi_device_hid(device), GFP_KERNEL);
706 if (!acpi_device_bus_id->bus_id) {
707 kfree(acpi_device_bus_id);
708 result = -ENOMEM;
709 goto err_unlock;
710 }
711
712 ida_init(&acpi_device_bus_id->instance_ida);
713
714 result = acpi_device_set_name(device, acpi_device_bus_id);
715 if (result) {
716 kfree_const(acpi_device_bus_id->bus_id);
717 kfree(acpi_device_bus_id);
718 goto err_unlock;
719 }
720
721 list_add_tail(&acpi_device_bus_id->node, &acpi_bus_id_list);
722 }
723
724 if (device->wakeup.flags.valid)
725 list_add_tail(&device->wakeup_list, &acpi_wakeup_device_list);
726
727 acpi_store_pld_crc(device);
728
729 mutex_unlock(&acpi_device_lock);
730
731 result = device_add(&device->dev);
732 if (result) {
733 dev_err(&device->dev, "Error registering device\n");
734 goto err;
735 }
736
737 result = acpi_device_setup_files(device);
738 if (result)
739 pr_err("Error creating sysfs interface for device %s\n",
740 dev_name(&device->dev));
741
742 return 0;
743
744err:
745 mutex_lock(&acpi_device_lock);
746
747 list_del(&device->wakeup_list);
748
749err_unlock:
750 mutex_unlock(&acpi_device_lock);
751
752 acpi_detach_data(device->handle, acpi_scan_drop_device);
753
754 return result;
755}
756
757/* --------------------------------------------------------------------------
758 Device Enumeration
759 -------------------------------------------------------------------------- */
760static bool acpi_info_matches_ids(struct acpi_device_info *info,
761 const char * const ids[])
762{
763 struct acpi_pnp_device_id_list *cid_list = NULL;
764 int i, index;
765
766 if (!(info->valid & ACPI_VALID_HID))
767 return false;
768
769 index = match_string(ids, -1, info->hardware_id.string);
770 if (index >= 0)
771 return true;
772
773 if (info->valid & ACPI_VALID_CID)
774 cid_list = &info->compatible_id_list;
775
776 if (!cid_list)
777 return false;
778
779 for (i = 0; i < cid_list->count; i++) {
780 index = match_string(ids, -1, cid_list->ids[i].string);
781 if (index >= 0)
782 return true;
783 }
784
785 return false;
786}
787
788/* List of HIDs for which we ignore matching ACPI devices, when checking _DEP lists. */
789static const char * const acpi_ignore_dep_ids[] = {
790 "PNP0D80", /* Windows-compatible System Power Management Controller */
791 "INT33BD", /* Intel Baytrail Mailbox Device */
792 "LATT2021", /* Lattice FW Update Client Driver */
793 NULL
794};
795
796/* List of HIDs for which we honor deps of matching ACPI devs, when checking _DEP lists. */
797static const char * const acpi_honor_dep_ids[] = {
798 "INT3472", /* Camera sensor PMIC / clk and regulator info */
799 NULL
800};
801
802static struct acpi_device *acpi_find_parent_acpi_dev(acpi_handle handle)
803{
804 struct acpi_device *adev;
805
806 /*
807 * Fixed hardware devices do not appear in the namespace and do not
808 * have handles, but we fabricate acpi_devices for them, so we have
809 * to deal with them specially.
810 */
811 if (!handle)
812 return acpi_root;
813
814 do {
815 acpi_status status;
816
817 status = acpi_get_parent(handle, &handle);
818 if (ACPI_FAILURE(status)) {
819 if (status != AE_NULL_ENTRY)
820 return acpi_root;
821
822 return NULL;
823 }
824 adev = acpi_fetch_acpi_dev(handle);
825 } while (!adev);
826 return adev;
827}
828
829acpi_status
830acpi_bus_get_ejd(acpi_handle handle, acpi_handle *ejd)
831{
832 acpi_status status;
833 acpi_handle tmp;
834 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
835 union acpi_object *obj;
836
837 status = acpi_get_handle(handle, "_EJD", &tmp);
838 if (ACPI_FAILURE(status))
839 return status;
840
841 status = acpi_evaluate_object(handle, "_EJD", NULL, &buffer);
842 if (ACPI_SUCCESS(status)) {
843 obj = buffer.pointer;
844 status = acpi_get_handle(ACPI_ROOT_OBJECT, obj->string.pointer,
845 ejd);
846 kfree(buffer.pointer);
847 }
848 return status;
849}
850EXPORT_SYMBOL_GPL(acpi_bus_get_ejd);
851
852static int acpi_bus_extract_wakeup_device_power_package(struct acpi_device *dev)
853{
854 acpi_handle handle = dev->handle;
855 struct acpi_device_wakeup *wakeup = &dev->wakeup;
856 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
857 union acpi_object *package = NULL;
858 union acpi_object *element = NULL;
859 acpi_status status;
860 int err = -ENODATA;
861
862 INIT_LIST_HEAD(&wakeup->resources);
863
864 /* _PRW */
865 status = acpi_evaluate_object(handle, "_PRW", NULL, &buffer);
866 if (ACPI_FAILURE(status)) {
867 acpi_handle_info(handle, "_PRW evaluation failed: %s\n",
868 acpi_format_exception(status));
869 return err;
870 }
871
872 package = (union acpi_object *)buffer.pointer;
873
874 if (!package || package->package.count < 2)
875 goto out;
876
877 element = &(package->package.elements[0]);
878 if (!element)
879 goto out;
880
881 if (element->type == ACPI_TYPE_PACKAGE) {
882 if ((element->package.count < 2) ||
883 (element->package.elements[0].type !=
884 ACPI_TYPE_LOCAL_REFERENCE)
885 || (element->package.elements[1].type != ACPI_TYPE_INTEGER))
886 goto out;
887
888 wakeup->gpe_device =
889 element->package.elements[0].reference.handle;
890 wakeup->gpe_number =
891 (u32) element->package.elements[1].integer.value;
892 } else if (element->type == ACPI_TYPE_INTEGER) {
893 wakeup->gpe_device = NULL;
894 wakeup->gpe_number = element->integer.value;
895 } else {
896 goto out;
897 }
898
899 element = &(package->package.elements[1]);
900 if (element->type != ACPI_TYPE_INTEGER)
901 goto out;
902
903 wakeup->sleep_state = element->integer.value;
904
905 err = acpi_extract_power_resources(package, 2, &wakeup->resources);
906 if (err)
907 goto out;
908
909 if (!list_empty(&wakeup->resources)) {
910 int sleep_state;
911
912 err = acpi_power_wakeup_list_init(&wakeup->resources,
913 &sleep_state);
914 if (err) {
915 acpi_handle_warn(handle, "Retrieving current states "
916 "of wakeup power resources failed\n");
917 acpi_power_resources_list_free(&wakeup->resources);
918 goto out;
919 }
920 if (sleep_state < wakeup->sleep_state) {
921 acpi_handle_warn(handle, "Overriding _PRW sleep state "
922 "(S%d) by S%d from power resources\n",
923 (int)wakeup->sleep_state, sleep_state);
924 wakeup->sleep_state = sleep_state;
925 }
926 }
927
928 out:
929 kfree(buffer.pointer);
930 return err;
931}
932
933static bool acpi_wakeup_gpe_init(struct acpi_device *device)
934{
935 static const struct acpi_device_id button_device_ids[] = {
936 {"PNP0C0C", 0}, /* Power button */
937 {"PNP0C0D", 0}, /* Lid */
938 {"PNP0C0E", 0}, /* Sleep button */
939 {"", 0},
940 };
941 struct acpi_device_wakeup *wakeup = &device->wakeup;
942 acpi_status status;
943
944 wakeup->flags.notifier_present = 0;
945
946 /* Power button, Lid switch always enable wakeup */
947 if (!acpi_match_device_ids(device, button_device_ids)) {
948 if (!acpi_match_device_ids(device, &button_device_ids[1])) {
949 /* Do not use Lid/sleep button for S5 wakeup */
950 if (wakeup->sleep_state == ACPI_STATE_S5)
951 wakeup->sleep_state = ACPI_STATE_S4;
952 }
953 acpi_mark_gpe_for_wake(wakeup->gpe_device, wakeup->gpe_number);
954 device_set_wakeup_capable(&device->dev, true);
955 return true;
956 }
957
958 status = acpi_setup_gpe_for_wake(device->handle, wakeup->gpe_device,
959 wakeup->gpe_number);
960 return ACPI_SUCCESS(status);
961}
962
963static void acpi_bus_get_wakeup_device_flags(struct acpi_device *device)
964{
965 int err;
966
967 /* Presence of _PRW indicates wake capable */
968 if (!acpi_has_method(device->handle, "_PRW"))
969 return;
970
971 err = acpi_bus_extract_wakeup_device_power_package(device);
972 if (err) {
973 dev_err(&device->dev, "Unable to extract wakeup power resources");
974 return;
975 }
976
977 device->wakeup.flags.valid = acpi_wakeup_gpe_init(device);
978 device->wakeup.prepare_count = 0;
979 /*
980 * Call _PSW/_DSW object to disable its ability to wake the sleeping
981 * system for the ACPI device with the _PRW object.
982 * The _PSW object is deprecated in ACPI 3.0 and is replaced by _DSW.
983 * So it is necessary to call _DSW object first. Only when it is not
984 * present will the _PSW object used.
985 */
986 err = acpi_device_sleep_wake(device, 0, 0, 0);
987 if (err)
988 pr_debug("error in _DSW or _PSW evaluation\n");
989}
990
991static void acpi_bus_init_power_state(struct acpi_device *device, int state)
992{
993 struct acpi_device_power_state *ps = &device->power.states[state];
994 char pathname[5] = { '_', 'P', 'R', '0' + state, '\0' };
995 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
996 acpi_status status;
997
998 INIT_LIST_HEAD(&ps->resources);
999
1000 /* Evaluate "_PRx" to get referenced power resources */
1001 status = acpi_evaluate_object(device->handle, pathname, NULL, &buffer);
1002 if (ACPI_SUCCESS(status)) {
1003 union acpi_object *package = buffer.pointer;
1004
1005 if (buffer.length && package
1006 && package->type == ACPI_TYPE_PACKAGE
1007 && package->package.count)
1008 acpi_extract_power_resources(package, 0, &ps->resources);
1009
1010 ACPI_FREE(buffer.pointer);
1011 }
1012
1013 /* Evaluate "_PSx" to see if we can do explicit sets */
1014 pathname[2] = 'S';
1015 if (acpi_has_method(device->handle, pathname))
1016 ps->flags.explicit_set = 1;
1017
1018 /* State is valid if there are means to put the device into it. */
1019 if (!list_empty(&ps->resources) || ps->flags.explicit_set)
1020 ps->flags.valid = 1;
1021
1022 ps->power = -1; /* Unknown - driver assigned */
1023 ps->latency = -1; /* Unknown - driver assigned */
1024}
1025
1026static void acpi_bus_get_power_flags(struct acpi_device *device)
1027{
1028 unsigned long long dsc = ACPI_STATE_D0;
1029 u32 i;
1030
1031 /* Presence of _PS0|_PR0 indicates 'power manageable' */
1032 if (!acpi_has_method(device->handle, "_PS0") &&
1033 !acpi_has_method(device->handle, "_PR0"))
1034 return;
1035
1036 device->flags.power_manageable = 1;
1037
1038 /*
1039 * Power Management Flags
1040 */
1041 if (acpi_has_method(device->handle, "_PSC"))
1042 device->power.flags.explicit_get = 1;
1043
1044 if (acpi_has_method(device->handle, "_IRC"))
1045 device->power.flags.inrush_current = 1;
1046
1047 if (acpi_has_method(device->handle, "_DSW"))
1048 device->power.flags.dsw_present = 1;
1049
1050 acpi_evaluate_integer(device->handle, "_DSC", NULL, &dsc);
1051 device->power.state_for_enumeration = dsc;
1052
1053 /*
1054 * Enumerate supported power management states
1055 */
1056 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++)
1057 acpi_bus_init_power_state(device, i);
1058
1059 INIT_LIST_HEAD(&device->power.states[ACPI_STATE_D3_COLD].resources);
1060
1061 /* Set the defaults for D0 and D3hot (always supported). */
1062 device->power.states[ACPI_STATE_D0].flags.valid = 1;
1063 device->power.states[ACPI_STATE_D0].power = 100;
1064 device->power.states[ACPI_STATE_D3_HOT].flags.valid = 1;
1065
1066 /*
1067 * Use power resources only if the D0 list of them is populated, because
1068 * some platforms may provide _PR3 only to indicate D3cold support and
1069 * in those cases the power resources list returned by it may be bogus.
1070 */
1071 if (!list_empty(&device->power.states[ACPI_STATE_D0].resources)) {
1072 device->power.flags.power_resources = 1;
1073 /*
1074 * D3cold is supported if the D3hot list of power resources is
1075 * not empty.
1076 */
1077 if (!list_empty(&device->power.states[ACPI_STATE_D3_HOT].resources))
1078 device->power.states[ACPI_STATE_D3_COLD].flags.valid = 1;
1079 }
1080
1081 if (acpi_bus_init_power(device))
1082 device->flags.power_manageable = 0;
1083}
1084
1085static void acpi_bus_get_flags(struct acpi_device *device)
1086{
1087 /* Presence of _STA indicates 'dynamic_status' */
1088 if (acpi_has_method(device->handle, "_STA"))
1089 device->flags.dynamic_status = 1;
1090
1091 /* Presence of _RMV indicates 'removable' */
1092 if (acpi_has_method(device->handle, "_RMV"))
1093 device->flags.removable = 1;
1094
1095 /* Presence of _EJD|_EJ0 indicates 'ejectable' */
1096 if (acpi_has_method(device->handle, "_EJD") ||
1097 acpi_has_method(device->handle, "_EJ0"))
1098 device->flags.ejectable = 1;
1099}
1100
1101static void acpi_device_get_busid(struct acpi_device *device)
1102{
1103 char bus_id[5] = { '?', 0 };
1104 struct acpi_buffer buffer = { sizeof(bus_id), bus_id };
1105 int i = 0;
1106
1107 /*
1108 * Bus ID
1109 * ------
1110 * The device's Bus ID is simply the object name.
1111 * TBD: Shouldn't this value be unique (within the ACPI namespace)?
1112 */
1113 if (!acpi_dev_parent(device)) {
1114 strcpy(device->pnp.bus_id, "ACPI");
1115 return;
1116 }
1117
1118 switch (device->device_type) {
1119 case ACPI_BUS_TYPE_POWER_BUTTON:
1120 strcpy(device->pnp.bus_id, "PWRF");
1121 break;
1122 case ACPI_BUS_TYPE_SLEEP_BUTTON:
1123 strcpy(device->pnp.bus_id, "SLPF");
1124 break;
1125 case ACPI_BUS_TYPE_ECDT_EC:
1126 strcpy(device->pnp.bus_id, "ECDT");
1127 break;
1128 default:
1129 acpi_get_name(device->handle, ACPI_SINGLE_NAME, &buffer);
1130 /* Clean up trailing underscores (if any) */
1131 for (i = 3; i > 1; i--) {
1132 if (bus_id[i] == '_')
1133 bus_id[i] = '\0';
1134 else
1135 break;
1136 }
1137 strcpy(device->pnp.bus_id, bus_id);
1138 break;
1139 }
1140}
1141
1142/*
1143 * acpi_ata_match - see if an acpi object is an ATA device
1144 *
1145 * If an acpi object has one of the ACPI ATA methods defined,
1146 * then we can safely call it an ATA device.
1147 */
1148bool acpi_ata_match(acpi_handle handle)
1149{
1150 return acpi_has_method(handle, "_GTF") ||
1151 acpi_has_method(handle, "_GTM") ||
1152 acpi_has_method(handle, "_STM") ||
1153 acpi_has_method(handle, "_SDD");
1154}
1155
1156/*
1157 * acpi_bay_match - see if an acpi object is an ejectable driver bay
1158 *
1159 * If an acpi object is ejectable and has one of the ACPI ATA methods defined,
1160 * then we can safely call it an ejectable drive bay
1161 */
1162bool acpi_bay_match(acpi_handle handle)
1163{
1164 acpi_handle phandle;
1165
1166 if (!acpi_has_method(handle, "_EJ0"))
1167 return false;
1168 if (acpi_ata_match(handle))
1169 return true;
1170 if (ACPI_FAILURE(acpi_get_parent(handle, &phandle)))
1171 return false;
1172
1173 return acpi_ata_match(phandle);
1174}
1175
1176bool acpi_device_is_battery(struct acpi_device *adev)
1177{
1178 struct acpi_hardware_id *hwid;
1179
1180 list_for_each_entry(hwid, &adev->pnp.ids, list)
1181 if (!strcmp("PNP0C0A", hwid->id))
1182 return true;
1183
1184 return false;
1185}
1186
1187static bool is_ejectable_bay(struct acpi_device *adev)
1188{
1189 acpi_handle handle = adev->handle;
1190
1191 if (acpi_has_method(handle, "_EJ0") && acpi_device_is_battery(adev))
1192 return true;
1193
1194 return acpi_bay_match(handle);
1195}
1196
1197/*
1198 * acpi_dock_match - see if an acpi object has a _DCK method
1199 */
1200bool acpi_dock_match(acpi_handle handle)
1201{
1202 return acpi_has_method(handle, "_DCK");
1203}
1204
1205static acpi_status
1206acpi_backlight_cap_match(acpi_handle handle, u32 level, void *context,
1207 void **return_value)
1208{
1209 long *cap = context;
1210
1211 if (acpi_has_method(handle, "_BCM") &&
1212 acpi_has_method(handle, "_BCL")) {
1213 acpi_handle_debug(handle, "Found generic backlight support\n");
1214 *cap |= ACPI_VIDEO_BACKLIGHT;
1215 /* We have backlight support, no need to scan further */
1216 return AE_CTRL_TERMINATE;
1217 }
1218 return 0;
1219}
1220
1221/* Returns true if the ACPI object is a video device which can be
1222 * handled by video.ko.
1223 * The device will get a Linux specific CID added in scan.c to
1224 * identify the device as an ACPI graphics device
1225 * Be aware that the graphics device may not be physically present
1226 * Use acpi_video_get_capabilities() to detect general ACPI video
1227 * capabilities of present cards
1228 */
1229long acpi_is_video_device(acpi_handle handle)
1230{
1231 long video_caps = 0;
1232
1233 /* Is this device able to support video switching ? */
1234 if (acpi_has_method(handle, "_DOD") || acpi_has_method(handle, "_DOS"))
1235 video_caps |= ACPI_VIDEO_OUTPUT_SWITCHING;
1236
1237 /* Is this device able to retrieve a video ROM ? */
1238 if (acpi_has_method(handle, "_ROM"))
1239 video_caps |= ACPI_VIDEO_ROM_AVAILABLE;
1240
1241 /* Is this device able to configure which video head to be POSTed ? */
1242 if (acpi_has_method(handle, "_VPO") &&
1243 acpi_has_method(handle, "_GPD") &&
1244 acpi_has_method(handle, "_SPD"))
1245 video_caps |= ACPI_VIDEO_DEVICE_POSTING;
1246
1247 /* Only check for backlight functionality if one of the above hit. */
1248 if (video_caps)
1249 acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
1250 ACPI_UINT32_MAX, acpi_backlight_cap_match, NULL,
1251 &video_caps, NULL);
1252
1253 return video_caps;
1254}
1255EXPORT_SYMBOL(acpi_is_video_device);
1256
1257const char *acpi_device_hid(struct acpi_device *device)
1258{
1259 struct acpi_hardware_id *hid;
1260
1261 if (list_empty(&device->pnp.ids))
1262 return dummy_hid;
1263
1264 hid = list_first_entry(&device->pnp.ids, struct acpi_hardware_id, list);
1265 return hid->id;
1266}
1267EXPORT_SYMBOL(acpi_device_hid);
1268
1269static void acpi_add_id(struct acpi_device_pnp *pnp, const char *dev_id)
1270{
1271 struct acpi_hardware_id *id;
1272
1273 id = kmalloc(sizeof(*id), GFP_KERNEL);
1274 if (!id)
1275 return;
1276
1277 id->id = kstrdup_const(dev_id, GFP_KERNEL);
1278 if (!id->id) {
1279 kfree(id);
1280 return;
1281 }
1282
1283 list_add_tail(&id->list, &pnp->ids);
1284 pnp->type.hardware_id = 1;
1285}
1286
1287/*
1288 * Old IBM workstations have a DSDT bug wherein the SMBus object
1289 * lacks the SMBUS01 HID and the methods do not have the necessary "_"
1290 * prefix. Work around this.
1291 */
1292static bool acpi_ibm_smbus_match(acpi_handle handle)
1293{
1294 char node_name[ACPI_PATH_SEGMENT_LENGTH];
1295 struct acpi_buffer path = { sizeof(node_name), node_name };
1296
1297 if (!dmi_name_in_vendors("IBM"))
1298 return false;
1299
1300 /* Look for SMBS object */
1301 if (ACPI_FAILURE(acpi_get_name(handle, ACPI_SINGLE_NAME, &path)) ||
1302 strcmp("SMBS", path.pointer))
1303 return false;
1304
1305 /* Does it have the necessary (but misnamed) methods? */
1306 if (acpi_has_method(handle, "SBI") &&
1307 acpi_has_method(handle, "SBR") &&
1308 acpi_has_method(handle, "SBW"))
1309 return true;
1310
1311 return false;
1312}
1313
1314static bool acpi_object_is_system_bus(acpi_handle handle)
1315{
1316 acpi_handle tmp;
1317
1318 if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_SB", &tmp)) &&
1319 tmp == handle)
1320 return true;
1321 if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_TZ", &tmp)) &&
1322 tmp == handle)
1323 return true;
1324
1325 return false;
1326}
1327
1328static void acpi_set_pnp_ids(acpi_handle handle, struct acpi_device_pnp *pnp,
1329 int device_type)
1330{
1331 struct acpi_device_info *info = NULL;
1332 struct acpi_pnp_device_id_list *cid_list;
1333 int i;
1334
1335 switch (device_type) {
1336 case ACPI_BUS_TYPE_DEVICE:
1337 if (handle == ACPI_ROOT_OBJECT) {
1338 acpi_add_id(pnp, ACPI_SYSTEM_HID);
1339 break;
1340 }
1341
1342 acpi_get_object_info(handle, &info);
1343 if (!info) {
1344 pr_err("%s: Error reading device info\n", __func__);
1345 return;
1346 }
1347
1348 if (info->valid & ACPI_VALID_HID) {
1349 acpi_add_id(pnp, info->hardware_id.string);
1350 pnp->type.platform_id = 1;
1351 }
1352 if (info->valid & ACPI_VALID_CID) {
1353 cid_list = &info->compatible_id_list;
1354 for (i = 0; i < cid_list->count; i++)
1355 acpi_add_id(pnp, cid_list->ids[i].string);
1356 }
1357 if (info->valid & ACPI_VALID_ADR) {
1358 pnp->bus_address = info->address;
1359 pnp->type.bus_address = 1;
1360 }
1361 if (info->valid & ACPI_VALID_UID)
1362 pnp->unique_id = kstrdup(info->unique_id.string,
1363 GFP_KERNEL);
1364 if (info->valid & ACPI_VALID_CLS)
1365 acpi_add_id(pnp, info->class_code.string);
1366
1367 kfree(info);
1368
1369 /*
1370 * Some devices don't reliably have _HIDs & _CIDs, so add
1371 * synthetic HIDs to make sure drivers can find them.
1372 */
1373 if (acpi_is_video_device(handle)) {
1374 acpi_add_id(pnp, ACPI_VIDEO_HID);
1375 pnp->type.backlight = 1;
1376 break;
1377 }
1378 if (acpi_bay_match(handle))
1379 acpi_add_id(pnp, ACPI_BAY_HID);
1380 else if (acpi_dock_match(handle))
1381 acpi_add_id(pnp, ACPI_DOCK_HID);
1382 else if (acpi_ibm_smbus_match(handle))
1383 acpi_add_id(pnp, ACPI_SMBUS_IBM_HID);
1384 else if (list_empty(&pnp->ids) &&
1385 acpi_object_is_system_bus(handle)) {
1386 /* \_SB, \_TZ, LNXSYBUS */
1387 acpi_add_id(pnp, ACPI_BUS_HID);
1388 strcpy(pnp->device_name, ACPI_BUS_DEVICE_NAME);
1389 strcpy(pnp->device_class, ACPI_BUS_CLASS);
1390 }
1391
1392 break;
1393 case ACPI_BUS_TYPE_POWER:
1394 acpi_add_id(pnp, ACPI_POWER_HID);
1395 break;
1396 case ACPI_BUS_TYPE_PROCESSOR:
1397 acpi_add_id(pnp, ACPI_PROCESSOR_OBJECT_HID);
1398 break;
1399 case ACPI_BUS_TYPE_THERMAL:
1400 acpi_add_id(pnp, ACPI_THERMAL_HID);
1401 break;
1402 case ACPI_BUS_TYPE_POWER_BUTTON:
1403 acpi_add_id(pnp, ACPI_BUTTON_HID_POWERF);
1404 break;
1405 case ACPI_BUS_TYPE_SLEEP_BUTTON:
1406 acpi_add_id(pnp, ACPI_BUTTON_HID_SLEEPF);
1407 break;
1408 case ACPI_BUS_TYPE_ECDT_EC:
1409 acpi_add_id(pnp, ACPI_ECDT_HID);
1410 break;
1411 }
1412}
1413
1414void acpi_free_pnp_ids(struct acpi_device_pnp *pnp)
1415{
1416 struct acpi_hardware_id *id, *tmp;
1417
1418 list_for_each_entry_safe(id, tmp, &pnp->ids, list) {
1419 kfree_const(id->id);
1420 kfree(id);
1421 }
1422 kfree(pnp->unique_id);
1423}
1424
1425/**
1426 * acpi_dma_supported - Check DMA support for the specified device.
1427 * @adev: The pointer to acpi device
1428 *
1429 * Return false if DMA is not supported. Otherwise, return true
1430 */
1431bool acpi_dma_supported(const struct acpi_device *adev)
1432{
1433 if (!adev)
1434 return false;
1435
1436 if (adev->flags.cca_seen)
1437 return true;
1438
1439 /*
1440 * Per ACPI 6.0 sec 6.2.17, assume devices can do cache-coherent
1441 * DMA on "Intel platforms". Presumably that includes all x86 and
1442 * ia64, and other arches will set CONFIG_ACPI_CCA_REQUIRED=y.
1443 */
1444 if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1445 return true;
1446
1447 return false;
1448}
1449
1450/**
1451 * acpi_get_dma_attr - Check the supported DMA attr for the specified device.
1452 * @adev: The pointer to acpi device
1453 *
1454 * Return enum dev_dma_attr.
1455 */
1456enum dev_dma_attr acpi_get_dma_attr(struct acpi_device *adev)
1457{
1458 if (!acpi_dma_supported(adev))
1459 return DEV_DMA_NOT_SUPPORTED;
1460
1461 if (adev->flags.coherent_dma)
1462 return DEV_DMA_COHERENT;
1463 else
1464 return DEV_DMA_NON_COHERENT;
1465}
1466
1467/**
1468 * acpi_dma_get_range() - Get device DMA parameters.
1469 *
1470 * @dev: device to configure
1471 * @map: pointer to DMA ranges result
1472 *
1473 * Evaluate DMA regions and return pointer to DMA regions on
1474 * parsing success; it does not update the passed in values on failure.
1475 *
1476 * Return 0 on success, < 0 on failure.
1477 */
1478int acpi_dma_get_range(struct device *dev, const struct bus_dma_region **map)
1479{
1480 struct acpi_device *adev;
1481 LIST_HEAD(list);
1482 struct resource_entry *rentry;
1483 int ret;
1484 struct device *dma_dev = dev;
1485 struct bus_dma_region *r;
1486
1487 /*
1488 * Walk the device tree chasing an ACPI companion with a _DMA
1489 * object while we go. Stop if we find a device with an ACPI
1490 * companion containing a _DMA method.
1491 */
1492 do {
1493 adev = ACPI_COMPANION(dma_dev);
1494 if (adev && acpi_has_method(adev->handle, METHOD_NAME__DMA))
1495 break;
1496
1497 dma_dev = dma_dev->parent;
1498 } while (dma_dev);
1499
1500 if (!dma_dev)
1501 return -ENODEV;
1502
1503 if (!acpi_has_method(adev->handle, METHOD_NAME__CRS)) {
1504 acpi_handle_warn(adev->handle, "_DMA is valid only if _CRS is present\n");
1505 return -EINVAL;
1506 }
1507
1508 ret = acpi_dev_get_dma_resources(adev, &list);
1509 if (ret > 0) {
1510 r = kcalloc(ret + 1, sizeof(*r), GFP_KERNEL);
1511 if (!r) {
1512 ret = -ENOMEM;
1513 goto out;
1514 }
1515
1516 *map = r;
1517
1518 list_for_each_entry(rentry, &list, node) {
1519 if (rentry->res->start >= rentry->res->end) {
1520 kfree(*map);
1521 *map = NULL;
1522 ret = -EINVAL;
1523 dev_dbg(dma_dev, "Invalid DMA regions configuration\n");
1524 goto out;
1525 }
1526
1527 r->cpu_start = rentry->res->start;
1528 r->dma_start = rentry->res->start - rentry->offset;
1529 r->size = resource_size(rentry->res);
1530 r->offset = rentry->offset;
1531 r++;
1532 }
1533 }
1534 out:
1535 acpi_dev_free_resource_list(&list);
1536
1537 return ret >= 0 ? 0 : ret;
1538}
1539
1540#ifdef CONFIG_IOMMU_API
1541int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1542 struct fwnode_handle *fwnode,
1543 const struct iommu_ops *ops)
1544{
1545 int ret = iommu_fwspec_init(dev, fwnode, ops);
1546
1547 if (!ret)
1548 ret = iommu_fwspec_add_ids(dev, &id, 1);
1549
1550 return ret;
1551}
1552
1553static inline const struct iommu_ops *acpi_iommu_fwspec_ops(struct device *dev)
1554{
1555 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
1556
1557 return fwspec ? fwspec->ops : NULL;
1558}
1559
1560static const struct iommu_ops *acpi_iommu_configure_id(struct device *dev,
1561 const u32 *id_in)
1562{
1563 int err;
1564 const struct iommu_ops *ops;
1565
1566 /*
1567 * If we already translated the fwspec there is nothing left to do,
1568 * return the iommu_ops.
1569 */
1570 ops = acpi_iommu_fwspec_ops(dev);
1571 if (ops)
1572 return ops;
1573
1574 err = iort_iommu_configure_id(dev, id_in);
1575 if (err && err != -EPROBE_DEFER)
1576 err = viot_iommu_configure(dev);
1577
1578 /*
1579 * If we have reason to believe the IOMMU driver missed the initial
1580 * iommu_probe_device() call for dev, replay it to get things in order.
1581 */
1582 if (!err && dev->bus && !device_iommu_mapped(dev))
1583 err = iommu_probe_device(dev);
1584
1585 /* Ignore all other errors apart from EPROBE_DEFER */
1586 if (err == -EPROBE_DEFER) {
1587 return ERR_PTR(err);
1588 } else if (err) {
1589 dev_dbg(dev, "Adding to IOMMU failed: %d\n", err);
1590 return NULL;
1591 }
1592 return acpi_iommu_fwspec_ops(dev);
1593}
1594
1595#else /* !CONFIG_IOMMU_API */
1596
1597int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1598 struct fwnode_handle *fwnode,
1599 const struct iommu_ops *ops)
1600{
1601 return -ENODEV;
1602}
1603
1604static const struct iommu_ops *acpi_iommu_configure_id(struct device *dev,
1605 const u32 *id_in)
1606{
1607 return NULL;
1608}
1609
1610#endif /* !CONFIG_IOMMU_API */
1611
1612/**
1613 * acpi_dma_configure_id - Set-up DMA configuration for the device.
1614 * @dev: The pointer to the device
1615 * @attr: device dma attributes
1616 * @input_id: input device id const value pointer
1617 */
1618int acpi_dma_configure_id(struct device *dev, enum dev_dma_attr attr,
1619 const u32 *input_id)
1620{
1621 const struct iommu_ops *iommu;
1622
1623 if (attr == DEV_DMA_NOT_SUPPORTED) {
1624 set_dma_ops(dev, &dma_dummy_ops);
1625 return 0;
1626 }
1627
1628 acpi_arch_dma_setup(dev);
1629
1630 iommu = acpi_iommu_configure_id(dev, input_id);
1631 if (PTR_ERR(iommu) == -EPROBE_DEFER)
1632 return -EPROBE_DEFER;
1633
1634 arch_setup_dma_ops(dev, 0, U64_MAX,
1635 iommu, attr == DEV_DMA_COHERENT);
1636
1637 return 0;
1638}
1639EXPORT_SYMBOL_GPL(acpi_dma_configure_id);
1640
1641static void acpi_init_coherency(struct acpi_device *adev)
1642{
1643 unsigned long long cca = 0;
1644 acpi_status status;
1645 struct acpi_device *parent = acpi_dev_parent(adev);
1646
1647 if (parent && parent->flags.cca_seen) {
1648 /*
1649 * From ACPI spec, OSPM will ignore _CCA if an ancestor
1650 * already saw one.
1651 */
1652 adev->flags.cca_seen = 1;
1653 cca = parent->flags.coherent_dma;
1654 } else {
1655 status = acpi_evaluate_integer(adev->handle, "_CCA",
1656 NULL, &cca);
1657 if (ACPI_SUCCESS(status))
1658 adev->flags.cca_seen = 1;
1659 else if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1660 /*
1661 * If architecture does not specify that _CCA is
1662 * required for DMA-able devices (e.g. x86),
1663 * we default to _CCA=1.
1664 */
1665 cca = 1;
1666 else
1667 acpi_handle_debug(adev->handle,
1668 "ACPI device is missing _CCA.\n");
1669 }
1670
1671 adev->flags.coherent_dma = cca;
1672}
1673
1674static int acpi_check_serial_bus_slave(struct acpi_resource *ares, void *data)
1675{
1676 bool *is_serial_bus_slave_p = data;
1677
1678 if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
1679 return 1;
1680
1681 *is_serial_bus_slave_p = true;
1682
1683 /* no need to do more checking */
1684 return -1;
1685}
1686
1687static bool acpi_is_indirect_io_slave(struct acpi_device *device)
1688{
1689 struct acpi_device *parent = acpi_dev_parent(device);
1690 static const struct acpi_device_id indirect_io_hosts[] = {
1691 {"HISI0191", 0},
1692 {}
1693 };
1694
1695 return parent && !acpi_match_device_ids(parent, indirect_io_hosts);
1696}
1697
1698static bool acpi_device_enumeration_by_parent(struct acpi_device *device)
1699{
1700 struct list_head resource_list;
1701 bool is_serial_bus_slave = false;
1702 static const struct acpi_device_id ignore_serial_bus_ids[] = {
1703 /*
1704 * These devices have multiple SerialBus resources and a client
1705 * device must be instantiated for each of them, each with
1706 * its own device id.
1707 * Normally we only instantiate one client device for the first
1708 * resource, using the ACPI HID as id. These special cases are handled
1709 * by the drivers/platform/x86/serial-multi-instantiate.c driver, which
1710 * knows which client device id to use for each resource.
1711 */
1712 {"BSG1160", },
1713 {"BSG2150", },
1714 {"CSC3551", },
1715 {"INT33FE", },
1716 {"INT3515", },
1717 /* Non-conforming _HID for Cirrus Logic already released */
1718 {"CLSA0100", },
1719 {"CLSA0101", },
1720 /*
1721 * Some ACPI devs contain SerialBus resources even though they are not
1722 * attached to a serial bus at all.
1723 */
1724 {"MSHW0028", },
1725 /*
1726 * HIDs of device with an UartSerialBusV2 resource for which userspace
1727 * expects a regular tty cdev to be created (instead of the in kernel
1728 * serdev) and which have a kernel driver which expects a platform_dev
1729 * such as the rfkill-gpio driver.
1730 */
1731 {"BCM4752", },
1732 {"LNV4752", },
1733 {}
1734 };
1735
1736 if (acpi_is_indirect_io_slave(device))
1737 return true;
1738
1739 /* Macs use device properties in lieu of _CRS resources */
1740 if (x86_apple_machine &&
1741 (fwnode_property_present(&device->fwnode, "spiSclkPeriod") ||
1742 fwnode_property_present(&device->fwnode, "i2cAddress") ||
1743 fwnode_property_present(&device->fwnode, "baud")))
1744 return true;
1745
1746 if (!acpi_match_device_ids(device, ignore_serial_bus_ids))
1747 return false;
1748
1749 INIT_LIST_HEAD(&resource_list);
1750 acpi_dev_get_resources(device, &resource_list,
1751 acpi_check_serial_bus_slave,
1752 &is_serial_bus_slave);
1753 acpi_dev_free_resource_list(&resource_list);
1754
1755 return is_serial_bus_slave;
1756}
1757
1758void acpi_init_device_object(struct acpi_device *device, acpi_handle handle,
1759 int type, void (*release)(struct device *))
1760{
1761 struct acpi_device *parent = acpi_find_parent_acpi_dev(handle);
1762
1763 INIT_LIST_HEAD(&device->pnp.ids);
1764 device->device_type = type;
1765 device->handle = handle;
1766 device->dev.parent = parent ? &parent->dev : NULL;
1767 device->dev.release = release;
1768 device->dev.bus = &acpi_bus_type;
1769 fwnode_init(&device->fwnode, &acpi_device_fwnode_ops);
1770 acpi_set_device_status(device, ACPI_STA_DEFAULT);
1771 acpi_device_get_busid(device);
1772 acpi_set_pnp_ids(handle, &device->pnp, type);
1773 acpi_init_properties(device);
1774 acpi_bus_get_flags(device);
1775 device->flags.match_driver = false;
1776 device->flags.initialized = true;
1777 device->flags.enumeration_by_parent =
1778 acpi_device_enumeration_by_parent(device);
1779 acpi_device_clear_enumerated(device);
1780 device_initialize(&device->dev);
1781 dev_set_uevent_suppress(&device->dev, true);
1782 acpi_init_coherency(device);
1783}
1784
1785static void acpi_scan_dep_init(struct acpi_device *adev)
1786{
1787 struct acpi_dep_data *dep;
1788
1789 list_for_each_entry(dep, &acpi_dep_list, node) {
1790 if (dep->consumer == adev->handle) {
1791 if (dep->honor_dep)
1792 adev->flags.honor_deps = 1;
1793
1794 adev->dep_unmet++;
1795 }
1796 }
1797}
1798
1799void acpi_device_add_finalize(struct acpi_device *device)
1800{
1801 dev_set_uevent_suppress(&device->dev, false);
1802 kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1803}
1804
1805static void acpi_scan_init_status(struct acpi_device *adev)
1806{
1807 if (acpi_bus_get_status(adev))
1808 acpi_set_device_status(adev, 0);
1809}
1810
1811static int acpi_add_single_object(struct acpi_device **child,
1812 acpi_handle handle, int type, bool dep_init)
1813{
1814 struct acpi_device *device;
1815 bool release_dep_lock = false;
1816 int result;
1817
1818 device = kzalloc(sizeof(struct acpi_device), GFP_KERNEL);
1819 if (!device)
1820 return -ENOMEM;
1821
1822 acpi_init_device_object(device, handle, type, acpi_device_release);
1823 /*
1824 * Getting the status is delayed till here so that we can call
1825 * acpi_bus_get_status() and use its quirk handling. Note that
1826 * this must be done before the get power-/wakeup_dev-flags calls.
1827 */
1828 if (type == ACPI_BUS_TYPE_DEVICE || type == ACPI_BUS_TYPE_PROCESSOR) {
1829 if (dep_init) {
1830 mutex_lock(&acpi_dep_list_lock);
1831 /*
1832 * Hold the lock until the acpi_tie_acpi_dev() call
1833 * below to prevent concurrent acpi_scan_clear_dep()
1834 * from deleting a dependency list entry without
1835 * updating dep_unmet for the device.
1836 */
1837 release_dep_lock = true;
1838 acpi_scan_dep_init(device);
1839 }
1840 acpi_scan_init_status(device);
1841 }
1842
1843 acpi_bus_get_power_flags(device);
1844 acpi_bus_get_wakeup_device_flags(device);
1845
1846 result = acpi_tie_acpi_dev(device);
1847
1848 if (release_dep_lock)
1849 mutex_unlock(&acpi_dep_list_lock);
1850
1851 if (!result)
1852 result = acpi_device_add(device);
1853
1854 if (result) {
1855 acpi_device_release(&device->dev);
1856 return result;
1857 }
1858
1859 acpi_power_add_remove_device(device, true);
1860 acpi_device_add_finalize(device);
1861
1862 acpi_handle_debug(handle, "Added as %s, parent %s\n",
1863 dev_name(&device->dev), device->dev.parent ?
1864 dev_name(device->dev.parent) : "(null)");
1865
1866 *child = device;
1867 return 0;
1868}
1869
1870static acpi_status acpi_get_resource_memory(struct acpi_resource *ares,
1871 void *context)
1872{
1873 struct resource *res = context;
1874
1875 if (acpi_dev_resource_memory(ares, res))
1876 return AE_CTRL_TERMINATE;
1877
1878 return AE_OK;
1879}
1880
1881static bool acpi_device_should_be_hidden(acpi_handle handle)
1882{
1883 acpi_status status;
1884 struct resource res;
1885
1886 /* Check if it should ignore the UART device */
1887 if (!(spcr_uart_addr && acpi_has_method(handle, METHOD_NAME__CRS)))
1888 return false;
1889
1890 /*
1891 * The UART device described in SPCR table is assumed to have only one
1892 * memory resource present. So we only look for the first one here.
1893 */
1894 status = acpi_walk_resources(handle, METHOD_NAME__CRS,
1895 acpi_get_resource_memory, &res);
1896 if (ACPI_FAILURE(status) || res.start != spcr_uart_addr)
1897 return false;
1898
1899 acpi_handle_info(handle, "The UART device @%pa in SPCR table will be hidden\n",
1900 &res.start);
1901
1902 return true;
1903}
1904
1905bool acpi_device_is_present(const struct acpi_device *adev)
1906{
1907 return adev->status.present || adev->status.functional;
1908}
1909
1910static bool acpi_scan_handler_matching(struct acpi_scan_handler *handler,
1911 const char *idstr,
1912 const struct acpi_device_id **matchid)
1913{
1914 const struct acpi_device_id *devid;
1915
1916 if (handler->match)
1917 return handler->match(idstr, matchid);
1918
1919 for (devid = handler->ids; devid->id[0]; devid++)
1920 if (!strcmp((char *)devid->id, idstr)) {
1921 if (matchid)
1922 *matchid = devid;
1923
1924 return true;
1925 }
1926
1927 return false;
1928}
1929
1930static struct acpi_scan_handler *acpi_scan_match_handler(const char *idstr,
1931 const struct acpi_device_id **matchid)
1932{
1933 struct acpi_scan_handler *handler;
1934
1935 list_for_each_entry(handler, &acpi_scan_handlers_list, list_node)
1936 if (acpi_scan_handler_matching(handler, idstr, matchid))
1937 return handler;
1938
1939 return NULL;
1940}
1941
1942void acpi_scan_hotplug_enabled(struct acpi_hotplug_profile *hotplug, bool val)
1943{
1944 if (!!hotplug->enabled == !!val)
1945 return;
1946
1947 mutex_lock(&acpi_scan_lock);
1948
1949 hotplug->enabled = val;
1950
1951 mutex_unlock(&acpi_scan_lock);
1952}
1953
1954static void acpi_scan_init_hotplug(struct acpi_device *adev)
1955{
1956 struct acpi_hardware_id *hwid;
1957
1958 if (acpi_dock_match(adev->handle) || is_ejectable_bay(adev)) {
1959 acpi_dock_add(adev);
1960 return;
1961 }
1962 list_for_each_entry(hwid, &adev->pnp.ids, list) {
1963 struct acpi_scan_handler *handler;
1964
1965 handler = acpi_scan_match_handler(hwid->id, NULL);
1966 if (handler) {
1967 adev->flags.hotplug_notify = true;
1968 break;
1969 }
1970 }
1971}
1972
1973static u32 acpi_scan_check_dep(acpi_handle handle, bool check_dep)
1974{
1975 struct acpi_handle_list dep_devices;
1976 acpi_status status;
1977 u32 count;
1978 int i;
1979
1980 /*
1981 * Check for _HID here to avoid deferring the enumeration of:
1982 * 1. PCI devices.
1983 * 2. ACPI nodes describing USB ports.
1984 * Still, checking for _HID catches more then just these cases ...
1985 */
1986 if (!check_dep || !acpi_has_method(handle, "_DEP") ||
1987 !acpi_has_method(handle, "_HID"))
1988 return 0;
1989
1990 status = acpi_evaluate_reference(handle, "_DEP", NULL, &dep_devices);
1991 if (ACPI_FAILURE(status)) {
1992 acpi_handle_debug(handle, "Failed to evaluate _DEP.\n");
1993 return 0;
1994 }
1995
1996 for (count = 0, i = 0; i < dep_devices.count; i++) {
1997 struct acpi_device_info *info;
1998 struct acpi_dep_data *dep;
1999 bool skip, honor_dep;
2000
2001 status = acpi_get_object_info(dep_devices.handles[i], &info);
2002 if (ACPI_FAILURE(status)) {
2003 acpi_handle_debug(handle, "Error reading _DEP device info\n");
2004 continue;
2005 }
2006
2007 skip = acpi_info_matches_ids(info, acpi_ignore_dep_ids);
2008 honor_dep = acpi_info_matches_ids(info, acpi_honor_dep_ids);
2009 kfree(info);
2010
2011 if (skip)
2012 continue;
2013
2014 dep = kzalloc(sizeof(*dep), GFP_KERNEL);
2015 if (!dep)
2016 continue;
2017
2018 count++;
2019
2020 dep->supplier = dep_devices.handles[i];
2021 dep->consumer = handle;
2022 dep->honor_dep = honor_dep;
2023
2024 mutex_lock(&acpi_dep_list_lock);
2025 list_add_tail(&dep->node , &acpi_dep_list);
2026 mutex_unlock(&acpi_dep_list_lock);
2027 }
2028
2029 return count;
2030}
2031
2032static bool acpi_bus_scan_second_pass;
2033
2034static acpi_status acpi_bus_check_add(acpi_handle handle, bool check_dep,
2035 struct acpi_device **adev_p)
2036{
2037 struct acpi_device *device = acpi_fetch_acpi_dev(handle);
2038 acpi_object_type acpi_type;
2039 int type;
2040
2041 if (device)
2042 goto out;
2043
2044 if (ACPI_FAILURE(acpi_get_type(handle, &acpi_type)))
2045 return AE_OK;
2046
2047 switch (acpi_type) {
2048 case ACPI_TYPE_DEVICE:
2049 if (acpi_device_should_be_hidden(handle))
2050 return AE_OK;
2051
2052 /* Bail out if there are dependencies. */
2053 if (acpi_scan_check_dep(handle, check_dep) > 0) {
2054 acpi_bus_scan_second_pass = true;
2055 return AE_CTRL_DEPTH;
2056 }
2057
2058 fallthrough;
2059 case ACPI_TYPE_ANY: /* for ACPI_ROOT_OBJECT */
2060 type = ACPI_BUS_TYPE_DEVICE;
2061 break;
2062
2063 case ACPI_TYPE_PROCESSOR:
2064 type = ACPI_BUS_TYPE_PROCESSOR;
2065 break;
2066
2067 case ACPI_TYPE_THERMAL:
2068 type = ACPI_BUS_TYPE_THERMAL;
2069 break;
2070
2071 case ACPI_TYPE_POWER:
2072 acpi_add_power_resource(handle);
2073 fallthrough;
2074 default:
2075 return AE_OK;
2076 }
2077
2078 /*
2079 * If check_dep is true at this point, the device has no dependencies,
2080 * or the creation of the device object would have been postponed above.
2081 */
2082 acpi_add_single_object(&device, handle, type, !check_dep);
2083 if (!device)
2084 return AE_CTRL_DEPTH;
2085
2086 acpi_scan_init_hotplug(device);
2087
2088out:
2089 if (!*adev_p)
2090 *adev_p = device;
2091
2092 return AE_OK;
2093}
2094
2095static acpi_status acpi_bus_check_add_1(acpi_handle handle, u32 lvl_not_used,
2096 void *not_used, void **ret_p)
2097{
2098 return acpi_bus_check_add(handle, true, (struct acpi_device **)ret_p);
2099}
2100
2101static acpi_status acpi_bus_check_add_2(acpi_handle handle, u32 lvl_not_used,
2102 void *not_used, void **ret_p)
2103{
2104 return acpi_bus_check_add(handle, false, (struct acpi_device **)ret_p);
2105}
2106
2107static void acpi_default_enumeration(struct acpi_device *device)
2108{
2109 /*
2110 * Do not enumerate devices with enumeration_by_parent flag set as
2111 * they will be enumerated by their respective parents.
2112 */
2113 if (!device->flags.enumeration_by_parent) {
2114 acpi_create_platform_device(device, NULL);
2115 acpi_device_set_enumerated(device);
2116 } else {
2117 blocking_notifier_call_chain(&acpi_reconfig_chain,
2118 ACPI_RECONFIG_DEVICE_ADD, device);
2119 }
2120}
2121
2122static const struct acpi_device_id generic_device_ids[] = {
2123 {ACPI_DT_NAMESPACE_HID, },
2124 {"", },
2125};
2126
2127static int acpi_generic_device_attach(struct acpi_device *adev,
2128 const struct acpi_device_id *not_used)
2129{
2130 /*
2131 * Since ACPI_DT_NAMESPACE_HID is the only ID handled here, the test
2132 * below can be unconditional.
2133 */
2134 if (adev->data.of_compatible)
2135 acpi_default_enumeration(adev);
2136
2137 return 1;
2138}
2139
2140static struct acpi_scan_handler generic_device_handler = {
2141 .ids = generic_device_ids,
2142 .attach = acpi_generic_device_attach,
2143};
2144
2145static int acpi_scan_attach_handler(struct acpi_device *device)
2146{
2147 struct acpi_hardware_id *hwid;
2148 int ret = 0;
2149
2150 list_for_each_entry(hwid, &device->pnp.ids, list) {
2151 const struct acpi_device_id *devid;
2152 struct acpi_scan_handler *handler;
2153
2154 handler = acpi_scan_match_handler(hwid->id, &devid);
2155 if (handler) {
2156 if (!handler->attach) {
2157 device->pnp.type.platform_id = 0;
2158 continue;
2159 }
2160 device->handler = handler;
2161 ret = handler->attach(device, devid);
2162 if (ret > 0)
2163 break;
2164
2165 device->handler = NULL;
2166 if (ret < 0)
2167 break;
2168 }
2169 }
2170
2171 return ret;
2172}
2173
2174static int acpi_bus_attach(struct acpi_device *device, void *first_pass)
2175{
2176 bool skip = !first_pass && device->flags.visited;
2177 acpi_handle ejd;
2178 int ret;
2179
2180 if (skip)
2181 goto ok;
2182
2183 if (ACPI_SUCCESS(acpi_bus_get_ejd(device->handle, &ejd)))
2184 register_dock_dependent_device(device, ejd);
2185
2186 acpi_bus_get_status(device);
2187 /* Skip devices that are not ready for enumeration (e.g. not present) */
2188 if (!acpi_dev_ready_for_enumeration(device)) {
2189 device->flags.initialized = false;
2190 acpi_device_clear_enumerated(device);
2191 device->flags.power_manageable = 0;
2192 return 0;
2193 }
2194 if (device->handler)
2195 goto ok;
2196
2197 if (!device->flags.initialized) {
2198 device->flags.power_manageable =
2199 device->power.states[ACPI_STATE_D0].flags.valid;
2200 if (acpi_bus_init_power(device))
2201 device->flags.power_manageable = 0;
2202
2203 device->flags.initialized = true;
2204 } else if (device->flags.visited) {
2205 goto ok;
2206 }
2207
2208 ret = acpi_scan_attach_handler(device);
2209 if (ret < 0)
2210 return 0;
2211
2212 device->flags.match_driver = true;
2213 if (ret > 0 && !device->flags.enumeration_by_parent) {
2214 acpi_device_set_enumerated(device);
2215 goto ok;
2216 }
2217
2218 ret = device_attach(&device->dev);
2219 if (ret < 0)
2220 return 0;
2221
2222 if (device->pnp.type.platform_id || device->flags.enumeration_by_parent)
2223 acpi_default_enumeration(device);
2224 else
2225 acpi_device_set_enumerated(device);
2226
2227ok:
2228 acpi_dev_for_each_child(device, acpi_bus_attach, first_pass);
2229
2230 if (!skip && device->handler && device->handler->hotplug.notify_online)
2231 device->handler->hotplug.notify_online(device);
2232
2233 return 0;
2234}
2235
2236static int acpi_dev_get_next_consumer_dev_cb(struct acpi_dep_data *dep, void *data)
2237{
2238 struct acpi_device **adev_p = data;
2239 struct acpi_device *adev = *adev_p;
2240
2241 /*
2242 * If we're passed a 'previous' consumer device then we need to skip
2243 * any consumers until we meet the previous one, and then NULL @data
2244 * so the next one can be returned.
2245 */
2246 if (adev) {
2247 if (dep->consumer == adev->handle)
2248 *adev_p = NULL;
2249
2250 return 0;
2251 }
2252
2253 adev = acpi_get_acpi_dev(dep->consumer);
2254 if (adev) {
2255 *(struct acpi_device **)data = adev;
2256 return 1;
2257 }
2258 /* Continue parsing if the device object is not present. */
2259 return 0;
2260}
2261
2262struct acpi_scan_clear_dep_work {
2263 struct work_struct work;
2264 struct acpi_device *adev;
2265};
2266
2267static void acpi_scan_clear_dep_fn(struct work_struct *work)
2268{
2269 struct acpi_scan_clear_dep_work *cdw;
2270
2271 cdw = container_of(work, struct acpi_scan_clear_dep_work, work);
2272
2273 acpi_scan_lock_acquire();
2274 acpi_bus_attach(cdw->adev, (void *)true);
2275 acpi_scan_lock_release();
2276
2277 acpi_dev_put(cdw->adev);
2278 kfree(cdw);
2279}
2280
2281static bool acpi_scan_clear_dep_queue(struct acpi_device *adev)
2282{
2283 struct acpi_scan_clear_dep_work *cdw;
2284
2285 if (adev->dep_unmet)
2286 return false;
2287
2288 cdw = kmalloc(sizeof(*cdw), GFP_KERNEL);
2289 if (!cdw)
2290 return false;
2291
2292 cdw->adev = adev;
2293 INIT_WORK(&cdw->work, acpi_scan_clear_dep_fn);
2294 /*
2295 * Since the work function may block on the lock until the entire
2296 * initial enumeration of devices is complete, put it into the unbound
2297 * workqueue.
2298 */
2299 queue_work(system_unbound_wq, &cdw->work);
2300
2301 return true;
2302}
2303
2304static int acpi_scan_clear_dep(struct acpi_dep_data *dep, void *data)
2305{
2306 struct acpi_device *adev = acpi_get_acpi_dev(dep->consumer);
2307
2308 if (adev) {
2309 adev->dep_unmet--;
2310 if (!acpi_scan_clear_dep_queue(adev))
2311 acpi_dev_put(adev);
2312 }
2313
2314 list_del(&dep->node);
2315 kfree(dep);
2316
2317 return 0;
2318}
2319
2320/**
2321 * acpi_walk_dep_device_list - Apply a callback to every entry in acpi_dep_list
2322 * @handle: The ACPI handle of the supplier device
2323 * @callback: Pointer to the callback function to apply
2324 * @data: Pointer to some data to pass to the callback
2325 *
2326 * The return value of the callback determines this function's behaviour. If 0
2327 * is returned we continue to iterate over acpi_dep_list. If a positive value
2328 * is returned then the loop is broken but this function returns 0. If a
2329 * negative value is returned by the callback then the loop is broken and that
2330 * value is returned as the final error.
2331 */
2332static int acpi_walk_dep_device_list(acpi_handle handle,
2333 int (*callback)(struct acpi_dep_data *, void *),
2334 void *data)
2335{
2336 struct acpi_dep_data *dep, *tmp;
2337 int ret = 0;
2338
2339 mutex_lock(&acpi_dep_list_lock);
2340 list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) {
2341 if (dep->supplier == handle) {
2342 ret = callback(dep, data);
2343 if (ret)
2344 break;
2345 }
2346 }
2347 mutex_unlock(&acpi_dep_list_lock);
2348
2349 return ret > 0 ? 0 : ret;
2350}
2351
2352/**
2353 * acpi_dev_clear_dependencies - Inform consumers that the device is now active
2354 * @supplier: Pointer to the supplier &struct acpi_device
2355 *
2356 * Clear dependencies on the given device.
2357 */
2358void acpi_dev_clear_dependencies(struct acpi_device *supplier)
2359{
2360 acpi_walk_dep_device_list(supplier->handle, acpi_scan_clear_dep, NULL);
2361}
2362EXPORT_SYMBOL_GPL(acpi_dev_clear_dependencies);
2363
2364/**
2365 * acpi_dev_ready_for_enumeration - Check if the ACPI device is ready for enumeration
2366 * @device: Pointer to the &struct acpi_device to check
2367 *
2368 * Check if the device is present and has no unmet dependencies.
2369 *
2370 * Return true if the device is ready for enumeratino. Otherwise, return false.
2371 */
2372bool acpi_dev_ready_for_enumeration(const struct acpi_device *device)
2373{
2374 if (device->flags.honor_deps && device->dep_unmet)
2375 return false;
2376
2377 return acpi_device_is_present(device);
2378}
2379EXPORT_SYMBOL_GPL(acpi_dev_ready_for_enumeration);
2380
2381/**
2382 * acpi_dev_get_next_consumer_dev - Return the next adev dependent on @supplier
2383 * @supplier: Pointer to the dependee device
2384 * @start: Pointer to the current dependent device
2385 *
2386 * Returns the next &struct acpi_device which declares itself dependent on
2387 * @supplier via the _DEP buffer, parsed from the acpi_dep_list.
2388 *
2389 * If the returned adev is not passed as @start to this function, the caller is
2390 * responsible for putting the reference to adev when it is no longer needed.
2391 */
2392struct acpi_device *acpi_dev_get_next_consumer_dev(struct acpi_device *supplier,
2393 struct acpi_device *start)
2394{
2395 struct acpi_device *adev = start;
2396
2397 acpi_walk_dep_device_list(supplier->handle,
2398 acpi_dev_get_next_consumer_dev_cb, &adev);
2399
2400 acpi_dev_put(start);
2401
2402 if (adev == start)
2403 return NULL;
2404
2405 return adev;
2406}
2407EXPORT_SYMBOL_GPL(acpi_dev_get_next_consumer_dev);
2408
2409/**
2410 * acpi_bus_scan - Add ACPI device node objects in a given namespace scope.
2411 * @handle: Root of the namespace scope to scan.
2412 *
2413 * Scan a given ACPI tree (probably recently hot-plugged) and create and add
2414 * found devices.
2415 *
2416 * If no devices were found, -ENODEV is returned, but it does not mean that
2417 * there has been a real error. There just have been no suitable ACPI objects
2418 * in the table trunk from which the kernel could create a device and add an
2419 * appropriate driver.
2420 *
2421 * Must be called under acpi_scan_lock.
2422 */
2423int acpi_bus_scan(acpi_handle handle)
2424{
2425 struct acpi_device *device = NULL;
2426
2427 acpi_bus_scan_second_pass = false;
2428
2429 /* Pass 1: Avoid enumerating devices with missing dependencies. */
2430
2431 if (ACPI_SUCCESS(acpi_bus_check_add(handle, true, &device)))
2432 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2433 acpi_bus_check_add_1, NULL, NULL,
2434 (void **)&device);
2435
2436 if (!device)
2437 return -ENODEV;
2438
2439 acpi_bus_attach(device, (void *)true);
2440
2441 if (!acpi_bus_scan_second_pass)
2442 return 0;
2443
2444 /* Pass 2: Enumerate all of the remaining devices. */
2445
2446 device = NULL;
2447
2448 if (ACPI_SUCCESS(acpi_bus_check_add(handle, false, &device)))
2449 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2450 acpi_bus_check_add_2, NULL, NULL,
2451 (void **)&device);
2452
2453 acpi_bus_attach(device, NULL);
2454
2455 return 0;
2456}
2457EXPORT_SYMBOL(acpi_bus_scan);
2458
2459static int acpi_bus_trim_one(struct acpi_device *adev, void *not_used)
2460{
2461 struct acpi_scan_handler *handler = adev->handler;
2462
2463 acpi_dev_for_each_child_reverse(adev, acpi_bus_trim_one, NULL);
2464
2465 adev->flags.match_driver = false;
2466 if (handler) {
2467 if (handler->detach)
2468 handler->detach(adev);
2469
2470 adev->handler = NULL;
2471 } else {
2472 device_release_driver(&adev->dev);
2473 }
2474 /*
2475 * Most likely, the device is going away, so put it into D3cold before
2476 * that.
2477 */
2478 acpi_device_set_power(adev, ACPI_STATE_D3_COLD);
2479 adev->flags.initialized = false;
2480 acpi_device_clear_enumerated(adev);
2481
2482 return 0;
2483}
2484
2485/**
2486 * acpi_bus_trim - Detach scan handlers and drivers from ACPI device objects.
2487 * @adev: Root of the ACPI namespace scope to walk.
2488 *
2489 * Must be called under acpi_scan_lock.
2490 */
2491void acpi_bus_trim(struct acpi_device *adev)
2492{
2493 acpi_bus_trim_one(adev, NULL);
2494}
2495EXPORT_SYMBOL_GPL(acpi_bus_trim);
2496
2497int acpi_bus_register_early_device(int type)
2498{
2499 struct acpi_device *device = NULL;
2500 int result;
2501
2502 result = acpi_add_single_object(&device, NULL, type, false);
2503 if (result)
2504 return result;
2505
2506 device->flags.match_driver = true;
2507 return device_attach(&device->dev);
2508}
2509EXPORT_SYMBOL_GPL(acpi_bus_register_early_device);
2510
2511static void acpi_bus_scan_fixed(void)
2512{
2513 if (!(acpi_gbl_FADT.flags & ACPI_FADT_POWER_BUTTON)) {
2514 struct acpi_device *adev = NULL;
2515
2516 acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_POWER_BUTTON,
2517 false);
2518 if (adev) {
2519 adev->flags.match_driver = true;
2520 if (device_attach(&adev->dev) >= 0)
2521 device_init_wakeup(&adev->dev, true);
2522 else
2523 dev_dbg(&adev->dev, "No driver\n");
2524 }
2525 }
2526
2527 if (!(acpi_gbl_FADT.flags & ACPI_FADT_SLEEP_BUTTON)) {
2528 struct acpi_device *adev = NULL;
2529
2530 acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_SLEEP_BUTTON,
2531 false);
2532 if (adev) {
2533 adev->flags.match_driver = true;
2534 if (device_attach(&adev->dev) < 0)
2535 dev_dbg(&adev->dev, "No driver\n");
2536 }
2537 }
2538}
2539
2540static void __init acpi_get_spcr_uart_addr(void)
2541{
2542 acpi_status status;
2543 struct acpi_table_spcr *spcr_ptr;
2544
2545 status = acpi_get_table(ACPI_SIG_SPCR, 0,
2546 (struct acpi_table_header **)&spcr_ptr);
2547 if (ACPI_FAILURE(status)) {
2548 pr_warn("STAO table present, but SPCR is missing\n");
2549 return;
2550 }
2551
2552 spcr_uart_addr = spcr_ptr->serial_port.address;
2553 acpi_put_table((struct acpi_table_header *)spcr_ptr);
2554}
2555
2556static bool acpi_scan_initialized;
2557
2558void __init acpi_scan_init(void)
2559{
2560 acpi_status status;
2561 struct acpi_table_stao *stao_ptr;
2562
2563 acpi_pci_root_init();
2564 acpi_pci_link_init();
2565 acpi_processor_init();
2566 acpi_platform_init();
2567 acpi_lpss_init();
2568 acpi_apd_init();
2569 acpi_cmos_rtc_init();
2570 acpi_container_init();
2571 acpi_memory_hotplug_init();
2572 acpi_watchdog_init();
2573 acpi_pnp_init();
2574 acpi_int340x_thermal_init();
2575 acpi_amba_init();
2576 acpi_init_lpit();
2577
2578 acpi_scan_add_handler(&generic_device_handler);
2579
2580 /*
2581 * If there is STAO table, check whether it needs to ignore the UART
2582 * device in SPCR table.
2583 */
2584 status = acpi_get_table(ACPI_SIG_STAO, 0,
2585 (struct acpi_table_header **)&stao_ptr);
2586 if (ACPI_SUCCESS(status)) {
2587 if (stao_ptr->header.length > sizeof(struct acpi_table_stao))
2588 pr_info("STAO Name List not yet supported.\n");
2589
2590 if (stao_ptr->ignore_uart)
2591 acpi_get_spcr_uart_addr();
2592
2593 acpi_put_table((struct acpi_table_header *)stao_ptr);
2594 }
2595
2596 acpi_gpe_apply_masked_gpes();
2597 acpi_update_all_gpes();
2598
2599 /*
2600 * Although we call __add_memory() that is documented to require the
2601 * device_hotplug_lock, it is not necessary here because this is an
2602 * early code when userspace or any other code path cannot trigger
2603 * hotplug/hotunplug operations.
2604 */
2605 mutex_lock(&acpi_scan_lock);
2606 /*
2607 * Enumerate devices in the ACPI namespace.
2608 */
2609 if (acpi_bus_scan(ACPI_ROOT_OBJECT))
2610 goto unlock;
2611
2612 acpi_root = acpi_fetch_acpi_dev(ACPI_ROOT_OBJECT);
2613 if (!acpi_root)
2614 goto unlock;
2615
2616 /* Fixed feature devices do not exist on HW-reduced platform */
2617 if (!acpi_gbl_reduced_hardware)
2618 acpi_bus_scan_fixed();
2619
2620 acpi_turn_off_unused_power_resources();
2621
2622 acpi_scan_initialized = true;
2623
2624unlock:
2625 mutex_unlock(&acpi_scan_lock);
2626}
2627
2628static struct acpi_probe_entry *ape;
2629static int acpi_probe_count;
2630static DEFINE_MUTEX(acpi_probe_mutex);
2631
2632static int __init acpi_match_madt(union acpi_subtable_headers *header,
2633 const unsigned long end)
2634{
2635 if (!ape->subtable_valid || ape->subtable_valid(&header->common, ape))
2636 if (!ape->probe_subtbl(header, end))
2637 acpi_probe_count++;
2638
2639 return 0;
2640}
2641
2642int __init __acpi_probe_device_table(struct acpi_probe_entry *ap_head, int nr)
2643{
2644 int count = 0;
2645
2646 if (acpi_disabled)
2647 return 0;
2648
2649 mutex_lock(&acpi_probe_mutex);
2650 for (ape = ap_head; nr; ape++, nr--) {
2651 if (ACPI_COMPARE_NAMESEG(ACPI_SIG_MADT, ape->id)) {
2652 acpi_probe_count = 0;
2653 acpi_table_parse_madt(ape->type, acpi_match_madt, 0);
2654 count += acpi_probe_count;
2655 } else {
2656 int res;
2657 res = acpi_table_parse(ape->id, ape->probe_table);
2658 if (!res)
2659 count++;
2660 }
2661 }
2662 mutex_unlock(&acpi_probe_mutex);
2663
2664 return count;
2665}
2666
2667static void acpi_table_events_fn(struct work_struct *work)
2668{
2669 acpi_scan_lock_acquire();
2670 acpi_bus_scan(ACPI_ROOT_OBJECT);
2671 acpi_scan_lock_release();
2672
2673 kfree(work);
2674}
2675
2676void acpi_scan_table_notify(void)
2677{
2678 struct work_struct *work;
2679
2680 if (!acpi_scan_initialized)
2681 return;
2682
2683 work = kmalloc(sizeof(*work), GFP_KERNEL);
2684 if (!work)
2685 return;
2686
2687 INIT_WORK(work, acpi_table_events_fn);
2688 schedule_work(work);
2689}
2690
2691int acpi_reconfig_notifier_register(struct notifier_block *nb)
2692{
2693 return blocking_notifier_chain_register(&acpi_reconfig_chain, nb);
2694}
2695EXPORT_SYMBOL(acpi_reconfig_notifier_register);
2696
2697int acpi_reconfig_notifier_unregister(struct notifier_block *nb)
2698{
2699 return blocking_notifier_chain_unregister(&acpi_reconfig_chain, nb);
2700}
2701EXPORT_SYMBOL(acpi_reconfig_notifier_unregister);