Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * acpi_osl.c - OS-dependent functions ($Revision: 83 $)
4 *
5 * Copyright (C) 2000 Andrew Henroid
6 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
7 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
8 * Copyright (c) 2008 Intel Corporation
9 * Author: Matthew Wilcox <willy@linux.intel.com>
10 */
11
12#define pr_fmt(fmt) "ACPI: OSL: " fmt
13
14#include <linux/module.h>
15#include <linux/kernel.h>
16#include <linux/slab.h>
17#include <linux/mm.h>
18#include <linux/highmem.h>
19#include <linux/lockdep.h>
20#include <linux/pci.h>
21#include <linux/interrupt.h>
22#include <linux/kmod.h>
23#include <linux/delay.h>
24#include <linux/workqueue.h>
25#include <linux/nmi.h>
26#include <linux/acpi.h>
27#include <linux/efi.h>
28#include <linux/ioport.h>
29#include <linux/list.h>
30#include <linux/jiffies.h>
31#include <linux/semaphore.h>
32#include <linux/security.h>
33
34#include <asm/io.h>
35#include <linux/uaccess.h>
36#include <linux/io-64-nonatomic-lo-hi.h>
37
38#include "acpica/accommon.h"
39#include "internal.h"
40
41/* Definitions for ACPI_DEBUG_PRINT() */
42#define _COMPONENT ACPI_OS_SERVICES
43ACPI_MODULE_NAME("osl");
44
45struct acpi_os_dpc {
46 acpi_osd_exec_callback function;
47 void *context;
48 struct work_struct work;
49};
50
51#ifdef ENABLE_DEBUGGER
52#include <linux/kdb.h>
53
54/* stuff for debugger support */
55int acpi_in_debugger;
56EXPORT_SYMBOL(acpi_in_debugger);
57#endif /*ENABLE_DEBUGGER */
58
59static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
60 u32 pm1b_ctrl);
61static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
62 u32 val_b);
63
64static acpi_osd_handler acpi_irq_handler;
65static void *acpi_irq_context;
66static struct workqueue_struct *kacpid_wq;
67static struct workqueue_struct *kacpi_notify_wq;
68static struct workqueue_struct *kacpi_hotplug_wq;
69static bool acpi_os_initialized;
70unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
71bool acpi_permanent_mmap = false;
72
73/*
74 * This list of permanent mappings is for memory that may be accessed from
75 * interrupt context, where we can't do the ioremap().
76 */
77struct acpi_ioremap {
78 struct list_head list;
79 void __iomem *virt;
80 acpi_physical_address phys;
81 acpi_size size;
82 union {
83 unsigned long refcount;
84 struct rcu_work rwork;
85 } track;
86};
87
88static LIST_HEAD(acpi_ioremaps);
89static DEFINE_MUTEX(acpi_ioremap_lock);
90#define acpi_ioremap_lock_held() lock_is_held(&acpi_ioremap_lock.dep_map)
91
92static void __init acpi_request_region (struct acpi_generic_address *gas,
93 unsigned int length, char *desc)
94{
95 u64 addr;
96
97 /* Handle possible alignment issues */
98 memcpy(&addr, &gas->address, sizeof(addr));
99 if (!addr || !length)
100 return;
101
102 /* Resources are never freed */
103 if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
104 request_region(addr, length, desc);
105 else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
106 request_mem_region(addr, length, desc);
107}
108
109static int __init acpi_reserve_resources(void)
110{
111 acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
112 "ACPI PM1a_EVT_BLK");
113
114 acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
115 "ACPI PM1b_EVT_BLK");
116
117 acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
118 "ACPI PM1a_CNT_BLK");
119
120 acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
121 "ACPI PM1b_CNT_BLK");
122
123 if (acpi_gbl_FADT.pm_timer_length == 4)
124 acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
125
126 acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
127 "ACPI PM2_CNT_BLK");
128
129 /* Length of GPE blocks must be a non-negative multiple of 2 */
130
131 if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
132 acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
133 acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
134
135 if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
136 acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
137 acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
138
139 return 0;
140}
141fs_initcall_sync(acpi_reserve_resources);
142
143void acpi_os_printf(const char *fmt, ...)
144{
145 va_list args;
146 va_start(args, fmt);
147 acpi_os_vprintf(fmt, args);
148 va_end(args);
149}
150EXPORT_SYMBOL(acpi_os_printf);
151
152void __printf(1, 0) acpi_os_vprintf(const char *fmt, va_list args)
153{
154 static char buffer[512];
155
156 vsprintf(buffer, fmt, args);
157
158#ifdef ENABLE_DEBUGGER
159 if (acpi_in_debugger) {
160 kdb_printf("%s", buffer);
161 } else {
162 if (printk_get_level(buffer))
163 printk("%s", buffer);
164 else
165 printk(KERN_CONT "%s", buffer);
166 }
167#else
168 if (acpi_debugger_write_log(buffer) < 0) {
169 if (printk_get_level(buffer))
170 printk("%s", buffer);
171 else
172 printk(KERN_CONT "%s", buffer);
173 }
174#endif
175}
176
177#ifdef CONFIG_KEXEC
178static unsigned long acpi_rsdp;
179static int __init setup_acpi_rsdp(char *arg)
180{
181 return kstrtoul(arg, 16, &acpi_rsdp);
182}
183early_param("acpi_rsdp", setup_acpi_rsdp);
184#endif
185
186acpi_physical_address __init acpi_os_get_root_pointer(void)
187{
188 acpi_physical_address pa;
189
190#ifdef CONFIG_KEXEC
191 /*
192 * We may have been provided with an RSDP on the command line,
193 * but if a malicious user has done so they may be pointing us
194 * at modified ACPI tables that could alter kernel behaviour -
195 * so, we check the lockdown status before making use of
196 * it. If we trust it then also stash it in an architecture
197 * specific location (if appropriate) so it can be carried
198 * over further kexec()s.
199 */
200 if (acpi_rsdp && !security_locked_down(LOCKDOWN_ACPI_TABLES)) {
201 acpi_arch_set_root_pointer(acpi_rsdp);
202 return acpi_rsdp;
203 }
204#endif
205 pa = acpi_arch_get_root_pointer();
206 if (pa)
207 return pa;
208
209 if (efi_enabled(EFI_CONFIG_TABLES)) {
210 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
211 return efi.acpi20;
212 if (efi.acpi != EFI_INVALID_TABLE_ADDR)
213 return efi.acpi;
214 pr_err("System description tables not found\n");
215 } else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
216 acpi_find_root_pointer(&pa);
217 }
218
219 return pa;
220}
221
222/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
223static struct acpi_ioremap *
224acpi_map_lookup(acpi_physical_address phys, acpi_size size)
225{
226 struct acpi_ioremap *map;
227
228 list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
229 if (map->phys <= phys &&
230 phys + size <= map->phys + map->size)
231 return map;
232
233 return NULL;
234}
235
236/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
237static void __iomem *
238acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
239{
240 struct acpi_ioremap *map;
241
242 map = acpi_map_lookup(phys, size);
243 if (map)
244 return map->virt + (phys - map->phys);
245
246 return NULL;
247}
248
249void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
250{
251 struct acpi_ioremap *map;
252 void __iomem *virt = NULL;
253
254 mutex_lock(&acpi_ioremap_lock);
255 map = acpi_map_lookup(phys, size);
256 if (map) {
257 virt = map->virt + (phys - map->phys);
258 map->track.refcount++;
259 }
260 mutex_unlock(&acpi_ioremap_lock);
261 return virt;
262}
263EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
264
265/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
266static struct acpi_ioremap *
267acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
268{
269 struct acpi_ioremap *map;
270
271 list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
272 if (map->virt <= virt &&
273 virt + size <= map->virt + map->size)
274 return map;
275
276 return NULL;
277}
278
279#if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
280/* ioremap will take care of cache attributes */
281#define should_use_kmap(pfn) 0
282#else
283#define should_use_kmap(pfn) page_is_ram(pfn)
284#endif
285
286static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
287{
288 unsigned long pfn;
289
290 pfn = pg_off >> PAGE_SHIFT;
291 if (should_use_kmap(pfn)) {
292 if (pg_sz > PAGE_SIZE)
293 return NULL;
294 return (void __iomem __force *)kmap(pfn_to_page(pfn));
295 } else
296 return acpi_os_ioremap(pg_off, pg_sz);
297}
298
299static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
300{
301 unsigned long pfn;
302
303 pfn = pg_off >> PAGE_SHIFT;
304 if (should_use_kmap(pfn))
305 kunmap(pfn_to_page(pfn));
306 else
307 iounmap(vaddr);
308}
309
310/**
311 * acpi_os_map_iomem - Get a virtual address for a given physical address range.
312 * @phys: Start of the physical address range to map.
313 * @size: Size of the physical address range to map.
314 *
315 * Look up the given physical address range in the list of existing ACPI memory
316 * mappings. If found, get a reference to it and return a pointer to it (its
317 * virtual address). If not found, map it, add it to that list and return a
318 * pointer to it.
319 *
320 * During early init (when acpi_permanent_mmap has not been set yet) this
321 * routine simply calls __acpi_map_table() to get the job done.
322 */
323void __iomem __ref
324*acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
325{
326 struct acpi_ioremap *map;
327 void __iomem *virt;
328 acpi_physical_address pg_off;
329 acpi_size pg_sz;
330
331 if (phys > ULONG_MAX) {
332 pr_err("Cannot map memory that high: 0x%llx\n", phys);
333 return NULL;
334 }
335
336 if (!acpi_permanent_mmap)
337 return __acpi_map_table((unsigned long)phys, size);
338
339 mutex_lock(&acpi_ioremap_lock);
340 /* Check if there's a suitable mapping already. */
341 map = acpi_map_lookup(phys, size);
342 if (map) {
343 map->track.refcount++;
344 goto out;
345 }
346
347 map = kzalloc(sizeof(*map), GFP_KERNEL);
348 if (!map) {
349 mutex_unlock(&acpi_ioremap_lock);
350 return NULL;
351 }
352
353 pg_off = round_down(phys, PAGE_SIZE);
354 pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
355 virt = acpi_map(phys, size);
356 if (!virt) {
357 mutex_unlock(&acpi_ioremap_lock);
358 kfree(map);
359 return NULL;
360 }
361
362 INIT_LIST_HEAD(&map->list);
363 map->virt = (void __iomem __force *)((unsigned long)virt & PAGE_MASK);
364 map->phys = pg_off;
365 map->size = pg_sz;
366 map->track.refcount = 1;
367
368 list_add_tail_rcu(&map->list, &acpi_ioremaps);
369
370out:
371 mutex_unlock(&acpi_ioremap_lock);
372 return map->virt + (phys - map->phys);
373}
374EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
375
376void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
377{
378 return (void *)acpi_os_map_iomem(phys, size);
379}
380EXPORT_SYMBOL_GPL(acpi_os_map_memory);
381
382static void acpi_os_map_remove(struct work_struct *work)
383{
384 struct acpi_ioremap *map = container_of(to_rcu_work(work),
385 struct acpi_ioremap,
386 track.rwork);
387
388 acpi_unmap(map->phys, map->virt);
389 kfree(map);
390}
391
392/* Must be called with mutex_lock(&acpi_ioremap_lock) */
393static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
394{
395 if (--map->track.refcount)
396 return;
397
398 list_del_rcu(&map->list);
399
400 INIT_RCU_WORK(&map->track.rwork, acpi_os_map_remove);
401 queue_rcu_work(system_wq, &map->track.rwork);
402}
403
404/**
405 * acpi_os_unmap_iomem - Drop a memory mapping reference.
406 * @virt: Start of the address range to drop a reference to.
407 * @size: Size of the address range to drop a reference to.
408 *
409 * Look up the given virtual address range in the list of existing ACPI memory
410 * mappings, drop a reference to it and if there are no more active references
411 * to it, queue it up for later removal.
412 *
413 * During early init (when acpi_permanent_mmap has not been set yet) this
414 * routine simply calls __acpi_unmap_table() to get the job done. Since
415 * __acpi_unmap_table() is an __init function, the __ref annotation is needed
416 * here.
417 */
418void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
419{
420 struct acpi_ioremap *map;
421
422 if (!acpi_permanent_mmap) {
423 __acpi_unmap_table(virt, size);
424 return;
425 }
426
427 mutex_lock(&acpi_ioremap_lock);
428
429 map = acpi_map_lookup_virt(virt, size);
430 if (!map) {
431 mutex_unlock(&acpi_ioremap_lock);
432 WARN(true, "ACPI: %s: bad address %p\n", __func__, virt);
433 return;
434 }
435 acpi_os_drop_map_ref(map);
436
437 mutex_unlock(&acpi_ioremap_lock);
438}
439EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
440
441/**
442 * acpi_os_unmap_memory - Drop a memory mapping reference.
443 * @virt: Start of the address range to drop a reference to.
444 * @size: Size of the address range to drop a reference to.
445 */
446void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
447{
448 acpi_os_unmap_iomem((void __iomem *)virt, size);
449}
450EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
451
452void __iomem *acpi_os_map_generic_address(struct acpi_generic_address *gas)
453{
454 u64 addr;
455
456 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
457 return NULL;
458
459 /* Handle possible alignment issues */
460 memcpy(&addr, &gas->address, sizeof(addr));
461 if (!addr || !gas->bit_width)
462 return NULL;
463
464 return acpi_os_map_iomem(addr, gas->bit_width / 8);
465}
466EXPORT_SYMBOL(acpi_os_map_generic_address);
467
468void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
469{
470 u64 addr;
471 struct acpi_ioremap *map;
472
473 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
474 return;
475
476 /* Handle possible alignment issues */
477 memcpy(&addr, &gas->address, sizeof(addr));
478 if (!addr || !gas->bit_width)
479 return;
480
481 mutex_lock(&acpi_ioremap_lock);
482
483 map = acpi_map_lookup(addr, gas->bit_width / 8);
484 if (!map) {
485 mutex_unlock(&acpi_ioremap_lock);
486 return;
487 }
488 acpi_os_drop_map_ref(map);
489
490 mutex_unlock(&acpi_ioremap_lock);
491}
492EXPORT_SYMBOL(acpi_os_unmap_generic_address);
493
494#ifdef ACPI_FUTURE_USAGE
495acpi_status
496acpi_os_get_physical_address(void *virt, acpi_physical_address *phys)
497{
498 if (!phys || !virt)
499 return AE_BAD_PARAMETER;
500
501 *phys = virt_to_phys(virt);
502
503 return AE_OK;
504}
505#endif
506
507#ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
508static bool acpi_rev_override;
509
510int __init acpi_rev_override_setup(char *str)
511{
512 acpi_rev_override = true;
513 return 1;
514}
515__setup("acpi_rev_override", acpi_rev_override_setup);
516#else
517#define acpi_rev_override false
518#endif
519
520#define ACPI_MAX_OVERRIDE_LEN 100
521
522static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
523
524acpi_status
525acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
526 acpi_string *new_val)
527{
528 if (!init_val || !new_val)
529 return AE_BAD_PARAMETER;
530
531 *new_val = NULL;
532 if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
533 pr_info("Overriding _OS definition to '%s'\n", acpi_os_name);
534 *new_val = acpi_os_name;
535 }
536
537 if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
538 pr_info("Overriding _REV return value to 5\n");
539 *new_val = (char *)5;
540 }
541
542 return AE_OK;
543}
544
545static irqreturn_t acpi_irq(int irq, void *dev_id)
546{
547 if ((*acpi_irq_handler)(acpi_irq_context)) {
548 acpi_irq_handled++;
549 return IRQ_HANDLED;
550 } else {
551 acpi_irq_not_handled++;
552 return IRQ_NONE;
553 }
554}
555
556acpi_status
557acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
558 void *context)
559{
560 unsigned int irq;
561
562 acpi_irq_stats_init();
563
564 /*
565 * ACPI interrupts different from the SCI in our copy of the FADT are
566 * not supported.
567 */
568 if (gsi != acpi_gbl_FADT.sci_interrupt)
569 return AE_BAD_PARAMETER;
570
571 if (acpi_irq_handler)
572 return AE_ALREADY_ACQUIRED;
573
574 if (acpi_gsi_to_irq(gsi, &irq) < 0) {
575 pr_err("SCI (ACPI GSI %d) not registered\n", gsi);
576 return AE_OK;
577 }
578
579 acpi_irq_handler = handler;
580 acpi_irq_context = context;
581 if (request_threaded_irq(irq, NULL, acpi_irq, IRQF_SHARED | IRQF_ONESHOT,
582 "acpi", acpi_irq)) {
583 pr_err("SCI (IRQ%d) allocation failed\n", irq);
584 acpi_irq_handler = NULL;
585 return AE_NOT_ACQUIRED;
586 }
587 acpi_sci_irq = irq;
588
589 return AE_OK;
590}
591
592acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
593{
594 if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
595 return AE_BAD_PARAMETER;
596
597 free_irq(acpi_sci_irq, acpi_irq);
598 acpi_irq_handler = NULL;
599 acpi_sci_irq = INVALID_ACPI_IRQ;
600
601 return AE_OK;
602}
603
604/*
605 * Running in interpreter thread context, safe to sleep
606 */
607
608void acpi_os_sleep(u64 ms)
609{
610 msleep(ms);
611}
612
613void acpi_os_stall(u32 us)
614{
615 while (us) {
616 u32 delay = 1000;
617
618 if (delay > us)
619 delay = us;
620 udelay(delay);
621 touch_nmi_watchdog();
622 us -= delay;
623 }
624}
625
626/*
627 * Support ACPI 3.0 AML Timer operand. Returns a 64-bit free-running,
628 * monotonically increasing timer with 100ns granularity. Do not use
629 * ktime_get() to implement this function because this function may get
630 * called after timekeeping has been suspended. Note: calling this function
631 * after timekeeping has been suspended may lead to unexpected results
632 * because when timekeeping is suspended the jiffies counter is not
633 * incremented. See also timekeeping_suspend().
634 */
635u64 acpi_os_get_timer(void)
636{
637 return (get_jiffies_64() - INITIAL_JIFFIES) *
638 (ACPI_100NSEC_PER_SEC / HZ);
639}
640
641acpi_status acpi_os_read_port(acpi_io_address port, u32 *value, u32 width)
642{
643 u32 dummy;
644
645 if (value)
646 *value = 0;
647 else
648 value = &dummy;
649
650 if (width <= 8) {
651 *value = inb(port);
652 } else if (width <= 16) {
653 *value = inw(port);
654 } else if (width <= 32) {
655 *value = inl(port);
656 } else {
657 pr_debug("%s: Access width %d not supported\n", __func__, width);
658 return AE_BAD_PARAMETER;
659 }
660
661 return AE_OK;
662}
663
664EXPORT_SYMBOL(acpi_os_read_port);
665
666acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
667{
668 if (width <= 8) {
669 outb(value, port);
670 } else if (width <= 16) {
671 outw(value, port);
672 } else if (width <= 32) {
673 outl(value, port);
674 } else {
675 pr_debug("%s: Access width %d not supported\n", __func__, width);
676 return AE_BAD_PARAMETER;
677 }
678
679 return AE_OK;
680}
681
682EXPORT_SYMBOL(acpi_os_write_port);
683
684int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width)
685{
686
687 switch (width) {
688 case 8:
689 *(u8 *) value = readb(virt_addr);
690 break;
691 case 16:
692 *(u16 *) value = readw(virt_addr);
693 break;
694 case 32:
695 *(u32 *) value = readl(virt_addr);
696 break;
697 case 64:
698 *(u64 *) value = readq(virt_addr);
699 break;
700 default:
701 return -EINVAL;
702 }
703
704 return 0;
705}
706
707acpi_status
708acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
709{
710 void __iomem *virt_addr;
711 unsigned int size = width / 8;
712 bool unmap = false;
713 u64 dummy;
714 int error;
715
716 rcu_read_lock();
717 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
718 if (!virt_addr) {
719 rcu_read_unlock();
720 virt_addr = acpi_os_ioremap(phys_addr, size);
721 if (!virt_addr)
722 return AE_BAD_ADDRESS;
723 unmap = true;
724 }
725
726 if (!value)
727 value = &dummy;
728
729 error = acpi_os_read_iomem(virt_addr, value, width);
730 BUG_ON(error);
731
732 if (unmap)
733 iounmap(virt_addr);
734 else
735 rcu_read_unlock();
736
737 return AE_OK;
738}
739
740acpi_status
741acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
742{
743 void __iomem *virt_addr;
744 unsigned int size = width / 8;
745 bool unmap = false;
746
747 rcu_read_lock();
748 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
749 if (!virt_addr) {
750 rcu_read_unlock();
751 virt_addr = acpi_os_ioremap(phys_addr, size);
752 if (!virt_addr)
753 return AE_BAD_ADDRESS;
754 unmap = true;
755 }
756
757 switch (width) {
758 case 8:
759 writeb(value, virt_addr);
760 break;
761 case 16:
762 writew(value, virt_addr);
763 break;
764 case 32:
765 writel(value, virt_addr);
766 break;
767 case 64:
768 writeq(value, virt_addr);
769 break;
770 default:
771 BUG();
772 }
773
774 if (unmap)
775 iounmap(virt_addr);
776 else
777 rcu_read_unlock();
778
779 return AE_OK;
780}
781
782#ifdef CONFIG_PCI
783acpi_status
784acpi_os_read_pci_configuration(struct acpi_pci_id *pci_id, u32 reg,
785 u64 *value, u32 width)
786{
787 int result, size;
788 u32 value32;
789
790 if (!value)
791 return AE_BAD_PARAMETER;
792
793 switch (width) {
794 case 8:
795 size = 1;
796 break;
797 case 16:
798 size = 2;
799 break;
800 case 32:
801 size = 4;
802 break;
803 default:
804 return AE_ERROR;
805 }
806
807 result = raw_pci_read(pci_id->segment, pci_id->bus,
808 PCI_DEVFN(pci_id->device, pci_id->function),
809 reg, size, &value32);
810 *value = value32;
811
812 return (result ? AE_ERROR : AE_OK);
813}
814
815acpi_status
816acpi_os_write_pci_configuration(struct acpi_pci_id *pci_id, u32 reg,
817 u64 value, u32 width)
818{
819 int result, size;
820
821 switch (width) {
822 case 8:
823 size = 1;
824 break;
825 case 16:
826 size = 2;
827 break;
828 case 32:
829 size = 4;
830 break;
831 default:
832 return AE_ERROR;
833 }
834
835 result = raw_pci_write(pci_id->segment, pci_id->bus,
836 PCI_DEVFN(pci_id->device, pci_id->function),
837 reg, size, value);
838
839 return (result ? AE_ERROR : AE_OK);
840}
841#endif
842
843static void acpi_os_execute_deferred(struct work_struct *work)
844{
845 struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
846
847 dpc->function(dpc->context);
848 kfree(dpc);
849}
850
851#ifdef CONFIG_ACPI_DEBUGGER
852static struct acpi_debugger acpi_debugger;
853static bool acpi_debugger_initialized;
854
855int acpi_register_debugger(struct module *owner,
856 const struct acpi_debugger_ops *ops)
857{
858 int ret = 0;
859
860 mutex_lock(&acpi_debugger.lock);
861 if (acpi_debugger.ops) {
862 ret = -EBUSY;
863 goto err_lock;
864 }
865
866 acpi_debugger.owner = owner;
867 acpi_debugger.ops = ops;
868
869err_lock:
870 mutex_unlock(&acpi_debugger.lock);
871 return ret;
872}
873EXPORT_SYMBOL(acpi_register_debugger);
874
875void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
876{
877 mutex_lock(&acpi_debugger.lock);
878 if (ops == acpi_debugger.ops) {
879 acpi_debugger.ops = NULL;
880 acpi_debugger.owner = NULL;
881 }
882 mutex_unlock(&acpi_debugger.lock);
883}
884EXPORT_SYMBOL(acpi_unregister_debugger);
885
886int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
887{
888 int ret;
889 int (*func)(acpi_osd_exec_callback, void *);
890 struct module *owner;
891
892 if (!acpi_debugger_initialized)
893 return -ENODEV;
894 mutex_lock(&acpi_debugger.lock);
895 if (!acpi_debugger.ops) {
896 ret = -ENODEV;
897 goto err_lock;
898 }
899 if (!try_module_get(acpi_debugger.owner)) {
900 ret = -ENODEV;
901 goto err_lock;
902 }
903 func = acpi_debugger.ops->create_thread;
904 owner = acpi_debugger.owner;
905 mutex_unlock(&acpi_debugger.lock);
906
907 ret = func(function, context);
908
909 mutex_lock(&acpi_debugger.lock);
910 module_put(owner);
911err_lock:
912 mutex_unlock(&acpi_debugger.lock);
913 return ret;
914}
915
916ssize_t acpi_debugger_write_log(const char *msg)
917{
918 ssize_t ret;
919 ssize_t (*func)(const char *);
920 struct module *owner;
921
922 if (!acpi_debugger_initialized)
923 return -ENODEV;
924 mutex_lock(&acpi_debugger.lock);
925 if (!acpi_debugger.ops) {
926 ret = -ENODEV;
927 goto err_lock;
928 }
929 if (!try_module_get(acpi_debugger.owner)) {
930 ret = -ENODEV;
931 goto err_lock;
932 }
933 func = acpi_debugger.ops->write_log;
934 owner = acpi_debugger.owner;
935 mutex_unlock(&acpi_debugger.lock);
936
937 ret = func(msg);
938
939 mutex_lock(&acpi_debugger.lock);
940 module_put(owner);
941err_lock:
942 mutex_unlock(&acpi_debugger.lock);
943 return ret;
944}
945
946ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
947{
948 ssize_t ret;
949 ssize_t (*func)(char *, size_t);
950 struct module *owner;
951
952 if (!acpi_debugger_initialized)
953 return -ENODEV;
954 mutex_lock(&acpi_debugger.lock);
955 if (!acpi_debugger.ops) {
956 ret = -ENODEV;
957 goto err_lock;
958 }
959 if (!try_module_get(acpi_debugger.owner)) {
960 ret = -ENODEV;
961 goto err_lock;
962 }
963 func = acpi_debugger.ops->read_cmd;
964 owner = acpi_debugger.owner;
965 mutex_unlock(&acpi_debugger.lock);
966
967 ret = func(buffer, buffer_length);
968
969 mutex_lock(&acpi_debugger.lock);
970 module_put(owner);
971err_lock:
972 mutex_unlock(&acpi_debugger.lock);
973 return ret;
974}
975
976int acpi_debugger_wait_command_ready(void)
977{
978 int ret;
979 int (*func)(bool, char *, size_t);
980 struct module *owner;
981
982 if (!acpi_debugger_initialized)
983 return -ENODEV;
984 mutex_lock(&acpi_debugger.lock);
985 if (!acpi_debugger.ops) {
986 ret = -ENODEV;
987 goto err_lock;
988 }
989 if (!try_module_get(acpi_debugger.owner)) {
990 ret = -ENODEV;
991 goto err_lock;
992 }
993 func = acpi_debugger.ops->wait_command_ready;
994 owner = acpi_debugger.owner;
995 mutex_unlock(&acpi_debugger.lock);
996
997 ret = func(acpi_gbl_method_executing,
998 acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
999
1000 mutex_lock(&acpi_debugger.lock);
1001 module_put(owner);
1002err_lock:
1003 mutex_unlock(&acpi_debugger.lock);
1004 return ret;
1005}
1006
1007int acpi_debugger_notify_command_complete(void)
1008{
1009 int ret;
1010 int (*func)(void);
1011 struct module *owner;
1012
1013 if (!acpi_debugger_initialized)
1014 return -ENODEV;
1015 mutex_lock(&acpi_debugger.lock);
1016 if (!acpi_debugger.ops) {
1017 ret = -ENODEV;
1018 goto err_lock;
1019 }
1020 if (!try_module_get(acpi_debugger.owner)) {
1021 ret = -ENODEV;
1022 goto err_lock;
1023 }
1024 func = acpi_debugger.ops->notify_command_complete;
1025 owner = acpi_debugger.owner;
1026 mutex_unlock(&acpi_debugger.lock);
1027
1028 ret = func();
1029
1030 mutex_lock(&acpi_debugger.lock);
1031 module_put(owner);
1032err_lock:
1033 mutex_unlock(&acpi_debugger.lock);
1034 return ret;
1035}
1036
1037int __init acpi_debugger_init(void)
1038{
1039 mutex_init(&acpi_debugger.lock);
1040 acpi_debugger_initialized = true;
1041 return 0;
1042}
1043#endif
1044
1045/*******************************************************************************
1046 *
1047 * FUNCTION: acpi_os_execute
1048 *
1049 * PARAMETERS: Type - Type of the callback
1050 * Function - Function to be executed
1051 * Context - Function parameters
1052 *
1053 * RETURN: Status
1054 *
1055 * DESCRIPTION: Depending on type, either queues function for deferred execution or
1056 * immediately executes function on a separate thread.
1057 *
1058 ******************************************************************************/
1059
1060acpi_status acpi_os_execute(acpi_execute_type type,
1061 acpi_osd_exec_callback function, void *context)
1062{
1063 struct acpi_os_dpc *dpc;
1064 int ret;
1065
1066 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1067 "Scheduling function [%p(%p)] for deferred execution.\n",
1068 function, context));
1069
1070 if (type == OSL_DEBUGGER_MAIN_THREAD) {
1071 ret = acpi_debugger_create_thread(function, context);
1072 if (ret) {
1073 pr_err("Kernel thread creation failed\n");
1074 return AE_ERROR;
1075 }
1076 return AE_OK;
1077 }
1078
1079 /*
1080 * Allocate/initialize DPC structure. Note that this memory will be
1081 * freed by the callee. The kernel handles the work_struct list in a
1082 * way that allows us to also free its memory inside the callee.
1083 * Because we may want to schedule several tasks with different
1084 * parameters we can't use the approach some kernel code uses of
1085 * having a static work_struct.
1086 */
1087
1088 dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1089 if (!dpc)
1090 return AE_NO_MEMORY;
1091
1092 dpc->function = function;
1093 dpc->context = context;
1094 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1095
1096 /*
1097 * To prevent lockdep from complaining unnecessarily, make sure that
1098 * there is a different static lockdep key for each workqueue by using
1099 * INIT_WORK() for each of them separately.
1100 */
1101 switch (type) {
1102 case OSL_NOTIFY_HANDLER:
1103 ret = queue_work(kacpi_notify_wq, &dpc->work);
1104 break;
1105 case OSL_GPE_HANDLER:
1106 /*
1107 * On some machines, a software-initiated SMI causes corruption
1108 * unless the SMI runs on CPU 0. An SMI can be initiated by
1109 * any AML, but typically it's done in GPE-related methods that
1110 * are run via workqueues, so we can avoid the known corruption
1111 * cases by always queueing on CPU 0.
1112 */
1113 ret = queue_work_on(0, kacpid_wq, &dpc->work);
1114 break;
1115 default:
1116 pr_err("Unsupported os_execute type %d.\n", type);
1117 goto err;
1118 }
1119 if (!ret) {
1120 pr_err("Unable to queue work\n");
1121 goto err;
1122 }
1123
1124 return AE_OK;
1125
1126err:
1127 kfree(dpc);
1128 return AE_ERROR;
1129}
1130EXPORT_SYMBOL(acpi_os_execute);
1131
1132void acpi_os_wait_events_complete(void)
1133{
1134 /*
1135 * Make sure the GPE handler or the fixed event handler is not used
1136 * on another CPU after removal.
1137 */
1138 if (acpi_sci_irq_valid())
1139 synchronize_hardirq(acpi_sci_irq);
1140 flush_workqueue(kacpid_wq);
1141 flush_workqueue(kacpi_notify_wq);
1142}
1143EXPORT_SYMBOL(acpi_os_wait_events_complete);
1144
1145struct acpi_hp_work {
1146 struct work_struct work;
1147 struct acpi_device *adev;
1148 u32 src;
1149};
1150
1151static void acpi_hotplug_work_fn(struct work_struct *work)
1152{
1153 struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1154
1155 acpi_os_wait_events_complete();
1156 acpi_device_hotplug(hpw->adev, hpw->src);
1157 kfree(hpw);
1158}
1159
1160acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1161{
1162 struct acpi_hp_work *hpw;
1163
1164 acpi_handle_debug(adev->handle,
1165 "Scheduling hotplug event %u for deferred handling\n",
1166 src);
1167
1168 hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1169 if (!hpw)
1170 return AE_NO_MEMORY;
1171
1172 INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1173 hpw->adev = adev;
1174 hpw->src = src;
1175 /*
1176 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1177 * the hotplug code may call driver .remove() functions, which may
1178 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1179 * these workqueues.
1180 */
1181 if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1182 kfree(hpw);
1183 return AE_ERROR;
1184 }
1185 return AE_OK;
1186}
1187
1188bool acpi_queue_hotplug_work(struct work_struct *work)
1189{
1190 return queue_work(kacpi_hotplug_wq, work);
1191}
1192
1193acpi_status
1194acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle *handle)
1195{
1196 struct semaphore *sem = NULL;
1197
1198 sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1199 if (!sem)
1200 return AE_NO_MEMORY;
1201
1202 sema_init(sem, initial_units);
1203
1204 *handle = (acpi_handle *) sem;
1205
1206 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1207 *handle, initial_units));
1208
1209 return AE_OK;
1210}
1211
1212/*
1213 * TODO: A better way to delete semaphores? Linux doesn't have a
1214 * 'delete_semaphore()' function -- may result in an invalid
1215 * pointer dereference for non-synchronized consumers. Should
1216 * we at least check for blocked threads and signal/cancel them?
1217 */
1218
1219acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1220{
1221 struct semaphore *sem = (struct semaphore *)handle;
1222
1223 if (!sem)
1224 return AE_BAD_PARAMETER;
1225
1226 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1227
1228 BUG_ON(!list_empty(&sem->wait_list));
1229 kfree(sem);
1230 sem = NULL;
1231
1232 return AE_OK;
1233}
1234
1235/*
1236 * TODO: Support for units > 1?
1237 */
1238acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1239{
1240 acpi_status status = AE_OK;
1241 struct semaphore *sem = (struct semaphore *)handle;
1242 long jiffies;
1243 int ret = 0;
1244
1245 if (!acpi_os_initialized)
1246 return AE_OK;
1247
1248 if (!sem || (units < 1))
1249 return AE_BAD_PARAMETER;
1250
1251 if (units > 1)
1252 return AE_SUPPORT;
1253
1254 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1255 handle, units, timeout));
1256
1257 if (timeout == ACPI_WAIT_FOREVER)
1258 jiffies = MAX_SCHEDULE_TIMEOUT;
1259 else
1260 jiffies = msecs_to_jiffies(timeout);
1261
1262 ret = down_timeout(sem, jiffies);
1263 if (ret)
1264 status = AE_TIME;
1265
1266 if (ACPI_FAILURE(status)) {
1267 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1268 "Failed to acquire semaphore[%p|%d|%d], %s",
1269 handle, units, timeout,
1270 acpi_format_exception(status)));
1271 } else {
1272 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1273 "Acquired semaphore[%p|%d|%d]", handle,
1274 units, timeout));
1275 }
1276
1277 return status;
1278}
1279
1280/*
1281 * TODO: Support for units > 1?
1282 */
1283acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1284{
1285 struct semaphore *sem = (struct semaphore *)handle;
1286
1287 if (!acpi_os_initialized)
1288 return AE_OK;
1289
1290 if (!sem || (units < 1))
1291 return AE_BAD_PARAMETER;
1292
1293 if (units > 1)
1294 return AE_SUPPORT;
1295
1296 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1297 units));
1298
1299 up(sem);
1300
1301 return AE_OK;
1302}
1303
1304acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1305{
1306#ifdef ENABLE_DEBUGGER
1307 if (acpi_in_debugger) {
1308 u32 chars;
1309
1310 kdb_read(buffer, buffer_length);
1311
1312 /* remove the CR kdb includes */
1313 chars = strlen(buffer) - 1;
1314 buffer[chars] = '\0';
1315 }
1316#else
1317 int ret;
1318
1319 ret = acpi_debugger_read_cmd(buffer, buffer_length);
1320 if (ret < 0)
1321 return AE_ERROR;
1322 if (bytes_read)
1323 *bytes_read = ret;
1324#endif
1325
1326 return AE_OK;
1327}
1328EXPORT_SYMBOL(acpi_os_get_line);
1329
1330acpi_status acpi_os_wait_command_ready(void)
1331{
1332 int ret;
1333
1334 ret = acpi_debugger_wait_command_ready();
1335 if (ret < 0)
1336 return AE_ERROR;
1337 return AE_OK;
1338}
1339
1340acpi_status acpi_os_notify_command_complete(void)
1341{
1342 int ret;
1343
1344 ret = acpi_debugger_notify_command_complete();
1345 if (ret < 0)
1346 return AE_ERROR;
1347 return AE_OK;
1348}
1349
1350acpi_status acpi_os_signal(u32 function, void *info)
1351{
1352 switch (function) {
1353 case ACPI_SIGNAL_FATAL:
1354 pr_err("Fatal opcode executed\n");
1355 break;
1356 case ACPI_SIGNAL_BREAKPOINT:
1357 /*
1358 * AML Breakpoint
1359 * ACPI spec. says to treat it as a NOP unless
1360 * you are debugging. So if/when we integrate
1361 * AML debugger into the kernel debugger its
1362 * hook will go here. But until then it is
1363 * not useful to print anything on breakpoints.
1364 */
1365 break;
1366 default:
1367 break;
1368 }
1369
1370 return AE_OK;
1371}
1372
1373static int __init acpi_os_name_setup(char *str)
1374{
1375 char *p = acpi_os_name;
1376 int count = ACPI_MAX_OVERRIDE_LEN - 1;
1377
1378 if (!str || !*str)
1379 return 0;
1380
1381 for (; count-- && *str; str++) {
1382 if (isalnum(*str) || *str == ' ' || *str == ':')
1383 *p++ = *str;
1384 else if (*str == '\'' || *str == '"')
1385 continue;
1386 else
1387 break;
1388 }
1389 *p = 0;
1390
1391 return 1;
1392
1393}
1394
1395__setup("acpi_os_name=", acpi_os_name_setup);
1396
1397/*
1398 * Disable the auto-serialization of named objects creation methods.
1399 *
1400 * This feature is enabled by default. It marks the AML control methods
1401 * that contain the opcodes to create named objects as "Serialized".
1402 */
1403static int __init acpi_no_auto_serialize_setup(char *str)
1404{
1405 acpi_gbl_auto_serialize_methods = FALSE;
1406 pr_info("Auto-serialization disabled\n");
1407
1408 return 1;
1409}
1410
1411__setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1412
1413/* Check of resource interference between native drivers and ACPI
1414 * OperationRegions (SystemIO and System Memory only).
1415 * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1416 * in arbitrary AML code and can interfere with legacy drivers.
1417 * acpi_enforce_resources= can be set to:
1418 *
1419 * - strict (default) (2)
1420 * -> further driver trying to access the resources will not load
1421 * - lax (1)
1422 * -> further driver trying to access the resources will load, but you
1423 * get a system message that something might go wrong...
1424 *
1425 * - no (0)
1426 * -> ACPI Operation Region resources will not be registered
1427 *
1428 */
1429#define ENFORCE_RESOURCES_STRICT 2
1430#define ENFORCE_RESOURCES_LAX 1
1431#define ENFORCE_RESOURCES_NO 0
1432
1433static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1434
1435static int __init acpi_enforce_resources_setup(char *str)
1436{
1437 if (str == NULL || *str == '\0')
1438 return 0;
1439
1440 if (!strcmp("strict", str))
1441 acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1442 else if (!strcmp("lax", str))
1443 acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1444 else if (!strcmp("no", str))
1445 acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1446
1447 return 1;
1448}
1449
1450__setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1451
1452/* Check for resource conflicts between ACPI OperationRegions and native
1453 * drivers */
1454int acpi_check_resource_conflict(const struct resource *res)
1455{
1456 acpi_adr_space_type space_id;
1457
1458 if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1459 return 0;
1460
1461 if (res->flags & IORESOURCE_IO)
1462 space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1463 else if (res->flags & IORESOURCE_MEM)
1464 space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1465 else
1466 return 0;
1467
1468 if (!acpi_check_address_range(space_id, res->start, resource_size(res), 1))
1469 return 0;
1470
1471 pr_info("Resource conflict; ACPI support missing from driver?\n");
1472
1473 if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1474 return -EBUSY;
1475
1476 if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1477 pr_notice("Resource conflict: System may be unstable or behave erratically\n");
1478
1479 return 0;
1480}
1481EXPORT_SYMBOL(acpi_check_resource_conflict);
1482
1483int acpi_check_region(resource_size_t start, resource_size_t n,
1484 const char *name)
1485{
1486 struct resource res = DEFINE_RES_IO_NAMED(start, n, name);
1487
1488 return acpi_check_resource_conflict(&res);
1489}
1490EXPORT_SYMBOL(acpi_check_region);
1491
1492/*
1493 * Let drivers know whether the resource checks are effective
1494 */
1495int acpi_resources_are_enforced(void)
1496{
1497 return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1498}
1499EXPORT_SYMBOL(acpi_resources_are_enforced);
1500
1501/*
1502 * Deallocate the memory for a spinlock.
1503 */
1504void acpi_os_delete_lock(acpi_spinlock handle)
1505{
1506 ACPI_FREE(handle);
1507}
1508
1509/*
1510 * Acquire a spinlock.
1511 *
1512 * handle is a pointer to the spinlock_t.
1513 */
1514
1515acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1516 __acquires(lockp)
1517{
1518 spin_lock(lockp);
1519 return 0;
1520}
1521
1522/*
1523 * Release a spinlock. See above.
1524 */
1525
1526void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags not_used)
1527 __releases(lockp)
1528{
1529 spin_unlock(lockp);
1530}
1531
1532#ifndef ACPI_USE_LOCAL_CACHE
1533
1534/*******************************************************************************
1535 *
1536 * FUNCTION: acpi_os_create_cache
1537 *
1538 * PARAMETERS: name - Ascii name for the cache
1539 * size - Size of each cached object
1540 * depth - Maximum depth of the cache (in objects) <ignored>
1541 * cache - Where the new cache object is returned
1542 *
1543 * RETURN: status
1544 *
1545 * DESCRIPTION: Create a cache object
1546 *
1547 ******************************************************************************/
1548
1549acpi_status
1550acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t **cache)
1551{
1552 *cache = kmem_cache_create(name, size, 0, 0, NULL);
1553 if (*cache == NULL)
1554 return AE_ERROR;
1555 else
1556 return AE_OK;
1557}
1558
1559/*******************************************************************************
1560 *
1561 * FUNCTION: acpi_os_purge_cache
1562 *
1563 * PARAMETERS: Cache - Handle to cache object
1564 *
1565 * RETURN: Status
1566 *
1567 * DESCRIPTION: Free all objects within the requested cache.
1568 *
1569 ******************************************************************************/
1570
1571acpi_status acpi_os_purge_cache(acpi_cache_t *cache)
1572{
1573 kmem_cache_shrink(cache);
1574 return AE_OK;
1575}
1576
1577/*******************************************************************************
1578 *
1579 * FUNCTION: acpi_os_delete_cache
1580 *
1581 * PARAMETERS: Cache - Handle to cache object
1582 *
1583 * RETURN: Status
1584 *
1585 * DESCRIPTION: Free all objects within the requested cache and delete the
1586 * cache object.
1587 *
1588 ******************************************************************************/
1589
1590acpi_status acpi_os_delete_cache(acpi_cache_t *cache)
1591{
1592 kmem_cache_destroy(cache);
1593 return AE_OK;
1594}
1595
1596/*******************************************************************************
1597 *
1598 * FUNCTION: acpi_os_release_object
1599 *
1600 * PARAMETERS: Cache - Handle to cache object
1601 * Object - The object to be released
1602 *
1603 * RETURN: None
1604 *
1605 * DESCRIPTION: Release an object to the specified cache. If cache is full,
1606 * the object is deleted.
1607 *
1608 ******************************************************************************/
1609
1610acpi_status acpi_os_release_object(acpi_cache_t *cache, void *object)
1611{
1612 kmem_cache_free(cache, object);
1613 return AE_OK;
1614}
1615#endif
1616
1617static int __init acpi_no_static_ssdt_setup(char *s)
1618{
1619 acpi_gbl_disable_ssdt_table_install = TRUE;
1620 pr_info("Static SSDT installation disabled\n");
1621
1622 return 0;
1623}
1624
1625early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1626
1627static int __init acpi_disable_return_repair(char *s)
1628{
1629 pr_notice("Predefined validation mechanism disabled\n");
1630 acpi_gbl_disable_auto_repair = TRUE;
1631
1632 return 1;
1633}
1634
1635__setup("acpica_no_return_repair", acpi_disable_return_repair);
1636
1637acpi_status __init acpi_os_initialize(void)
1638{
1639 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1640 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1641
1642 acpi_gbl_xgpe0_block_logical_address =
1643 (unsigned long)acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1644 acpi_gbl_xgpe1_block_logical_address =
1645 (unsigned long)acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1646
1647 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1648 /*
1649 * Use acpi_os_map_generic_address to pre-map the reset
1650 * register if it's in system memory.
1651 */
1652 void *rv;
1653
1654 rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1655 pr_debug("%s: Reset register mapping %s\n", __func__,
1656 rv ? "successful" : "failed");
1657 }
1658 acpi_os_initialized = true;
1659
1660 return AE_OK;
1661}
1662
1663acpi_status __init acpi_os_initialize1(void)
1664{
1665 kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1666 kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 0);
1667 kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1668 BUG_ON(!kacpid_wq);
1669 BUG_ON(!kacpi_notify_wq);
1670 BUG_ON(!kacpi_hotplug_wq);
1671 acpi_osi_init();
1672 return AE_OK;
1673}
1674
1675acpi_status acpi_os_terminate(void)
1676{
1677 if (acpi_irq_handler) {
1678 acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1679 acpi_irq_handler);
1680 }
1681
1682 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1683 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1684 acpi_gbl_xgpe0_block_logical_address = 0UL;
1685 acpi_gbl_xgpe1_block_logical_address = 0UL;
1686
1687 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1688 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1689
1690 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1691 acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1692
1693 destroy_workqueue(kacpid_wq);
1694 destroy_workqueue(kacpi_notify_wq);
1695 destroy_workqueue(kacpi_hotplug_wq);
1696
1697 return AE_OK;
1698}
1699
1700acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1701 u32 pm1b_control)
1702{
1703 int rc = 0;
1704
1705 if (__acpi_os_prepare_sleep)
1706 rc = __acpi_os_prepare_sleep(sleep_state,
1707 pm1a_control, pm1b_control);
1708 if (rc < 0)
1709 return AE_ERROR;
1710 else if (rc > 0)
1711 return AE_CTRL_TERMINATE;
1712
1713 return AE_OK;
1714}
1715
1716void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1717 u32 pm1a_ctrl, u32 pm1b_ctrl))
1718{
1719 __acpi_os_prepare_sleep = func;
1720}
1721
1722#if (ACPI_REDUCED_HARDWARE)
1723acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1724 u32 val_b)
1725{
1726 int rc = 0;
1727
1728 if (__acpi_os_prepare_extended_sleep)
1729 rc = __acpi_os_prepare_extended_sleep(sleep_state,
1730 val_a, val_b);
1731 if (rc < 0)
1732 return AE_ERROR;
1733 else if (rc > 0)
1734 return AE_CTRL_TERMINATE;
1735
1736 return AE_OK;
1737}
1738#else
1739acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1740 u32 val_b)
1741{
1742 return AE_OK;
1743}
1744#endif
1745
1746void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1747 u32 val_a, u32 val_b))
1748{
1749 __acpi_os_prepare_extended_sleep = func;
1750}
1751
1752acpi_status acpi_os_enter_sleep(u8 sleep_state,
1753 u32 reg_a_value, u32 reg_b_value)
1754{
1755 acpi_status status;
1756
1757 if (acpi_gbl_reduced_hardware)
1758 status = acpi_os_prepare_extended_sleep(sleep_state,
1759 reg_a_value,
1760 reg_b_value);
1761 else
1762 status = acpi_os_prepare_sleep(sleep_state,
1763 reg_a_value, reg_b_value);
1764 return status;
1765}
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * acpi_osl.c - OS-dependent functions ($Revision: 83 $)
4 *
5 * Copyright (C) 2000 Andrew Henroid
6 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
7 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
8 * Copyright (c) 2008 Intel Corporation
9 * Author: Matthew Wilcox <willy@linux.intel.com>
10 */
11
12#define pr_fmt(fmt) "ACPI: OSL: " fmt
13
14#include <linux/module.h>
15#include <linux/kernel.h>
16#include <linux/slab.h>
17#include <linux/mm.h>
18#include <linux/highmem.h>
19#include <linux/lockdep.h>
20#include <linux/pci.h>
21#include <linux/interrupt.h>
22#include <linux/kmod.h>
23#include <linux/delay.h>
24#include <linux/workqueue.h>
25#include <linux/nmi.h>
26#include <linux/acpi.h>
27#include <linux/efi.h>
28#include <linux/ioport.h>
29#include <linux/list.h>
30#include <linux/jiffies.h>
31#include <linux/semaphore.h>
32#include <linux/security.h>
33
34#include <asm/io.h>
35#include <linux/uaccess.h>
36#include <linux/io-64-nonatomic-lo-hi.h>
37
38#include "acpica/accommon.h"
39#include "internal.h"
40
41/* Definitions for ACPI_DEBUG_PRINT() */
42#define _COMPONENT ACPI_OS_SERVICES
43ACPI_MODULE_NAME("osl");
44
45struct acpi_os_dpc {
46 acpi_osd_exec_callback function;
47 void *context;
48 struct work_struct work;
49};
50
51#ifdef ENABLE_DEBUGGER
52#include <linux/kdb.h>
53
54/* stuff for debugger support */
55int acpi_in_debugger;
56EXPORT_SYMBOL(acpi_in_debugger);
57#endif /*ENABLE_DEBUGGER */
58
59static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
60 u32 pm1b_ctrl);
61static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
62 u32 val_b);
63
64static acpi_osd_handler acpi_irq_handler;
65static void *acpi_irq_context;
66static struct workqueue_struct *kacpid_wq;
67static struct workqueue_struct *kacpi_notify_wq;
68static struct workqueue_struct *kacpi_hotplug_wq;
69static bool acpi_os_initialized;
70unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
71bool acpi_permanent_mmap = false;
72
73/*
74 * This list of permanent mappings is for memory that may be accessed from
75 * interrupt context, where we can't do the ioremap().
76 */
77struct acpi_ioremap {
78 struct list_head list;
79 void __iomem *virt;
80 acpi_physical_address phys;
81 acpi_size size;
82 union {
83 unsigned long refcount;
84 struct rcu_work rwork;
85 } track;
86};
87
88static LIST_HEAD(acpi_ioremaps);
89static DEFINE_MUTEX(acpi_ioremap_lock);
90#define acpi_ioremap_lock_held() lock_is_held(&acpi_ioremap_lock.dep_map)
91
92static void __init acpi_request_region (struct acpi_generic_address *gas,
93 unsigned int length, char *desc)
94{
95 u64 addr;
96
97 /* Handle possible alignment issues */
98 memcpy(&addr, &gas->address, sizeof(addr));
99 if (!addr || !length)
100 return;
101
102 /* Resources are never freed */
103 if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
104 request_region(addr, length, desc);
105 else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
106 request_mem_region(addr, length, desc);
107}
108
109static int __init acpi_reserve_resources(void)
110{
111 acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
112 "ACPI PM1a_EVT_BLK");
113
114 acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
115 "ACPI PM1b_EVT_BLK");
116
117 acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
118 "ACPI PM1a_CNT_BLK");
119
120 acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
121 "ACPI PM1b_CNT_BLK");
122
123 if (acpi_gbl_FADT.pm_timer_length == 4)
124 acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
125
126 acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
127 "ACPI PM2_CNT_BLK");
128
129 /* Length of GPE blocks must be a non-negative multiple of 2 */
130
131 if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
132 acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
133 acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
134
135 if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
136 acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
137 acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
138
139 return 0;
140}
141fs_initcall_sync(acpi_reserve_resources);
142
143void acpi_os_printf(const char *fmt, ...)
144{
145 va_list args;
146 va_start(args, fmt);
147 acpi_os_vprintf(fmt, args);
148 va_end(args);
149}
150EXPORT_SYMBOL(acpi_os_printf);
151
152void acpi_os_vprintf(const char *fmt, va_list args)
153{
154 static char buffer[512];
155
156 vsprintf(buffer, fmt, args);
157
158#ifdef ENABLE_DEBUGGER
159 if (acpi_in_debugger) {
160 kdb_printf("%s", buffer);
161 } else {
162 if (printk_get_level(buffer))
163 printk("%s", buffer);
164 else
165 printk(KERN_CONT "%s", buffer);
166 }
167#else
168 if (acpi_debugger_write_log(buffer) < 0) {
169 if (printk_get_level(buffer))
170 printk("%s", buffer);
171 else
172 printk(KERN_CONT "%s", buffer);
173 }
174#endif
175}
176
177#ifdef CONFIG_KEXEC
178static unsigned long acpi_rsdp;
179static int __init setup_acpi_rsdp(char *arg)
180{
181 return kstrtoul(arg, 16, &acpi_rsdp);
182}
183early_param("acpi_rsdp", setup_acpi_rsdp);
184#endif
185
186acpi_physical_address __init acpi_os_get_root_pointer(void)
187{
188 acpi_physical_address pa;
189
190#ifdef CONFIG_KEXEC
191 /*
192 * We may have been provided with an RSDP on the command line,
193 * but if a malicious user has done so they may be pointing us
194 * at modified ACPI tables that could alter kernel behaviour -
195 * so, we check the lockdown status before making use of
196 * it. If we trust it then also stash it in an architecture
197 * specific location (if appropriate) so it can be carried
198 * over further kexec()s.
199 */
200 if (acpi_rsdp && !security_locked_down(LOCKDOWN_ACPI_TABLES)) {
201 acpi_arch_set_root_pointer(acpi_rsdp);
202 return acpi_rsdp;
203 }
204#endif
205 pa = acpi_arch_get_root_pointer();
206 if (pa)
207 return pa;
208
209 if (efi_enabled(EFI_CONFIG_TABLES)) {
210 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
211 return efi.acpi20;
212 if (efi.acpi != EFI_INVALID_TABLE_ADDR)
213 return efi.acpi;
214 pr_err("System description tables not found\n");
215 } else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
216 acpi_find_root_pointer(&pa);
217 }
218
219 return pa;
220}
221
222/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
223static struct acpi_ioremap *
224acpi_map_lookup(acpi_physical_address phys, acpi_size size)
225{
226 struct acpi_ioremap *map;
227
228 list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
229 if (map->phys <= phys &&
230 phys + size <= map->phys + map->size)
231 return map;
232
233 return NULL;
234}
235
236/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
237static void __iomem *
238acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
239{
240 struct acpi_ioremap *map;
241
242 map = acpi_map_lookup(phys, size);
243 if (map)
244 return map->virt + (phys - map->phys);
245
246 return NULL;
247}
248
249void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
250{
251 struct acpi_ioremap *map;
252 void __iomem *virt = NULL;
253
254 mutex_lock(&acpi_ioremap_lock);
255 map = acpi_map_lookup(phys, size);
256 if (map) {
257 virt = map->virt + (phys - map->phys);
258 map->track.refcount++;
259 }
260 mutex_unlock(&acpi_ioremap_lock);
261 return virt;
262}
263EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
264
265/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
266static struct acpi_ioremap *
267acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
268{
269 struct acpi_ioremap *map;
270
271 list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
272 if (map->virt <= virt &&
273 virt + size <= map->virt + map->size)
274 return map;
275
276 return NULL;
277}
278
279#if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
280/* ioremap will take care of cache attributes */
281#define should_use_kmap(pfn) 0
282#else
283#define should_use_kmap(pfn) page_is_ram(pfn)
284#endif
285
286static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
287{
288 unsigned long pfn;
289
290 pfn = pg_off >> PAGE_SHIFT;
291 if (should_use_kmap(pfn)) {
292 if (pg_sz > PAGE_SIZE)
293 return NULL;
294 return (void __iomem __force *)kmap(pfn_to_page(pfn));
295 } else
296 return acpi_os_ioremap(pg_off, pg_sz);
297}
298
299static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
300{
301 unsigned long pfn;
302
303 pfn = pg_off >> PAGE_SHIFT;
304 if (should_use_kmap(pfn))
305 kunmap(pfn_to_page(pfn));
306 else
307 iounmap(vaddr);
308}
309
310/**
311 * acpi_os_map_iomem - Get a virtual address for a given physical address range.
312 * @phys: Start of the physical address range to map.
313 * @size: Size of the physical address range to map.
314 *
315 * Look up the given physical address range in the list of existing ACPI memory
316 * mappings. If found, get a reference to it and return a pointer to it (its
317 * virtual address). If not found, map it, add it to that list and return a
318 * pointer to it.
319 *
320 * During early init (when acpi_permanent_mmap has not been set yet) this
321 * routine simply calls __acpi_map_table() to get the job done.
322 */
323void __iomem __ref
324*acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
325{
326 struct acpi_ioremap *map;
327 void __iomem *virt;
328 acpi_physical_address pg_off;
329 acpi_size pg_sz;
330
331 if (phys > ULONG_MAX) {
332 pr_err("Cannot map memory that high: 0x%llx\n", phys);
333 return NULL;
334 }
335
336 if (!acpi_permanent_mmap)
337 return __acpi_map_table((unsigned long)phys, size);
338
339 mutex_lock(&acpi_ioremap_lock);
340 /* Check if there's a suitable mapping already. */
341 map = acpi_map_lookup(phys, size);
342 if (map) {
343 map->track.refcount++;
344 goto out;
345 }
346
347 map = kzalloc(sizeof(*map), GFP_KERNEL);
348 if (!map) {
349 mutex_unlock(&acpi_ioremap_lock);
350 return NULL;
351 }
352
353 pg_off = round_down(phys, PAGE_SIZE);
354 pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
355 virt = acpi_map(phys, size);
356 if (!virt) {
357 mutex_unlock(&acpi_ioremap_lock);
358 kfree(map);
359 return NULL;
360 }
361
362 INIT_LIST_HEAD(&map->list);
363 map->virt = (void __iomem __force *)((unsigned long)virt & PAGE_MASK);
364 map->phys = pg_off;
365 map->size = pg_sz;
366 map->track.refcount = 1;
367
368 list_add_tail_rcu(&map->list, &acpi_ioremaps);
369
370out:
371 mutex_unlock(&acpi_ioremap_lock);
372 return map->virt + (phys - map->phys);
373}
374EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
375
376void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
377{
378 return (void *)acpi_os_map_iomem(phys, size);
379}
380EXPORT_SYMBOL_GPL(acpi_os_map_memory);
381
382static void acpi_os_map_remove(struct work_struct *work)
383{
384 struct acpi_ioremap *map = container_of(to_rcu_work(work),
385 struct acpi_ioremap,
386 track.rwork);
387
388 acpi_unmap(map->phys, map->virt);
389 kfree(map);
390}
391
392/* Must be called with mutex_lock(&acpi_ioremap_lock) */
393static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
394{
395 if (--map->track.refcount)
396 return;
397
398 list_del_rcu(&map->list);
399
400 INIT_RCU_WORK(&map->track.rwork, acpi_os_map_remove);
401 queue_rcu_work(system_wq, &map->track.rwork);
402}
403
404/**
405 * acpi_os_unmap_iomem - Drop a memory mapping reference.
406 * @virt: Start of the address range to drop a reference to.
407 * @size: Size of the address range to drop a reference to.
408 *
409 * Look up the given virtual address range in the list of existing ACPI memory
410 * mappings, drop a reference to it and if there are no more active references
411 * to it, queue it up for later removal.
412 *
413 * During early init (when acpi_permanent_mmap has not been set yet) this
414 * routine simply calls __acpi_unmap_table() to get the job done. Since
415 * __acpi_unmap_table() is an __init function, the __ref annotation is needed
416 * here.
417 */
418void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
419{
420 struct acpi_ioremap *map;
421
422 if (!acpi_permanent_mmap) {
423 __acpi_unmap_table(virt, size);
424 return;
425 }
426
427 mutex_lock(&acpi_ioremap_lock);
428
429 map = acpi_map_lookup_virt(virt, size);
430 if (!map) {
431 mutex_unlock(&acpi_ioremap_lock);
432 WARN(true, "ACPI: %s: bad address %p\n", __func__, virt);
433 return;
434 }
435 acpi_os_drop_map_ref(map);
436
437 mutex_unlock(&acpi_ioremap_lock);
438}
439EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
440
441/**
442 * acpi_os_unmap_memory - Drop a memory mapping reference.
443 * @virt: Start of the address range to drop a reference to.
444 * @size: Size of the address range to drop a reference to.
445 */
446void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
447{
448 acpi_os_unmap_iomem((void __iomem *)virt, size);
449}
450EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
451
452void __iomem *acpi_os_map_generic_address(struct acpi_generic_address *gas)
453{
454 u64 addr;
455
456 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
457 return NULL;
458
459 /* Handle possible alignment issues */
460 memcpy(&addr, &gas->address, sizeof(addr));
461 if (!addr || !gas->bit_width)
462 return NULL;
463
464 return acpi_os_map_iomem(addr, gas->bit_width / 8);
465}
466EXPORT_SYMBOL(acpi_os_map_generic_address);
467
468void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
469{
470 u64 addr;
471 struct acpi_ioremap *map;
472
473 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
474 return;
475
476 /* Handle possible alignment issues */
477 memcpy(&addr, &gas->address, sizeof(addr));
478 if (!addr || !gas->bit_width)
479 return;
480
481 mutex_lock(&acpi_ioremap_lock);
482
483 map = acpi_map_lookup(addr, gas->bit_width / 8);
484 if (!map) {
485 mutex_unlock(&acpi_ioremap_lock);
486 return;
487 }
488 acpi_os_drop_map_ref(map);
489
490 mutex_unlock(&acpi_ioremap_lock);
491}
492EXPORT_SYMBOL(acpi_os_unmap_generic_address);
493
494#ifdef ACPI_FUTURE_USAGE
495acpi_status
496acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
497{
498 if (!phys || !virt)
499 return AE_BAD_PARAMETER;
500
501 *phys = virt_to_phys(virt);
502
503 return AE_OK;
504}
505#endif
506
507#ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
508static bool acpi_rev_override;
509
510int __init acpi_rev_override_setup(char *str)
511{
512 acpi_rev_override = true;
513 return 1;
514}
515__setup("acpi_rev_override", acpi_rev_override_setup);
516#else
517#define acpi_rev_override false
518#endif
519
520#define ACPI_MAX_OVERRIDE_LEN 100
521
522static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
523
524acpi_status
525acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
526 acpi_string *new_val)
527{
528 if (!init_val || !new_val)
529 return AE_BAD_PARAMETER;
530
531 *new_val = NULL;
532 if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
533 pr_info("Overriding _OS definition to '%s'\n", acpi_os_name);
534 *new_val = acpi_os_name;
535 }
536
537 if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
538 pr_info("Overriding _REV return value to 5\n");
539 *new_val = (char *)5;
540 }
541
542 return AE_OK;
543}
544
545static irqreturn_t acpi_irq(int irq, void *dev_id)
546{
547 u32 handled;
548
549 handled = (*acpi_irq_handler) (acpi_irq_context);
550
551 if (handled) {
552 acpi_irq_handled++;
553 return IRQ_HANDLED;
554 } else {
555 acpi_irq_not_handled++;
556 return IRQ_NONE;
557 }
558}
559
560acpi_status
561acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
562 void *context)
563{
564 unsigned int irq;
565
566 acpi_irq_stats_init();
567
568 /*
569 * ACPI interrupts different from the SCI in our copy of the FADT are
570 * not supported.
571 */
572 if (gsi != acpi_gbl_FADT.sci_interrupt)
573 return AE_BAD_PARAMETER;
574
575 if (acpi_irq_handler)
576 return AE_ALREADY_ACQUIRED;
577
578 if (acpi_gsi_to_irq(gsi, &irq) < 0) {
579 pr_err("SCI (ACPI GSI %d) not registered\n", gsi);
580 return AE_OK;
581 }
582
583 acpi_irq_handler = handler;
584 acpi_irq_context = context;
585 if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
586 pr_err("SCI (IRQ%d) allocation failed\n", irq);
587 acpi_irq_handler = NULL;
588 return AE_NOT_ACQUIRED;
589 }
590 acpi_sci_irq = irq;
591
592 return AE_OK;
593}
594
595acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
596{
597 if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
598 return AE_BAD_PARAMETER;
599
600 free_irq(acpi_sci_irq, acpi_irq);
601 acpi_irq_handler = NULL;
602 acpi_sci_irq = INVALID_ACPI_IRQ;
603
604 return AE_OK;
605}
606
607/*
608 * Running in interpreter thread context, safe to sleep
609 */
610
611void acpi_os_sleep(u64 ms)
612{
613 msleep(ms);
614}
615
616void acpi_os_stall(u32 us)
617{
618 while (us) {
619 u32 delay = 1000;
620
621 if (delay > us)
622 delay = us;
623 udelay(delay);
624 touch_nmi_watchdog();
625 us -= delay;
626 }
627}
628
629/*
630 * Support ACPI 3.0 AML Timer operand. Returns a 64-bit free-running,
631 * monotonically increasing timer with 100ns granularity. Do not use
632 * ktime_get() to implement this function because this function may get
633 * called after timekeeping has been suspended. Note: calling this function
634 * after timekeeping has been suspended may lead to unexpected results
635 * because when timekeeping is suspended the jiffies counter is not
636 * incremented. See also timekeeping_suspend().
637 */
638u64 acpi_os_get_timer(void)
639{
640 return (get_jiffies_64() - INITIAL_JIFFIES) *
641 (ACPI_100NSEC_PER_SEC / HZ);
642}
643
644acpi_status acpi_os_read_port(acpi_io_address port, u32 *value, u32 width)
645{
646 u32 dummy;
647
648 if (value)
649 *value = 0;
650 else
651 value = &dummy;
652
653 if (width <= 8) {
654 *value = inb(port);
655 } else if (width <= 16) {
656 *value = inw(port);
657 } else if (width <= 32) {
658 *value = inl(port);
659 } else {
660 pr_debug("%s: Access width %d not supported\n", __func__, width);
661 return AE_BAD_PARAMETER;
662 }
663
664 return AE_OK;
665}
666
667EXPORT_SYMBOL(acpi_os_read_port);
668
669acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
670{
671 if (width <= 8) {
672 outb(value, port);
673 } else if (width <= 16) {
674 outw(value, port);
675 } else if (width <= 32) {
676 outl(value, port);
677 } else {
678 pr_debug("%s: Access width %d not supported\n", __func__, width);
679 return AE_BAD_PARAMETER;
680 }
681
682 return AE_OK;
683}
684
685EXPORT_SYMBOL(acpi_os_write_port);
686
687int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width)
688{
689
690 switch (width) {
691 case 8:
692 *(u8 *) value = readb(virt_addr);
693 break;
694 case 16:
695 *(u16 *) value = readw(virt_addr);
696 break;
697 case 32:
698 *(u32 *) value = readl(virt_addr);
699 break;
700 case 64:
701 *(u64 *) value = readq(virt_addr);
702 break;
703 default:
704 return -EINVAL;
705 }
706
707 return 0;
708}
709
710acpi_status
711acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
712{
713 void __iomem *virt_addr;
714 unsigned int size = width / 8;
715 bool unmap = false;
716 u64 dummy;
717 int error;
718
719 rcu_read_lock();
720 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
721 if (!virt_addr) {
722 rcu_read_unlock();
723 virt_addr = acpi_os_ioremap(phys_addr, size);
724 if (!virt_addr)
725 return AE_BAD_ADDRESS;
726 unmap = true;
727 }
728
729 if (!value)
730 value = &dummy;
731
732 error = acpi_os_read_iomem(virt_addr, value, width);
733 BUG_ON(error);
734
735 if (unmap)
736 iounmap(virt_addr);
737 else
738 rcu_read_unlock();
739
740 return AE_OK;
741}
742
743acpi_status
744acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
745{
746 void __iomem *virt_addr;
747 unsigned int size = width / 8;
748 bool unmap = false;
749
750 rcu_read_lock();
751 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
752 if (!virt_addr) {
753 rcu_read_unlock();
754 virt_addr = acpi_os_ioremap(phys_addr, size);
755 if (!virt_addr)
756 return AE_BAD_ADDRESS;
757 unmap = true;
758 }
759
760 switch (width) {
761 case 8:
762 writeb(value, virt_addr);
763 break;
764 case 16:
765 writew(value, virt_addr);
766 break;
767 case 32:
768 writel(value, virt_addr);
769 break;
770 case 64:
771 writeq(value, virt_addr);
772 break;
773 default:
774 BUG();
775 }
776
777 if (unmap)
778 iounmap(virt_addr);
779 else
780 rcu_read_unlock();
781
782 return AE_OK;
783}
784
785#ifdef CONFIG_PCI
786acpi_status
787acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
788 u64 *value, u32 width)
789{
790 int result, size;
791 u32 value32;
792
793 if (!value)
794 return AE_BAD_PARAMETER;
795
796 switch (width) {
797 case 8:
798 size = 1;
799 break;
800 case 16:
801 size = 2;
802 break;
803 case 32:
804 size = 4;
805 break;
806 default:
807 return AE_ERROR;
808 }
809
810 result = raw_pci_read(pci_id->segment, pci_id->bus,
811 PCI_DEVFN(pci_id->device, pci_id->function),
812 reg, size, &value32);
813 *value = value32;
814
815 return (result ? AE_ERROR : AE_OK);
816}
817
818acpi_status
819acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
820 u64 value, u32 width)
821{
822 int result, size;
823
824 switch (width) {
825 case 8:
826 size = 1;
827 break;
828 case 16:
829 size = 2;
830 break;
831 case 32:
832 size = 4;
833 break;
834 default:
835 return AE_ERROR;
836 }
837
838 result = raw_pci_write(pci_id->segment, pci_id->bus,
839 PCI_DEVFN(pci_id->device, pci_id->function),
840 reg, size, value);
841
842 return (result ? AE_ERROR : AE_OK);
843}
844#endif
845
846static void acpi_os_execute_deferred(struct work_struct *work)
847{
848 struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
849
850 dpc->function(dpc->context);
851 kfree(dpc);
852}
853
854#ifdef CONFIG_ACPI_DEBUGGER
855static struct acpi_debugger acpi_debugger;
856static bool acpi_debugger_initialized;
857
858int acpi_register_debugger(struct module *owner,
859 const struct acpi_debugger_ops *ops)
860{
861 int ret = 0;
862
863 mutex_lock(&acpi_debugger.lock);
864 if (acpi_debugger.ops) {
865 ret = -EBUSY;
866 goto err_lock;
867 }
868
869 acpi_debugger.owner = owner;
870 acpi_debugger.ops = ops;
871
872err_lock:
873 mutex_unlock(&acpi_debugger.lock);
874 return ret;
875}
876EXPORT_SYMBOL(acpi_register_debugger);
877
878void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
879{
880 mutex_lock(&acpi_debugger.lock);
881 if (ops == acpi_debugger.ops) {
882 acpi_debugger.ops = NULL;
883 acpi_debugger.owner = NULL;
884 }
885 mutex_unlock(&acpi_debugger.lock);
886}
887EXPORT_SYMBOL(acpi_unregister_debugger);
888
889int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
890{
891 int ret;
892 int (*func)(acpi_osd_exec_callback, void *);
893 struct module *owner;
894
895 if (!acpi_debugger_initialized)
896 return -ENODEV;
897 mutex_lock(&acpi_debugger.lock);
898 if (!acpi_debugger.ops) {
899 ret = -ENODEV;
900 goto err_lock;
901 }
902 if (!try_module_get(acpi_debugger.owner)) {
903 ret = -ENODEV;
904 goto err_lock;
905 }
906 func = acpi_debugger.ops->create_thread;
907 owner = acpi_debugger.owner;
908 mutex_unlock(&acpi_debugger.lock);
909
910 ret = func(function, context);
911
912 mutex_lock(&acpi_debugger.lock);
913 module_put(owner);
914err_lock:
915 mutex_unlock(&acpi_debugger.lock);
916 return ret;
917}
918
919ssize_t acpi_debugger_write_log(const char *msg)
920{
921 ssize_t ret;
922 ssize_t (*func)(const char *);
923 struct module *owner;
924
925 if (!acpi_debugger_initialized)
926 return -ENODEV;
927 mutex_lock(&acpi_debugger.lock);
928 if (!acpi_debugger.ops) {
929 ret = -ENODEV;
930 goto err_lock;
931 }
932 if (!try_module_get(acpi_debugger.owner)) {
933 ret = -ENODEV;
934 goto err_lock;
935 }
936 func = acpi_debugger.ops->write_log;
937 owner = acpi_debugger.owner;
938 mutex_unlock(&acpi_debugger.lock);
939
940 ret = func(msg);
941
942 mutex_lock(&acpi_debugger.lock);
943 module_put(owner);
944err_lock:
945 mutex_unlock(&acpi_debugger.lock);
946 return ret;
947}
948
949ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
950{
951 ssize_t ret;
952 ssize_t (*func)(char *, size_t);
953 struct module *owner;
954
955 if (!acpi_debugger_initialized)
956 return -ENODEV;
957 mutex_lock(&acpi_debugger.lock);
958 if (!acpi_debugger.ops) {
959 ret = -ENODEV;
960 goto err_lock;
961 }
962 if (!try_module_get(acpi_debugger.owner)) {
963 ret = -ENODEV;
964 goto err_lock;
965 }
966 func = acpi_debugger.ops->read_cmd;
967 owner = acpi_debugger.owner;
968 mutex_unlock(&acpi_debugger.lock);
969
970 ret = func(buffer, buffer_length);
971
972 mutex_lock(&acpi_debugger.lock);
973 module_put(owner);
974err_lock:
975 mutex_unlock(&acpi_debugger.lock);
976 return ret;
977}
978
979int acpi_debugger_wait_command_ready(void)
980{
981 int ret;
982 int (*func)(bool, char *, size_t);
983 struct module *owner;
984
985 if (!acpi_debugger_initialized)
986 return -ENODEV;
987 mutex_lock(&acpi_debugger.lock);
988 if (!acpi_debugger.ops) {
989 ret = -ENODEV;
990 goto err_lock;
991 }
992 if (!try_module_get(acpi_debugger.owner)) {
993 ret = -ENODEV;
994 goto err_lock;
995 }
996 func = acpi_debugger.ops->wait_command_ready;
997 owner = acpi_debugger.owner;
998 mutex_unlock(&acpi_debugger.lock);
999
1000 ret = func(acpi_gbl_method_executing,
1001 acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
1002
1003 mutex_lock(&acpi_debugger.lock);
1004 module_put(owner);
1005err_lock:
1006 mutex_unlock(&acpi_debugger.lock);
1007 return ret;
1008}
1009
1010int acpi_debugger_notify_command_complete(void)
1011{
1012 int ret;
1013 int (*func)(void);
1014 struct module *owner;
1015
1016 if (!acpi_debugger_initialized)
1017 return -ENODEV;
1018 mutex_lock(&acpi_debugger.lock);
1019 if (!acpi_debugger.ops) {
1020 ret = -ENODEV;
1021 goto err_lock;
1022 }
1023 if (!try_module_get(acpi_debugger.owner)) {
1024 ret = -ENODEV;
1025 goto err_lock;
1026 }
1027 func = acpi_debugger.ops->notify_command_complete;
1028 owner = acpi_debugger.owner;
1029 mutex_unlock(&acpi_debugger.lock);
1030
1031 ret = func();
1032
1033 mutex_lock(&acpi_debugger.lock);
1034 module_put(owner);
1035err_lock:
1036 mutex_unlock(&acpi_debugger.lock);
1037 return ret;
1038}
1039
1040int __init acpi_debugger_init(void)
1041{
1042 mutex_init(&acpi_debugger.lock);
1043 acpi_debugger_initialized = true;
1044 return 0;
1045}
1046#endif
1047
1048/*******************************************************************************
1049 *
1050 * FUNCTION: acpi_os_execute
1051 *
1052 * PARAMETERS: Type - Type of the callback
1053 * Function - Function to be executed
1054 * Context - Function parameters
1055 *
1056 * RETURN: Status
1057 *
1058 * DESCRIPTION: Depending on type, either queues function for deferred execution or
1059 * immediately executes function on a separate thread.
1060 *
1061 ******************************************************************************/
1062
1063acpi_status acpi_os_execute(acpi_execute_type type,
1064 acpi_osd_exec_callback function, void *context)
1065{
1066 acpi_status status = AE_OK;
1067 struct acpi_os_dpc *dpc;
1068 struct workqueue_struct *queue;
1069 int ret;
1070 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1071 "Scheduling function [%p(%p)] for deferred execution.\n",
1072 function, context));
1073
1074 if (type == OSL_DEBUGGER_MAIN_THREAD) {
1075 ret = acpi_debugger_create_thread(function, context);
1076 if (ret) {
1077 pr_err("Kernel thread creation failed\n");
1078 status = AE_ERROR;
1079 }
1080 goto out_thread;
1081 }
1082
1083 /*
1084 * Allocate/initialize DPC structure. Note that this memory will be
1085 * freed by the callee. The kernel handles the work_struct list in a
1086 * way that allows us to also free its memory inside the callee.
1087 * Because we may want to schedule several tasks with different
1088 * parameters we can't use the approach some kernel code uses of
1089 * having a static work_struct.
1090 */
1091
1092 dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1093 if (!dpc)
1094 return AE_NO_MEMORY;
1095
1096 dpc->function = function;
1097 dpc->context = context;
1098
1099 /*
1100 * To prevent lockdep from complaining unnecessarily, make sure that
1101 * there is a different static lockdep key for each workqueue by using
1102 * INIT_WORK() for each of them separately.
1103 */
1104 if (type == OSL_NOTIFY_HANDLER) {
1105 queue = kacpi_notify_wq;
1106 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1107 } else if (type == OSL_GPE_HANDLER) {
1108 queue = kacpid_wq;
1109 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1110 } else {
1111 pr_err("Unsupported os_execute type %d.\n", type);
1112 status = AE_ERROR;
1113 }
1114
1115 if (ACPI_FAILURE(status))
1116 goto err_workqueue;
1117
1118 /*
1119 * On some machines, a software-initiated SMI causes corruption unless
1120 * the SMI runs on CPU 0. An SMI can be initiated by any AML, but
1121 * typically it's done in GPE-related methods that are run via
1122 * workqueues, so we can avoid the known corruption cases by always
1123 * queueing on CPU 0.
1124 */
1125 ret = queue_work_on(0, queue, &dpc->work);
1126 if (!ret) {
1127 pr_err("Unable to queue work\n");
1128 status = AE_ERROR;
1129 }
1130err_workqueue:
1131 if (ACPI_FAILURE(status))
1132 kfree(dpc);
1133out_thread:
1134 return status;
1135}
1136EXPORT_SYMBOL(acpi_os_execute);
1137
1138void acpi_os_wait_events_complete(void)
1139{
1140 /*
1141 * Make sure the GPE handler or the fixed event handler is not used
1142 * on another CPU after removal.
1143 */
1144 if (acpi_sci_irq_valid())
1145 synchronize_hardirq(acpi_sci_irq);
1146 flush_workqueue(kacpid_wq);
1147 flush_workqueue(kacpi_notify_wq);
1148}
1149EXPORT_SYMBOL(acpi_os_wait_events_complete);
1150
1151struct acpi_hp_work {
1152 struct work_struct work;
1153 struct acpi_device *adev;
1154 u32 src;
1155};
1156
1157static void acpi_hotplug_work_fn(struct work_struct *work)
1158{
1159 struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1160
1161 acpi_os_wait_events_complete();
1162 acpi_device_hotplug(hpw->adev, hpw->src);
1163 kfree(hpw);
1164}
1165
1166acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1167{
1168 struct acpi_hp_work *hpw;
1169
1170 acpi_handle_debug(adev->handle,
1171 "Scheduling hotplug event %u for deferred handling\n",
1172 src);
1173
1174 hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1175 if (!hpw)
1176 return AE_NO_MEMORY;
1177
1178 INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1179 hpw->adev = adev;
1180 hpw->src = src;
1181 /*
1182 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1183 * the hotplug code may call driver .remove() functions, which may
1184 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1185 * these workqueues.
1186 */
1187 if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1188 kfree(hpw);
1189 return AE_ERROR;
1190 }
1191 return AE_OK;
1192}
1193
1194bool acpi_queue_hotplug_work(struct work_struct *work)
1195{
1196 return queue_work(kacpi_hotplug_wq, work);
1197}
1198
1199acpi_status
1200acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1201{
1202 struct semaphore *sem = NULL;
1203
1204 sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1205 if (!sem)
1206 return AE_NO_MEMORY;
1207
1208 sema_init(sem, initial_units);
1209
1210 *handle = (acpi_handle *) sem;
1211
1212 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1213 *handle, initial_units));
1214
1215 return AE_OK;
1216}
1217
1218/*
1219 * TODO: A better way to delete semaphores? Linux doesn't have a
1220 * 'delete_semaphore()' function -- may result in an invalid
1221 * pointer dereference for non-synchronized consumers. Should
1222 * we at least check for blocked threads and signal/cancel them?
1223 */
1224
1225acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1226{
1227 struct semaphore *sem = (struct semaphore *)handle;
1228
1229 if (!sem)
1230 return AE_BAD_PARAMETER;
1231
1232 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1233
1234 BUG_ON(!list_empty(&sem->wait_list));
1235 kfree(sem);
1236 sem = NULL;
1237
1238 return AE_OK;
1239}
1240
1241/*
1242 * TODO: Support for units > 1?
1243 */
1244acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1245{
1246 acpi_status status = AE_OK;
1247 struct semaphore *sem = (struct semaphore *)handle;
1248 long jiffies;
1249 int ret = 0;
1250
1251 if (!acpi_os_initialized)
1252 return AE_OK;
1253
1254 if (!sem || (units < 1))
1255 return AE_BAD_PARAMETER;
1256
1257 if (units > 1)
1258 return AE_SUPPORT;
1259
1260 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1261 handle, units, timeout));
1262
1263 if (timeout == ACPI_WAIT_FOREVER)
1264 jiffies = MAX_SCHEDULE_TIMEOUT;
1265 else
1266 jiffies = msecs_to_jiffies(timeout);
1267
1268 ret = down_timeout(sem, jiffies);
1269 if (ret)
1270 status = AE_TIME;
1271
1272 if (ACPI_FAILURE(status)) {
1273 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1274 "Failed to acquire semaphore[%p|%d|%d], %s",
1275 handle, units, timeout,
1276 acpi_format_exception(status)));
1277 } else {
1278 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1279 "Acquired semaphore[%p|%d|%d]", handle,
1280 units, timeout));
1281 }
1282
1283 return status;
1284}
1285
1286/*
1287 * TODO: Support for units > 1?
1288 */
1289acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1290{
1291 struct semaphore *sem = (struct semaphore *)handle;
1292
1293 if (!acpi_os_initialized)
1294 return AE_OK;
1295
1296 if (!sem || (units < 1))
1297 return AE_BAD_PARAMETER;
1298
1299 if (units > 1)
1300 return AE_SUPPORT;
1301
1302 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1303 units));
1304
1305 up(sem);
1306
1307 return AE_OK;
1308}
1309
1310acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1311{
1312#ifdef ENABLE_DEBUGGER
1313 if (acpi_in_debugger) {
1314 u32 chars;
1315
1316 kdb_read(buffer, buffer_length);
1317
1318 /* remove the CR kdb includes */
1319 chars = strlen(buffer) - 1;
1320 buffer[chars] = '\0';
1321 }
1322#else
1323 int ret;
1324
1325 ret = acpi_debugger_read_cmd(buffer, buffer_length);
1326 if (ret < 0)
1327 return AE_ERROR;
1328 if (bytes_read)
1329 *bytes_read = ret;
1330#endif
1331
1332 return AE_OK;
1333}
1334EXPORT_SYMBOL(acpi_os_get_line);
1335
1336acpi_status acpi_os_wait_command_ready(void)
1337{
1338 int ret;
1339
1340 ret = acpi_debugger_wait_command_ready();
1341 if (ret < 0)
1342 return AE_ERROR;
1343 return AE_OK;
1344}
1345
1346acpi_status acpi_os_notify_command_complete(void)
1347{
1348 int ret;
1349
1350 ret = acpi_debugger_notify_command_complete();
1351 if (ret < 0)
1352 return AE_ERROR;
1353 return AE_OK;
1354}
1355
1356acpi_status acpi_os_signal(u32 function, void *info)
1357{
1358 switch (function) {
1359 case ACPI_SIGNAL_FATAL:
1360 pr_err("Fatal opcode executed\n");
1361 break;
1362 case ACPI_SIGNAL_BREAKPOINT:
1363 /*
1364 * AML Breakpoint
1365 * ACPI spec. says to treat it as a NOP unless
1366 * you are debugging. So if/when we integrate
1367 * AML debugger into the kernel debugger its
1368 * hook will go here. But until then it is
1369 * not useful to print anything on breakpoints.
1370 */
1371 break;
1372 default:
1373 break;
1374 }
1375
1376 return AE_OK;
1377}
1378
1379static int __init acpi_os_name_setup(char *str)
1380{
1381 char *p = acpi_os_name;
1382 int count = ACPI_MAX_OVERRIDE_LEN - 1;
1383
1384 if (!str || !*str)
1385 return 0;
1386
1387 for (; count-- && *str; str++) {
1388 if (isalnum(*str) || *str == ' ' || *str == ':')
1389 *p++ = *str;
1390 else if (*str == '\'' || *str == '"')
1391 continue;
1392 else
1393 break;
1394 }
1395 *p = 0;
1396
1397 return 1;
1398
1399}
1400
1401__setup("acpi_os_name=", acpi_os_name_setup);
1402
1403/*
1404 * Disable the auto-serialization of named objects creation methods.
1405 *
1406 * This feature is enabled by default. It marks the AML control methods
1407 * that contain the opcodes to create named objects as "Serialized".
1408 */
1409static int __init acpi_no_auto_serialize_setup(char *str)
1410{
1411 acpi_gbl_auto_serialize_methods = FALSE;
1412 pr_info("Auto-serialization disabled\n");
1413
1414 return 1;
1415}
1416
1417__setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1418
1419/* Check of resource interference between native drivers and ACPI
1420 * OperationRegions (SystemIO and System Memory only).
1421 * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1422 * in arbitrary AML code and can interfere with legacy drivers.
1423 * acpi_enforce_resources= can be set to:
1424 *
1425 * - strict (default) (2)
1426 * -> further driver trying to access the resources will not load
1427 * - lax (1)
1428 * -> further driver trying to access the resources will load, but you
1429 * get a system message that something might go wrong...
1430 *
1431 * - no (0)
1432 * -> ACPI Operation Region resources will not be registered
1433 *
1434 */
1435#define ENFORCE_RESOURCES_STRICT 2
1436#define ENFORCE_RESOURCES_LAX 1
1437#define ENFORCE_RESOURCES_NO 0
1438
1439static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1440
1441static int __init acpi_enforce_resources_setup(char *str)
1442{
1443 if (str == NULL || *str == '\0')
1444 return 0;
1445
1446 if (!strcmp("strict", str))
1447 acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1448 else if (!strcmp("lax", str))
1449 acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1450 else if (!strcmp("no", str))
1451 acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1452
1453 return 1;
1454}
1455
1456__setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1457
1458/* Check for resource conflicts between ACPI OperationRegions and native
1459 * drivers */
1460int acpi_check_resource_conflict(const struct resource *res)
1461{
1462 acpi_adr_space_type space_id;
1463
1464 if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1465 return 0;
1466
1467 if (res->flags & IORESOURCE_IO)
1468 space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1469 else if (res->flags & IORESOURCE_MEM)
1470 space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1471 else
1472 return 0;
1473
1474 if (!acpi_check_address_range(space_id, res->start, resource_size(res), 1))
1475 return 0;
1476
1477 pr_info("Resource conflict; ACPI support missing from driver?\n");
1478
1479 if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1480 return -EBUSY;
1481
1482 if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1483 pr_notice("Resource conflict: System may be unstable or behave erratically\n");
1484
1485 return 0;
1486}
1487EXPORT_SYMBOL(acpi_check_resource_conflict);
1488
1489int acpi_check_region(resource_size_t start, resource_size_t n,
1490 const char *name)
1491{
1492 struct resource res = DEFINE_RES_IO_NAMED(start, n, name);
1493
1494 return acpi_check_resource_conflict(&res);
1495}
1496EXPORT_SYMBOL(acpi_check_region);
1497
1498/*
1499 * Let drivers know whether the resource checks are effective
1500 */
1501int acpi_resources_are_enforced(void)
1502{
1503 return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1504}
1505EXPORT_SYMBOL(acpi_resources_are_enforced);
1506
1507/*
1508 * Deallocate the memory for a spinlock.
1509 */
1510void acpi_os_delete_lock(acpi_spinlock handle)
1511{
1512 ACPI_FREE(handle);
1513}
1514
1515/*
1516 * Acquire a spinlock.
1517 *
1518 * handle is a pointer to the spinlock_t.
1519 */
1520
1521acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1522 __acquires(lockp)
1523{
1524 acpi_cpu_flags flags;
1525 spin_lock_irqsave(lockp, flags);
1526 return flags;
1527}
1528
1529/*
1530 * Release a spinlock. See above.
1531 */
1532
1533void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1534 __releases(lockp)
1535{
1536 spin_unlock_irqrestore(lockp, flags);
1537}
1538
1539#ifndef ACPI_USE_LOCAL_CACHE
1540
1541/*******************************************************************************
1542 *
1543 * FUNCTION: acpi_os_create_cache
1544 *
1545 * PARAMETERS: name - Ascii name for the cache
1546 * size - Size of each cached object
1547 * depth - Maximum depth of the cache (in objects) <ignored>
1548 * cache - Where the new cache object is returned
1549 *
1550 * RETURN: status
1551 *
1552 * DESCRIPTION: Create a cache object
1553 *
1554 ******************************************************************************/
1555
1556acpi_status
1557acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1558{
1559 *cache = kmem_cache_create(name, size, 0, 0, NULL);
1560 if (*cache == NULL)
1561 return AE_ERROR;
1562 else
1563 return AE_OK;
1564}
1565
1566/*******************************************************************************
1567 *
1568 * FUNCTION: acpi_os_purge_cache
1569 *
1570 * PARAMETERS: Cache - Handle to cache object
1571 *
1572 * RETURN: Status
1573 *
1574 * DESCRIPTION: Free all objects within the requested cache.
1575 *
1576 ******************************************************************************/
1577
1578acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1579{
1580 kmem_cache_shrink(cache);
1581 return (AE_OK);
1582}
1583
1584/*******************************************************************************
1585 *
1586 * FUNCTION: acpi_os_delete_cache
1587 *
1588 * PARAMETERS: Cache - Handle to cache object
1589 *
1590 * RETURN: Status
1591 *
1592 * DESCRIPTION: Free all objects within the requested cache and delete the
1593 * cache object.
1594 *
1595 ******************************************************************************/
1596
1597acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1598{
1599 kmem_cache_destroy(cache);
1600 return (AE_OK);
1601}
1602
1603/*******************************************************************************
1604 *
1605 * FUNCTION: acpi_os_release_object
1606 *
1607 * PARAMETERS: Cache - Handle to cache object
1608 * Object - The object to be released
1609 *
1610 * RETURN: None
1611 *
1612 * DESCRIPTION: Release an object to the specified cache. If cache is full,
1613 * the object is deleted.
1614 *
1615 ******************************************************************************/
1616
1617acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1618{
1619 kmem_cache_free(cache, object);
1620 return (AE_OK);
1621}
1622#endif
1623
1624static int __init acpi_no_static_ssdt_setup(char *s)
1625{
1626 acpi_gbl_disable_ssdt_table_install = TRUE;
1627 pr_info("Static SSDT installation disabled\n");
1628
1629 return 0;
1630}
1631
1632early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1633
1634static int __init acpi_disable_return_repair(char *s)
1635{
1636 pr_notice("Predefined validation mechanism disabled\n");
1637 acpi_gbl_disable_auto_repair = TRUE;
1638
1639 return 1;
1640}
1641
1642__setup("acpica_no_return_repair", acpi_disable_return_repair);
1643
1644acpi_status __init acpi_os_initialize(void)
1645{
1646 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1647 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1648
1649 acpi_gbl_xgpe0_block_logical_address =
1650 (unsigned long)acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1651 acpi_gbl_xgpe1_block_logical_address =
1652 (unsigned long)acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1653
1654 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1655 /*
1656 * Use acpi_os_map_generic_address to pre-map the reset
1657 * register if it's in system memory.
1658 */
1659 void *rv;
1660
1661 rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1662 pr_debug("%s: Reset register mapping %s\n", __func__,
1663 rv ? "successful" : "failed");
1664 }
1665 acpi_os_initialized = true;
1666
1667 return AE_OK;
1668}
1669
1670acpi_status __init acpi_os_initialize1(void)
1671{
1672 kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1673 kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1674 kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1675 BUG_ON(!kacpid_wq);
1676 BUG_ON(!kacpi_notify_wq);
1677 BUG_ON(!kacpi_hotplug_wq);
1678 acpi_osi_init();
1679 return AE_OK;
1680}
1681
1682acpi_status acpi_os_terminate(void)
1683{
1684 if (acpi_irq_handler) {
1685 acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1686 acpi_irq_handler);
1687 }
1688
1689 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1690 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1691 acpi_gbl_xgpe0_block_logical_address = 0UL;
1692 acpi_gbl_xgpe1_block_logical_address = 0UL;
1693
1694 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1695 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1696
1697 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1698 acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1699
1700 destroy_workqueue(kacpid_wq);
1701 destroy_workqueue(kacpi_notify_wq);
1702 destroy_workqueue(kacpi_hotplug_wq);
1703
1704 return AE_OK;
1705}
1706
1707acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1708 u32 pm1b_control)
1709{
1710 int rc = 0;
1711 if (__acpi_os_prepare_sleep)
1712 rc = __acpi_os_prepare_sleep(sleep_state,
1713 pm1a_control, pm1b_control);
1714 if (rc < 0)
1715 return AE_ERROR;
1716 else if (rc > 0)
1717 return AE_CTRL_TERMINATE;
1718
1719 return AE_OK;
1720}
1721
1722void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1723 u32 pm1a_ctrl, u32 pm1b_ctrl))
1724{
1725 __acpi_os_prepare_sleep = func;
1726}
1727
1728#if (ACPI_REDUCED_HARDWARE)
1729acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1730 u32 val_b)
1731{
1732 int rc = 0;
1733 if (__acpi_os_prepare_extended_sleep)
1734 rc = __acpi_os_prepare_extended_sleep(sleep_state,
1735 val_a, val_b);
1736 if (rc < 0)
1737 return AE_ERROR;
1738 else if (rc > 0)
1739 return AE_CTRL_TERMINATE;
1740
1741 return AE_OK;
1742}
1743#else
1744acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1745 u32 val_b)
1746{
1747 return AE_OK;
1748}
1749#endif
1750
1751void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1752 u32 val_a, u32 val_b))
1753{
1754 __acpi_os_prepare_extended_sleep = func;
1755}
1756
1757acpi_status acpi_os_enter_sleep(u8 sleep_state,
1758 u32 reg_a_value, u32 reg_b_value)
1759{
1760 acpi_status status;
1761
1762 if (acpi_gbl_reduced_hardware)
1763 status = acpi_os_prepare_extended_sleep(sleep_state,
1764 reg_a_value,
1765 reg_b_value);
1766 else
1767 status = acpi_os_prepare_sleep(sleep_state,
1768 reg_a_value, reg_b_value);
1769 return status;
1770}