Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * acpi_osl.c - OS-dependent functions ($Revision: 83 $)
4 *
5 * Copyright (C) 2000 Andrew Henroid
6 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
7 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
8 * Copyright (c) 2008 Intel Corporation
9 * Author: Matthew Wilcox <willy@linux.intel.com>
10 */
11
12#define pr_fmt(fmt) "ACPI: OSL: " fmt
13
14#include <linux/module.h>
15#include <linux/kernel.h>
16#include <linux/slab.h>
17#include <linux/mm.h>
18#include <linux/highmem.h>
19#include <linux/lockdep.h>
20#include <linux/pci.h>
21#include <linux/interrupt.h>
22#include <linux/kmod.h>
23#include <linux/delay.h>
24#include <linux/workqueue.h>
25#include <linux/nmi.h>
26#include <linux/acpi.h>
27#include <linux/efi.h>
28#include <linux/ioport.h>
29#include <linux/list.h>
30#include <linux/jiffies.h>
31#include <linux/semaphore.h>
32#include <linux/security.h>
33
34#include <asm/io.h>
35#include <linux/uaccess.h>
36#include <linux/io-64-nonatomic-lo-hi.h>
37
38#include "acpica/accommon.h"
39#include "internal.h"
40
41/* Definitions for ACPI_DEBUG_PRINT() */
42#define _COMPONENT ACPI_OS_SERVICES
43ACPI_MODULE_NAME("osl");
44
45struct acpi_os_dpc {
46 acpi_osd_exec_callback function;
47 void *context;
48 struct work_struct work;
49};
50
51#ifdef ENABLE_DEBUGGER
52#include <linux/kdb.h>
53
54/* stuff for debugger support */
55int acpi_in_debugger;
56EXPORT_SYMBOL(acpi_in_debugger);
57#endif /*ENABLE_DEBUGGER */
58
59static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
60 u32 pm1b_ctrl);
61static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
62 u32 val_b);
63
64static acpi_osd_handler acpi_irq_handler;
65static void *acpi_irq_context;
66static struct workqueue_struct *kacpid_wq;
67static struct workqueue_struct *kacpi_notify_wq;
68static struct workqueue_struct *kacpi_hotplug_wq;
69static bool acpi_os_initialized;
70unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
71bool acpi_permanent_mmap = false;
72
73/*
74 * This list of permanent mappings is for memory that may be accessed from
75 * interrupt context, where we can't do the ioremap().
76 */
77struct acpi_ioremap {
78 struct list_head list;
79 void __iomem *virt;
80 acpi_physical_address phys;
81 acpi_size size;
82 union {
83 unsigned long refcount;
84 struct rcu_work rwork;
85 } track;
86};
87
88static LIST_HEAD(acpi_ioremaps);
89static DEFINE_MUTEX(acpi_ioremap_lock);
90#define acpi_ioremap_lock_held() lock_is_held(&acpi_ioremap_lock.dep_map)
91
92static void __init acpi_request_region (struct acpi_generic_address *gas,
93 unsigned int length, char *desc)
94{
95 u64 addr;
96
97 /* Handle possible alignment issues */
98 memcpy(&addr, &gas->address, sizeof(addr));
99 if (!addr || !length)
100 return;
101
102 /* Resources are never freed */
103 if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
104 request_region(addr, length, desc);
105 else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
106 request_mem_region(addr, length, desc);
107}
108
109static int __init acpi_reserve_resources(void)
110{
111 acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
112 "ACPI PM1a_EVT_BLK");
113
114 acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
115 "ACPI PM1b_EVT_BLK");
116
117 acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
118 "ACPI PM1a_CNT_BLK");
119
120 acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
121 "ACPI PM1b_CNT_BLK");
122
123 if (acpi_gbl_FADT.pm_timer_length == 4)
124 acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
125
126 acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
127 "ACPI PM2_CNT_BLK");
128
129 /* Length of GPE blocks must be a non-negative multiple of 2 */
130
131 if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
132 acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
133 acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
134
135 if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
136 acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
137 acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
138
139 return 0;
140}
141fs_initcall_sync(acpi_reserve_resources);
142
143void acpi_os_printf(const char *fmt, ...)
144{
145 va_list args;
146 va_start(args, fmt);
147 acpi_os_vprintf(fmt, args);
148 va_end(args);
149}
150EXPORT_SYMBOL(acpi_os_printf);
151
152void __printf(1, 0) acpi_os_vprintf(const char *fmt, va_list args)
153{
154 static char buffer[512];
155
156 vsprintf(buffer, fmt, args);
157
158#ifdef ENABLE_DEBUGGER
159 if (acpi_in_debugger) {
160 kdb_printf("%s", buffer);
161 } else {
162 if (printk_get_level(buffer))
163 printk("%s", buffer);
164 else
165 printk(KERN_CONT "%s", buffer);
166 }
167#else
168 if (acpi_debugger_write_log(buffer) < 0) {
169 if (printk_get_level(buffer))
170 printk("%s", buffer);
171 else
172 printk(KERN_CONT "%s", buffer);
173 }
174#endif
175}
176
177#ifdef CONFIG_KEXEC
178static unsigned long acpi_rsdp;
179static int __init setup_acpi_rsdp(char *arg)
180{
181 return kstrtoul(arg, 16, &acpi_rsdp);
182}
183early_param("acpi_rsdp", setup_acpi_rsdp);
184#endif
185
186acpi_physical_address __init acpi_os_get_root_pointer(void)
187{
188 acpi_physical_address pa;
189
190#ifdef CONFIG_KEXEC
191 /*
192 * We may have been provided with an RSDP on the command line,
193 * but if a malicious user has done so they may be pointing us
194 * at modified ACPI tables that could alter kernel behaviour -
195 * so, we check the lockdown status before making use of
196 * it. If we trust it then also stash it in an architecture
197 * specific location (if appropriate) so it can be carried
198 * over further kexec()s.
199 */
200 if (acpi_rsdp && !security_locked_down(LOCKDOWN_ACPI_TABLES)) {
201 acpi_arch_set_root_pointer(acpi_rsdp);
202 return acpi_rsdp;
203 }
204#endif
205 pa = acpi_arch_get_root_pointer();
206 if (pa)
207 return pa;
208
209 if (efi_enabled(EFI_CONFIG_TABLES)) {
210 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
211 return efi.acpi20;
212 if (efi.acpi != EFI_INVALID_TABLE_ADDR)
213 return efi.acpi;
214 pr_err("System description tables not found\n");
215 } else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
216 acpi_find_root_pointer(&pa);
217 }
218
219 return pa;
220}
221
222/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
223static struct acpi_ioremap *
224acpi_map_lookup(acpi_physical_address phys, acpi_size size)
225{
226 struct acpi_ioremap *map;
227
228 list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
229 if (map->phys <= phys &&
230 phys + size <= map->phys + map->size)
231 return map;
232
233 return NULL;
234}
235
236/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
237static void __iomem *
238acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
239{
240 struct acpi_ioremap *map;
241
242 map = acpi_map_lookup(phys, size);
243 if (map)
244 return map->virt + (phys - map->phys);
245
246 return NULL;
247}
248
249void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
250{
251 struct acpi_ioremap *map;
252 void __iomem *virt = NULL;
253
254 mutex_lock(&acpi_ioremap_lock);
255 map = acpi_map_lookup(phys, size);
256 if (map) {
257 virt = map->virt + (phys - map->phys);
258 map->track.refcount++;
259 }
260 mutex_unlock(&acpi_ioremap_lock);
261 return virt;
262}
263EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
264
265/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
266static struct acpi_ioremap *
267acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
268{
269 struct acpi_ioremap *map;
270
271 list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
272 if (map->virt <= virt &&
273 virt + size <= map->virt + map->size)
274 return map;
275
276 return NULL;
277}
278
279#if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
280/* ioremap will take care of cache attributes */
281#define should_use_kmap(pfn) 0
282#else
283#define should_use_kmap(pfn) page_is_ram(pfn)
284#endif
285
286static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
287{
288 unsigned long pfn;
289
290 pfn = pg_off >> PAGE_SHIFT;
291 if (should_use_kmap(pfn)) {
292 if (pg_sz > PAGE_SIZE)
293 return NULL;
294 return (void __iomem __force *)kmap(pfn_to_page(pfn));
295 } else
296 return acpi_os_ioremap(pg_off, pg_sz);
297}
298
299static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
300{
301 unsigned long pfn;
302
303 pfn = pg_off >> PAGE_SHIFT;
304 if (should_use_kmap(pfn))
305 kunmap(pfn_to_page(pfn));
306 else
307 iounmap(vaddr);
308}
309
310/**
311 * acpi_os_map_iomem - Get a virtual address for a given physical address range.
312 * @phys: Start of the physical address range to map.
313 * @size: Size of the physical address range to map.
314 *
315 * Look up the given physical address range in the list of existing ACPI memory
316 * mappings. If found, get a reference to it and return a pointer to it (its
317 * virtual address). If not found, map it, add it to that list and return a
318 * pointer to it.
319 *
320 * During early init (when acpi_permanent_mmap has not been set yet) this
321 * routine simply calls __acpi_map_table() to get the job done.
322 */
323void __iomem __ref
324*acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
325{
326 struct acpi_ioremap *map;
327 void __iomem *virt;
328 acpi_physical_address pg_off;
329 acpi_size pg_sz;
330
331 if (phys > ULONG_MAX) {
332 pr_err("Cannot map memory that high: 0x%llx\n", phys);
333 return NULL;
334 }
335
336 if (!acpi_permanent_mmap)
337 return __acpi_map_table((unsigned long)phys, size);
338
339 mutex_lock(&acpi_ioremap_lock);
340 /* Check if there's a suitable mapping already. */
341 map = acpi_map_lookup(phys, size);
342 if (map) {
343 map->track.refcount++;
344 goto out;
345 }
346
347 map = kzalloc(sizeof(*map), GFP_KERNEL);
348 if (!map) {
349 mutex_unlock(&acpi_ioremap_lock);
350 return NULL;
351 }
352
353 pg_off = round_down(phys, PAGE_SIZE);
354 pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
355 virt = acpi_map(phys, size);
356 if (!virt) {
357 mutex_unlock(&acpi_ioremap_lock);
358 kfree(map);
359 return NULL;
360 }
361
362 INIT_LIST_HEAD(&map->list);
363 map->virt = (void __iomem __force *)((unsigned long)virt & PAGE_MASK);
364 map->phys = pg_off;
365 map->size = pg_sz;
366 map->track.refcount = 1;
367
368 list_add_tail_rcu(&map->list, &acpi_ioremaps);
369
370out:
371 mutex_unlock(&acpi_ioremap_lock);
372 return map->virt + (phys - map->phys);
373}
374EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
375
376void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
377{
378 return (void *)acpi_os_map_iomem(phys, size);
379}
380EXPORT_SYMBOL_GPL(acpi_os_map_memory);
381
382static void acpi_os_map_remove(struct work_struct *work)
383{
384 struct acpi_ioremap *map = container_of(to_rcu_work(work),
385 struct acpi_ioremap,
386 track.rwork);
387
388 acpi_unmap(map->phys, map->virt);
389 kfree(map);
390}
391
392/* Must be called with mutex_lock(&acpi_ioremap_lock) */
393static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
394{
395 if (--map->track.refcount)
396 return;
397
398 list_del_rcu(&map->list);
399
400 INIT_RCU_WORK(&map->track.rwork, acpi_os_map_remove);
401 queue_rcu_work(system_wq, &map->track.rwork);
402}
403
404/**
405 * acpi_os_unmap_iomem - Drop a memory mapping reference.
406 * @virt: Start of the address range to drop a reference to.
407 * @size: Size of the address range to drop a reference to.
408 *
409 * Look up the given virtual address range in the list of existing ACPI memory
410 * mappings, drop a reference to it and if there are no more active references
411 * to it, queue it up for later removal.
412 *
413 * During early init (when acpi_permanent_mmap has not been set yet) this
414 * routine simply calls __acpi_unmap_table() to get the job done. Since
415 * __acpi_unmap_table() is an __init function, the __ref annotation is needed
416 * here.
417 */
418void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
419{
420 struct acpi_ioremap *map;
421
422 if (!acpi_permanent_mmap) {
423 __acpi_unmap_table(virt, size);
424 return;
425 }
426
427 mutex_lock(&acpi_ioremap_lock);
428
429 map = acpi_map_lookup_virt(virt, size);
430 if (!map) {
431 mutex_unlock(&acpi_ioremap_lock);
432 WARN(true, "ACPI: %s: bad address %p\n", __func__, virt);
433 return;
434 }
435 acpi_os_drop_map_ref(map);
436
437 mutex_unlock(&acpi_ioremap_lock);
438}
439EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
440
441/**
442 * acpi_os_unmap_memory - Drop a memory mapping reference.
443 * @virt: Start of the address range to drop a reference to.
444 * @size: Size of the address range to drop a reference to.
445 */
446void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
447{
448 acpi_os_unmap_iomem((void __iomem *)virt, size);
449}
450EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
451
452void __iomem *acpi_os_map_generic_address(struct acpi_generic_address *gas)
453{
454 u64 addr;
455
456 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
457 return NULL;
458
459 /* Handle possible alignment issues */
460 memcpy(&addr, &gas->address, sizeof(addr));
461 if (!addr || !gas->bit_width)
462 return NULL;
463
464 return acpi_os_map_iomem(addr, gas->bit_width / 8);
465}
466EXPORT_SYMBOL(acpi_os_map_generic_address);
467
468void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
469{
470 u64 addr;
471 struct acpi_ioremap *map;
472
473 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
474 return;
475
476 /* Handle possible alignment issues */
477 memcpy(&addr, &gas->address, sizeof(addr));
478 if (!addr || !gas->bit_width)
479 return;
480
481 mutex_lock(&acpi_ioremap_lock);
482
483 map = acpi_map_lookup(addr, gas->bit_width / 8);
484 if (!map) {
485 mutex_unlock(&acpi_ioremap_lock);
486 return;
487 }
488 acpi_os_drop_map_ref(map);
489
490 mutex_unlock(&acpi_ioremap_lock);
491}
492EXPORT_SYMBOL(acpi_os_unmap_generic_address);
493
494#ifdef ACPI_FUTURE_USAGE
495acpi_status
496acpi_os_get_physical_address(void *virt, acpi_physical_address *phys)
497{
498 if (!phys || !virt)
499 return AE_BAD_PARAMETER;
500
501 *phys = virt_to_phys(virt);
502
503 return AE_OK;
504}
505#endif
506
507#ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
508static bool acpi_rev_override;
509
510int __init acpi_rev_override_setup(char *str)
511{
512 acpi_rev_override = true;
513 return 1;
514}
515__setup("acpi_rev_override", acpi_rev_override_setup);
516#else
517#define acpi_rev_override false
518#endif
519
520#define ACPI_MAX_OVERRIDE_LEN 100
521
522static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
523
524acpi_status
525acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
526 acpi_string *new_val)
527{
528 if (!init_val || !new_val)
529 return AE_BAD_PARAMETER;
530
531 *new_val = NULL;
532 if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
533 pr_info("Overriding _OS definition to '%s'\n", acpi_os_name);
534 *new_val = acpi_os_name;
535 }
536
537 if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
538 pr_info("Overriding _REV return value to 5\n");
539 *new_val = (char *)5;
540 }
541
542 return AE_OK;
543}
544
545static irqreturn_t acpi_irq(int irq, void *dev_id)
546{
547 if ((*acpi_irq_handler)(acpi_irq_context)) {
548 acpi_irq_handled++;
549 return IRQ_HANDLED;
550 } else {
551 acpi_irq_not_handled++;
552 return IRQ_NONE;
553 }
554}
555
556acpi_status
557acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
558 void *context)
559{
560 unsigned int irq;
561
562 acpi_irq_stats_init();
563
564 /*
565 * ACPI interrupts different from the SCI in our copy of the FADT are
566 * not supported.
567 */
568 if (gsi != acpi_gbl_FADT.sci_interrupt)
569 return AE_BAD_PARAMETER;
570
571 if (acpi_irq_handler)
572 return AE_ALREADY_ACQUIRED;
573
574 if (acpi_gsi_to_irq(gsi, &irq) < 0) {
575 pr_err("SCI (ACPI GSI %d) not registered\n", gsi);
576 return AE_OK;
577 }
578
579 acpi_irq_handler = handler;
580 acpi_irq_context = context;
581 if (request_threaded_irq(irq, NULL, acpi_irq, IRQF_SHARED | IRQF_ONESHOT,
582 "acpi", acpi_irq)) {
583 pr_err("SCI (IRQ%d) allocation failed\n", irq);
584 acpi_irq_handler = NULL;
585 return AE_NOT_ACQUIRED;
586 }
587 acpi_sci_irq = irq;
588
589 return AE_OK;
590}
591
592acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
593{
594 if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
595 return AE_BAD_PARAMETER;
596
597 free_irq(acpi_sci_irq, acpi_irq);
598 acpi_irq_handler = NULL;
599 acpi_sci_irq = INVALID_ACPI_IRQ;
600
601 return AE_OK;
602}
603
604/*
605 * Running in interpreter thread context, safe to sleep
606 */
607
608void acpi_os_sleep(u64 ms)
609{
610 msleep(ms);
611}
612
613void acpi_os_stall(u32 us)
614{
615 while (us) {
616 u32 delay = 1000;
617
618 if (delay > us)
619 delay = us;
620 udelay(delay);
621 touch_nmi_watchdog();
622 us -= delay;
623 }
624}
625
626/*
627 * Support ACPI 3.0 AML Timer operand. Returns a 64-bit free-running,
628 * monotonically increasing timer with 100ns granularity. Do not use
629 * ktime_get() to implement this function because this function may get
630 * called after timekeeping has been suspended. Note: calling this function
631 * after timekeeping has been suspended may lead to unexpected results
632 * because when timekeeping is suspended the jiffies counter is not
633 * incremented. See also timekeeping_suspend().
634 */
635u64 acpi_os_get_timer(void)
636{
637 return (get_jiffies_64() - INITIAL_JIFFIES) *
638 (ACPI_100NSEC_PER_SEC / HZ);
639}
640
641acpi_status acpi_os_read_port(acpi_io_address port, u32 *value, u32 width)
642{
643 u32 dummy;
644
645 if (value)
646 *value = 0;
647 else
648 value = &dummy;
649
650 if (width <= 8) {
651 *value = inb(port);
652 } else if (width <= 16) {
653 *value = inw(port);
654 } else if (width <= 32) {
655 *value = inl(port);
656 } else {
657 pr_debug("%s: Access width %d not supported\n", __func__, width);
658 return AE_BAD_PARAMETER;
659 }
660
661 return AE_OK;
662}
663
664EXPORT_SYMBOL(acpi_os_read_port);
665
666acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
667{
668 if (width <= 8) {
669 outb(value, port);
670 } else if (width <= 16) {
671 outw(value, port);
672 } else if (width <= 32) {
673 outl(value, port);
674 } else {
675 pr_debug("%s: Access width %d not supported\n", __func__, width);
676 return AE_BAD_PARAMETER;
677 }
678
679 return AE_OK;
680}
681
682EXPORT_SYMBOL(acpi_os_write_port);
683
684int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width)
685{
686
687 switch (width) {
688 case 8:
689 *(u8 *) value = readb(virt_addr);
690 break;
691 case 16:
692 *(u16 *) value = readw(virt_addr);
693 break;
694 case 32:
695 *(u32 *) value = readl(virt_addr);
696 break;
697 case 64:
698 *(u64 *) value = readq(virt_addr);
699 break;
700 default:
701 return -EINVAL;
702 }
703
704 return 0;
705}
706
707acpi_status
708acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
709{
710 void __iomem *virt_addr;
711 unsigned int size = width / 8;
712 bool unmap = false;
713 u64 dummy;
714 int error;
715
716 rcu_read_lock();
717 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
718 if (!virt_addr) {
719 rcu_read_unlock();
720 virt_addr = acpi_os_ioremap(phys_addr, size);
721 if (!virt_addr)
722 return AE_BAD_ADDRESS;
723 unmap = true;
724 }
725
726 if (!value)
727 value = &dummy;
728
729 error = acpi_os_read_iomem(virt_addr, value, width);
730 BUG_ON(error);
731
732 if (unmap)
733 iounmap(virt_addr);
734 else
735 rcu_read_unlock();
736
737 return AE_OK;
738}
739
740acpi_status
741acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
742{
743 void __iomem *virt_addr;
744 unsigned int size = width / 8;
745 bool unmap = false;
746
747 rcu_read_lock();
748 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
749 if (!virt_addr) {
750 rcu_read_unlock();
751 virt_addr = acpi_os_ioremap(phys_addr, size);
752 if (!virt_addr)
753 return AE_BAD_ADDRESS;
754 unmap = true;
755 }
756
757 switch (width) {
758 case 8:
759 writeb(value, virt_addr);
760 break;
761 case 16:
762 writew(value, virt_addr);
763 break;
764 case 32:
765 writel(value, virt_addr);
766 break;
767 case 64:
768 writeq(value, virt_addr);
769 break;
770 default:
771 BUG();
772 }
773
774 if (unmap)
775 iounmap(virt_addr);
776 else
777 rcu_read_unlock();
778
779 return AE_OK;
780}
781
782#ifdef CONFIG_PCI
783acpi_status
784acpi_os_read_pci_configuration(struct acpi_pci_id *pci_id, u32 reg,
785 u64 *value, u32 width)
786{
787 int result, size;
788 u32 value32;
789
790 if (!value)
791 return AE_BAD_PARAMETER;
792
793 switch (width) {
794 case 8:
795 size = 1;
796 break;
797 case 16:
798 size = 2;
799 break;
800 case 32:
801 size = 4;
802 break;
803 default:
804 return AE_ERROR;
805 }
806
807 result = raw_pci_read(pci_id->segment, pci_id->bus,
808 PCI_DEVFN(pci_id->device, pci_id->function),
809 reg, size, &value32);
810 *value = value32;
811
812 return (result ? AE_ERROR : AE_OK);
813}
814
815acpi_status
816acpi_os_write_pci_configuration(struct acpi_pci_id *pci_id, u32 reg,
817 u64 value, u32 width)
818{
819 int result, size;
820
821 switch (width) {
822 case 8:
823 size = 1;
824 break;
825 case 16:
826 size = 2;
827 break;
828 case 32:
829 size = 4;
830 break;
831 default:
832 return AE_ERROR;
833 }
834
835 result = raw_pci_write(pci_id->segment, pci_id->bus,
836 PCI_DEVFN(pci_id->device, pci_id->function),
837 reg, size, value);
838
839 return (result ? AE_ERROR : AE_OK);
840}
841#endif
842
843static void acpi_os_execute_deferred(struct work_struct *work)
844{
845 struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
846
847 dpc->function(dpc->context);
848 kfree(dpc);
849}
850
851#ifdef CONFIG_ACPI_DEBUGGER
852static struct acpi_debugger acpi_debugger;
853static bool acpi_debugger_initialized;
854
855int acpi_register_debugger(struct module *owner,
856 const struct acpi_debugger_ops *ops)
857{
858 int ret = 0;
859
860 mutex_lock(&acpi_debugger.lock);
861 if (acpi_debugger.ops) {
862 ret = -EBUSY;
863 goto err_lock;
864 }
865
866 acpi_debugger.owner = owner;
867 acpi_debugger.ops = ops;
868
869err_lock:
870 mutex_unlock(&acpi_debugger.lock);
871 return ret;
872}
873EXPORT_SYMBOL(acpi_register_debugger);
874
875void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
876{
877 mutex_lock(&acpi_debugger.lock);
878 if (ops == acpi_debugger.ops) {
879 acpi_debugger.ops = NULL;
880 acpi_debugger.owner = NULL;
881 }
882 mutex_unlock(&acpi_debugger.lock);
883}
884EXPORT_SYMBOL(acpi_unregister_debugger);
885
886int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
887{
888 int ret;
889 int (*func)(acpi_osd_exec_callback, void *);
890 struct module *owner;
891
892 if (!acpi_debugger_initialized)
893 return -ENODEV;
894 mutex_lock(&acpi_debugger.lock);
895 if (!acpi_debugger.ops) {
896 ret = -ENODEV;
897 goto err_lock;
898 }
899 if (!try_module_get(acpi_debugger.owner)) {
900 ret = -ENODEV;
901 goto err_lock;
902 }
903 func = acpi_debugger.ops->create_thread;
904 owner = acpi_debugger.owner;
905 mutex_unlock(&acpi_debugger.lock);
906
907 ret = func(function, context);
908
909 mutex_lock(&acpi_debugger.lock);
910 module_put(owner);
911err_lock:
912 mutex_unlock(&acpi_debugger.lock);
913 return ret;
914}
915
916ssize_t acpi_debugger_write_log(const char *msg)
917{
918 ssize_t ret;
919 ssize_t (*func)(const char *);
920 struct module *owner;
921
922 if (!acpi_debugger_initialized)
923 return -ENODEV;
924 mutex_lock(&acpi_debugger.lock);
925 if (!acpi_debugger.ops) {
926 ret = -ENODEV;
927 goto err_lock;
928 }
929 if (!try_module_get(acpi_debugger.owner)) {
930 ret = -ENODEV;
931 goto err_lock;
932 }
933 func = acpi_debugger.ops->write_log;
934 owner = acpi_debugger.owner;
935 mutex_unlock(&acpi_debugger.lock);
936
937 ret = func(msg);
938
939 mutex_lock(&acpi_debugger.lock);
940 module_put(owner);
941err_lock:
942 mutex_unlock(&acpi_debugger.lock);
943 return ret;
944}
945
946ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
947{
948 ssize_t ret;
949 ssize_t (*func)(char *, size_t);
950 struct module *owner;
951
952 if (!acpi_debugger_initialized)
953 return -ENODEV;
954 mutex_lock(&acpi_debugger.lock);
955 if (!acpi_debugger.ops) {
956 ret = -ENODEV;
957 goto err_lock;
958 }
959 if (!try_module_get(acpi_debugger.owner)) {
960 ret = -ENODEV;
961 goto err_lock;
962 }
963 func = acpi_debugger.ops->read_cmd;
964 owner = acpi_debugger.owner;
965 mutex_unlock(&acpi_debugger.lock);
966
967 ret = func(buffer, buffer_length);
968
969 mutex_lock(&acpi_debugger.lock);
970 module_put(owner);
971err_lock:
972 mutex_unlock(&acpi_debugger.lock);
973 return ret;
974}
975
976int acpi_debugger_wait_command_ready(void)
977{
978 int ret;
979 int (*func)(bool, char *, size_t);
980 struct module *owner;
981
982 if (!acpi_debugger_initialized)
983 return -ENODEV;
984 mutex_lock(&acpi_debugger.lock);
985 if (!acpi_debugger.ops) {
986 ret = -ENODEV;
987 goto err_lock;
988 }
989 if (!try_module_get(acpi_debugger.owner)) {
990 ret = -ENODEV;
991 goto err_lock;
992 }
993 func = acpi_debugger.ops->wait_command_ready;
994 owner = acpi_debugger.owner;
995 mutex_unlock(&acpi_debugger.lock);
996
997 ret = func(acpi_gbl_method_executing,
998 acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
999
1000 mutex_lock(&acpi_debugger.lock);
1001 module_put(owner);
1002err_lock:
1003 mutex_unlock(&acpi_debugger.lock);
1004 return ret;
1005}
1006
1007int acpi_debugger_notify_command_complete(void)
1008{
1009 int ret;
1010 int (*func)(void);
1011 struct module *owner;
1012
1013 if (!acpi_debugger_initialized)
1014 return -ENODEV;
1015 mutex_lock(&acpi_debugger.lock);
1016 if (!acpi_debugger.ops) {
1017 ret = -ENODEV;
1018 goto err_lock;
1019 }
1020 if (!try_module_get(acpi_debugger.owner)) {
1021 ret = -ENODEV;
1022 goto err_lock;
1023 }
1024 func = acpi_debugger.ops->notify_command_complete;
1025 owner = acpi_debugger.owner;
1026 mutex_unlock(&acpi_debugger.lock);
1027
1028 ret = func();
1029
1030 mutex_lock(&acpi_debugger.lock);
1031 module_put(owner);
1032err_lock:
1033 mutex_unlock(&acpi_debugger.lock);
1034 return ret;
1035}
1036
1037int __init acpi_debugger_init(void)
1038{
1039 mutex_init(&acpi_debugger.lock);
1040 acpi_debugger_initialized = true;
1041 return 0;
1042}
1043#endif
1044
1045/*******************************************************************************
1046 *
1047 * FUNCTION: acpi_os_execute
1048 *
1049 * PARAMETERS: Type - Type of the callback
1050 * Function - Function to be executed
1051 * Context - Function parameters
1052 *
1053 * RETURN: Status
1054 *
1055 * DESCRIPTION: Depending on type, either queues function for deferred execution or
1056 * immediately executes function on a separate thread.
1057 *
1058 ******************************************************************************/
1059
1060acpi_status acpi_os_execute(acpi_execute_type type,
1061 acpi_osd_exec_callback function, void *context)
1062{
1063 struct acpi_os_dpc *dpc;
1064 int ret;
1065
1066 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1067 "Scheduling function [%p(%p)] for deferred execution.\n",
1068 function, context));
1069
1070 if (type == OSL_DEBUGGER_MAIN_THREAD) {
1071 ret = acpi_debugger_create_thread(function, context);
1072 if (ret) {
1073 pr_err("Kernel thread creation failed\n");
1074 return AE_ERROR;
1075 }
1076 return AE_OK;
1077 }
1078
1079 /*
1080 * Allocate/initialize DPC structure. Note that this memory will be
1081 * freed by the callee. The kernel handles the work_struct list in a
1082 * way that allows us to also free its memory inside the callee.
1083 * Because we may want to schedule several tasks with different
1084 * parameters we can't use the approach some kernel code uses of
1085 * having a static work_struct.
1086 */
1087
1088 dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1089 if (!dpc)
1090 return AE_NO_MEMORY;
1091
1092 dpc->function = function;
1093 dpc->context = context;
1094 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1095
1096 /*
1097 * To prevent lockdep from complaining unnecessarily, make sure that
1098 * there is a different static lockdep key for each workqueue by using
1099 * INIT_WORK() for each of them separately.
1100 */
1101 switch (type) {
1102 case OSL_NOTIFY_HANDLER:
1103 ret = queue_work(kacpi_notify_wq, &dpc->work);
1104 break;
1105 case OSL_GPE_HANDLER:
1106 /*
1107 * On some machines, a software-initiated SMI causes corruption
1108 * unless the SMI runs on CPU 0. An SMI can be initiated by
1109 * any AML, but typically it's done in GPE-related methods that
1110 * are run via workqueues, so we can avoid the known corruption
1111 * cases by always queueing on CPU 0.
1112 */
1113 ret = queue_work_on(0, kacpid_wq, &dpc->work);
1114 break;
1115 default:
1116 pr_err("Unsupported os_execute type %d.\n", type);
1117 goto err;
1118 }
1119 if (!ret) {
1120 pr_err("Unable to queue work\n");
1121 goto err;
1122 }
1123
1124 return AE_OK;
1125
1126err:
1127 kfree(dpc);
1128 return AE_ERROR;
1129}
1130EXPORT_SYMBOL(acpi_os_execute);
1131
1132void acpi_os_wait_events_complete(void)
1133{
1134 /*
1135 * Make sure the GPE handler or the fixed event handler is not used
1136 * on another CPU after removal.
1137 */
1138 if (acpi_sci_irq_valid())
1139 synchronize_hardirq(acpi_sci_irq);
1140 flush_workqueue(kacpid_wq);
1141 flush_workqueue(kacpi_notify_wq);
1142}
1143EXPORT_SYMBOL(acpi_os_wait_events_complete);
1144
1145struct acpi_hp_work {
1146 struct work_struct work;
1147 struct acpi_device *adev;
1148 u32 src;
1149};
1150
1151static void acpi_hotplug_work_fn(struct work_struct *work)
1152{
1153 struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1154
1155 acpi_os_wait_events_complete();
1156 acpi_device_hotplug(hpw->adev, hpw->src);
1157 kfree(hpw);
1158}
1159
1160acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1161{
1162 struct acpi_hp_work *hpw;
1163
1164 acpi_handle_debug(adev->handle,
1165 "Scheduling hotplug event %u for deferred handling\n",
1166 src);
1167
1168 hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1169 if (!hpw)
1170 return AE_NO_MEMORY;
1171
1172 INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1173 hpw->adev = adev;
1174 hpw->src = src;
1175 /*
1176 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1177 * the hotplug code may call driver .remove() functions, which may
1178 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1179 * these workqueues.
1180 */
1181 if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1182 kfree(hpw);
1183 return AE_ERROR;
1184 }
1185 return AE_OK;
1186}
1187
1188bool acpi_queue_hotplug_work(struct work_struct *work)
1189{
1190 return queue_work(kacpi_hotplug_wq, work);
1191}
1192
1193acpi_status
1194acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle *handle)
1195{
1196 struct semaphore *sem = NULL;
1197
1198 sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1199 if (!sem)
1200 return AE_NO_MEMORY;
1201
1202 sema_init(sem, initial_units);
1203
1204 *handle = (acpi_handle *) sem;
1205
1206 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1207 *handle, initial_units));
1208
1209 return AE_OK;
1210}
1211
1212/*
1213 * TODO: A better way to delete semaphores? Linux doesn't have a
1214 * 'delete_semaphore()' function -- may result in an invalid
1215 * pointer dereference for non-synchronized consumers. Should
1216 * we at least check for blocked threads and signal/cancel them?
1217 */
1218
1219acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1220{
1221 struct semaphore *sem = (struct semaphore *)handle;
1222
1223 if (!sem)
1224 return AE_BAD_PARAMETER;
1225
1226 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1227
1228 BUG_ON(!list_empty(&sem->wait_list));
1229 kfree(sem);
1230 sem = NULL;
1231
1232 return AE_OK;
1233}
1234
1235/*
1236 * TODO: Support for units > 1?
1237 */
1238acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1239{
1240 acpi_status status = AE_OK;
1241 struct semaphore *sem = (struct semaphore *)handle;
1242 long jiffies;
1243 int ret = 0;
1244
1245 if (!acpi_os_initialized)
1246 return AE_OK;
1247
1248 if (!sem || (units < 1))
1249 return AE_BAD_PARAMETER;
1250
1251 if (units > 1)
1252 return AE_SUPPORT;
1253
1254 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1255 handle, units, timeout));
1256
1257 if (timeout == ACPI_WAIT_FOREVER)
1258 jiffies = MAX_SCHEDULE_TIMEOUT;
1259 else
1260 jiffies = msecs_to_jiffies(timeout);
1261
1262 ret = down_timeout(sem, jiffies);
1263 if (ret)
1264 status = AE_TIME;
1265
1266 if (ACPI_FAILURE(status)) {
1267 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1268 "Failed to acquire semaphore[%p|%d|%d], %s",
1269 handle, units, timeout,
1270 acpi_format_exception(status)));
1271 } else {
1272 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1273 "Acquired semaphore[%p|%d|%d]", handle,
1274 units, timeout));
1275 }
1276
1277 return status;
1278}
1279
1280/*
1281 * TODO: Support for units > 1?
1282 */
1283acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1284{
1285 struct semaphore *sem = (struct semaphore *)handle;
1286
1287 if (!acpi_os_initialized)
1288 return AE_OK;
1289
1290 if (!sem || (units < 1))
1291 return AE_BAD_PARAMETER;
1292
1293 if (units > 1)
1294 return AE_SUPPORT;
1295
1296 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1297 units));
1298
1299 up(sem);
1300
1301 return AE_OK;
1302}
1303
1304acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1305{
1306#ifdef ENABLE_DEBUGGER
1307 if (acpi_in_debugger) {
1308 u32 chars;
1309
1310 kdb_read(buffer, buffer_length);
1311
1312 /* remove the CR kdb includes */
1313 chars = strlen(buffer) - 1;
1314 buffer[chars] = '\0';
1315 }
1316#else
1317 int ret;
1318
1319 ret = acpi_debugger_read_cmd(buffer, buffer_length);
1320 if (ret < 0)
1321 return AE_ERROR;
1322 if (bytes_read)
1323 *bytes_read = ret;
1324#endif
1325
1326 return AE_OK;
1327}
1328EXPORT_SYMBOL(acpi_os_get_line);
1329
1330acpi_status acpi_os_wait_command_ready(void)
1331{
1332 int ret;
1333
1334 ret = acpi_debugger_wait_command_ready();
1335 if (ret < 0)
1336 return AE_ERROR;
1337 return AE_OK;
1338}
1339
1340acpi_status acpi_os_notify_command_complete(void)
1341{
1342 int ret;
1343
1344 ret = acpi_debugger_notify_command_complete();
1345 if (ret < 0)
1346 return AE_ERROR;
1347 return AE_OK;
1348}
1349
1350acpi_status acpi_os_signal(u32 function, void *info)
1351{
1352 switch (function) {
1353 case ACPI_SIGNAL_FATAL:
1354 pr_err("Fatal opcode executed\n");
1355 break;
1356 case ACPI_SIGNAL_BREAKPOINT:
1357 /*
1358 * AML Breakpoint
1359 * ACPI spec. says to treat it as a NOP unless
1360 * you are debugging. So if/when we integrate
1361 * AML debugger into the kernel debugger its
1362 * hook will go here. But until then it is
1363 * not useful to print anything on breakpoints.
1364 */
1365 break;
1366 default:
1367 break;
1368 }
1369
1370 return AE_OK;
1371}
1372
1373static int __init acpi_os_name_setup(char *str)
1374{
1375 char *p = acpi_os_name;
1376 int count = ACPI_MAX_OVERRIDE_LEN - 1;
1377
1378 if (!str || !*str)
1379 return 0;
1380
1381 for (; count-- && *str; str++) {
1382 if (isalnum(*str) || *str == ' ' || *str == ':')
1383 *p++ = *str;
1384 else if (*str == '\'' || *str == '"')
1385 continue;
1386 else
1387 break;
1388 }
1389 *p = 0;
1390
1391 return 1;
1392
1393}
1394
1395__setup("acpi_os_name=", acpi_os_name_setup);
1396
1397/*
1398 * Disable the auto-serialization of named objects creation methods.
1399 *
1400 * This feature is enabled by default. It marks the AML control methods
1401 * that contain the opcodes to create named objects as "Serialized".
1402 */
1403static int __init acpi_no_auto_serialize_setup(char *str)
1404{
1405 acpi_gbl_auto_serialize_methods = FALSE;
1406 pr_info("Auto-serialization disabled\n");
1407
1408 return 1;
1409}
1410
1411__setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1412
1413/* Check of resource interference between native drivers and ACPI
1414 * OperationRegions (SystemIO and System Memory only).
1415 * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1416 * in arbitrary AML code and can interfere with legacy drivers.
1417 * acpi_enforce_resources= can be set to:
1418 *
1419 * - strict (default) (2)
1420 * -> further driver trying to access the resources will not load
1421 * - lax (1)
1422 * -> further driver trying to access the resources will load, but you
1423 * get a system message that something might go wrong...
1424 *
1425 * - no (0)
1426 * -> ACPI Operation Region resources will not be registered
1427 *
1428 */
1429#define ENFORCE_RESOURCES_STRICT 2
1430#define ENFORCE_RESOURCES_LAX 1
1431#define ENFORCE_RESOURCES_NO 0
1432
1433static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1434
1435static int __init acpi_enforce_resources_setup(char *str)
1436{
1437 if (str == NULL || *str == '\0')
1438 return 0;
1439
1440 if (!strcmp("strict", str))
1441 acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1442 else if (!strcmp("lax", str))
1443 acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1444 else if (!strcmp("no", str))
1445 acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1446
1447 return 1;
1448}
1449
1450__setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1451
1452/* Check for resource conflicts between ACPI OperationRegions and native
1453 * drivers */
1454int acpi_check_resource_conflict(const struct resource *res)
1455{
1456 acpi_adr_space_type space_id;
1457
1458 if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1459 return 0;
1460
1461 if (res->flags & IORESOURCE_IO)
1462 space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1463 else if (res->flags & IORESOURCE_MEM)
1464 space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1465 else
1466 return 0;
1467
1468 if (!acpi_check_address_range(space_id, res->start, resource_size(res), 1))
1469 return 0;
1470
1471 pr_info("Resource conflict; ACPI support missing from driver?\n");
1472
1473 if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1474 return -EBUSY;
1475
1476 if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1477 pr_notice("Resource conflict: System may be unstable or behave erratically\n");
1478
1479 return 0;
1480}
1481EXPORT_SYMBOL(acpi_check_resource_conflict);
1482
1483int acpi_check_region(resource_size_t start, resource_size_t n,
1484 const char *name)
1485{
1486 struct resource res = DEFINE_RES_IO_NAMED(start, n, name);
1487
1488 return acpi_check_resource_conflict(&res);
1489}
1490EXPORT_SYMBOL(acpi_check_region);
1491
1492/*
1493 * Let drivers know whether the resource checks are effective
1494 */
1495int acpi_resources_are_enforced(void)
1496{
1497 return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1498}
1499EXPORT_SYMBOL(acpi_resources_are_enforced);
1500
1501/*
1502 * Deallocate the memory for a spinlock.
1503 */
1504void acpi_os_delete_lock(acpi_spinlock handle)
1505{
1506 ACPI_FREE(handle);
1507}
1508
1509/*
1510 * Acquire a spinlock.
1511 *
1512 * handle is a pointer to the spinlock_t.
1513 */
1514
1515acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1516 __acquires(lockp)
1517{
1518 spin_lock(lockp);
1519 return 0;
1520}
1521
1522/*
1523 * Release a spinlock. See above.
1524 */
1525
1526void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags not_used)
1527 __releases(lockp)
1528{
1529 spin_unlock(lockp);
1530}
1531
1532#ifndef ACPI_USE_LOCAL_CACHE
1533
1534/*******************************************************************************
1535 *
1536 * FUNCTION: acpi_os_create_cache
1537 *
1538 * PARAMETERS: name - Ascii name for the cache
1539 * size - Size of each cached object
1540 * depth - Maximum depth of the cache (in objects) <ignored>
1541 * cache - Where the new cache object is returned
1542 *
1543 * RETURN: status
1544 *
1545 * DESCRIPTION: Create a cache object
1546 *
1547 ******************************************************************************/
1548
1549acpi_status
1550acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t **cache)
1551{
1552 *cache = kmem_cache_create(name, size, 0, 0, NULL);
1553 if (*cache == NULL)
1554 return AE_ERROR;
1555 else
1556 return AE_OK;
1557}
1558
1559/*******************************************************************************
1560 *
1561 * FUNCTION: acpi_os_purge_cache
1562 *
1563 * PARAMETERS: Cache - Handle to cache object
1564 *
1565 * RETURN: Status
1566 *
1567 * DESCRIPTION: Free all objects within the requested cache.
1568 *
1569 ******************************************************************************/
1570
1571acpi_status acpi_os_purge_cache(acpi_cache_t *cache)
1572{
1573 kmem_cache_shrink(cache);
1574 return AE_OK;
1575}
1576
1577/*******************************************************************************
1578 *
1579 * FUNCTION: acpi_os_delete_cache
1580 *
1581 * PARAMETERS: Cache - Handle to cache object
1582 *
1583 * RETURN: Status
1584 *
1585 * DESCRIPTION: Free all objects within the requested cache and delete the
1586 * cache object.
1587 *
1588 ******************************************************************************/
1589
1590acpi_status acpi_os_delete_cache(acpi_cache_t *cache)
1591{
1592 kmem_cache_destroy(cache);
1593 return AE_OK;
1594}
1595
1596/*******************************************************************************
1597 *
1598 * FUNCTION: acpi_os_release_object
1599 *
1600 * PARAMETERS: Cache - Handle to cache object
1601 * Object - The object to be released
1602 *
1603 * RETURN: None
1604 *
1605 * DESCRIPTION: Release an object to the specified cache. If cache is full,
1606 * the object is deleted.
1607 *
1608 ******************************************************************************/
1609
1610acpi_status acpi_os_release_object(acpi_cache_t *cache, void *object)
1611{
1612 kmem_cache_free(cache, object);
1613 return AE_OK;
1614}
1615#endif
1616
1617static int __init acpi_no_static_ssdt_setup(char *s)
1618{
1619 acpi_gbl_disable_ssdt_table_install = TRUE;
1620 pr_info("Static SSDT installation disabled\n");
1621
1622 return 0;
1623}
1624
1625early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1626
1627static int __init acpi_disable_return_repair(char *s)
1628{
1629 pr_notice("Predefined validation mechanism disabled\n");
1630 acpi_gbl_disable_auto_repair = TRUE;
1631
1632 return 1;
1633}
1634
1635__setup("acpica_no_return_repair", acpi_disable_return_repair);
1636
1637acpi_status __init acpi_os_initialize(void)
1638{
1639 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1640 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1641
1642 acpi_gbl_xgpe0_block_logical_address =
1643 (unsigned long)acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1644 acpi_gbl_xgpe1_block_logical_address =
1645 (unsigned long)acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1646
1647 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1648 /*
1649 * Use acpi_os_map_generic_address to pre-map the reset
1650 * register if it's in system memory.
1651 */
1652 void *rv;
1653
1654 rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1655 pr_debug("%s: Reset register mapping %s\n", __func__,
1656 rv ? "successful" : "failed");
1657 }
1658 acpi_os_initialized = true;
1659
1660 return AE_OK;
1661}
1662
1663acpi_status __init acpi_os_initialize1(void)
1664{
1665 kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1666 kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 0);
1667 kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1668 BUG_ON(!kacpid_wq);
1669 BUG_ON(!kacpi_notify_wq);
1670 BUG_ON(!kacpi_hotplug_wq);
1671 acpi_osi_init();
1672 return AE_OK;
1673}
1674
1675acpi_status acpi_os_terminate(void)
1676{
1677 if (acpi_irq_handler) {
1678 acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1679 acpi_irq_handler);
1680 }
1681
1682 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1683 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1684 acpi_gbl_xgpe0_block_logical_address = 0UL;
1685 acpi_gbl_xgpe1_block_logical_address = 0UL;
1686
1687 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1688 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1689
1690 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1691 acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1692
1693 destroy_workqueue(kacpid_wq);
1694 destroy_workqueue(kacpi_notify_wq);
1695 destroy_workqueue(kacpi_hotplug_wq);
1696
1697 return AE_OK;
1698}
1699
1700acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1701 u32 pm1b_control)
1702{
1703 int rc = 0;
1704
1705 if (__acpi_os_prepare_sleep)
1706 rc = __acpi_os_prepare_sleep(sleep_state,
1707 pm1a_control, pm1b_control);
1708 if (rc < 0)
1709 return AE_ERROR;
1710 else if (rc > 0)
1711 return AE_CTRL_TERMINATE;
1712
1713 return AE_OK;
1714}
1715
1716void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1717 u32 pm1a_ctrl, u32 pm1b_ctrl))
1718{
1719 __acpi_os_prepare_sleep = func;
1720}
1721
1722#if (ACPI_REDUCED_HARDWARE)
1723acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1724 u32 val_b)
1725{
1726 int rc = 0;
1727
1728 if (__acpi_os_prepare_extended_sleep)
1729 rc = __acpi_os_prepare_extended_sleep(sleep_state,
1730 val_a, val_b);
1731 if (rc < 0)
1732 return AE_ERROR;
1733 else if (rc > 0)
1734 return AE_CTRL_TERMINATE;
1735
1736 return AE_OK;
1737}
1738#else
1739acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1740 u32 val_b)
1741{
1742 return AE_OK;
1743}
1744#endif
1745
1746void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1747 u32 val_a, u32 val_b))
1748{
1749 __acpi_os_prepare_extended_sleep = func;
1750}
1751
1752acpi_status acpi_os_enter_sleep(u8 sleep_state,
1753 u32 reg_a_value, u32 reg_b_value)
1754{
1755 acpi_status status;
1756
1757 if (acpi_gbl_reduced_hardware)
1758 status = acpi_os_prepare_extended_sleep(sleep_state,
1759 reg_a_value,
1760 reg_b_value);
1761 else
1762 status = acpi_os_prepare_sleep(sleep_state,
1763 reg_a_value, reg_b_value);
1764 return status;
1765}
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * acpi_osl.c - OS-dependent functions ($Revision: 83 $)
4 *
5 * Copyright (C) 2000 Andrew Henroid
6 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
7 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
8 * Copyright (c) 2008 Intel Corporation
9 * Author: Matthew Wilcox <willy@linux.intel.com>
10 */
11
12#define pr_fmt(fmt) "ACPI: OSL: " fmt
13
14#include <linux/module.h>
15#include <linux/kernel.h>
16#include <linux/slab.h>
17#include <linux/mm.h>
18#include <linux/highmem.h>
19#include <linux/lockdep.h>
20#include <linux/pci.h>
21#include <linux/interrupt.h>
22#include <linux/kmod.h>
23#include <linux/delay.h>
24#include <linux/workqueue.h>
25#include <linux/nmi.h>
26#include <linux/acpi.h>
27#include <linux/efi.h>
28#include <linux/ioport.h>
29#include <linux/list.h>
30#include <linux/jiffies.h>
31#include <linux/semaphore.h>
32#include <linux/security.h>
33
34#include <asm/io.h>
35#include <linux/uaccess.h>
36#include <linux/io-64-nonatomic-lo-hi.h>
37
38#include "acpica/accommon.h"
39#include "acpica/acnamesp.h"
40#include "internal.h"
41
42/* Definitions for ACPI_DEBUG_PRINT() */
43#define _COMPONENT ACPI_OS_SERVICES
44ACPI_MODULE_NAME("osl");
45
46struct acpi_os_dpc {
47 acpi_osd_exec_callback function;
48 void *context;
49 struct work_struct work;
50};
51
52#ifdef ENABLE_DEBUGGER
53#include <linux/kdb.h>
54
55/* stuff for debugger support */
56int acpi_in_debugger;
57EXPORT_SYMBOL(acpi_in_debugger);
58#endif /*ENABLE_DEBUGGER */
59
60static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
61 u32 pm1b_ctrl);
62static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
63 u32 val_b);
64
65static acpi_osd_handler acpi_irq_handler;
66static void *acpi_irq_context;
67static struct workqueue_struct *kacpid_wq;
68static struct workqueue_struct *kacpi_notify_wq;
69static struct workqueue_struct *kacpi_hotplug_wq;
70static bool acpi_os_initialized;
71unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
72bool acpi_permanent_mmap = false;
73
74/*
75 * This list of permanent mappings is for memory that may be accessed from
76 * interrupt context, where we can't do the ioremap().
77 */
78struct acpi_ioremap {
79 struct list_head list;
80 void __iomem *virt;
81 acpi_physical_address phys;
82 acpi_size size;
83 union {
84 unsigned long refcount;
85 struct rcu_work rwork;
86 } track;
87};
88
89static LIST_HEAD(acpi_ioremaps);
90static DEFINE_MUTEX(acpi_ioremap_lock);
91#define acpi_ioremap_lock_held() lock_is_held(&acpi_ioremap_lock.dep_map)
92
93static void __init acpi_request_region (struct acpi_generic_address *gas,
94 unsigned int length, char *desc)
95{
96 u64 addr;
97
98 /* Handle possible alignment issues */
99 memcpy(&addr, &gas->address, sizeof(addr));
100 if (!addr || !length)
101 return;
102
103 /* Resources are never freed */
104 if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
105 request_region(addr, length, desc);
106 else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
107 request_mem_region(addr, length, desc);
108}
109
110static int __init acpi_reserve_resources(void)
111{
112 acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
113 "ACPI PM1a_EVT_BLK");
114
115 acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
116 "ACPI PM1b_EVT_BLK");
117
118 acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
119 "ACPI PM1a_CNT_BLK");
120
121 acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
122 "ACPI PM1b_CNT_BLK");
123
124 if (acpi_gbl_FADT.pm_timer_length == 4)
125 acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
126
127 acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
128 "ACPI PM2_CNT_BLK");
129
130 /* Length of GPE blocks must be a non-negative multiple of 2 */
131
132 if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
133 acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
134 acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
135
136 if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
137 acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
138 acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
139
140 return 0;
141}
142fs_initcall_sync(acpi_reserve_resources);
143
144void acpi_os_printf(const char *fmt, ...)
145{
146 va_list args;
147 va_start(args, fmt);
148 acpi_os_vprintf(fmt, args);
149 va_end(args);
150}
151EXPORT_SYMBOL(acpi_os_printf);
152
153void acpi_os_vprintf(const char *fmt, va_list args)
154{
155 static char buffer[512];
156
157 vsprintf(buffer, fmt, args);
158
159#ifdef ENABLE_DEBUGGER
160 if (acpi_in_debugger) {
161 kdb_printf("%s", buffer);
162 } else {
163 if (printk_get_level(buffer))
164 printk("%s", buffer);
165 else
166 printk(KERN_CONT "%s", buffer);
167 }
168#else
169 if (acpi_debugger_write_log(buffer) < 0) {
170 if (printk_get_level(buffer))
171 printk("%s", buffer);
172 else
173 printk(KERN_CONT "%s", buffer);
174 }
175#endif
176}
177
178#ifdef CONFIG_KEXEC
179static unsigned long acpi_rsdp;
180static int __init setup_acpi_rsdp(char *arg)
181{
182 return kstrtoul(arg, 16, &acpi_rsdp);
183}
184early_param("acpi_rsdp", setup_acpi_rsdp);
185#endif
186
187acpi_physical_address __init acpi_os_get_root_pointer(void)
188{
189 acpi_physical_address pa;
190
191#ifdef CONFIG_KEXEC
192 /*
193 * We may have been provided with an RSDP on the command line,
194 * but if a malicious user has done so they may be pointing us
195 * at modified ACPI tables that could alter kernel behaviour -
196 * so, we check the lockdown status before making use of
197 * it. If we trust it then also stash it in an architecture
198 * specific location (if appropriate) so it can be carried
199 * over further kexec()s.
200 */
201 if (acpi_rsdp && !security_locked_down(LOCKDOWN_ACPI_TABLES)) {
202 acpi_arch_set_root_pointer(acpi_rsdp);
203 return acpi_rsdp;
204 }
205#endif
206 pa = acpi_arch_get_root_pointer();
207 if (pa)
208 return pa;
209
210 if (efi_enabled(EFI_CONFIG_TABLES)) {
211 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
212 return efi.acpi20;
213 if (efi.acpi != EFI_INVALID_TABLE_ADDR)
214 return efi.acpi;
215 pr_err("System description tables not found\n");
216 } else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
217 acpi_find_root_pointer(&pa);
218 }
219
220 return pa;
221}
222
223/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
224static struct acpi_ioremap *
225acpi_map_lookup(acpi_physical_address phys, acpi_size size)
226{
227 struct acpi_ioremap *map;
228
229 list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
230 if (map->phys <= phys &&
231 phys + size <= map->phys + map->size)
232 return map;
233
234 return NULL;
235}
236
237/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
238static void __iomem *
239acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
240{
241 struct acpi_ioremap *map;
242
243 map = acpi_map_lookup(phys, size);
244 if (map)
245 return map->virt + (phys - map->phys);
246
247 return NULL;
248}
249
250void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
251{
252 struct acpi_ioremap *map;
253 void __iomem *virt = NULL;
254
255 mutex_lock(&acpi_ioremap_lock);
256 map = acpi_map_lookup(phys, size);
257 if (map) {
258 virt = map->virt + (phys - map->phys);
259 map->track.refcount++;
260 }
261 mutex_unlock(&acpi_ioremap_lock);
262 return virt;
263}
264EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
265
266/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
267static struct acpi_ioremap *
268acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
269{
270 struct acpi_ioremap *map;
271
272 list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
273 if (map->virt <= virt &&
274 virt + size <= map->virt + map->size)
275 return map;
276
277 return NULL;
278}
279
280#if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
281/* ioremap will take care of cache attributes */
282#define should_use_kmap(pfn) 0
283#else
284#define should_use_kmap(pfn) page_is_ram(pfn)
285#endif
286
287static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
288{
289 unsigned long pfn;
290
291 pfn = pg_off >> PAGE_SHIFT;
292 if (should_use_kmap(pfn)) {
293 if (pg_sz > PAGE_SIZE)
294 return NULL;
295 return (void __iomem __force *)kmap(pfn_to_page(pfn));
296 } else
297 return acpi_os_ioremap(pg_off, pg_sz);
298}
299
300static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
301{
302 unsigned long pfn;
303
304 pfn = pg_off >> PAGE_SHIFT;
305 if (should_use_kmap(pfn))
306 kunmap(pfn_to_page(pfn));
307 else
308 iounmap(vaddr);
309}
310
311/**
312 * acpi_os_map_iomem - Get a virtual address for a given physical address range.
313 * @phys: Start of the physical address range to map.
314 * @size: Size of the physical address range to map.
315 *
316 * Look up the given physical address range in the list of existing ACPI memory
317 * mappings. If found, get a reference to it and return a pointer to it (its
318 * virtual address). If not found, map it, add it to that list and return a
319 * pointer to it.
320 *
321 * During early init (when acpi_permanent_mmap has not been set yet) this
322 * routine simply calls __acpi_map_table() to get the job done.
323 */
324void __iomem __ref
325*acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
326{
327 struct acpi_ioremap *map;
328 void __iomem *virt;
329 acpi_physical_address pg_off;
330 acpi_size pg_sz;
331
332 if (phys > ULONG_MAX) {
333 pr_err("Cannot map memory that high: 0x%llx\n", phys);
334 return NULL;
335 }
336
337 if (!acpi_permanent_mmap)
338 return __acpi_map_table((unsigned long)phys, size);
339
340 mutex_lock(&acpi_ioremap_lock);
341 /* Check if there's a suitable mapping already. */
342 map = acpi_map_lookup(phys, size);
343 if (map) {
344 map->track.refcount++;
345 goto out;
346 }
347
348 map = kzalloc(sizeof(*map), GFP_KERNEL);
349 if (!map) {
350 mutex_unlock(&acpi_ioremap_lock);
351 return NULL;
352 }
353
354 pg_off = round_down(phys, PAGE_SIZE);
355 pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
356 virt = acpi_map(phys, size);
357 if (!virt) {
358 mutex_unlock(&acpi_ioremap_lock);
359 kfree(map);
360 return NULL;
361 }
362
363 INIT_LIST_HEAD(&map->list);
364 map->virt = (void __iomem __force *)((unsigned long)virt & PAGE_MASK);
365 map->phys = pg_off;
366 map->size = pg_sz;
367 map->track.refcount = 1;
368
369 list_add_tail_rcu(&map->list, &acpi_ioremaps);
370
371out:
372 mutex_unlock(&acpi_ioremap_lock);
373 return map->virt + (phys - map->phys);
374}
375EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
376
377void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
378{
379 return (void *)acpi_os_map_iomem(phys, size);
380}
381EXPORT_SYMBOL_GPL(acpi_os_map_memory);
382
383static void acpi_os_map_remove(struct work_struct *work)
384{
385 struct acpi_ioremap *map = container_of(to_rcu_work(work),
386 struct acpi_ioremap,
387 track.rwork);
388
389 acpi_unmap(map->phys, map->virt);
390 kfree(map);
391}
392
393/* Must be called with mutex_lock(&acpi_ioremap_lock) */
394static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
395{
396 if (--map->track.refcount)
397 return;
398
399 list_del_rcu(&map->list);
400
401 INIT_RCU_WORK(&map->track.rwork, acpi_os_map_remove);
402 queue_rcu_work(system_wq, &map->track.rwork);
403}
404
405/**
406 * acpi_os_unmap_iomem - Drop a memory mapping reference.
407 * @virt: Start of the address range to drop a reference to.
408 * @size: Size of the address range to drop a reference to.
409 *
410 * Look up the given virtual address range in the list of existing ACPI memory
411 * mappings, drop a reference to it and if there are no more active references
412 * to it, queue it up for later removal.
413 *
414 * During early init (when acpi_permanent_mmap has not been set yet) this
415 * routine simply calls __acpi_unmap_table() to get the job done. Since
416 * __acpi_unmap_table() is an __init function, the __ref annotation is needed
417 * here.
418 */
419void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
420{
421 struct acpi_ioremap *map;
422
423 if (!acpi_permanent_mmap) {
424 __acpi_unmap_table(virt, size);
425 return;
426 }
427
428 mutex_lock(&acpi_ioremap_lock);
429
430 map = acpi_map_lookup_virt(virt, size);
431 if (!map) {
432 mutex_unlock(&acpi_ioremap_lock);
433 WARN(true, "ACPI: %s: bad address %p\n", __func__, virt);
434 return;
435 }
436 acpi_os_drop_map_ref(map);
437
438 mutex_unlock(&acpi_ioremap_lock);
439}
440EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
441
442/**
443 * acpi_os_unmap_memory - Drop a memory mapping reference.
444 * @virt: Start of the address range to drop a reference to.
445 * @size: Size of the address range to drop a reference to.
446 */
447void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
448{
449 acpi_os_unmap_iomem((void __iomem *)virt, size);
450}
451EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
452
453void __iomem *acpi_os_map_generic_address(struct acpi_generic_address *gas)
454{
455 u64 addr;
456
457 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
458 return NULL;
459
460 /* Handle possible alignment issues */
461 memcpy(&addr, &gas->address, sizeof(addr));
462 if (!addr || !gas->bit_width)
463 return NULL;
464
465 return acpi_os_map_iomem(addr, gas->bit_width / 8);
466}
467EXPORT_SYMBOL(acpi_os_map_generic_address);
468
469void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
470{
471 u64 addr;
472 struct acpi_ioremap *map;
473
474 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
475 return;
476
477 /* Handle possible alignment issues */
478 memcpy(&addr, &gas->address, sizeof(addr));
479 if (!addr || !gas->bit_width)
480 return;
481
482 mutex_lock(&acpi_ioremap_lock);
483
484 map = acpi_map_lookup(addr, gas->bit_width / 8);
485 if (!map) {
486 mutex_unlock(&acpi_ioremap_lock);
487 return;
488 }
489 acpi_os_drop_map_ref(map);
490
491 mutex_unlock(&acpi_ioremap_lock);
492}
493EXPORT_SYMBOL(acpi_os_unmap_generic_address);
494
495#ifdef ACPI_FUTURE_USAGE
496acpi_status
497acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
498{
499 if (!phys || !virt)
500 return AE_BAD_PARAMETER;
501
502 *phys = virt_to_phys(virt);
503
504 return AE_OK;
505}
506#endif
507
508#ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
509static bool acpi_rev_override;
510
511int __init acpi_rev_override_setup(char *str)
512{
513 acpi_rev_override = true;
514 return 1;
515}
516__setup("acpi_rev_override", acpi_rev_override_setup);
517#else
518#define acpi_rev_override false
519#endif
520
521#define ACPI_MAX_OVERRIDE_LEN 100
522
523static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
524
525acpi_status
526acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
527 acpi_string *new_val)
528{
529 if (!init_val || !new_val)
530 return AE_BAD_PARAMETER;
531
532 *new_val = NULL;
533 if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
534 pr_info("Overriding _OS definition to '%s'\n", acpi_os_name);
535 *new_val = acpi_os_name;
536 }
537
538 if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
539 pr_info("Overriding _REV return value to 5\n");
540 *new_val = (char *)5;
541 }
542
543 return AE_OK;
544}
545
546static irqreturn_t acpi_irq(int irq, void *dev_id)
547{
548 u32 handled;
549
550 handled = (*acpi_irq_handler) (acpi_irq_context);
551
552 if (handled) {
553 acpi_irq_handled++;
554 return IRQ_HANDLED;
555 } else {
556 acpi_irq_not_handled++;
557 return IRQ_NONE;
558 }
559}
560
561acpi_status
562acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
563 void *context)
564{
565 unsigned int irq;
566
567 acpi_irq_stats_init();
568
569 /*
570 * ACPI interrupts different from the SCI in our copy of the FADT are
571 * not supported.
572 */
573 if (gsi != acpi_gbl_FADT.sci_interrupt)
574 return AE_BAD_PARAMETER;
575
576 if (acpi_irq_handler)
577 return AE_ALREADY_ACQUIRED;
578
579 if (acpi_gsi_to_irq(gsi, &irq) < 0) {
580 pr_err("SCI (ACPI GSI %d) not registered\n", gsi);
581 return AE_OK;
582 }
583
584 acpi_irq_handler = handler;
585 acpi_irq_context = context;
586 if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
587 pr_err("SCI (IRQ%d) allocation failed\n", irq);
588 acpi_irq_handler = NULL;
589 return AE_NOT_ACQUIRED;
590 }
591 acpi_sci_irq = irq;
592
593 return AE_OK;
594}
595
596acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
597{
598 if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
599 return AE_BAD_PARAMETER;
600
601 free_irq(acpi_sci_irq, acpi_irq);
602 acpi_irq_handler = NULL;
603 acpi_sci_irq = INVALID_ACPI_IRQ;
604
605 return AE_OK;
606}
607
608/*
609 * Running in interpreter thread context, safe to sleep
610 */
611
612void acpi_os_sleep(u64 ms)
613{
614 msleep(ms);
615}
616
617void acpi_os_stall(u32 us)
618{
619 while (us) {
620 u32 delay = 1000;
621
622 if (delay > us)
623 delay = us;
624 udelay(delay);
625 touch_nmi_watchdog();
626 us -= delay;
627 }
628}
629
630/*
631 * Support ACPI 3.0 AML Timer operand. Returns a 64-bit free-running,
632 * monotonically increasing timer with 100ns granularity. Do not use
633 * ktime_get() to implement this function because this function may get
634 * called after timekeeping has been suspended. Note: calling this function
635 * after timekeeping has been suspended may lead to unexpected results
636 * because when timekeeping is suspended the jiffies counter is not
637 * incremented. See also timekeeping_suspend().
638 */
639u64 acpi_os_get_timer(void)
640{
641 return (get_jiffies_64() - INITIAL_JIFFIES) *
642 (ACPI_100NSEC_PER_SEC / HZ);
643}
644
645acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
646{
647 u32 dummy;
648
649 if (!value)
650 value = &dummy;
651
652 *value = 0;
653 if (width <= 8) {
654 *(u8 *) value = inb(port);
655 } else if (width <= 16) {
656 *(u16 *) value = inw(port);
657 } else if (width <= 32) {
658 *(u32 *) value = inl(port);
659 } else {
660 BUG();
661 }
662
663 return AE_OK;
664}
665
666EXPORT_SYMBOL(acpi_os_read_port);
667
668acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
669{
670 if (width <= 8) {
671 outb(value, port);
672 } else if (width <= 16) {
673 outw(value, port);
674 } else if (width <= 32) {
675 outl(value, port);
676 } else {
677 BUG();
678 }
679
680 return AE_OK;
681}
682
683EXPORT_SYMBOL(acpi_os_write_port);
684
685int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width)
686{
687
688 switch (width) {
689 case 8:
690 *(u8 *) value = readb(virt_addr);
691 break;
692 case 16:
693 *(u16 *) value = readw(virt_addr);
694 break;
695 case 32:
696 *(u32 *) value = readl(virt_addr);
697 break;
698 case 64:
699 *(u64 *) value = readq(virt_addr);
700 break;
701 default:
702 return -EINVAL;
703 }
704
705 return 0;
706}
707
708acpi_status
709acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
710{
711 void __iomem *virt_addr;
712 unsigned int size = width / 8;
713 bool unmap = false;
714 u64 dummy;
715 int error;
716
717 rcu_read_lock();
718 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
719 if (!virt_addr) {
720 rcu_read_unlock();
721 virt_addr = acpi_os_ioremap(phys_addr, size);
722 if (!virt_addr)
723 return AE_BAD_ADDRESS;
724 unmap = true;
725 }
726
727 if (!value)
728 value = &dummy;
729
730 error = acpi_os_read_iomem(virt_addr, value, width);
731 BUG_ON(error);
732
733 if (unmap)
734 iounmap(virt_addr);
735 else
736 rcu_read_unlock();
737
738 return AE_OK;
739}
740
741acpi_status
742acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
743{
744 void __iomem *virt_addr;
745 unsigned int size = width / 8;
746 bool unmap = false;
747
748 rcu_read_lock();
749 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
750 if (!virt_addr) {
751 rcu_read_unlock();
752 virt_addr = acpi_os_ioremap(phys_addr, size);
753 if (!virt_addr)
754 return AE_BAD_ADDRESS;
755 unmap = true;
756 }
757
758 switch (width) {
759 case 8:
760 writeb(value, virt_addr);
761 break;
762 case 16:
763 writew(value, virt_addr);
764 break;
765 case 32:
766 writel(value, virt_addr);
767 break;
768 case 64:
769 writeq(value, virt_addr);
770 break;
771 default:
772 BUG();
773 }
774
775 if (unmap)
776 iounmap(virt_addr);
777 else
778 rcu_read_unlock();
779
780 return AE_OK;
781}
782
783#ifdef CONFIG_PCI
784acpi_status
785acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
786 u64 *value, u32 width)
787{
788 int result, size;
789 u32 value32;
790
791 if (!value)
792 return AE_BAD_PARAMETER;
793
794 switch (width) {
795 case 8:
796 size = 1;
797 break;
798 case 16:
799 size = 2;
800 break;
801 case 32:
802 size = 4;
803 break;
804 default:
805 return AE_ERROR;
806 }
807
808 result = raw_pci_read(pci_id->segment, pci_id->bus,
809 PCI_DEVFN(pci_id->device, pci_id->function),
810 reg, size, &value32);
811 *value = value32;
812
813 return (result ? AE_ERROR : AE_OK);
814}
815
816acpi_status
817acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
818 u64 value, u32 width)
819{
820 int result, size;
821
822 switch (width) {
823 case 8:
824 size = 1;
825 break;
826 case 16:
827 size = 2;
828 break;
829 case 32:
830 size = 4;
831 break;
832 default:
833 return AE_ERROR;
834 }
835
836 result = raw_pci_write(pci_id->segment, pci_id->bus,
837 PCI_DEVFN(pci_id->device, pci_id->function),
838 reg, size, value);
839
840 return (result ? AE_ERROR : AE_OK);
841}
842#endif
843
844static void acpi_os_execute_deferred(struct work_struct *work)
845{
846 struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
847
848 dpc->function(dpc->context);
849 kfree(dpc);
850}
851
852#ifdef CONFIG_ACPI_DEBUGGER
853static struct acpi_debugger acpi_debugger;
854static bool acpi_debugger_initialized;
855
856int acpi_register_debugger(struct module *owner,
857 const struct acpi_debugger_ops *ops)
858{
859 int ret = 0;
860
861 mutex_lock(&acpi_debugger.lock);
862 if (acpi_debugger.ops) {
863 ret = -EBUSY;
864 goto err_lock;
865 }
866
867 acpi_debugger.owner = owner;
868 acpi_debugger.ops = ops;
869
870err_lock:
871 mutex_unlock(&acpi_debugger.lock);
872 return ret;
873}
874EXPORT_SYMBOL(acpi_register_debugger);
875
876void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
877{
878 mutex_lock(&acpi_debugger.lock);
879 if (ops == acpi_debugger.ops) {
880 acpi_debugger.ops = NULL;
881 acpi_debugger.owner = NULL;
882 }
883 mutex_unlock(&acpi_debugger.lock);
884}
885EXPORT_SYMBOL(acpi_unregister_debugger);
886
887int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
888{
889 int ret;
890 int (*func)(acpi_osd_exec_callback, void *);
891 struct module *owner;
892
893 if (!acpi_debugger_initialized)
894 return -ENODEV;
895 mutex_lock(&acpi_debugger.lock);
896 if (!acpi_debugger.ops) {
897 ret = -ENODEV;
898 goto err_lock;
899 }
900 if (!try_module_get(acpi_debugger.owner)) {
901 ret = -ENODEV;
902 goto err_lock;
903 }
904 func = acpi_debugger.ops->create_thread;
905 owner = acpi_debugger.owner;
906 mutex_unlock(&acpi_debugger.lock);
907
908 ret = func(function, context);
909
910 mutex_lock(&acpi_debugger.lock);
911 module_put(owner);
912err_lock:
913 mutex_unlock(&acpi_debugger.lock);
914 return ret;
915}
916
917ssize_t acpi_debugger_write_log(const char *msg)
918{
919 ssize_t ret;
920 ssize_t (*func)(const char *);
921 struct module *owner;
922
923 if (!acpi_debugger_initialized)
924 return -ENODEV;
925 mutex_lock(&acpi_debugger.lock);
926 if (!acpi_debugger.ops) {
927 ret = -ENODEV;
928 goto err_lock;
929 }
930 if (!try_module_get(acpi_debugger.owner)) {
931 ret = -ENODEV;
932 goto err_lock;
933 }
934 func = acpi_debugger.ops->write_log;
935 owner = acpi_debugger.owner;
936 mutex_unlock(&acpi_debugger.lock);
937
938 ret = func(msg);
939
940 mutex_lock(&acpi_debugger.lock);
941 module_put(owner);
942err_lock:
943 mutex_unlock(&acpi_debugger.lock);
944 return ret;
945}
946
947ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
948{
949 ssize_t ret;
950 ssize_t (*func)(char *, size_t);
951 struct module *owner;
952
953 if (!acpi_debugger_initialized)
954 return -ENODEV;
955 mutex_lock(&acpi_debugger.lock);
956 if (!acpi_debugger.ops) {
957 ret = -ENODEV;
958 goto err_lock;
959 }
960 if (!try_module_get(acpi_debugger.owner)) {
961 ret = -ENODEV;
962 goto err_lock;
963 }
964 func = acpi_debugger.ops->read_cmd;
965 owner = acpi_debugger.owner;
966 mutex_unlock(&acpi_debugger.lock);
967
968 ret = func(buffer, buffer_length);
969
970 mutex_lock(&acpi_debugger.lock);
971 module_put(owner);
972err_lock:
973 mutex_unlock(&acpi_debugger.lock);
974 return ret;
975}
976
977int acpi_debugger_wait_command_ready(void)
978{
979 int ret;
980 int (*func)(bool, char *, size_t);
981 struct module *owner;
982
983 if (!acpi_debugger_initialized)
984 return -ENODEV;
985 mutex_lock(&acpi_debugger.lock);
986 if (!acpi_debugger.ops) {
987 ret = -ENODEV;
988 goto err_lock;
989 }
990 if (!try_module_get(acpi_debugger.owner)) {
991 ret = -ENODEV;
992 goto err_lock;
993 }
994 func = acpi_debugger.ops->wait_command_ready;
995 owner = acpi_debugger.owner;
996 mutex_unlock(&acpi_debugger.lock);
997
998 ret = func(acpi_gbl_method_executing,
999 acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
1000
1001 mutex_lock(&acpi_debugger.lock);
1002 module_put(owner);
1003err_lock:
1004 mutex_unlock(&acpi_debugger.lock);
1005 return ret;
1006}
1007
1008int acpi_debugger_notify_command_complete(void)
1009{
1010 int ret;
1011 int (*func)(void);
1012 struct module *owner;
1013
1014 if (!acpi_debugger_initialized)
1015 return -ENODEV;
1016 mutex_lock(&acpi_debugger.lock);
1017 if (!acpi_debugger.ops) {
1018 ret = -ENODEV;
1019 goto err_lock;
1020 }
1021 if (!try_module_get(acpi_debugger.owner)) {
1022 ret = -ENODEV;
1023 goto err_lock;
1024 }
1025 func = acpi_debugger.ops->notify_command_complete;
1026 owner = acpi_debugger.owner;
1027 mutex_unlock(&acpi_debugger.lock);
1028
1029 ret = func();
1030
1031 mutex_lock(&acpi_debugger.lock);
1032 module_put(owner);
1033err_lock:
1034 mutex_unlock(&acpi_debugger.lock);
1035 return ret;
1036}
1037
1038int __init acpi_debugger_init(void)
1039{
1040 mutex_init(&acpi_debugger.lock);
1041 acpi_debugger_initialized = true;
1042 return 0;
1043}
1044#endif
1045
1046/*******************************************************************************
1047 *
1048 * FUNCTION: acpi_os_execute
1049 *
1050 * PARAMETERS: Type - Type of the callback
1051 * Function - Function to be executed
1052 * Context - Function parameters
1053 *
1054 * RETURN: Status
1055 *
1056 * DESCRIPTION: Depending on type, either queues function for deferred execution or
1057 * immediately executes function on a separate thread.
1058 *
1059 ******************************************************************************/
1060
1061acpi_status acpi_os_execute(acpi_execute_type type,
1062 acpi_osd_exec_callback function, void *context)
1063{
1064 acpi_status status = AE_OK;
1065 struct acpi_os_dpc *dpc;
1066 struct workqueue_struct *queue;
1067 int ret;
1068 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1069 "Scheduling function [%p(%p)] for deferred execution.\n",
1070 function, context));
1071
1072 if (type == OSL_DEBUGGER_MAIN_THREAD) {
1073 ret = acpi_debugger_create_thread(function, context);
1074 if (ret) {
1075 pr_err("Kernel thread creation failed\n");
1076 status = AE_ERROR;
1077 }
1078 goto out_thread;
1079 }
1080
1081 /*
1082 * Allocate/initialize DPC structure. Note that this memory will be
1083 * freed by the callee. The kernel handles the work_struct list in a
1084 * way that allows us to also free its memory inside the callee.
1085 * Because we may want to schedule several tasks with different
1086 * parameters we can't use the approach some kernel code uses of
1087 * having a static work_struct.
1088 */
1089
1090 dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1091 if (!dpc)
1092 return AE_NO_MEMORY;
1093
1094 dpc->function = function;
1095 dpc->context = context;
1096
1097 /*
1098 * To prevent lockdep from complaining unnecessarily, make sure that
1099 * there is a different static lockdep key for each workqueue by using
1100 * INIT_WORK() for each of them separately.
1101 */
1102 if (type == OSL_NOTIFY_HANDLER) {
1103 queue = kacpi_notify_wq;
1104 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1105 } else if (type == OSL_GPE_HANDLER) {
1106 queue = kacpid_wq;
1107 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1108 } else {
1109 pr_err("Unsupported os_execute type %d.\n", type);
1110 status = AE_ERROR;
1111 }
1112
1113 if (ACPI_FAILURE(status))
1114 goto err_workqueue;
1115
1116 /*
1117 * On some machines, a software-initiated SMI causes corruption unless
1118 * the SMI runs on CPU 0. An SMI can be initiated by any AML, but
1119 * typically it's done in GPE-related methods that are run via
1120 * workqueues, so we can avoid the known corruption cases by always
1121 * queueing on CPU 0.
1122 */
1123 ret = queue_work_on(0, queue, &dpc->work);
1124 if (!ret) {
1125 pr_err("Unable to queue work\n");
1126 status = AE_ERROR;
1127 }
1128err_workqueue:
1129 if (ACPI_FAILURE(status))
1130 kfree(dpc);
1131out_thread:
1132 return status;
1133}
1134EXPORT_SYMBOL(acpi_os_execute);
1135
1136void acpi_os_wait_events_complete(void)
1137{
1138 /*
1139 * Make sure the GPE handler or the fixed event handler is not used
1140 * on another CPU after removal.
1141 */
1142 if (acpi_sci_irq_valid())
1143 synchronize_hardirq(acpi_sci_irq);
1144 flush_workqueue(kacpid_wq);
1145 flush_workqueue(kacpi_notify_wq);
1146}
1147EXPORT_SYMBOL(acpi_os_wait_events_complete);
1148
1149struct acpi_hp_work {
1150 struct work_struct work;
1151 struct acpi_device *adev;
1152 u32 src;
1153};
1154
1155static void acpi_hotplug_work_fn(struct work_struct *work)
1156{
1157 struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1158
1159 acpi_os_wait_events_complete();
1160 acpi_device_hotplug(hpw->adev, hpw->src);
1161 kfree(hpw);
1162}
1163
1164acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1165{
1166 struct acpi_hp_work *hpw;
1167
1168 acpi_handle_debug(adev->handle,
1169 "Scheduling hotplug event %u for deferred handling\n",
1170 src);
1171
1172 hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1173 if (!hpw)
1174 return AE_NO_MEMORY;
1175
1176 INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1177 hpw->adev = adev;
1178 hpw->src = src;
1179 /*
1180 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1181 * the hotplug code may call driver .remove() functions, which may
1182 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1183 * these workqueues.
1184 */
1185 if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1186 kfree(hpw);
1187 return AE_ERROR;
1188 }
1189 return AE_OK;
1190}
1191
1192bool acpi_queue_hotplug_work(struct work_struct *work)
1193{
1194 return queue_work(kacpi_hotplug_wq, work);
1195}
1196
1197acpi_status
1198acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1199{
1200 struct semaphore *sem = NULL;
1201
1202 sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1203 if (!sem)
1204 return AE_NO_MEMORY;
1205
1206 sema_init(sem, initial_units);
1207
1208 *handle = (acpi_handle *) sem;
1209
1210 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1211 *handle, initial_units));
1212
1213 return AE_OK;
1214}
1215
1216/*
1217 * TODO: A better way to delete semaphores? Linux doesn't have a
1218 * 'delete_semaphore()' function -- may result in an invalid
1219 * pointer dereference for non-synchronized consumers. Should
1220 * we at least check for blocked threads and signal/cancel them?
1221 */
1222
1223acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1224{
1225 struct semaphore *sem = (struct semaphore *)handle;
1226
1227 if (!sem)
1228 return AE_BAD_PARAMETER;
1229
1230 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1231
1232 BUG_ON(!list_empty(&sem->wait_list));
1233 kfree(sem);
1234 sem = NULL;
1235
1236 return AE_OK;
1237}
1238
1239/*
1240 * TODO: Support for units > 1?
1241 */
1242acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1243{
1244 acpi_status status = AE_OK;
1245 struct semaphore *sem = (struct semaphore *)handle;
1246 long jiffies;
1247 int ret = 0;
1248
1249 if (!acpi_os_initialized)
1250 return AE_OK;
1251
1252 if (!sem || (units < 1))
1253 return AE_BAD_PARAMETER;
1254
1255 if (units > 1)
1256 return AE_SUPPORT;
1257
1258 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1259 handle, units, timeout));
1260
1261 if (timeout == ACPI_WAIT_FOREVER)
1262 jiffies = MAX_SCHEDULE_TIMEOUT;
1263 else
1264 jiffies = msecs_to_jiffies(timeout);
1265
1266 ret = down_timeout(sem, jiffies);
1267 if (ret)
1268 status = AE_TIME;
1269
1270 if (ACPI_FAILURE(status)) {
1271 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1272 "Failed to acquire semaphore[%p|%d|%d], %s",
1273 handle, units, timeout,
1274 acpi_format_exception(status)));
1275 } else {
1276 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1277 "Acquired semaphore[%p|%d|%d]", handle,
1278 units, timeout));
1279 }
1280
1281 return status;
1282}
1283
1284/*
1285 * TODO: Support for units > 1?
1286 */
1287acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1288{
1289 struct semaphore *sem = (struct semaphore *)handle;
1290
1291 if (!acpi_os_initialized)
1292 return AE_OK;
1293
1294 if (!sem || (units < 1))
1295 return AE_BAD_PARAMETER;
1296
1297 if (units > 1)
1298 return AE_SUPPORT;
1299
1300 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1301 units));
1302
1303 up(sem);
1304
1305 return AE_OK;
1306}
1307
1308acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1309{
1310#ifdef ENABLE_DEBUGGER
1311 if (acpi_in_debugger) {
1312 u32 chars;
1313
1314 kdb_read(buffer, buffer_length);
1315
1316 /* remove the CR kdb includes */
1317 chars = strlen(buffer) - 1;
1318 buffer[chars] = '\0';
1319 }
1320#else
1321 int ret;
1322
1323 ret = acpi_debugger_read_cmd(buffer, buffer_length);
1324 if (ret < 0)
1325 return AE_ERROR;
1326 if (bytes_read)
1327 *bytes_read = ret;
1328#endif
1329
1330 return AE_OK;
1331}
1332EXPORT_SYMBOL(acpi_os_get_line);
1333
1334acpi_status acpi_os_wait_command_ready(void)
1335{
1336 int ret;
1337
1338 ret = acpi_debugger_wait_command_ready();
1339 if (ret < 0)
1340 return AE_ERROR;
1341 return AE_OK;
1342}
1343
1344acpi_status acpi_os_notify_command_complete(void)
1345{
1346 int ret;
1347
1348 ret = acpi_debugger_notify_command_complete();
1349 if (ret < 0)
1350 return AE_ERROR;
1351 return AE_OK;
1352}
1353
1354acpi_status acpi_os_signal(u32 function, void *info)
1355{
1356 switch (function) {
1357 case ACPI_SIGNAL_FATAL:
1358 pr_err("Fatal opcode executed\n");
1359 break;
1360 case ACPI_SIGNAL_BREAKPOINT:
1361 /*
1362 * AML Breakpoint
1363 * ACPI spec. says to treat it as a NOP unless
1364 * you are debugging. So if/when we integrate
1365 * AML debugger into the kernel debugger its
1366 * hook will go here. But until then it is
1367 * not useful to print anything on breakpoints.
1368 */
1369 break;
1370 default:
1371 break;
1372 }
1373
1374 return AE_OK;
1375}
1376
1377static int __init acpi_os_name_setup(char *str)
1378{
1379 char *p = acpi_os_name;
1380 int count = ACPI_MAX_OVERRIDE_LEN - 1;
1381
1382 if (!str || !*str)
1383 return 0;
1384
1385 for (; count-- && *str; str++) {
1386 if (isalnum(*str) || *str == ' ' || *str == ':')
1387 *p++ = *str;
1388 else if (*str == '\'' || *str == '"')
1389 continue;
1390 else
1391 break;
1392 }
1393 *p = 0;
1394
1395 return 1;
1396
1397}
1398
1399__setup("acpi_os_name=", acpi_os_name_setup);
1400
1401/*
1402 * Disable the auto-serialization of named objects creation methods.
1403 *
1404 * This feature is enabled by default. It marks the AML control methods
1405 * that contain the opcodes to create named objects as "Serialized".
1406 */
1407static int __init acpi_no_auto_serialize_setup(char *str)
1408{
1409 acpi_gbl_auto_serialize_methods = FALSE;
1410 pr_info("Auto-serialization disabled\n");
1411
1412 return 1;
1413}
1414
1415__setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1416
1417/* Check of resource interference between native drivers and ACPI
1418 * OperationRegions (SystemIO and System Memory only).
1419 * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1420 * in arbitrary AML code and can interfere with legacy drivers.
1421 * acpi_enforce_resources= can be set to:
1422 *
1423 * - strict (default) (2)
1424 * -> further driver trying to access the resources will not load
1425 * - lax (1)
1426 * -> further driver trying to access the resources will load, but you
1427 * get a system message that something might go wrong...
1428 *
1429 * - no (0)
1430 * -> ACPI Operation Region resources will not be registered
1431 *
1432 */
1433#define ENFORCE_RESOURCES_STRICT 2
1434#define ENFORCE_RESOURCES_LAX 1
1435#define ENFORCE_RESOURCES_NO 0
1436
1437static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1438
1439static int __init acpi_enforce_resources_setup(char *str)
1440{
1441 if (str == NULL || *str == '\0')
1442 return 0;
1443
1444 if (!strcmp("strict", str))
1445 acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1446 else if (!strcmp("lax", str))
1447 acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1448 else if (!strcmp("no", str))
1449 acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1450
1451 return 1;
1452}
1453
1454__setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1455
1456/* Check for resource conflicts between ACPI OperationRegions and native
1457 * drivers */
1458int acpi_check_resource_conflict(const struct resource *res)
1459{
1460 acpi_adr_space_type space_id;
1461
1462 if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1463 return 0;
1464
1465 if (res->flags & IORESOURCE_IO)
1466 space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1467 else if (res->flags & IORESOURCE_MEM)
1468 space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1469 else
1470 return 0;
1471
1472 if (!acpi_check_address_range(space_id, res->start, resource_size(res), 1))
1473 return 0;
1474
1475 pr_info("Resource conflict; ACPI support missing from driver?\n");
1476
1477 if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1478 return -EBUSY;
1479
1480 if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1481 pr_notice("Resource conflict: System may be unstable or behave erratically\n");
1482
1483 return 0;
1484}
1485EXPORT_SYMBOL(acpi_check_resource_conflict);
1486
1487int acpi_check_region(resource_size_t start, resource_size_t n,
1488 const char *name)
1489{
1490 struct resource res = DEFINE_RES_IO_NAMED(start, n, name);
1491
1492 return acpi_check_resource_conflict(&res);
1493}
1494EXPORT_SYMBOL(acpi_check_region);
1495
1496static acpi_status acpi_deactivate_mem_region(acpi_handle handle, u32 level,
1497 void *_res, void **return_value)
1498{
1499 struct acpi_mem_space_context **mem_ctx;
1500 union acpi_operand_object *handler_obj;
1501 union acpi_operand_object *region_obj2;
1502 union acpi_operand_object *region_obj;
1503 struct resource *res = _res;
1504 acpi_status status;
1505
1506 region_obj = acpi_ns_get_attached_object(handle);
1507 if (!region_obj)
1508 return AE_OK;
1509
1510 handler_obj = region_obj->region.handler;
1511 if (!handler_obj)
1512 return AE_OK;
1513
1514 if (region_obj->region.space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
1515 return AE_OK;
1516
1517 if (!(region_obj->region.flags & AOPOBJ_SETUP_COMPLETE))
1518 return AE_OK;
1519
1520 region_obj2 = acpi_ns_get_secondary_object(region_obj);
1521 if (!region_obj2)
1522 return AE_OK;
1523
1524 mem_ctx = (void *)®ion_obj2->extra.region_context;
1525
1526 if (!(mem_ctx[0]->address >= res->start &&
1527 mem_ctx[0]->address < res->end))
1528 return AE_OK;
1529
1530 status = handler_obj->address_space.setup(region_obj,
1531 ACPI_REGION_DEACTIVATE,
1532 NULL, (void **)mem_ctx);
1533 if (ACPI_SUCCESS(status))
1534 region_obj->region.flags &= ~(AOPOBJ_SETUP_COMPLETE);
1535
1536 return status;
1537}
1538
1539/**
1540 * acpi_release_memory - Release any mappings done to a memory region
1541 * @handle: Handle to namespace node
1542 * @res: Memory resource
1543 * @level: A level that terminates the search
1544 *
1545 * Walks through @handle and unmaps all SystemMemory Operation Regions that
1546 * overlap with @res and that have already been activated (mapped).
1547 *
1548 * This is a helper that allows drivers to place special requirements on memory
1549 * region that may overlap with operation regions, primarily allowing them to
1550 * safely map the region as non-cached memory.
1551 *
1552 * The unmapped Operation Regions will be automatically remapped next time they
1553 * are called, so the drivers do not need to do anything else.
1554 */
1555acpi_status acpi_release_memory(acpi_handle handle, struct resource *res,
1556 u32 level)
1557{
1558 acpi_status status;
1559
1560 if (!(res->flags & IORESOURCE_MEM))
1561 return AE_TYPE;
1562
1563 status = acpi_walk_namespace(ACPI_TYPE_REGION, handle, level,
1564 acpi_deactivate_mem_region, NULL,
1565 res, NULL);
1566 if (ACPI_FAILURE(status))
1567 return status;
1568
1569 /*
1570 * Wait for all of the mappings queued up for removal by
1571 * acpi_deactivate_mem_region() to actually go away.
1572 */
1573 synchronize_rcu();
1574 rcu_barrier();
1575 flush_scheduled_work();
1576
1577 return AE_OK;
1578}
1579EXPORT_SYMBOL_GPL(acpi_release_memory);
1580
1581/*
1582 * Let drivers know whether the resource checks are effective
1583 */
1584int acpi_resources_are_enforced(void)
1585{
1586 return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1587}
1588EXPORT_SYMBOL(acpi_resources_are_enforced);
1589
1590/*
1591 * Deallocate the memory for a spinlock.
1592 */
1593void acpi_os_delete_lock(acpi_spinlock handle)
1594{
1595 ACPI_FREE(handle);
1596}
1597
1598/*
1599 * Acquire a spinlock.
1600 *
1601 * handle is a pointer to the spinlock_t.
1602 */
1603
1604acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1605 __acquires(lockp)
1606{
1607 acpi_cpu_flags flags;
1608 spin_lock_irqsave(lockp, flags);
1609 return flags;
1610}
1611
1612/*
1613 * Release a spinlock. See above.
1614 */
1615
1616void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1617 __releases(lockp)
1618{
1619 spin_unlock_irqrestore(lockp, flags);
1620}
1621
1622#ifndef ACPI_USE_LOCAL_CACHE
1623
1624/*******************************************************************************
1625 *
1626 * FUNCTION: acpi_os_create_cache
1627 *
1628 * PARAMETERS: name - Ascii name for the cache
1629 * size - Size of each cached object
1630 * depth - Maximum depth of the cache (in objects) <ignored>
1631 * cache - Where the new cache object is returned
1632 *
1633 * RETURN: status
1634 *
1635 * DESCRIPTION: Create a cache object
1636 *
1637 ******************************************************************************/
1638
1639acpi_status
1640acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1641{
1642 *cache = kmem_cache_create(name, size, 0, 0, NULL);
1643 if (*cache == NULL)
1644 return AE_ERROR;
1645 else
1646 return AE_OK;
1647}
1648
1649/*******************************************************************************
1650 *
1651 * FUNCTION: acpi_os_purge_cache
1652 *
1653 * PARAMETERS: Cache - Handle to cache object
1654 *
1655 * RETURN: Status
1656 *
1657 * DESCRIPTION: Free all objects within the requested cache.
1658 *
1659 ******************************************************************************/
1660
1661acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1662{
1663 kmem_cache_shrink(cache);
1664 return (AE_OK);
1665}
1666
1667/*******************************************************************************
1668 *
1669 * FUNCTION: acpi_os_delete_cache
1670 *
1671 * PARAMETERS: Cache - Handle to cache object
1672 *
1673 * RETURN: Status
1674 *
1675 * DESCRIPTION: Free all objects within the requested cache and delete the
1676 * cache object.
1677 *
1678 ******************************************************************************/
1679
1680acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1681{
1682 kmem_cache_destroy(cache);
1683 return (AE_OK);
1684}
1685
1686/*******************************************************************************
1687 *
1688 * FUNCTION: acpi_os_release_object
1689 *
1690 * PARAMETERS: Cache - Handle to cache object
1691 * Object - The object to be released
1692 *
1693 * RETURN: None
1694 *
1695 * DESCRIPTION: Release an object to the specified cache. If cache is full,
1696 * the object is deleted.
1697 *
1698 ******************************************************************************/
1699
1700acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1701{
1702 kmem_cache_free(cache, object);
1703 return (AE_OK);
1704}
1705#endif
1706
1707static int __init acpi_no_static_ssdt_setup(char *s)
1708{
1709 acpi_gbl_disable_ssdt_table_install = TRUE;
1710 pr_info("Static SSDT installation disabled\n");
1711
1712 return 0;
1713}
1714
1715early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1716
1717static int __init acpi_disable_return_repair(char *s)
1718{
1719 pr_notice("Predefined validation mechanism disabled\n");
1720 acpi_gbl_disable_auto_repair = TRUE;
1721
1722 return 1;
1723}
1724
1725__setup("acpica_no_return_repair", acpi_disable_return_repair);
1726
1727acpi_status __init acpi_os_initialize(void)
1728{
1729 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1730 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1731
1732 acpi_gbl_xgpe0_block_logical_address =
1733 (unsigned long)acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1734 acpi_gbl_xgpe1_block_logical_address =
1735 (unsigned long)acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1736
1737 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1738 /*
1739 * Use acpi_os_map_generic_address to pre-map the reset
1740 * register if it's in system memory.
1741 */
1742 void *rv;
1743
1744 rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1745 pr_debug("%s: Reset register mapping %s\n", __func__,
1746 rv ? "successful" : "failed");
1747 }
1748 acpi_os_initialized = true;
1749
1750 return AE_OK;
1751}
1752
1753acpi_status __init acpi_os_initialize1(void)
1754{
1755 kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1756 kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1757 kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1758 BUG_ON(!kacpid_wq);
1759 BUG_ON(!kacpi_notify_wq);
1760 BUG_ON(!kacpi_hotplug_wq);
1761 acpi_osi_init();
1762 return AE_OK;
1763}
1764
1765acpi_status acpi_os_terminate(void)
1766{
1767 if (acpi_irq_handler) {
1768 acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1769 acpi_irq_handler);
1770 }
1771
1772 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1773 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1774 acpi_gbl_xgpe0_block_logical_address = 0UL;
1775 acpi_gbl_xgpe1_block_logical_address = 0UL;
1776
1777 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1778 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1779
1780 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1781 acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1782
1783 destroy_workqueue(kacpid_wq);
1784 destroy_workqueue(kacpi_notify_wq);
1785 destroy_workqueue(kacpi_hotplug_wq);
1786
1787 return AE_OK;
1788}
1789
1790acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1791 u32 pm1b_control)
1792{
1793 int rc = 0;
1794 if (__acpi_os_prepare_sleep)
1795 rc = __acpi_os_prepare_sleep(sleep_state,
1796 pm1a_control, pm1b_control);
1797 if (rc < 0)
1798 return AE_ERROR;
1799 else if (rc > 0)
1800 return AE_CTRL_TERMINATE;
1801
1802 return AE_OK;
1803}
1804
1805void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1806 u32 pm1a_ctrl, u32 pm1b_ctrl))
1807{
1808 __acpi_os_prepare_sleep = func;
1809}
1810
1811#if (ACPI_REDUCED_HARDWARE)
1812acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1813 u32 val_b)
1814{
1815 int rc = 0;
1816 if (__acpi_os_prepare_extended_sleep)
1817 rc = __acpi_os_prepare_extended_sleep(sleep_state,
1818 val_a, val_b);
1819 if (rc < 0)
1820 return AE_ERROR;
1821 else if (rc > 0)
1822 return AE_CTRL_TERMINATE;
1823
1824 return AE_OK;
1825}
1826#else
1827acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1828 u32 val_b)
1829{
1830 return AE_OK;
1831}
1832#endif
1833
1834void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1835 u32 val_a, u32 val_b))
1836{
1837 __acpi_os_prepare_extended_sleep = func;
1838}
1839
1840acpi_status acpi_os_enter_sleep(u8 sleep_state,
1841 u32 reg_a_value, u32 reg_b_value)
1842{
1843 acpi_status status;
1844
1845 if (acpi_gbl_reduced_hardware)
1846 status = acpi_os_prepare_extended_sleep(sleep_state,
1847 reg_a_value,
1848 reg_b_value);
1849 else
1850 status = acpi_os_prepare_sleep(sleep_state,
1851 reg_a_value, reg_b_value);
1852 return status;
1853}