Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  acpi_osl.c - OS-dependent functions ($Revision: 83 $)
   4 *
   5 *  Copyright (C) 2000       Andrew Henroid
   6 *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
   7 *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
   8 *  Copyright (c) 2008 Intel Corporation
   9 *   Author: Matthew Wilcox <willy@linux.intel.com>
  10 */
  11
  12#define pr_fmt(fmt) "ACPI: OSL: " fmt
  13
  14#include <linux/module.h>
  15#include <linux/kernel.h>
  16#include <linux/slab.h>
  17#include <linux/mm.h>
  18#include <linux/highmem.h>
  19#include <linux/lockdep.h>
  20#include <linux/pci.h>
  21#include <linux/interrupt.h>
  22#include <linux/kmod.h>
  23#include <linux/delay.h>
  24#include <linux/workqueue.h>
  25#include <linux/nmi.h>
  26#include <linux/acpi.h>
  27#include <linux/efi.h>
  28#include <linux/ioport.h>
  29#include <linux/list.h>
  30#include <linux/jiffies.h>
  31#include <linux/semaphore.h>
  32#include <linux/security.h>
  33
  34#include <asm/io.h>
  35#include <linux/uaccess.h>
  36#include <linux/io-64-nonatomic-lo-hi.h>
  37
  38#include "acpica/accommon.h"
 
  39#include "internal.h"
  40
  41/* Definitions for ACPI_DEBUG_PRINT() */
  42#define _COMPONENT		ACPI_OS_SERVICES
  43ACPI_MODULE_NAME("osl");
  44
  45struct acpi_os_dpc {
  46	acpi_osd_exec_callback function;
  47	void *context;
  48	struct work_struct work;
  49};
  50
  51#ifdef ENABLE_DEBUGGER
  52#include <linux/kdb.h>
  53
  54/* stuff for debugger support */
  55int acpi_in_debugger;
  56EXPORT_SYMBOL(acpi_in_debugger);
  57#endif				/*ENABLE_DEBUGGER */
  58
  59static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
  60				      u32 pm1b_ctrl);
  61static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
  62				      u32 val_b);
  63
  64static acpi_osd_handler acpi_irq_handler;
  65static void *acpi_irq_context;
  66static struct workqueue_struct *kacpid_wq;
  67static struct workqueue_struct *kacpi_notify_wq;
  68static struct workqueue_struct *kacpi_hotplug_wq;
  69static bool acpi_os_initialized;
  70unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
  71bool acpi_permanent_mmap = false;
  72
  73/*
  74 * This list of permanent mappings is for memory that may be accessed from
  75 * interrupt context, where we can't do the ioremap().
  76 */
  77struct acpi_ioremap {
  78	struct list_head list;
  79	void __iomem *virt;
  80	acpi_physical_address phys;
  81	acpi_size size;
  82	union {
  83		unsigned long refcount;
  84		struct rcu_work rwork;
  85	} track;
  86};
  87
  88static LIST_HEAD(acpi_ioremaps);
  89static DEFINE_MUTEX(acpi_ioremap_lock);
  90#define acpi_ioremap_lock_held() lock_is_held(&acpi_ioremap_lock.dep_map)
  91
  92static void __init acpi_request_region (struct acpi_generic_address *gas,
  93	unsigned int length, char *desc)
  94{
  95	u64 addr;
  96
  97	/* Handle possible alignment issues */
  98	memcpy(&addr, &gas->address, sizeof(addr));
  99	if (!addr || !length)
 100		return;
 101
 102	/* Resources are never freed */
 103	if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
 104		request_region(addr, length, desc);
 105	else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
 106		request_mem_region(addr, length, desc);
 107}
 108
 109static int __init acpi_reserve_resources(void)
 110{
 111	acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
 112		"ACPI PM1a_EVT_BLK");
 113
 114	acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
 115		"ACPI PM1b_EVT_BLK");
 116
 117	acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
 118		"ACPI PM1a_CNT_BLK");
 119
 120	acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
 121		"ACPI PM1b_CNT_BLK");
 122
 123	if (acpi_gbl_FADT.pm_timer_length == 4)
 124		acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
 125
 126	acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
 127		"ACPI PM2_CNT_BLK");
 128
 129	/* Length of GPE blocks must be a non-negative multiple of 2 */
 130
 131	if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
 132		acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
 133			       acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
 134
 135	if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
 136		acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
 137			       acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
 138
 139	return 0;
 140}
 141fs_initcall_sync(acpi_reserve_resources);
 142
 143void acpi_os_printf(const char *fmt, ...)
 144{
 145	va_list args;
 146	va_start(args, fmt);
 147	acpi_os_vprintf(fmt, args);
 148	va_end(args);
 149}
 150EXPORT_SYMBOL(acpi_os_printf);
 151
 152void __printf(1, 0) acpi_os_vprintf(const char *fmt, va_list args)
 153{
 154	static char buffer[512];
 155
 156	vsprintf(buffer, fmt, args);
 157
 158#ifdef ENABLE_DEBUGGER
 159	if (acpi_in_debugger) {
 160		kdb_printf("%s", buffer);
 161	} else {
 162		if (printk_get_level(buffer))
 163			printk("%s", buffer);
 164		else
 165			printk(KERN_CONT "%s", buffer);
 166	}
 167#else
 168	if (acpi_debugger_write_log(buffer) < 0) {
 169		if (printk_get_level(buffer))
 170			printk("%s", buffer);
 171		else
 172			printk(KERN_CONT "%s", buffer);
 173	}
 174#endif
 175}
 176
 177#ifdef CONFIG_KEXEC
 178static unsigned long acpi_rsdp;
 179static int __init setup_acpi_rsdp(char *arg)
 180{
 181	return kstrtoul(arg, 16, &acpi_rsdp);
 182}
 183early_param("acpi_rsdp", setup_acpi_rsdp);
 184#endif
 185
 186acpi_physical_address __init acpi_os_get_root_pointer(void)
 187{
 188	acpi_physical_address pa;
 189
 190#ifdef CONFIG_KEXEC
 191	/*
 192	 * We may have been provided with an RSDP on the command line,
 193	 * but if a malicious user has done so they may be pointing us
 194	 * at modified ACPI tables that could alter kernel behaviour -
 195	 * so, we check the lockdown status before making use of
 196	 * it. If we trust it then also stash it in an architecture
 197	 * specific location (if appropriate) so it can be carried
 198	 * over further kexec()s.
 199	 */
 200	if (acpi_rsdp && !security_locked_down(LOCKDOWN_ACPI_TABLES)) {
 201		acpi_arch_set_root_pointer(acpi_rsdp);
 202		return acpi_rsdp;
 203	}
 204#endif
 205	pa = acpi_arch_get_root_pointer();
 206	if (pa)
 207		return pa;
 208
 209	if (efi_enabled(EFI_CONFIG_TABLES)) {
 210		if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
 211			return efi.acpi20;
 212		if (efi.acpi != EFI_INVALID_TABLE_ADDR)
 213			return efi.acpi;
 214		pr_err("System description tables not found\n");
 215	} else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
 216		acpi_find_root_pointer(&pa);
 217	}
 218
 219	return pa;
 220}
 221
 222/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
 223static struct acpi_ioremap *
 224acpi_map_lookup(acpi_physical_address phys, acpi_size size)
 225{
 226	struct acpi_ioremap *map;
 227
 228	list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
 229		if (map->phys <= phys &&
 230		    phys + size <= map->phys + map->size)
 231			return map;
 232
 233	return NULL;
 234}
 235
 236/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
 237static void __iomem *
 238acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
 239{
 240	struct acpi_ioremap *map;
 241
 242	map = acpi_map_lookup(phys, size);
 243	if (map)
 244		return map->virt + (phys - map->phys);
 245
 246	return NULL;
 247}
 248
 249void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
 250{
 251	struct acpi_ioremap *map;
 252	void __iomem *virt = NULL;
 253
 254	mutex_lock(&acpi_ioremap_lock);
 255	map = acpi_map_lookup(phys, size);
 256	if (map) {
 257		virt = map->virt + (phys - map->phys);
 258		map->track.refcount++;
 259	}
 260	mutex_unlock(&acpi_ioremap_lock);
 261	return virt;
 262}
 263EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
 264
 265/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
 266static struct acpi_ioremap *
 267acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
 268{
 269	struct acpi_ioremap *map;
 270
 271	list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
 272		if (map->virt <= virt &&
 273		    virt + size <= map->virt + map->size)
 274			return map;
 275
 276	return NULL;
 277}
 278
 279#if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
 280/* ioremap will take care of cache attributes */
 281#define should_use_kmap(pfn)   0
 282#else
 283#define should_use_kmap(pfn)   page_is_ram(pfn)
 284#endif
 285
 286static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
 287{
 288	unsigned long pfn;
 289
 290	pfn = pg_off >> PAGE_SHIFT;
 291	if (should_use_kmap(pfn)) {
 292		if (pg_sz > PAGE_SIZE)
 293			return NULL;
 294		return (void __iomem __force *)kmap(pfn_to_page(pfn));
 295	} else
 296		return acpi_os_ioremap(pg_off, pg_sz);
 297}
 298
 299static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
 300{
 301	unsigned long pfn;
 302
 303	pfn = pg_off >> PAGE_SHIFT;
 304	if (should_use_kmap(pfn))
 305		kunmap(pfn_to_page(pfn));
 306	else
 307		iounmap(vaddr);
 308}
 309
 310/**
 311 * acpi_os_map_iomem - Get a virtual address for a given physical address range.
 312 * @phys: Start of the physical address range to map.
 313 * @size: Size of the physical address range to map.
 314 *
 315 * Look up the given physical address range in the list of existing ACPI memory
 316 * mappings.  If found, get a reference to it and return a pointer to it (its
 317 * virtual address).  If not found, map it, add it to that list and return a
 318 * pointer to it.
 319 *
 320 * During early init (when acpi_permanent_mmap has not been set yet) this
 321 * routine simply calls __acpi_map_table() to get the job done.
 322 */
 323void __iomem __ref
 324*acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
 325{
 326	struct acpi_ioremap *map;
 327	void __iomem *virt;
 328	acpi_physical_address pg_off;
 329	acpi_size pg_sz;
 330
 331	if (phys > ULONG_MAX) {
 332		pr_err("Cannot map memory that high: 0x%llx\n", phys);
 333		return NULL;
 334	}
 335
 336	if (!acpi_permanent_mmap)
 337		return __acpi_map_table((unsigned long)phys, size);
 338
 339	mutex_lock(&acpi_ioremap_lock);
 340	/* Check if there's a suitable mapping already. */
 341	map = acpi_map_lookup(phys, size);
 342	if (map) {
 343		map->track.refcount++;
 344		goto out;
 345	}
 346
 347	map = kzalloc(sizeof(*map), GFP_KERNEL);
 348	if (!map) {
 349		mutex_unlock(&acpi_ioremap_lock);
 350		return NULL;
 351	}
 352
 353	pg_off = round_down(phys, PAGE_SIZE);
 354	pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
 355	virt = acpi_map(phys, size);
 356	if (!virt) {
 357		mutex_unlock(&acpi_ioremap_lock);
 358		kfree(map);
 359		return NULL;
 360	}
 361
 362	INIT_LIST_HEAD(&map->list);
 363	map->virt = (void __iomem __force *)((unsigned long)virt & PAGE_MASK);
 364	map->phys = pg_off;
 365	map->size = pg_sz;
 366	map->track.refcount = 1;
 367
 368	list_add_tail_rcu(&map->list, &acpi_ioremaps);
 369
 370out:
 371	mutex_unlock(&acpi_ioremap_lock);
 372	return map->virt + (phys - map->phys);
 373}
 374EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
 375
 376void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
 377{
 378	return (void *)acpi_os_map_iomem(phys, size);
 379}
 380EXPORT_SYMBOL_GPL(acpi_os_map_memory);
 381
 382static void acpi_os_map_remove(struct work_struct *work)
 383{
 384	struct acpi_ioremap *map = container_of(to_rcu_work(work),
 385						struct acpi_ioremap,
 386						track.rwork);
 387
 388	acpi_unmap(map->phys, map->virt);
 389	kfree(map);
 390}
 391
 392/* Must be called with mutex_lock(&acpi_ioremap_lock) */
 393static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
 394{
 395	if (--map->track.refcount)
 396		return;
 397
 398	list_del_rcu(&map->list);
 399
 400	INIT_RCU_WORK(&map->track.rwork, acpi_os_map_remove);
 401	queue_rcu_work(system_wq, &map->track.rwork);
 402}
 403
 404/**
 405 * acpi_os_unmap_iomem - Drop a memory mapping reference.
 406 * @virt: Start of the address range to drop a reference to.
 407 * @size: Size of the address range to drop a reference to.
 408 *
 409 * Look up the given virtual address range in the list of existing ACPI memory
 410 * mappings, drop a reference to it and if there are no more active references
 411 * to it, queue it up for later removal.
 412 *
 413 * During early init (when acpi_permanent_mmap has not been set yet) this
 414 * routine simply calls __acpi_unmap_table() to get the job done.  Since
 415 * __acpi_unmap_table() is an __init function, the __ref annotation is needed
 416 * here.
 417 */
 418void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
 419{
 420	struct acpi_ioremap *map;
 421
 422	if (!acpi_permanent_mmap) {
 423		__acpi_unmap_table(virt, size);
 424		return;
 425	}
 426
 427	mutex_lock(&acpi_ioremap_lock);
 428
 429	map = acpi_map_lookup_virt(virt, size);
 430	if (!map) {
 431		mutex_unlock(&acpi_ioremap_lock);
 432		WARN(true, "ACPI: %s: bad address %p\n", __func__, virt);
 433		return;
 434	}
 435	acpi_os_drop_map_ref(map);
 436
 437	mutex_unlock(&acpi_ioremap_lock);
 438}
 439EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
 440
 441/**
 442 * acpi_os_unmap_memory - Drop a memory mapping reference.
 443 * @virt: Start of the address range to drop a reference to.
 444 * @size: Size of the address range to drop a reference to.
 445 */
 446void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
 447{
 448	acpi_os_unmap_iomem((void __iomem *)virt, size);
 449}
 450EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
 451
 452void __iomem *acpi_os_map_generic_address(struct acpi_generic_address *gas)
 453{
 454	u64 addr;
 455
 456	if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
 457		return NULL;
 458
 459	/* Handle possible alignment issues */
 460	memcpy(&addr, &gas->address, sizeof(addr));
 461	if (!addr || !gas->bit_width)
 462		return NULL;
 463
 464	return acpi_os_map_iomem(addr, gas->bit_width / 8);
 465}
 466EXPORT_SYMBOL(acpi_os_map_generic_address);
 467
 468void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
 469{
 470	u64 addr;
 471	struct acpi_ioremap *map;
 472
 473	if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
 474		return;
 475
 476	/* Handle possible alignment issues */
 477	memcpy(&addr, &gas->address, sizeof(addr));
 478	if (!addr || !gas->bit_width)
 479		return;
 480
 481	mutex_lock(&acpi_ioremap_lock);
 482
 483	map = acpi_map_lookup(addr, gas->bit_width / 8);
 484	if (!map) {
 485		mutex_unlock(&acpi_ioremap_lock);
 486		return;
 487	}
 488	acpi_os_drop_map_ref(map);
 489
 490	mutex_unlock(&acpi_ioremap_lock);
 491}
 492EXPORT_SYMBOL(acpi_os_unmap_generic_address);
 493
 494#ifdef ACPI_FUTURE_USAGE
 495acpi_status
 496acpi_os_get_physical_address(void *virt, acpi_physical_address *phys)
 497{
 498	if (!phys || !virt)
 499		return AE_BAD_PARAMETER;
 500
 501	*phys = virt_to_phys(virt);
 502
 503	return AE_OK;
 504}
 505#endif
 506
 507#ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
 508static bool acpi_rev_override;
 509
 510int __init acpi_rev_override_setup(char *str)
 511{
 512	acpi_rev_override = true;
 513	return 1;
 514}
 515__setup("acpi_rev_override", acpi_rev_override_setup);
 516#else
 517#define acpi_rev_override	false
 518#endif
 519
 520#define ACPI_MAX_OVERRIDE_LEN 100
 521
 522static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
 523
 524acpi_status
 525acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
 526			    acpi_string *new_val)
 527{
 528	if (!init_val || !new_val)
 529		return AE_BAD_PARAMETER;
 530
 531	*new_val = NULL;
 532	if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
 533		pr_info("Overriding _OS definition to '%s'\n", acpi_os_name);
 534		*new_val = acpi_os_name;
 535	}
 536
 537	if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
 538		pr_info("Overriding _REV return value to 5\n");
 539		*new_val = (char *)5;
 540	}
 541
 542	return AE_OK;
 543}
 544
 545static irqreturn_t acpi_irq(int irq, void *dev_id)
 546{
 547	if ((*acpi_irq_handler)(acpi_irq_context)) {
 
 
 
 
 548		acpi_irq_handled++;
 549		return IRQ_HANDLED;
 550	} else {
 551		acpi_irq_not_handled++;
 552		return IRQ_NONE;
 553	}
 554}
 555
 556acpi_status
 557acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
 558				  void *context)
 559{
 560	unsigned int irq;
 561
 562	acpi_irq_stats_init();
 563
 564	/*
 565	 * ACPI interrupts different from the SCI in our copy of the FADT are
 566	 * not supported.
 567	 */
 568	if (gsi != acpi_gbl_FADT.sci_interrupt)
 569		return AE_BAD_PARAMETER;
 570
 571	if (acpi_irq_handler)
 572		return AE_ALREADY_ACQUIRED;
 573
 574	if (acpi_gsi_to_irq(gsi, &irq) < 0) {
 575		pr_err("SCI (ACPI GSI %d) not registered\n", gsi);
 576		return AE_OK;
 577	}
 578
 579	acpi_irq_handler = handler;
 580	acpi_irq_context = context;
 581	if (request_threaded_irq(irq, NULL, acpi_irq, IRQF_SHARED | IRQF_ONESHOT,
 582			         "acpi", acpi_irq)) {
 583		pr_err("SCI (IRQ%d) allocation failed\n", irq);
 584		acpi_irq_handler = NULL;
 585		return AE_NOT_ACQUIRED;
 586	}
 587	acpi_sci_irq = irq;
 588
 589	return AE_OK;
 590}
 591
 592acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
 593{
 594	if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
 595		return AE_BAD_PARAMETER;
 596
 597	free_irq(acpi_sci_irq, acpi_irq);
 598	acpi_irq_handler = NULL;
 599	acpi_sci_irq = INVALID_ACPI_IRQ;
 600
 601	return AE_OK;
 602}
 603
 604/*
 605 * Running in interpreter thread context, safe to sleep
 606 */
 607
 608void acpi_os_sleep(u64 ms)
 609{
 610	msleep(ms);
 611}
 612
 613void acpi_os_stall(u32 us)
 614{
 615	while (us) {
 616		u32 delay = 1000;
 617
 618		if (delay > us)
 619			delay = us;
 620		udelay(delay);
 621		touch_nmi_watchdog();
 622		us -= delay;
 623	}
 624}
 625
 626/*
 627 * Support ACPI 3.0 AML Timer operand. Returns a 64-bit free-running,
 628 * monotonically increasing timer with 100ns granularity. Do not use
 629 * ktime_get() to implement this function because this function may get
 630 * called after timekeeping has been suspended. Note: calling this function
 631 * after timekeeping has been suspended may lead to unexpected results
 632 * because when timekeeping is suspended the jiffies counter is not
 633 * incremented. See also timekeeping_suspend().
 634 */
 635u64 acpi_os_get_timer(void)
 636{
 637	return (get_jiffies_64() - INITIAL_JIFFIES) *
 638		(ACPI_100NSEC_PER_SEC / HZ);
 639}
 640
 641acpi_status acpi_os_read_port(acpi_io_address port, u32 *value, u32 width)
 642{
 643	u32 dummy;
 644
 645	if (value)
 646		*value = 0;
 647	else
 648		value = &dummy;
 649
 
 650	if (width <= 8) {
 651		*value = inb(port);
 652	} else if (width <= 16) {
 653		*value = inw(port);
 654	} else if (width <= 32) {
 655		*value = inl(port);
 656	} else {
 657		pr_debug("%s: Access width %d not supported\n", __func__, width);
 658		return AE_BAD_PARAMETER;
 659	}
 660
 661	return AE_OK;
 662}
 663
 664EXPORT_SYMBOL(acpi_os_read_port);
 665
 666acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
 667{
 668	if (width <= 8) {
 669		outb(value, port);
 670	} else if (width <= 16) {
 671		outw(value, port);
 672	} else if (width <= 32) {
 673		outl(value, port);
 674	} else {
 675		pr_debug("%s: Access width %d not supported\n", __func__, width);
 676		return AE_BAD_PARAMETER;
 677	}
 678
 679	return AE_OK;
 680}
 681
 682EXPORT_SYMBOL(acpi_os_write_port);
 683
 684int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width)
 685{
 686
 687	switch (width) {
 688	case 8:
 689		*(u8 *) value = readb(virt_addr);
 690		break;
 691	case 16:
 692		*(u16 *) value = readw(virt_addr);
 693		break;
 694	case 32:
 695		*(u32 *) value = readl(virt_addr);
 696		break;
 697	case 64:
 698		*(u64 *) value = readq(virt_addr);
 699		break;
 700	default:
 701		return -EINVAL;
 702	}
 703
 704	return 0;
 705}
 706
 707acpi_status
 708acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
 709{
 710	void __iomem *virt_addr;
 711	unsigned int size = width / 8;
 712	bool unmap = false;
 713	u64 dummy;
 714	int error;
 715
 716	rcu_read_lock();
 717	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
 718	if (!virt_addr) {
 719		rcu_read_unlock();
 720		virt_addr = acpi_os_ioremap(phys_addr, size);
 721		if (!virt_addr)
 722			return AE_BAD_ADDRESS;
 723		unmap = true;
 724	}
 725
 726	if (!value)
 727		value = &dummy;
 728
 729	error = acpi_os_read_iomem(virt_addr, value, width);
 730	BUG_ON(error);
 731
 732	if (unmap)
 733		iounmap(virt_addr);
 734	else
 735		rcu_read_unlock();
 736
 737	return AE_OK;
 738}
 739
 740acpi_status
 741acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
 742{
 743	void __iomem *virt_addr;
 744	unsigned int size = width / 8;
 745	bool unmap = false;
 746
 747	rcu_read_lock();
 748	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
 749	if (!virt_addr) {
 750		rcu_read_unlock();
 751		virt_addr = acpi_os_ioremap(phys_addr, size);
 752		if (!virt_addr)
 753			return AE_BAD_ADDRESS;
 754		unmap = true;
 755	}
 756
 757	switch (width) {
 758	case 8:
 759		writeb(value, virt_addr);
 760		break;
 761	case 16:
 762		writew(value, virt_addr);
 763		break;
 764	case 32:
 765		writel(value, virt_addr);
 766		break;
 767	case 64:
 768		writeq(value, virt_addr);
 769		break;
 770	default:
 771		BUG();
 772	}
 773
 774	if (unmap)
 775		iounmap(virt_addr);
 776	else
 777		rcu_read_unlock();
 778
 779	return AE_OK;
 780}
 781
 782#ifdef CONFIG_PCI
 783acpi_status
 784acpi_os_read_pci_configuration(struct acpi_pci_id *pci_id, u32 reg,
 785			       u64 *value, u32 width)
 786{
 787	int result, size;
 788	u32 value32;
 789
 790	if (!value)
 791		return AE_BAD_PARAMETER;
 792
 793	switch (width) {
 794	case 8:
 795		size = 1;
 796		break;
 797	case 16:
 798		size = 2;
 799		break;
 800	case 32:
 801		size = 4;
 802		break;
 803	default:
 804		return AE_ERROR;
 805	}
 806
 807	result = raw_pci_read(pci_id->segment, pci_id->bus,
 808				PCI_DEVFN(pci_id->device, pci_id->function),
 809				reg, size, &value32);
 810	*value = value32;
 811
 812	return (result ? AE_ERROR : AE_OK);
 813}
 814
 815acpi_status
 816acpi_os_write_pci_configuration(struct acpi_pci_id *pci_id, u32 reg,
 817				u64 value, u32 width)
 818{
 819	int result, size;
 820
 821	switch (width) {
 822	case 8:
 823		size = 1;
 824		break;
 825	case 16:
 826		size = 2;
 827		break;
 828	case 32:
 829		size = 4;
 830		break;
 831	default:
 832		return AE_ERROR;
 833	}
 834
 835	result = raw_pci_write(pci_id->segment, pci_id->bus,
 836				PCI_DEVFN(pci_id->device, pci_id->function),
 837				reg, size, value);
 838
 839	return (result ? AE_ERROR : AE_OK);
 840}
 841#endif
 842
 843static void acpi_os_execute_deferred(struct work_struct *work)
 844{
 845	struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
 846
 847	dpc->function(dpc->context);
 848	kfree(dpc);
 849}
 850
 851#ifdef CONFIG_ACPI_DEBUGGER
 852static struct acpi_debugger acpi_debugger;
 853static bool acpi_debugger_initialized;
 854
 855int acpi_register_debugger(struct module *owner,
 856			   const struct acpi_debugger_ops *ops)
 857{
 858	int ret = 0;
 859
 860	mutex_lock(&acpi_debugger.lock);
 861	if (acpi_debugger.ops) {
 862		ret = -EBUSY;
 863		goto err_lock;
 864	}
 865
 866	acpi_debugger.owner = owner;
 867	acpi_debugger.ops = ops;
 868
 869err_lock:
 870	mutex_unlock(&acpi_debugger.lock);
 871	return ret;
 872}
 873EXPORT_SYMBOL(acpi_register_debugger);
 874
 875void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
 876{
 877	mutex_lock(&acpi_debugger.lock);
 878	if (ops == acpi_debugger.ops) {
 879		acpi_debugger.ops = NULL;
 880		acpi_debugger.owner = NULL;
 881	}
 882	mutex_unlock(&acpi_debugger.lock);
 883}
 884EXPORT_SYMBOL(acpi_unregister_debugger);
 885
 886int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
 887{
 888	int ret;
 889	int (*func)(acpi_osd_exec_callback, void *);
 890	struct module *owner;
 891
 892	if (!acpi_debugger_initialized)
 893		return -ENODEV;
 894	mutex_lock(&acpi_debugger.lock);
 895	if (!acpi_debugger.ops) {
 896		ret = -ENODEV;
 897		goto err_lock;
 898	}
 899	if (!try_module_get(acpi_debugger.owner)) {
 900		ret = -ENODEV;
 901		goto err_lock;
 902	}
 903	func = acpi_debugger.ops->create_thread;
 904	owner = acpi_debugger.owner;
 905	mutex_unlock(&acpi_debugger.lock);
 906
 907	ret = func(function, context);
 908
 909	mutex_lock(&acpi_debugger.lock);
 910	module_put(owner);
 911err_lock:
 912	mutex_unlock(&acpi_debugger.lock);
 913	return ret;
 914}
 915
 916ssize_t acpi_debugger_write_log(const char *msg)
 917{
 918	ssize_t ret;
 919	ssize_t (*func)(const char *);
 920	struct module *owner;
 921
 922	if (!acpi_debugger_initialized)
 923		return -ENODEV;
 924	mutex_lock(&acpi_debugger.lock);
 925	if (!acpi_debugger.ops) {
 926		ret = -ENODEV;
 927		goto err_lock;
 928	}
 929	if (!try_module_get(acpi_debugger.owner)) {
 930		ret = -ENODEV;
 931		goto err_lock;
 932	}
 933	func = acpi_debugger.ops->write_log;
 934	owner = acpi_debugger.owner;
 935	mutex_unlock(&acpi_debugger.lock);
 936
 937	ret = func(msg);
 938
 939	mutex_lock(&acpi_debugger.lock);
 940	module_put(owner);
 941err_lock:
 942	mutex_unlock(&acpi_debugger.lock);
 943	return ret;
 944}
 945
 946ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
 947{
 948	ssize_t ret;
 949	ssize_t (*func)(char *, size_t);
 950	struct module *owner;
 951
 952	if (!acpi_debugger_initialized)
 953		return -ENODEV;
 954	mutex_lock(&acpi_debugger.lock);
 955	if (!acpi_debugger.ops) {
 956		ret = -ENODEV;
 957		goto err_lock;
 958	}
 959	if (!try_module_get(acpi_debugger.owner)) {
 960		ret = -ENODEV;
 961		goto err_lock;
 962	}
 963	func = acpi_debugger.ops->read_cmd;
 964	owner = acpi_debugger.owner;
 965	mutex_unlock(&acpi_debugger.lock);
 966
 967	ret = func(buffer, buffer_length);
 968
 969	mutex_lock(&acpi_debugger.lock);
 970	module_put(owner);
 971err_lock:
 972	mutex_unlock(&acpi_debugger.lock);
 973	return ret;
 974}
 975
 976int acpi_debugger_wait_command_ready(void)
 977{
 978	int ret;
 979	int (*func)(bool, char *, size_t);
 980	struct module *owner;
 981
 982	if (!acpi_debugger_initialized)
 983		return -ENODEV;
 984	mutex_lock(&acpi_debugger.lock);
 985	if (!acpi_debugger.ops) {
 986		ret = -ENODEV;
 987		goto err_lock;
 988	}
 989	if (!try_module_get(acpi_debugger.owner)) {
 990		ret = -ENODEV;
 991		goto err_lock;
 992	}
 993	func = acpi_debugger.ops->wait_command_ready;
 994	owner = acpi_debugger.owner;
 995	mutex_unlock(&acpi_debugger.lock);
 996
 997	ret = func(acpi_gbl_method_executing,
 998		   acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
 999
1000	mutex_lock(&acpi_debugger.lock);
1001	module_put(owner);
1002err_lock:
1003	mutex_unlock(&acpi_debugger.lock);
1004	return ret;
1005}
1006
1007int acpi_debugger_notify_command_complete(void)
1008{
1009	int ret;
1010	int (*func)(void);
1011	struct module *owner;
1012
1013	if (!acpi_debugger_initialized)
1014		return -ENODEV;
1015	mutex_lock(&acpi_debugger.lock);
1016	if (!acpi_debugger.ops) {
1017		ret = -ENODEV;
1018		goto err_lock;
1019	}
1020	if (!try_module_get(acpi_debugger.owner)) {
1021		ret = -ENODEV;
1022		goto err_lock;
1023	}
1024	func = acpi_debugger.ops->notify_command_complete;
1025	owner = acpi_debugger.owner;
1026	mutex_unlock(&acpi_debugger.lock);
1027
1028	ret = func();
1029
1030	mutex_lock(&acpi_debugger.lock);
1031	module_put(owner);
1032err_lock:
1033	mutex_unlock(&acpi_debugger.lock);
1034	return ret;
1035}
1036
1037int __init acpi_debugger_init(void)
1038{
1039	mutex_init(&acpi_debugger.lock);
1040	acpi_debugger_initialized = true;
1041	return 0;
1042}
1043#endif
1044
1045/*******************************************************************************
1046 *
1047 * FUNCTION:    acpi_os_execute
1048 *
1049 * PARAMETERS:  Type               - Type of the callback
1050 *              Function           - Function to be executed
1051 *              Context            - Function parameters
1052 *
1053 * RETURN:      Status
1054 *
1055 * DESCRIPTION: Depending on type, either queues function for deferred execution or
1056 *              immediately executes function on a separate thread.
1057 *
1058 ******************************************************************************/
1059
1060acpi_status acpi_os_execute(acpi_execute_type type,
1061			    acpi_osd_exec_callback function, void *context)
1062{
 
1063	struct acpi_os_dpc *dpc;
 
1064	int ret;
1065
1066	ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1067			  "Scheduling function [%p(%p)] for deferred execution.\n",
1068			  function, context));
1069
1070	if (type == OSL_DEBUGGER_MAIN_THREAD) {
1071		ret = acpi_debugger_create_thread(function, context);
1072		if (ret) {
1073			pr_err("Kernel thread creation failed\n");
1074			return AE_ERROR;
1075		}
1076		return AE_OK;
1077	}
1078
1079	/*
1080	 * Allocate/initialize DPC structure.  Note that this memory will be
1081	 * freed by the callee.  The kernel handles the work_struct list  in a
1082	 * way that allows us to also free its memory inside the callee.
1083	 * Because we may want to schedule several tasks with different
1084	 * parameters we can't use the approach some kernel code uses of
1085	 * having a static work_struct.
1086	 */
1087
1088	dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1089	if (!dpc)
1090		return AE_NO_MEMORY;
1091
1092	dpc->function = function;
1093	dpc->context = context;
1094	INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1095
1096	/*
1097	 * To prevent lockdep from complaining unnecessarily, make sure that
1098	 * there is a different static lockdep key for each workqueue by using
1099	 * INIT_WORK() for each of them separately.
1100	 */
1101	switch (type) {
1102	case OSL_NOTIFY_HANDLER:
1103		ret = queue_work(kacpi_notify_wq, &dpc->work);
1104		break;
1105	case OSL_GPE_HANDLER:
1106		/*
1107		 * On some machines, a software-initiated SMI causes corruption
1108		 * unless the SMI runs on CPU 0.  An SMI can be initiated by
1109		 * any AML, but typically it's done in GPE-related methods that
1110		 * are run via workqueues, so we can avoid the known corruption
1111		 * cases by always queueing on CPU 0.
1112		 */
1113		ret = queue_work_on(0, kacpid_wq, &dpc->work);
1114		break;
1115	default:
1116		pr_err("Unsupported os_execute type %d.\n", type);
1117		goto err;
1118	}
 
 
 
 
 
 
 
 
 
 
 
 
1119	if (!ret) {
1120		pr_err("Unable to queue work\n");
1121		goto err;
1122	}
1123
1124	return AE_OK;
1125
1126err:
1127	kfree(dpc);
1128	return AE_ERROR;
1129}
1130EXPORT_SYMBOL(acpi_os_execute);
1131
1132void acpi_os_wait_events_complete(void)
1133{
1134	/*
1135	 * Make sure the GPE handler or the fixed event handler is not used
1136	 * on another CPU after removal.
1137	 */
1138	if (acpi_sci_irq_valid())
1139		synchronize_hardirq(acpi_sci_irq);
1140	flush_workqueue(kacpid_wq);
1141	flush_workqueue(kacpi_notify_wq);
1142}
1143EXPORT_SYMBOL(acpi_os_wait_events_complete);
1144
1145struct acpi_hp_work {
1146	struct work_struct work;
1147	struct acpi_device *adev;
1148	u32 src;
1149};
1150
1151static void acpi_hotplug_work_fn(struct work_struct *work)
1152{
1153	struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1154
1155	acpi_os_wait_events_complete();
1156	acpi_device_hotplug(hpw->adev, hpw->src);
1157	kfree(hpw);
1158}
1159
1160acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1161{
1162	struct acpi_hp_work *hpw;
1163
1164	acpi_handle_debug(adev->handle,
1165			  "Scheduling hotplug event %u for deferred handling\n",
1166			   src);
1167
1168	hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1169	if (!hpw)
1170		return AE_NO_MEMORY;
1171
1172	INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1173	hpw->adev = adev;
1174	hpw->src = src;
1175	/*
1176	 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1177	 * the hotplug code may call driver .remove() functions, which may
1178	 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1179	 * these workqueues.
1180	 */
1181	if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1182		kfree(hpw);
1183		return AE_ERROR;
1184	}
1185	return AE_OK;
1186}
1187
1188bool acpi_queue_hotplug_work(struct work_struct *work)
1189{
1190	return queue_work(kacpi_hotplug_wq, work);
1191}
1192
1193acpi_status
1194acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle *handle)
1195{
1196	struct semaphore *sem = NULL;
1197
1198	sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1199	if (!sem)
1200		return AE_NO_MEMORY;
1201
1202	sema_init(sem, initial_units);
1203
1204	*handle = (acpi_handle *) sem;
1205
1206	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1207			  *handle, initial_units));
1208
1209	return AE_OK;
1210}
1211
1212/*
1213 * TODO: A better way to delete semaphores?  Linux doesn't have a
1214 * 'delete_semaphore()' function -- may result in an invalid
1215 * pointer dereference for non-synchronized consumers.	Should
1216 * we at least check for blocked threads and signal/cancel them?
1217 */
1218
1219acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1220{
1221	struct semaphore *sem = (struct semaphore *)handle;
1222
1223	if (!sem)
1224		return AE_BAD_PARAMETER;
1225
1226	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1227
1228	BUG_ON(!list_empty(&sem->wait_list));
1229	kfree(sem);
1230	sem = NULL;
1231
1232	return AE_OK;
1233}
1234
1235/*
1236 * TODO: Support for units > 1?
1237 */
1238acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1239{
1240	acpi_status status = AE_OK;
1241	struct semaphore *sem = (struct semaphore *)handle;
1242	long jiffies;
1243	int ret = 0;
1244
1245	if (!acpi_os_initialized)
1246		return AE_OK;
1247
1248	if (!sem || (units < 1))
1249		return AE_BAD_PARAMETER;
1250
1251	if (units > 1)
1252		return AE_SUPPORT;
1253
1254	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1255			  handle, units, timeout));
1256
1257	if (timeout == ACPI_WAIT_FOREVER)
1258		jiffies = MAX_SCHEDULE_TIMEOUT;
1259	else
1260		jiffies = msecs_to_jiffies(timeout);
1261
1262	ret = down_timeout(sem, jiffies);
1263	if (ret)
1264		status = AE_TIME;
1265
1266	if (ACPI_FAILURE(status)) {
1267		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1268				  "Failed to acquire semaphore[%p|%d|%d], %s",
1269				  handle, units, timeout,
1270				  acpi_format_exception(status)));
1271	} else {
1272		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1273				  "Acquired semaphore[%p|%d|%d]", handle,
1274				  units, timeout));
1275	}
1276
1277	return status;
1278}
1279
1280/*
1281 * TODO: Support for units > 1?
1282 */
1283acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1284{
1285	struct semaphore *sem = (struct semaphore *)handle;
1286
1287	if (!acpi_os_initialized)
1288		return AE_OK;
1289
1290	if (!sem || (units < 1))
1291		return AE_BAD_PARAMETER;
1292
1293	if (units > 1)
1294		return AE_SUPPORT;
1295
1296	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1297			  units));
1298
1299	up(sem);
1300
1301	return AE_OK;
1302}
1303
1304acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1305{
1306#ifdef ENABLE_DEBUGGER
1307	if (acpi_in_debugger) {
1308		u32 chars;
1309
1310		kdb_read(buffer, buffer_length);
1311
1312		/* remove the CR kdb includes */
1313		chars = strlen(buffer) - 1;
1314		buffer[chars] = '\0';
1315	}
1316#else
1317	int ret;
1318
1319	ret = acpi_debugger_read_cmd(buffer, buffer_length);
1320	if (ret < 0)
1321		return AE_ERROR;
1322	if (bytes_read)
1323		*bytes_read = ret;
1324#endif
1325
1326	return AE_OK;
1327}
1328EXPORT_SYMBOL(acpi_os_get_line);
1329
1330acpi_status acpi_os_wait_command_ready(void)
1331{
1332	int ret;
1333
1334	ret = acpi_debugger_wait_command_ready();
1335	if (ret < 0)
1336		return AE_ERROR;
1337	return AE_OK;
1338}
1339
1340acpi_status acpi_os_notify_command_complete(void)
1341{
1342	int ret;
1343
1344	ret = acpi_debugger_notify_command_complete();
1345	if (ret < 0)
1346		return AE_ERROR;
1347	return AE_OK;
1348}
1349
1350acpi_status acpi_os_signal(u32 function, void *info)
1351{
1352	switch (function) {
1353	case ACPI_SIGNAL_FATAL:
1354		pr_err("Fatal opcode executed\n");
1355		break;
1356	case ACPI_SIGNAL_BREAKPOINT:
1357		/*
1358		 * AML Breakpoint
1359		 * ACPI spec. says to treat it as a NOP unless
1360		 * you are debugging.  So if/when we integrate
1361		 * AML debugger into the kernel debugger its
1362		 * hook will go here.  But until then it is
1363		 * not useful to print anything on breakpoints.
1364		 */
1365		break;
1366	default:
1367		break;
1368	}
1369
1370	return AE_OK;
1371}
1372
1373static int __init acpi_os_name_setup(char *str)
1374{
1375	char *p = acpi_os_name;
1376	int count = ACPI_MAX_OVERRIDE_LEN - 1;
1377
1378	if (!str || !*str)
1379		return 0;
1380
1381	for (; count-- && *str; str++) {
1382		if (isalnum(*str) || *str == ' ' || *str == ':')
1383			*p++ = *str;
1384		else if (*str == '\'' || *str == '"')
1385			continue;
1386		else
1387			break;
1388	}
1389	*p = 0;
1390
1391	return 1;
1392
1393}
1394
1395__setup("acpi_os_name=", acpi_os_name_setup);
1396
1397/*
1398 * Disable the auto-serialization of named objects creation methods.
1399 *
1400 * This feature is enabled by default.  It marks the AML control methods
1401 * that contain the opcodes to create named objects as "Serialized".
1402 */
1403static int __init acpi_no_auto_serialize_setup(char *str)
1404{
1405	acpi_gbl_auto_serialize_methods = FALSE;
1406	pr_info("Auto-serialization disabled\n");
1407
1408	return 1;
1409}
1410
1411__setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1412
1413/* Check of resource interference between native drivers and ACPI
1414 * OperationRegions (SystemIO and System Memory only).
1415 * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1416 * in arbitrary AML code and can interfere with legacy drivers.
1417 * acpi_enforce_resources= can be set to:
1418 *
1419 *   - strict (default) (2)
1420 *     -> further driver trying to access the resources will not load
1421 *   - lax              (1)
1422 *     -> further driver trying to access the resources will load, but you
1423 *     get a system message that something might go wrong...
1424 *
1425 *   - no               (0)
1426 *     -> ACPI Operation Region resources will not be registered
1427 *
1428 */
1429#define ENFORCE_RESOURCES_STRICT 2
1430#define ENFORCE_RESOURCES_LAX    1
1431#define ENFORCE_RESOURCES_NO     0
1432
1433static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1434
1435static int __init acpi_enforce_resources_setup(char *str)
1436{
1437	if (str == NULL || *str == '\0')
1438		return 0;
1439
1440	if (!strcmp("strict", str))
1441		acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1442	else if (!strcmp("lax", str))
1443		acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1444	else if (!strcmp("no", str))
1445		acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1446
1447	return 1;
1448}
1449
1450__setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1451
1452/* Check for resource conflicts between ACPI OperationRegions and native
1453 * drivers */
1454int acpi_check_resource_conflict(const struct resource *res)
1455{
1456	acpi_adr_space_type space_id;
1457
1458	if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1459		return 0;
1460
1461	if (res->flags & IORESOURCE_IO)
1462		space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1463	else if (res->flags & IORESOURCE_MEM)
1464		space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1465	else
1466		return 0;
1467
1468	if (!acpi_check_address_range(space_id, res->start, resource_size(res), 1))
1469		return 0;
1470
1471	pr_info("Resource conflict; ACPI support missing from driver?\n");
1472
1473	if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1474		return -EBUSY;
1475
1476	if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1477		pr_notice("Resource conflict: System may be unstable or behave erratically\n");
1478
1479	return 0;
1480}
1481EXPORT_SYMBOL(acpi_check_resource_conflict);
1482
1483int acpi_check_region(resource_size_t start, resource_size_t n,
1484		      const char *name)
1485{
1486	struct resource res = DEFINE_RES_IO_NAMED(start, n, name);
1487
1488	return acpi_check_resource_conflict(&res);
1489}
1490EXPORT_SYMBOL(acpi_check_region);
1491
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1492/*
1493 * Let drivers know whether the resource checks are effective
1494 */
1495int acpi_resources_are_enforced(void)
1496{
1497	return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1498}
1499EXPORT_SYMBOL(acpi_resources_are_enforced);
1500
1501/*
1502 * Deallocate the memory for a spinlock.
1503 */
1504void acpi_os_delete_lock(acpi_spinlock handle)
1505{
1506	ACPI_FREE(handle);
1507}
1508
1509/*
1510 * Acquire a spinlock.
1511 *
1512 * handle is a pointer to the spinlock_t.
1513 */
1514
1515acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1516	__acquires(lockp)
1517{
1518	spin_lock(lockp);
1519	return 0;
 
1520}
1521
1522/*
1523 * Release a spinlock. See above.
1524 */
1525
1526void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags not_used)
1527	__releases(lockp)
1528{
1529	spin_unlock(lockp);
1530}
1531
1532#ifndef ACPI_USE_LOCAL_CACHE
1533
1534/*******************************************************************************
1535 *
1536 * FUNCTION:    acpi_os_create_cache
1537 *
1538 * PARAMETERS:  name      - Ascii name for the cache
1539 *              size      - Size of each cached object
1540 *              depth     - Maximum depth of the cache (in objects) <ignored>
1541 *              cache     - Where the new cache object is returned
1542 *
1543 * RETURN:      status
1544 *
1545 * DESCRIPTION: Create a cache object
1546 *
1547 ******************************************************************************/
1548
1549acpi_status
1550acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t **cache)
1551{
1552	*cache = kmem_cache_create(name, size, 0, 0, NULL);
1553	if (*cache == NULL)
1554		return AE_ERROR;
1555	else
1556		return AE_OK;
1557}
1558
1559/*******************************************************************************
1560 *
1561 * FUNCTION:    acpi_os_purge_cache
1562 *
1563 * PARAMETERS:  Cache           - Handle to cache object
1564 *
1565 * RETURN:      Status
1566 *
1567 * DESCRIPTION: Free all objects within the requested cache.
1568 *
1569 ******************************************************************************/
1570
1571acpi_status acpi_os_purge_cache(acpi_cache_t *cache)
1572{
1573	kmem_cache_shrink(cache);
1574	return AE_OK;
1575}
1576
1577/*******************************************************************************
1578 *
1579 * FUNCTION:    acpi_os_delete_cache
1580 *
1581 * PARAMETERS:  Cache           - Handle to cache object
1582 *
1583 * RETURN:      Status
1584 *
1585 * DESCRIPTION: Free all objects within the requested cache and delete the
1586 *              cache object.
1587 *
1588 ******************************************************************************/
1589
1590acpi_status acpi_os_delete_cache(acpi_cache_t *cache)
1591{
1592	kmem_cache_destroy(cache);
1593	return AE_OK;
1594}
1595
1596/*******************************************************************************
1597 *
1598 * FUNCTION:    acpi_os_release_object
1599 *
1600 * PARAMETERS:  Cache       - Handle to cache object
1601 *              Object      - The object to be released
1602 *
1603 * RETURN:      None
1604 *
1605 * DESCRIPTION: Release an object to the specified cache.  If cache is full,
1606 *              the object is deleted.
1607 *
1608 ******************************************************************************/
1609
1610acpi_status acpi_os_release_object(acpi_cache_t *cache, void *object)
1611{
1612	kmem_cache_free(cache, object);
1613	return AE_OK;
1614}
1615#endif
1616
1617static int __init acpi_no_static_ssdt_setup(char *s)
1618{
1619	acpi_gbl_disable_ssdt_table_install = TRUE;
1620	pr_info("Static SSDT installation disabled\n");
1621
1622	return 0;
1623}
1624
1625early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1626
1627static int __init acpi_disable_return_repair(char *s)
1628{
1629	pr_notice("Predefined validation mechanism disabled\n");
1630	acpi_gbl_disable_auto_repair = TRUE;
1631
1632	return 1;
1633}
1634
1635__setup("acpica_no_return_repair", acpi_disable_return_repair);
1636
1637acpi_status __init acpi_os_initialize(void)
1638{
1639	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1640	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1641
1642	acpi_gbl_xgpe0_block_logical_address =
1643		(unsigned long)acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1644	acpi_gbl_xgpe1_block_logical_address =
1645		(unsigned long)acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1646
1647	if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1648		/*
1649		 * Use acpi_os_map_generic_address to pre-map the reset
1650		 * register if it's in system memory.
1651		 */
1652		void *rv;
1653
1654		rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1655		pr_debug("%s: Reset register mapping %s\n", __func__,
1656			 rv ? "successful" : "failed");
1657	}
1658	acpi_os_initialized = true;
1659
1660	return AE_OK;
1661}
1662
1663acpi_status __init acpi_os_initialize1(void)
1664{
1665	kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1666	kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 0);
1667	kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1668	BUG_ON(!kacpid_wq);
1669	BUG_ON(!kacpi_notify_wq);
1670	BUG_ON(!kacpi_hotplug_wq);
1671	acpi_osi_init();
1672	return AE_OK;
1673}
1674
1675acpi_status acpi_os_terminate(void)
1676{
1677	if (acpi_irq_handler) {
1678		acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1679						 acpi_irq_handler);
1680	}
1681
1682	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1683	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1684	acpi_gbl_xgpe0_block_logical_address = 0UL;
1685	acpi_gbl_xgpe1_block_logical_address = 0UL;
1686
1687	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1688	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1689
1690	if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1691		acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1692
1693	destroy_workqueue(kacpid_wq);
1694	destroy_workqueue(kacpi_notify_wq);
1695	destroy_workqueue(kacpi_hotplug_wq);
1696
1697	return AE_OK;
1698}
1699
1700acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1701				  u32 pm1b_control)
1702{
1703	int rc = 0;
1704
1705	if (__acpi_os_prepare_sleep)
1706		rc = __acpi_os_prepare_sleep(sleep_state,
1707					     pm1a_control, pm1b_control);
1708	if (rc < 0)
1709		return AE_ERROR;
1710	else if (rc > 0)
1711		return AE_CTRL_TERMINATE;
1712
1713	return AE_OK;
1714}
1715
1716void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1717			       u32 pm1a_ctrl, u32 pm1b_ctrl))
1718{
1719	__acpi_os_prepare_sleep = func;
1720}
1721
1722#if (ACPI_REDUCED_HARDWARE)
1723acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1724				  u32 val_b)
1725{
1726	int rc = 0;
1727
1728	if (__acpi_os_prepare_extended_sleep)
1729		rc = __acpi_os_prepare_extended_sleep(sleep_state,
1730					     val_a, val_b);
1731	if (rc < 0)
1732		return AE_ERROR;
1733	else if (rc > 0)
1734		return AE_CTRL_TERMINATE;
1735
1736	return AE_OK;
1737}
1738#else
1739acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1740				  u32 val_b)
1741{
1742	return AE_OK;
1743}
1744#endif
1745
1746void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1747			       u32 val_a, u32 val_b))
1748{
1749	__acpi_os_prepare_extended_sleep = func;
1750}
1751
1752acpi_status acpi_os_enter_sleep(u8 sleep_state,
1753				u32 reg_a_value, u32 reg_b_value)
1754{
1755	acpi_status status;
1756
1757	if (acpi_gbl_reduced_hardware)
1758		status = acpi_os_prepare_extended_sleep(sleep_state,
1759							reg_a_value,
1760							reg_b_value);
1761	else
1762		status = acpi_os_prepare_sleep(sleep_state,
1763					       reg_a_value, reg_b_value);
1764	return status;
1765}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  acpi_osl.c - OS-dependent functions ($Revision: 83 $)
   4 *
   5 *  Copyright (C) 2000       Andrew Henroid
   6 *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
   7 *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
   8 *  Copyright (c) 2008 Intel Corporation
   9 *   Author: Matthew Wilcox <willy@linux.intel.com>
  10 */
  11
  12#define pr_fmt(fmt) "ACPI: OSL: " fmt
  13
  14#include <linux/module.h>
  15#include <linux/kernel.h>
  16#include <linux/slab.h>
  17#include <linux/mm.h>
  18#include <linux/highmem.h>
  19#include <linux/lockdep.h>
  20#include <linux/pci.h>
  21#include <linux/interrupt.h>
  22#include <linux/kmod.h>
  23#include <linux/delay.h>
  24#include <linux/workqueue.h>
  25#include <linux/nmi.h>
  26#include <linux/acpi.h>
  27#include <linux/efi.h>
  28#include <linux/ioport.h>
  29#include <linux/list.h>
  30#include <linux/jiffies.h>
  31#include <linux/semaphore.h>
  32#include <linux/security.h>
  33
  34#include <asm/io.h>
  35#include <linux/uaccess.h>
  36#include <linux/io-64-nonatomic-lo-hi.h>
  37
  38#include "acpica/accommon.h"
  39#include "acpica/acnamesp.h"
  40#include "internal.h"
  41
  42/* Definitions for ACPI_DEBUG_PRINT() */
  43#define _COMPONENT		ACPI_OS_SERVICES
  44ACPI_MODULE_NAME("osl");
  45
  46struct acpi_os_dpc {
  47	acpi_osd_exec_callback function;
  48	void *context;
  49	struct work_struct work;
  50};
  51
  52#ifdef ENABLE_DEBUGGER
  53#include <linux/kdb.h>
  54
  55/* stuff for debugger support */
  56int acpi_in_debugger;
  57EXPORT_SYMBOL(acpi_in_debugger);
  58#endif				/*ENABLE_DEBUGGER */
  59
  60static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
  61				      u32 pm1b_ctrl);
  62static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
  63				      u32 val_b);
  64
  65static acpi_osd_handler acpi_irq_handler;
  66static void *acpi_irq_context;
  67static struct workqueue_struct *kacpid_wq;
  68static struct workqueue_struct *kacpi_notify_wq;
  69static struct workqueue_struct *kacpi_hotplug_wq;
  70static bool acpi_os_initialized;
  71unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
  72bool acpi_permanent_mmap = false;
  73
  74/*
  75 * This list of permanent mappings is for memory that may be accessed from
  76 * interrupt context, where we can't do the ioremap().
  77 */
  78struct acpi_ioremap {
  79	struct list_head list;
  80	void __iomem *virt;
  81	acpi_physical_address phys;
  82	acpi_size size;
  83	union {
  84		unsigned long refcount;
  85		struct rcu_work rwork;
  86	} track;
  87};
  88
  89static LIST_HEAD(acpi_ioremaps);
  90static DEFINE_MUTEX(acpi_ioremap_lock);
  91#define acpi_ioremap_lock_held() lock_is_held(&acpi_ioremap_lock.dep_map)
  92
  93static void __init acpi_request_region (struct acpi_generic_address *gas,
  94	unsigned int length, char *desc)
  95{
  96	u64 addr;
  97
  98	/* Handle possible alignment issues */
  99	memcpy(&addr, &gas->address, sizeof(addr));
 100	if (!addr || !length)
 101		return;
 102
 103	/* Resources are never freed */
 104	if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
 105		request_region(addr, length, desc);
 106	else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
 107		request_mem_region(addr, length, desc);
 108}
 109
 110static int __init acpi_reserve_resources(void)
 111{
 112	acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
 113		"ACPI PM1a_EVT_BLK");
 114
 115	acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
 116		"ACPI PM1b_EVT_BLK");
 117
 118	acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
 119		"ACPI PM1a_CNT_BLK");
 120
 121	acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
 122		"ACPI PM1b_CNT_BLK");
 123
 124	if (acpi_gbl_FADT.pm_timer_length == 4)
 125		acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
 126
 127	acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
 128		"ACPI PM2_CNT_BLK");
 129
 130	/* Length of GPE blocks must be a non-negative multiple of 2 */
 131
 132	if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
 133		acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
 134			       acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
 135
 136	if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
 137		acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
 138			       acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
 139
 140	return 0;
 141}
 142fs_initcall_sync(acpi_reserve_resources);
 143
 144void acpi_os_printf(const char *fmt, ...)
 145{
 146	va_list args;
 147	va_start(args, fmt);
 148	acpi_os_vprintf(fmt, args);
 149	va_end(args);
 150}
 151EXPORT_SYMBOL(acpi_os_printf);
 152
 153void acpi_os_vprintf(const char *fmt, va_list args)
 154{
 155	static char buffer[512];
 156
 157	vsprintf(buffer, fmt, args);
 158
 159#ifdef ENABLE_DEBUGGER
 160	if (acpi_in_debugger) {
 161		kdb_printf("%s", buffer);
 162	} else {
 163		if (printk_get_level(buffer))
 164			printk("%s", buffer);
 165		else
 166			printk(KERN_CONT "%s", buffer);
 167	}
 168#else
 169	if (acpi_debugger_write_log(buffer) < 0) {
 170		if (printk_get_level(buffer))
 171			printk("%s", buffer);
 172		else
 173			printk(KERN_CONT "%s", buffer);
 174	}
 175#endif
 176}
 177
 178#ifdef CONFIG_KEXEC
 179static unsigned long acpi_rsdp;
 180static int __init setup_acpi_rsdp(char *arg)
 181{
 182	return kstrtoul(arg, 16, &acpi_rsdp);
 183}
 184early_param("acpi_rsdp", setup_acpi_rsdp);
 185#endif
 186
 187acpi_physical_address __init acpi_os_get_root_pointer(void)
 188{
 189	acpi_physical_address pa;
 190
 191#ifdef CONFIG_KEXEC
 192	/*
 193	 * We may have been provided with an RSDP on the command line,
 194	 * but if a malicious user has done so they may be pointing us
 195	 * at modified ACPI tables that could alter kernel behaviour -
 196	 * so, we check the lockdown status before making use of
 197	 * it. If we trust it then also stash it in an architecture
 198	 * specific location (if appropriate) so it can be carried
 199	 * over further kexec()s.
 200	 */
 201	if (acpi_rsdp && !security_locked_down(LOCKDOWN_ACPI_TABLES)) {
 202		acpi_arch_set_root_pointer(acpi_rsdp);
 203		return acpi_rsdp;
 204	}
 205#endif
 206	pa = acpi_arch_get_root_pointer();
 207	if (pa)
 208		return pa;
 209
 210	if (efi_enabled(EFI_CONFIG_TABLES)) {
 211		if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
 212			return efi.acpi20;
 213		if (efi.acpi != EFI_INVALID_TABLE_ADDR)
 214			return efi.acpi;
 215		pr_err("System description tables not found\n");
 216	} else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
 217		acpi_find_root_pointer(&pa);
 218	}
 219
 220	return pa;
 221}
 222
 223/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
 224static struct acpi_ioremap *
 225acpi_map_lookup(acpi_physical_address phys, acpi_size size)
 226{
 227	struct acpi_ioremap *map;
 228
 229	list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
 230		if (map->phys <= phys &&
 231		    phys + size <= map->phys + map->size)
 232			return map;
 233
 234	return NULL;
 235}
 236
 237/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
 238static void __iomem *
 239acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
 240{
 241	struct acpi_ioremap *map;
 242
 243	map = acpi_map_lookup(phys, size);
 244	if (map)
 245		return map->virt + (phys - map->phys);
 246
 247	return NULL;
 248}
 249
 250void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
 251{
 252	struct acpi_ioremap *map;
 253	void __iomem *virt = NULL;
 254
 255	mutex_lock(&acpi_ioremap_lock);
 256	map = acpi_map_lookup(phys, size);
 257	if (map) {
 258		virt = map->virt + (phys - map->phys);
 259		map->track.refcount++;
 260	}
 261	mutex_unlock(&acpi_ioremap_lock);
 262	return virt;
 263}
 264EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
 265
 266/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
 267static struct acpi_ioremap *
 268acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
 269{
 270	struct acpi_ioremap *map;
 271
 272	list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
 273		if (map->virt <= virt &&
 274		    virt + size <= map->virt + map->size)
 275			return map;
 276
 277	return NULL;
 278}
 279
 280#if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
 281/* ioremap will take care of cache attributes */
 282#define should_use_kmap(pfn)   0
 283#else
 284#define should_use_kmap(pfn)   page_is_ram(pfn)
 285#endif
 286
 287static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
 288{
 289	unsigned long pfn;
 290
 291	pfn = pg_off >> PAGE_SHIFT;
 292	if (should_use_kmap(pfn)) {
 293		if (pg_sz > PAGE_SIZE)
 294			return NULL;
 295		return (void __iomem __force *)kmap(pfn_to_page(pfn));
 296	} else
 297		return acpi_os_ioremap(pg_off, pg_sz);
 298}
 299
 300static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
 301{
 302	unsigned long pfn;
 303
 304	pfn = pg_off >> PAGE_SHIFT;
 305	if (should_use_kmap(pfn))
 306		kunmap(pfn_to_page(pfn));
 307	else
 308		iounmap(vaddr);
 309}
 310
 311/**
 312 * acpi_os_map_iomem - Get a virtual address for a given physical address range.
 313 * @phys: Start of the physical address range to map.
 314 * @size: Size of the physical address range to map.
 315 *
 316 * Look up the given physical address range in the list of existing ACPI memory
 317 * mappings.  If found, get a reference to it and return a pointer to it (its
 318 * virtual address).  If not found, map it, add it to that list and return a
 319 * pointer to it.
 320 *
 321 * During early init (when acpi_permanent_mmap has not been set yet) this
 322 * routine simply calls __acpi_map_table() to get the job done.
 323 */
 324void __iomem __ref
 325*acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
 326{
 327	struct acpi_ioremap *map;
 328	void __iomem *virt;
 329	acpi_physical_address pg_off;
 330	acpi_size pg_sz;
 331
 332	if (phys > ULONG_MAX) {
 333		pr_err("Cannot map memory that high: 0x%llx\n", phys);
 334		return NULL;
 335	}
 336
 337	if (!acpi_permanent_mmap)
 338		return __acpi_map_table((unsigned long)phys, size);
 339
 340	mutex_lock(&acpi_ioremap_lock);
 341	/* Check if there's a suitable mapping already. */
 342	map = acpi_map_lookup(phys, size);
 343	if (map) {
 344		map->track.refcount++;
 345		goto out;
 346	}
 347
 348	map = kzalloc(sizeof(*map), GFP_KERNEL);
 349	if (!map) {
 350		mutex_unlock(&acpi_ioremap_lock);
 351		return NULL;
 352	}
 353
 354	pg_off = round_down(phys, PAGE_SIZE);
 355	pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
 356	virt = acpi_map(phys, size);
 357	if (!virt) {
 358		mutex_unlock(&acpi_ioremap_lock);
 359		kfree(map);
 360		return NULL;
 361	}
 362
 363	INIT_LIST_HEAD(&map->list);
 364	map->virt = (void __iomem __force *)((unsigned long)virt & PAGE_MASK);
 365	map->phys = pg_off;
 366	map->size = pg_sz;
 367	map->track.refcount = 1;
 368
 369	list_add_tail_rcu(&map->list, &acpi_ioremaps);
 370
 371out:
 372	mutex_unlock(&acpi_ioremap_lock);
 373	return map->virt + (phys - map->phys);
 374}
 375EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
 376
 377void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
 378{
 379	return (void *)acpi_os_map_iomem(phys, size);
 380}
 381EXPORT_SYMBOL_GPL(acpi_os_map_memory);
 382
 383static void acpi_os_map_remove(struct work_struct *work)
 384{
 385	struct acpi_ioremap *map = container_of(to_rcu_work(work),
 386						struct acpi_ioremap,
 387						track.rwork);
 388
 389	acpi_unmap(map->phys, map->virt);
 390	kfree(map);
 391}
 392
 393/* Must be called with mutex_lock(&acpi_ioremap_lock) */
 394static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
 395{
 396	if (--map->track.refcount)
 397		return;
 398
 399	list_del_rcu(&map->list);
 400
 401	INIT_RCU_WORK(&map->track.rwork, acpi_os_map_remove);
 402	queue_rcu_work(system_wq, &map->track.rwork);
 403}
 404
 405/**
 406 * acpi_os_unmap_iomem - Drop a memory mapping reference.
 407 * @virt: Start of the address range to drop a reference to.
 408 * @size: Size of the address range to drop a reference to.
 409 *
 410 * Look up the given virtual address range in the list of existing ACPI memory
 411 * mappings, drop a reference to it and if there are no more active references
 412 * to it, queue it up for later removal.
 413 *
 414 * During early init (when acpi_permanent_mmap has not been set yet) this
 415 * routine simply calls __acpi_unmap_table() to get the job done.  Since
 416 * __acpi_unmap_table() is an __init function, the __ref annotation is needed
 417 * here.
 418 */
 419void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
 420{
 421	struct acpi_ioremap *map;
 422
 423	if (!acpi_permanent_mmap) {
 424		__acpi_unmap_table(virt, size);
 425		return;
 426	}
 427
 428	mutex_lock(&acpi_ioremap_lock);
 429
 430	map = acpi_map_lookup_virt(virt, size);
 431	if (!map) {
 432		mutex_unlock(&acpi_ioremap_lock);
 433		WARN(true, "ACPI: %s: bad address %p\n", __func__, virt);
 434		return;
 435	}
 436	acpi_os_drop_map_ref(map);
 437
 438	mutex_unlock(&acpi_ioremap_lock);
 439}
 440EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
 441
 442/**
 443 * acpi_os_unmap_memory - Drop a memory mapping reference.
 444 * @virt: Start of the address range to drop a reference to.
 445 * @size: Size of the address range to drop a reference to.
 446 */
 447void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
 448{
 449	acpi_os_unmap_iomem((void __iomem *)virt, size);
 450}
 451EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
 452
 453void __iomem *acpi_os_map_generic_address(struct acpi_generic_address *gas)
 454{
 455	u64 addr;
 456
 457	if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
 458		return NULL;
 459
 460	/* Handle possible alignment issues */
 461	memcpy(&addr, &gas->address, sizeof(addr));
 462	if (!addr || !gas->bit_width)
 463		return NULL;
 464
 465	return acpi_os_map_iomem(addr, gas->bit_width / 8);
 466}
 467EXPORT_SYMBOL(acpi_os_map_generic_address);
 468
 469void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
 470{
 471	u64 addr;
 472	struct acpi_ioremap *map;
 473
 474	if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
 475		return;
 476
 477	/* Handle possible alignment issues */
 478	memcpy(&addr, &gas->address, sizeof(addr));
 479	if (!addr || !gas->bit_width)
 480		return;
 481
 482	mutex_lock(&acpi_ioremap_lock);
 483
 484	map = acpi_map_lookup(addr, gas->bit_width / 8);
 485	if (!map) {
 486		mutex_unlock(&acpi_ioremap_lock);
 487		return;
 488	}
 489	acpi_os_drop_map_ref(map);
 490
 491	mutex_unlock(&acpi_ioremap_lock);
 492}
 493EXPORT_SYMBOL(acpi_os_unmap_generic_address);
 494
 495#ifdef ACPI_FUTURE_USAGE
 496acpi_status
 497acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
 498{
 499	if (!phys || !virt)
 500		return AE_BAD_PARAMETER;
 501
 502	*phys = virt_to_phys(virt);
 503
 504	return AE_OK;
 505}
 506#endif
 507
 508#ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
 509static bool acpi_rev_override;
 510
 511int __init acpi_rev_override_setup(char *str)
 512{
 513	acpi_rev_override = true;
 514	return 1;
 515}
 516__setup("acpi_rev_override", acpi_rev_override_setup);
 517#else
 518#define acpi_rev_override	false
 519#endif
 520
 521#define ACPI_MAX_OVERRIDE_LEN 100
 522
 523static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
 524
 525acpi_status
 526acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
 527			    acpi_string *new_val)
 528{
 529	if (!init_val || !new_val)
 530		return AE_BAD_PARAMETER;
 531
 532	*new_val = NULL;
 533	if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
 534		pr_info("Overriding _OS definition to '%s'\n", acpi_os_name);
 535		*new_val = acpi_os_name;
 536	}
 537
 538	if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
 539		pr_info("Overriding _REV return value to 5\n");
 540		*new_val = (char *)5;
 541	}
 542
 543	return AE_OK;
 544}
 545
 546static irqreturn_t acpi_irq(int irq, void *dev_id)
 547{
 548	u32 handled;
 549
 550	handled = (*acpi_irq_handler) (acpi_irq_context);
 551
 552	if (handled) {
 553		acpi_irq_handled++;
 554		return IRQ_HANDLED;
 555	} else {
 556		acpi_irq_not_handled++;
 557		return IRQ_NONE;
 558	}
 559}
 560
 561acpi_status
 562acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
 563				  void *context)
 564{
 565	unsigned int irq;
 566
 567	acpi_irq_stats_init();
 568
 569	/*
 570	 * ACPI interrupts different from the SCI in our copy of the FADT are
 571	 * not supported.
 572	 */
 573	if (gsi != acpi_gbl_FADT.sci_interrupt)
 574		return AE_BAD_PARAMETER;
 575
 576	if (acpi_irq_handler)
 577		return AE_ALREADY_ACQUIRED;
 578
 579	if (acpi_gsi_to_irq(gsi, &irq) < 0) {
 580		pr_err("SCI (ACPI GSI %d) not registered\n", gsi);
 581		return AE_OK;
 582	}
 583
 584	acpi_irq_handler = handler;
 585	acpi_irq_context = context;
 586	if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
 
 587		pr_err("SCI (IRQ%d) allocation failed\n", irq);
 588		acpi_irq_handler = NULL;
 589		return AE_NOT_ACQUIRED;
 590	}
 591	acpi_sci_irq = irq;
 592
 593	return AE_OK;
 594}
 595
 596acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
 597{
 598	if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
 599		return AE_BAD_PARAMETER;
 600
 601	free_irq(acpi_sci_irq, acpi_irq);
 602	acpi_irq_handler = NULL;
 603	acpi_sci_irq = INVALID_ACPI_IRQ;
 604
 605	return AE_OK;
 606}
 607
 608/*
 609 * Running in interpreter thread context, safe to sleep
 610 */
 611
 612void acpi_os_sleep(u64 ms)
 613{
 614	msleep(ms);
 615}
 616
 617void acpi_os_stall(u32 us)
 618{
 619	while (us) {
 620		u32 delay = 1000;
 621
 622		if (delay > us)
 623			delay = us;
 624		udelay(delay);
 625		touch_nmi_watchdog();
 626		us -= delay;
 627	}
 628}
 629
 630/*
 631 * Support ACPI 3.0 AML Timer operand. Returns a 64-bit free-running,
 632 * monotonically increasing timer with 100ns granularity. Do not use
 633 * ktime_get() to implement this function because this function may get
 634 * called after timekeeping has been suspended. Note: calling this function
 635 * after timekeeping has been suspended may lead to unexpected results
 636 * because when timekeeping is suspended the jiffies counter is not
 637 * incremented. See also timekeeping_suspend().
 638 */
 639u64 acpi_os_get_timer(void)
 640{
 641	return (get_jiffies_64() - INITIAL_JIFFIES) *
 642		(ACPI_100NSEC_PER_SEC / HZ);
 643}
 644
 645acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
 646{
 647	u32 dummy;
 648
 649	if (!value)
 
 
 650		value = &dummy;
 651
 652	*value = 0;
 653	if (width <= 8) {
 654		*(u8 *) value = inb(port);
 655	} else if (width <= 16) {
 656		*(u16 *) value = inw(port);
 657	} else if (width <= 32) {
 658		*(u32 *) value = inl(port);
 659	} else {
 660		BUG();
 
 661	}
 662
 663	return AE_OK;
 664}
 665
 666EXPORT_SYMBOL(acpi_os_read_port);
 667
 668acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
 669{
 670	if (width <= 8) {
 671		outb(value, port);
 672	} else if (width <= 16) {
 673		outw(value, port);
 674	} else if (width <= 32) {
 675		outl(value, port);
 676	} else {
 677		BUG();
 
 678	}
 679
 680	return AE_OK;
 681}
 682
 683EXPORT_SYMBOL(acpi_os_write_port);
 684
 685int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width)
 686{
 687
 688	switch (width) {
 689	case 8:
 690		*(u8 *) value = readb(virt_addr);
 691		break;
 692	case 16:
 693		*(u16 *) value = readw(virt_addr);
 694		break;
 695	case 32:
 696		*(u32 *) value = readl(virt_addr);
 697		break;
 698	case 64:
 699		*(u64 *) value = readq(virt_addr);
 700		break;
 701	default:
 702		return -EINVAL;
 703	}
 704
 705	return 0;
 706}
 707
 708acpi_status
 709acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
 710{
 711	void __iomem *virt_addr;
 712	unsigned int size = width / 8;
 713	bool unmap = false;
 714	u64 dummy;
 715	int error;
 716
 717	rcu_read_lock();
 718	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
 719	if (!virt_addr) {
 720		rcu_read_unlock();
 721		virt_addr = acpi_os_ioremap(phys_addr, size);
 722		if (!virt_addr)
 723			return AE_BAD_ADDRESS;
 724		unmap = true;
 725	}
 726
 727	if (!value)
 728		value = &dummy;
 729
 730	error = acpi_os_read_iomem(virt_addr, value, width);
 731	BUG_ON(error);
 732
 733	if (unmap)
 734		iounmap(virt_addr);
 735	else
 736		rcu_read_unlock();
 737
 738	return AE_OK;
 739}
 740
 741acpi_status
 742acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
 743{
 744	void __iomem *virt_addr;
 745	unsigned int size = width / 8;
 746	bool unmap = false;
 747
 748	rcu_read_lock();
 749	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
 750	if (!virt_addr) {
 751		rcu_read_unlock();
 752		virt_addr = acpi_os_ioremap(phys_addr, size);
 753		if (!virt_addr)
 754			return AE_BAD_ADDRESS;
 755		unmap = true;
 756	}
 757
 758	switch (width) {
 759	case 8:
 760		writeb(value, virt_addr);
 761		break;
 762	case 16:
 763		writew(value, virt_addr);
 764		break;
 765	case 32:
 766		writel(value, virt_addr);
 767		break;
 768	case 64:
 769		writeq(value, virt_addr);
 770		break;
 771	default:
 772		BUG();
 773	}
 774
 775	if (unmap)
 776		iounmap(virt_addr);
 777	else
 778		rcu_read_unlock();
 779
 780	return AE_OK;
 781}
 782
 783#ifdef CONFIG_PCI
 784acpi_status
 785acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
 786			       u64 *value, u32 width)
 787{
 788	int result, size;
 789	u32 value32;
 790
 791	if (!value)
 792		return AE_BAD_PARAMETER;
 793
 794	switch (width) {
 795	case 8:
 796		size = 1;
 797		break;
 798	case 16:
 799		size = 2;
 800		break;
 801	case 32:
 802		size = 4;
 803		break;
 804	default:
 805		return AE_ERROR;
 806	}
 807
 808	result = raw_pci_read(pci_id->segment, pci_id->bus,
 809				PCI_DEVFN(pci_id->device, pci_id->function),
 810				reg, size, &value32);
 811	*value = value32;
 812
 813	return (result ? AE_ERROR : AE_OK);
 814}
 815
 816acpi_status
 817acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
 818				u64 value, u32 width)
 819{
 820	int result, size;
 821
 822	switch (width) {
 823	case 8:
 824		size = 1;
 825		break;
 826	case 16:
 827		size = 2;
 828		break;
 829	case 32:
 830		size = 4;
 831		break;
 832	default:
 833		return AE_ERROR;
 834	}
 835
 836	result = raw_pci_write(pci_id->segment, pci_id->bus,
 837				PCI_DEVFN(pci_id->device, pci_id->function),
 838				reg, size, value);
 839
 840	return (result ? AE_ERROR : AE_OK);
 841}
 842#endif
 843
 844static void acpi_os_execute_deferred(struct work_struct *work)
 845{
 846	struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
 847
 848	dpc->function(dpc->context);
 849	kfree(dpc);
 850}
 851
 852#ifdef CONFIG_ACPI_DEBUGGER
 853static struct acpi_debugger acpi_debugger;
 854static bool acpi_debugger_initialized;
 855
 856int acpi_register_debugger(struct module *owner,
 857			   const struct acpi_debugger_ops *ops)
 858{
 859	int ret = 0;
 860
 861	mutex_lock(&acpi_debugger.lock);
 862	if (acpi_debugger.ops) {
 863		ret = -EBUSY;
 864		goto err_lock;
 865	}
 866
 867	acpi_debugger.owner = owner;
 868	acpi_debugger.ops = ops;
 869
 870err_lock:
 871	mutex_unlock(&acpi_debugger.lock);
 872	return ret;
 873}
 874EXPORT_SYMBOL(acpi_register_debugger);
 875
 876void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
 877{
 878	mutex_lock(&acpi_debugger.lock);
 879	if (ops == acpi_debugger.ops) {
 880		acpi_debugger.ops = NULL;
 881		acpi_debugger.owner = NULL;
 882	}
 883	mutex_unlock(&acpi_debugger.lock);
 884}
 885EXPORT_SYMBOL(acpi_unregister_debugger);
 886
 887int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
 888{
 889	int ret;
 890	int (*func)(acpi_osd_exec_callback, void *);
 891	struct module *owner;
 892
 893	if (!acpi_debugger_initialized)
 894		return -ENODEV;
 895	mutex_lock(&acpi_debugger.lock);
 896	if (!acpi_debugger.ops) {
 897		ret = -ENODEV;
 898		goto err_lock;
 899	}
 900	if (!try_module_get(acpi_debugger.owner)) {
 901		ret = -ENODEV;
 902		goto err_lock;
 903	}
 904	func = acpi_debugger.ops->create_thread;
 905	owner = acpi_debugger.owner;
 906	mutex_unlock(&acpi_debugger.lock);
 907
 908	ret = func(function, context);
 909
 910	mutex_lock(&acpi_debugger.lock);
 911	module_put(owner);
 912err_lock:
 913	mutex_unlock(&acpi_debugger.lock);
 914	return ret;
 915}
 916
 917ssize_t acpi_debugger_write_log(const char *msg)
 918{
 919	ssize_t ret;
 920	ssize_t (*func)(const char *);
 921	struct module *owner;
 922
 923	if (!acpi_debugger_initialized)
 924		return -ENODEV;
 925	mutex_lock(&acpi_debugger.lock);
 926	if (!acpi_debugger.ops) {
 927		ret = -ENODEV;
 928		goto err_lock;
 929	}
 930	if (!try_module_get(acpi_debugger.owner)) {
 931		ret = -ENODEV;
 932		goto err_lock;
 933	}
 934	func = acpi_debugger.ops->write_log;
 935	owner = acpi_debugger.owner;
 936	mutex_unlock(&acpi_debugger.lock);
 937
 938	ret = func(msg);
 939
 940	mutex_lock(&acpi_debugger.lock);
 941	module_put(owner);
 942err_lock:
 943	mutex_unlock(&acpi_debugger.lock);
 944	return ret;
 945}
 946
 947ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
 948{
 949	ssize_t ret;
 950	ssize_t (*func)(char *, size_t);
 951	struct module *owner;
 952
 953	if (!acpi_debugger_initialized)
 954		return -ENODEV;
 955	mutex_lock(&acpi_debugger.lock);
 956	if (!acpi_debugger.ops) {
 957		ret = -ENODEV;
 958		goto err_lock;
 959	}
 960	if (!try_module_get(acpi_debugger.owner)) {
 961		ret = -ENODEV;
 962		goto err_lock;
 963	}
 964	func = acpi_debugger.ops->read_cmd;
 965	owner = acpi_debugger.owner;
 966	mutex_unlock(&acpi_debugger.lock);
 967
 968	ret = func(buffer, buffer_length);
 969
 970	mutex_lock(&acpi_debugger.lock);
 971	module_put(owner);
 972err_lock:
 973	mutex_unlock(&acpi_debugger.lock);
 974	return ret;
 975}
 976
 977int acpi_debugger_wait_command_ready(void)
 978{
 979	int ret;
 980	int (*func)(bool, char *, size_t);
 981	struct module *owner;
 982
 983	if (!acpi_debugger_initialized)
 984		return -ENODEV;
 985	mutex_lock(&acpi_debugger.lock);
 986	if (!acpi_debugger.ops) {
 987		ret = -ENODEV;
 988		goto err_lock;
 989	}
 990	if (!try_module_get(acpi_debugger.owner)) {
 991		ret = -ENODEV;
 992		goto err_lock;
 993	}
 994	func = acpi_debugger.ops->wait_command_ready;
 995	owner = acpi_debugger.owner;
 996	mutex_unlock(&acpi_debugger.lock);
 997
 998	ret = func(acpi_gbl_method_executing,
 999		   acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
1000
1001	mutex_lock(&acpi_debugger.lock);
1002	module_put(owner);
1003err_lock:
1004	mutex_unlock(&acpi_debugger.lock);
1005	return ret;
1006}
1007
1008int acpi_debugger_notify_command_complete(void)
1009{
1010	int ret;
1011	int (*func)(void);
1012	struct module *owner;
1013
1014	if (!acpi_debugger_initialized)
1015		return -ENODEV;
1016	mutex_lock(&acpi_debugger.lock);
1017	if (!acpi_debugger.ops) {
1018		ret = -ENODEV;
1019		goto err_lock;
1020	}
1021	if (!try_module_get(acpi_debugger.owner)) {
1022		ret = -ENODEV;
1023		goto err_lock;
1024	}
1025	func = acpi_debugger.ops->notify_command_complete;
1026	owner = acpi_debugger.owner;
1027	mutex_unlock(&acpi_debugger.lock);
1028
1029	ret = func();
1030
1031	mutex_lock(&acpi_debugger.lock);
1032	module_put(owner);
1033err_lock:
1034	mutex_unlock(&acpi_debugger.lock);
1035	return ret;
1036}
1037
1038int __init acpi_debugger_init(void)
1039{
1040	mutex_init(&acpi_debugger.lock);
1041	acpi_debugger_initialized = true;
1042	return 0;
1043}
1044#endif
1045
1046/*******************************************************************************
1047 *
1048 * FUNCTION:    acpi_os_execute
1049 *
1050 * PARAMETERS:  Type               - Type of the callback
1051 *              Function           - Function to be executed
1052 *              Context            - Function parameters
1053 *
1054 * RETURN:      Status
1055 *
1056 * DESCRIPTION: Depending on type, either queues function for deferred execution or
1057 *              immediately executes function on a separate thread.
1058 *
1059 ******************************************************************************/
1060
1061acpi_status acpi_os_execute(acpi_execute_type type,
1062			    acpi_osd_exec_callback function, void *context)
1063{
1064	acpi_status status = AE_OK;
1065	struct acpi_os_dpc *dpc;
1066	struct workqueue_struct *queue;
1067	int ret;
 
1068	ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1069			  "Scheduling function [%p(%p)] for deferred execution.\n",
1070			  function, context));
1071
1072	if (type == OSL_DEBUGGER_MAIN_THREAD) {
1073		ret = acpi_debugger_create_thread(function, context);
1074		if (ret) {
1075			pr_err("Kernel thread creation failed\n");
1076			status = AE_ERROR;
1077		}
1078		goto out_thread;
1079	}
1080
1081	/*
1082	 * Allocate/initialize DPC structure.  Note that this memory will be
1083	 * freed by the callee.  The kernel handles the work_struct list  in a
1084	 * way that allows us to also free its memory inside the callee.
1085	 * Because we may want to schedule several tasks with different
1086	 * parameters we can't use the approach some kernel code uses of
1087	 * having a static work_struct.
1088	 */
1089
1090	dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1091	if (!dpc)
1092		return AE_NO_MEMORY;
1093
1094	dpc->function = function;
1095	dpc->context = context;
 
1096
1097	/*
1098	 * To prevent lockdep from complaining unnecessarily, make sure that
1099	 * there is a different static lockdep key for each workqueue by using
1100	 * INIT_WORK() for each of them separately.
1101	 */
1102	if (type == OSL_NOTIFY_HANDLER) {
1103		queue = kacpi_notify_wq;
1104		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1105	} else if (type == OSL_GPE_HANDLER) {
1106		queue = kacpid_wq;
1107		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1108	} else {
 
 
 
 
 
 
 
 
1109		pr_err("Unsupported os_execute type %d.\n", type);
1110		status = AE_ERROR;
1111	}
1112
1113	if (ACPI_FAILURE(status))
1114		goto err_workqueue;
1115
1116	/*
1117	 * On some machines, a software-initiated SMI causes corruption unless
1118	 * the SMI runs on CPU 0.  An SMI can be initiated by any AML, but
1119	 * typically it's done in GPE-related methods that are run via
1120	 * workqueues, so we can avoid the known corruption cases by always
1121	 * queueing on CPU 0.
1122	 */
1123	ret = queue_work_on(0, queue, &dpc->work);
1124	if (!ret) {
1125		pr_err("Unable to queue work\n");
1126		status = AE_ERROR;
1127	}
1128err_workqueue:
1129	if (ACPI_FAILURE(status))
1130		kfree(dpc);
1131out_thread:
1132	return status;
 
1133}
1134EXPORT_SYMBOL(acpi_os_execute);
1135
1136void acpi_os_wait_events_complete(void)
1137{
1138	/*
1139	 * Make sure the GPE handler or the fixed event handler is not used
1140	 * on another CPU after removal.
1141	 */
1142	if (acpi_sci_irq_valid())
1143		synchronize_hardirq(acpi_sci_irq);
1144	flush_workqueue(kacpid_wq);
1145	flush_workqueue(kacpi_notify_wq);
1146}
1147EXPORT_SYMBOL(acpi_os_wait_events_complete);
1148
1149struct acpi_hp_work {
1150	struct work_struct work;
1151	struct acpi_device *adev;
1152	u32 src;
1153};
1154
1155static void acpi_hotplug_work_fn(struct work_struct *work)
1156{
1157	struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1158
1159	acpi_os_wait_events_complete();
1160	acpi_device_hotplug(hpw->adev, hpw->src);
1161	kfree(hpw);
1162}
1163
1164acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1165{
1166	struct acpi_hp_work *hpw;
1167
1168	acpi_handle_debug(adev->handle,
1169			  "Scheduling hotplug event %u for deferred handling\n",
1170			   src);
1171
1172	hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1173	if (!hpw)
1174		return AE_NO_MEMORY;
1175
1176	INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1177	hpw->adev = adev;
1178	hpw->src = src;
1179	/*
1180	 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1181	 * the hotplug code may call driver .remove() functions, which may
1182	 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1183	 * these workqueues.
1184	 */
1185	if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1186		kfree(hpw);
1187		return AE_ERROR;
1188	}
1189	return AE_OK;
1190}
1191
1192bool acpi_queue_hotplug_work(struct work_struct *work)
1193{
1194	return queue_work(kacpi_hotplug_wq, work);
1195}
1196
1197acpi_status
1198acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1199{
1200	struct semaphore *sem = NULL;
1201
1202	sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1203	if (!sem)
1204		return AE_NO_MEMORY;
1205
1206	sema_init(sem, initial_units);
1207
1208	*handle = (acpi_handle *) sem;
1209
1210	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1211			  *handle, initial_units));
1212
1213	return AE_OK;
1214}
1215
1216/*
1217 * TODO: A better way to delete semaphores?  Linux doesn't have a
1218 * 'delete_semaphore()' function -- may result in an invalid
1219 * pointer dereference for non-synchronized consumers.	Should
1220 * we at least check for blocked threads and signal/cancel them?
1221 */
1222
1223acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1224{
1225	struct semaphore *sem = (struct semaphore *)handle;
1226
1227	if (!sem)
1228		return AE_BAD_PARAMETER;
1229
1230	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1231
1232	BUG_ON(!list_empty(&sem->wait_list));
1233	kfree(sem);
1234	sem = NULL;
1235
1236	return AE_OK;
1237}
1238
1239/*
1240 * TODO: Support for units > 1?
1241 */
1242acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1243{
1244	acpi_status status = AE_OK;
1245	struct semaphore *sem = (struct semaphore *)handle;
1246	long jiffies;
1247	int ret = 0;
1248
1249	if (!acpi_os_initialized)
1250		return AE_OK;
1251
1252	if (!sem || (units < 1))
1253		return AE_BAD_PARAMETER;
1254
1255	if (units > 1)
1256		return AE_SUPPORT;
1257
1258	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1259			  handle, units, timeout));
1260
1261	if (timeout == ACPI_WAIT_FOREVER)
1262		jiffies = MAX_SCHEDULE_TIMEOUT;
1263	else
1264		jiffies = msecs_to_jiffies(timeout);
1265
1266	ret = down_timeout(sem, jiffies);
1267	if (ret)
1268		status = AE_TIME;
1269
1270	if (ACPI_FAILURE(status)) {
1271		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1272				  "Failed to acquire semaphore[%p|%d|%d], %s",
1273				  handle, units, timeout,
1274				  acpi_format_exception(status)));
1275	} else {
1276		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1277				  "Acquired semaphore[%p|%d|%d]", handle,
1278				  units, timeout));
1279	}
1280
1281	return status;
1282}
1283
1284/*
1285 * TODO: Support for units > 1?
1286 */
1287acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1288{
1289	struct semaphore *sem = (struct semaphore *)handle;
1290
1291	if (!acpi_os_initialized)
1292		return AE_OK;
1293
1294	if (!sem || (units < 1))
1295		return AE_BAD_PARAMETER;
1296
1297	if (units > 1)
1298		return AE_SUPPORT;
1299
1300	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1301			  units));
1302
1303	up(sem);
1304
1305	return AE_OK;
1306}
1307
1308acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1309{
1310#ifdef ENABLE_DEBUGGER
1311	if (acpi_in_debugger) {
1312		u32 chars;
1313
1314		kdb_read(buffer, buffer_length);
1315
1316		/* remove the CR kdb includes */
1317		chars = strlen(buffer) - 1;
1318		buffer[chars] = '\0';
1319	}
1320#else
1321	int ret;
1322
1323	ret = acpi_debugger_read_cmd(buffer, buffer_length);
1324	if (ret < 0)
1325		return AE_ERROR;
1326	if (bytes_read)
1327		*bytes_read = ret;
1328#endif
1329
1330	return AE_OK;
1331}
1332EXPORT_SYMBOL(acpi_os_get_line);
1333
1334acpi_status acpi_os_wait_command_ready(void)
1335{
1336	int ret;
1337
1338	ret = acpi_debugger_wait_command_ready();
1339	if (ret < 0)
1340		return AE_ERROR;
1341	return AE_OK;
1342}
1343
1344acpi_status acpi_os_notify_command_complete(void)
1345{
1346	int ret;
1347
1348	ret = acpi_debugger_notify_command_complete();
1349	if (ret < 0)
1350		return AE_ERROR;
1351	return AE_OK;
1352}
1353
1354acpi_status acpi_os_signal(u32 function, void *info)
1355{
1356	switch (function) {
1357	case ACPI_SIGNAL_FATAL:
1358		pr_err("Fatal opcode executed\n");
1359		break;
1360	case ACPI_SIGNAL_BREAKPOINT:
1361		/*
1362		 * AML Breakpoint
1363		 * ACPI spec. says to treat it as a NOP unless
1364		 * you are debugging.  So if/when we integrate
1365		 * AML debugger into the kernel debugger its
1366		 * hook will go here.  But until then it is
1367		 * not useful to print anything on breakpoints.
1368		 */
1369		break;
1370	default:
1371		break;
1372	}
1373
1374	return AE_OK;
1375}
1376
1377static int __init acpi_os_name_setup(char *str)
1378{
1379	char *p = acpi_os_name;
1380	int count = ACPI_MAX_OVERRIDE_LEN - 1;
1381
1382	if (!str || !*str)
1383		return 0;
1384
1385	for (; count-- && *str; str++) {
1386		if (isalnum(*str) || *str == ' ' || *str == ':')
1387			*p++ = *str;
1388		else if (*str == '\'' || *str == '"')
1389			continue;
1390		else
1391			break;
1392	}
1393	*p = 0;
1394
1395	return 1;
1396
1397}
1398
1399__setup("acpi_os_name=", acpi_os_name_setup);
1400
1401/*
1402 * Disable the auto-serialization of named objects creation methods.
1403 *
1404 * This feature is enabled by default.  It marks the AML control methods
1405 * that contain the opcodes to create named objects as "Serialized".
1406 */
1407static int __init acpi_no_auto_serialize_setup(char *str)
1408{
1409	acpi_gbl_auto_serialize_methods = FALSE;
1410	pr_info("Auto-serialization disabled\n");
1411
1412	return 1;
1413}
1414
1415__setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1416
1417/* Check of resource interference between native drivers and ACPI
1418 * OperationRegions (SystemIO and System Memory only).
1419 * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1420 * in arbitrary AML code and can interfere with legacy drivers.
1421 * acpi_enforce_resources= can be set to:
1422 *
1423 *   - strict (default) (2)
1424 *     -> further driver trying to access the resources will not load
1425 *   - lax              (1)
1426 *     -> further driver trying to access the resources will load, but you
1427 *     get a system message that something might go wrong...
1428 *
1429 *   - no               (0)
1430 *     -> ACPI Operation Region resources will not be registered
1431 *
1432 */
1433#define ENFORCE_RESOURCES_STRICT 2
1434#define ENFORCE_RESOURCES_LAX    1
1435#define ENFORCE_RESOURCES_NO     0
1436
1437static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1438
1439static int __init acpi_enforce_resources_setup(char *str)
1440{
1441	if (str == NULL || *str == '\0')
1442		return 0;
1443
1444	if (!strcmp("strict", str))
1445		acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1446	else if (!strcmp("lax", str))
1447		acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1448	else if (!strcmp("no", str))
1449		acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1450
1451	return 1;
1452}
1453
1454__setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1455
1456/* Check for resource conflicts between ACPI OperationRegions and native
1457 * drivers */
1458int acpi_check_resource_conflict(const struct resource *res)
1459{
1460	acpi_adr_space_type space_id;
1461
1462	if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1463		return 0;
1464
1465	if (res->flags & IORESOURCE_IO)
1466		space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1467	else if (res->flags & IORESOURCE_MEM)
1468		space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1469	else
1470		return 0;
1471
1472	if (!acpi_check_address_range(space_id, res->start, resource_size(res), 1))
1473		return 0;
1474
1475	pr_info("Resource conflict; ACPI support missing from driver?\n");
1476
1477	if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1478		return -EBUSY;
1479
1480	if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1481		pr_notice("Resource conflict: System may be unstable or behave erratically\n");
1482
1483	return 0;
1484}
1485EXPORT_SYMBOL(acpi_check_resource_conflict);
1486
1487int acpi_check_region(resource_size_t start, resource_size_t n,
1488		      const char *name)
1489{
1490	struct resource res = DEFINE_RES_IO_NAMED(start, n, name);
1491
1492	return acpi_check_resource_conflict(&res);
1493}
1494EXPORT_SYMBOL(acpi_check_region);
1495
1496static acpi_status acpi_deactivate_mem_region(acpi_handle handle, u32 level,
1497					      void *_res, void **return_value)
1498{
1499	struct acpi_mem_space_context **mem_ctx;
1500	union acpi_operand_object *handler_obj;
1501	union acpi_operand_object *region_obj2;
1502	union acpi_operand_object *region_obj;
1503	struct resource *res = _res;
1504	acpi_status status;
1505
1506	region_obj = acpi_ns_get_attached_object(handle);
1507	if (!region_obj)
1508		return AE_OK;
1509
1510	handler_obj = region_obj->region.handler;
1511	if (!handler_obj)
1512		return AE_OK;
1513
1514	if (region_obj->region.space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
1515		return AE_OK;
1516
1517	if (!(region_obj->region.flags & AOPOBJ_SETUP_COMPLETE))
1518		return AE_OK;
1519
1520	region_obj2 = acpi_ns_get_secondary_object(region_obj);
1521	if (!region_obj2)
1522		return AE_OK;
1523
1524	mem_ctx = (void *)&region_obj2->extra.region_context;
1525
1526	if (!(mem_ctx[0]->address >= res->start &&
1527	      mem_ctx[0]->address < res->end))
1528		return AE_OK;
1529
1530	status = handler_obj->address_space.setup(region_obj,
1531						  ACPI_REGION_DEACTIVATE,
1532						  NULL, (void **)mem_ctx);
1533	if (ACPI_SUCCESS(status))
1534		region_obj->region.flags &= ~(AOPOBJ_SETUP_COMPLETE);
1535
1536	return status;
1537}
1538
1539/**
1540 * acpi_release_memory - Release any mappings done to a memory region
1541 * @handle: Handle to namespace node
1542 * @res: Memory resource
1543 * @level: A level that terminates the search
1544 *
1545 * Walks through @handle and unmaps all SystemMemory Operation Regions that
1546 * overlap with @res and that have already been activated (mapped).
1547 *
1548 * This is a helper that allows drivers to place special requirements on memory
1549 * region that may overlap with operation regions, primarily allowing them to
1550 * safely map the region as non-cached memory.
1551 *
1552 * The unmapped Operation Regions will be automatically remapped next time they
1553 * are called, so the drivers do not need to do anything else.
1554 */
1555acpi_status acpi_release_memory(acpi_handle handle, struct resource *res,
1556				u32 level)
1557{
1558	acpi_status status;
1559
1560	if (!(res->flags & IORESOURCE_MEM))
1561		return AE_TYPE;
1562
1563	status = acpi_walk_namespace(ACPI_TYPE_REGION, handle, level,
1564				     acpi_deactivate_mem_region, NULL,
1565				     res, NULL);
1566	if (ACPI_FAILURE(status))
1567		return status;
1568
1569	/*
1570	 * Wait for all of the mappings queued up for removal by
1571	 * acpi_deactivate_mem_region() to actually go away.
1572	 */
1573	synchronize_rcu();
1574	rcu_barrier();
1575	flush_scheduled_work();
1576
1577	return AE_OK;
1578}
1579EXPORT_SYMBOL_GPL(acpi_release_memory);
1580
1581/*
1582 * Let drivers know whether the resource checks are effective
1583 */
1584int acpi_resources_are_enforced(void)
1585{
1586	return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1587}
1588EXPORT_SYMBOL(acpi_resources_are_enforced);
1589
1590/*
1591 * Deallocate the memory for a spinlock.
1592 */
1593void acpi_os_delete_lock(acpi_spinlock handle)
1594{
1595	ACPI_FREE(handle);
1596}
1597
1598/*
1599 * Acquire a spinlock.
1600 *
1601 * handle is a pointer to the spinlock_t.
1602 */
1603
1604acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1605	__acquires(lockp)
1606{
1607	acpi_cpu_flags flags;
1608	spin_lock_irqsave(lockp, flags);
1609	return flags;
1610}
1611
1612/*
1613 * Release a spinlock. See above.
1614 */
1615
1616void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1617	__releases(lockp)
1618{
1619	spin_unlock_irqrestore(lockp, flags);
1620}
1621
1622#ifndef ACPI_USE_LOCAL_CACHE
1623
1624/*******************************************************************************
1625 *
1626 * FUNCTION:    acpi_os_create_cache
1627 *
1628 * PARAMETERS:  name      - Ascii name for the cache
1629 *              size      - Size of each cached object
1630 *              depth     - Maximum depth of the cache (in objects) <ignored>
1631 *              cache     - Where the new cache object is returned
1632 *
1633 * RETURN:      status
1634 *
1635 * DESCRIPTION: Create a cache object
1636 *
1637 ******************************************************************************/
1638
1639acpi_status
1640acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1641{
1642	*cache = kmem_cache_create(name, size, 0, 0, NULL);
1643	if (*cache == NULL)
1644		return AE_ERROR;
1645	else
1646		return AE_OK;
1647}
1648
1649/*******************************************************************************
1650 *
1651 * FUNCTION:    acpi_os_purge_cache
1652 *
1653 * PARAMETERS:  Cache           - Handle to cache object
1654 *
1655 * RETURN:      Status
1656 *
1657 * DESCRIPTION: Free all objects within the requested cache.
1658 *
1659 ******************************************************************************/
1660
1661acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1662{
1663	kmem_cache_shrink(cache);
1664	return (AE_OK);
1665}
1666
1667/*******************************************************************************
1668 *
1669 * FUNCTION:    acpi_os_delete_cache
1670 *
1671 * PARAMETERS:  Cache           - Handle to cache object
1672 *
1673 * RETURN:      Status
1674 *
1675 * DESCRIPTION: Free all objects within the requested cache and delete the
1676 *              cache object.
1677 *
1678 ******************************************************************************/
1679
1680acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1681{
1682	kmem_cache_destroy(cache);
1683	return (AE_OK);
1684}
1685
1686/*******************************************************************************
1687 *
1688 * FUNCTION:    acpi_os_release_object
1689 *
1690 * PARAMETERS:  Cache       - Handle to cache object
1691 *              Object      - The object to be released
1692 *
1693 * RETURN:      None
1694 *
1695 * DESCRIPTION: Release an object to the specified cache.  If cache is full,
1696 *              the object is deleted.
1697 *
1698 ******************************************************************************/
1699
1700acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1701{
1702	kmem_cache_free(cache, object);
1703	return (AE_OK);
1704}
1705#endif
1706
1707static int __init acpi_no_static_ssdt_setup(char *s)
1708{
1709	acpi_gbl_disable_ssdt_table_install = TRUE;
1710	pr_info("Static SSDT installation disabled\n");
1711
1712	return 0;
1713}
1714
1715early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1716
1717static int __init acpi_disable_return_repair(char *s)
1718{
1719	pr_notice("Predefined validation mechanism disabled\n");
1720	acpi_gbl_disable_auto_repair = TRUE;
1721
1722	return 1;
1723}
1724
1725__setup("acpica_no_return_repair", acpi_disable_return_repair);
1726
1727acpi_status __init acpi_os_initialize(void)
1728{
1729	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1730	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1731
1732	acpi_gbl_xgpe0_block_logical_address =
1733		(unsigned long)acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1734	acpi_gbl_xgpe1_block_logical_address =
1735		(unsigned long)acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1736
1737	if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1738		/*
1739		 * Use acpi_os_map_generic_address to pre-map the reset
1740		 * register if it's in system memory.
1741		 */
1742		void *rv;
1743
1744		rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1745		pr_debug("%s: Reset register mapping %s\n", __func__,
1746			 rv ? "successful" : "failed");
1747	}
1748	acpi_os_initialized = true;
1749
1750	return AE_OK;
1751}
1752
1753acpi_status __init acpi_os_initialize1(void)
1754{
1755	kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1756	kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1757	kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1758	BUG_ON(!kacpid_wq);
1759	BUG_ON(!kacpi_notify_wq);
1760	BUG_ON(!kacpi_hotplug_wq);
1761	acpi_osi_init();
1762	return AE_OK;
1763}
1764
1765acpi_status acpi_os_terminate(void)
1766{
1767	if (acpi_irq_handler) {
1768		acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1769						 acpi_irq_handler);
1770	}
1771
1772	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1773	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1774	acpi_gbl_xgpe0_block_logical_address = 0UL;
1775	acpi_gbl_xgpe1_block_logical_address = 0UL;
1776
1777	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1778	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1779
1780	if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1781		acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1782
1783	destroy_workqueue(kacpid_wq);
1784	destroy_workqueue(kacpi_notify_wq);
1785	destroy_workqueue(kacpi_hotplug_wq);
1786
1787	return AE_OK;
1788}
1789
1790acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1791				  u32 pm1b_control)
1792{
1793	int rc = 0;
 
1794	if (__acpi_os_prepare_sleep)
1795		rc = __acpi_os_prepare_sleep(sleep_state,
1796					     pm1a_control, pm1b_control);
1797	if (rc < 0)
1798		return AE_ERROR;
1799	else if (rc > 0)
1800		return AE_CTRL_TERMINATE;
1801
1802	return AE_OK;
1803}
1804
1805void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1806			       u32 pm1a_ctrl, u32 pm1b_ctrl))
1807{
1808	__acpi_os_prepare_sleep = func;
1809}
1810
1811#if (ACPI_REDUCED_HARDWARE)
1812acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1813				  u32 val_b)
1814{
1815	int rc = 0;
 
1816	if (__acpi_os_prepare_extended_sleep)
1817		rc = __acpi_os_prepare_extended_sleep(sleep_state,
1818					     val_a, val_b);
1819	if (rc < 0)
1820		return AE_ERROR;
1821	else if (rc > 0)
1822		return AE_CTRL_TERMINATE;
1823
1824	return AE_OK;
1825}
1826#else
1827acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1828				  u32 val_b)
1829{
1830	return AE_OK;
1831}
1832#endif
1833
1834void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1835			       u32 val_a, u32 val_b))
1836{
1837	__acpi_os_prepare_extended_sleep = func;
1838}
1839
1840acpi_status acpi_os_enter_sleep(u8 sleep_state,
1841				u32 reg_a_value, u32 reg_b_value)
1842{
1843	acpi_status status;
1844
1845	if (acpi_gbl_reduced_hardware)
1846		status = acpi_os_prepare_extended_sleep(sleep_state,
1847							reg_a_value,
1848							reg_b_value);
1849	else
1850		status = acpi_os_prepare_sleep(sleep_state,
1851					       reg_a_value, reg_b_value);
1852	return status;
1853}