Linux Audio

Check our new training course

Loading...
v6.8
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * KVM/MIPS: MIPS specific KVM APIs
   7 *
   8 * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
   9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
  10 */
  11
  12#include <linux/bitops.h>
  13#include <linux/errno.h>
  14#include <linux/err.h>
  15#include <linux/kdebug.h>
  16#include <linux/module.h>
  17#include <linux/uaccess.h>
  18#include <linux/vmalloc.h>
  19#include <linux/sched/signal.h>
  20#include <linux/fs.h>
  21#include <linux/memblock.h>
  22#include <linux/pgtable.h>
  23
  24#include <asm/fpu.h>
  25#include <asm/page.h>
  26#include <asm/cacheflush.h>
  27#include <asm/mmu_context.h>
  28#include <asm/pgalloc.h>
  29
  30#include <linux/kvm_host.h>
  31
  32#include "interrupt.h"
  33
  34#define CREATE_TRACE_POINTS
  35#include "trace.h"
  36
  37#ifndef VECTORSPACING
  38#define VECTORSPACING 0x100	/* for EI/VI mode */
  39#endif
  40
  41const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
  42	KVM_GENERIC_VM_STATS()
  43};
  44
  45const struct kvm_stats_header kvm_vm_stats_header = {
  46	.name_size = KVM_STATS_NAME_SIZE,
  47	.num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
  48	.id_offset = sizeof(struct kvm_stats_header),
  49	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
  50	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
  51		       sizeof(kvm_vm_stats_desc),
  52};
  53
  54const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
  55	KVM_GENERIC_VCPU_STATS(),
  56	STATS_DESC_COUNTER(VCPU, wait_exits),
  57	STATS_DESC_COUNTER(VCPU, cache_exits),
  58	STATS_DESC_COUNTER(VCPU, signal_exits),
  59	STATS_DESC_COUNTER(VCPU, int_exits),
  60	STATS_DESC_COUNTER(VCPU, cop_unusable_exits),
  61	STATS_DESC_COUNTER(VCPU, tlbmod_exits),
  62	STATS_DESC_COUNTER(VCPU, tlbmiss_ld_exits),
  63	STATS_DESC_COUNTER(VCPU, tlbmiss_st_exits),
  64	STATS_DESC_COUNTER(VCPU, addrerr_st_exits),
  65	STATS_DESC_COUNTER(VCPU, addrerr_ld_exits),
  66	STATS_DESC_COUNTER(VCPU, syscall_exits),
  67	STATS_DESC_COUNTER(VCPU, resvd_inst_exits),
  68	STATS_DESC_COUNTER(VCPU, break_inst_exits),
  69	STATS_DESC_COUNTER(VCPU, trap_inst_exits),
  70	STATS_DESC_COUNTER(VCPU, msa_fpe_exits),
  71	STATS_DESC_COUNTER(VCPU, fpe_exits),
  72	STATS_DESC_COUNTER(VCPU, msa_disabled_exits),
  73	STATS_DESC_COUNTER(VCPU, flush_dcache_exits),
  74	STATS_DESC_COUNTER(VCPU, vz_gpsi_exits),
  75	STATS_DESC_COUNTER(VCPU, vz_gsfc_exits),
  76	STATS_DESC_COUNTER(VCPU, vz_hc_exits),
  77	STATS_DESC_COUNTER(VCPU, vz_grr_exits),
  78	STATS_DESC_COUNTER(VCPU, vz_gva_exits),
  79	STATS_DESC_COUNTER(VCPU, vz_ghfc_exits),
  80	STATS_DESC_COUNTER(VCPU, vz_gpa_exits),
  81	STATS_DESC_COUNTER(VCPU, vz_resvd_exits),
  82#ifdef CONFIG_CPU_LOONGSON64
  83	STATS_DESC_COUNTER(VCPU, vz_cpucfg_exits),
  84#endif
  85};
  86
  87const struct kvm_stats_header kvm_vcpu_stats_header = {
  88	.name_size = KVM_STATS_NAME_SIZE,
  89	.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
  90	.id_offset = sizeof(struct kvm_stats_header),
  91	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
  92	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
  93		       sizeof(kvm_vcpu_stats_desc),
  94};
  95
  96bool kvm_trace_guest_mode_change;
  97
  98int kvm_guest_mode_change_trace_reg(void)
  99{
 100	kvm_trace_guest_mode_change = true;
 101	return 0;
 102}
 103
 104void kvm_guest_mode_change_trace_unreg(void)
 105{
 106	kvm_trace_guest_mode_change = false;
 107}
 108
 109/*
 110 * XXXKYMA: We are simulatoring a processor that has the WII bit set in
 111 * Config7, so we are "runnable" if interrupts are pending
 112 */
 113int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
 114{
 115	return !!(vcpu->arch.pending_exceptions);
 116}
 117
 118bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
 119{
 120	return false;
 121}
 122
 123int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
 124{
 125	return 1;
 126}
 127
 128int kvm_arch_hardware_enable(void)
 129{
 130	return kvm_mips_callbacks->hardware_enable();
 131}
 132
 133void kvm_arch_hardware_disable(void)
 134{
 135	kvm_mips_callbacks->hardware_disable();
 136}
 137
 
 
 
 
 
 
 
 
 
 
 138extern void kvm_init_loongson_ipi(struct kvm *kvm);
 139
 140int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
 141{
 142	switch (type) {
 143	case KVM_VM_MIPS_AUTO:
 144		break;
 145	case KVM_VM_MIPS_VZ:
 146		break;
 147	default:
 148		/* Unsupported KVM type */
 149		return -EINVAL;
 150	}
 151
 152	/* Allocate page table to map GPA -> RPA */
 153	kvm->arch.gpa_mm.pgd = kvm_pgd_alloc();
 154	if (!kvm->arch.gpa_mm.pgd)
 155		return -ENOMEM;
 156
 157#ifdef CONFIG_CPU_LOONGSON64
 158	kvm_init_loongson_ipi(kvm);
 159#endif
 160
 161	return 0;
 162}
 163
 164static void kvm_mips_free_gpa_pt(struct kvm *kvm)
 165{
 166	/* It should always be safe to remove after flushing the whole range */
 167	WARN_ON(!kvm_mips_flush_gpa_pt(kvm, 0, ~0));
 168	pgd_free(NULL, kvm->arch.gpa_mm.pgd);
 169}
 170
 171void kvm_arch_destroy_vm(struct kvm *kvm)
 172{
 173	kvm_destroy_vcpus(kvm);
 174	kvm_mips_free_gpa_pt(kvm);
 175}
 176
 177long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
 178			unsigned long arg)
 179{
 180	return -ENOIOCTLCMD;
 181}
 182
 183void kvm_arch_flush_shadow_all(struct kvm *kvm)
 184{
 185	/* Flush whole GPA */
 186	kvm_mips_flush_gpa_pt(kvm, 0, ~0);
 187	kvm_flush_remote_tlbs(kvm);
 188}
 189
 190void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
 191				   struct kvm_memory_slot *slot)
 192{
 193	/*
 194	 * The slot has been made invalid (ready for moving or deletion), so we
 195	 * need to ensure that it can no longer be accessed by any guest VCPUs.
 196	 */
 197
 198	spin_lock(&kvm->mmu_lock);
 199	/* Flush slot from GPA */
 200	kvm_mips_flush_gpa_pt(kvm, slot->base_gfn,
 201			      slot->base_gfn + slot->npages - 1);
 202	kvm_flush_remote_tlbs_memslot(kvm, slot);
 203	spin_unlock(&kvm->mmu_lock);
 204}
 205
 206int kvm_arch_prepare_memory_region(struct kvm *kvm,
 207				   const struct kvm_memory_slot *old,
 208				   struct kvm_memory_slot *new,
 209				   enum kvm_mr_change change)
 210{
 211	return 0;
 212}
 213
 214void kvm_arch_commit_memory_region(struct kvm *kvm,
 215				   struct kvm_memory_slot *old,
 216				   const struct kvm_memory_slot *new,
 217				   enum kvm_mr_change change)
 218{
 219	int needs_flush;
 220
 221	/*
 222	 * If dirty page logging is enabled, write protect all pages in the slot
 223	 * ready for dirty logging.
 224	 *
 225	 * There is no need to do this in any of the following cases:
 226	 * CREATE:	No dirty mappings will already exist.
 227	 * MOVE/DELETE:	The old mappings will already have been cleaned up by
 228	 *		kvm_arch_flush_shadow_memslot()
 229	 */
 230	if (change == KVM_MR_FLAGS_ONLY &&
 231	    (!(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
 232	     new->flags & KVM_MEM_LOG_DIRTY_PAGES)) {
 233		spin_lock(&kvm->mmu_lock);
 234		/* Write protect GPA page table entries */
 235		needs_flush = kvm_mips_mkclean_gpa_pt(kvm, new->base_gfn,
 236					new->base_gfn + new->npages - 1);
 237		if (needs_flush)
 238			kvm_flush_remote_tlbs_memslot(kvm, new);
 239		spin_unlock(&kvm->mmu_lock);
 240	}
 241}
 242
 243static inline void dump_handler(const char *symbol, void *start, void *end)
 244{
 245	u32 *p;
 246
 247	pr_debug("LEAF(%s)\n", symbol);
 248
 249	pr_debug("\t.set push\n");
 250	pr_debug("\t.set noreorder\n");
 251
 252	for (p = start; p < (u32 *)end; ++p)
 253		pr_debug("\t.word\t0x%08x\t\t# %p\n", *p, p);
 254
 255	pr_debug("\t.set\tpop\n");
 256
 257	pr_debug("\tEND(%s)\n", symbol);
 258}
 259
 260/* low level hrtimer wake routine */
 261static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
 262{
 263	struct kvm_vcpu *vcpu;
 264
 265	vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
 266
 267	kvm_mips_callbacks->queue_timer_int(vcpu);
 268
 269	vcpu->arch.wait = 0;
 270	rcuwait_wake_up(&vcpu->wait);
 271
 272	return kvm_mips_count_timeout(vcpu);
 273}
 274
 275int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
 276{
 277	return 0;
 278}
 279
 280int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
 281{
 282	int err, size;
 283	void *gebase, *p, *handler, *refill_start, *refill_end;
 284	int i;
 285
 286	kvm_debug("kvm @ %p: create cpu %d at %p\n",
 287		  vcpu->kvm, vcpu->vcpu_id, vcpu);
 288
 289	err = kvm_mips_callbacks->vcpu_init(vcpu);
 290	if (err)
 291		return err;
 292
 293	hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
 294		     HRTIMER_MODE_REL);
 295	vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
 296
 297	/*
 298	 * Allocate space for host mode exception handlers that handle
 299	 * guest mode exits
 300	 */
 301	if (cpu_has_veic || cpu_has_vint)
 302		size = 0x200 + VECTORSPACING * 64;
 303	else
 304		size = 0x4000;
 305
 306	gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
 307
 308	if (!gebase) {
 309		err = -ENOMEM;
 310		goto out_uninit_vcpu;
 311	}
 312	kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
 313		  ALIGN(size, PAGE_SIZE), gebase);
 314
 315	/*
 316	 * Check new ebase actually fits in CP0_EBase. The lack of a write gate
 317	 * limits us to the low 512MB of physical address space. If the memory
 318	 * we allocate is out of range, just give up now.
 319	 */
 320	if (!cpu_has_ebase_wg && virt_to_phys(gebase) >= 0x20000000) {
 321		kvm_err("CP0_EBase.WG required for guest exception base %pK\n",
 322			gebase);
 323		err = -ENOMEM;
 324		goto out_free_gebase;
 325	}
 326
 327	/* Save new ebase */
 328	vcpu->arch.guest_ebase = gebase;
 329
 330	/* Build guest exception vectors dynamically in unmapped memory */
 331	handler = gebase + 0x2000;
 332
 333	/* TLB refill (or XTLB refill on 64-bit VZ where KX=1) */
 334	refill_start = gebase;
 335	if (IS_ENABLED(CONFIG_64BIT))
 336		refill_start += 0x080;
 337	refill_end = kvm_mips_build_tlb_refill_exception(refill_start, handler);
 338
 339	/* General Exception Entry point */
 340	kvm_mips_build_exception(gebase + 0x180, handler);
 341
 342	/* For vectored interrupts poke the exception code @ all offsets 0-7 */
 343	for (i = 0; i < 8; i++) {
 344		kvm_debug("L1 Vectored handler @ %p\n",
 345			  gebase + 0x200 + (i * VECTORSPACING));
 346		kvm_mips_build_exception(gebase + 0x200 + i * VECTORSPACING,
 347					 handler);
 348	}
 349
 350	/* General exit handler */
 351	p = handler;
 352	p = kvm_mips_build_exit(p);
 353
 354	/* Guest entry routine */
 355	vcpu->arch.vcpu_run = p;
 356	p = kvm_mips_build_vcpu_run(p);
 357
 358	/* Dump the generated code */
 359	pr_debug("#include <asm/asm.h>\n");
 360	pr_debug("#include <asm/regdef.h>\n");
 361	pr_debug("\n");
 362	dump_handler("kvm_vcpu_run", vcpu->arch.vcpu_run, p);
 363	dump_handler("kvm_tlb_refill", refill_start, refill_end);
 364	dump_handler("kvm_gen_exc", gebase + 0x180, gebase + 0x200);
 365	dump_handler("kvm_exit", gebase + 0x2000, vcpu->arch.vcpu_run);
 366
 367	/* Invalidate the icache for these ranges */
 368	flush_icache_range((unsigned long)gebase,
 369			   (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
 370
 371	/* Init */
 372	vcpu->arch.last_sched_cpu = -1;
 373	vcpu->arch.last_exec_cpu = -1;
 374
 375	/* Initial guest state */
 376	err = kvm_mips_callbacks->vcpu_setup(vcpu);
 377	if (err)
 378		goto out_free_gebase;
 379
 380	return 0;
 381
 382out_free_gebase:
 383	kfree(gebase);
 384out_uninit_vcpu:
 385	kvm_mips_callbacks->vcpu_uninit(vcpu);
 386	return err;
 387}
 388
 389void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
 390{
 391	hrtimer_cancel(&vcpu->arch.comparecount_timer);
 392
 393	kvm_mips_dump_stats(vcpu);
 394
 395	kvm_mmu_free_memory_caches(vcpu);
 396	kfree(vcpu->arch.guest_ebase);
 397
 398	kvm_mips_callbacks->vcpu_uninit(vcpu);
 399}
 400
 401int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
 402					struct kvm_guest_debug *dbg)
 403{
 404	return -ENOIOCTLCMD;
 405}
 406
 407/*
 408 * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while
 409 * the vCPU is running.
 410 *
 411 * This must be noinstr as instrumentation may make use of RCU, and this is not
 412 * safe during the EQS.
 413 */
 414static int noinstr kvm_mips_vcpu_enter_exit(struct kvm_vcpu *vcpu)
 415{
 416	int ret;
 417
 418	guest_state_enter_irqoff();
 419	ret = kvm_mips_callbacks->vcpu_run(vcpu);
 420	guest_state_exit_irqoff();
 421
 422	return ret;
 423}
 424
 425int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
 426{
 427	int r = -EINTR;
 428
 429	vcpu_load(vcpu);
 430
 431	kvm_sigset_activate(vcpu);
 432
 433	if (vcpu->mmio_needed) {
 434		if (!vcpu->mmio_is_write)
 435			kvm_mips_complete_mmio_load(vcpu);
 436		vcpu->mmio_needed = 0;
 437	}
 438
 439	if (vcpu->run->immediate_exit)
 440		goto out;
 441
 442	lose_fpu(1);
 443
 444	local_irq_disable();
 445	guest_timing_enter_irqoff();
 446	trace_kvm_enter(vcpu);
 447
 448	/*
 449	 * Make sure the read of VCPU requests in vcpu_run() callback is not
 450	 * reordered ahead of the write to vcpu->mode, or we could miss a TLB
 451	 * flush request while the requester sees the VCPU as outside of guest
 452	 * mode and not needing an IPI.
 453	 */
 454	smp_store_mb(vcpu->mode, IN_GUEST_MODE);
 455
 456	r = kvm_mips_vcpu_enter_exit(vcpu);
 457
 458	/*
 459	 * We must ensure that any pending interrupts are taken before
 460	 * we exit guest timing so that timer ticks are accounted as
 461	 * guest time. Transiently unmask interrupts so that any
 462	 * pending interrupts are taken.
 463	 *
 464	 * TODO: is there a barrier which ensures that pending interrupts are
 465	 * recognised? Currently this just hopes that the CPU takes any pending
 466	 * interrupts between the enable and disable.
 467	 */
 468	local_irq_enable();
 469	local_irq_disable();
 470
 471	trace_kvm_out(vcpu);
 472	guest_timing_exit_irqoff();
 473	local_irq_enable();
 474
 475out:
 476	kvm_sigset_deactivate(vcpu);
 477
 478	vcpu_put(vcpu);
 479	return r;
 480}
 481
 482int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
 483			     struct kvm_mips_interrupt *irq)
 484{
 485	int intr = (int)irq->irq;
 486	struct kvm_vcpu *dvcpu = NULL;
 487
 488	if (intr == kvm_priority_to_irq[MIPS_EXC_INT_IPI_1] ||
 489	    intr == kvm_priority_to_irq[MIPS_EXC_INT_IPI_2] ||
 490	    intr == (-kvm_priority_to_irq[MIPS_EXC_INT_IPI_1]) ||
 491	    intr == (-kvm_priority_to_irq[MIPS_EXC_INT_IPI_2]))
 492		kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
 493			  (int)intr);
 494
 495	if (irq->cpu == -1)
 496		dvcpu = vcpu;
 497	else
 498		dvcpu = kvm_get_vcpu(vcpu->kvm, irq->cpu);
 499
 500	if (intr == 2 || intr == 3 || intr == 4 || intr == 6) {
 501		kvm_mips_callbacks->queue_io_int(dvcpu, irq);
 502
 503	} else if (intr == -2 || intr == -3 || intr == -4 || intr == -6) {
 504		kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
 505	} else {
 506		kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
 507			irq->cpu, irq->irq);
 508		return -EINVAL;
 509	}
 510
 511	dvcpu->arch.wait = 0;
 512
 513	rcuwait_wake_up(&dvcpu->wait);
 514
 515	return 0;
 516}
 517
 518int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
 519				    struct kvm_mp_state *mp_state)
 520{
 521	return -ENOIOCTLCMD;
 522}
 523
 524int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
 525				    struct kvm_mp_state *mp_state)
 526{
 527	return -ENOIOCTLCMD;
 528}
 529
 530static u64 kvm_mips_get_one_regs[] = {
 531	KVM_REG_MIPS_R0,
 532	KVM_REG_MIPS_R1,
 533	KVM_REG_MIPS_R2,
 534	KVM_REG_MIPS_R3,
 535	KVM_REG_MIPS_R4,
 536	KVM_REG_MIPS_R5,
 537	KVM_REG_MIPS_R6,
 538	KVM_REG_MIPS_R7,
 539	KVM_REG_MIPS_R8,
 540	KVM_REG_MIPS_R9,
 541	KVM_REG_MIPS_R10,
 542	KVM_REG_MIPS_R11,
 543	KVM_REG_MIPS_R12,
 544	KVM_REG_MIPS_R13,
 545	KVM_REG_MIPS_R14,
 546	KVM_REG_MIPS_R15,
 547	KVM_REG_MIPS_R16,
 548	KVM_REG_MIPS_R17,
 549	KVM_REG_MIPS_R18,
 550	KVM_REG_MIPS_R19,
 551	KVM_REG_MIPS_R20,
 552	KVM_REG_MIPS_R21,
 553	KVM_REG_MIPS_R22,
 554	KVM_REG_MIPS_R23,
 555	KVM_REG_MIPS_R24,
 556	KVM_REG_MIPS_R25,
 557	KVM_REG_MIPS_R26,
 558	KVM_REG_MIPS_R27,
 559	KVM_REG_MIPS_R28,
 560	KVM_REG_MIPS_R29,
 561	KVM_REG_MIPS_R30,
 562	KVM_REG_MIPS_R31,
 563
 564#ifndef CONFIG_CPU_MIPSR6
 565	KVM_REG_MIPS_HI,
 566	KVM_REG_MIPS_LO,
 567#endif
 568	KVM_REG_MIPS_PC,
 569};
 570
 571static u64 kvm_mips_get_one_regs_fpu[] = {
 572	KVM_REG_MIPS_FCR_IR,
 573	KVM_REG_MIPS_FCR_CSR,
 574};
 575
 576static u64 kvm_mips_get_one_regs_msa[] = {
 577	KVM_REG_MIPS_MSA_IR,
 578	KVM_REG_MIPS_MSA_CSR,
 579};
 580
 581static unsigned long kvm_mips_num_regs(struct kvm_vcpu *vcpu)
 582{
 583	unsigned long ret;
 584
 585	ret = ARRAY_SIZE(kvm_mips_get_one_regs);
 586	if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
 587		ret += ARRAY_SIZE(kvm_mips_get_one_regs_fpu) + 48;
 588		/* odd doubles */
 589		if (boot_cpu_data.fpu_id & MIPS_FPIR_F64)
 590			ret += 16;
 591	}
 592	if (kvm_mips_guest_can_have_msa(&vcpu->arch))
 593		ret += ARRAY_SIZE(kvm_mips_get_one_regs_msa) + 32;
 594	ret += kvm_mips_callbacks->num_regs(vcpu);
 595
 596	return ret;
 597}
 598
 599static int kvm_mips_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
 600{
 601	u64 index;
 602	unsigned int i;
 603
 604	if (copy_to_user(indices, kvm_mips_get_one_regs,
 605			 sizeof(kvm_mips_get_one_regs)))
 606		return -EFAULT;
 607	indices += ARRAY_SIZE(kvm_mips_get_one_regs);
 608
 609	if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
 610		if (copy_to_user(indices, kvm_mips_get_one_regs_fpu,
 611				 sizeof(kvm_mips_get_one_regs_fpu)))
 612			return -EFAULT;
 613		indices += ARRAY_SIZE(kvm_mips_get_one_regs_fpu);
 614
 615		for (i = 0; i < 32; ++i) {
 616			index = KVM_REG_MIPS_FPR_32(i);
 617			if (copy_to_user(indices, &index, sizeof(index)))
 618				return -EFAULT;
 619			++indices;
 620
 621			/* skip odd doubles if no F64 */
 622			if (i & 1 && !(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
 623				continue;
 624
 625			index = KVM_REG_MIPS_FPR_64(i);
 626			if (copy_to_user(indices, &index, sizeof(index)))
 627				return -EFAULT;
 628			++indices;
 629		}
 630	}
 631
 632	if (kvm_mips_guest_can_have_msa(&vcpu->arch)) {
 633		if (copy_to_user(indices, kvm_mips_get_one_regs_msa,
 634				 sizeof(kvm_mips_get_one_regs_msa)))
 635			return -EFAULT;
 636		indices += ARRAY_SIZE(kvm_mips_get_one_regs_msa);
 637
 638		for (i = 0; i < 32; ++i) {
 639			index = KVM_REG_MIPS_VEC_128(i);
 640			if (copy_to_user(indices, &index, sizeof(index)))
 641				return -EFAULT;
 642			++indices;
 643		}
 644	}
 645
 646	return kvm_mips_callbacks->copy_reg_indices(vcpu, indices);
 647}
 648
 649static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
 650			    const struct kvm_one_reg *reg)
 651{
 652	struct mips_coproc *cop0 = &vcpu->arch.cop0;
 653	struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
 654	int ret;
 655	s64 v;
 656	s64 vs[2];
 657	unsigned int idx;
 658
 659	switch (reg->id) {
 660	/* General purpose registers */
 661	case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
 662		v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
 663		break;
 664#ifndef CONFIG_CPU_MIPSR6
 665	case KVM_REG_MIPS_HI:
 666		v = (long)vcpu->arch.hi;
 667		break;
 668	case KVM_REG_MIPS_LO:
 669		v = (long)vcpu->arch.lo;
 670		break;
 671#endif
 672	case KVM_REG_MIPS_PC:
 673		v = (long)vcpu->arch.pc;
 674		break;
 675
 676	/* Floating point registers */
 677	case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
 678		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 679			return -EINVAL;
 680		idx = reg->id - KVM_REG_MIPS_FPR_32(0);
 681		/* Odd singles in top of even double when FR=0 */
 682		if (kvm_read_c0_guest_status(cop0) & ST0_FR)
 683			v = get_fpr32(&fpu->fpr[idx], 0);
 684		else
 685			v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
 686		break;
 687	case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
 688		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 689			return -EINVAL;
 690		idx = reg->id - KVM_REG_MIPS_FPR_64(0);
 691		/* Can't access odd doubles in FR=0 mode */
 692		if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
 693			return -EINVAL;
 694		v = get_fpr64(&fpu->fpr[idx], 0);
 695		break;
 696	case KVM_REG_MIPS_FCR_IR:
 697		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 698			return -EINVAL;
 699		v = boot_cpu_data.fpu_id;
 700		break;
 701	case KVM_REG_MIPS_FCR_CSR:
 702		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 703			return -EINVAL;
 704		v = fpu->fcr31;
 705		break;
 706
 707	/* MIPS SIMD Architecture (MSA) registers */
 708	case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
 709		if (!kvm_mips_guest_has_msa(&vcpu->arch))
 710			return -EINVAL;
 711		/* Can't access MSA registers in FR=0 mode */
 712		if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
 713			return -EINVAL;
 714		idx = reg->id - KVM_REG_MIPS_VEC_128(0);
 715#ifdef CONFIG_CPU_LITTLE_ENDIAN
 716		/* least significant byte first */
 717		vs[0] = get_fpr64(&fpu->fpr[idx], 0);
 718		vs[1] = get_fpr64(&fpu->fpr[idx], 1);
 719#else
 720		/* most significant byte first */
 721		vs[0] = get_fpr64(&fpu->fpr[idx], 1);
 722		vs[1] = get_fpr64(&fpu->fpr[idx], 0);
 723#endif
 724		break;
 725	case KVM_REG_MIPS_MSA_IR:
 726		if (!kvm_mips_guest_has_msa(&vcpu->arch))
 727			return -EINVAL;
 728		v = boot_cpu_data.msa_id;
 729		break;
 730	case KVM_REG_MIPS_MSA_CSR:
 731		if (!kvm_mips_guest_has_msa(&vcpu->arch))
 732			return -EINVAL;
 733		v = fpu->msacsr;
 734		break;
 735
 736	/* registers to be handled specially */
 737	default:
 738		ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
 739		if (ret)
 740			return ret;
 741		break;
 742	}
 743	if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
 744		u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
 745
 746		return put_user(v, uaddr64);
 747	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
 748		u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
 749		u32 v32 = (u32)v;
 750
 751		return put_user(v32, uaddr32);
 752	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
 753		void __user *uaddr = (void __user *)(long)reg->addr;
 754
 755		return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
 756	} else {
 757		return -EINVAL;
 758	}
 759}
 760
 761static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
 762			    const struct kvm_one_reg *reg)
 763{
 764	struct mips_coproc *cop0 = &vcpu->arch.cop0;
 765	struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
 766	s64 v;
 767	s64 vs[2];
 768	unsigned int idx;
 769
 770	if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
 771		u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
 772
 773		if (get_user(v, uaddr64) != 0)
 774			return -EFAULT;
 775	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
 776		u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
 777		s32 v32;
 778
 779		if (get_user(v32, uaddr32) != 0)
 780			return -EFAULT;
 781		v = (s64)v32;
 782	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
 783		void __user *uaddr = (void __user *)(long)reg->addr;
 784
 785		return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
 786	} else {
 787		return -EINVAL;
 788	}
 789
 790	switch (reg->id) {
 791	/* General purpose registers */
 792	case KVM_REG_MIPS_R0:
 793		/* Silently ignore requests to set $0 */
 794		break;
 795	case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
 796		vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
 797		break;
 798#ifndef CONFIG_CPU_MIPSR6
 799	case KVM_REG_MIPS_HI:
 800		vcpu->arch.hi = v;
 801		break;
 802	case KVM_REG_MIPS_LO:
 803		vcpu->arch.lo = v;
 804		break;
 805#endif
 806	case KVM_REG_MIPS_PC:
 807		vcpu->arch.pc = v;
 808		break;
 809
 810	/* Floating point registers */
 811	case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
 812		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 813			return -EINVAL;
 814		idx = reg->id - KVM_REG_MIPS_FPR_32(0);
 815		/* Odd singles in top of even double when FR=0 */
 816		if (kvm_read_c0_guest_status(cop0) & ST0_FR)
 817			set_fpr32(&fpu->fpr[idx], 0, v);
 818		else
 819			set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
 820		break;
 821	case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
 822		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 823			return -EINVAL;
 824		idx = reg->id - KVM_REG_MIPS_FPR_64(0);
 825		/* Can't access odd doubles in FR=0 mode */
 826		if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
 827			return -EINVAL;
 828		set_fpr64(&fpu->fpr[idx], 0, v);
 829		break;
 830	case KVM_REG_MIPS_FCR_IR:
 831		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 832			return -EINVAL;
 833		/* Read-only */
 834		break;
 835	case KVM_REG_MIPS_FCR_CSR:
 836		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 837			return -EINVAL;
 838		fpu->fcr31 = v;
 839		break;
 840
 841	/* MIPS SIMD Architecture (MSA) registers */
 842	case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
 843		if (!kvm_mips_guest_has_msa(&vcpu->arch))
 844			return -EINVAL;
 845		idx = reg->id - KVM_REG_MIPS_VEC_128(0);
 846#ifdef CONFIG_CPU_LITTLE_ENDIAN
 847		/* least significant byte first */
 848		set_fpr64(&fpu->fpr[idx], 0, vs[0]);
 849		set_fpr64(&fpu->fpr[idx], 1, vs[1]);
 850#else
 851		/* most significant byte first */
 852		set_fpr64(&fpu->fpr[idx], 1, vs[0]);
 853		set_fpr64(&fpu->fpr[idx], 0, vs[1]);
 854#endif
 855		break;
 856	case KVM_REG_MIPS_MSA_IR:
 857		if (!kvm_mips_guest_has_msa(&vcpu->arch))
 858			return -EINVAL;
 859		/* Read-only */
 860		break;
 861	case KVM_REG_MIPS_MSA_CSR:
 862		if (!kvm_mips_guest_has_msa(&vcpu->arch))
 863			return -EINVAL;
 864		fpu->msacsr = v;
 865		break;
 866
 867	/* registers to be handled specially */
 868	default:
 869		return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
 870	}
 871	return 0;
 872}
 873
 874static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
 875				     struct kvm_enable_cap *cap)
 876{
 877	int r = 0;
 878
 879	if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
 880		return -EINVAL;
 881	if (cap->flags)
 882		return -EINVAL;
 883	if (cap->args[0])
 884		return -EINVAL;
 885
 886	switch (cap->cap) {
 887	case KVM_CAP_MIPS_FPU:
 888		vcpu->arch.fpu_enabled = true;
 889		break;
 890	case KVM_CAP_MIPS_MSA:
 891		vcpu->arch.msa_enabled = true;
 892		break;
 893	default:
 894		r = -EINVAL;
 895		break;
 896	}
 897
 898	return r;
 899}
 900
 901long kvm_arch_vcpu_async_ioctl(struct file *filp, unsigned int ioctl,
 902			       unsigned long arg)
 903{
 904	struct kvm_vcpu *vcpu = filp->private_data;
 905	void __user *argp = (void __user *)arg;
 906
 907	if (ioctl == KVM_INTERRUPT) {
 908		struct kvm_mips_interrupt irq;
 909
 910		if (copy_from_user(&irq, argp, sizeof(irq)))
 911			return -EFAULT;
 912		kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
 913			  irq.irq);
 914
 915		return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
 916	}
 917
 918	return -ENOIOCTLCMD;
 919}
 920
 921long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
 922			 unsigned long arg)
 923{
 924	struct kvm_vcpu *vcpu = filp->private_data;
 925	void __user *argp = (void __user *)arg;
 926	long r;
 927
 928	vcpu_load(vcpu);
 929
 930	switch (ioctl) {
 931	case KVM_SET_ONE_REG:
 932	case KVM_GET_ONE_REG: {
 933		struct kvm_one_reg reg;
 934
 935		r = -EFAULT;
 936		if (copy_from_user(&reg, argp, sizeof(reg)))
 937			break;
 938		if (ioctl == KVM_SET_ONE_REG)
 939			r = kvm_mips_set_reg(vcpu, &reg);
 940		else
 941			r = kvm_mips_get_reg(vcpu, &reg);
 942		break;
 943	}
 944	case KVM_GET_REG_LIST: {
 945		struct kvm_reg_list __user *user_list = argp;
 946		struct kvm_reg_list reg_list;
 947		unsigned n;
 948
 949		r = -EFAULT;
 950		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
 951			break;
 952		n = reg_list.n;
 953		reg_list.n = kvm_mips_num_regs(vcpu);
 954		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
 955			break;
 956		r = -E2BIG;
 957		if (n < reg_list.n)
 958			break;
 959		r = kvm_mips_copy_reg_indices(vcpu, user_list->reg);
 960		break;
 961	}
 962	case KVM_ENABLE_CAP: {
 963		struct kvm_enable_cap cap;
 964
 965		r = -EFAULT;
 966		if (copy_from_user(&cap, argp, sizeof(cap)))
 967			break;
 968		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
 969		break;
 970	}
 971	default:
 972		r = -ENOIOCTLCMD;
 973	}
 974
 975	vcpu_put(vcpu);
 976	return r;
 977}
 978
 979void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
 980{
 981
 982}
 983
 984int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
 985{
 986	kvm_mips_callbacks->prepare_flush_shadow(kvm);
 987	return 1;
 988}
 989
 990int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
 
 991{
 992	int r;
 
 
 
 
 
 993
 994	switch (ioctl) {
 995	default:
 996		r = -ENOIOCTLCMD;
 997	}
 998
 999	return r;
1000}
1001
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1002int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1003				  struct kvm_sregs *sregs)
1004{
1005	return -ENOIOCTLCMD;
1006}
1007
1008int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1009				  struct kvm_sregs *sregs)
1010{
1011	return -ENOIOCTLCMD;
1012}
1013
1014void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1015{
1016}
1017
1018int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1019{
1020	return -ENOIOCTLCMD;
1021}
1022
1023int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1024{
1025	return -ENOIOCTLCMD;
1026}
1027
1028vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1029{
1030	return VM_FAULT_SIGBUS;
1031}
1032
1033int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1034{
1035	int r;
1036
1037	switch (ext) {
1038	case KVM_CAP_ONE_REG:
1039	case KVM_CAP_ENABLE_CAP:
1040	case KVM_CAP_READONLY_MEM:
1041	case KVM_CAP_SYNC_MMU:
1042	case KVM_CAP_IMMEDIATE_EXIT:
1043		r = 1;
1044		break;
1045	case KVM_CAP_NR_VCPUS:
1046		r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
1047		break;
1048	case KVM_CAP_MAX_VCPUS:
1049		r = KVM_MAX_VCPUS;
1050		break;
1051	case KVM_CAP_MAX_VCPU_ID:
1052		r = KVM_MAX_VCPU_IDS;
1053		break;
1054	case KVM_CAP_MIPS_FPU:
1055		/* We don't handle systems with inconsistent cpu_has_fpu */
1056		r = !!raw_cpu_has_fpu;
1057		break;
1058	case KVM_CAP_MIPS_MSA:
1059		/*
1060		 * We don't support MSA vector partitioning yet:
1061		 * 1) It would require explicit support which can't be tested
1062		 *    yet due to lack of support in current hardware.
1063		 * 2) It extends the state that would need to be saved/restored
1064		 *    by e.g. QEMU for migration.
1065		 *
1066		 * When vector partitioning hardware becomes available, support
1067		 * could be added by requiring a flag when enabling
1068		 * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1069		 * to save/restore the appropriate extra state.
1070		 */
1071		r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
1072		break;
1073	default:
1074		r = kvm_mips_callbacks->check_extension(kvm, ext);
1075		break;
1076	}
1077	return r;
1078}
1079
1080int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1081{
1082	return kvm_mips_pending_timer(vcpu) ||
1083		kvm_read_c0_guest_cause(&vcpu->arch.cop0) & C_TI;
1084}
1085
1086int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
1087{
1088	int i;
1089	struct mips_coproc *cop0;
1090
1091	if (!vcpu)
1092		return -1;
1093
1094	kvm_debug("VCPU Register Dump:\n");
1095	kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
1096	kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1097
1098	for (i = 0; i < 32; i += 4) {
1099		kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1100		       vcpu->arch.gprs[i],
1101		       vcpu->arch.gprs[i + 1],
1102		       vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
1103	}
1104	kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
1105	kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1106
1107	cop0 = &vcpu->arch.cop0;
1108	kvm_debug("\tStatus: 0x%08x, Cause: 0x%08x\n",
1109		  kvm_read_c0_guest_status(cop0),
1110		  kvm_read_c0_guest_cause(cop0));
1111
1112	kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1113
1114	return 0;
1115}
1116
1117int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1118{
1119	int i;
1120
1121	vcpu_load(vcpu);
1122
1123	for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1124		vcpu->arch.gprs[i] = regs->gpr[i];
1125	vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1126	vcpu->arch.hi = regs->hi;
1127	vcpu->arch.lo = regs->lo;
1128	vcpu->arch.pc = regs->pc;
1129
1130	vcpu_put(vcpu);
1131	return 0;
1132}
1133
1134int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1135{
1136	int i;
1137
1138	vcpu_load(vcpu);
1139
1140	for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1141		regs->gpr[i] = vcpu->arch.gprs[i];
1142
1143	regs->hi = vcpu->arch.hi;
1144	regs->lo = vcpu->arch.lo;
1145	regs->pc = vcpu->arch.pc;
1146
1147	vcpu_put(vcpu);
1148	return 0;
1149}
1150
1151int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1152				  struct kvm_translation *tr)
1153{
1154	return 0;
1155}
1156
1157static void kvm_mips_set_c0_status(void)
1158{
1159	u32 status = read_c0_status();
1160
1161	if (cpu_has_dsp)
1162		status |= (ST0_MX);
1163
1164	write_c0_status(status);
1165	ehb();
1166}
1167
1168/*
1169 * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1170 */
1171static int __kvm_mips_handle_exit(struct kvm_vcpu *vcpu)
1172{
1173	struct kvm_run *run = vcpu->run;
1174	u32 cause = vcpu->arch.host_cp0_cause;
1175	u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1176	u32 __user *opc = (u32 __user *) vcpu->arch.pc;
1177	unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
1178	enum emulation_result er = EMULATE_DONE;
1179	u32 inst;
1180	int ret = RESUME_GUEST;
1181
1182	vcpu->mode = OUTSIDE_GUEST_MODE;
1183
1184	/* Set a default exit reason */
1185	run->exit_reason = KVM_EXIT_UNKNOWN;
1186	run->ready_for_interrupt_injection = 1;
1187
1188	/*
1189	 * Set the appropriate status bits based on host CPU features,
1190	 * before we hit the scheduler
1191	 */
1192	kvm_mips_set_c0_status();
1193
1194	local_irq_enable();
1195
1196	kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1197			cause, opc, run, vcpu);
1198	trace_kvm_exit(vcpu, exccode);
1199
1200	switch (exccode) {
1201	case EXCCODE_INT:
1202		kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);
1203
1204		++vcpu->stat.int_exits;
1205
1206		if (need_resched())
1207			cond_resched();
1208
1209		ret = RESUME_GUEST;
1210		break;
1211
1212	case EXCCODE_CPU:
1213		kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);
1214
1215		++vcpu->stat.cop_unusable_exits;
1216		ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
1217		/* XXXKYMA: Might need to return to user space */
1218		if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1219			ret = RESUME_HOST;
1220		break;
1221
1222	case EXCCODE_MOD:
1223		++vcpu->stat.tlbmod_exits;
1224		ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
1225		break;
1226
1227	case EXCCODE_TLBS:
1228		kvm_debug("TLB ST fault:  cause %#x, status %#x, PC: %p, BadVaddr: %#lx\n",
1229			  cause, kvm_read_c0_guest_status(&vcpu->arch.cop0), opc,
1230			  badvaddr);
1231
1232		++vcpu->stat.tlbmiss_st_exits;
1233		ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
1234		break;
1235
1236	case EXCCODE_TLBL:
1237		kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1238			  cause, opc, badvaddr);
1239
1240		++vcpu->stat.tlbmiss_ld_exits;
1241		ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
1242		break;
1243
1244	case EXCCODE_ADES:
1245		++vcpu->stat.addrerr_st_exits;
1246		ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
1247		break;
1248
1249	case EXCCODE_ADEL:
1250		++vcpu->stat.addrerr_ld_exits;
1251		ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
1252		break;
1253
1254	case EXCCODE_SYS:
1255		++vcpu->stat.syscall_exits;
1256		ret = kvm_mips_callbacks->handle_syscall(vcpu);
1257		break;
1258
1259	case EXCCODE_RI:
1260		++vcpu->stat.resvd_inst_exits;
1261		ret = kvm_mips_callbacks->handle_res_inst(vcpu);
1262		break;
1263
1264	case EXCCODE_BP:
1265		++vcpu->stat.break_inst_exits;
1266		ret = kvm_mips_callbacks->handle_break(vcpu);
1267		break;
1268
1269	case EXCCODE_TR:
1270		++vcpu->stat.trap_inst_exits;
1271		ret = kvm_mips_callbacks->handle_trap(vcpu);
1272		break;
1273
1274	case EXCCODE_MSAFPE:
1275		++vcpu->stat.msa_fpe_exits;
1276		ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
1277		break;
1278
1279	case EXCCODE_FPE:
1280		++vcpu->stat.fpe_exits;
1281		ret = kvm_mips_callbacks->handle_fpe(vcpu);
1282		break;
1283
1284	case EXCCODE_MSADIS:
1285		++vcpu->stat.msa_disabled_exits;
1286		ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
1287		break;
1288
1289	case EXCCODE_GE:
1290		/* defer exit accounting to handler */
1291		ret = kvm_mips_callbacks->handle_guest_exit(vcpu);
1292		break;
1293
1294	default:
1295		if (cause & CAUSEF_BD)
1296			opc += 1;
1297		inst = 0;
1298		kvm_get_badinstr(opc, vcpu, &inst);
1299		kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x  BadVaddr: %#lx Status: %#x\n",
1300			exccode, opc, inst, badvaddr,
1301			kvm_read_c0_guest_status(&vcpu->arch.cop0));
1302		kvm_arch_vcpu_dump_regs(vcpu);
1303		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1304		ret = RESUME_HOST;
1305		break;
1306
1307	}
1308
1309	local_irq_disable();
1310
1311	if (ret == RESUME_GUEST)
1312		kvm_vz_acquire_htimer(vcpu);
1313
1314	if (er == EMULATE_DONE && !(ret & RESUME_HOST))
1315		kvm_mips_deliver_interrupts(vcpu, cause);
1316
1317	if (!(ret & RESUME_HOST)) {
1318		/* Only check for signals if not already exiting to userspace */
1319		if (signal_pending(current)) {
1320			run->exit_reason = KVM_EXIT_INTR;
1321			ret = (-EINTR << 2) | RESUME_HOST;
1322			++vcpu->stat.signal_exits;
1323			trace_kvm_exit(vcpu, KVM_TRACE_EXIT_SIGNAL);
1324		}
1325	}
1326
1327	if (ret == RESUME_GUEST) {
1328		trace_kvm_reenter(vcpu);
1329
1330		/*
1331		 * Make sure the read of VCPU requests in vcpu_reenter()
1332		 * callback is not reordered ahead of the write to vcpu->mode,
1333		 * or we could miss a TLB flush request while the requester sees
1334		 * the VCPU as outside of guest mode and not needing an IPI.
1335		 */
1336		smp_store_mb(vcpu->mode, IN_GUEST_MODE);
1337
1338		kvm_mips_callbacks->vcpu_reenter(vcpu);
1339
1340		/*
1341		 * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1342		 * is live), restore FCR31 / MSACSR.
1343		 *
1344		 * This should be before returning to the guest exception
1345		 * vector, as it may well cause an [MSA] FP exception if there
1346		 * are pending exception bits unmasked. (see
1347		 * kvm_mips_csr_die_notifier() for how that is handled).
1348		 */
1349		if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
1350		    read_c0_status() & ST0_CU1)
1351			__kvm_restore_fcsr(&vcpu->arch);
1352
1353		if (kvm_mips_guest_has_msa(&vcpu->arch) &&
1354		    read_c0_config5() & MIPS_CONF5_MSAEN)
1355			__kvm_restore_msacsr(&vcpu->arch);
1356	}
1357	return ret;
1358}
1359
1360int noinstr kvm_mips_handle_exit(struct kvm_vcpu *vcpu)
1361{
1362	int ret;
1363
1364	guest_state_exit_irqoff();
1365	ret = __kvm_mips_handle_exit(vcpu);
1366	guest_state_enter_irqoff();
1367
1368	return ret;
1369}
1370
1371/* Enable FPU for guest and restore context */
1372void kvm_own_fpu(struct kvm_vcpu *vcpu)
1373{
1374	struct mips_coproc *cop0 = &vcpu->arch.cop0;
1375	unsigned int sr, cfg5;
1376
1377	preempt_disable();
1378
1379	sr = kvm_read_c0_guest_status(cop0);
1380
1381	/*
1382	 * If MSA state is already live, it is undefined how it interacts with
1383	 * FR=0 FPU state, and we don't want to hit reserved instruction
1384	 * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1385	 * play it safe and save it first.
1386	 */
1387	if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1388	    vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1389		kvm_lose_fpu(vcpu);
1390
1391	/*
1392	 * Enable FPU for guest
1393	 * We set FR and FRE according to guest context
1394	 */
1395	change_c0_status(ST0_CU1 | ST0_FR, sr);
1396	if (cpu_has_fre) {
1397		cfg5 = kvm_read_c0_guest_config5(cop0);
1398		change_c0_config5(MIPS_CONF5_FRE, cfg5);
1399	}
1400	enable_fpu_hazard();
1401
1402	/* If guest FPU state not active, restore it now */
1403	if (!(vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
1404		__kvm_restore_fpu(&vcpu->arch);
1405		vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1406		trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU);
1407	} else {
1408		trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_FPU);
1409	}
1410
1411	preempt_enable();
1412}
1413
1414#ifdef CONFIG_CPU_HAS_MSA
1415/* Enable MSA for guest and restore context */
1416void kvm_own_msa(struct kvm_vcpu *vcpu)
1417{
1418	struct mips_coproc *cop0 = &vcpu->arch.cop0;
1419	unsigned int sr, cfg5;
1420
1421	preempt_disable();
1422
1423	/*
1424	 * Enable FPU if enabled in guest, since we're restoring FPU context
1425	 * anyway. We set FR and FRE according to guest context.
1426	 */
1427	if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1428		sr = kvm_read_c0_guest_status(cop0);
1429
1430		/*
1431		 * If FR=0 FPU state is already live, it is undefined how it
1432		 * interacts with MSA state, so play it safe and save it first.
1433		 */
1434		if (!(sr & ST0_FR) &&
1435		    (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU |
1436				KVM_MIPS_AUX_MSA)) == KVM_MIPS_AUX_FPU)
1437			kvm_lose_fpu(vcpu);
1438
1439		change_c0_status(ST0_CU1 | ST0_FR, sr);
1440		if (sr & ST0_CU1 && cpu_has_fre) {
1441			cfg5 = kvm_read_c0_guest_config5(cop0);
1442			change_c0_config5(MIPS_CONF5_FRE, cfg5);
1443		}
1444	}
1445
1446	/* Enable MSA for guest */
1447	set_c0_config5(MIPS_CONF5_MSAEN);
1448	enable_fpu_hazard();
1449
1450	switch (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA)) {
1451	case KVM_MIPS_AUX_FPU:
1452		/*
1453		 * Guest FPU state already loaded, only restore upper MSA state
1454		 */
1455		__kvm_restore_msa_upper(&vcpu->arch);
1456		vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1457		trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_MSA);
1458		break;
1459	case 0:
1460		/* Neither FPU or MSA already active, restore full MSA state */
1461		__kvm_restore_msa(&vcpu->arch);
1462		vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1463		if (kvm_mips_guest_has_fpu(&vcpu->arch))
1464			vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1465		trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE,
1466			      KVM_TRACE_AUX_FPU_MSA);
1467		break;
1468	default:
1469		trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_MSA);
1470		break;
1471	}
1472
1473	preempt_enable();
1474}
1475#endif
1476
1477/* Drop FPU & MSA without saving it */
1478void kvm_drop_fpu(struct kvm_vcpu *vcpu)
1479{
1480	preempt_disable();
1481	if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1482		disable_msa();
1483		trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_MSA);
1484		vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_MSA;
1485	}
1486	if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1487		clear_c0_status(ST0_CU1 | ST0_FR);
1488		trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_FPU);
1489		vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1490	}
1491	preempt_enable();
1492}
1493
1494/* Save and disable FPU & MSA */
1495void kvm_lose_fpu(struct kvm_vcpu *vcpu)
1496{
1497	/*
1498	 * With T&E, FPU & MSA get disabled in root context (hardware) when it
1499	 * is disabled in guest context (software), but the register state in
1500	 * the hardware may still be in use.
1501	 * This is why we explicitly re-enable the hardware before saving.
1502	 */
1503
1504	preempt_disable();
1505	if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1506		__kvm_save_msa(&vcpu->arch);
1507		trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU_MSA);
1508
1509		/* Disable MSA & FPU */
1510		disable_msa();
1511		if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1512			clear_c0_status(ST0_CU1 | ST0_FR);
1513			disable_fpu_hazard();
1514		}
1515		vcpu->arch.aux_inuse &= ~(KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA);
1516	} else if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1517		__kvm_save_fpu(&vcpu->arch);
1518		vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1519		trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU);
1520
1521		/* Disable FPU */
1522		clear_c0_status(ST0_CU1 | ST0_FR);
1523		disable_fpu_hazard();
1524	}
1525	preempt_enable();
1526}
1527
1528/*
1529 * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1530 * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1531 * exception if cause bits are set in the value being written.
1532 */
1533static int kvm_mips_csr_die_notify(struct notifier_block *self,
1534				   unsigned long cmd, void *ptr)
1535{
1536	struct die_args *args = (struct die_args *)ptr;
1537	struct pt_regs *regs = args->regs;
1538	unsigned long pc;
1539
1540	/* Only interested in FPE and MSAFPE */
1541	if (cmd != DIE_FP && cmd != DIE_MSAFP)
1542		return NOTIFY_DONE;
1543
1544	/* Return immediately if guest context isn't active */
1545	if (!(current->flags & PF_VCPU))
1546		return NOTIFY_DONE;
1547
1548	/* Should never get here from user mode */
1549	BUG_ON(user_mode(regs));
1550
1551	pc = instruction_pointer(regs);
1552	switch (cmd) {
1553	case DIE_FP:
1554		/* match 2nd instruction in __kvm_restore_fcsr */
1555		if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
1556			return NOTIFY_DONE;
1557		break;
1558	case DIE_MSAFP:
1559		/* match 2nd/3rd instruction in __kvm_restore_msacsr */
1560		if (!cpu_has_msa ||
1561		    pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
1562		    pc > (unsigned long)&__kvm_restore_msacsr + 8)
1563			return NOTIFY_DONE;
1564		break;
1565	}
1566
1567	/* Move PC forward a little and continue executing */
1568	instruction_pointer(regs) += 4;
1569
1570	return NOTIFY_STOP;
1571}
1572
1573static struct notifier_block kvm_mips_csr_die_notifier = {
1574	.notifier_call = kvm_mips_csr_die_notify,
1575};
1576
1577static u32 kvm_default_priority_to_irq[MIPS_EXC_MAX] = {
1578	[MIPS_EXC_INT_TIMER] = C_IRQ5,
1579	[MIPS_EXC_INT_IO_1]  = C_IRQ0,
1580	[MIPS_EXC_INT_IPI_1] = C_IRQ1,
1581	[MIPS_EXC_INT_IPI_2] = C_IRQ2,
1582};
1583
1584static u32 kvm_loongson3_priority_to_irq[MIPS_EXC_MAX] = {
1585	[MIPS_EXC_INT_TIMER] = C_IRQ5,
1586	[MIPS_EXC_INT_IO_1]  = C_IRQ0,
1587	[MIPS_EXC_INT_IO_2]  = C_IRQ1,
1588	[MIPS_EXC_INT_IPI_1] = C_IRQ4,
1589};
1590
1591u32 *kvm_priority_to_irq = kvm_default_priority_to_irq;
1592
1593u32 kvm_irq_to_priority(u32 irq)
1594{
1595	int i;
1596
1597	for (i = MIPS_EXC_INT_TIMER; i < MIPS_EXC_MAX; i++) {
1598		if (kvm_priority_to_irq[i] == (1 << (irq + 8)))
1599			return i;
1600	}
1601
1602	return MIPS_EXC_MAX;
1603}
1604
1605static int __init kvm_mips_init(void)
1606{
1607	int ret;
1608
1609	if (cpu_has_mmid) {
1610		pr_warn("KVM does not yet support MMIDs. KVM Disabled\n");
1611		return -EOPNOTSUPP;
1612	}
1613
1614	ret = kvm_mips_entry_setup();
1615	if (ret)
1616		return ret;
1617
1618	ret = kvm_mips_emulation_init();
 
1619	if (ret)
1620		return ret;
1621
1622
1623	if (boot_cpu_type() == CPU_LOONGSON64)
1624		kvm_priority_to_irq = kvm_loongson3_priority_to_irq;
1625
1626	register_die_notifier(&kvm_mips_csr_die_notifier);
1627
1628	ret = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1629	if (ret) {
1630		unregister_die_notifier(&kvm_mips_csr_die_notifier);
1631		return ret;
1632	}
1633	return 0;
1634}
1635
1636static void __exit kvm_mips_exit(void)
1637{
1638	kvm_exit();
1639
1640	unregister_die_notifier(&kvm_mips_csr_die_notifier);
1641}
1642
1643module_init(kvm_mips_init);
1644module_exit(kvm_mips_exit);
1645
1646EXPORT_TRACEPOINT_SYMBOL(kvm_exit);
v6.2
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * KVM/MIPS: MIPS specific KVM APIs
   7 *
   8 * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
   9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
  10 */
  11
  12#include <linux/bitops.h>
  13#include <linux/errno.h>
  14#include <linux/err.h>
  15#include <linux/kdebug.h>
  16#include <linux/module.h>
  17#include <linux/uaccess.h>
  18#include <linux/vmalloc.h>
  19#include <linux/sched/signal.h>
  20#include <linux/fs.h>
  21#include <linux/memblock.h>
  22#include <linux/pgtable.h>
  23
  24#include <asm/fpu.h>
  25#include <asm/page.h>
  26#include <asm/cacheflush.h>
  27#include <asm/mmu_context.h>
  28#include <asm/pgalloc.h>
  29
  30#include <linux/kvm_host.h>
  31
  32#include "interrupt.h"
  33
  34#define CREATE_TRACE_POINTS
  35#include "trace.h"
  36
  37#ifndef VECTORSPACING
  38#define VECTORSPACING 0x100	/* for EI/VI mode */
  39#endif
  40
  41const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
  42	KVM_GENERIC_VM_STATS()
  43};
  44
  45const struct kvm_stats_header kvm_vm_stats_header = {
  46	.name_size = KVM_STATS_NAME_SIZE,
  47	.num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
  48	.id_offset = sizeof(struct kvm_stats_header),
  49	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
  50	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
  51		       sizeof(kvm_vm_stats_desc),
  52};
  53
  54const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
  55	KVM_GENERIC_VCPU_STATS(),
  56	STATS_DESC_COUNTER(VCPU, wait_exits),
  57	STATS_DESC_COUNTER(VCPU, cache_exits),
  58	STATS_DESC_COUNTER(VCPU, signal_exits),
  59	STATS_DESC_COUNTER(VCPU, int_exits),
  60	STATS_DESC_COUNTER(VCPU, cop_unusable_exits),
  61	STATS_DESC_COUNTER(VCPU, tlbmod_exits),
  62	STATS_DESC_COUNTER(VCPU, tlbmiss_ld_exits),
  63	STATS_DESC_COUNTER(VCPU, tlbmiss_st_exits),
  64	STATS_DESC_COUNTER(VCPU, addrerr_st_exits),
  65	STATS_DESC_COUNTER(VCPU, addrerr_ld_exits),
  66	STATS_DESC_COUNTER(VCPU, syscall_exits),
  67	STATS_DESC_COUNTER(VCPU, resvd_inst_exits),
  68	STATS_DESC_COUNTER(VCPU, break_inst_exits),
  69	STATS_DESC_COUNTER(VCPU, trap_inst_exits),
  70	STATS_DESC_COUNTER(VCPU, msa_fpe_exits),
  71	STATS_DESC_COUNTER(VCPU, fpe_exits),
  72	STATS_DESC_COUNTER(VCPU, msa_disabled_exits),
  73	STATS_DESC_COUNTER(VCPU, flush_dcache_exits),
  74	STATS_DESC_COUNTER(VCPU, vz_gpsi_exits),
  75	STATS_DESC_COUNTER(VCPU, vz_gsfc_exits),
  76	STATS_DESC_COUNTER(VCPU, vz_hc_exits),
  77	STATS_DESC_COUNTER(VCPU, vz_grr_exits),
  78	STATS_DESC_COUNTER(VCPU, vz_gva_exits),
  79	STATS_DESC_COUNTER(VCPU, vz_ghfc_exits),
  80	STATS_DESC_COUNTER(VCPU, vz_gpa_exits),
  81	STATS_DESC_COUNTER(VCPU, vz_resvd_exits),
  82#ifdef CONFIG_CPU_LOONGSON64
  83	STATS_DESC_COUNTER(VCPU, vz_cpucfg_exits),
  84#endif
  85};
  86
  87const struct kvm_stats_header kvm_vcpu_stats_header = {
  88	.name_size = KVM_STATS_NAME_SIZE,
  89	.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
  90	.id_offset = sizeof(struct kvm_stats_header),
  91	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
  92	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
  93		       sizeof(kvm_vcpu_stats_desc),
  94};
  95
  96bool kvm_trace_guest_mode_change;
  97
  98int kvm_guest_mode_change_trace_reg(void)
  99{
 100	kvm_trace_guest_mode_change = true;
 101	return 0;
 102}
 103
 104void kvm_guest_mode_change_trace_unreg(void)
 105{
 106	kvm_trace_guest_mode_change = false;
 107}
 108
 109/*
 110 * XXXKYMA: We are simulatoring a processor that has the WII bit set in
 111 * Config7, so we are "runnable" if interrupts are pending
 112 */
 113int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
 114{
 115	return !!(vcpu->arch.pending_exceptions);
 116}
 117
 118bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
 119{
 120	return false;
 121}
 122
 123int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
 124{
 125	return 1;
 126}
 127
 128int kvm_arch_hardware_enable(void)
 129{
 130	return kvm_mips_callbacks->hardware_enable();
 131}
 132
 133void kvm_arch_hardware_disable(void)
 134{
 135	kvm_mips_callbacks->hardware_disable();
 136}
 137
 138int kvm_arch_hardware_setup(void *opaque)
 139{
 140	return 0;
 141}
 142
 143int kvm_arch_check_processor_compat(void *opaque)
 144{
 145	return 0;
 146}
 147
 148extern void kvm_init_loongson_ipi(struct kvm *kvm);
 149
 150int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
 151{
 152	switch (type) {
 153	case KVM_VM_MIPS_AUTO:
 154		break;
 155	case KVM_VM_MIPS_VZ:
 156		break;
 157	default:
 158		/* Unsupported KVM type */
 159		return -EINVAL;
 160	}
 161
 162	/* Allocate page table to map GPA -> RPA */
 163	kvm->arch.gpa_mm.pgd = kvm_pgd_alloc();
 164	if (!kvm->arch.gpa_mm.pgd)
 165		return -ENOMEM;
 166
 167#ifdef CONFIG_CPU_LOONGSON64
 168	kvm_init_loongson_ipi(kvm);
 169#endif
 170
 171	return 0;
 172}
 173
 174static void kvm_mips_free_gpa_pt(struct kvm *kvm)
 175{
 176	/* It should always be safe to remove after flushing the whole range */
 177	WARN_ON(!kvm_mips_flush_gpa_pt(kvm, 0, ~0));
 178	pgd_free(NULL, kvm->arch.gpa_mm.pgd);
 179}
 180
 181void kvm_arch_destroy_vm(struct kvm *kvm)
 182{
 183	kvm_destroy_vcpus(kvm);
 184	kvm_mips_free_gpa_pt(kvm);
 185}
 186
 187long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
 188			unsigned long arg)
 189{
 190	return -ENOIOCTLCMD;
 191}
 192
 193void kvm_arch_flush_shadow_all(struct kvm *kvm)
 194{
 195	/* Flush whole GPA */
 196	kvm_mips_flush_gpa_pt(kvm, 0, ~0);
 197	kvm_flush_remote_tlbs(kvm);
 198}
 199
 200void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
 201				   struct kvm_memory_slot *slot)
 202{
 203	/*
 204	 * The slot has been made invalid (ready for moving or deletion), so we
 205	 * need to ensure that it can no longer be accessed by any guest VCPUs.
 206	 */
 207
 208	spin_lock(&kvm->mmu_lock);
 209	/* Flush slot from GPA */
 210	kvm_mips_flush_gpa_pt(kvm, slot->base_gfn,
 211			      slot->base_gfn + slot->npages - 1);
 212	kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
 213	spin_unlock(&kvm->mmu_lock);
 214}
 215
 216int kvm_arch_prepare_memory_region(struct kvm *kvm,
 217				   const struct kvm_memory_slot *old,
 218				   struct kvm_memory_slot *new,
 219				   enum kvm_mr_change change)
 220{
 221	return 0;
 222}
 223
 224void kvm_arch_commit_memory_region(struct kvm *kvm,
 225				   struct kvm_memory_slot *old,
 226				   const struct kvm_memory_slot *new,
 227				   enum kvm_mr_change change)
 228{
 229	int needs_flush;
 230
 231	/*
 232	 * If dirty page logging is enabled, write protect all pages in the slot
 233	 * ready for dirty logging.
 234	 *
 235	 * There is no need to do this in any of the following cases:
 236	 * CREATE:	No dirty mappings will already exist.
 237	 * MOVE/DELETE:	The old mappings will already have been cleaned up by
 238	 *		kvm_arch_flush_shadow_memslot()
 239	 */
 240	if (change == KVM_MR_FLAGS_ONLY &&
 241	    (!(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
 242	     new->flags & KVM_MEM_LOG_DIRTY_PAGES)) {
 243		spin_lock(&kvm->mmu_lock);
 244		/* Write protect GPA page table entries */
 245		needs_flush = kvm_mips_mkclean_gpa_pt(kvm, new->base_gfn,
 246					new->base_gfn + new->npages - 1);
 247		if (needs_flush)
 248			kvm_arch_flush_remote_tlbs_memslot(kvm, new);
 249		spin_unlock(&kvm->mmu_lock);
 250	}
 251}
 252
 253static inline void dump_handler(const char *symbol, void *start, void *end)
 254{
 255	u32 *p;
 256
 257	pr_debug("LEAF(%s)\n", symbol);
 258
 259	pr_debug("\t.set push\n");
 260	pr_debug("\t.set noreorder\n");
 261
 262	for (p = start; p < (u32 *)end; ++p)
 263		pr_debug("\t.word\t0x%08x\t\t# %p\n", *p, p);
 264
 265	pr_debug("\t.set\tpop\n");
 266
 267	pr_debug("\tEND(%s)\n", symbol);
 268}
 269
 270/* low level hrtimer wake routine */
 271static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
 272{
 273	struct kvm_vcpu *vcpu;
 274
 275	vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
 276
 277	kvm_mips_callbacks->queue_timer_int(vcpu);
 278
 279	vcpu->arch.wait = 0;
 280	rcuwait_wake_up(&vcpu->wait);
 281
 282	return kvm_mips_count_timeout(vcpu);
 283}
 284
 285int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
 286{
 287	return 0;
 288}
 289
 290int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
 291{
 292	int err, size;
 293	void *gebase, *p, *handler, *refill_start, *refill_end;
 294	int i;
 295
 296	kvm_debug("kvm @ %p: create cpu %d at %p\n",
 297		  vcpu->kvm, vcpu->vcpu_id, vcpu);
 298
 299	err = kvm_mips_callbacks->vcpu_init(vcpu);
 300	if (err)
 301		return err;
 302
 303	hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
 304		     HRTIMER_MODE_REL);
 305	vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
 306
 307	/*
 308	 * Allocate space for host mode exception handlers that handle
 309	 * guest mode exits
 310	 */
 311	if (cpu_has_veic || cpu_has_vint)
 312		size = 0x200 + VECTORSPACING * 64;
 313	else
 314		size = 0x4000;
 315
 316	gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
 317
 318	if (!gebase) {
 319		err = -ENOMEM;
 320		goto out_uninit_vcpu;
 321	}
 322	kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
 323		  ALIGN(size, PAGE_SIZE), gebase);
 324
 325	/*
 326	 * Check new ebase actually fits in CP0_EBase. The lack of a write gate
 327	 * limits us to the low 512MB of physical address space. If the memory
 328	 * we allocate is out of range, just give up now.
 329	 */
 330	if (!cpu_has_ebase_wg && virt_to_phys(gebase) >= 0x20000000) {
 331		kvm_err("CP0_EBase.WG required for guest exception base %pK\n",
 332			gebase);
 333		err = -ENOMEM;
 334		goto out_free_gebase;
 335	}
 336
 337	/* Save new ebase */
 338	vcpu->arch.guest_ebase = gebase;
 339
 340	/* Build guest exception vectors dynamically in unmapped memory */
 341	handler = gebase + 0x2000;
 342
 343	/* TLB refill (or XTLB refill on 64-bit VZ where KX=1) */
 344	refill_start = gebase;
 345	if (IS_ENABLED(CONFIG_64BIT))
 346		refill_start += 0x080;
 347	refill_end = kvm_mips_build_tlb_refill_exception(refill_start, handler);
 348
 349	/* General Exception Entry point */
 350	kvm_mips_build_exception(gebase + 0x180, handler);
 351
 352	/* For vectored interrupts poke the exception code @ all offsets 0-7 */
 353	for (i = 0; i < 8; i++) {
 354		kvm_debug("L1 Vectored handler @ %p\n",
 355			  gebase + 0x200 + (i * VECTORSPACING));
 356		kvm_mips_build_exception(gebase + 0x200 + i * VECTORSPACING,
 357					 handler);
 358	}
 359
 360	/* General exit handler */
 361	p = handler;
 362	p = kvm_mips_build_exit(p);
 363
 364	/* Guest entry routine */
 365	vcpu->arch.vcpu_run = p;
 366	p = kvm_mips_build_vcpu_run(p);
 367
 368	/* Dump the generated code */
 369	pr_debug("#include <asm/asm.h>\n");
 370	pr_debug("#include <asm/regdef.h>\n");
 371	pr_debug("\n");
 372	dump_handler("kvm_vcpu_run", vcpu->arch.vcpu_run, p);
 373	dump_handler("kvm_tlb_refill", refill_start, refill_end);
 374	dump_handler("kvm_gen_exc", gebase + 0x180, gebase + 0x200);
 375	dump_handler("kvm_exit", gebase + 0x2000, vcpu->arch.vcpu_run);
 376
 377	/* Invalidate the icache for these ranges */
 378	flush_icache_range((unsigned long)gebase,
 379			   (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
 380
 381	/* Init */
 382	vcpu->arch.last_sched_cpu = -1;
 383	vcpu->arch.last_exec_cpu = -1;
 384
 385	/* Initial guest state */
 386	err = kvm_mips_callbacks->vcpu_setup(vcpu);
 387	if (err)
 388		goto out_free_gebase;
 389
 390	return 0;
 391
 392out_free_gebase:
 393	kfree(gebase);
 394out_uninit_vcpu:
 395	kvm_mips_callbacks->vcpu_uninit(vcpu);
 396	return err;
 397}
 398
 399void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
 400{
 401	hrtimer_cancel(&vcpu->arch.comparecount_timer);
 402
 403	kvm_mips_dump_stats(vcpu);
 404
 405	kvm_mmu_free_memory_caches(vcpu);
 406	kfree(vcpu->arch.guest_ebase);
 407
 408	kvm_mips_callbacks->vcpu_uninit(vcpu);
 409}
 410
 411int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
 412					struct kvm_guest_debug *dbg)
 413{
 414	return -ENOIOCTLCMD;
 415}
 416
 417/*
 418 * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while
 419 * the vCPU is running.
 420 *
 421 * This must be noinstr as instrumentation may make use of RCU, and this is not
 422 * safe during the EQS.
 423 */
 424static int noinstr kvm_mips_vcpu_enter_exit(struct kvm_vcpu *vcpu)
 425{
 426	int ret;
 427
 428	guest_state_enter_irqoff();
 429	ret = kvm_mips_callbacks->vcpu_run(vcpu);
 430	guest_state_exit_irqoff();
 431
 432	return ret;
 433}
 434
 435int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
 436{
 437	int r = -EINTR;
 438
 439	vcpu_load(vcpu);
 440
 441	kvm_sigset_activate(vcpu);
 442
 443	if (vcpu->mmio_needed) {
 444		if (!vcpu->mmio_is_write)
 445			kvm_mips_complete_mmio_load(vcpu);
 446		vcpu->mmio_needed = 0;
 447	}
 448
 449	if (vcpu->run->immediate_exit)
 450		goto out;
 451
 452	lose_fpu(1);
 453
 454	local_irq_disable();
 455	guest_timing_enter_irqoff();
 456	trace_kvm_enter(vcpu);
 457
 458	/*
 459	 * Make sure the read of VCPU requests in vcpu_run() callback is not
 460	 * reordered ahead of the write to vcpu->mode, or we could miss a TLB
 461	 * flush request while the requester sees the VCPU as outside of guest
 462	 * mode and not needing an IPI.
 463	 */
 464	smp_store_mb(vcpu->mode, IN_GUEST_MODE);
 465
 466	r = kvm_mips_vcpu_enter_exit(vcpu);
 467
 468	/*
 469	 * We must ensure that any pending interrupts are taken before
 470	 * we exit guest timing so that timer ticks are accounted as
 471	 * guest time. Transiently unmask interrupts so that any
 472	 * pending interrupts are taken.
 473	 *
 474	 * TODO: is there a barrier which ensures that pending interrupts are
 475	 * recognised? Currently this just hopes that the CPU takes any pending
 476	 * interrupts between the enable and disable.
 477	 */
 478	local_irq_enable();
 479	local_irq_disable();
 480
 481	trace_kvm_out(vcpu);
 482	guest_timing_exit_irqoff();
 483	local_irq_enable();
 484
 485out:
 486	kvm_sigset_deactivate(vcpu);
 487
 488	vcpu_put(vcpu);
 489	return r;
 490}
 491
 492int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
 493			     struct kvm_mips_interrupt *irq)
 494{
 495	int intr = (int)irq->irq;
 496	struct kvm_vcpu *dvcpu = NULL;
 497
 498	if (intr == kvm_priority_to_irq[MIPS_EXC_INT_IPI_1] ||
 499	    intr == kvm_priority_to_irq[MIPS_EXC_INT_IPI_2] ||
 500	    intr == (-kvm_priority_to_irq[MIPS_EXC_INT_IPI_1]) ||
 501	    intr == (-kvm_priority_to_irq[MIPS_EXC_INT_IPI_2]))
 502		kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
 503			  (int)intr);
 504
 505	if (irq->cpu == -1)
 506		dvcpu = vcpu;
 507	else
 508		dvcpu = kvm_get_vcpu(vcpu->kvm, irq->cpu);
 509
 510	if (intr == 2 || intr == 3 || intr == 4 || intr == 6) {
 511		kvm_mips_callbacks->queue_io_int(dvcpu, irq);
 512
 513	} else if (intr == -2 || intr == -3 || intr == -4 || intr == -6) {
 514		kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
 515	} else {
 516		kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
 517			irq->cpu, irq->irq);
 518		return -EINVAL;
 519	}
 520
 521	dvcpu->arch.wait = 0;
 522
 523	rcuwait_wake_up(&dvcpu->wait);
 524
 525	return 0;
 526}
 527
 528int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
 529				    struct kvm_mp_state *mp_state)
 530{
 531	return -ENOIOCTLCMD;
 532}
 533
 534int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
 535				    struct kvm_mp_state *mp_state)
 536{
 537	return -ENOIOCTLCMD;
 538}
 539
 540static u64 kvm_mips_get_one_regs[] = {
 541	KVM_REG_MIPS_R0,
 542	KVM_REG_MIPS_R1,
 543	KVM_REG_MIPS_R2,
 544	KVM_REG_MIPS_R3,
 545	KVM_REG_MIPS_R4,
 546	KVM_REG_MIPS_R5,
 547	KVM_REG_MIPS_R6,
 548	KVM_REG_MIPS_R7,
 549	KVM_REG_MIPS_R8,
 550	KVM_REG_MIPS_R9,
 551	KVM_REG_MIPS_R10,
 552	KVM_REG_MIPS_R11,
 553	KVM_REG_MIPS_R12,
 554	KVM_REG_MIPS_R13,
 555	KVM_REG_MIPS_R14,
 556	KVM_REG_MIPS_R15,
 557	KVM_REG_MIPS_R16,
 558	KVM_REG_MIPS_R17,
 559	KVM_REG_MIPS_R18,
 560	KVM_REG_MIPS_R19,
 561	KVM_REG_MIPS_R20,
 562	KVM_REG_MIPS_R21,
 563	KVM_REG_MIPS_R22,
 564	KVM_REG_MIPS_R23,
 565	KVM_REG_MIPS_R24,
 566	KVM_REG_MIPS_R25,
 567	KVM_REG_MIPS_R26,
 568	KVM_REG_MIPS_R27,
 569	KVM_REG_MIPS_R28,
 570	KVM_REG_MIPS_R29,
 571	KVM_REG_MIPS_R30,
 572	KVM_REG_MIPS_R31,
 573
 574#ifndef CONFIG_CPU_MIPSR6
 575	KVM_REG_MIPS_HI,
 576	KVM_REG_MIPS_LO,
 577#endif
 578	KVM_REG_MIPS_PC,
 579};
 580
 581static u64 kvm_mips_get_one_regs_fpu[] = {
 582	KVM_REG_MIPS_FCR_IR,
 583	KVM_REG_MIPS_FCR_CSR,
 584};
 585
 586static u64 kvm_mips_get_one_regs_msa[] = {
 587	KVM_REG_MIPS_MSA_IR,
 588	KVM_REG_MIPS_MSA_CSR,
 589};
 590
 591static unsigned long kvm_mips_num_regs(struct kvm_vcpu *vcpu)
 592{
 593	unsigned long ret;
 594
 595	ret = ARRAY_SIZE(kvm_mips_get_one_regs);
 596	if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
 597		ret += ARRAY_SIZE(kvm_mips_get_one_regs_fpu) + 48;
 598		/* odd doubles */
 599		if (boot_cpu_data.fpu_id & MIPS_FPIR_F64)
 600			ret += 16;
 601	}
 602	if (kvm_mips_guest_can_have_msa(&vcpu->arch))
 603		ret += ARRAY_SIZE(kvm_mips_get_one_regs_msa) + 32;
 604	ret += kvm_mips_callbacks->num_regs(vcpu);
 605
 606	return ret;
 607}
 608
 609static int kvm_mips_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
 610{
 611	u64 index;
 612	unsigned int i;
 613
 614	if (copy_to_user(indices, kvm_mips_get_one_regs,
 615			 sizeof(kvm_mips_get_one_regs)))
 616		return -EFAULT;
 617	indices += ARRAY_SIZE(kvm_mips_get_one_regs);
 618
 619	if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
 620		if (copy_to_user(indices, kvm_mips_get_one_regs_fpu,
 621				 sizeof(kvm_mips_get_one_regs_fpu)))
 622			return -EFAULT;
 623		indices += ARRAY_SIZE(kvm_mips_get_one_regs_fpu);
 624
 625		for (i = 0; i < 32; ++i) {
 626			index = KVM_REG_MIPS_FPR_32(i);
 627			if (copy_to_user(indices, &index, sizeof(index)))
 628				return -EFAULT;
 629			++indices;
 630
 631			/* skip odd doubles if no F64 */
 632			if (i & 1 && !(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
 633				continue;
 634
 635			index = KVM_REG_MIPS_FPR_64(i);
 636			if (copy_to_user(indices, &index, sizeof(index)))
 637				return -EFAULT;
 638			++indices;
 639		}
 640	}
 641
 642	if (kvm_mips_guest_can_have_msa(&vcpu->arch)) {
 643		if (copy_to_user(indices, kvm_mips_get_one_regs_msa,
 644				 sizeof(kvm_mips_get_one_regs_msa)))
 645			return -EFAULT;
 646		indices += ARRAY_SIZE(kvm_mips_get_one_regs_msa);
 647
 648		for (i = 0; i < 32; ++i) {
 649			index = KVM_REG_MIPS_VEC_128(i);
 650			if (copy_to_user(indices, &index, sizeof(index)))
 651				return -EFAULT;
 652			++indices;
 653		}
 654	}
 655
 656	return kvm_mips_callbacks->copy_reg_indices(vcpu, indices);
 657}
 658
 659static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
 660			    const struct kvm_one_reg *reg)
 661{
 662	struct mips_coproc *cop0 = vcpu->arch.cop0;
 663	struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
 664	int ret;
 665	s64 v;
 666	s64 vs[2];
 667	unsigned int idx;
 668
 669	switch (reg->id) {
 670	/* General purpose registers */
 671	case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
 672		v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
 673		break;
 674#ifndef CONFIG_CPU_MIPSR6
 675	case KVM_REG_MIPS_HI:
 676		v = (long)vcpu->arch.hi;
 677		break;
 678	case KVM_REG_MIPS_LO:
 679		v = (long)vcpu->arch.lo;
 680		break;
 681#endif
 682	case KVM_REG_MIPS_PC:
 683		v = (long)vcpu->arch.pc;
 684		break;
 685
 686	/* Floating point registers */
 687	case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
 688		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 689			return -EINVAL;
 690		idx = reg->id - KVM_REG_MIPS_FPR_32(0);
 691		/* Odd singles in top of even double when FR=0 */
 692		if (kvm_read_c0_guest_status(cop0) & ST0_FR)
 693			v = get_fpr32(&fpu->fpr[idx], 0);
 694		else
 695			v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
 696		break;
 697	case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
 698		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 699			return -EINVAL;
 700		idx = reg->id - KVM_REG_MIPS_FPR_64(0);
 701		/* Can't access odd doubles in FR=0 mode */
 702		if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
 703			return -EINVAL;
 704		v = get_fpr64(&fpu->fpr[idx], 0);
 705		break;
 706	case KVM_REG_MIPS_FCR_IR:
 707		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 708			return -EINVAL;
 709		v = boot_cpu_data.fpu_id;
 710		break;
 711	case KVM_REG_MIPS_FCR_CSR:
 712		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 713			return -EINVAL;
 714		v = fpu->fcr31;
 715		break;
 716
 717	/* MIPS SIMD Architecture (MSA) registers */
 718	case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
 719		if (!kvm_mips_guest_has_msa(&vcpu->arch))
 720			return -EINVAL;
 721		/* Can't access MSA registers in FR=0 mode */
 722		if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
 723			return -EINVAL;
 724		idx = reg->id - KVM_REG_MIPS_VEC_128(0);
 725#ifdef CONFIG_CPU_LITTLE_ENDIAN
 726		/* least significant byte first */
 727		vs[0] = get_fpr64(&fpu->fpr[idx], 0);
 728		vs[1] = get_fpr64(&fpu->fpr[idx], 1);
 729#else
 730		/* most significant byte first */
 731		vs[0] = get_fpr64(&fpu->fpr[idx], 1);
 732		vs[1] = get_fpr64(&fpu->fpr[idx], 0);
 733#endif
 734		break;
 735	case KVM_REG_MIPS_MSA_IR:
 736		if (!kvm_mips_guest_has_msa(&vcpu->arch))
 737			return -EINVAL;
 738		v = boot_cpu_data.msa_id;
 739		break;
 740	case KVM_REG_MIPS_MSA_CSR:
 741		if (!kvm_mips_guest_has_msa(&vcpu->arch))
 742			return -EINVAL;
 743		v = fpu->msacsr;
 744		break;
 745
 746	/* registers to be handled specially */
 747	default:
 748		ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
 749		if (ret)
 750			return ret;
 751		break;
 752	}
 753	if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
 754		u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
 755
 756		return put_user(v, uaddr64);
 757	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
 758		u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
 759		u32 v32 = (u32)v;
 760
 761		return put_user(v32, uaddr32);
 762	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
 763		void __user *uaddr = (void __user *)(long)reg->addr;
 764
 765		return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
 766	} else {
 767		return -EINVAL;
 768	}
 769}
 770
 771static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
 772			    const struct kvm_one_reg *reg)
 773{
 774	struct mips_coproc *cop0 = vcpu->arch.cop0;
 775	struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
 776	s64 v;
 777	s64 vs[2];
 778	unsigned int idx;
 779
 780	if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
 781		u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
 782
 783		if (get_user(v, uaddr64) != 0)
 784			return -EFAULT;
 785	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
 786		u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
 787		s32 v32;
 788
 789		if (get_user(v32, uaddr32) != 0)
 790			return -EFAULT;
 791		v = (s64)v32;
 792	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
 793		void __user *uaddr = (void __user *)(long)reg->addr;
 794
 795		return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
 796	} else {
 797		return -EINVAL;
 798	}
 799
 800	switch (reg->id) {
 801	/* General purpose registers */
 802	case KVM_REG_MIPS_R0:
 803		/* Silently ignore requests to set $0 */
 804		break;
 805	case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
 806		vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
 807		break;
 808#ifndef CONFIG_CPU_MIPSR6
 809	case KVM_REG_MIPS_HI:
 810		vcpu->arch.hi = v;
 811		break;
 812	case KVM_REG_MIPS_LO:
 813		vcpu->arch.lo = v;
 814		break;
 815#endif
 816	case KVM_REG_MIPS_PC:
 817		vcpu->arch.pc = v;
 818		break;
 819
 820	/* Floating point registers */
 821	case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
 822		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 823			return -EINVAL;
 824		idx = reg->id - KVM_REG_MIPS_FPR_32(0);
 825		/* Odd singles in top of even double when FR=0 */
 826		if (kvm_read_c0_guest_status(cop0) & ST0_FR)
 827			set_fpr32(&fpu->fpr[idx], 0, v);
 828		else
 829			set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
 830		break;
 831	case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
 832		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 833			return -EINVAL;
 834		idx = reg->id - KVM_REG_MIPS_FPR_64(0);
 835		/* Can't access odd doubles in FR=0 mode */
 836		if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
 837			return -EINVAL;
 838		set_fpr64(&fpu->fpr[idx], 0, v);
 839		break;
 840	case KVM_REG_MIPS_FCR_IR:
 841		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 842			return -EINVAL;
 843		/* Read-only */
 844		break;
 845	case KVM_REG_MIPS_FCR_CSR:
 846		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 847			return -EINVAL;
 848		fpu->fcr31 = v;
 849		break;
 850
 851	/* MIPS SIMD Architecture (MSA) registers */
 852	case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
 853		if (!kvm_mips_guest_has_msa(&vcpu->arch))
 854			return -EINVAL;
 855		idx = reg->id - KVM_REG_MIPS_VEC_128(0);
 856#ifdef CONFIG_CPU_LITTLE_ENDIAN
 857		/* least significant byte first */
 858		set_fpr64(&fpu->fpr[idx], 0, vs[0]);
 859		set_fpr64(&fpu->fpr[idx], 1, vs[1]);
 860#else
 861		/* most significant byte first */
 862		set_fpr64(&fpu->fpr[idx], 1, vs[0]);
 863		set_fpr64(&fpu->fpr[idx], 0, vs[1]);
 864#endif
 865		break;
 866	case KVM_REG_MIPS_MSA_IR:
 867		if (!kvm_mips_guest_has_msa(&vcpu->arch))
 868			return -EINVAL;
 869		/* Read-only */
 870		break;
 871	case KVM_REG_MIPS_MSA_CSR:
 872		if (!kvm_mips_guest_has_msa(&vcpu->arch))
 873			return -EINVAL;
 874		fpu->msacsr = v;
 875		break;
 876
 877	/* registers to be handled specially */
 878	default:
 879		return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
 880	}
 881	return 0;
 882}
 883
 884static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
 885				     struct kvm_enable_cap *cap)
 886{
 887	int r = 0;
 888
 889	if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
 890		return -EINVAL;
 891	if (cap->flags)
 892		return -EINVAL;
 893	if (cap->args[0])
 894		return -EINVAL;
 895
 896	switch (cap->cap) {
 897	case KVM_CAP_MIPS_FPU:
 898		vcpu->arch.fpu_enabled = true;
 899		break;
 900	case KVM_CAP_MIPS_MSA:
 901		vcpu->arch.msa_enabled = true;
 902		break;
 903	default:
 904		r = -EINVAL;
 905		break;
 906	}
 907
 908	return r;
 909}
 910
 911long kvm_arch_vcpu_async_ioctl(struct file *filp, unsigned int ioctl,
 912			       unsigned long arg)
 913{
 914	struct kvm_vcpu *vcpu = filp->private_data;
 915	void __user *argp = (void __user *)arg;
 916
 917	if (ioctl == KVM_INTERRUPT) {
 918		struct kvm_mips_interrupt irq;
 919
 920		if (copy_from_user(&irq, argp, sizeof(irq)))
 921			return -EFAULT;
 922		kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
 923			  irq.irq);
 924
 925		return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
 926	}
 927
 928	return -ENOIOCTLCMD;
 929}
 930
 931long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
 932			 unsigned long arg)
 933{
 934	struct kvm_vcpu *vcpu = filp->private_data;
 935	void __user *argp = (void __user *)arg;
 936	long r;
 937
 938	vcpu_load(vcpu);
 939
 940	switch (ioctl) {
 941	case KVM_SET_ONE_REG:
 942	case KVM_GET_ONE_REG: {
 943		struct kvm_one_reg reg;
 944
 945		r = -EFAULT;
 946		if (copy_from_user(&reg, argp, sizeof(reg)))
 947			break;
 948		if (ioctl == KVM_SET_ONE_REG)
 949			r = kvm_mips_set_reg(vcpu, &reg);
 950		else
 951			r = kvm_mips_get_reg(vcpu, &reg);
 952		break;
 953	}
 954	case KVM_GET_REG_LIST: {
 955		struct kvm_reg_list __user *user_list = argp;
 956		struct kvm_reg_list reg_list;
 957		unsigned n;
 958
 959		r = -EFAULT;
 960		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
 961			break;
 962		n = reg_list.n;
 963		reg_list.n = kvm_mips_num_regs(vcpu);
 964		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
 965			break;
 966		r = -E2BIG;
 967		if (n < reg_list.n)
 968			break;
 969		r = kvm_mips_copy_reg_indices(vcpu, user_list->reg);
 970		break;
 971	}
 972	case KVM_ENABLE_CAP: {
 973		struct kvm_enable_cap cap;
 974
 975		r = -EFAULT;
 976		if (copy_from_user(&cap, argp, sizeof(cap)))
 977			break;
 978		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
 979		break;
 980	}
 981	default:
 982		r = -ENOIOCTLCMD;
 983	}
 984
 985	vcpu_put(vcpu);
 986	return r;
 987}
 988
 989void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
 990{
 991
 992}
 993
 994int kvm_arch_flush_remote_tlb(struct kvm *kvm)
 995{
 996	kvm_mips_callbacks->prepare_flush_shadow(kvm);
 997	return 1;
 998}
 999
1000void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1001					const struct kvm_memory_slot *memslot)
1002{
1003	kvm_flush_remote_tlbs(kvm);
1004}
1005
1006long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1007{
1008	long r;
1009
1010	switch (ioctl) {
1011	default:
1012		r = -ENOIOCTLCMD;
1013	}
1014
1015	return r;
1016}
1017
1018int kvm_arch_init(void *opaque)
1019{
1020	if (kvm_mips_callbacks) {
1021		kvm_err("kvm: module already exists\n");
1022		return -EEXIST;
1023	}
1024
1025	return kvm_mips_emulation_init(&kvm_mips_callbacks);
1026}
1027
1028void kvm_arch_exit(void)
1029{
1030	kvm_mips_callbacks = NULL;
1031}
1032
1033int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1034				  struct kvm_sregs *sregs)
1035{
1036	return -ENOIOCTLCMD;
1037}
1038
1039int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1040				  struct kvm_sregs *sregs)
1041{
1042	return -ENOIOCTLCMD;
1043}
1044
1045void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1046{
1047}
1048
1049int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1050{
1051	return -ENOIOCTLCMD;
1052}
1053
1054int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1055{
1056	return -ENOIOCTLCMD;
1057}
1058
1059vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1060{
1061	return VM_FAULT_SIGBUS;
1062}
1063
1064int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1065{
1066	int r;
1067
1068	switch (ext) {
1069	case KVM_CAP_ONE_REG:
1070	case KVM_CAP_ENABLE_CAP:
1071	case KVM_CAP_READONLY_MEM:
1072	case KVM_CAP_SYNC_MMU:
1073	case KVM_CAP_IMMEDIATE_EXIT:
1074		r = 1;
1075		break;
1076	case KVM_CAP_NR_VCPUS:
1077		r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
1078		break;
1079	case KVM_CAP_MAX_VCPUS:
1080		r = KVM_MAX_VCPUS;
1081		break;
1082	case KVM_CAP_MAX_VCPU_ID:
1083		r = KVM_MAX_VCPU_IDS;
1084		break;
1085	case KVM_CAP_MIPS_FPU:
1086		/* We don't handle systems with inconsistent cpu_has_fpu */
1087		r = !!raw_cpu_has_fpu;
1088		break;
1089	case KVM_CAP_MIPS_MSA:
1090		/*
1091		 * We don't support MSA vector partitioning yet:
1092		 * 1) It would require explicit support which can't be tested
1093		 *    yet due to lack of support in current hardware.
1094		 * 2) It extends the state that would need to be saved/restored
1095		 *    by e.g. QEMU for migration.
1096		 *
1097		 * When vector partitioning hardware becomes available, support
1098		 * could be added by requiring a flag when enabling
1099		 * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1100		 * to save/restore the appropriate extra state.
1101		 */
1102		r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
1103		break;
1104	default:
1105		r = kvm_mips_callbacks->check_extension(kvm, ext);
1106		break;
1107	}
1108	return r;
1109}
1110
1111int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1112{
1113	return kvm_mips_pending_timer(vcpu) ||
1114		kvm_read_c0_guest_cause(vcpu->arch.cop0) & C_TI;
1115}
1116
1117int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
1118{
1119	int i;
1120	struct mips_coproc *cop0;
1121
1122	if (!vcpu)
1123		return -1;
1124
1125	kvm_debug("VCPU Register Dump:\n");
1126	kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
1127	kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1128
1129	for (i = 0; i < 32; i += 4) {
1130		kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1131		       vcpu->arch.gprs[i],
1132		       vcpu->arch.gprs[i + 1],
1133		       vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
1134	}
1135	kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
1136	kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1137
1138	cop0 = vcpu->arch.cop0;
1139	kvm_debug("\tStatus: 0x%08x, Cause: 0x%08x\n",
1140		  kvm_read_c0_guest_status(cop0),
1141		  kvm_read_c0_guest_cause(cop0));
1142
1143	kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1144
1145	return 0;
1146}
1147
1148int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1149{
1150	int i;
1151
1152	vcpu_load(vcpu);
1153
1154	for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1155		vcpu->arch.gprs[i] = regs->gpr[i];
1156	vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1157	vcpu->arch.hi = regs->hi;
1158	vcpu->arch.lo = regs->lo;
1159	vcpu->arch.pc = regs->pc;
1160
1161	vcpu_put(vcpu);
1162	return 0;
1163}
1164
1165int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1166{
1167	int i;
1168
1169	vcpu_load(vcpu);
1170
1171	for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1172		regs->gpr[i] = vcpu->arch.gprs[i];
1173
1174	regs->hi = vcpu->arch.hi;
1175	regs->lo = vcpu->arch.lo;
1176	regs->pc = vcpu->arch.pc;
1177
1178	vcpu_put(vcpu);
1179	return 0;
1180}
1181
1182int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1183				  struct kvm_translation *tr)
1184{
1185	return 0;
1186}
1187
1188static void kvm_mips_set_c0_status(void)
1189{
1190	u32 status = read_c0_status();
1191
1192	if (cpu_has_dsp)
1193		status |= (ST0_MX);
1194
1195	write_c0_status(status);
1196	ehb();
1197}
1198
1199/*
1200 * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1201 */
1202static int __kvm_mips_handle_exit(struct kvm_vcpu *vcpu)
1203{
1204	struct kvm_run *run = vcpu->run;
1205	u32 cause = vcpu->arch.host_cp0_cause;
1206	u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1207	u32 __user *opc = (u32 __user *) vcpu->arch.pc;
1208	unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
1209	enum emulation_result er = EMULATE_DONE;
1210	u32 inst;
1211	int ret = RESUME_GUEST;
1212
1213	vcpu->mode = OUTSIDE_GUEST_MODE;
1214
1215	/* Set a default exit reason */
1216	run->exit_reason = KVM_EXIT_UNKNOWN;
1217	run->ready_for_interrupt_injection = 1;
1218
1219	/*
1220	 * Set the appropriate status bits based on host CPU features,
1221	 * before we hit the scheduler
1222	 */
1223	kvm_mips_set_c0_status();
1224
1225	local_irq_enable();
1226
1227	kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1228			cause, opc, run, vcpu);
1229	trace_kvm_exit(vcpu, exccode);
1230
1231	switch (exccode) {
1232	case EXCCODE_INT:
1233		kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);
1234
1235		++vcpu->stat.int_exits;
1236
1237		if (need_resched())
1238			cond_resched();
1239
1240		ret = RESUME_GUEST;
1241		break;
1242
1243	case EXCCODE_CPU:
1244		kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);
1245
1246		++vcpu->stat.cop_unusable_exits;
1247		ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
1248		/* XXXKYMA: Might need to return to user space */
1249		if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1250			ret = RESUME_HOST;
1251		break;
1252
1253	case EXCCODE_MOD:
1254		++vcpu->stat.tlbmod_exits;
1255		ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
1256		break;
1257
1258	case EXCCODE_TLBS:
1259		kvm_debug("TLB ST fault:  cause %#x, status %#x, PC: %p, BadVaddr: %#lx\n",
1260			  cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
1261			  badvaddr);
1262
1263		++vcpu->stat.tlbmiss_st_exits;
1264		ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
1265		break;
1266
1267	case EXCCODE_TLBL:
1268		kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1269			  cause, opc, badvaddr);
1270
1271		++vcpu->stat.tlbmiss_ld_exits;
1272		ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
1273		break;
1274
1275	case EXCCODE_ADES:
1276		++vcpu->stat.addrerr_st_exits;
1277		ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
1278		break;
1279
1280	case EXCCODE_ADEL:
1281		++vcpu->stat.addrerr_ld_exits;
1282		ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
1283		break;
1284
1285	case EXCCODE_SYS:
1286		++vcpu->stat.syscall_exits;
1287		ret = kvm_mips_callbacks->handle_syscall(vcpu);
1288		break;
1289
1290	case EXCCODE_RI:
1291		++vcpu->stat.resvd_inst_exits;
1292		ret = kvm_mips_callbacks->handle_res_inst(vcpu);
1293		break;
1294
1295	case EXCCODE_BP:
1296		++vcpu->stat.break_inst_exits;
1297		ret = kvm_mips_callbacks->handle_break(vcpu);
1298		break;
1299
1300	case EXCCODE_TR:
1301		++vcpu->stat.trap_inst_exits;
1302		ret = kvm_mips_callbacks->handle_trap(vcpu);
1303		break;
1304
1305	case EXCCODE_MSAFPE:
1306		++vcpu->stat.msa_fpe_exits;
1307		ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
1308		break;
1309
1310	case EXCCODE_FPE:
1311		++vcpu->stat.fpe_exits;
1312		ret = kvm_mips_callbacks->handle_fpe(vcpu);
1313		break;
1314
1315	case EXCCODE_MSADIS:
1316		++vcpu->stat.msa_disabled_exits;
1317		ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
1318		break;
1319
1320	case EXCCODE_GE:
1321		/* defer exit accounting to handler */
1322		ret = kvm_mips_callbacks->handle_guest_exit(vcpu);
1323		break;
1324
1325	default:
1326		if (cause & CAUSEF_BD)
1327			opc += 1;
1328		inst = 0;
1329		kvm_get_badinstr(opc, vcpu, &inst);
1330		kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x  BadVaddr: %#lx Status: %#x\n",
1331			exccode, opc, inst, badvaddr,
1332			kvm_read_c0_guest_status(vcpu->arch.cop0));
1333		kvm_arch_vcpu_dump_regs(vcpu);
1334		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1335		ret = RESUME_HOST;
1336		break;
1337
1338	}
1339
1340	local_irq_disable();
1341
1342	if (ret == RESUME_GUEST)
1343		kvm_vz_acquire_htimer(vcpu);
1344
1345	if (er == EMULATE_DONE && !(ret & RESUME_HOST))
1346		kvm_mips_deliver_interrupts(vcpu, cause);
1347
1348	if (!(ret & RESUME_HOST)) {
1349		/* Only check for signals if not already exiting to userspace */
1350		if (signal_pending(current)) {
1351			run->exit_reason = KVM_EXIT_INTR;
1352			ret = (-EINTR << 2) | RESUME_HOST;
1353			++vcpu->stat.signal_exits;
1354			trace_kvm_exit(vcpu, KVM_TRACE_EXIT_SIGNAL);
1355		}
1356	}
1357
1358	if (ret == RESUME_GUEST) {
1359		trace_kvm_reenter(vcpu);
1360
1361		/*
1362		 * Make sure the read of VCPU requests in vcpu_reenter()
1363		 * callback is not reordered ahead of the write to vcpu->mode,
1364		 * or we could miss a TLB flush request while the requester sees
1365		 * the VCPU as outside of guest mode and not needing an IPI.
1366		 */
1367		smp_store_mb(vcpu->mode, IN_GUEST_MODE);
1368
1369		kvm_mips_callbacks->vcpu_reenter(vcpu);
1370
1371		/*
1372		 * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1373		 * is live), restore FCR31 / MSACSR.
1374		 *
1375		 * This should be before returning to the guest exception
1376		 * vector, as it may well cause an [MSA] FP exception if there
1377		 * are pending exception bits unmasked. (see
1378		 * kvm_mips_csr_die_notifier() for how that is handled).
1379		 */
1380		if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
1381		    read_c0_status() & ST0_CU1)
1382			__kvm_restore_fcsr(&vcpu->arch);
1383
1384		if (kvm_mips_guest_has_msa(&vcpu->arch) &&
1385		    read_c0_config5() & MIPS_CONF5_MSAEN)
1386			__kvm_restore_msacsr(&vcpu->arch);
1387	}
1388	return ret;
1389}
1390
1391int noinstr kvm_mips_handle_exit(struct kvm_vcpu *vcpu)
1392{
1393	int ret;
1394
1395	guest_state_exit_irqoff();
1396	ret = __kvm_mips_handle_exit(vcpu);
1397	guest_state_enter_irqoff();
1398
1399	return ret;
1400}
1401
1402/* Enable FPU for guest and restore context */
1403void kvm_own_fpu(struct kvm_vcpu *vcpu)
1404{
1405	struct mips_coproc *cop0 = vcpu->arch.cop0;
1406	unsigned int sr, cfg5;
1407
1408	preempt_disable();
1409
1410	sr = kvm_read_c0_guest_status(cop0);
1411
1412	/*
1413	 * If MSA state is already live, it is undefined how it interacts with
1414	 * FR=0 FPU state, and we don't want to hit reserved instruction
1415	 * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1416	 * play it safe and save it first.
1417	 */
1418	if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1419	    vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1420		kvm_lose_fpu(vcpu);
1421
1422	/*
1423	 * Enable FPU for guest
1424	 * We set FR and FRE according to guest context
1425	 */
1426	change_c0_status(ST0_CU1 | ST0_FR, sr);
1427	if (cpu_has_fre) {
1428		cfg5 = kvm_read_c0_guest_config5(cop0);
1429		change_c0_config5(MIPS_CONF5_FRE, cfg5);
1430	}
1431	enable_fpu_hazard();
1432
1433	/* If guest FPU state not active, restore it now */
1434	if (!(vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
1435		__kvm_restore_fpu(&vcpu->arch);
1436		vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1437		trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU);
1438	} else {
1439		trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_FPU);
1440	}
1441
1442	preempt_enable();
1443}
1444
1445#ifdef CONFIG_CPU_HAS_MSA
1446/* Enable MSA for guest and restore context */
1447void kvm_own_msa(struct kvm_vcpu *vcpu)
1448{
1449	struct mips_coproc *cop0 = vcpu->arch.cop0;
1450	unsigned int sr, cfg5;
1451
1452	preempt_disable();
1453
1454	/*
1455	 * Enable FPU if enabled in guest, since we're restoring FPU context
1456	 * anyway. We set FR and FRE according to guest context.
1457	 */
1458	if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1459		sr = kvm_read_c0_guest_status(cop0);
1460
1461		/*
1462		 * If FR=0 FPU state is already live, it is undefined how it
1463		 * interacts with MSA state, so play it safe and save it first.
1464		 */
1465		if (!(sr & ST0_FR) &&
1466		    (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU |
1467				KVM_MIPS_AUX_MSA)) == KVM_MIPS_AUX_FPU)
1468			kvm_lose_fpu(vcpu);
1469
1470		change_c0_status(ST0_CU1 | ST0_FR, sr);
1471		if (sr & ST0_CU1 && cpu_has_fre) {
1472			cfg5 = kvm_read_c0_guest_config5(cop0);
1473			change_c0_config5(MIPS_CONF5_FRE, cfg5);
1474		}
1475	}
1476
1477	/* Enable MSA for guest */
1478	set_c0_config5(MIPS_CONF5_MSAEN);
1479	enable_fpu_hazard();
1480
1481	switch (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA)) {
1482	case KVM_MIPS_AUX_FPU:
1483		/*
1484		 * Guest FPU state already loaded, only restore upper MSA state
1485		 */
1486		__kvm_restore_msa_upper(&vcpu->arch);
1487		vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1488		trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_MSA);
1489		break;
1490	case 0:
1491		/* Neither FPU or MSA already active, restore full MSA state */
1492		__kvm_restore_msa(&vcpu->arch);
1493		vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1494		if (kvm_mips_guest_has_fpu(&vcpu->arch))
1495			vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1496		trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE,
1497			      KVM_TRACE_AUX_FPU_MSA);
1498		break;
1499	default:
1500		trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_MSA);
1501		break;
1502	}
1503
1504	preempt_enable();
1505}
1506#endif
1507
1508/* Drop FPU & MSA without saving it */
1509void kvm_drop_fpu(struct kvm_vcpu *vcpu)
1510{
1511	preempt_disable();
1512	if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1513		disable_msa();
1514		trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_MSA);
1515		vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_MSA;
1516	}
1517	if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1518		clear_c0_status(ST0_CU1 | ST0_FR);
1519		trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_FPU);
1520		vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1521	}
1522	preempt_enable();
1523}
1524
1525/* Save and disable FPU & MSA */
1526void kvm_lose_fpu(struct kvm_vcpu *vcpu)
1527{
1528	/*
1529	 * With T&E, FPU & MSA get disabled in root context (hardware) when it
1530	 * is disabled in guest context (software), but the register state in
1531	 * the hardware may still be in use.
1532	 * This is why we explicitly re-enable the hardware before saving.
1533	 */
1534
1535	preempt_disable();
1536	if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1537		__kvm_save_msa(&vcpu->arch);
1538		trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU_MSA);
1539
1540		/* Disable MSA & FPU */
1541		disable_msa();
1542		if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1543			clear_c0_status(ST0_CU1 | ST0_FR);
1544			disable_fpu_hazard();
1545		}
1546		vcpu->arch.aux_inuse &= ~(KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA);
1547	} else if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1548		__kvm_save_fpu(&vcpu->arch);
1549		vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1550		trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU);
1551
1552		/* Disable FPU */
1553		clear_c0_status(ST0_CU1 | ST0_FR);
1554		disable_fpu_hazard();
1555	}
1556	preempt_enable();
1557}
1558
1559/*
1560 * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1561 * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1562 * exception if cause bits are set in the value being written.
1563 */
1564static int kvm_mips_csr_die_notify(struct notifier_block *self,
1565				   unsigned long cmd, void *ptr)
1566{
1567	struct die_args *args = (struct die_args *)ptr;
1568	struct pt_regs *regs = args->regs;
1569	unsigned long pc;
1570
1571	/* Only interested in FPE and MSAFPE */
1572	if (cmd != DIE_FP && cmd != DIE_MSAFP)
1573		return NOTIFY_DONE;
1574
1575	/* Return immediately if guest context isn't active */
1576	if (!(current->flags & PF_VCPU))
1577		return NOTIFY_DONE;
1578
1579	/* Should never get here from user mode */
1580	BUG_ON(user_mode(regs));
1581
1582	pc = instruction_pointer(regs);
1583	switch (cmd) {
1584	case DIE_FP:
1585		/* match 2nd instruction in __kvm_restore_fcsr */
1586		if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
1587			return NOTIFY_DONE;
1588		break;
1589	case DIE_MSAFP:
1590		/* match 2nd/3rd instruction in __kvm_restore_msacsr */
1591		if (!cpu_has_msa ||
1592		    pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
1593		    pc > (unsigned long)&__kvm_restore_msacsr + 8)
1594			return NOTIFY_DONE;
1595		break;
1596	}
1597
1598	/* Move PC forward a little and continue executing */
1599	instruction_pointer(regs) += 4;
1600
1601	return NOTIFY_STOP;
1602}
1603
1604static struct notifier_block kvm_mips_csr_die_notifier = {
1605	.notifier_call = kvm_mips_csr_die_notify,
1606};
1607
1608static u32 kvm_default_priority_to_irq[MIPS_EXC_MAX] = {
1609	[MIPS_EXC_INT_TIMER] = C_IRQ5,
1610	[MIPS_EXC_INT_IO_1]  = C_IRQ0,
1611	[MIPS_EXC_INT_IPI_1] = C_IRQ1,
1612	[MIPS_EXC_INT_IPI_2] = C_IRQ2,
1613};
1614
1615static u32 kvm_loongson3_priority_to_irq[MIPS_EXC_MAX] = {
1616	[MIPS_EXC_INT_TIMER] = C_IRQ5,
1617	[MIPS_EXC_INT_IO_1]  = C_IRQ0,
1618	[MIPS_EXC_INT_IO_2]  = C_IRQ1,
1619	[MIPS_EXC_INT_IPI_1] = C_IRQ4,
1620};
1621
1622u32 *kvm_priority_to_irq = kvm_default_priority_to_irq;
1623
1624u32 kvm_irq_to_priority(u32 irq)
1625{
1626	int i;
1627
1628	for (i = MIPS_EXC_INT_TIMER; i < MIPS_EXC_MAX; i++) {
1629		if (kvm_priority_to_irq[i] == (1 << (irq + 8)))
1630			return i;
1631	}
1632
1633	return MIPS_EXC_MAX;
1634}
1635
1636static int __init kvm_mips_init(void)
1637{
1638	int ret;
1639
1640	if (cpu_has_mmid) {
1641		pr_warn("KVM does not yet support MMIDs. KVM Disabled\n");
1642		return -EOPNOTSUPP;
1643	}
1644
1645	ret = kvm_mips_entry_setup();
1646	if (ret)
1647		return ret;
1648
1649	ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1650
1651	if (ret)
1652		return ret;
1653
 
1654	if (boot_cpu_type() == CPU_LOONGSON64)
1655		kvm_priority_to_irq = kvm_loongson3_priority_to_irq;
1656
1657	register_die_notifier(&kvm_mips_csr_die_notifier);
1658
 
 
 
 
 
1659	return 0;
1660}
1661
1662static void __exit kvm_mips_exit(void)
1663{
1664	kvm_exit();
1665
1666	unregister_die_notifier(&kvm_mips_csr_die_notifier);
1667}
1668
1669module_init(kvm_mips_init);
1670module_exit(kvm_mips_exit);
1671
1672EXPORT_TRACEPOINT_SYMBOL(kvm_exit);