Loading...
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * KVM/MIPS: MIPS specific KVM APIs
7 *
8 * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
10 */
11
12#include <linux/bitops.h>
13#include <linux/errno.h>
14#include <linux/err.h>
15#include <linux/kdebug.h>
16#include <linux/module.h>
17#include <linux/uaccess.h>
18#include <linux/vmalloc.h>
19#include <linux/sched/signal.h>
20#include <linux/fs.h>
21#include <linux/memblock.h>
22#include <linux/pgtable.h>
23
24#include <asm/fpu.h>
25#include <asm/page.h>
26#include <asm/cacheflush.h>
27#include <asm/mmu_context.h>
28#include <asm/pgalloc.h>
29
30#include <linux/kvm_host.h>
31
32#include "interrupt.h"
33
34#define CREATE_TRACE_POINTS
35#include "trace.h"
36
37#ifndef VECTORSPACING
38#define VECTORSPACING 0x100 /* for EI/VI mode */
39#endif
40
41const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
42 KVM_GENERIC_VM_STATS()
43};
44
45const struct kvm_stats_header kvm_vm_stats_header = {
46 .name_size = KVM_STATS_NAME_SIZE,
47 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
48 .id_offset = sizeof(struct kvm_stats_header),
49 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
50 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
51 sizeof(kvm_vm_stats_desc),
52};
53
54const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
55 KVM_GENERIC_VCPU_STATS(),
56 STATS_DESC_COUNTER(VCPU, wait_exits),
57 STATS_DESC_COUNTER(VCPU, cache_exits),
58 STATS_DESC_COUNTER(VCPU, signal_exits),
59 STATS_DESC_COUNTER(VCPU, int_exits),
60 STATS_DESC_COUNTER(VCPU, cop_unusable_exits),
61 STATS_DESC_COUNTER(VCPU, tlbmod_exits),
62 STATS_DESC_COUNTER(VCPU, tlbmiss_ld_exits),
63 STATS_DESC_COUNTER(VCPU, tlbmiss_st_exits),
64 STATS_DESC_COUNTER(VCPU, addrerr_st_exits),
65 STATS_DESC_COUNTER(VCPU, addrerr_ld_exits),
66 STATS_DESC_COUNTER(VCPU, syscall_exits),
67 STATS_DESC_COUNTER(VCPU, resvd_inst_exits),
68 STATS_DESC_COUNTER(VCPU, break_inst_exits),
69 STATS_DESC_COUNTER(VCPU, trap_inst_exits),
70 STATS_DESC_COUNTER(VCPU, msa_fpe_exits),
71 STATS_DESC_COUNTER(VCPU, fpe_exits),
72 STATS_DESC_COUNTER(VCPU, msa_disabled_exits),
73 STATS_DESC_COUNTER(VCPU, flush_dcache_exits),
74 STATS_DESC_COUNTER(VCPU, vz_gpsi_exits),
75 STATS_DESC_COUNTER(VCPU, vz_gsfc_exits),
76 STATS_DESC_COUNTER(VCPU, vz_hc_exits),
77 STATS_DESC_COUNTER(VCPU, vz_grr_exits),
78 STATS_DESC_COUNTER(VCPU, vz_gva_exits),
79 STATS_DESC_COUNTER(VCPU, vz_ghfc_exits),
80 STATS_DESC_COUNTER(VCPU, vz_gpa_exits),
81 STATS_DESC_COUNTER(VCPU, vz_resvd_exits),
82#ifdef CONFIG_CPU_LOONGSON64
83 STATS_DESC_COUNTER(VCPU, vz_cpucfg_exits),
84#endif
85};
86
87const struct kvm_stats_header kvm_vcpu_stats_header = {
88 .name_size = KVM_STATS_NAME_SIZE,
89 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
90 .id_offset = sizeof(struct kvm_stats_header),
91 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
92 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
93 sizeof(kvm_vcpu_stats_desc),
94};
95
96bool kvm_trace_guest_mode_change;
97
98int kvm_guest_mode_change_trace_reg(void)
99{
100 kvm_trace_guest_mode_change = true;
101 return 0;
102}
103
104void kvm_guest_mode_change_trace_unreg(void)
105{
106 kvm_trace_guest_mode_change = false;
107}
108
109/*
110 * XXXKYMA: We are simulatoring a processor that has the WII bit set in
111 * Config7, so we are "runnable" if interrupts are pending
112 */
113int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
114{
115 return !!(vcpu->arch.pending_exceptions);
116}
117
118bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
119{
120 return false;
121}
122
123int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
124{
125 return 1;
126}
127
128int kvm_arch_hardware_enable(void)
129{
130 return kvm_mips_callbacks->hardware_enable();
131}
132
133void kvm_arch_hardware_disable(void)
134{
135 kvm_mips_callbacks->hardware_disable();
136}
137
138extern void kvm_init_loongson_ipi(struct kvm *kvm);
139
140int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
141{
142 switch (type) {
143 case KVM_VM_MIPS_AUTO:
144 break;
145 case KVM_VM_MIPS_VZ:
146 break;
147 default:
148 /* Unsupported KVM type */
149 return -EINVAL;
150 }
151
152 /* Allocate page table to map GPA -> RPA */
153 kvm->arch.gpa_mm.pgd = kvm_pgd_alloc();
154 if (!kvm->arch.gpa_mm.pgd)
155 return -ENOMEM;
156
157#ifdef CONFIG_CPU_LOONGSON64
158 kvm_init_loongson_ipi(kvm);
159#endif
160
161 return 0;
162}
163
164static void kvm_mips_free_gpa_pt(struct kvm *kvm)
165{
166 /* It should always be safe to remove after flushing the whole range */
167 WARN_ON(!kvm_mips_flush_gpa_pt(kvm, 0, ~0));
168 pgd_free(NULL, kvm->arch.gpa_mm.pgd);
169}
170
171void kvm_arch_destroy_vm(struct kvm *kvm)
172{
173 kvm_destroy_vcpus(kvm);
174 kvm_mips_free_gpa_pt(kvm);
175}
176
177long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
178 unsigned long arg)
179{
180 return -ENOIOCTLCMD;
181}
182
183void kvm_arch_flush_shadow_all(struct kvm *kvm)
184{
185 /* Flush whole GPA */
186 kvm_mips_flush_gpa_pt(kvm, 0, ~0);
187 kvm_flush_remote_tlbs(kvm);
188}
189
190void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
191 struct kvm_memory_slot *slot)
192{
193 /*
194 * The slot has been made invalid (ready for moving or deletion), so we
195 * need to ensure that it can no longer be accessed by any guest VCPUs.
196 */
197
198 spin_lock(&kvm->mmu_lock);
199 /* Flush slot from GPA */
200 kvm_mips_flush_gpa_pt(kvm, slot->base_gfn,
201 slot->base_gfn + slot->npages - 1);
202 kvm_flush_remote_tlbs_memslot(kvm, slot);
203 spin_unlock(&kvm->mmu_lock);
204}
205
206int kvm_arch_prepare_memory_region(struct kvm *kvm,
207 const struct kvm_memory_slot *old,
208 struct kvm_memory_slot *new,
209 enum kvm_mr_change change)
210{
211 return 0;
212}
213
214void kvm_arch_commit_memory_region(struct kvm *kvm,
215 struct kvm_memory_slot *old,
216 const struct kvm_memory_slot *new,
217 enum kvm_mr_change change)
218{
219 int needs_flush;
220
221 /*
222 * If dirty page logging is enabled, write protect all pages in the slot
223 * ready for dirty logging.
224 *
225 * There is no need to do this in any of the following cases:
226 * CREATE: No dirty mappings will already exist.
227 * MOVE/DELETE: The old mappings will already have been cleaned up by
228 * kvm_arch_flush_shadow_memslot()
229 */
230 if (change == KVM_MR_FLAGS_ONLY &&
231 (!(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
232 new->flags & KVM_MEM_LOG_DIRTY_PAGES)) {
233 spin_lock(&kvm->mmu_lock);
234 /* Write protect GPA page table entries */
235 needs_flush = kvm_mips_mkclean_gpa_pt(kvm, new->base_gfn,
236 new->base_gfn + new->npages - 1);
237 if (needs_flush)
238 kvm_flush_remote_tlbs_memslot(kvm, new);
239 spin_unlock(&kvm->mmu_lock);
240 }
241}
242
243static inline void dump_handler(const char *symbol, void *start, void *end)
244{
245 u32 *p;
246
247 pr_debug("LEAF(%s)\n", symbol);
248
249 pr_debug("\t.set push\n");
250 pr_debug("\t.set noreorder\n");
251
252 for (p = start; p < (u32 *)end; ++p)
253 pr_debug("\t.word\t0x%08x\t\t# %p\n", *p, p);
254
255 pr_debug("\t.set\tpop\n");
256
257 pr_debug("\tEND(%s)\n", symbol);
258}
259
260/* low level hrtimer wake routine */
261static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
262{
263 struct kvm_vcpu *vcpu;
264
265 vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
266
267 kvm_mips_callbacks->queue_timer_int(vcpu);
268
269 vcpu->arch.wait = 0;
270 rcuwait_wake_up(&vcpu->wait);
271
272 return kvm_mips_count_timeout(vcpu);
273}
274
275int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
276{
277 return 0;
278}
279
280int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
281{
282 int err, size;
283 void *gebase, *p, *handler, *refill_start, *refill_end;
284 int i;
285
286 kvm_debug("kvm @ %p: create cpu %d at %p\n",
287 vcpu->kvm, vcpu->vcpu_id, vcpu);
288
289 err = kvm_mips_callbacks->vcpu_init(vcpu);
290 if (err)
291 return err;
292
293 hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
294 HRTIMER_MODE_REL);
295 vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
296
297 /*
298 * Allocate space for host mode exception handlers that handle
299 * guest mode exits
300 */
301 if (cpu_has_veic || cpu_has_vint)
302 size = 0x200 + VECTORSPACING * 64;
303 else
304 size = 0x4000;
305
306 gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
307
308 if (!gebase) {
309 err = -ENOMEM;
310 goto out_uninit_vcpu;
311 }
312 kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
313 ALIGN(size, PAGE_SIZE), gebase);
314
315 /*
316 * Check new ebase actually fits in CP0_EBase. The lack of a write gate
317 * limits us to the low 512MB of physical address space. If the memory
318 * we allocate is out of range, just give up now.
319 */
320 if (!cpu_has_ebase_wg && virt_to_phys(gebase) >= 0x20000000) {
321 kvm_err("CP0_EBase.WG required for guest exception base %pK\n",
322 gebase);
323 err = -ENOMEM;
324 goto out_free_gebase;
325 }
326
327 /* Save new ebase */
328 vcpu->arch.guest_ebase = gebase;
329
330 /* Build guest exception vectors dynamically in unmapped memory */
331 handler = gebase + 0x2000;
332
333 /* TLB refill (or XTLB refill on 64-bit VZ where KX=1) */
334 refill_start = gebase;
335 if (IS_ENABLED(CONFIG_64BIT))
336 refill_start += 0x080;
337 refill_end = kvm_mips_build_tlb_refill_exception(refill_start, handler);
338
339 /* General Exception Entry point */
340 kvm_mips_build_exception(gebase + 0x180, handler);
341
342 /* For vectored interrupts poke the exception code @ all offsets 0-7 */
343 for (i = 0; i < 8; i++) {
344 kvm_debug("L1 Vectored handler @ %p\n",
345 gebase + 0x200 + (i * VECTORSPACING));
346 kvm_mips_build_exception(gebase + 0x200 + i * VECTORSPACING,
347 handler);
348 }
349
350 /* General exit handler */
351 p = handler;
352 p = kvm_mips_build_exit(p);
353
354 /* Guest entry routine */
355 vcpu->arch.vcpu_run = p;
356 p = kvm_mips_build_vcpu_run(p);
357
358 /* Dump the generated code */
359 pr_debug("#include <asm/asm.h>\n");
360 pr_debug("#include <asm/regdef.h>\n");
361 pr_debug("\n");
362 dump_handler("kvm_vcpu_run", vcpu->arch.vcpu_run, p);
363 dump_handler("kvm_tlb_refill", refill_start, refill_end);
364 dump_handler("kvm_gen_exc", gebase + 0x180, gebase + 0x200);
365 dump_handler("kvm_exit", gebase + 0x2000, vcpu->arch.vcpu_run);
366
367 /* Invalidate the icache for these ranges */
368 flush_icache_range((unsigned long)gebase,
369 (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
370
371 /* Init */
372 vcpu->arch.last_sched_cpu = -1;
373 vcpu->arch.last_exec_cpu = -1;
374
375 /* Initial guest state */
376 err = kvm_mips_callbacks->vcpu_setup(vcpu);
377 if (err)
378 goto out_free_gebase;
379
380 return 0;
381
382out_free_gebase:
383 kfree(gebase);
384out_uninit_vcpu:
385 kvm_mips_callbacks->vcpu_uninit(vcpu);
386 return err;
387}
388
389void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
390{
391 hrtimer_cancel(&vcpu->arch.comparecount_timer);
392
393 kvm_mips_dump_stats(vcpu);
394
395 kvm_mmu_free_memory_caches(vcpu);
396 kfree(vcpu->arch.guest_ebase);
397
398 kvm_mips_callbacks->vcpu_uninit(vcpu);
399}
400
401int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
402 struct kvm_guest_debug *dbg)
403{
404 return -ENOIOCTLCMD;
405}
406
407/*
408 * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while
409 * the vCPU is running.
410 *
411 * This must be noinstr as instrumentation may make use of RCU, and this is not
412 * safe during the EQS.
413 */
414static int noinstr kvm_mips_vcpu_enter_exit(struct kvm_vcpu *vcpu)
415{
416 int ret;
417
418 guest_state_enter_irqoff();
419 ret = kvm_mips_callbacks->vcpu_run(vcpu);
420 guest_state_exit_irqoff();
421
422 return ret;
423}
424
425int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
426{
427 int r = -EINTR;
428
429 vcpu_load(vcpu);
430
431 kvm_sigset_activate(vcpu);
432
433 if (vcpu->mmio_needed) {
434 if (!vcpu->mmio_is_write)
435 kvm_mips_complete_mmio_load(vcpu);
436 vcpu->mmio_needed = 0;
437 }
438
439 if (vcpu->run->immediate_exit)
440 goto out;
441
442 lose_fpu(1);
443
444 local_irq_disable();
445 guest_timing_enter_irqoff();
446 trace_kvm_enter(vcpu);
447
448 /*
449 * Make sure the read of VCPU requests in vcpu_run() callback is not
450 * reordered ahead of the write to vcpu->mode, or we could miss a TLB
451 * flush request while the requester sees the VCPU as outside of guest
452 * mode and not needing an IPI.
453 */
454 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
455
456 r = kvm_mips_vcpu_enter_exit(vcpu);
457
458 /*
459 * We must ensure that any pending interrupts are taken before
460 * we exit guest timing so that timer ticks are accounted as
461 * guest time. Transiently unmask interrupts so that any
462 * pending interrupts are taken.
463 *
464 * TODO: is there a barrier which ensures that pending interrupts are
465 * recognised? Currently this just hopes that the CPU takes any pending
466 * interrupts between the enable and disable.
467 */
468 local_irq_enable();
469 local_irq_disable();
470
471 trace_kvm_out(vcpu);
472 guest_timing_exit_irqoff();
473 local_irq_enable();
474
475out:
476 kvm_sigset_deactivate(vcpu);
477
478 vcpu_put(vcpu);
479 return r;
480}
481
482int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
483 struct kvm_mips_interrupt *irq)
484{
485 int intr = (int)irq->irq;
486 struct kvm_vcpu *dvcpu = NULL;
487
488 if (intr == kvm_priority_to_irq[MIPS_EXC_INT_IPI_1] ||
489 intr == kvm_priority_to_irq[MIPS_EXC_INT_IPI_2] ||
490 intr == (-kvm_priority_to_irq[MIPS_EXC_INT_IPI_1]) ||
491 intr == (-kvm_priority_to_irq[MIPS_EXC_INT_IPI_2]))
492 kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
493 (int)intr);
494
495 if (irq->cpu == -1)
496 dvcpu = vcpu;
497 else
498 dvcpu = kvm_get_vcpu(vcpu->kvm, irq->cpu);
499
500 if (intr == 2 || intr == 3 || intr == 4 || intr == 6) {
501 kvm_mips_callbacks->queue_io_int(dvcpu, irq);
502
503 } else if (intr == -2 || intr == -3 || intr == -4 || intr == -6) {
504 kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
505 } else {
506 kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
507 irq->cpu, irq->irq);
508 return -EINVAL;
509 }
510
511 dvcpu->arch.wait = 0;
512
513 rcuwait_wake_up(&dvcpu->wait);
514
515 return 0;
516}
517
518int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
519 struct kvm_mp_state *mp_state)
520{
521 return -ENOIOCTLCMD;
522}
523
524int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
525 struct kvm_mp_state *mp_state)
526{
527 return -ENOIOCTLCMD;
528}
529
530static u64 kvm_mips_get_one_regs[] = {
531 KVM_REG_MIPS_R0,
532 KVM_REG_MIPS_R1,
533 KVM_REG_MIPS_R2,
534 KVM_REG_MIPS_R3,
535 KVM_REG_MIPS_R4,
536 KVM_REG_MIPS_R5,
537 KVM_REG_MIPS_R6,
538 KVM_REG_MIPS_R7,
539 KVM_REG_MIPS_R8,
540 KVM_REG_MIPS_R9,
541 KVM_REG_MIPS_R10,
542 KVM_REG_MIPS_R11,
543 KVM_REG_MIPS_R12,
544 KVM_REG_MIPS_R13,
545 KVM_REG_MIPS_R14,
546 KVM_REG_MIPS_R15,
547 KVM_REG_MIPS_R16,
548 KVM_REG_MIPS_R17,
549 KVM_REG_MIPS_R18,
550 KVM_REG_MIPS_R19,
551 KVM_REG_MIPS_R20,
552 KVM_REG_MIPS_R21,
553 KVM_REG_MIPS_R22,
554 KVM_REG_MIPS_R23,
555 KVM_REG_MIPS_R24,
556 KVM_REG_MIPS_R25,
557 KVM_REG_MIPS_R26,
558 KVM_REG_MIPS_R27,
559 KVM_REG_MIPS_R28,
560 KVM_REG_MIPS_R29,
561 KVM_REG_MIPS_R30,
562 KVM_REG_MIPS_R31,
563
564#ifndef CONFIG_CPU_MIPSR6
565 KVM_REG_MIPS_HI,
566 KVM_REG_MIPS_LO,
567#endif
568 KVM_REG_MIPS_PC,
569};
570
571static u64 kvm_mips_get_one_regs_fpu[] = {
572 KVM_REG_MIPS_FCR_IR,
573 KVM_REG_MIPS_FCR_CSR,
574};
575
576static u64 kvm_mips_get_one_regs_msa[] = {
577 KVM_REG_MIPS_MSA_IR,
578 KVM_REG_MIPS_MSA_CSR,
579};
580
581static unsigned long kvm_mips_num_regs(struct kvm_vcpu *vcpu)
582{
583 unsigned long ret;
584
585 ret = ARRAY_SIZE(kvm_mips_get_one_regs);
586 if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
587 ret += ARRAY_SIZE(kvm_mips_get_one_regs_fpu) + 48;
588 /* odd doubles */
589 if (boot_cpu_data.fpu_id & MIPS_FPIR_F64)
590 ret += 16;
591 }
592 if (kvm_mips_guest_can_have_msa(&vcpu->arch))
593 ret += ARRAY_SIZE(kvm_mips_get_one_regs_msa) + 32;
594 ret += kvm_mips_callbacks->num_regs(vcpu);
595
596 return ret;
597}
598
599static int kvm_mips_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
600{
601 u64 index;
602 unsigned int i;
603
604 if (copy_to_user(indices, kvm_mips_get_one_regs,
605 sizeof(kvm_mips_get_one_regs)))
606 return -EFAULT;
607 indices += ARRAY_SIZE(kvm_mips_get_one_regs);
608
609 if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
610 if (copy_to_user(indices, kvm_mips_get_one_regs_fpu,
611 sizeof(kvm_mips_get_one_regs_fpu)))
612 return -EFAULT;
613 indices += ARRAY_SIZE(kvm_mips_get_one_regs_fpu);
614
615 for (i = 0; i < 32; ++i) {
616 index = KVM_REG_MIPS_FPR_32(i);
617 if (copy_to_user(indices, &index, sizeof(index)))
618 return -EFAULT;
619 ++indices;
620
621 /* skip odd doubles if no F64 */
622 if (i & 1 && !(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
623 continue;
624
625 index = KVM_REG_MIPS_FPR_64(i);
626 if (copy_to_user(indices, &index, sizeof(index)))
627 return -EFAULT;
628 ++indices;
629 }
630 }
631
632 if (kvm_mips_guest_can_have_msa(&vcpu->arch)) {
633 if (copy_to_user(indices, kvm_mips_get_one_regs_msa,
634 sizeof(kvm_mips_get_one_regs_msa)))
635 return -EFAULT;
636 indices += ARRAY_SIZE(kvm_mips_get_one_regs_msa);
637
638 for (i = 0; i < 32; ++i) {
639 index = KVM_REG_MIPS_VEC_128(i);
640 if (copy_to_user(indices, &index, sizeof(index)))
641 return -EFAULT;
642 ++indices;
643 }
644 }
645
646 return kvm_mips_callbacks->copy_reg_indices(vcpu, indices);
647}
648
649static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
650 const struct kvm_one_reg *reg)
651{
652 struct mips_coproc *cop0 = &vcpu->arch.cop0;
653 struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
654 int ret;
655 s64 v;
656 s64 vs[2];
657 unsigned int idx;
658
659 switch (reg->id) {
660 /* General purpose registers */
661 case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
662 v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
663 break;
664#ifndef CONFIG_CPU_MIPSR6
665 case KVM_REG_MIPS_HI:
666 v = (long)vcpu->arch.hi;
667 break;
668 case KVM_REG_MIPS_LO:
669 v = (long)vcpu->arch.lo;
670 break;
671#endif
672 case KVM_REG_MIPS_PC:
673 v = (long)vcpu->arch.pc;
674 break;
675
676 /* Floating point registers */
677 case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
678 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
679 return -EINVAL;
680 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
681 /* Odd singles in top of even double when FR=0 */
682 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
683 v = get_fpr32(&fpu->fpr[idx], 0);
684 else
685 v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
686 break;
687 case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
688 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
689 return -EINVAL;
690 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
691 /* Can't access odd doubles in FR=0 mode */
692 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
693 return -EINVAL;
694 v = get_fpr64(&fpu->fpr[idx], 0);
695 break;
696 case KVM_REG_MIPS_FCR_IR:
697 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
698 return -EINVAL;
699 v = boot_cpu_data.fpu_id;
700 break;
701 case KVM_REG_MIPS_FCR_CSR:
702 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
703 return -EINVAL;
704 v = fpu->fcr31;
705 break;
706
707 /* MIPS SIMD Architecture (MSA) registers */
708 case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
709 if (!kvm_mips_guest_has_msa(&vcpu->arch))
710 return -EINVAL;
711 /* Can't access MSA registers in FR=0 mode */
712 if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
713 return -EINVAL;
714 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
715#ifdef CONFIG_CPU_LITTLE_ENDIAN
716 /* least significant byte first */
717 vs[0] = get_fpr64(&fpu->fpr[idx], 0);
718 vs[1] = get_fpr64(&fpu->fpr[idx], 1);
719#else
720 /* most significant byte first */
721 vs[0] = get_fpr64(&fpu->fpr[idx], 1);
722 vs[1] = get_fpr64(&fpu->fpr[idx], 0);
723#endif
724 break;
725 case KVM_REG_MIPS_MSA_IR:
726 if (!kvm_mips_guest_has_msa(&vcpu->arch))
727 return -EINVAL;
728 v = boot_cpu_data.msa_id;
729 break;
730 case KVM_REG_MIPS_MSA_CSR:
731 if (!kvm_mips_guest_has_msa(&vcpu->arch))
732 return -EINVAL;
733 v = fpu->msacsr;
734 break;
735
736 /* registers to be handled specially */
737 default:
738 ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
739 if (ret)
740 return ret;
741 break;
742 }
743 if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
744 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
745
746 return put_user(v, uaddr64);
747 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
748 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
749 u32 v32 = (u32)v;
750
751 return put_user(v32, uaddr32);
752 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
753 void __user *uaddr = (void __user *)(long)reg->addr;
754
755 return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
756 } else {
757 return -EINVAL;
758 }
759}
760
761static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
762 const struct kvm_one_reg *reg)
763{
764 struct mips_coproc *cop0 = &vcpu->arch.cop0;
765 struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
766 s64 v;
767 s64 vs[2];
768 unsigned int idx;
769
770 if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
771 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
772
773 if (get_user(v, uaddr64) != 0)
774 return -EFAULT;
775 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
776 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
777 s32 v32;
778
779 if (get_user(v32, uaddr32) != 0)
780 return -EFAULT;
781 v = (s64)v32;
782 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
783 void __user *uaddr = (void __user *)(long)reg->addr;
784
785 return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
786 } else {
787 return -EINVAL;
788 }
789
790 switch (reg->id) {
791 /* General purpose registers */
792 case KVM_REG_MIPS_R0:
793 /* Silently ignore requests to set $0 */
794 break;
795 case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
796 vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
797 break;
798#ifndef CONFIG_CPU_MIPSR6
799 case KVM_REG_MIPS_HI:
800 vcpu->arch.hi = v;
801 break;
802 case KVM_REG_MIPS_LO:
803 vcpu->arch.lo = v;
804 break;
805#endif
806 case KVM_REG_MIPS_PC:
807 vcpu->arch.pc = v;
808 break;
809
810 /* Floating point registers */
811 case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
812 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
813 return -EINVAL;
814 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
815 /* Odd singles in top of even double when FR=0 */
816 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
817 set_fpr32(&fpu->fpr[idx], 0, v);
818 else
819 set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
820 break;
821 case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
822 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
823 return -EINVAL;
824 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
825 /* Can't access odd doubles in FR=0 mode */
826 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
827 return -EINVAL;
828 set_fpr64(&fpu->fpr[idx], 0, v);
829 break;
830 case KVM_REG_MIPS_FCR_IR:
831 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
832 return -EINVAL;
833 /* Read-only */
834 break;
835 case KVM_REG_MIPS_FCR_CSR:
836 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
837 return -EINVAL;
838 fpu->fcr31 = v;
839 break;
840
841 /* MIPS SIMD Architecture (MSA) registers */
842 case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
843 if (!kvm_mips_guest_has_msa(&vcpu->arch))
844 return -EINVAL;
845 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
846#ifdef CONFIG_CPU_LITTLE_ENDIAN
847 /* least significant byte first */
848 set_fpr64(&fpu->fpr[idx], 0, vs[0]);
849 set_fpr64(&fpu->fpr[idx], 1, vs[1]);
850#else
851 /* most significant byte first */
852 set_fpr64(&fpu->fpr[idx], 1, vs[0]);
853 set_fpr64(&fpu->fpr[idx], 0, vs[1]);
854#endif
855 break;
856 case KVM_REG_MIPS_MSA_IR:
857 if (!kvm_mips_guest_has_msa(&vcpu->arch))
858 return -EINVAL;
859 /* Read-only */
860 break;
861 case KVM_REG_MIPS_MSA_CSR:
862 if (!kvm_mips_guest_has_msa(&vcpu->arch))
863 return -EINVAL;
864 fpu->msacsr = v;
865 break;
866
867 /* registers to be handled specially */
868 default:
869 return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
870 }
871 return 0;
872}
873
874static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
875 struct kvm_enable_cap *cap)
876{
877 int r = 0;
878
879 if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
880 return -EINVAL;
881 if (cap->flags)
882 return -EINVAL;
883 if (cap->args[0])
884 return -EINVAL;
885
886 switch (cap->cap) {
887 case KVM_CAP_MIPS_FPU:
888 vcpu->arch.fpu_enabled = true;
889 break;
890 case KVM_CAP_MIPS_MSA:
891 vcpu->arch.msa_enabled = true;
892 break;
893 default:
894 r = -EINVAL;
895 break;
896 }
897
898 return r;
899}
900
901long kvm_arch_vcpu_async_ioctl(struct file *filp, unsigned int ioctl,
902 unsigned long arg)
903{
904 struct kvm_vcpu *vcpu = filp->private_data;
905 void __user *argp = (void __user *)arg;
906
907 if (ioctl == KVM_INTERRUPT) {
908 struct kvm_mips_interrupt irq;
909
910 if (copy_from_user(&irq, argp, sizeof(irq)))
911 return -EFAULT;
912 kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
913 irq.irq);
914
915 return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
916 }
917
918 return -ENOIOCTLCMD;
919}
920
921long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
922 unsigned long arg)
923{
924 struct kvm_vcpu *vcpu = filp->private_data;
925 void __user *argp = (void __user *)arg;
926 long r;
927
928 vcpu_load(vcpu);
929
930 switch (ioctl) {
931 case KVM_SET_ONE_REG:
932 case KVM_GET_ONE_REG: {
933 struct kvm_one_reg reg;
934
935 r = -EFAULT;
936 if (copy_from_user(®, argp, sizeof(reg)))
937 break;
938 if (ioctl == KVM_SET_ONE_REG)
939 r = kvm_mips_set_reg(vcpu, ®);
940 else
941 r = kvm_mips_get_reg(vcpu, ®);
942 break;
943 }
944 case KVM_GET_REG_LIST: {
945 struct kvm_reg_list __user *user_list = argp;
946 struct kvm_reg_list reg_list;
947 unsigned n;
948
949 r = -EFAULT;
950 if (copy_from_user(®_list, user_list, sizeof(reg_list)))
951 break;
952 n = reg_list.n;
953 reg_list.n = kvm_mips_num_regs(vcpu);
954 if (copy_to_user(user_list, ®_list, sizeof(reg_list)))
955 break;
956 r = -E2BIG;
957 if (n < reg_list.n)
958 break;
959 r = kvm_mips_copy_reg_indices(vcpu, user_list->reg);
960 break;
961 }
962 case KVM_ENABLE_CAP: {
963 struct kvm_enable_cap cap;
964
965 r = -EFAULT;
966 if (copy_from_user(&cap, argp, sizeof(cap)))
967 break;
968 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
969 break;
970 }
971 default:
972 r = -ENOIOCTLCMD;
973 }
974
975 vcpu_put(vcpu);
976 return r;
977}
978
979void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
980{
981
982}
983
984int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
985{
986 kvm_mips_callbacks->prepare_flush_shadow(kvm);
987 return 1;
988}
989
990int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
991{
992 int r;
993
994 switch (ioctl) {
995 default:
996 r = -ENOIOCTLCMD;
997 }
998
999 return r;
1000}
1001
1002int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1003 struct kvm_sregs *sregs)
1004{
1005 return -ENOIOCTLCMD;
1006}
1007
1008int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1009 struct kvm_sregs *sregs)
1010{
1011 return -ENOIOCTLCMD;
1012}
1013
1014void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1015{
1016}
1017
1018int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1019{
1020 return -ENOIOCTLCMD;
1021}
1022
1023int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1024{
1025 return -ENOIOCTLCMD;
1026}
1027
1028vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1029{
1030 return VM_FAULT_SIGBUS;
1031}
1032
1033int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1034{
1035 int r;
1036
1037 switch (ext) {
1038 case KVM_CAP_ONE_REG:
1039 case KVM_CAP_ENABLE_CAP:
1040 case KVM_CAP_READONLY_MEM:
1041 case KVM_CAP_SYNC_MMU:
1042 case KVM_CAP_IMMEDIATE_EXIT:
1043 r = 1;
1044 break;
1045 case KVM_CAP_NR_VCPUS:
1046 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
1047 break;
1048 case KVM_CAP_MAX_VCPUS:
1049 r = KVM_MAX_VCPUS;
1050 break;
1051 case KVM_CAP_MAX_VCPU_ID:
1052 r = KVM_MAX_VCPU_IDS;
1053 break;
1054 case KVM_CAP_MIPS_FPU:
1055 /* We don't handle systems with inconsistent cpu_has_fpu */
1056 r = !!raw_cpu_has_fpu;
1057 break;
1058 case KVM_CAP_MIPS_MSA:
1059 /*
1060 * We don't support MSA vector partitioning yet:
1061 * 1) It would require explicit support which can't be tested
1062 * yet due to lack of support in current hardware.
1063 * 2) It extends the state that would need to be saved/restored
1064 * by e.g. QEMU for migration.
1065 *
1066 * When vector partitioning hardware becomes available, support
1067 * could be added by requiring a flag when enabling
1068 * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1069 * to save/restore the appropriate extra state.
1070 */
1071 r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
1072 break;
1073 default:
1074 r = kvm_mips_callbacks->check_extension(kvm, ext);
1075 break;
1076 }
1077 return r;
1078}
1079
1080int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1081{
1082 return kvm_mips_pending_timer(vcpu) ||
1083 kvm_read_c0_guest_cause(&vcpu->arch.cop0) & C_TI;
1084}
1085
1086int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
1087{
1088 int i;
1089 struct mips_coproc *cop0;
1090
1091 if (!vcpu)
1092 return -1;
1093
1094 kvm_debug("VCPU Register Dump:\n");
1095 kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
1096 kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1097
1098 for (i = 0; i < 32; i += 4) {
1099 kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1100 vcpu->arch.gprs[i],
1101 vcpu->arch.gprs[i + 1],
1102 vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
1103 }
1104 kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
1105 kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1106
1107 cop0 = &vcpu->arch.cop0;
1108 kvm_debug("\tStatus: 0x%08x, Cause: 0x%08x\n",
1109 kvm_read_c0_guest_status(cop0),
1110 kvm_read_c0_guest_cause(cop0));
1111
1112 kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1113
1114 return 0;
1115}
1116
1117int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1118{
1119 int i;
1120
1121 vcpu_load(vcpu);
1122
1123 for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1124 vcpu->arch.gprs[i] = regs->gpr[i];
1125 vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1126 vcpu->arch.hi = regs->hi;
1127 vcpu->arch.lo = regs->lo;
1128 vcpu->arch.pc = regs->pc;
1129
1130 vcpu_put(vcpu);
1131 return 0;
1132}
1133
1134int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1135{
1136 int i;
1137
1138 vcpu_load(vcpu);
1139
1140 for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1141 regs->gpr[i] = vcpu->arch.gprs[i];
1142
1143 regs->hi = vcpu->arch.hi;
1144 regs->lo = vcpu->arch.lo;
1145 regs->pc = vcpu->arch.pc;
1146
1147 vcpu_put(vcpu);
1148 return 0;
1149}
1150
1151int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1152 struct kvm_translation *tr)
1153{
1154 return 0;
1155}
1156
1157static void kvm_mips_set_c0_status(void)
1158{
1159 u32 status = read_c0_status();
1160
1161 if (cpu_has_dsp)
1162 status |= (ST0_MX);
1163
1164 write_c0_status(status);
1165 ehb();
1166}
1167
1168/*
1169 * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1170 */
1171static int __kvm_mips_handle_exit(struct kvm_vcpu *vcpu)
1172{
1173 struct kvm_run *run = vcpu->run;
1174 u32 cause = vcpu->arch.host_cp0_cause;
1175 u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1176 u32 __user *opc = (u32 __user *) vcpu->arch.pc;
1177 unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
1178 enum emulation_result er = EMULATE_DONE;
1179 u32 inst;
1180 int ret = RESUME_GUEST;
1181
1182 vcpu->mode = OUTSIDE_GUEST_MODE;
1183
1184 /* Set a default exit reason */
1185 run->exit_reason = KVM_EXIT_UNKNOWN;
1186 run->ready_for_interrupt_injection = 1;
1187
1188 /*
1189 * Set the appropriate status bits based on host CPU features,
1190 * before we hit the scheduler
1191 */
1192 kvm_mips_set_c0_status();
1193
1194 local_irq_enable();
1195
1196 kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1197 cause, opc, run, vcpu);
1198 trace_kvm_exit(vcpu, exccode);
1199
1200 switch (exccode) {
1201 case EXCCODE_INT:
1202 kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);
1203
1204 ++vcpu->stat.int_exits;
1205
1206 if (need_resched())
1207 cond_resched();
1208
1209 ret = RESUME_GUEST;
1210 break;
1211
1212 case EXCCODE_CPU:
1213 kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);
1214
1215 ++vcpu->stat.cop_unusable_exits;
1216 ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
1217 /* XXXKYMA: Might need to return to user space */
1218 if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1219 ret = RESUME_HOST;
1220 break;
1221
1222 case EXCCODE_MOD:
1223 ++vcpu->stat.tlbmod_exits;
1224 ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
1225 break;
1226
1227 case EXCCODE_TLBS:
1228 kvm_debug("TLB ST fault: cause %#x, status %#x, PC: %p, BadVaddr: %#lx\n",
1229 cause, kvm_read_c0_guest_status(&vcpu->arch.cop0), opc,
1230 badvaddr);
1231
1232 ++vcpu->stat.tlbmiss_st_exits;
1233 ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
1234 break;
1235
1236 case EXCCODE_TLBL:
1237 kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1238 cause, opc, badvaddr);
1239
1240 ++vcpu->stat.tlbmiss_ld_exits;
1241 ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
1242 break;
1243
1244 case EXCCODE_ADES:
1245 ++vcpu->stat.addrerr_st_exits;
1246 ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
1247 break;
1248
1249 case EXCCODE_ADEL:
1250 ++vcpu->stat.addrerr_ld_exits;
1251 ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
1252 break;
1253
1254 case EXCCODE_SYS:
1255 ++vcpu->stat.syscall_exits;
1256 ret = kvm_mips_callbacks->handle_syscall(vcpu);
1257 break;
1258
1259 case EXCCODE_RI:
1260 ++vcpu->stat.resvd_inst_exits;
1261 ret = kvm_mips_callbacks->handle_res_inst(vcpu);
1262 break;
1263
1264 case EXCCODE_BP:
1265 ++vcpu->stat.break_inst_exits;
1266 ret = kvm_mips_callbacks->handle_break(vcpu);
1267 break;
1268
1269 case EXCCODE_TR:
1270 ++vcpu->stat.trap_inst_exits;
1271 ret = kvm_mips_callbacks->handle_trap(vcpu);
1272 break;
1273
1274 case EXCCODE_MSAFPE:
1275 ++vcpu->stat.msa_fpe_exits;
1276 ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
1277 break;
1278
1279 case EXCCODE_FPE:
1280 ++vcpu->stat.fpe_exits;
1281 ret = kvm_mips_callbacks->handle_fpe(vcpu);
1282 break;
1283
1284 case EXCCODE_MSADIS:
1285 ++vcpu->stat.msa_disabled_exits;
1286 ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
1287 break;
1288
1289 case EXCCODE_GE:
1290 /* defer exit accounting to handler */
1291 ret = kvm_mips_callbacks->handle_guest_exit(vcpu);
1292 break;
1293
1294 default:
1295 if (cause & CAUSEF_BD)
1296 opc += 1;
1297 inst = 0;
1298 kvm_get_badinstr(opc, vcpu, &inst);
1299 kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x BadVaddr: %#lx Status: %#x\n",
1300 exccode, opc, inst, badvaddr,
1301 kvm_read_c0_guest_status(&vcpu->arch.cop0));
1302 kvm_arch_vcpu_dump_regs(vcpu);
1303 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1304 ret = RESUME_HOST;
1305 break;
1306
1307 }
1308
1309 local_irq_disable();
1310
1311 if (ret == RESUME_GUEST)
1312 kvm_vz_acquire_htimer(vcpu);
1313
1314 if (er == EMULATE_DONE && !(ret & RESUME_HOST))
1315 kvm_mips_deliver_interrupts(vcpu, cause);
1316
1317 if (!(ret & RESUME_HOST)) {
1318 /* Only check for signals if not already exiting to userspace */
1319 if (signal_pending(current)) {
1320 run->exit_reason = KVM_EXIT_INTR;
1321 ret = (-EINTR << 2) | RESUME_HOST;
1322 ++vcpu->stat.signal_exits;
1323 trace_kvm_exit(vcpu, KVM_TRACE_EXIT_SIGNAL);
1324 }
1325 }
1326
1327 if (ret == RESUME_GUEST) {
1328 trace_kvm_reenter(vcpu);
1329
1330 /*
1331 * Make sure the read of VCPU requests in vcpu_reenter()
1332 * callback is not reordered ahead of the write to vcpu->mode,
1333 * or we could miss a TLB flush request while the requester sees
1334 * the VCPU as outside of guest mode and not needing an IPI.
1335 */
1336 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
1337
1338 kvm_mips_callbacks->vcpu_reenter(vcpu);
1339
1340 /*
1341 * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1342 * is live), restore FCR31 / MSACSR.
1343 *
1344 * This should be before returning to the guest exception
1345 * vector, as it may well cause an [MSA] FP exception if there
1346 * are pending exception bits unmasked. (see
1347 * kvm_mips_csr_die_notifier() for how that is handled).
1348 */
1349 if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
1350 read_c0_status() & ST0_CU1)
1351 __kvm_restore_fcsr(&vcpu->arch);
1352
1353 if (kvm_mips_guest_has_msa(&vcpu->arch) &&
1354 read_c0_config5() & MIPS_CONF5_MSAEN)
1355 __kvm_restore_msacsr(&vcpu->arch);
1356 }
1357 return ret;
1358}
1359
1360int noinstr kvm_mips_handle_exit(struct kvm_vcpu *vcpu)
1361{
1362 int ret;
1363
1364 guest_state_exit_irqoff();
1365 ret = __kvm_mips_handle_exit(vcpu);
1366 guest_state_enter_irqoff();
1367
1368 return ret;
1369}
1370
1371/* Enable FPU for guest and restore context */
1372void kvm_own_fpu(struct kvm_vcpu *vcpu)
1373{
1374 struct mips_coproc *cop0 = &vcpu->arch.cop0;
1375 unsigned int sr, cfg5;
1376
1377 preempt_disable();
1378
1379 sr = kvm_read_c0_guest_status(cop0);
1380
1381 /*
1382 * If MSA state is already live, it is undefined how it interacts with
1383 * FR=0 FPU state, and we don't want to hit reserved instruction
1384 * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1385 * play it safe and save it first.
1386 */
1387 if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1388 vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1389 kvm_lose_fpu(vcpu);
1390
1391 /*
1392 * Enable FPU for guest
1393 * We set FR and FRE according to guest context
1394 */
1395 change_c0_status(ST0_CU1 | ST0_FR, sr);
1396 if (cpu_has_fre) {
1397 cfg5 = kvm_read_c0_guest_config5(cop0);
1398 change_c0_config5(MIPS_CONF5_FRE, cfg5);
1399 }
1400 enable_fpu_hazard();
1401
1402 /* If guest FPU state not active, restore it now */
1403 if (!(vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
1404 __kvm_restore_fpu(&vcpu->arch);
1405 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1406 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU);
1407 } else {
1408 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_FPU);
1409 }
1410
1411 preempt_enable();
1412}
1413
1414#ifdef CONFIG_CPU_HAS_MSA
1415/* Enable MSA for guest and restore context */
1416void kvm_own_msa(struct kvm_vcpu *vcpu)
1417{
1418 struct mips_coproc *cop0 = &vcpu->arch.cop0;
1419 unsigned int sr, cfg5;
1420
1421 preempt_disable();
1422
1423 /*
1424 * Enable FPU if enabled in guest, since we're restoring FPU context
1425 * anyway. We set FR and FRE according to guest context.
1426 */
1427 if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1428 sr = kvm_read_c0_guest_status(cop0);
1429
1430 /*
1431 * If FR=0 FPU state is already live, it is undefined how it
1432 * interacts with MSA state, so play it safe and save it first.
1433 */
1434 if (!(sr & ST0_FR) &&
1435 (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU |
1436 KVM_MIPS_AUX_MSA)) == KVM_MIPS_AUX_FPU)
1437 kvm_lose_fpu(vcpu);
1438
1439 change_c0_status(ST0_CU1 | ST0_FR, sr);
1440 if (sr & ST0_CU1 && cpu_has_fre) {
1441 cfg5 = kvm_read_c0_guest_config5(cop0);
1442 change_c0_config5(MIPS_CONF5_FRE, cfg5);
1443 }
1444 }
1445
1446 /* Enable MSA for guest */
1447 set_c0_config5(MIPS_CONF5_MSAEN);
1448 enable_fpu_hazard();
1449
1450 switch (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA)) {
1451 case KVM_MIPS_AUX_FPU:
1452 /*
1453 * Guest FPU state already loaded, only restore upper MSA state
1454 */
1455 __kvm_restore_msa_upper(&vcpu->arch);
1456 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1457 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_MSA);
1458 break;
1459 case 0:
1460 /* Neither FPU or MSA already active, restore full MSA state */
1461 __kvm_restore_msa(&vcpu->arch);
1462 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1463 if (kvm_mips_guest_has_fpu(&vcpu->arch))
1464 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1465 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE,
1466 KVM_TRACE_AUX_FPU_MSA);
1467 break;
1468 default:
1469 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_MSA);
1470 break;
1471 }
1472
1473 preempt_enable();
1474}
1475#endif
1476
1477/* Drop FPU & MSA without saving it */
1478void kvm_drop_fpu(struct kvm_vcpu *vcpu)
1479{
1480 preempt_disable();
1481 if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1482 disable_msa();
1483 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_MSA);
1484 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_MSA;
1485 }
1486 if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1487 clear_c0_status(ST0_CU1 | ST0_FR);
1488 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_FPU);
1489 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1490 }
1491 preempt_enable();
1492}
1493
1494/* Save and disable FPU & MSA */
1495void kvm_lose_fpu(struct kvm_vcpu *vcpu)
1496{
1497 /*
1498 * With T&E, FPU & MSA get disabled in root context (hardware) when it
1499 * is disabled in guest context (software), but the register state in
1500 * the hardware may still be in use.
1501 * This is why we explicitly re-enable the hardware before saving.
1502 */
1503
1504 preempt_disable();
1505 if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1506 __kvm_save_msa(&vcpu->arch);
1507 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU_MSA);
1508
1509 /* Disable MSA & FPU */
1510 disable_msa();
1511 if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1512 clear_c0_status(ST0_CU1 | ST0_FR);
1513 disable_fpu_hazard();
1514 }
1515 vcpu->arch.aux_inuse &= ~(KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA);
1516 } else if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1517 __kvm_save_fpu(&vcpu->arch);
1518 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1519 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU);
1520
1521 /* Disable FPU */
1522 clear_c0_status(ST0_CU1 | ST0_FR);
1523 disable_fpu_hazard();
1524 }
1525 preempt_enable();
1526}
1527
1528/*
1529 * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1530 * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1531 * exception if cause bits are set in the value being written.
1532 */
1533static int kvm_mips_csr_die_notify(struct notifier_block *self,
1534 unsigned long cmd, void *ptr)
1535{
1536 struct die_args *args = (struct die_args *)ptr;
1537 struct pt_regs *regs = args->regs;
1538 unsigned long pc;
1539
1540 /* Only interested in FPE and MSAFPE */
1541 if (cmd != DIE_FP && cmd != DIE_MSAFP)
1542 return NOTIFY_DONE;
1543
1544 /* Return immediately if guest context isn't active */
1545 if (!(current->flags & PF_VCPU))
1546 return NOTIFY_DONE;
1547
1548 /* Should never get here from user mode */
1549 BUG_ON(user_mode(regs));
1550
1551 pc = instruction_pointer(regs);
1552 switch (cmd) {
1553 case DIE_FP:
1554 /* match 2nd instruction in __kvm_restore_fcsr */
1555 if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
1556 return NOTIFY_DONE;
1557 break;
1558 case DIE_MSAFP:
1559 /* match 2nd/3rd instruction in __kvm_restore_msacsr */
1560 if (!cpu_has_msa ||
1561 pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
1562 pc > (unsigned long)&__kvm_restore_msacsr + 8)
1563 return NOTIFY_DONE;
1564 break;
1565 }
1566
1567 /* Move PC forward a little and continue executing */
1568 instruction_pointer(regs) += 4;
1569
1570 return NOTIFY_STOP;
1571}
1572
1573static struct notifier_block kvm_mips_csr_die_notifier = {
1574 .notifier_call = kvm_mips_csr_die_notify,
1575};
1576
1577static u32 kvm_default_priority_to_irq[MIPS_EXC_MAX] = {
1578 [MIPS_EXC_INT_TIMER] = C_IRQ5,
1579 [MIPS_EXC_INT_IO_1] = C_IRQ0,
1580 [MIPS_EXC_INT_IPI_1] = C_IRQ1,
1581 [MIPS_EXC_INT_IPI_2] = C_IRQ2,
1582};
1583
1584static u32 kvm_loongson3_priority_to_irq[MIPS_EXC_MAX] = {
1585 [MIPS_EXC_INT_TIMER] = C_IRQ5,
1586 [MIPS_EXC_INT_IO_1] = C_IRQ0,
1587 [MIPS_EXC_INT_IO_2] = C_IRQ1,
1588 [MIPS_EXC_INT_IPI_1] = C_IRQ4,
1589};
1590
1591u32 *kvm_priority_to_irq = kvm_default_priority_to_irq;
1592
1593u32 kvm_irq_to_priority(u32 irq)
1594{
1595 int i;
1596
1597 for (i = MIPS_EXC_INT_TIMER; i < MIPS_EXC_MAX; i++) {
1598 if (kvm_priority_to_irq[i] == (1 << (irq + 8)))
1599 return i;
1600 }
1601
1602 return MIPS_EXC_MAX;
1603}
1604
1605static int __init kvm_mips_init(void)
1606{
1607 int ret;
1608
1609 if (cpu_has_mmid) {
1610 pr_warn("KVM does not yet support MMIDs. KVM Disabled\n");
1611 return -EOPNOTSUPP;
1612 }
1613
1614 ret = kvm_mips_entry_setup();
1615 if (ret)
1616 return ret;
1617
1618 ret = kvm_mips_emulation_init();
1619 if (ret)
1620 return ret;
1621
1622
1623 if (boot_cpu_type() == CPU_LOONGSON64)
1624 kvm_priority_to_irq = kvm_loongson3_priority_to_irq;
1625
1626 register_die_notifier(&kvm_mips_csr_die_notifier);
1627
1628 ret = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1629 if (ret) {
1630 unregister_die_notifier(&kvm_mips_csr_die_notifier);
1631 return ret;
1632 }
1633 return 0;
1634}
1635
1636static void __exit kvm_mips_exit(void)
1637{
1638 kvm_exit();
1639
1640 unregister_die_notifier(&kvm_mips_csr_die_notifier);
1641}
1642
1643module_init(kvm_mips_init);
1644module_exit(kvm_mips_exit);
1645
1646EXPORT_TRACEPOINT_SYMBOL(kvm_exit);
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * KVM/MIPS: MIPS specific KVM APIs
7 *
8 * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
10 */
11
12#include <linux/bitops.h>
13#include <linux/errno.h>
14#include <linux/err.h>
15#include <linux/kdebug.h>
16#include <linux/module.h>
17#include <linux/uaccess.h>
18#include <linux/vmalloc.h>
19#include <linux/sched/signal.h>
20#include <linux/fs.h>
21#include <linux/memblock.h>
22#include <linux/pgtable.h>
23
24#include <asm/fpu.h>
25#include <asm/page.h>
26#include <asm/cacheflush.h>
27#include <asm/mmu_context.h>
28#include <asm/pgalloc.h>
29
30#include <linux/kvm_host.h>
31
32#include "interrupt.h"
33
34#define CREATE_TRACE_POINTS
35#include "trace.h"
36
37#ifndef VECTORSPACING
38#define VECTORSPACING 0x100 /* for EI/VI mode */
39#endif
40
41const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
42 KVM_GENERIC_VM_STATS()
43};
44
45const struct kvm_stats_header kvm_vm_stats_header = {
46 .name_size = KVM_STATS_NAME_SIZE,
47 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
48 .id_offset = sizeof(struct kvm_stats_header),
49 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
50 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
51 sizeof(kvm_vm_stats_desc),
52};
53
54const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
55 KVM_GENERIC_VCPU_STATS(),
56 STATS_DESC_COUNTER(VCPU, wait_exits),
57 STATS_DESC_COUNTER(VCPU, cache_exits),
58 STATS_DESC_COUNTER(VCPU, signal_exits),
59 STATS_DESC_COUNTER(VCPU, int_exits),
60 STATS_DESC_COUNTER(VCPU, cop_unusable_exits),
61 STATS_DESC_COUNTER(VCPU, tlbmod_exits),
62 STATS_DESC_COUNTER(VCPU, tlbmiss_ld_exits),
63 STATS_DESC_COUNTER(VCPU, tlbmiss_st_exits),
64 STATS_DESC_COUNTER(VCPU, addrerr_st_exits),
65 STATS_DESC_COUNTER(VCPU, addrerr_ld_exits),
66 STATS_DESC_COUNTER(VCPU, syscall_exits),
67 STATS_DESC_COUNTER(VCPU, resvd_inst_exits),
68 STATS_DESC_COUNTER(VCPU, break_inst_exits),
69 STATS_DESC_COUNTER(VCPU, trap_inst_exits),
70 STATS_DESC_COUNTER(VCPU, msa_fpe_exits),
71 STATS_DESC_COUNTER(VCPU, fpe_exits),
72 STATS_DESC_COUNTER(VCPU, msa_disabled_exits),
73 STATS_DESC_COUNTER(VCPU, flush_dcache_exits),
74 STATS_DESC_COUNTER(VCPU, vz_gpsi_exits),
75 STATS_DESC_COUNTER(VCPU, vz_gsfc_exits),
76 STATS_DESC_COUNTER(VCPU, vz_hc_exits),
77 STATS_DESC_COUNTER(VCPU, vz_grr_exits),
78 STATS_DESC_COUNTER(VCPU, vz_gva_exits),
79 STATS_DESC_COUNTER(VCPU, vz_ghfc_exits),
80 STATS_DESC_COUNTER(VCPU, vz_gpa_exits),
81 STATS_DESC_COUNTER(VCPU, vz_resvd_exits),
82#ifdef CONFIG_CPU_LOONGSON64
83 STATS_DESC_COUNTER(VCPU, vz_cpucfg_exits),
84#endif
85};
86
87const struct kvm_stats_header kvm_vcpu_stats_header = {
88 .name_size = KVM_STATS_NAME_SIZE,
89 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
90 .id_offset = sizeof(struct kvm_stats_header),
91 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
92 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
93 sizeof(kvm_vcpu_stats_desc),
94};
95
96bool kvm_trace_guest_mode_change;
97
98int kvm_guest_mode_change_trace_reg(void)
99{
100 kvm_trace_guest_mode_change = true;
101 return 0;
102}
103
104void kvm_guest_mode_change_trace_unreg(void)
105{
106 kvm_trace_guest_mode_change = false;
107}
108
109/*
110 * XXXKYMA: We are simulatoring a processor that has the WII bit set in
111 * Config7, so we are "runnable" if interrupts are pending
112 */
113int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
114{
115 return !!(vcpu->arch.pending_exceptions);
116}
117
118bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
119{
120 return false;
121}
122
123int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
124{
125 return 1;
126}
127
128int kvm_arch_hardware_enable(void)
129{
130 return kvm_mips_callbacks->hardware_enable();
131}
132
133void kvm_arch_hardware_disable(void)
134{
135 kvm_mips_callbacks->hardware_disable();
136}
137
138int kvm_arch_hardware_setup(void *opaque)
139{
140 return 0;
141}
142
143int kvm_arch_check_processor_compat(void *opaque)
144{
145 return 0;
146}
147
148extern void kvm_init_loongson_ipi(struct kvm *kvm);
149
150int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
151{
152 switch (type) {
153 case KVM_VM_MIPS_AUTO:
154 break;
155 case KVM_VM_MIPS_VZ:
156 break;
157 default:
158 /* Unsupported KVM type */
159 return -EINVAL;
160 }
161
162 /* Allocate page table to map GPA -> RPA */
163 kvm->arch.gpa_mm.pgd = kvm_pgd_alloc();
164 if (!kvm->arch.gpa_mm.pgd)
165 return -ENOMEM;
166
167#ifdef CONFIG_CPU_LOONGSON64
168 kvm_init_loongson_ipi(kvm);
169#endif
170
171 return 0;
172}
173
174static void kvm_mips_free_gpa_pt(struct kvm *kvm)
175{
176 /* It should always be safe to remove after flushing the whole range */
177 WARN_ON(!kvm_mips_flush_gpa_pt(kvm, 0, ~0));
178 pgd_free(NULL, kvm->arch.gpa_mm.pgd);
179}
180
181void kvm_arch_destroy_vm(struct kvm *kvm)
182{
183 kvm_destroy_vcpus(kvm);
184 kvm_mips_free_gpa_pt(kvm);
185}
186
187long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
188 unsigned long arg)
189{
190 return -ENOIOCTLCMD;
191}
192
193void kvm_arch_flush_shadow_all(struct kvm *kvm)
194{
195 /* Flush whole GPA */
196 kvm_mips_flush_gpa_pt(kvm, 0, ~0);
197 kvm_flush_remote_tlbs(kvm);
198}
199
200void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
201 struct kvm_memory_slot *slot)
202{
203 /*
204 * The slot has been made invalid (ready for moving or deletion), so we
205 * need to ensure that it can no longer be accessed by any guest VCPUs.
206 */
207
208 spin_lock(&kvm->mmu_lock);
209 /* Flush slot from GPA */
210 kvm_mips_flush_gpa_pt(kvm, slot->base_gfn,
211 slot->base_gfn + slot->npages - 1);
212 kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
213 spin_unlock(&kvm->mmu_lock);
214}
215
216int kvm_arch_prepare_memory_region(struct kvm *kvm,
217 const struct kvm_memory_slot *old,
218 struct kvm_memory_slot *new,
219 enum kvm_mr_change change)
220{
221 return 0;
222}
223
224void kvm_arch_commit_memory_region(struct kvm *kvm,
225 struct kvm_memory_slot *old,
226 const struct kvm_memory_slot *new,
227 enum kvm_mr_change change)
228{
229 int needs_flush;
230
231 /*
232 * If dirty page logging is enabled, write protect all pages in the slot
233 * ready for dirty logging.
234 *
235 * There is no need to do this in any of the following cases:
236 * CREATE: No dirty mappings will already exist.
237 * MOVE/DELETE: The old mappings will already have been cleaned up by
238 * kvm_arch_flush_shadow_memslot()
239 */
240 if (change == KVM_MR_FLAGS_ONLY &&
241 (!(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
242 new->flags & KVM_MEM_LOG_DIRTY_PAGES)) {
243 spin_lock(&kvm->mmu_lock);
244 /* Write protect GPA page table entries */
245 needs_flush = kvm_mips_mkclean_gpa_pt(kvm, new->base_gfn,
246 new->base_gfn + new->npages - 1);
247 if (needs_flush)
248 kvm_arch_flush_remote_tlbs_memslot(kvm, new);
249 spin_unlock(&kvm->mmu_lock);
250 }
251}
252
253static inline void dump_handler(const char *symbol, void *start, void *end)
254{
255 u32 *p;
256
257 pr_debug("LEAF(%s)\n", symbol);
258
259 pr_debug("\t.set push\n");
260 pr_debug("\t.set noreorder\n");
261
262 for (p = start; p < (u32 *)end; ++p)
263 pr_debug("\t.word\t0x%08x\t\t# %p\n", *p, p);
264
265 pr_debug("\t.set\tpop\n");
266
267 pr_debug("\tEND(%s)\n", symbol);
268}
269
270/* low level hrtimer wake routine */
271static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
272{
273 struct kvm_vcpu *vcpu;
274
275 vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
276
277 kvm_mips_callbacks->queue_timer_int(vcpu);
278
279 vcpu->arch.wait = 0;
280 rcuwait_wake_up(&vcpu->wait);
281
282 return kvm_mips_count_timeout(vcpu);
283}
284
285int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
286{
287 return 0;
288}
289
290int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
291{
292 int err, size;
293 void *gebase, *p, *handler, *refill_start, *refill_end;
294 int i;
295
296 kvm_debug("kvm @ %p: create cpu %d at %p\n",
297 vcpu->kvm, vcpu->vcpu_id, vcpu);
298
299 err = kvm_mips_callbacks->vcpu_init(vcpu);
300 if (err)
301 return err;
302
303 hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
304 HRTIMER_MODE_REL);
305 vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
306
307 /*
308 * Allocate space for host mode exception handlers that handle
309 * guest mode exits
310 */
311 if (cpu_has_veic || cpu_has_vint)
312 size = 0x200 + VECTORSPACING * 64;
313 else
314 size = 0x4000;
315
316 gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
317
318 if (!gebase) {
319 err = -ENOMEM;
320 goto out_uninit_vcpu;
321 }
322 kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
323 ALIGN(size, PAGE_SIZE), gebase);
324
325 /*
326 * Check new ebase actually fits in CP0_EBase. The lack of a write gate
327 * limits us to the low 512MB of physical address space. If the memory
328 * we allocate is out of range, just give up now.
329 */
330 if (!cpu_has_ebase_wg && virt_to_phys(gebase) >= 0x20000000) {
331 kvm_err("CP0_EBase.WG required for guest exception base %pK\n",
332 gebase);
333 err = -ENOMEM;
334 goto out_free_gebase;
335 }
336
337 /* Save new ebase */
338 vcpu->arch.guest_ebase = gebase;
339
340 /* Build guest exception vectors dynamically in unmapped memory */
341 handler = gebase + 0x2000;
342
343 /* TLB refill (or XTLB refill on 64-bit VZ where KX=1) */
344 refill_start = gebase;
345 if (IS_ENABLED(CONFIG_64BIT))
346 refill_start += 0x080;
347 refill_end = kvm_mips_build_tlb_refill_exception(refill_start, handler);
348
349 /* General Exception Entry point */
350 kvm_mips_build_exception(gebase + 0x180, handler);
351
352 /* For vectored interrupts poke the exception code @ all offsets 0-7 */
353 for (i = 0; i < 8; i++) {
354 kvm_debug("L1 Vectored handler @ %p\n",
355 gebase + 0x200 + (i * VECTORSPACING));
356 kvm_mips_build_exception(gebase + 0x200 + i * VECTORSPACING,
357 handler);
358 }
359
360 /* General exit handler */
361 p = handler;
362 p = kvm_mips_build_exit(p);
363
364 /* Guest entry routine */
365 vcpu->arch.vcpu_run = p;
366 p = kvm_mips_build_vcpu_run(p);
367
368 /* Dump the generated code */
369 pr_debug("#include <asm/asm.h>\n");
370 pr_debug("#include <asm/regdef.h>\n");
371 pr_debug("\n");
372 dump_handler("kvm_vcpu_run", vcpu->arch.vcpu_run, p);
373 dump_handler("kvm_tlb_refill", refill_start, refill_end);
374 dump_handler("kvm_gen_exc", gebase + 0x180, gebase + 0x200);
375 dump_handler("kvm_exit", gebase + 0x2000, vcpu->arch.vcpu_run);
376
377 /* Invalidate the icache for these ranges */
378 flush_icache_range((unsigned long)gebase,
379 (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
380
381 /* Init */
382 vcpu->arch.last_sched_cpu = -1;
383 vcpu->arch.last_exec_cpu = -1;
384
385 /* Initial guest state */
386 err = kvm_mips_callbacks->vcpu_setup(vcpu);
387 if (err)
388 goto out_free_gebase;
389
390 return 0;
391
392out_free_gebase:
393 kfree(gebase);
394out_uninit_vcpu:
395 kvm_mips_callbacks->vcpu_uninit(vcpu);
396 return err;
397}
398
399void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
400{
401 hrtimer_cancel(&vcpu->arch.comparecount_timer);
402
403 kvm_mips_dump_stats(vcpu);
404
405 kvm_mmu_free_memory_caches(vcpu);
406 kfree(vcpu->arch.guest_ebase);
407
408 kvm_mips_callbacks->vcpu_uninit(vcpu);
409}
410
411int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
412 struct kvm_guest_debug *dbg)
413{
414 return -ENOIOCTLCMD;
415}
416
417/*
418 * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while
419 * the vCPU is running.
420 *
421 * This must be noinstr as instrumentation may make use of RCU, and this is not
422 * safe during the EQS.
423 */
424static int noinstr kvm_mips_vcpu_enter_exit(struct kvm_vcpu *vcpu)
425{
426 int ret;
427
428 guest_state_enter_irqoff();
429 ret = kvm_mips_callbacks->vcpu_run(vcpu);
430 guest_state_exit_irqoff();
431
432 return ret;
433}
434
435int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
436{
437 int r = -EINTR;
438
439 vcpu_load(vcpu);
440
441 kvm_sigset_activate(vcpu);
442
443 if (vcpu->mmio_needed) {
444 if (!vcpu->mmio_is_write)
445 kvm_mips_complete_mmio_load(vcpu);
446 vcpu->mmio_needed = 0;
447 }
448
449 if (vcpu->run->immediate_exit)
450 goto out;
451
452 lose_fpu(1);
453
454 local_irq_disable();
455 guest_timing_enter_irqoff();
456 trace_kvm_enter(vcpu);
457
458 /*
459 * Make sure the read of VCPU requests in vcpu_run() callback is not
460 * reordered ahead of the write to vcpu->mode, or we could miss a TLB
461 * flush request while the requester sees the VCPU as outside of guest
462 * mode and not needing an IPI.
463 */
464 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
465
466 r = kvm_mips_vcpu_enter_exit(vcpu);
467
468 /*
469 * We must ensure that any pending interrupts are taken before
470 * we exit guest timing so that timer ticks are accounted as
471 * guest time. Transiently unmask interrupts so that any
472 * pending interrupts are taken.
473 *
474 * TODO: is there a barrier which ensures that pending interrupts are
475 * recognised? Currently this just hopes that the CPU takes any pending
476 * interrupts between the enable and disable.
477 */
478 local_irq_enable();
479 local_irq_disable();
480
481 trace_kvm_out(vcpu);
482 guest_timing_exit_irqoff();
483 local_irq_enable();
484
485out:
486 kvm_sigset_deactivate(vcpu);
487
488 vcpu_put(vcpu);
489 return r;
490}
491
492int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
493 struct kvm_mips_interrupt *irq)
494{
495 int intr = (int)irq->irq;
496 struct kvm_vcpu *dvcpu = NULL;
497
498 if (intr == kvm_priority_to_irq[MIPS_EXC_INT_IPI_1] ||
499 intr == kvm_priority_to_irq[MIPS_EXC_INT_IPI_2] ||
500 intr == (-kvm_priority_to_irq[MIPS_EXC_INT_IPI_1]) ||
501 intr == (-kvm_priority_to_irq[MIPS_EXC_INT_IPI_2]))
502 kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
503 (int)intr);
504
505 if (irq->cpu == -1)
506 dvcpu = vcpu;
507 else
508 dvcpu = kvm_get_vcpu(vcpu->kvm, irq->cpu);
509
510 if (intr == 2 || intr == 3 || intr == 4 || intr == 6) {
511 kvm_mips_callbacks->queue_io_int(dvcpu, irq);
512
513 } else if (intr == -2 || intr == -3 || intr == -4 || intr == -6) {
514 kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
515 } else {
516 kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
517 irq->cpu, irq->irq);
518 return -EINVAL;
519 }
520
521 dvcpu->arch.wait = 0;
522
523 rcuwait_wake_up(&dvcpu->wait);
524
525 return 0;
526}
527
528int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
529 struct kvm_mp_state *mp_state)
530{
531 return -ENOIOCTLCMD;
532}
533
534int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
535 struct kvm_mp_state *mp_state)
536{
537 return -ENOIOCTLCMD;
538}
539
540static u64 kvm_mips_get_one_regs[] = {
541 KVM_REG_MIPS_R0,
542 KVM_REG_MIPS_R1,
543 KVM_REG_MIPS_R2,
544 KVM_REG_MIPS_R3,
545 KVM_REG_MIPS_R4,
546 KVM_REG_MIPS_R5,
547 KVM_REG_MIPS_R6,
548 KVM_REG_MIPS_R7,
549 KVM_REG_MIPS_R8,
550 KVM_REG_MIPS_R9,
551 KVM_REG_MIPS_R10,
552 KVM_REG_MIPS_R11,
553 KVM_REG_MIPS_R12,
554 KVM_REG_MIPS_R13,
555 KVM_REG_MIPS_R14,
556 KVM_REG_MIPS_R15,
557 KVM_REG_MIPS_R16,
558 KVM_REG_MIPS_R17,
559 KVM_REG_MIPS_R18,
560 KVM_REG_MIPS_R19,
561 KVM_REG_MIPS_R20,
562 KVM_REG_MIPS_R21,
563 KVM_REG_MIPS_R22,
564 KVM_REG_MIPS_R23,
565 KVM_REG_MIPS_R24,
566 KVM_REG_MIPS_R25,
567 KVM_REG_MIPS_R26,
568 KVM_REG_MIPS_R27,
569 KVM_REG_MIPS_R28,
570 KVM_REG_MIPS_R29,
571 KVM_REG_MIPS_R30,
572 KVM_REG_MIPS_R31,
573
574#ifndef CONFIG_CPU_MIPSR6
575 KVM_REG_MIPS_HI,
576 KVM_REG_MIPS_LO,
577#endif
578 KVM_REG_MIPS_PC,
579};
580
581static u64 kvm_mips_get_one_regs_fpu[] = {
582 KVM_REG_MIPS_FCR_IR,
583 KVM_REG_MIPS_FCR_CSR,
584};
585
586static u64 kvm_mips_get_one_regs_msa[] = {
587 KVM_REG_MIPS_MSA_IR,
588 KVM_REG_MIPS_MSA_CSR,
589};
590
591static unsigned long kvm_mips_num_regs(struct kvm_vcpu *vcpu)
592{
593 unsigned long ret;
594
595 ret = ARRAY_SIZE(kvm_mips_get_one_regs);
596 if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
597 ret += ARRAY_SIZE(kvm_mips_get_one_regs_fpu) + 48;
598 /* odd doubles */
599 if (boot_cpu_data.fpu_id & MIPS_FPIR_F64)
600 ret += 16;
601 }
602 if (kvm_mips_guest_can_have_msa(&vcpu->arch))
603 ret += ARRAY_SIZE(kvm_mips_get_one_regs_msa) + 32;
604 ret += kvm_mips_callbacks->num_regs(vcpu);
605
606 return ret;
607}
608
609static int kvm_mips_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
610{
611 u64 index;
612 unsigned int i;
613
614 if (copy_to_user(indices, kvm_mips_get_one_regs,
615 sizeof(kvm_mips_get_one_regs)))
616 return -EFAULT;
617 indices += ARRAY_SIZE(kvm_mips_get_one_regs);
618
619 if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
620 if (copy_to_user(indices, kvm_mips_get_one_regs_fpu,
621 sizeof(kvm_mips_get_one_regs_fpu)))
622 return -EFAULT;
623 indices += ARRAY_SIZE(kvm_mips_get_one_regs_fpu);
624
625 for (i = 0; i < 32; ++i) {
626 index = KVM_REG_MIPS_FPR_32(i);
627 if (copy_to_user(indices, &index, sizeof(index)))
628 return -EFAULT;
629 ++indices;
630
631 /* skip odd doubles if no F64 */
632 if (i & 1 && !(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
633 continue;
634
635 index = KVM_REG_MIPS_FPR_64(i);
636 if (copy_to_user(indices, &index, sizeof(index)))
637 return -EFAULT;
638 ++indices;
639 }
640 }
641
642 if (kvm_mips_guest_can_have_msa(&vcpu->arch)) {
643 if (copy_to_user(indices, kvm_mips_get_one_regs_msa,
644 sizeof(kvm_mips_get_one_regs_msa)))
645 return -EFAULT;
646 indices += ARRAY_SIZE(kvm_mips_get_one_regs_msa);
647
648 for (i = 0; i < 32; ++i) {
649 index = KVM_REG_MIPS_VEC_128(i);
650 if (copy_to_user(indices, &index, sizeof(index)))
651 return -EFAULT;
652 ++indices;
653 }
654 }
655
656 return kvm_mips_callbacks->copy_reg_indices(vcpu, indices);
657}
658
659static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
660 const struct kvm_one_reg *reg)
661{
662 struct mips_coproc *cop0 = vcpu->arch.cop0;
663 struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
664 int ret;
665 s64 v;
666 s64 vs[2];
667 unsigned int idx;
668
669 switch (reg->id) {
670 /* General purpose registers */
671 case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
672 v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
673 break;
674#ifndef CONFIG_CPU_MIPSR6
675 case KVM_REG_MIPS_HI:
676 v = (long)vcpu->arch.hi;
677 break;
678 case KVM_REG_MIPS_LO:
679 v = (long)vcpu->arch.lo;
680 break;
681#endif
682 case KVM_REG_MIPS_PC:
683 v = (long)vcpu->arch.pc;
684 break;
685
686 /* Floating point registers */
687 case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
688 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
689 return -EINVAL;
690 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
691 /* Odd singles in top of even double when FR=0 */
692 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
693 v = get_fpr32(&fpu->fpr[idx], 0);
694 else
695 v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
696 break;
697 case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
698 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
699 return -EINVAL;
700 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
701 /* Can't access odd doubles in FR=0 mode */
702 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
703 return -EINVAL;
704 v = get_fpr64(&fpu->fpr[idx], 0);
705 break;
706 case KVM_REG_MIPS_FCR_IR:
707 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
708 return -EINVAL;
709 v = boot_cpu_data.fpu_id;
710 break;
711 case KVM_REG_MIPS_FCR_CSR:
712 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
713 return -EINVAL;
714 v = fpu->fcr31;
715 break;
716
717 /* MIPS SIMD Architecture (MSA) registers */
718 case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
719 if (!kvm_mips_guest_has_msa(&vcpu->arch))
720 return -EINVAL;
721 /* Can't access MSA registers in FR=0 mode */
722 if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
723 return -EINVAL;
724 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
725#ifdef CONFIG_CPU_LITTLE_ENDIAN
726 /* least significant byte first */
727 vs[0] = get_fpr64(&fpu->fpr[idx], 0);
728 vs[1] = get_fpr64(&fpu->fpr[idx], 1);
729#else
730 /* most significant byte first */
731 vs[0] = get_fpr64(&fpu->fpr[idx], 1);
732 vs[1] = get_fpr64(&fpu->fpr[idx], 0);
733#endif
734 break;
735 case KVM_REG_MIPS_MSA_IR:
736 if (!kvm_mips_guest_has_msa(&vcpu->arch))
737 return -EINVAL;
738 v = boot_cpu_data.msa_id;
739 break;
740 case KVM_REG_MIPS_MSA_CSR:
741 if (!kvm_mips_guest_has_msa(&vcpu->arch))
742 return -EINVAL;
743 v = fpu->msacsr;
744 break;
745
746 /* registers to be handled specially */
747 default:
748 ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
749 if (ret)
750 return ret;
751 break;
752 }
753 if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
754 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
755
756 return put_user(v, uaddr64);
757 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
758 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
759 u32 v32 = (u32)v;
760
761 return put_user(v32, uaddr32);
762 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
763 void __user *uaddr = (void __user *)(long)reg->addr;
764
765 return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
766 } else {
767 return -EINVAL;
768 }
769}
770
771static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
772 const struct kvm_one_reg *reg)
773{
774 struct mips_coproc *cop0 = vcpu->arch.cop0;
775 struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
776 s64 v;
777 s64 vs[2];
778 unsigned int idx;
779
780 if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
781 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
782
783 if (get_user(v, uaddr64) != 0)
784 return -EFAULT;
785 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
786 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
787 s32 v32;
788
789 if (get_user(v32, uaddr32) != 0)
790 return -EFAULT;
791 v = (s64)v32;
792 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
793 void __user *uaddr = (void __user *)(long)reg->addr;
794
795 return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
796 } else {
797 return -EINVAL;
798 }
799
800 switch (reg->id) {
801 /* General purpose registers */
802 case KVM_REG_MIPS_R0:
803 /* Silently ignore requests to set $0 */
804 break;
805 case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
806 vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
807 break;
808#ifndef CONFIG_CPU_MIPSR6
809 case KVM_REG_MIPS_HI:
810 vcpu->arch.hi = v;
811 break;
812 case KVM_REG_MIPS_LO:
813 vcpu->arch.lo = v;
814 break;
815#endif
816 case KVM_REG_MIPS_PC:
817 vcpu->arch.pc = v;
818 break;
819
820 /* Floating point registers */
821 case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
822 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
823 return -EINVAL;
824 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
825 /* Odd singles in top of even double when FR=0 */
826 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
827 set_fpr32(&fpu->fpr[idx], 0, v);
828 else
829 set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
830 break;
831 case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
832 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
833 return -EINVAL;
834 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
835 /* Can't access odd doubles in FR=0 mode */
836 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
837 return -EINVAL;
838 set_fpr64(&fpu->fpr[idx], 0, v);
839 break;
840 case KVM_REG_MIPS_FCR_IR:
841 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
842 return -EINVAL;
843 /* Read-only */
844 break;
845 case KVM_REG_MIPS_FCR_CSR:
846 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
847 return -EINVAL;
848 fpu->fcr31 = v;
849 break;
850
851 /* MIPS SIMD Architecture (MSA) registers */
852 case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
853 if (!kvm_mips_guest_has_msa(&vcpu->arch))
854 return -EINVAL;
855 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
856#ifdef CONFIG_CPU_LITTLE_ENDIAN
857 /* least significant byte first */
858 set_fpr64(&fpu->fpr[idx], 0, vs[0]);
859 set_fpr64(&fpu->fpr[idx], 1, vs[1]);
860#else
861 /* most significant byte first */
862 set_fpr64(&fpu->fpr[idx], 1, vs[0]);
863 set_fpr64(&fpu->fpr[idx], 0, vs[1]);
864#endif
865 break;
866 case KVM_REG_MIPS_MSA_IR:
867 if (!kvm_mips_guest_has_msa(&vcpu->arch))
868 return -EINVAL;
869 /* Read-only */
870 break;
871 case KVM_REG_MIPS_MSA_CSR:
872 if (!kvm_mips_guest_has_msa(&vcpu->arch))
873 return -EINVAL;
874 fpu->msacsr = v;
875 break;
876
877 /* registers to be handled specially */
878 default:
879 return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
880 }
881 return 0;
882}
883
884static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
885 struct kvm_enable_cap *cap)
886{
887 int r = 0;
888
889 if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
890 return -EINVAL;
891 if (cap->flags)
892 return -EINVAL;
893 if (cap->args[0])
894 return -EINVAL;
895
896 switch (cap->cap) {
897 case KVM_CAP_MIPS_FPU:
898 vcpu->arch.fpu_enabled = true;
899 break;
900 case KVM_CAP_MIPS_MSA:
901 vcpu->arch.msa_enabled = true;
902 break;
903 default:
904 r = -EINVAL;
905 break;
906 }
907
908 return r;
909}
910
911long kvm_arch_vcpu_async_ioctl(struct file *filp, unsigned int ioctl,
912 unsigned long arg)
913{
914 struct kvm_vcpu *vcpu = filp->private_data;
915 void __user *argp = (void __user *)arg;
916
917 if (ioctl == KVM_INTERRUPT) {
918 struct kvm_mips_interrupt irq;
919
920 if (copy_from_user(&irq, argp, sizeof(irq)))
921 return -EFAULT;
922 kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
923 irq.irq);
924
925 return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
926 }
927
928 return -ENOIOCTLCMD;
929}
930
931long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
932 unsigned long arg)
933{
934 struct kvm_vcpu *vcpu = filp->private_data;
935 void __user *argp = (void __user *)arg;
936 long r;
937
938 vcpu_load(vcpu);
939
940 switch (ioctl) {
941 case KVM_SET_ONE_REG:
942 case KVM_GET_ONE_REG: {
943 struct kvm_one_reg reg;
944
945 r = -EFAULT;
946 if (copy_from_user(®, argp, sizeof(reg)))
947 break;
948 if (ioctl == KVM_SET_ONE_REG)
949 r = kvm_mips_set_reg(vcpu, ®);
950 else
951 r = kvm_mips_get_reg(vcpu, ®);
952 break;
953 }
954 case KVM_GET_REG_LIST: {
955 struct kvm_reg_list __user *user_list = argp;
956 struct kvm_reg_list reg_list;
957 unsigned n;
958
959 r = -EFAULT;
960 if (copy_from_user(®_list, user_list, sizeof(reg_list)))
961 break;
962 n = reg_list.n;
963 reg_list.n = kvm_mips_num_regs(vcpu);
964 if (copy_to_user(user_list, ®_list, sizeof(reg_list)))
965 break;
966 r = -E2BIG;
967 if (n < reg_list.n)
968 break;
969 r = kvm_mips_copy_reg_indices(vcpu, user_list->reg);
970 break;
971 }
972 case KVM_ENABLE_CAP: {
973 struct kvm_enable_cap cap;
974
975 r = -EFAULT;
976 if (copy_from_user(&cap, argp, sizeof(cap)))
977 break;
978 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
979 break;
980 }
981 default:
982 r = -ENOIOCTLCMD;
983 }
984
985 vcpu_put(vcpu);
986 return r;
987}
988
989void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
990{
991
992}
993
994int kvm_arch_flush_remote_tlb(struct kvm *kvm)
995{
996 kvm_mips_callbacks->prepare_flush_shadow(kvm);
997 return 1;
998}
999
1000void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1001 const struct kvm_memory_slot *memslot)
1002{
1003 kvm_flush_remote_tlbs(kvm);
1004}
1005
1006long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1007{
1008 long r;
1009
1010 switch (ioctl) {
1011 default:
1012 r = -ENOIOCTLCMD;
1013 }
1014
1015 return r;
1016}
1017
1018int kvm_arch_init(void *opaque)
1019{
1020 if (kvm_mips_callbacks) {
1021 kvm_err("kvm: module already exists\n");
1022 return -EEXIST;
1023 }
1024
1025 return kvm_mips_emulation_init(&kvm_mips_callbacks);
1026}
1027
1028void kvm_arch_exit(void)
1029{
1030 kvm_mips_callbacks = NULL;
1031}
1032
1033int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1034 struct kvm_sregs *sregs)
1035{
1036 return -ENOIOCTLCMD;
1037}
1038
1039int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1040 struct kvm_sregs *sregs)
1041{
1042 return -ENOIOCTLCMD;
1043}
1044
1045void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1046{
1047}
1048
1049int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1050{
1051 return -ENOIOCTLCMD;
1052}
1053
1054int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1055{
1056 return -ENOIOCTLCMD;
1057}
1058
1059vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1060{
1061 return VM_FAULT_SIGBUS;
1062}
1063
1064int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1065{
1066 int r;
1067
1068 switch (ext) {
1069 case KVM_CAP_ONE_REG:
1070 case KVM_CAP_ENABLE_CAP:
1071 case KVM_CAP_READONLY_MEM:
1072 case KVM_CAP_SYNC_MMU:
1073 case KVM_CAP_IMMEDIATE_EXIT:
1074 r = 1;
1075 break;
1076 case KVM_CAP_NR_VCPUS:
1077 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
1078 break;
1079 case KVM_CAP_MAX_VCPUS:
1080 r = KVM_MAX_VCPUS;
1081 break;
1082 case KVM_CAP_MAX_VCPU_ID:
1083 r = KVM_MAX_VCPU_IDS;
1084 break;
1085 case KVM_CAP_MIPS_FPU:
1086 /* We don't handle systems with inconsistent cpu_has_fpu */
1087 r = !!raw_cpu_has_fpu;
1088 break;
1089 case KVM_CAP_MIPS_MSA:
1090 /*
1091 * We don't support MSA vector partitioning yet:
1092 * 1) It would require explicit support which can't be tested
1093 * yet due to lack of support in current hardware.
1094 * 2) It extends the state that would need to be saved/restored
1095 * by e.g. QEMU for migration.
1096 *
1097 * When vector partitioning hardware becomes available, support
1098 * could be added by requiring a flag when enabling
1099 * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1100 * to save/restore the appropriate extra state.
1101 */
1102 r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
1103 break;
1104 default:
1105 r = kvm_mips_callbacks->check_extension(kvm, ext);
1106 break;
1107 }
1108 return r;
1109}
1110
1111int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1112{
1113 return kvm_mips_pending_timer(vcpu) ||
1114 kvm_read_c0_guest_cause(vcpu->arch.cop0) & C_TI;
1115}
1116
1117int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
1118{
1119 int i;
1120 struct mips_coproc *cop0;
1121
1122 if (!vcpu)
1123 return -1;
1124
1125 kvm_debug("VCPU Register Dump:\n");
1126 kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
1127 kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1128
1129 for (i = 0; i < 32; i += 4) {
1130 kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1131 vcpu->arch.gprs[i],
1132 vcpu->arch.gprs[i + 1],
1133 vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
1134 }
1135 kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
1136 kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1137
1138 cop0 = vcpu->arch.cop0;
1139 kvm_debug("\tStatus: 0x%08x, Cause: 0x%08x\n",
1140 kvm_read_c0_guest_status(cop0),
1141 kvm_read_c0_guest_cause(cop0));
1142
1143 kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1144
1145 return 0;
1146}
1147
1148int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1149{
1150 int i;
1151
1152 vcpu_load(vcpu);
1153
1154 for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1155 vcpu->arch.gprs[i] = regs->gpr[i];
1156 vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1157 vcpu->arch.hi = regs->hi;
1158 vcpu->arch.lo = regs->lo;
1159 vcpu->arch.pc = regs->pc;
1160
1161 vcpu_put(vcpu);
1162 return 0;
1163}
1164
1165int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1166{
1167 int i;
1168
1169 vcpu_load(vcpu);
1170
1171 for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1172 regs->gpr[i] = vcpu->arch.gprs[i];
1173
1174 regs->hi = vcpu->arch.hi;
1175 regs->lo = vcpu->arch.lo;
1176 regs->pc = vcpu->arch.pc;
1177
1178 vcpu_put(vcpu);
1179 return 0;
1180}
1181
1182int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1183 struct kvm_translation *tr)
1184{
1185 return 0;
1186}
1187
1188static void kvm_mips_set_c0_status(void)
1189{
1190 u32 status = read_c0_status();
1191
1192 if (cpu_has_dsp)
1193 status |= (ST0_MX);
1194
1195 write_c0_status(status);
1196 ehb();
1197}
1198
1199/*
1200 * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1201 */
1202static int __kvm_mips_handle_exit(struct kvm_vcpu *vcpu)
1203{
1204 struct kvm_run *run = vcpu->run;
1205 u32 cause = vcpu->arch.host_cp0_cause;
1206 u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1207 u32 __user *opc = (u32 __user *) vcpu->arch.pc;
1208 unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
1209 enum emulation_result er = EMULATE_DONE;
1210 u32 inst;
1211 int ret = RESUME_GUEST;
1212
1213 vcpu->mode = OUTSIDE_GUEST_MODE;
1214
1215 /* Set a default exit reason */
1216 run->exit_reason = KVM_EXIT_UNKNOWN;
1217 run->ready_for_interrupt_injection = 1;
1218
1219 /*
1220 * Set the appropriate status bits based on host CPU features,
1221 * before we hit the scheduler
1222 */
1223 kvm_mips_set_c0_status();
1224
1225 local_irq_enable();
1226
1227 kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1228 cause, opc, run, vcpu);
1229 trace_kvm_exit(vcpu, exccode);
1230
1231 switch (exccode) {
1232 case EXCCODE_INT:
1233 kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);
1234
1235 ++vcpu->stat.int_exits;
1236
1237 if (need_resched())
1238 cond_resched();
1239
1240 ret = RESUME_GUEST;
1241 break;
1242
1243 case EXCCODE_CPU:
1244 kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);
1245
1246 ++vcpu->stat.cop_unusable_exits;
1247 ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
1248 /* XXXKYMA: Might need to return to user space */
1249 if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1250 ret = RESUME_HOST;
1251 break;
1252
1253 case EXCCODE_MOD:
1254 ++vcpu->stat.tlbmod_exits;
1255 ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
1256 break;
1257
1258 case EXCCODE_TLBS:
1259 kvm_debug("TLB ST fault: cause %#x, status %#x, PC: %p, BadVaddr: %#lx\n",
1260 cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
1261 badvaddr);
1262
1263 ++vcpu->stat.tlbmiss_st_exits;
1264 ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
1265 break;
1266
1267 case EXCCODE_TLBL:
1268 kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1269 cause, opc, badvaddr);
1270
1271 ++vcpu->stat.tlbmiss_ld_exits;
1272 ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
1273 break;
1274
1275 case EXCCODE_ADES:
1276 ++vcpu->stat.addrerr_st_exits;
1277 ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
1278 break;
1279
1280 case EXCCODE_ADEL:
1281 ++vcpu->stat.addrerr_ld_exits;
1282 ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
1283 break;
1284
1285 case EXCCODE_SYS:
1286 ++vcpu->stat.syscall_exits;
1287 ret = kvm_mips_callbacks->handle_syscall(vcpu);
1288 break;
1289
1290 case EXCCODE_RI:
1291 ++vcpu->stat.resvd_inst_exits;
1292 ret = kvm_mips_callbacks->handle_res_inst(vcpu);
1293 break;
1294
1295 case EXCCODE_BP:
1296 ++vcpu->stat.break_inst_exits;
1297 ret = kvm_mips_callbacks->handle_break(vcpu);
1298 break;
1299
1300 case EXCCODE_TR:
1301 ++vcpu->stat.trap_inst_exits;
1302 ret = kvm_mips_callbacks->handle_trap(vcpu);
1303 break;
1304
1305 case EXCCODE_MSAFPE:
1306 ++vcpu->stat.msa_fpe_exits;
1307 ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
1308 break;
1309
1310 case EXCCODE_FPE:
1311 ++vcpu->stat.fpe_exits;
1312 ret = kvm_mips_callbacks->handle_fpe(vcpu);
1313 break;
1314
1315 case EXCCODE_MSADIS:
1316 ++vcpu->stat.msa_disabled_exits;
1317 ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
1318 break;
1319
1320 case EXCCODE_GE:
1321 /* defer exit accounting to handler */
1322 ret = kvm_mips_callbacks->handle_guest_exit(vcpu);
1323 break;
1324
1325 default:
1326 if (cause & CAUSEF_BD)
1327 opc += 1;
1328 inst = 0;
1329 kvm_get_badinstr(opc, vcpu, &inst);
1330 kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x BadVaddr: %#lx Status: %#x\n",
1331 exccode, opc, inst, badvaddr,
1332 kvm_read_c0_guest_status(vcpu->arch.cop0));
1333 kvm_arch_vcpu_dump_regs(vcpu);
1334 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1335 ret = RESUME_HOST;
1336 break;
1337
1338 }
1339
1340 local_irq_disable();
1341
1342 if (ret == RESUME_GUEST)
1343 kvm_vz_acquire_htimer(vcpu);
1344
1345 if (er == EMULATE_DONE && !(ret & RESUME_HOST))
1346 kvm_mips_deliver_interrupts(vcpu, cause);
1347
1348 if (!(ret & RESUME_HOST)) {
1349 /* Only check for signals if not already exiting to userspace */
1350 if (signal_pending(current)) {
1351 run->exit_reason = KVM_EXIT_INTR;
1352 ret = (-EINTR << 2) | RESUME_HOST;
1353 ++vcpu->stat.signal_exits;
1354 trace_kvm_exit(vcpu, KVM_TRACE_EXIT_SIGNAL);
1355 }
1356 }
1357
1358 if (ret == RESUME_GUEST) {
1359 trace_kvm_reenter(vcpu);
1360
1361 /*
1362 * Make sure the read of VCPU requests in vcpu_reenter()
1363 * callback is not reordered ahead of the write to vcpu->mode,
1364 * or we could miss a TLB flush request while the requester sees
1365 * the VCPU as outside of guest mode and not needing an IPI.
1366 */
1367 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
1368
1369 kvm_mips_callbacks->vcpu_reenter(vcpu);
1370
1371 /*
1372 * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1373 * is live), restore FCR31 / MSACSR.
1374 *
1375 * This should be before returning to the guest exception
1376 * vector, as it may well cause an [MSA] FP exception if there
1377 * are pending exception bits unmasked. (see
1378 * kvm_mips_csr_die_notifier() for how that is handled).
1379 */
1380 if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
1381 read_c0_status() & ST0_CU1)
1382 __kvm_restore_fcsr(&vcpu->arch);
1383
1384 if (kvm_mips_guest_has_msa(&vcpu->arch) &&
1385 read_c0_config5() & MIPS_CONF5_MSAEN)
1386 __kvm_restore_msacsr(&vcpu->arch);
1387 }
1388 return ret;
1389}
1390
1391int noinstr kvm_mips_handle_exit(struct kvm_vcpu *vcpu)
1392{
1393 int ret;
1394
1395 guest_state_exit_irqoff();
1396 ret = __kvm_mips_handle_exit(vcpu);
1397 guest_state_enter_irqoff();
1398
1399 return ret;
1400}
1401
1402/* Enable FPU for guest and restore context */
1403void kvm_own_fpu(struct kvm_vcpu *vcpu)
1404{
1405 struct mips_coproc *cop0 = vcpu->arch.cop0;
1406 unsigned int sr, cfg5;
1407
1408 preempt_disable();
1409
1410 sr = kvm_read_c0_guest_status(cop0);
1411
1412 /*
1413 * If MSA state is already live, it is undefined how it interacts with
1414 * FR=0 FPU state, and we don't want to hit reserved instruction
1415 * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1416 * play it safe and save it first.
1417 */
1418 if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1419 vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1420 kvm_lose_fpu(vcpu);
1421
1422 /*
1423 * Enable FPU for guest
1424 * We set FR and FRE according to guest context
1425 */
1426 change_c0_status(ST0_CU1 | ST0_FR, sr);
1427 if (cpu_has_fre) {
1428 cfg5 = kvm_read_c0_guest_config5(cop0);
1429 change_c0_config5(MIPS_CONF5_FRE, cfg5);
1430 }
1431 enable_fpu_hazard();
1432
1433 /* If guest FPU state not active, restore it now */
1434 if (!(vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
1435 __kvm_restore_fpu(&vcpu->arch);
1436 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1437 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU);
1438 } else {
1439 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_FPU);
1440 }
1441
1442 preempt_enable();
1443}
1444
1445#ifdef CONFIG_CPU_HAS_MSA
1446/* Enable MSA for guest and restore context */
1447void kvm_own_msa(struct kvm_vcpu *vcpu)
1448{
1449 struct mips_coproc *cop0 = vcpu->arch.cop0;
1450 unsigned int sr, cfg5;
1451
1452 preempt_disable();
1453
1454 /*
1455 * Enable FPU if enabled in guest, since we're restoring FPU context
1456 * anyway. We set FR and FRE according to guest context.
1457 */
1458 if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1459 sr = kvm_read_c0_guest_status(cop0);
1460
1461 /*
1462 * If FR=0 FPU state is already live, it is undefined how it
1463 * interacts with MSA state, so play it safe and save it first.
1464 */
1465 if (!(sr & ST0_FR) &&
1466 (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU |
1467 KVM_MIPS_AUX_MSA)) == KVM_MIPS_AUX_FPU)
1468 kvm_lose_fpu(vcpu);
1469
1470 change_c0_status(ST0_CU1 | ST0_FR, sr);
1471 if (sr & ST0_CU1 && cpu_has_fre) {
1472 cfg5 = kvm_read_c0_guest_config5(cop0);
1473 change_c0_config5(MIPS_CONF5_FRE, cfg5);
1474 }
1475 }
1476
1477 /* Enable MSA for guest */
1478 set_c0_config5(MIPS_CONF5_MSAEN);
1479 enable_fpu_hazard();
1480
1481 switch (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA)) {
1482 case KVM_MIPS_AUX_FPU:
1483 /*
1484 * Guest FPU state already loaded, only restore upper MSA state
1485 */
1486 __kvm_restore_msa_upper(&vcpu->arch);
1487 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1488 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_MSA);
1489 break;
1490 case 0:
1491 /* Neither FPU or MSA already active, restore full MSA state */
1492 __kvm_restore_msa(&vcpu->arch);
1493 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1494 if (kvm_mips_guest_has_fpu(&vcpu->arch))
1495 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1496 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE,
1497 KVM_TRACE_AUX_FPU_MSA);
1498 break;
1499 default:
1500 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_MSA);
1501 break;
1502 }
1503
1504 preempt_enable();
1505}
1506#endif
1507
1508/* Drop FPU & MSA without saving it */
1509void kvm_drop_fpu(struct kvm_vcpu *vcpu)
1510{
1511 preempt_disable();
1512 if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1513 disable_msa();
1514 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_MSA);
1515 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_MSA;
1516 }
1517 if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1518 clear_c0_status(ST0_CU1 | ST0_FR);
1519 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_FPU);
1520 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1521 }
1522 preempt_enable();
1523}
1524
1525/* Save and disable FPU & MSA */
1526void kvm_lose_fpu(struct kvm_vcpu *vcpu)
1527{
1528 /*
1529 * With T&E, FPU & MSA get disabled in root context (hardware) when it
1530 * is disabled in guest context (software), but the register state in
1531 * the hardware may still be in use.
1532 * This is why we explicitly re-enable the hardware before saving.
1533 */
1534
1535 preempt_disable();
1536 if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1537 __kvm_save_msa(&vcpu->arch);
1538 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU_MSA);
1539
1540 /* Disable MSA & FPU */
1541 disable_msa();
1542 if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1543 clear_c0_status(ST0_CU1 | ST0_FR);
1544 disable_fpu_hazard();
1545 }
1546 vcpu->arch.aux_inuse &= ~(KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA);
1547 } else if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1548 __kvm_save_fpu(&vcpu->arch);
1549 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1550 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU);
1551
1552 /* Disable FPU */
1553 clear_c0_status(ST0_CU1 | ST0_FR);
1554 disable_fpu_hazard();
1555 }
1556 preempt_enable();
1557}
1558
1559/*
1560 * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1561 * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1562 * exception if cause bits are set in the value being written.
1563 */
1564static int kvm_mips_csr_die_notify(struct notifier_block *self,
1565 unsigned long cmd, void *ptr)
1566{
1567 struct die_args *args = (struct die_args *)ptr;
1568 struct pt_regs *regs = args->regs;
1569 unsigned long pc;
1570
1571 /* Only interested in FPE and MSAFPE */
1572 if (cmd != DIE_FP && cmd != DIE_MSAFP)
1573 return NOTIFY_DONE;
1574
1575 /* Return immediately if guest context isn't active */
1576 if (!(current->flags & PF_VCPU))
1577 return NOTIFY_DONE;
1578
1579 /* Should never get here from user mode */
1580 BUG_ON(user_mode(regs));
1581
1582 pc = instruction_pointer(regs);
1583 switch (cmd) {
1584 case DIE_FP:
1585 /* match 2nd instruction in __kvm_restore_fcsr */
1586 if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
1587 return NOTIFY_DONE;
1588 break;
1589 case DIE_MSAFP:
1590 /* match 2nd/3rd instruction in __kvm_restore_msacsr */
1591 if (!cpu_has_msa ||
1592 pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
1593 pc > (unsigned long)&__kvm_restore_msacsr + 8)
1594 return NOTIFY_DONE;
1595 break;
1596 }
1597
1598 /* Move PC forward a little and continue executing */
1599 instruction_pointer(regs) += 4;
1600
1601 return NOTIFY_STOP;
1602}
1603
1604static struct notifier_block kvm_mips_csr_die_notifier = {
1605 .notifier_call = kvm_mips_csr_die_notify,
1606};
1607
1608static u32 kvm_default_priority_to_irq[MIPS_EXC_MAX] = {
1609 [MIPS_EXC_INT_TIMER] = C_IRQ5,
1610 [MIPS_EXC_INT_IO_1] = C_IRQ0,
1611 [MIPS_EXC_INT_IPI_1] = C_IRQ1,
1612 [MIPS_EXC_INT_IPI_2] = C_IRQ2,
1613};
1614
1615static u32 kvm_loongson3_priority_to_irq[MIPS_EXC_MAX] = {
1616 [MIPS_EXC_INT_TIMER] = C_IRQ5,
1617 [MIPS_EXC_INT_IO_1] = C_IRQ0,
1618 [MIPS_EXC_INT_IO_2] = C_IRQ1,
1619 [MIPS_EXC_INT_IPI_1] = C_IRQ4,
1620};
1621
1622u32 *kvm_priority_to_irq = kvm_default_priority_to_irq;
1623
1624u32 kvm_irq_to_priority(u32 irq)
1625{
1626 int i;
1627
1628 for (i = MIPS_EXC_INT_TIMER; i < MIPS_EXC_MAX; i++) {
1629 if (kvm_priority_to_irq[i] == (1 << (irq + 8)))
1630 return i;
1631 }
1632
1633 return MIPS_EXC_MAX;
1634}
1635
1636static int __init kvm_mips_init(void)
1637{
1638 int ret;
1639
1640 if (cpu_has_mmid) {
1641 pr_warn("KVM does not yet support MMIDs. KVM Disabled\n");
1642 return -EOPNOTSUPP;
1643 }
1644
1645 ret = kvm_mips_entry_setup();
1646 if (ret)
1647 return ret;
1648
1649 ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1650
1651 if (ret)
1652 return ret;
1653
1654 if (boot_cpu_type() == CPU_LOONGSON64)
1655 kvm_priority_to_irq = kvm_loongson3_priority_to_irq;
1656
1657 register_die_notifier(&kvm_mips_csr_die_notifier);
1658
1659 return 0;
1660}
1661
1662static void __exit kvm_mips_exit(void)
1663{
1664 kvm_exit();
1665
1666 unregister_die_notifier(&kvm_mips_csr_die_notifier);
1667}
1668
1669module_init(kvm_mips_init);
1670module_exit(kvm_mips_exit);
1671
1672EXPORT_TRACEPOINT_SYMBOL(kvm_exit);