Loading...
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * KVM/MIPS: MIPS specific KVM APIs
7 *
8 * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
10 */
11
12#include <linux/bitops.h>
13#include <linux/errno.h>
14#include <linux/err.h>
15#include <linux/kdebug.h>
16#include <linux/module.h>
17#include <linux/uaccess.h>
18#include <linux/vmalloc.h>
19#include <linux/sched/signal.h>
20#include <linux/fs.h>
21#include <linux/memblock.h>
22#include <linux/pgtable.h>
23
24#include <asm/fpu.h>
25#include <asm/page.h>
26#include <asm/cacheflush.h>
27#include <asm/mmu_context.h>
28#include <asm/pgalloc.h>
29
30#include <linux/kvm_host.h>
31
32#include "interrupt.h"
33
34#define CREATE_TRACE_POINTS
35#include "trace.h"
36
37#ifndef VECTORSPACING
38#define VECTORSPACING 0x100 /* for EI/VI mode */
39#endif
40
41const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
42 KVM_GENERIC_VM_STATS()
43};
44
45const struct kvm_stats_header kvm_vm_stats_header = {
46 .name_size = KVM_STATS_NAME_SIZE,
47 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
48 .id_offset = sizeof(struct kvm_stats_header),
49 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
50 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
51 sizeof(kvm_vm_stats_desc),
52};
53
54const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
55 KVM_GENERIC_VCPU_STATS(),
56 STATS_DESC_COUNTER(VCPU, wait_exits),
57 STATS_DESC_COUNTER(VCPU, cache_exits),
58 STATS_DESC_COUNTER(VCPU, signal_exits),
59 STATS_DESC_COUNTER(VCPU, int_exits),
60 STATS_DESC_COUNTER(VCPU, cop_unusable_exits),
61 STATS_DESC_COUNTER(VCPU, tlbmod_exits),
62 STATS_DESC_COUNTER(VCPU, tlbmiss_ld_exits),
63 STATS_DESC_COUNTER(VCPU, tlbmiss_st_exits),
64 STATS_DESC_COUNTER(VCPU, addrerr_st_exits),
65 STATS_DESC_COUNTER(VCPU, addrerr_ld_exits),
66 STATS_DESC_COUNTER(VCPU, syscall_exits),
67 STATS_DESC_COUNTER(VCPU, resvd_inst_exits),
68 STATS_DESC_COUNTER(VCPU, break_inst_exits),
69 STATS_DESC_COUNTER(VCPU, trap_inst_exits),
70 STATS_DESC_COUNTER(VCPU, msa_fpe_exits),
71 STATS_DESC_COUNTER(VCPU, fpe_exits),
72 STATS_DESC_COUNTER(VCPU, msa_disabled_exits),
73 STATS_DESC_COUNTER(VCPU, flush_dcache_exits),
74 STATS_DESC_COUNTER(VCPU, vz_gpsi_exits),
75 STATS_DESC_COUNTER(VCPU, vz_gsfc_exits),
76 STATS_DESC_COUNTER(VCPU, vz_hc_exits),
77 STATS_DESC_COUNTER(VCPU, vz_grr_exits),
78 STATS_DESC_COUNTER(VCPU, vz_gva_exits),
79 STATS_DESC_COUNTER(VCPU, vz_ghfc_exits),
80 STATS_DESC_COUNTER(VCPU, vz_gpa_exits),
81 STATS_DESC_COUNTER(VCPU, vz_resvd_exits),
82#ifdef CONFIG_CPU_LOONGSON64
83 STATS_DESC_COUNTER(VCPU, vz_cpucfg_exits),
84#endif
85};
86
87const struct kvm_stats_header kvm_vcpu_stats_header = {
88 .name_size = KVM_STATS_NAME_SIZE,
89 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
90 .id_offset = sizeof(struct kvm_stats_header),
91 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
92 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
93 sizeof(kvm_vcpu_stats_desc),
94};
95
96bool kvm_trace_guest_mode_change;
97
98int kvm_guest_mode_change_trace_reg(void)
99{
100 kvm_trace_guest_mode_change = true;
101 return 0;
102}
103
104void kvm_guest_mode_change_trace_unreg(void)
105{
106 kvm_trace_guest_mode_change = false;
107}
108
109/*
110 * XXXKYMA: We are simulatoring a processor that has the WII bit set in
111 * Config7, so we are "runnable" if interrupts are pending
112 */
113int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
114{
115 return !!(vcpu->arch.pending_exceptions);
116}
117
118bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
119{
120 return false;
121}
122
123int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
124{
125 return 1;
126}
127
128int kvm_arch_hardware_enable(void)
129{
130 return kvm_mips_callbacks->hardware_enable();
131}
132
133void kvm_arch_hardware_disable(void)
134{
135 kvm_mips_callbacks->hardware_disable();
136}
137
138extern void kvm_init_loongson_ipi(struct kvm *kvm);
139
140int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
141{
142 switch (type) {
143 case KVM_VM_MIPS_AUTO:
144 break;
145 case KVM_VM_MIPS_VZ:
146 break;
147 default:
148 /* Unsupported KVM type */
149 return -EINVAL;
150 }
151
152 /* Allocate page table to map GPA -> RPA */
153 kvm->arch.gpa_mm.pgd = kvm_pgd_alloc();
154 if (!kvm->arch.gpa_mm.pgd)
155 return -ENOMEM;
156
157#ifdef CONFIG_CPU_LOONGSON64
158 kvm_init_loongson_ipi(kvm);
159#endif
160
161 return 0;
162}
163
164static void kvm_mips_free_gpa_pt(struct kvm *kvm)
165{
166 /* It should always be safe to remove after flushing the whole range */
167 WARN_ON(!kvm_mips_flush_gpa_pt(kvm, 0, ~0));
168 pgd_free(NULL, kvm->arch.gpa_mm.pgd);
169}
170
171void kvm_arch_destroy_vm(struct kvm *kvm)
172{
173 kvm_destroy_vcpus(kvm);
174 kvm_mips_free_gpa_pt(kvm);
175}
176
177long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
178 unsigned long arg)
179{
180 return -ENOIOCTLCMD;
181}
182
183void kvm_arch_flush_shadow_all(struct kvm *kvm)
184{
185 /* Flush whole GPA */
186 kvm_mips_flush_gpa_pt(kvm, 0, ~0);
187 kvm_flush_remote_tlbs(kvm);
188}
189
190void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
191 struct kvm_memory_slot *slot)
192{
193 /*
194 * The slot has been made invalid (ready for moving or deletion), so we
195 * need to ensure that it can no longer be accessed by any guest VCPUs.
196 */
197
198 spin_lock(&kvm->mmu_lock);
199 /* Flush slot from GPA */
200 kvm_mips_flush_gpa_pt(kvm, slot->base_gfn,
201 slot->base_gfn + slot->npages - 1);
202 kvm_flush_remote_tlbs_memslot(kvm, slot);
203 spin_unlock(&kvm->mmu_lock);
204}
205
206int kvm_arch_prepare_memory_region(struct kvm *kvm,
207 const struct kvm_memory_slot *old,
208 struct kvm_memory_slot *new,
209 enum kvm_mr_change change)
210{
211 return 0;
212}
213
214void kvm_arch_commit_memory_region(struct kvm *kvm,
215 struct kvm_memory_slot *old,
216 const struct kvm_memory_slot *new,
217 enum kvm_mr_change change)
218{
219 int needs_flush;
220
221 /*
222 * If dirty page logging is enabled, write protect all pages in the slot
223 * ready for dirty logging.
224 *
225 * There is no need to do this in any of the following cases:
226 * CREATE: No dirty mappings will already exist.
227 * MOVE/DELETE: The old mappings will already have been cleaned up by
228 * kvm_arch_flush_shadow_memslot()
229 */
230 if (change == KVM_MR_FLAGS_ONLY &&
231 (!(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
232 new->flags & KVM_MEM_LOG_DIRTY_PAGES)) {
233 spin_lock(&kvm->mmu_lock);
234 /* Write protect GPA page table entries */
235 needs_flush = kvm_mips_mkclean_gpa_pt(kvm, new->base_gfn,
236 new->base_gfn + new->npages - 1);
237 if (needs_flush)
238 kvm_flush_remote_tlbs_memslot(kvm, new);
239 spin_unlock(&kvm->mmu_lock);
240 }
241}
242
243static inline void dump_handler(const char *symbol, void *start, void *end)
244{
245 u32 *p;
246
247 pr_debug("LEAF(%s)\n", symbol);
248
249 pr_debug("\t.set push\n");
250 pr_debug("\t.set noreorder\n");
251
252 for (p = start; p < (u32 *)end; ++p)
253 pr_debug("\t.word\t0x%08x\t\t# %p\n", *p, p);
254
255 pr_debug("\t.set\tpop\n");
256
257 pr_debug("\tEND(%s)\n", symbol);
258}
259
260/* low level hrtimer wake routine */
261static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
262{
263 struct kvm_vcpu *vcpu;
264
265 vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
266
267 kvm_mips_callbacks->queue_timer_int(vcpu);
268
269 vcpu->arch.wait = 0;
270 rcuwait_wake_up(&vcpu->wait);
271
272 return kvm_mips_count_timeout(vcpu);
273}
274
275int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
276{
277 return 0;
278}
279
280int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
281{
282 int err, size;
283 void *gebase, *p, *handler, *refill_start, *refill_end;
284 int i;
285
286 kvm_debug("kvm @ %p: create cpu %d at %p\n",
287 vcpu->kvm, vcpu->vcpu_id, vcpu);
288
289 err = kvm_mips_callbacks->vcpu_init(vcpu);
290 if (err)
291 return err;
292
293 hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
294 HRTIMER_MODE_REL);
295 vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
296
297 /*
298 * Allocate space for host mode exception handlers that handle
299 * guest mode exits
300 */
301 if (cpu_has_veic || cpu_has_vint)
302 size = 0x200 + VECTORSPACING * 64;
303 else
304 size = 0x4000;
305
306 gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
307
308 if (!gebase) {
309 err = -ENOMEM;
310 goto out_uninit_vcpu;
311 }
312 kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
313 ALIGN(size, PAGE_SIZE), gebase);
314
315 /*
316 * Check new ebase actually fits in CP0_EBase. The lack of a write gate
317 * limits us to the low 512MB of physical address space. If the memory
318 * we allocate is out of range, just give up now.
319 */
320 if (!cpu_has_ebase_wg && virt_to_phys(gebase) >= 0x20000000) {
321 kvm_err("CP0_EBase.WG required for guest exception base %pK\n",
322 gebase);
323 err = -ENOMEM;
324 goto out_free_gebase;
325 }
326
327 /* Save new ebase */
328 vcpu->arch.guest_ebase = gebase;
329
330 /* Build guest exception vectors dynamically in unmapped memory */
331 handler = gebase + 0x2000;
332
333 /* TLB refill (or XTLB refill on 64-bit VZ where KX=1) */
334 refill_start = gebase;
335 if (IS_ENABLED(CONFIG_64BIT))
336 refill_start += 0x080;
337 refill_end = kvm_mips_build_tlb_refill_exception(refill_start, handler);
338
339 /* General Exception Entry point */
340 kvm_mips_build_exception(gebase + 0x180, handler);
341
342 /* For vectored interrupts poke the exception code @ all offsets 0-7 */
343 for (i = 0; i < 8; i++) {
344 kvm_debug("L1 Vectored handler @ %p\n",
345 gebase + 0x200 + (i * VECTORSPACING));
346 kvm_mips_build_exception(gebase + 0x200 + i * VECTORSPACING,
347 handler);
348 }
349
350 /* General exit handler */
351 p = handler;
352 p = kvm_mips_build_exit(p);
353
354 /* Guest entry routine */
355 vcpu->arch.vcpu_run = p;
356 p = kvm_mips_build_vcpu_run(p);
357
358 /* Dump the generated code */
359 pr_debug("#include <asm/asm.h>\n");
360 pr_debug("#include <asm/regdef.h>\n");
361 pr_debug("\n");
362 dump_handler("kvm_vcpu_run", vcpu->arch.vcpu_run, p);
363 dump_handler("kvm_tlb_refill", refill_start, refill_end);
364 dump_handler("kvm_gen_exc", gebase + 0x180, gebase + 0x200);
365 dump_handler("kvm_exit", gebase + 0x2000, vcpu->arch.vcpu_run);
366
367 /* Invalidate the icache for these ranges */
368 flush_icache_range((unsigned long)gebase,
369 (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
370
371 /* Init */
372 vcpu->arch.last_sched_cpu = -1;
373 vcpu->arch.last_exec_cpu = -1;
374
375 /* Initial guest state */
376 err = kvm_mips_callbacks->vcpu_setup(vcpu);
377 if (err)
378 goto out_free_gebase;
379
380 return 0;
381
382out_free_gebase:
383 kfree(gebase);
384out_uninit_vcpu:
385 kvm_mips_callbacks->vcpu_uninit(vcpu);
386 return err;
387}
388
389void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
390{
391 hrtimer_cancel(&vcpu->arch.comparecount_timer);
392
393 kvm_mips_dump_stats(vcpu);
394
395 kvm_mmu_free_memory_caches(vcpu);
396 kfree(vcpu->arch.guest_ebase);
397
398 kvm_mips_callbacks->vcpu_uninit(vcpu);
399}
400
401int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
402 struct kvm_guest_debug *dbg)
403{
404 return -ENOIOCTLCMD;
405}
406
407/*
408 * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while
409 * the vCPU is running.
410 *
411 * This must be noinstr as instrumentation may make use of RCU, and this is not
412 * safe during the EQS.
413 */
414static int noinstr kvm_mips_vcpu_enter_exit(struct kvm_vcpu *vcpu)
415{
416 int ret;
417
418 guest_state_enter_irqoff();
419 ret = kvm_mips_callbacks->vcpu_run(vcpu);
420 guest_state_exit_irqoff();
421
422 return ret;
423}
424
425int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
426{
427 int r = -EINTR;
428
429 vcpu_load(vcpu);
430
431 kvm_sigset_activate(vcpu);
432
433 if (vcpu->mmio_needed) {
434 if (!vcpu->mmio_is_write)
435 kvm_mips_complete_mmio_load(vcpu);
436 vcpu->mmio_needed = 0;
437 }
438
439 if (vcpu->run->immediate_exit)
440 goto out;
441
442 lose_fpu(1);
443
444 local_irq_disable();
445 guest_timing_enter_irqoff();
446 trace_kvm_enter(vcpu);
447
448 /*
449 * Make sure the read of VCPU requests in vcpu_run() callback is not
450 * reordered ahead of the write to vcpu->mode, or we could miss a TLB
451 * flush request while the requester sees the VCPU as outside of guest
452 * mode and not needing an IPI.
453 */
454 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
455
456 r = kvm_mips_vcpu_enter_exit(vcpu);
457
458 /*
459 * We must ensure that any pending interrupts are taken before
460 * we exit guest timing so that timer ticks are accounted as
461 * guest time. Transiently unmask interrupts so that any
462 * pending interrupts are taken.
463 *
464 * TODO: is there a barrier which ensures that pending interrupts are
465 * recognised? Currently this just hopes that the CPU takes any pending
466 * interrupts between the enable and disable.
467 */
468 local_irq_enable();
469 local_irq_disable();
470
471 trace_kvm_out(vcpu);
472 guest_timing_exit_irqoff();
473 local_irq_enable();
474
475out:
476 kvm_sigset_deactivate(vcpu);
477
478 vcpu_put(vcpu);
479 return r;
480}
481
482int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
483 struct kvm_mips_interrupt *irq)
484{
485 int intr = (int)irq->irq;
486 struct kvm_vcpu *dvcpu = NULL;
487
488 if (intr == kvm_priority_to_irq[MIPS_EXC_INT_IPI_1] ||
489 intr == kvm_priority_to_irq[MIPS_EXC_INT_IPI_2] ||
490 intr == (-kvm_priority_to_irq[MIPS_EXC_INT_IPI_1]) ||
491 intr == (-kvm_priority_to_irq[MIPS_EXC_INT_IPI_2]))
492 kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
493 (int)intr);
494
495 if (irq->cpu == -1)
496 dvcpu = vcpu;
497 else
498 dvcpu = kvm_get_vcpu(vcpu->kvm, irq->cpu);
499
500 if (intr == 2 || intr == 3 || intr == 4 || intr == 6) {
501 kvm_mips_callbacks->queue_io_int(dvcpu, irq);
502
503 } else if (intr == -2 || intr == -3 || intr == -4 || intr == -6) {
504 kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
505 } else {
506 kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
507 irq->cpu, irq->irq);
508 return -EINVAL;
509 }
510
511 dvcpu->arch.wait = 0;
512
513 rcuwait_wake_up(&dvcpu->wait);
514
515 return 0;
516}
517
518int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
519 struct kvm_mp_state *mp_state)
520{
521 return -ENOIOCTLCMD;
522}
523
524int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
525 struct kvm_mp_state *mp_state)
526{
527 return -ENOIOCTLCMD;
528}
529
530static u64 kvm_mips_get_one_regs[] = {
531 KVM_REG_MIPS_R0,
532 KVM_REG_MIPS_R1,
533 KVM_REG_MIPS_R2,
534 KVM_REG_MIPS_R3,
535 KVM_REG_MIPS_R4,
536 KVM_REG_MIPS_R5,
537 KVM_REG_MIPS_R6,
538 KVM_REG_MIPS_R7,
539 KVM_REG_MIPS_R8,
540 KVM_REG_MIPS_R9,
541 KVM_REG_MIPS_R10,
542 KVM_REG_MIPS_R11,
543 KVM_REG_MIPS_R12,
544 KVM_REG_MIPS_R13,
545 KVM_REG_MIPS_R14,
546 KVM_REG_MIPS_R15,
547 KVM_REG_MIPS_R16,
548 KVM_REG_MIPS_R17,
549 KVM_REG_MIPS_R18,
550 KVM_REG_MIPS_R19,
551 KVM_REG_MIPS_R20,
552 KVM_REG_MIPS_R21,
553 KVM_REG_MIPS_R22,
554 KVM_REG_MIPS_R23,
555 KVM_REG_MIPS_R24,
556 KVM_REG_MIPS_R25,
557 KVM_REG_MIPS_R26,
558 KVM_REG_MIPS_R27,
559 KVM_REG_MIPS_R28,
560 KVM_REG_MIPS_R29,
561 KVM_REG_MIPS_R30,
562 KVM_REG_MIPS_R31,
563
564#ifndef CONFIG_CPU_MIPSR6
565 KVM_REG_MIPS_HI,
566 KVM_REG_MIPS_LO,
567#endif
568 KVM_REG_MIPS_PC,
569};
570
571static u64 kvm_mips_get_one_regs_fpu[] = {
572 KVM_REG_MIPS_FCR_IR,
573 KVM_REG_MIPS_FCR_CSR,
574};
575
576static u64 kvm_mips_get_one_regs_msa[] = {
577 KVM_REG_MIPS_MSA_IR,
578 KVM_REG_MIPS_MSA_CSR,
579};
580
581static unsigned long kvm_mips_num_regs(struct kvm_vcpu *vcpu)
582{
583 unsigned long ret;
584
585 ret = ARRAY_SIZE(kvm_mips_get_one_regs);
586 if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
587 ret += ARRAY_SIZE(kvm_mips_get_one_regs_fpu) + 48;
588 /* odd doubles */
589 if (boot_cpu_data.fpu_id & MIPS_FPIR_F64)
590 ret += 16;
591 }
592 if (kvm_mips_guest_can_have_msa(&vcpu->arch))
593 ret += ARRAY_SIZE(kvm_mips_get_one_regs_msa) + 32;
594 ret += kvm_mips_callbacks->num_regs(vcpu);
595
596 return ret;
597}
598
599static int kvm_mips_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
600{
601 u64 index;
602 unsigned int i;
603
604 if (copy_to_user(indices, kvm_mips_get_one_regs,
605 sizeof(kvm_mips_get_one_regs)))
606 return -EFAULT;
607 indices += ARRAY_SIZE(kvm_mips_get_one_regs);
608
609 if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
610 if (copy_to_user(indices, kvm_mips_get_one_regs_fpu,
611 sizeof(kvm_mips_get_one_regs_fpu)))
612 return -EFAULT;
613 indices += ARRAY_SIZE(kvm_mips_get_one_regs_fpu);
614
615 for (i = 0; i < 32; ++i) {
616 index = KVM_REG_MIPS_FPR_32(i);
617 if (copy_to_user(indices, &index, sizeof(index)))
618 return -EFAULT;
619 ++indices;
620
621 /* skip odd doubles if no F64 */
622 if (i & 1 && !(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
623 continue;
624
625 index = KVM_REG_MIPS_FPR_64(i);
626 if (copy_to_user(indices, &index, sizeof(index)))
627 return -EFAULT;
628 ++indices;
629 }
630 }
631
632 if (kvm_mips_guest_can_have_msa(&vcpu->arch)) {
633 if (copy_to_user(indices, kvm_mips_get_one_regs_msa,
634 sizeof(kvm_mips_get_one_regs_msa)))
635 return -EFAULT;
636 indices += ARRAY_SIZE(kvm_mips_get_one_regs_msa);
637
638 for (i = 0; i < 32; ++i) {
639 index = KVM_REG_MIPS_VEC_128(i);
640 if (copy_to_user(indices, &index, sizeof(index)))
641 return -EFAULT;
642 ++indices;
643 }
644 }
645
646 return kvm_mips_callbacks->copy_reg_indices(vcpu, indices);
647}
648
649static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
650 const struct kvm_one_reg *reg)
651{
652 struct mips_coproc *cop0 = &vcpu->arch.cop0;
653 struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
654 int ret;
655 s64 v;
656 s64 vs[2];
657 unsigned int idx;
658
659 switch (reg->id) {
660 /* General purpose registers */
661 case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
662 v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
663 break;
664#ifndef CONFIG_CPU_MIPSR6
665 case KVM_REG_MIPS_HI:
666 v = (long)vcpu->arch.hi;
667 break;
668 case KVM_REG_MIPS_LO:
669 v = (long)vcpu->arch.lo;
670 break;
671#endif
672 case KVM_REG_MIPS_PC:
673 v = (long)vcpu->arch.pc;
674 break;
675
676 /* Floating point registers */
677 case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
678 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
679 return -EINVAL;
680 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
681 /* Odd singles in top of even double when FR=0 */
682 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
683 v = get_fpr32(&fpu->fpr[idx], 0);
684 else
685 v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
686 break;
687 case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
688 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
689 return -EINVAL;
690 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
691 /* Can't access odd doubles in FR=0 mode */
692 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
693 return -EINVAL;
694 v = get_fpr64(&fpu->fpr[idx], 0);
695 break;
696 case KVM_REG_MIPS_FCR_IR:
697 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
698 return -EINVAL;
699 v = boot_cpu_data.fpu_id;
700 break;
701 case KVM_REG_MIPS_FCR_CSR:
702 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
703 return -EINVAL;
704 v = fpu->fcr31;
705 break;
706
707 /* MIPS SIMD Architecture (MSA) registers */
708 case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
709 if (!kvm_mips_guest_has_msa(&vcpu->arch))
710 return -EINVAL;
711 /* Can't access MSA registers in FR=0 mode */
712 if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
713 return -EINVAL;
714 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
715#ifdef CONFIG_CPU_LITTLE_ENDIAN
716 /* least significant byte first */
717 vs[0] = get_fpr64(&fpu->fpr[idx], 0);
718 vs[1] = get_fpr64(&fpu->fpr[idx], 1);
719#else
720 /* most significant byte first */
721 vs[0] = get_fpr64(&fpu->fpr[idx], 1);
722 vs[1] = get_fpr64(&fpu->fpr[idx], 0);
723#endif
724 break;
725 case KVM_REG_MIPS_MSA_IR:
726 if (!kvm_mips_guest_has_msa(&vcpu->arch))
727 return -EINVAL;
728 v = boot_cpu_data.msa_id;
729 break;
730 case KVM_REG_MIPS_MSA_CSR:
731 if (!kvm_mips_guest_has_msa(&vcpu->arch))
732 return -EINVAL;
733 v = fpu->msacsr;
734 break;
735
736 /* registers to be handled specially */
737 default:
738 ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
739 if (ret)
740 return ret;
741 break;
742 }
743 if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
744 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
745
746 return put_user(v, uaddr64);
747 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
748 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
749 u32 v32 = (u32)v;
750
751 return put_user(v32, uaddr32);
752 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
753 void __user *uaddr = (void __user *)(long)reg->addr;
754
755 return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
756 } else {
757 return -EINVAL;
758 }
759}
760
761static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
762 const struct kvm_one_reg *reg)
763{
764 struct mips_coproc *cop0 = &vcpu->arch.cop0;
765 struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
766 s64 v;
767 s64 vs[2];
768 unsigned int idx;
769
770 if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
771 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
772
773 if (get_user(v, uaddr64) != 0)
774 return -EFAULT;
775 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
776 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
777 s32 v32;
778
779 if (get_user(v32, uaddr32) != 0)
780 return -EFAULT;
781 v = (s64)v32;
782 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
783 void __user *uaddr = (void __user *)(long)reg->addr;
784
785 return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
786 } else {
787 return -EINVAL;
788 }
789
790 switch (reg->id) {
791 /* General purpose registers */
792 case KVM_REG_MIPS_R0:
793 /* Silently ignore requests to set $0 */
794 break;
795 case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
796 vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
797 break;
798#ifndef CONFIG_CPU_MIPSR6
799 case KVM_REG_MIPS_HI:
800 vcpu->arch.hi = v;
801 break;
802 case KVM_REG_MIPS_LO:
803 vcpu->arch.lo = v;
804 break;
805#endif
806 case KVM_REG_MIPS_PC:
807 vcpu->arch.pc = v;
808 break;
809
810 /* Floating point registers */
811 case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
812 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
813 return -EINVAL;
814 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
815 /* Odd singles in top of even double when FR=0 */
816 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
817 set_fpr32(&fpu->fpr[idx], 0, v);
818 else
819 set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
820 break;
821 case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
822 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
823 return -EINVAL;
824 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
825 /* Can't access odd doubles in FR=0 mode */
826 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
827 return -EINVAL;
828 set_fpr64(&fpu->fpr[idx], 0, v);
829 break;
830 case KVM_REG_MIPS_FCR_IR:
831 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
832 return -EINVAL;
833 /* Read-only */
834 break;
835 case KVM_REG_MIPS_FCR_CSR:
836 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
837 return -EINVAL;
838 fpu->fcr31 = v;
839 break;
840
841 /* MIPS SIMD Architecture (MSA) registers */
842 case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
843 if (!kvm_mips_guest_has_msa(&vcpu->arch))
844 return -EINVAL;
845 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
846#ifdef CONFIG_CPU_LITTLE_ENDIAN
847 /* least significant byte first */
848 set_fpr64(&fpu->fpr[idx], 0, vs[0]);
849 set_fpr64(&fpu->fpr[idx], 1, vs[1]);
850#else
851 /* most significant byte first */
852 set_fpr64(&fpu->fpr[idx], 1, vs[0]);
853 set_fpr64(&fpu->fpr[idx], 0, vs[1]);
854#endif
855 break;
856 case KVM_REG_MIPS_MSA_IR:
857 if (!kvm_mips_guest_has_msa(&vcpu->arch))
858 return -EINVAL;
859 /* Read-only */
860 break;
861 case KVM_REG_MIPS_MSA_CSR:
862 if (!kvm_mips_guest_has_msa(&vcpu->arch))
863 return -EINVAL;
864 fpu->msacsr = v;
865 break;
866
867 /* registers to be handled specially */
868 default:
869 return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
870 }
871 return 0;
872}
873
874static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
875 struct kvm_enable_cap *cap)
876{
877 int r = 0;
878
879 if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
880 return -EINVAL;
881 if (cap->flags)
882 return -EINVAL;
883 if (cap->args[0])
884 return -EINVAL;
885
886 switch (cap->cap) {
887 case KVM_CAP_MIPS_FPU:
888 vcpu->arch.fpu_enabled = true;
889 break;
890 case KVM_CAP_MIPS_MSA:
891 vcpu->arch.msa_enabled = true;
892 break;
893 default:
894 r = -EINVAL;
895 break;
896 }
897
898 return r;
899}
900
901long kvm_arch_vcpu_async_ioctl(struct file *filp, unsigned int ioctl,
902 unsigned long arg)
903{
904 struct kvm_vcpu *vcpu = filp->private_data;
905 void __user *argp = (void __user *)arg;
906
907 if (ioctl == KVM_INTERRUPT) {
908 struct kvm_mips_interrupt irq;
909
910 if (copy_from_user(&irq, argp, sizeof(irq)))
911 return -EFAULT;
912 kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
913 irq.irq);
914
915 return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
916 }
917
918 return -ENOIOCTLCMD;
919}
920
921long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
922 unsigned long arg)
923{
924 struct kvm_vcpu *vcpu = filp->private_data;
925 void __user *argp = (void __user *)arg;
926 long r;
927
928 vcpu_load(vcpu);
929
930 switch (ioctl) {
931 case KVM_SET_ONE_REG:
932 case KVM_GET_ONE_REG: {
933 struct kvm_one_reg reg;
934
935 r = -EFAULT;
936 if (copy_from_user(®, argp, sizeof(reg)))
937 break;
938 if (ioctl == KVM_SET_ONE_REG)
939 r = kvm_mips_set_reg(vcpu, ®);
940 else
941 r = kvm_mips_get_reg(vcpu, ®);
942 break;
943 }
944 case KVM_GET_REG_LIST: {
945 struct kvm_reg_list __user *user_list = argp;
946 struct kvm_reg_list reg_list;
947 unsigned n;
948
949 r = -EFAULT;
950 if (copy_from_user(®_list, user_list, sizeof(reg_list)))
951 break;
952 n = reg_list.n;
953 reg_list.n = kvm_mips_num_regs(vcpu);
954 if (copy_to_user(user_list, ®_list, sizeof(reg_list)))
955 break;
956 r = -E2BIG;
957 if (n < reg_list.n)
958 break;
959 r = kvm_mips_copy_reg_indices(vcpu, user_list->reg);
960 break;
961 }
962 case KVM_ENABLE_CAP: {
963 struct kvm_enable_cap cap;
964
965 r = -EFAULT;
966 if (copy_from_user(&cap, argp, sizeof(cap)))
967 break;
968 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
969 break;
970 }
971 default:
972 r = -ENOIOCTLCMD;
973 }
974
975 vcpu_put(vcpu);
976 return r;
977}
978
979void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
980{
981
982}
983
984int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
985{
986 kvm_mips_callbacks->prepare_flush_shadow(kvm);
987 return 1;
988}
989
990int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
991{
992 int r;
993
994 switch (ioctl) {
995 default:
996 r = -ENOIOCTLCMD;
997 }
998
999 return r;
1000}
1001
1002int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1003 struct kvm_sregs *sregs)
1004{
1005 return -ENOIOCTLCMD;
1006}
1007
1008int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1009 struct kvm_sregs *sregs)
1010{
1011 return -ENOIOCTLCMD;
1012}
1013
1014void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1015{
1016}
1017
1018int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1019{
1020 return -ENOIOCTLCMD;
1021}
1022
1023int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1024{
1025 return -ENOIOCTLCMD;
1026}
1027
1028vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1029{
1030 return VM_FAULT_SIGBUS;
1031}
1032
1033int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1034{
1035 int r;
1036
1037 switch (ext) {
1038 case KVM_CAP_ONE_REG:
1039 case KVM_CAP_ENABLE_CAP:
1040 case KVM_CAP_READONLY_MEM:
1041 case KVM_CAP_SYNC_MMU:
1042 case KVM_CAP_IMMEDIATE_EXIT:
1043 r = 1;
1044 break;
1045 case KVM_CAP_NR_VCPUS:
1046 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
1047 break;
1048 case KVM_CAP_MAX_VCPUS:
1049 r = KVM_MAX_VCPUS;
1050 break;
1051 case KVM_CAP_MAX_VCPU_ID:
1052 r = KVM_MAX_VCPU_IDS;
1053 break;
1054 case KVM_CAP_MIPS_FPU:
1055 /* We don't handle systems with inconsistent cpu_has_fpu */
1056 r = !!raw_cpu_has_fpu;
1057 break;
1058 case KVM_CAP_MIPS_MSA:
1059 /*
1060 * We don't support MSA vector partitioning yet:
1061 * 1) It would require explicit support which can't be tested
1062 * yet due to lack of support in current hardware.
1063 * 2) It extends the state that would need to be saved/restored
1064 * by e.g. QEMU for migration.
1065 *
1066 * When vector partitioning hardware becomes available, support
1067 * could be added by requiring a flag when enabling
1068 * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1069 * to save/restore the appropriate extra state.
1070 */
1071 r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
1072 break;
1073 default:
1074 r = kvm_mips_callbacks->check_extension(kvm, ext);
1075 break;
1076 }
1077 return r;
1078}
1079
1080int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1081{
1082 return kvm_mips_pending_timer(vcpu) ||
1083 kvm_read_c0_guest_cause(&vcpu->arch.cop0) & C_TI;
1084}
1085
1086int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
1087{
1088 int i;
1089 struct mips_coproc *cop0;
1090
1091 if (!vcpu)
1092 return -1;
1093
1094 kvm_debug("VCPU Register Dump:\n");
1095 kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
1096 kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1097
1098 for (i = 0; i < 32; i += 4) {
1099 kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1100 vcpu->arch.gprs[i],
1101 vcpu->arch.gprs[i + 1],
1102 vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
1103 }
1104 kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
1105 kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1106
1107 cop0 = &vcpu->arch.cop0;
1108 kvm_debug("\tStatus: 0x%08x, Cause: 0x%08x\n",
1109 kvm_read_c0_guest_status(cop0),
1110 kvm_read_c0_guest_cause(cop0));
1111
1112 kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1113
1114 return 0;
1115}
1116
1117int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1118{
1119 int i;
1120
1121 vcpu_load(vcpu);
1122
1123 for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1124 vcpu->arch.gprs[i] = regs->gpr[i];
1125 vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1126 vcpu->arch.hi = regs->hi;
1127 vcpu->arch.lo = regs->lo;
1128 vcpu->arch.pc = regs->pc;
1129
1130 vcpu_put(vcpu);
1131 return 0;
1132}
1133
1134int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1135{
1136 int i;
1137
1138 vcpu_load(vcpu);
1139
1140 for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1141 regs->gpr[i] = vcpu->arch.gprs[i];
1142
1143 regs->hi = vcpu->arch.hi;
1144 regs->lo = vcpu->arch.lo;
1145 regs->pc = vcpu->arch.pc;
1146
1147 vcpu_put(vcpu);
1148 return 0;
1149}
1150
1151int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1152 struct kvm_translation *tr)
1153{
1154 return 0;
1155}
1156
1157static void kvm_mips_set_c0_status(void)
1158{
1159 u32 status = read_c0_status();
1160
1161 if (cpu_has_dsp)
1162 status |= (ST0_MX);
1163
1164 write_c0_status(status);
1165 ehb();
1166}
1167
1168/*
1169 * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1170 */
1171static int __kvm_mips_handle_exit(struct kvm_vcpu *vcpu)
1172{
1173 struct kvm_run *run = vcpu->run;
1174 u32 cause = vcpu->arch.host_cp0_cause;
1175 u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1176 u32 __user *opc = (u32 __user *) vcpu->arch.pc;
1177 unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
1178 enum emulation_result er = EMULATE_DONE;
1179 u32 inst;
1180 int ret = RESUME_GUEST;
1181
1182 vcpu->mode = OUTSIDE_GUEST_MODE;
1183
1184 /* Set a default exit reason */
1185 run->exit_reason = KVM_EXIT_UNKNOWN;
1186 run->ready_for_interrupt_injection = 1;
1187
1188 /*
1189 * Set the appropriate status bits based on host CPU features,
1190 * before we hit the scheduler
1191 */
1192 kvm_mips_set_c0_status();
1193
1194 local_irq_enable();
1195
1196 kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1197 cause, opc, run, vcpu);
1198 trace_kvm_exit(vcpu, exccode);
1199
1200 switch (exccode) {
1201 case EXCCODE_INT:
1202 kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);
1203
1204 ++vcpu->stat.int_exits;
1205
1206 if (need_resched())
1207 cond_resched();
1208
1209 ret = RESUME_GUEST;
1210 break;
1211
1212 case EXCCODE_CPU:
1213 kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);
1214
1215 ++vcpu->stat.cop_unusable_exits;
1216 ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
1217 /* XXXKYMA: Might need to return to user space */
1218 if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1219 ret = RESUME_HOST;
1220 break;
1221
1222 case EXCCODE_MOD:
1223 ++vcpu->stat.tlbmod_exits;
1224 ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
1225 break;
1226
1227 case EXCCODE_TLBS:
1228 kvm_debug("TLB ST fault: cause %#x, status %#x, PC: %p, BadVaddr: %#lx\n",
1229 cause, kvm_read_c0_guest_status(&vcpu->arch.cop0), opc,
1230 badvaddr);
1231
1232 ++vcpu->stat.tlbmiss_st_exits;
1233 ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
1234 break;
1235
1236 case EXCCODE_TLBL:
1237 kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1238 cause, opc, badvaddr);
1239
1240 ++vcpu->stat.tlbmiss_ld_exits;
1241 ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
1242 break;
1243
1244 case EXCCODE_ADES:
1245 ++vcpu->stat.addrerr_st_exits;
1246 ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
1247 break;
1248
1249 case EXCCODE_ADEL:
1250 ++vcpu->stat.addrerr_ld_exits;
1251 ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
1252 break;
1253
1254 case EXCCODE_SYS:
1255 ++vcpu->stat.syscall_exits;
1256 ret = kvm_mips_callbacks->handle_syscall(vcpu);
1257 break;
1258
1259 case EXCCODE_RI:
1260 ++vcpu->stat.resvd_inst_exits;
1261 ret = kvm_mips_callbacks->handle_res_inst(vcpu);
1262 break;
1263
1264 case EXCCODE_BP:
1265 ++vcpu->stat.break_inst_exits;
1266 ret = kvm_mips_callbacks->handle_break(vcpu);
1267 break;
1268
1269 case EXCCODE_TR:
1270 ++vcpu->stat.trap_inst_exits;
1271 ret = kvm_mips_callbacks->handle_trap(vcpu);
1272 break;
1273
1274 case EXCCODE_MSAFPE:
1275 ++vcpu->stat.msa_fpe_exits;
1276 ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
1277 break;
1278
1279 case EXCCODE_FPE:
1280 ++vcpu->stat.fpe_exits;
1281 ret = kvm_mips_callbacks->handle_fpe(vcpu);
1282 break;
1283
1284 case EXCCODE_MSADIS:
1285 ++vcpu->stat.msa_disabled_exits;
1286 ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
1287 break;
1288
1289 case EXCCODE_GE:
1290 /* defer exit accounting to handler */
1291 ret = kvm_mips_callbacks->handle_guest_exit(vcpu);
1292 break;
1293
1294 default:
1295 if (cause & CAUSEF_BD)
1296 opc += 1;
1297 inst = 0;
1298 kvm_get_badinstr(opc, vcpu, &inst);
1299 kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x BadVaddr: %#lx Status: %#x\n",
1300 exccode, opc, inst, badvaddr,
1301 kvm_read_c0_guest_status(&vcpu->arch.cop0));
1302 kvm_arch_vcpu_dump_regs(vcpu);
1303 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1304 ret = RESUME_HOST;
1305 break;
1306
1307 }
1308
1309 local_irq_disable();
1310
1311 if (ret == RESUME_GUEST)
1312 kvm_vz_acquire_htimer(vcpu);
1313
1314 if (er == EMULATE_DONE && !(ret & RESUME_HOST))
1315 kvm_mips_deliver_interrupts(vcpu, cause);
1316
1317 if (!(ret & RESUME_HOST)) {
1318 /* Only check for signals if not already exiting to userspace */
1319 if (signal_pending(current)) {
1320 run->exit_reason = KVM_EXIT_INTR;
1321 ret = (-EINTR << 2) | RESUME_HOST;
1322 ++vcpu->stat.signal_exits;
1323 trace_kvm_exit(vcpu, KVM_TRACE_EXIT_SIGNAL);
1324 }
1325 }
1326
1327 if (ret == RESUME_GUEST) {
1328 trace_kvm_reenter(vcpu);
1329
1330 /*
1331 * Make sure the read of VCPU requests in vcpu_reenter()
1332 * callback is not reordered ahead of the write to vcpu->mode,
1333 * or we could miss a TLB flush request while the requester sees
1334 * the VCPU as outside of guest mode and not needing an IPI.
1335 */
1336 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
1337
1338 kvm_mips_callbacks->vcpu_reenter(vcpu);
1339
1340 /*
1341 * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1342 * is live), restore FCR31 / MSACSR.
1343 *
1344 * This should be before returning to the guest exception
1345 * vector, as it may well cause an [MSA] FP exception if there
1346 * are pending exception bits unmasked. (see
1347 * kvm_mips_csr_die_notifier() for how that is handled).
1348 */
1349 if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
1350 read_c0_status() & ST0_CU1)
1351 __kvm_restore_fcsr(&vcpu->arch);
1352
1353 if (kvm_mips_guest_has_msa(&vcpu->arch) &&
1354 read_c0_config5() & MIPS_CONF5_MSAEN)
1355 __kvm_restore_msacsr(&vcpu->arch);
1356 }
1357 return ret;
1358}
1359
1360int noinstr kvm_mips_handle_exit(struct kvm_vcpu *vcpu)
1361{
1362 int ret;
1363
1364 guest_state_exit_irqoff();
1365 ret = __kvm_mips_handle_exit(vcpu);
1366 guest_state_enter_irqoff();
1367
1368 return ret;
1369}
1370
1371/* Enable FPU for guest and restore context */
1372void kvm_own_fpu(struct kvm_vcpu *vcpu)
1373{
1374 struct mips_coproc *cop0 = &vcpu->arch.cop0;
1375 unsigned int sr, cfg5;
1376
1377 preempt_disable();
1378
1379 sr = kvm_read_c0_guest_status(cop0);
1380
1381 /*
1382 * If MSA state is already live, it is undefined how it interacts with
1383 * FR=0 FPU state, and we don't want to hit reserved instruction
1384 * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1385 * play it safe and save it first.
1386 */
1387 if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1388 vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1389 kvm_lose_fpu(vcpu);
1390
1391 /*
1392 * Enable FPU for guest
1393 * We set FR and FRE according to guest context
1394 */
1395 change_c0_status(ST0_CU1 | ST0_FR, sr);
1396 if (cpu_has_fre) {
1397 cfg5 = kvm_read_c0_guest_config5(cop0);
1398 change_c0_config5(MIPS_CONF5_FRE, cfg5);
1399 }
1400 enable_fpu_hazard();
1401
1402 /* If guest FPU state not active, restore it now */
1403 if (!(vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
1404 __kvm_restore_fpu(&vcpu->arch);
1405 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1406 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU);
1407 } else {
1408 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_FPU);
1409 }
1410
1411 preempt_enable();
1412}
1413
1414#ifdef CONFIG_CPU_HAS_MSA
1415/* Enable MSA for guest and restore context */
1416void kvm_own_msa(struct kvm_vcpu *vcpu)
1417{
1418 struct mips_coproc *cop0 = &vcpu->arch.cop0;
1419 unsigned int sr, cfg5;
1420
1421 preempt_disable();
1422
1423 /*
1424 * Enable FPU if enabled in guest, since we're restoring FPU context
1425 * anyway. We set FR and FRE according to guest context.
1426 */
1427 if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1428 sr = kvm_read_c0_guest_status(cop0);
1429
1430 /*
1431 * If FR=0 FPU state is already live, it is undefined how it
1432 * interacts with MSA state, so play it safe and save it first.
1433 */
1434 if (!(sr & ST0_FR) &&
1435 (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU |
1436 KVM_MIPS_AUX_MSA)) == KVM_MIPS_AUX_FPU)
1437 kvm_lose_fpu(vcpu);
1438
1439 change_c0_status(ST0_CU1 | ST0_FR, sr);
1440 if (sr & ST0_CU1 && cpu_has_fre) {
1441 cfg5 = kvm_read_c0_guest_config5(cop0);
1442 change_c0_config5(MIPS_CONF5_FRE, cfg5);
1443 }
1444 }
1445
1446 /* Enable MSA for guest */
1447 set_c0_config5(MIPS_CONF5_MSAEN);
1448 enable_fpu_hazard();
1449
1450 switch (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA)) {
1451 case KVM_MIPS_AUX_FPU:
1452 /*
1453 * Guest FPU state already loaded, only restore upper MSA state
1454 */
1455 __kvm_restore_msa_upper(&vcpu->arch);
1456 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1457 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_MSA);
1458 break;
1459 case 0:
1460 /* Neither FPU or MSA already active, restore full MSA state */
1461 __kvm_restore_msa(&vcpu->arch);
1462 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1463 if (kvm_mips_guest_has_fpu(&vcpu->arch))
1464 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1465 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE,
1466 KVM_TRACE_AUX_FPU_MSA);
1467 break;
1468 default:
1469 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_MSA);
1470 break;
1471 }
1472
1473 preempt_enable();
1474}
1475#endif
1476
1477/* Drop FPU & MSA without saving it */
1478void kvm_drop_fpu(struct kvm_vcpu *vcpu)
1479{
1480 preempt_disable();
1481 if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1482 disable_msa();
1483 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_MSA);
1484 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_MSA;
1485 }
1486 if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1487 clear_c0_status(ST0_CU1 | ST0_FR);
1488 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_FPU);
1489 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1490 }
1491 preempt_enable();
1492}
1493
1494/* Save and disable FPU & MSA */
1495void kvm_lose_fpu(struct kvm_vcpu *vcpu)
1496{
1497 /*
1498 * With T&E, FPU & MSA get disabled in root context (hardware) when it
1499 * is disabled in guest context (software), but the register state in
1500 * the hardware may still be in use.
1501 * This is why we explicitly re-enable the hardware before saving.
1502 */
1503
1504 preempt_disable();
1505 if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1506 __kvm_save_msa(&vcpu->arch);
1507 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU_MSA);
1508
1509 /* Disable MSA & FPU */
1510 disable_msa();
1511 if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1512 clear_c0_status(ST0_CU1 | ST0_FR);
1513 disable_fpu_hazard();
1514 }
1515 vcpu->arch.aux_inuse &= ~(KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA);
1516 } else if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1517 __kvm_save_fpu(&vcpu->arch);
1518 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1519 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU);
1520
1521 /* Disable FPU */
1522 clear_c0_status(ST0_CU1 | ST0_FR);
1523 disable_fpu_hazard();
1524 }
1525 preempt_enable();
1526}
1527
1528/*
1529 * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1530 * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1531 * exception if cause bits are set in the value being written.
1532 */
1533static int kvm_mips_csr_die_notify(struct notifier_block *self,
1534 unsigned long cmd, void *ptr)
1535{
1536 struct die_args *args = (struct die_args *)ptr;
1537 struct pt_regs *regs = args->regs;
1538 unsigned long pc;
1539
1540 /* Only interested in FPE and MSAFPE */
1541 if (cmd != DIE_FP && cmd != DIE_MSAFP)
1542 return NOTIFY_DONE;
1543
1544 /* Return immediately if guest context isn't active */
1545 if (!(current->flags & PF_VCPU))
1546 return NOTIFY_DONE;
1547
1548 /* Should never get here from user mode */
1549 BUG_ON(user_mode(regs));
1550
1551 pc = instruction_pointer(regs);
1552 switch (cmd) {
1553 case DIE_FP:
1554 /* match 2nd instruction in __kvm_restore_fcsr */
1555 if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
1556 return NOTIFY_DONE;
1557 break;
1558 case DIE_MSAFP:
1559 /* match 2nd/3rd instruction in __kvm_restore_msacsr */
1560 if (!cpu_has_msa ||
1561 pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
1562 pc > (unsigned long)&__kvm_restore_msacsr + 8)
1563 return NOTIFY_DONE;
1564 break;
1565 }
1566
1567 /* Move PC forward a little and continue executing */
1568 instruction_pointer(regs) += 4;
1569
1570 return NOTIFY_STOP;
1571}
1572
1573static struct notifier_block kvm_mips_csr_die_notifier = {
1574 .notifier_call = kvm_mips_csr_die_notify,
1575};
1576
1577static u32 kvm_default_priority_to_irq[MIPS_EXC_MAX] = {
1578 [MIPS_EXC_INT_TIMER] = C_IRQ5,
1579 [MIPS_EXC_INT_IO_1] = C_IRQ0,
1580 [MIPS_EXC_INT_IPI_1] = C_IRQ1,
1581 [MIPS_EXC_INT_IPI_2] = C_IRQ2,
1582};
1583
1584static u32 kvm_loongson3_priority_to_irq[MIPS_EXC_MAX] = {
1585 [MIPS_EXC_INT_TIMER] = C_IRQ5,
1586 [MIPS_EXC_INT_IO_1] = C_IRQ0,
1587 [MIPS_EXC_INT_IO_2] = C_IRQ1,
1588 [MIPS_EXC_INT_IPI_1] = C_IRQ4,
1589};
1590
1591u32 *kvm_priority_to_irq = kvm_default_priority_to_irq;
1592
1593u32 kvm_irq_to_priority(u32 irq)
1594{
1595 int i;
1596
1597 for (i = MIPS_EXC_INT_TIMER; i < MIPS_EXC_MAX; i++) {
1598 if (kvm_priority_to_irq[i] == (1 << (irq + 8)))
1599 return i;
1600 }
1601
1602 return MIPS_EXC_MAX;
1603}
1604
1605static int __init kvm_mips_init(void)
1606{
1607 int ret;
1608
1609 if (cpu_has_mmid) {
1610 pr_warn("KVM does not yet support MMIDs. KVM Disabled\n");
1611 return -EOPNOTSUPP;
1612 }
1613
1614 ret = kvm_mips_entry_setup();
1615 if (ret)
1616 return ret;
1617
1618 ret = kvm_mips_emulation_init();
1619 if (ret)
1620 return ret;
1621
1622
1623 if (boot_cpu_type() == CPU_LOONGSON64)
1624 kvm_priority_to_irq = kvm_loongson3_priority_to_irq;
1625
1626 register_die_notifier(&kvm_mips_csr_die_notifier);
1627
1628 ret = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1629 if (ret) {
1630 unregister_die_notifier(&kvm_mips_csr_die_notifier);
1631 return ret;
1632 }
1633 return 0;
1634}
1635
1636static void __exit kvm_mips_exit(void)
1637{
1638 kvm_exit();
1639
1640 unregister_die_notifier(&kvm_mips_csr_die_notifier);
1641}
1642
1643module_init(kvm_mips_init);
1644module_exit(kvm_mips_exit);
1645
1646EXPORT_TRACEPOINT_SYMBOL(kvm_exit);
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * KVM/MIPS: MIPS specific KVM APIs
7 *
8 * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
10 */
11
12#include <linux/bitops.h>
13#include <linux/errno.h>
14#include <linux/err.h>
15#include <linux/kdebug.h>
16#include <linux/module.h>
17#include <linux/uaccess.h>
18#include <linux/vmalloc.h>
19#include <linux/sched/signal.h>
20#include <linux/fs.h>
21#include <linux/memblock.h>
22
23#include <asm/fpu.h>
24#include <asm/page.h>
25#include <asm/cacheflush.h>
26#include <asm/mmu_context.h>
27#include <asm/pgalloc.h>
28#include <asm/pgtable.h>
29
30#include <linux/kvm_host.h>
31
32#include "interrupt.h"
33#include "commpage.h"
34
35#define CREATE_TRACE_POINTS
36#include "trace.h"
37
38#ifndef VECTORSPACING
39#define VECTORSPACING 0x100 /* for EI/VI mode */
40#endif
41
42#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
43struct kvm_stats_debugfs_item debugfs_entries[] = {
44 { "wait", VCPU_STAT(wait_exits), KVM_STAT_VCPU },
45 { "cache", VCPU_STAT(cache_exits), KVM_STAT_VCPU },
46 { "signal", VCPU_STAT(signal_exits), KVM_STAT_VCPU },
47 { "interrupt", VCPU_STAT(int_exits), KVM_STAT_VCPU },
48 { "cop_unusable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU },
49 { "tlbmod", VCPU_STAT(tlbmod_exits), KVM_STAT_VCPU },
50 { "tlbmiss_ld", VCPU_STAT(tlbmiss_ld_exits), KVM_STAT_VCPU },
51 { "tlbmiss_st", VCPU_STAT(tlbmiss_st_exits), KVM_STAT_VCPU },
52 { "addrerr_st", VCPU_STAT(addrerr_st_exits), KVM_STAT_VCPU },
53 { "addrerr_ld", VCPU_STAT(addrerr_ld_exits), KVM_STAT_VCPU },
54 { "syscall", VCPU_STAT(syscall_exits), KVM_STAT_VCPU },
55 { "resvd_inst", VCPU_STAT(resvd_inst_exits), KVM_STAT_VCPU },
56 { "break_inst", VCPU_STAT(break_inst_exits), KVM_STAT_VCPU },
57 { "trap_inst", VCPU_STAT(trap_inst_exits), KVM_STAT_VCPU },
58 { "msa_fpe", VCPU_STAT(msa_fpe_exits), KVM_STAT_VCPU },
59 { "fpe", VCPU_STAT(fpe_exits), KVM_STAT_VCPU },
60 { "msa_disabled", VCPU_STAT(msa_disabled_exits), KVM_STAT_VCPU },
61 { "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU },
62#ifdef CONFIG_KVM_MIPS_VZ
63 { "vz_gpsi", VCPU_STAT(vz_gpsi_exits), KVM_STAT_VCPU },
64 { "vz_gsfc", VCPU_STAT(vz_gsfc_exits), KVM_STAT_VCPU },
65 { "vz_hc", VCPU_STAT(vz_hc_exits), KVM_STAT_VCPU },
66 { "vz_grr", VCPU_STAT(vz_grr_exits), KVM_STAT_VCPU },
67 { "vz_gva", VCPU_STAT(vz_gva_exits), KVM_STAT_VCPU },
68 { "vz_ghfc", VCPU_STAT(vz_ghfc_exits), KVM_STAT_VCPU },
69 { "vz_gpa", VCPU_STAT(vz_gpa_exits), KVM_STAT_VCPU },
70 { "vz_resvd", VCPU_STAT(vz_resvd_exits), KVM_STAT_VCPU },
71#endif
72 { "halt_successful_poll", VCPU_STAT(halt_successful_poll), KVM_STAT_VCPU },
73 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll), KVM_STAT_VCPU },
74 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid), KVM_STAT_VCPU },
75 { "halt_wakeup", VCPU_STAT(halt_wakeup), KVM_STAT_VCPU },
76 {NULL}
77};
78
79bool kvm_trace_guest_mode_change;
80
81int kvm_guest_mode_change_trace_reg(void)
82{
83 kvm_trace_guest_mode_change = 1;
84 return 0;
85}
86
87void kvm_guest_mode_change_trace_unreg(void)
88{
89 kvm_trace_guest_mode_change = 0;
90}
91
92/*
93 * XXXKYMA: We are simulatoring a processor that has the WII bit set in
94 * Config7, so we are "runnable" if interrupts are pending
95 */
96int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
97{
98 return !!(vcpu->arch.pending_exceptions);
99}
100
101bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
102{
103 return false;
104}
105
106int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
107{
108 return 1;
109}
110
111int kvm_arch_hardware_enable(void)
112{
113 return kvm_mips_callbacks->hardware_enable();
114}
115
116void kvm_arch_hardware_disable(void)
117{
118 kvm_mips_callbacks->hardware_disable();
119}
120
121int kvm_arch_hardware_setup(void)
122{
123 return 0;
124}
125
126int kvm_arch_check_processor_compat(void)
127{
128 return 0;
129}
130
131int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
132{
133 switch (type) {
134#ifdef CONFIG_KVM_MIPS_VZ
135 case KVM_VM_MIPS_VZ:
136#else
137 case KVM_VM_MIPS_TE:
138#endif
139 break;
140 default:
141 /* Unsupported KVM type */
142 return -EINVAL;
143 };
144
145 /* Allocate page table to map GPA -> RPA */
146 kvm->arch.gpa_mm.pgd = kvm_pgd_alloc();
147 if (!kvm->arch.gpa_mm.pgd)
148 return -ENOMEM;
149
150 return 0;
151}
152
153void kvm_mips_free_vcpus(struct kvm *kvm)
154{
155 unsigned int i;
156 struct kvm_vcpu *vcpu;
157
158 kvm_for_each_vcpu(i, vcpu, kvm) {
159 kvm_arch_vcpu_free(vcpu);
160 }
161
162 mutex_lock(&kvm->lock);
163
164 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
165 kvm->vcpus[i] = NULL;
166
167 atomic_set(&kvm->online_vcpus, 0);
168
169 mutex_unlock(&kvm->lock);
170}
171
172static void kvm_mips_free_gpa_pt(struct kvm *kvm)
173{
174 /* It should always be safe to remove after flushing the whole range */
175 WARN_ON(!kvm_mips_flush_gpa_pt(kvm, 0, ~0));
176 pgd_free(NULL, kvm->arch.gpa_mm.pgd);
177}
178
179void kvm_arch_destroy_vm(struct kvm *kvm)
180{
181 kvm_mips_free_vcpus(kvm);
182 kvm_mips_free_gpa_pt(kvm);
183}
184
185long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
186 unsigned long arg)
187{
188 return -ENOIOCTLCMD;
189}
190
191int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
192 unsigned long npages)
193{
194 return 0;
195}
196
197void kvm_arch_flush_shadow_all(struct kvm *kvm)
198{
199 /* Flush whole GPA */
200 kvm_mips_flush_gpa_pt(kvm, 0, ~0);
201
202 /* Let implementation do the rest */
203 kvm_mips_callbacks->flush_shadow_all(kvm);
204}
205
206void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
207 struct kvm_memory_slot *slot)
208{
209 /*
210 * The slot has been made invalid (ready for moving or deletion), so we
211 * need to ensure that it can no longer be accessed by any guest VCPUs.
212 */
213
214 spin_lock(&kvm->mmu_lock);
215 /* Flush slot from GPA */
216 kvm_mips_flush_gpa_pt(kvm, slot->base_gfn,
217 slot->base_gfn + slot->npages - 1);
218 /* Let implementation do the rest */
219 kvm_mips_callbacks->flush_shadow_memslot(kvm, slot);
220 spin_unlock(&kvm->mmu_lock);
221}
222
223int kvm_arch_prepare_memory_region(struct kvm *kvm,
224 struct kvm_memory_slot *memslot,
225 const struct kvm_userspace_memory_region *mem,
226 enum kvm_mr_change change)
227{
228 return 0;
229}
230
231void kvm_arch_commit_memory_region(struct kvm *kvm,
232 const struct kvm_userspace_memory_region *mem,
233 const struct kvm_memory_slot *old,
234 const struct kvm_memory_slot *new,
235 enum kvm_mr_change change)
236{
237 int needs_flush;
238
239 kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
240 __func__, kvm, mem->slot, mem->guest_phys_addr,
241 mem->memory_size, mem->userspace_addr);
242
243 /*
244 * If dirty page logging is enabled, write protect all pages in the slot
245 * ready for dirty logging.
246 *
247 * There is no need to do this in any of the following cases:
248 * CREATE: No dirty mappings will already exist.
249 * MOVE/DELETE: The old mappings will already have been cleaned up by
250 * kvm_arch_flush_shadow_memslot()
251 */
252 if (change == KVM_MR_FLAGS_ONLY &&
253 (!(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
254 new->flags & KVM_MEM_LOG_DIRTY_PAGES)) {
255 spin_lock(&kvm->mmu_lock);
256 /* Write protect GPA page table entries */
257 needs_flush = kvm_mips_mkclean_gpa_pt(kvm, new->base_gfn,
258 new->base_gfn + new->npages - 1);
259 /* Let implementation do the rest */
260 if (needs_flush)
261 kvm_mips_callbacks->flush_shadow_memslot(kvm, new);
262 spin_unlock(&kvm->mmu_lock);
263 }
264}
265
266static inline void dump_handler(const char *symbol, void *start, void *end)
267{
268 u32 *p;
269
270 pr_debug("LEAF(%s)\n", symbol);
271
272 pr_debug("\t.set push\n");
273 pr_debug("\t.set noreorder\n");
274
275 for (p = start; p < (u32 *)end; ++p)
276 pr_debug("\t.word\t0x%08x\t\t# %p\n", *p, p);
277
278 pr_debug("\t.set\tpop\n");
279
280 pr_debug("\tEND(%s)\n", symbol);
281}
282
283struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
284{
285 int err, size;
286 void *gebase, *p, *handler, *refill_start, *refill_end;
287 int i;
288
289 struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
290
291 if (!vcpu) {
292 err = -ENOMEM;
293 goto out;
294 }
295
296 err = kvm_vcpu_init(vcpu, kvm, id);
297
298 if (err)
299 goto out_free_cpu;
300
301 kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
302
303 /*
304 * Allocate space for host mode exception handlers that handle
305 * guest mode exits
306 */
307 if (cpu_has_veic || cpu_has_vint)
308 size = 0x200 + VECTORSPACING * 64;
309 else
310 size = 0x4000;
311
312 gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
313
314 if (!gebase) {
315 err = -ENOMEM;
316 goto out_uninit_cpu;
317 }
318 kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
319 ALIGN(size, PAGE_SIZE), gebase);
320
321 /*
322 * Check new ebase actually fits in CP0_EBase. The lack of a write gate
323 * limits us to the low 512MB of physical address space. If the memory
324 * we allocate is out of range, just give up now.
325 */
326 if (!cpu_has_ebase_wg && virt_to_phys(gebase) >= 0x20000000) {
327 kvm_err("CP0_EBase.WG required for guest exception base %pK\n",
328 gebase);
329 err = -ENOMEM;
330 goto out_free_gebase;
331 }
332
333 /* Save new ebase */
334 vcpu->arch.guest_ebase = gebase;
335
336 /* Build guest exception vectors dynamically in unmapped memory */
337 handler = gebase + 0x2000;
338
339 /* TLB refill (or XTLB refill on 64-bit VZ where KX=1) */
340 refill_start = gebase;
341 if (IS_ENABLED(CONFIG_KVM_MIPS_VZ) && IS_ENABLED(CONFIG_64BIT))
342 refill_start += 0x080;
343 refill_end = kvm_mips_build_tlb_refill_exception(refill_start, handler);
344
345 /* General Exception Entry point */
346 kvm_mips_build_exception(gebase + 0x180, handler);
347
348 /* For vectored interrupts poke the exception code @ all offsets 0-7 */
349 for (i = 0; i < 8; i++) {
350 kvm_debug("L1 Vectored handler @ %p\n",
351 gebase + 0x200 + (i * VECTORSPACING));
352 kvm_mips_build_exception(gebase + 0x200 + i * VECTORSPACING,
353 handler);
354 }
355
356 /* General exit handler */
357 p = handler;
358 p = kvm_mips_build_exit(p);
359
360 /* Guest entry routine */
361 vcpu->arch.vcpu_run = p;
362 p = kvm_mips_build_vcpu_run(p);
363
364 /* Dump the generated code */
365 pr_debug("#include <asm/asm.h>\n");
366 pr_debug("#include <asm/regdef.h>\n");
367 pr_debug("\n");
368 dump_handler("kvm_vcpu_run", vcpu->arch.vcpu_run, p);
369 dump_handler("kvm_tlb_refill", refill_start, refill_end);
370 dump_handler("kvm_gen_exc", gebase + 0x180, gebase + 0x200);
371 dump_handler("kvm_exit", gebase + 0x2000, vcpu->arch.vcpu_run);
372
373 /* Invalidate the icache for these ranges */
374 flush_icache_range((unsigned long)gebase,
375 (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
376
377 /*
378 * Allocate comm page for guest kernel, a TLB will be reserved for
379 * mapping GVA @ 0xFFFF8000 to this page
380 */
381 vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);
382
383 if (!vcpu->arch.kseg0_commpage) {
384 err = -ENOMEM;
385 goto out_free_gebase;
386 }
387
388 kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
389 kvm_mips_commpage_init(vcpu);
390
391 /* Init */
392 vcpu->arch.last_sched_cpu = -1;
393 vcpu->arch.last_exec_cpu = -1;
394
395 return vcpu;
396
397out_free_gebase:
398 kfree(gebase);
399
400out_uninit_cpu:
401 kvm_vcpu_uninit(vcpu);
402
403out_free_cpu:
404 kfree(vcpu);
405
406out:
407 return ERR_PTR(err);
408}
409
410void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
411{
412 hrtimer_cancel(&vcpu->arch.comparecount_timer);
413
414 kvm_vcpu_uninit(vcpu);
415
416 kvm_mips_dump_stats(vcpu);
417
418 kvm_mmu_free_memory_caches(vcpu);
419 kfree(vcpu->arch.guest_ebase);
420 kfree(vcpu->arch.kseg0_commpage);
421 kfree(vcpu);
422}
423
424void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
425{
426 kvm_arch_vcpu_free(vcpu);
427}
428
429int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
430 struct kvm_guest_debug *dbg)
431{
432 return -ENOIOCTLCMD;
433}
434
435int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
436{
437 int r = -EINTR;
438
439 vcpu_load(vcpu);
440
441 kvm_sigset_activate(vcpu);
442
443 if (vcpu->mmio_needed) {
444 if (!vcpu->mmio_is_write)
445 kvm_mips_complete_mmio_load(vcpu, run);
446 vcpu->mmio_needed = 0;
447 }
448
449 if (run->immediate_exit)
450 goto out;
451
452 lose_fpu(1);
453
454 local_irq_disable();
455 guest_enter_irqoff();
456 trace_kvm_enter(vcpu);
457
458 /*
459 * Make sure the read of VCPU requests in vcpu_run() callback is not
460 * reordered ahead of the write to vcpu->mode, or we could miss a TLB
461 * flush request while the requester sees the VCPU as outside of guest
462 * mode and not needing an IPI.
463 */
464 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
465
466 r = kvm_mips_callbacks->vcpu_run(run, vcpu);
467
468 trace_kvm_out(vcpu);
469 guest_exit_irqoff();
470 local_irq_enable();
471
472out:
473 kvm_sigset_deactivate(vcpu);
474
475 vcpu_put(vcpu);
476 return r;
477}
478
479int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
480 struct kvm_mips_interrupt *irq)
481{
482 int intr = (int)irq->irq;
483 struct kvm_vcpu *dvcpu = NULL;
484
485 if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
486 kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
487 (int)intr);
488
489 if (irq->cpu == -1)
490 dvcpu = vcpu;
491 else
492 dvcpu = vcpu->kvm->vcpus[irq->cpu];
493
494 if (intr == 2 || intr == 3 || intr == 4) {
495 kvm_mips_callbacks->queue_io_int(dvcpu, irq);
496
497 } else if (intr == -2 || intr == -3 || intr == -4) {
498 kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
499 } else {
500 kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
501 irq->cpu, irq->irq);
502 return -EINVAL;
503 }
504
505 dvcpu->arch.wait = 0;
506
507 if (swq_has_sleeper(&dvcpu->wq))
508 swake_up_one(&dvcpu->wq);
509
510 return 0;
511}
512
513int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
514 struct kvm_mp_state *mp_state)
515{
516 return -ENOIOCTLCMD;
517}
518
519int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
520 struct kvm_mp_state *mp_state)
521{
522 return -ENOIOCTLCMD;
523}
524
525static u64 kvm_mips_get_one_regs[] = {
526 KVM_REG_MIPS_R0,
527 KVM_REG_MIPS_R1,
528 KVM_REG_MIPS_R2,
529 KVM_REG_MIPS_R3,
530 KVM_REG_MIPS_R4,
531 KVM_REG_MIPS_R5,
532 KVM_REG_MIPS_R6,
533 KVM_REG_MIPS_R7,
534 KVM_REG_MIPS_R8,
535 KVM_REG_MIPS_R9,
536 KVM_REG_MIPS_R10,
537 KVM_REG_MIPS_R11,
538 KVM_REG_MIPS_R12,
539 KVM_REG_MIPS_R13,
540 KVM_REG_MIPS_R14,
541 KVM_REG_MIPS_R15,
542 KVM_REG_MIPS_R16,
543 KVM_REG_MIPS_R17,
544 KVM_REG_MIPS_R18,
545 KVM_REG_MIPS_R19,
546 KVM_REG_MIPS_R20,
547 KVM_REG_MIPS_R21,
548 KVM_REG_MIPS_R22,
549 KVM_REG_MIPS_R23,
550 KVM_REG_MIPS_R24,
551 KVM_REG_MIPS_R25,
552 KVM_REG_MIPS_R26,
553 KVM_REG_MIPS_R27,
554 KVM_REG_MIPS_R28,
555 KVM_REG_MIPS_R29,
556 KVM_REG_MIPS_R30,
557 KVM_REG_MIPS_R31,
558
559#ifndef CONFIG_CPU_MIPSR6
560 KVM_REG_MIPS_HI,
561 KVM_REG_MIPS_LO,
562#endif
563 KVM_REG_MIPS_PC,
564};
565
566static u64 kvm_mips_get_one_regs_fpu[] = {
567 KVM_REG_MIPS_FCR_IR,
568 KVM_REG_MIPS_FCR_CSR,
569};
570
571static u64 kvm_mips_get_one_regs_msa[] = {
572 KVM_REG_MIPS_MSA_IR,
573 KVM_REG_MIPS_MSA_CSR,
574};
575
576static unsigned long kvm_mips_num_regs(struct kvm_vcpu *vcpu)
577{
578 unsigned long ret;
579
580 ret = ARRAY_SIZE(kvm_mips_get_one_regs);
581 if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
582 ret += ARRAY_SIZE(kvm_mips_get_one_regs_fpu) + 48;
583 /* odd doubles */
584 if (boot_cpu_data.fpu_id & MIPS_FPIR_F64)
585 ret += 16;
586 }
587 if (kvm_mips_guest_can_have_msa(&vcpu->arch))
588 ret += ARRAY_SIZE(kvm_mips_get_one_regs_msa) + 32;
589 ret += kvm_mips_callbacks->num_regs(vcpu);
590
591 return ret;
592}
593
594static int kvm_mips_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
595{
596 u64 index;
597 unsigned int i;
598
599 if (copy_to_user(indices, kvm_mips_get_one_regs,
600 sizeof(kvm_mips_get_one_regs)))
601 return -EFAULT;
602 indices += ARRAY_SIZE(kvm_mips_get_one_regs);
603
604 if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
605 if (copy_to_user(indices, kvm_mips_get_one_regs_fpu,
606 sizeof(kvm_mips_get_one_regs_fpu)))
607 return -EFAULT;
608 indices += ARRAY_SIZE(kvm_mips_get_one_regs_fpu);
609
610 for (i = 0; i < 32; ++i) {
611 index = KVM_REG_MIPS_FPR_32(i);
612 if (copy_to_user(indices, &index, sizeof(index)))
613 return -EFAULT;
614 ++indices;
615
616 /* skip odd doubles if no F64 */
617 if (i & 1 && !(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
618 continue;
619
620 index = KVM_REG_MIPS_FPR_64(i);
621 if (copy_to_user(indices, &index, sizeof(index)))
622 return -EFAULT;
623 ++indices;
624 }
625 }
626
627 if (kvm_mips_guest_can_have_msa(&vcpu->arch)) {
628 if (copy_to_user(indices, kvm_mips_get_one_regs_msa,
629 sizeof(kvm_mips_get_one_regs_msa)))
630 return -EFAULT;
631 indices += ARRAY_SIZE(kvm_mips_get_one_regs_msa);
632
633 for (i = 0; i < 32; ++i) {
634 index = KVM_REG_MIPS_VEC_128(i);
635 if (copy_to_user(indices, &index, sizeof(index)))
636 return -EFAULT;
637 ++indices;
638 }
639 }
640
641 return kvm_mips_callbacks->copy_reg_indices(vcpu, indices);
642}
643
644static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
645 const struct kvm_one_reg *reg)
646{
647 struct mips_coproc *cop0 = vcpu->arch.cop0;
648 struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
649 int ret;
650 s64 v;
651 s64 vs[2];
652 unsigned int idx;
653
654 switch (reg->id) {
655 /* General purpose registers */
656 case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
657 v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
658 break;
659#ifndef CONFIG_CPU_MIPSR6
660 case KVM_REG_MIPS_HI:
661 v = (long)vcpu->arch.hi;
662 break;
663 case KVM_REG_MIPS_LO:
664 v = (long)vcpu->arch.lo;
665 break;
666#endif
667 case KVM_REG_MIPS_PC:
668 v = (long)vcpu->arch.pc;
669 break;
670
671 /* Floating point registers */
672 case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
673 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
674 return -EINVAL;
675 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
676 /* Odd singles in top of even double when FR=0 */
677 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
678 v = get_fpr32(&fpu->fpr[idx], 0);
679 else
680 v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
681 break;
682 case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
683 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
684 return -EINVAL;
685 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
686 /* Can't access odd doubles in FR=0 mode */
687 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
688 return -EINVAL;
689 v = get_fpr64(&fpu->fpr[idx], 0);
690 break;
691 case KVM_REG_MIPS_FCR_IR:
692 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
693 return -EINVAL;
694 v = boot_cpu_data.fpu_id;
695 break;
696 case KVM_REG_MIPS_FCR_CSR:
697 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
698 return -EINVAL;
699 v = fpu->fcr31;
700 break;
701
702 /* MIPS SIMD Architecture (MSA) registers */
703 case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
704 if (!kvm_mips_guest_has_msa(&vcpu->arch))
705 return -EINVAL;
706 /* Can't access MSA registers in FR=0 mode */
707 if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
708 return -EINVAL;
709 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
710#ifdef CONFIG_CPU_LITTLE_ENDIAN
711 /* least significant byte first */
712 vs[0] = get_fpr64(&fpu->fpr[idx], 0);
713 vs[1] = get_fpr64(&fpu->fpr[idx], 1);
714#else
715 /* most significant byte first */
716 vs[0] = get_fpr64(&fpu->fpr[idx], 1);
717 vs[1] = get_fpr64(&fpu->fpr[idx], 0);
718#endif
719 break;
720 case KVM_REG_MIPS_MSA_IR:
721 if (!kvm_mips_guest_has_msa(&vcpu->arch))
722 return -EINVAL;
723 v = boot_cpu_data.msa_id;
724 break;
725 case KVM_REG_MIPS_MSA_CSR:
726 if (!kvm_mips_guest_has_msa(&vcpu->arch))
727 return -EINVAL;
728 v = fpu->msacsr;
729 break;
730
731 /* registers to be handled specially */
732 default:
733 ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
734 if (ret)
735 return ret;
736 break;
737 }
738 if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
739 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
740
741 return put_user(v, uaddr64);
742 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
743 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
744 u32 v32 = (u32)v;
745
746 return put_user(v32, uaddr32);
747 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
748 void __user *uaddr = (void __user *)(long)reg->addr;
749
750 return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
751 } else {
752 return -EINVAL;
753 }
754}
755
756static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
757 const struct kvm_one_reg *reg)
758{
759 struct mips_coproc *cop0 = vcpu->arch.cop0;
760 struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
761 s64 v;
762 s64 vs[2];
763 unsigned int idx;
764
765 if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
766 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
767
768 if (get_user(v, uaddr64) != 0)
769 return -EFAULT;
770 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
771 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
772 s32 v32;
773
774 if (get_user(v32, uaddr32) != 0)
775 return -EFAULT;
776 v = (s64)v32;
777 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
778 void __user *uaddr = (void __user *)(long)reg->addr;
779
780 return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
781 } else {
782 return -EINVAL;
783 }
784
785 switch (reg->id) {
786 /* General purpose registers */
787 case KVM_REG_MIPS_R0:
788 /* Silently ignore requests to set $0 */
789 break;
790 case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
791 vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
792 break;
793#ifndef CONFIG_CPU_MIPSR6
794 case KVM_REG_MIPS_HI:
795 vcpu->arch.hi = v;
796 break;
797 case KVM_REG_MIPS_LO:
798 vcpu->arch.lo = v;
799 break;
800#endif
801 case KVM_REG_MIPS_PC:
802 vcpu->arch.pc = v;
803 break;
804
805 /* Floating point registers */
806 case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
807 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
808 return -EINVAL;
809 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
810 /* Odd singles in top of even double when FR=0 */
811 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
812 set_fpr32(&fpu->fpr[idx], 0, v);
813 else
814 set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
815 break;
816 case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
817 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
818 return -EINVAL;
819 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
820 /* Can't access odd doubles in FR=0 mode */
821 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
822 return -EINVAL;
823 set_fpr64(&fpu->fpr[idx], 0, v);
824 break;
825 case KVM_REG_MIPS_FCR_IR:
826 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
827 return -EINVAL;
828 /* Read-only */
829 break;
830 case KVM_REG_MIPS_FCR_CSR:
831 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
832 return -EINVAL;
833 fpu->fcr31 = v;
834 break;
835
836 /* MIPS SIMD Architecture (MSA) registers */
837 case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
838 if (!kvm_mips_guest_has_msa(&vcpu->arch))
839 return -EINVAL;
840 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
841#ifdef CONFIG_CPU_LITTLE_ENDIAN
842 /* least significant byte first */
843 set_fpr64(&fpu->fpr[idx], 0, vs[0]);
844 set_fpr64(&fpu->fpr[idx], 1, vs[1]);
845#else
846 /* most significant byte first */
847 set_fpr64(&fpu->fpr[idx], 1, vs[0]);
848 set_fpr64(&fpu->fpr[idx], 0, vs[1]);
849#endif
850 break;
851 case KVM_REG_MIPS_MSA_IR:
852 if (!kvm_mips_guest_has_msa(&vcpu->arch))
853 return -EINVAL;
854 /* Read-only */
855 break;
856 case KVM_REG_MIPS_MSA_CSR:
857 if (!kvm_mips_guest_has_msa(&vcpu->arch))
858 return -EINVAL;
859 fpu->msacsr = v;
860 break;
861
862 /* registers to be handled specially */
863 default:
864 return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
865 }
866 return 0;
867}
868
869static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
870 struct kvm_enable_cap *cap)
871{
872 int r = 0;
873
874 if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
875 return -EINVAL;
876 if (cap->flags)
877 return -EINVAL;
878 if (cap->args[0])
879 return -EINVAL;
880
881 switch (cap->cap) {
882 case KVM_CAP_MIPS_FPU:
883 vcpu->arch.fpu_enabled = true;
884 break;
885 case KVM_CAP_MIPS_MSA:
886 vcpu->arch.msa_enabled = true;
887 break;
888 default:
889 r = -EINVAL;
890 break;
891 }
892
893 return r;
894}
895
896long kvm_arch_vcpu_async_ioctl(struct file *filp, unsigned int ioctl,
897 unsigned long arg)
898{
899 struct kvm_vcpu *vcpu = filp->private_data;
900 void __user *argp = (void __user *)arg;
901
902 if (ioctl == KVM_INTERRUPT) {
903 struct kvm_mips_interrupt irq;
904
905 if (copy_from_user(&irq, argp, sizeof(irq)))
906 return -EFAULT;
907 kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
908 irq.irq);
909
910 return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
911 }
912
913 return -ENOIOCTLCMD;
914}
915
916long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
917 unsigned long arg)
918{
919 struct kvm_vcpu *vcpu = filp->private_data;
920 void __user *argp = (void __user *)arg;
921 long r;
922
923 vcpu_load(vcpu);
924
925 switch (ioctl) {
926 case KVM_SET_ONE_REG:
927 case KVM_GET_ONE_REG: {
928 struct kvm_one_reg reg;
929
930 r = -EFAULT;
931 if (copy_from_user(®, argp, sizeof(reg)))
932 break;
933 if (ioctl == KVM_SET_ONE_REG)
934 r = kvm_mips_set_reg(vcpu, ®);
935 else
936 r = kvm_mips_get_reg(vcpu, ®);
937 break;
938 }
939 case KVM_GET_REG_LIST: {
940 struct kvm_reg_list __user *user_list = argp;
941 struct kvm_reg_list reg_list;
942 unsigned n;
943
944 r = -EFAULT;
945 if (copy_from_user(®_list, user_list, sizeof(reg_list)))
946 break;
947 n = reg_list.n;
948 reg_list.n = kvm_mips_num_regs(vcpu);
949 if (copy_to_user(user_list, ®_list, sizeof(reg_list)))
950 break;
951 r = -E2BIG;
952 if (n < reg_list.n)
953 break;
954 r = kvm_mips_copy_reg_indices(vcpu, user_list->reg);
955 break;
956 }
957 case KVM_ENABLE_CAP: {
958 struct kvm_enable_cap cap;
959
960 r = -EFAULT;
961 if (copy_from_user(&cap, argp, sizeof(cap)))
962 break;
963 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
964 break;
965 }
966 default:
967 r = -ENOIOCTLCMD;
968 }
969
970 vcpu_put(vcpu);
971 return r;
972}
973
974/**
975 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
976 * @kvm: kvm instance
977 * @log: slot id and address to which we copy the log
978 *
979 * Steps 1-4 below provide general overview of dirty page logging. See
980 * kvm_get_dirty_log_protect() function description for additional details.
981 *
982 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
983 * always flush the TLB (step 4) even if previous step failed and the dirty
984 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
985 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
986 * writes will be marked dirty for next log read.
987 *
988 * 1. Take a snapshot of the bit and clear it if needed.
989 * 2. Write protect the corresponding page.
990 * 3. Copy the snapshot to the userspace.
991 * 4. Flush TLB's if needed.
992 */
993int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
994{
995 struct kvm_memslots *slots;
996 struct kvm_memory_slot *memslot;
997 bool flush = false;
998 int r;
999
1000 mutex_lock(&kvm->slots_lock);
1001
1002 r = kvm_get_dirty_log_protect(kvm, log, &flush);
1003
1004 if (flush) {
1005 slots = kvm_memslots(kvm);
1006 memslot = id_to_memslot(slots, log->slot);
1007
1008 /* Let implementation handle TLB/GVA invalidation */
1009 kvm_mips_callbacks->flush_shadow_memslot(kvm, memslot);
1010 }
1011
1012 mutex_unlock(&kvm->slots_lock);
1013 return r;
1014}
1015
1016int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, struct kvm_clear_dirty_log *log)
1017{
1018 struct kvm_memslots *slots;
1019 struct kvm_memory_slot *memslot;
1020 bool flush = false;
1021 int r;
1022
1023 mutex_lock(&kvm->slots_lock);
1024
1025 r = kvm_clear_dirty_log_protect(kvm, log, &flush);
1026
1027 if (flush) {
1028 slots = kvm_memslots(kvm);
1029 memslot = id_to_memslot(slots, log->slot);
1030
1031 /* Let implementation handle TLB/GVA invalidation */
1032 kvm_mips_callbacks->flush_shadow_memslot(kvm, memslot);
1033 }
1034
1035 mutex_unlock(&kvm->slots_lock);
1036 return r;
1037}
1038
1039long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1040{
1041 long r;
1042
1043 switch (ioctl) {
1044 default:
1045 r = -ENOIOCTLCMD;
1046 }
1047
1048 return r;
1049}
1050
1051int kvm_arch_init(void *opaque)
1052{
1053 if (kvm_mips_callbacks) {
1054 kvm_err("kvm: module already exists\n");
1055 return -EEXIST;
1056 }
1057
1058 return kvm_mips_emulation_init(&kvm_mips_callbacks);
1059}
1060
1061void kvm_arch_exit(void)
1062{
1063 kvm_mips_callbacks = NULL;
1064}
1065
1066int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1067 struct kvm_sregs *sregs)
1068{
1069 return -ENOIOCTLCMD;
1070}
1071
1072int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1073 struct kvm_sregs *sregs)
1074{
1075 return -ENOIOCTLCMD;
1076}
1077
1078void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1079{
1080}
1081
1082int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1083{
1084 return -ENOIOCTLCMD;
1085}
1086
1087int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1088{
1089 return -ENOIOCTLCMD;
1090}
1091
1092vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1093{
1094 return VM_FAULT_SIGBUS;
1095}
1096
1097int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1098{
1099 int r;
1100
1101 switch (ext) {
1102 case KVM_CAP_ONE_REG:
1103 case KVM_CAP_ENABLE_CAP:
1104 case KVM_CAP_READONLY_MEM:
1105 case KVM_CAP_SYNC_MMU:
1106 case KVM_CAP_IMMEDIATE_EXIT:
1107 r = 1;
1108 break;
1109 case KVM_CAP_NR_VCPUS:
1110 r = num_online_cpus();
1111 break;
1112 case KVM_CAP_MAX_VCPUS:
1113 r = KVM_MAX_VCPUS;
1114 break;
1115 case KVM_CAP_MAX_VCPU_ID:
1116 r = KVM_MAX_VCPU_ID;
1117 break;
1118 case KVM_CAP_MIPS_FPU:
1119 /* We don't handle systems with inconsistent cpu_has_fpu */
1120 r = !!raw_cpu_has_fpu;
1121 break;
1122 case KVM_CAP_MIPS_MSA:
1123 /*
1124 * We don't support MSA vector partitioning yet:
1125 * 1) It would require explicit support which can't be tested
1126 * yet due to lack of support in current hardware.
1127 * 2) It extends the state that would need to be saved/restored
1128 * by e.g. QEMU for migration.
1129 *
1130 * When vector partitioning hardware becomes available, support
1131 * could be added by requiring a flag when enabling
1132 * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1133 * to save/restore the appropriate extra state.
1134 */
1135 r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
1136 break;
1137 default:
1138 r = kvm_mips_callbacks->check_extension(kvm, ext);
1139 break;
1140 }
1141 return r;
1142}
1143
1144int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1145{
1146 return kvm_mips_pending_timer(vcpu) ||
1147 kvm_read_c0_guest_cause(vcpu->arch.cop0) & C_TI;
1148}
1149
1150int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
1151{
1152 int i;
1153 struct mips_coproc *cop0;
1154
1155 if (!vcpu)
1156 return -1;
1157
1158 kvm_debug("VCPU Register Dump:\n");
1159 kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
1160 kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1161
1162 for (i = 0; i < 32; i += 4) {
1163 kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1164 vcpu->arch.gprs[i],
1165 vcpu->arch.gprs[i + 1],
1166 vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
1167 }
1168 kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
1169 kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1170
1171 cop0 = vcpu->arch.cop0;
1172 kvm_debug("\tStatus: 0x%08x, Cause: 0x%08x\n",
1173 kvm_read_c0_guest_status(cop0),
1174 kvm_read_c0_guest_cause(cop0));
1175
1176 kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1177
1178 return 0;
1179}
1180
1181int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1182{
1183 int i;
1184
1185 vcpu_load(vcpu);
1186
1187 for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1188 vcpu->arch.gprs[i] = regs->gpr[i];
1189 vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1190 vcpu->arch.hi = regs->hi;
1191 vcpu->arch.lo = regs->lo;
1192 vcpu->arch.pc = regs->pc;
1193
1194 vcpu_put(vcpu);
1195 return 0;
1196}
1197
1198int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1199{
1200 int i;
1201
1202 vcpu_load(vcpu);
1203
1204 for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1205 regs->gpr[i] = vcpu->arch.gprs[i];
1206
1207 regs->hi = vcpu->arch.hi;
1208 regs->lo = vcpu->arch.lo;
1209 regs->pc = vcpu->arch.pc;
1210
1211 vcpu_put(vcpu);
1212 return 0;
1213}
1214
1215static void kvm_mips_comparecount_func(unsigned long data)
1216{
1217 struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;
1218
1219 kvm_mips_callbacks->queue_timer_int(vcpu);
1220
1221 vcpu->arch.wait = 0;
1222 if (swq_has_sleeper(&vcpu->wq))
1223 swake_up_one(&vcpu->wq);
1224}
1225
1226/* low level hrtimer wake routine */
1227static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
1228{
1229 struct kvm_vcpu *vcpu;
1230
1231 vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
1232 kvm_mips_comparecount_func((unsigned long) vcpu);
1233 return kvm_mips_count_timeout(vcpu);
1234}
1235
1236int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1237{
1238 int err;
1239
1240 err = kvm_mips_callbacks->vcpu_init(vcpu);
1241 if (err)
1242 return err;
1243
1244 hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
1245 HRTIMER_MODE_REL);
1246 vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
1247 return 0;
1248}
1249
1250void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
1251{
1252 kvm_mips_callbacks->vcpu_uninit(vcpu);
1253}
1254
1255int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1256 struct kvm_translation *tr)
1257{
1258 return 0;
1259}
1260
1261/* Initial guest state */
1262int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1263{
1264 return kvm_mips_callbacks->vcpu_setup(vcpu);
1265}
1266
1267static void kvm_mips_set_c0_status(void)
1268{
1269 u32 status = read_c0_status();
1270
1271 if (cpu_has_dsp)
1272 status |= (ST0_MX);
1273
1274 write_c0_status(status);
1275 ehb();
1276}
1277
1278/*
1279 * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1280 */
1281int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
1282{
1283 u32 cause = vcpu->arch.host_cp0_cause;
1284 u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1285 u32 __user *opc = (u32 __user *) vcpu->arch.pc;
1286 unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
1287 enum emulation_result er = EMULATE_DONE;
1288 u32 inst;
1289 int ret = RESUME_GUEST;
1290
1291 vcpu->mode = OUTSIDE_GUEST_MODE;
1292
1293 /* re-enable HTW before enabling interrupts */
1294 if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ))
1295 htw_start();
1296
1297 /* Set a default exit reason */
1298 run->exit_reason = KVM_EXIT_UNKNOWN;
1299 run->ready_for_interrupt_injection = 1;
1300
1301 /*
1302 * Set the appropriate status bits based on host CPU features,
1303 * before we hit the scheduler
1304 */
1305 kvm_mips_set_c0_status();
1306
1307 local_irq_enable();
1308
1309 kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1310 cause, opc, run, vcpu);
1311 trace_kvm_exit(vcpu, exccode);
1312
1313 if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
1314 /*
1315 * Do a privilege check, if in UM most of these exit conditions
1316 * end up causing an exception to be delivered to the Guest
1317 * Kernel
1318 */
1319 er = kvm_mips_check_privilege(cause, opc, run, vcpu);
1320 if (er == EMULATE_PRIV_FAIL) {
1321 goto skip_emul;
1322 } else if (er == EMULATE_FAIL) {
1323 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1324 ret = RESUME_HOST;
1325 goto skip_emul;
1326 }
1327 }
1328
1329 switch (exccode) {
1330 case EXCCODE_INT:
1331 kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);
1332
1333 ++vcpu->stat.int_exits;
1334
1335 if (need_resched())
1336 cond_resched();
1337
1338 ret = RESUME_GUEST;
1339 break;
1340
1341 case EXCCODE_CPU:
1342 kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);
1343
1344 ++vcpu->stat.cop_unusable_exits;
1345 ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
1346 /* XXXKYMA: Might need to return to user space */
1347 if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1348 ret = RESUME_HOST;
1349 break;
1350
1351 case EXCCODE_MOD:
1352 ++vcpu->stat.tlbmod_exits;
1353 ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
1354 break;
1355
1356 case EXCCODE_TLBS:
1357 kvm_debug("TLB ST fault: cause %#x, status %#x, PC: %p, BadVaddr: %#lx\n",
1358 cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
1359 badvaddr);
1360
1361 ++vcpu->stat.tlbmiss_st_exits;
1362 ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
1363 break;
1364
1365 case EXCCODE_TLBL:
1366 kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1367 cause, opc, badvaddr);
1368
1369 ++vcpu->stat.tlbmiss_ld_exits;
1370 ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
1371 break;
1372
1373 case EXCCODE_ADES:
1374 ++vcpu->stat.addrerr_st_exits;
1375 ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
1376 break;
1377
1378 case EXCCODE_ADEL:
1379 ++vcpu->stat.addrerr_ld_exits;
1380 ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
1381 break;
1382
1383 case EXCCODE_SYS:
1384 ++vcpu->stat.syscall_exits;
1385 ret = kvm_mips_callbacks->handle_syscall(vcpu);
1386 break;
1387
1388 case EXCCODE_RI:
1389 ++vcpu->stat.resvd_inst_exits;
1390 ret = kvm_mips_callbacks->handle_res_inst(vcpu);
1391 break;
1392
1393 case EXCCODE_BP:
1394 ++vcpu->stat.break_inst_exits;
1395 ret = kvm_mips_callbacks->handle_break(vcpu);
1396 break;
1397
1398 case EXCCODE_TR:
1399 ++vcpu->stat.trap_inst_exits;
1400 ret = kvm_mips_callbacks->handle_trap(vcpu);
1401 break;
1402
1403 case EXCCODE_MSAFPE:
1404 ++vcpu->stat.msa_fpe_exits;
1405 ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
1406 break;
1407
1408 case EXCCODE_FPE:
1409 ++vcpu->stat.fpe_exits;
1410 ret = kvm_mips_callbacks->handle_fpe(vcpu);
1411 break;
1412
1413 case EXCCODE_MSADIS:
1414 ++vcpu->stat.msa_disabled_exits;
1415 ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
1416 break;
1417
1418 case EXCCODE_GE:
1419 /* defer exit accounting to handler */
1420 ret = kvm_mips_callbacks->handle_guest_exit(vcpu);
1421 break;
1422
1423 default:
1424 if (cause & CAUSEF_BD)
1425 opc += 1;
1426 inst = 0;
1427 kvm_get_badinstr(opc, vcpu, &inst);
1428 kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x BadVaddr: %#lx Status: %#x\n",
1429 exccode, opc, inst, badvaddr,
1430 kvm_read_c0_guest_status(vcpu->arch.cop0));
1431 kvm_arch_vcpu_dump_regs(vcpu);
1432 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1433 ret = RESUME_HOST;
1434 break;
1435
1436 }
1437
1438skip_emul:
1439 local_irq_disable();
1440
1441 if (ret == RESUME_GUEST)
1442 kvm_vz_acquire_htimer(vcpu);
1443
1444 if (er == EMULATE_DONE && !(ret & RESUME_HOST))
1445 kvm_mips_deliver_interrupts(vcpu, cause);
1446
1447 if (!(ret & RESUME_HOST)) {
1448 /* Only check for signals if not already exiting to userspace */
1449 if (signal_pending(current)) {
1450 run->exit_reason = KVM_EXIT_INTR;
1451 ret = (-EINTR << 2) | RESUME_HOST;
1452 ++vcpu->stat.signal_exits;
1453 trace_kvm_exit(vcpu, KVM_TRACE_EXIT_SIGNAL);
1454 }
1455 }
1456
1457 if (ret == RESUME_GUEST) {
1458 trace_kvm_reenter(vcpu);
1459
1460 /*
1461 * Make sure the read of VCPU requests in vcpu_reenter()
1462 * callback is not reordered ahead of the write to vcpu->mode,
1463 * or we could miss a TLB flush request while the requester sees
1464 * the VCPU as outside of guest mode and not needing an IPI.
1465 */
1466 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
1467
1468 kvm_mips_callbacks->vcpu_reenter(run, vcpu);
1469
1470 /*
1471 * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1472 * is live), restore FCR31 / MSACSR.
1473 *
1474 * This should be before returning to the guest exception
1475 * vector, as it may well cause an [MSA] FP exception if there
1476 * are pending exception bits unmasked. (see
1477 * kvm_mips_csr_die_notifier() for how that is handled).
1478 */
1479 if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
1480 read_c0_status() & ST0_CU1)
1481 __kvm_restore_fcsr(&vcpu->arch);
1482
1483 if (kvm_mips_guest_has_msa(&vcpu->arch) &&
1484 read_c0_config5() & MIPS_CONF5_MSAEN)
1485 __kvm_restore_msacsr(&vcpu->arch);
1486 }
1487
1488 /* Disable HTW before returning to guest or host */
1489 if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ))
1490 htw_stop();
1491
1492 return ret;
1493}
1494
1495/* Enable FPU for guest and restore context */
1496void kvm_own_fpu(struct kvm_vcpu *vcpu)
1497{
1498 struct mips_coproc *cop0 = vcpu->arch.cop0;
1499 unsigned int sr, cfg5;
1500
1501 preempt_disable();
1502
1503 sr = kvm_read_c0_guest_status(cop0);
1504
1505 /*
1506 * If MSA state is already live, it is undefined how it interacts with
1507 * FR=0 FPU state, and we don't want to hit reserved instruction
1508 * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1509 * play it safe and save it first.
1510 *
1511 * In theory we shouldn't ever hit this case since kvm_lose_fpu() should
1512 * get called when guest CU1 is set, however we can't trust the guest
1513 * not to clobber the status register directly via the commpage.
1514 */
1515 if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1516 vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1517 kvm_lose_fpu(vcpu);
1518
1519 /*
1520 * Enable FPU for guest
1521 * We set FR and FRE according to guest context
1522 */
1523 change_c0_status(ST0_CU1 | ST0_FR, sr);
1524 if (cpu_has_fre) {
1525 cfg5 = kvm_read_c0_guest_config5(cop0);
1526 change_c0_config5(MIPS_CONF5_FRE, cfg5);
1527 }
1528 enable_fpu_hazard();
1529
1530 /* If guest FPU state not active, restore it now */
1531 if (!(vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
1532 __kvm_restore_fpu(&vcpu->arch);
1533 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1534 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU);
1535 } else {
1536 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_FPU);
1537 }
1538
1539 preempt_enable();
1540}
1541
1542#ifdef CONFIG_CPU_HAS_MSA
1543/* Enable MSA for guest and restore context */
1544void kvm_own_msa(struct kvm_vcpu *vcpu)
1545{
1546 struct mips_coproc *cop0 = vcpu->arch.cop0;
1547 unsigned int sr, cfg5;
1548
1549 preempt_disable();
1550
1551 /*
1552 * Enable FPU if enabled in guest, since we're restoring FPU context
1553 * anyway. We set FR and FRE according to guest context.
1554 */
1555 if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1556 sr = kvm_read_c0_guest_status(cop0);
1557
1558 /*
1559 * If FR=0 FPU state is already live, it is undefined how it
1560 * interacts with MSA state, so play it safe and save it first.
1561 */
1562 if (!(sr & ST0_FR) &&
1563 (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU |
1564 KVM_MIPS_AUX_MSA)) == KVM_MIPS_AUX_FPU)
1565 kvm_lose_fpu(vcpu);
1566
1567 change_c0_status(ST0_CU1 | ST0_FR, sr);
1568 if (sr & ST0_CU1 && cpu_has_fre) {
1569 cfg5 = kvm_read_c0_guest_config5(cop0);
1570 change_c0_config5(MIPS_CONF5_FRE, cfg5);
1571 }
1572 }
1573
1574 /* Enable MSA for guest */
1575 set_c0_config5(MIPS_CONF5_MSAEN);
1576 enable_fpu_hazard();
1577
1578 switch (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA)) {
1579 case KVM_MIPS_AUX_FPU:
1580 /*
1581 * Guest FPU state already loaded, only restore upper MSA state
1582 */
1583 __kvm_restore_msa_upper(&vcpu->arch);
1584 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1585 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_MSA);
1586 break;
1587 case 0:
1588 /* Neither FPU or MSA already active, restore full MSA state */
1589 __kvm_restore_msa(&vcpu->arch);
1590 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1591 if (kvm_mips_guest_has_fpu(&vcpu->arch))
1592 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1593 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE,
1594 KVM_TRACE_AUX_FPU_MSA);
1595 break;
1596 default:
1597 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_MSA);
1598 break;
1599 }
1600
1601 preempt_enable();
1602}
1603#endif
1604
1605/* Drop FPU & MSA without saving it */
1606void kvm_drop_fpu(struct kvm_vcpu *vcpu)
1607{
1608 preempt_disable();
1609 if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1610 disable_msa();
1611 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_MSA);
1612 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_MSA;
1613 }
1614 if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1615 clear_c0_status(ST0_CU1 | ST0_FR);
1616 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_FPU);
1617 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1618 }
1619 preempt_enable();
1620}
1621
1622/* Save and disable FPU & MSA */
1623void kvm_lose_fpu(struct kvm_vcpu *vcpu)
1624{
1625 /*
1626 * With T&E, FPU & MSA get disabled in root context (hardware) when it
1627 * is disabled in guest context (software), but the register state in
1628 * the hardware may still be in use.
1629 * This is why we explicitly re-enable the hardware before saving.
1630 */
1631
1632 preempt_disable();
1633 if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1634 if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
1635 set_c0_config5(MIPS_CONF5_MSAEN);
1636 enable_fpu_hazard();
1637 }
1638
1639 __kvm_save_msa(&vcpu->arch);
1640 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU_MSA);
1641
1642 /* Disable MSA & FPU */
1643 disable_msa();
1644 if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1645 clear_c0_status(ST0_CU1 | ST0_FR);
1646 disable_fpu_hazard();
1647 }
1648 vcpu->arch.aux_inuse &= ~(KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA);
1649 } else if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1650 if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
1651 set_c0_status(ST0_CU1);
1652 enable_fpu_hazard();
1653 }
1654
1655 __kvm_save_fpu(&vcpu->arch);
1656 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1657 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU);
1658
1659 /* Disable FPU */
1660 clear_c0_status(ST0_CU1 | ST0_FR);
1661 disable_fpu_hazard();
1662 }
1663 preempt_enable();
1664}
1665
1666/*
1667 * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1668 * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1669 * exception if cause bits are set in the value being written.
1670 */
1671static int kvm_mips_csr_die_notify(struct notifier_block *self,
1672 unsigned long cmd, void *ptr)
1673{
1674 struct die_args *args = (struct die_args *)ptr;
1675 struct pt_regs *regs = args->regs;
1676 unsigned long pc;
1677
1678 /* Only interested in FPE and MSAFPE */
1679 if (cmd != DIE_FP && cmd != DIE_MSAFP)
1680 return NOTIFY_DONE;
1681
1682 /* Return immediately if guest context isn't active */
1683 if (!(current->flags & PF_VCPU))
1684 return NOTIFY_DONE;
1685
1686 /* Should never get here from user mode */
1687 BUG_ON(user_mode(regs));
1688
1689 pc = instruction_pointer(regs);
1690 switch (cmd) {
1691 case DIE_FP:
1692 /* match 2nd instruction in __kvm_restore_fcsr */
1693 if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
1694 return NOTIFY_DONE;
1695 break;
1696 case DIE_MSAFP:
1697 /* match 2nd/3rd instruction in __kvm_restore_msacsr */
1698 if (!cpu_has_msa ||
1699 pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
1700 pc > (unsigned long)&__kvm_restore_msacsr + 8)
1701 return NOTIFY_DONE;
1702 break;
1703 }
1704
1705 /* Move PC forward a little and continue executing */
1706 instruction_pointer(regs) += 4;
1707
1708 return NOTIFY_STOP;
1709}
1710
1711static struct notifier_block kvm_mips_csr_die_notifier = {
1712 .notifier_call = kvm_mips_csr_die_notify,
1713};
1714
1715static int __init kvm_mips_init(void)
1716{
1717 int ret;
1718
1719 if (cpu_has_mmid) {
1720 pr_warn("KVM does not yet support MMIDs. KVM Disabled\n");
1721 return -EOPNOTSUPP;
1722 }
1723
1724 ret = kvm_mips_entry_setup();
1725 if (ret)
1726 return ret;
1727
1728 ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1729
1730 if (ret)
1731 return ret;
1732
1733 register_die_notifier(&kvm_mips_csr_die_notifier);
1734
1735 return 0;
1736}
1737
1738static void __exit kvm_mips_exit(void)
1739{
1740 kvm_exit();
1741
1742 unregister_die_notifier(&kvm_mips_csr_die_notifier);
1743}
1744
1745module_init(kvm_mips_init);
1746module_exit(kvm_mips_exit);
1747
1748EXPORT_TRACEPOINT_SYMBOL(kvm_exit);