Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/mm/nommu.c
4 *
5 * Replacement code for mm functions to support CPU's that don't
6 * have any form of memory management unit (thus no virtual memory).
7 *
8 * See Documentation/admin-guide/mm/nommu-mmap.rst
9 *
10 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
11 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
12 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
13 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com>
14 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
15 */
16
17#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19#include <linux/export.h>
20#include <linux/mm.h>
21#include <linux/sched/mm.h>
22#include <linux/mman.h>
23#include <linux/swap.h>
24#include <linux/file.h>
25#include <linux/highmem.h>
26#include <linux/pagemap.h>
27#include <linux/slab.h>
28#include <linux/vmalloc.h>
29#include <linux/backing-dev.h>
30#include <linux/compiler.h>
31#include <linux/mount.h>
32#include <linux/personality.h>
33#include <linux/security.h>
34#include <linux/syscalls.h>
35#include <linux/audit.h>
36#include <linux/printk.h>
37
38#include <linux/uaccess.h>
39#include <linux/uio.h>
40#include <asm/tlb.h>
41#include <asm/tlbflush.h>
42#include <asm/mmu_context.h>
43#include "internal.h"
44
45void *high_memory;
46EXPORT_SYMBOL(high_memory);
47struct page *mem_map;
48unsigned long max_mapnr;
49EXPORT_SYMBOL(max_mapnr);
50unsigned long highest_memmap_pfn;
51int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
52int heap_stack_gap = 0;
53
54atomic_long_t mmap_pages_allocated;
55
56EXPORT_SYMBOL(mem_map);
57
58/* list of mapped, potentially shareable regions */
59static struct kmem_cache *vm_region_jar;
60struct rb_root nommu_region_tree = RB_ROOT;
61DECLARE_RWSEM(nommu_region_sem);
62
63const struct vm_operations_struct generic_file_vm_ops = {
64};
65
66/*
67 * Return the total memory allocated for this pointer, not
68 * just what the caller asked for.
69 *
70 * Doesn't have to be accurate, i.e. may have races.
71 */
72unsigned int kobjsize(const void *objp)
73{
74 struct page *page;
75
76 /*
77 * If the object we have should not have ksize performed on it,
78 * return size of 0
79 */
80 if (!objp || !virt_addr_valid(objp))
81 return 0;
82
83 page = virt_to_head_page(objp);
84
85 /*
86 * If the allocator sets PageSlab, we know the pointer came from
87 * kmalloc().
88 */
89 if (PageSlab(page))
90 return ksize(objp);
91
92 /*
93 * If it's not a compound page, see if we have a matching VMA
94 * region. This test is intentionally done in reverse order,
95 * so if there's no VMA, we still fall through and hand back
96 * PAGE_SIZE for 0-order pages.
97 */
98 if (!PageCompound(page)) {
99 struct vm_area_struct *vma;
100
101 vma = find_vma(current->mm, (unsigned long)objp);
102 if (vma)
103 return vma->vm_end - vma->vm_start;
104 }
105
106 /*
107 * The ksize() function is only guaranteed to work for pointers
108 * returned by kmalloc(). So handle arbitrary pointers here.
109 */
110 return page_size(page);
111}
112
113/**
114 * follow_pfn - look up PFN at a user virtual address
115 * @vma: memory mapping
116 * @address: user virtual address
117 * @pfn: location to store found PFN
118 *
119 * Only IO mappings and raw PFN mappings are allowed.
120 *
121 * Returns zero and the pfn at @pfn on success, -ve otherwise.
122 */
123int follow_pfn(struct vm_area_struct *vma, unsigned long address,
124 unsigned long *pfn)
125{
126 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
127 return -EINVAL;
128
129 *pfn = address >> PAGE_SHIFT;
130 return 0;
131}
132EXPORT_SYMBOL(follow_pfn);
133
134LIST_HEAD(vmap_area_list);
135
136void vfree(const void *addr)
137{
138 kfree(addr);
139}
140EXPORT_SYMBOL(vfree);
141
142void *__vmalloc(unsigned long size, gfp_t gfp_mask)
143{
144 /*
145 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
146 * returns only a logical address.
147 */
148 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
149}
150EXPORT_SYMBOL(__vmalloc);
151
152void *__vmalloc_node_range(unsigned long size, unsigned long align,
153 unsigned long start, unsigned long end, gfp_t gfp_mask,
154 pgprot_t prot, unsigned long vm_flags, int node,
155 const void *caller)
156{
157 return __vmalloc(size, gfp_mask);
158}
159
160void *__vmalloc_node(unsigned long size, unsigned long align, gfp_t gfp_mask,
161 int node, const void *caller)
162{
163 return __vmalloc(size, gfp_mask);
164}
165
166static void *__vmalloc_user_flags(unsigned long size, gfp_t flags)
167{
168 void *ret;
169
170 ret = __vmalloc(size, flags);
171 if (ret) {
172 struct vm_area_struct *vma;
173
174 mmap_write_lock(current->mm);
175 vma = find_vma(current->mm, (unsigned long)ret);
176 if (vma)
177 vm_flags_set(vma, VM_USERMAP);
178 mmap_write_unlock(current->mm);
179 }
180
181 return ret;
182}
183
184void *vmalloc_user(unsigned long size)
185{
186 return __vmalloc_user_flags(size, GFP_KERNEL | __GFP_ZERO);
187}
188EXPORT_SYMBOL(vmalloc_user);
189
190struct page *vmalloc_to_page(const void *addr)
191{
192 return virt_to_page(addr);
193}
194EXPORT_SYMBOL(vmalloc_to_page);
195
196unsigned long vmalloc_to_pfn(const void *addr)
197{
198 return page_to_pfn(virt_to_page(addr));
199}
200EXPORT_SYMBOL(vmalloc_to_pfn);
201
202long vread_iter(struct iov_iter *iter, const char *addr, size_t count)
203{
204 /* Don't allow overflow */
205 if ((unsigned long) addr + count < count)
206 count = -(unsigned long) addr;
207
208 return copy_to_iter(addr, count, iter);
209}
210
211/*
212 * vmalloc - allocate virtually contiguous memory
213 *
214 * @size: allocation size
215 *
216 * Allocate enough pages to cover @size from the page level
217 * allocator and map them into contiguous kernel virtual space.
218 *
219 * For tight control over page level allocator and protection flags
220 * use __vmalloc() instead.
221 */
222void *vmalloc(unsigned long size)
223{
224 return __vmalloc(size, GFP_KERNEL);
225}
226EXPORT_SYMBOL(vmalloc);
227
228void *vmalloc_huge(unsigned long size, gfp_t gfp_mask) __weak __alias(__vmalloc);
229
230/*
231 * vzalloc - allocate virtually contiguous memory with zero fill
232 *
233 * @size: allocation size
234 *
235 * Allocate enough pages to cover @size from the page level
236 * allocator and map them into contiguous kernel virtual space.
237 * The memory allocated is set to zero.
238 *
239 * For tight control over page level allocator and protection flags
240 * use __vmalloc() instead.
241 */
242void *vzalloc(unsigned long size)
243{
244 return __vmalloc(size, GFP_KERNEL | __GFP_ZERO);
245}
246EXPORT_SYMBOL(vzalloc);
247
248/**
249 * vmalloc_node - allocate memory on a specific node
250 * @size: allocation size
251 * @node: numa node
252 *
253 * Allocate enough pages to cover @size from the page level
254 * allocator and map them into contiguous kernel virtual space.
255 *
256 * For tight control over page level allocator and protection flags
257 * use __vmalloc() instead.
258 */
259void *vmalloc_node(unsigned long size, int node)
260{
261 return vmalloc(size);
262}
263EXPORT_SYMBOL(vmalloc_node);
264
265/**
266 * vzalloc_node - allocate memory on a specific node with zero fill
267 * @size: allocation size
268 * @node: numa node
269 *
270 * Allocate enough pages to cover @size from the page level
271 * allocator and map them into contiguous kernel virtual space.
272 * The memory allocated is set to zero.
273 *
274 * For tight control over page level allocator and protection flags
275 * use __vmalloc() instead.
276 */
277void *vzalloc_node(unsigned long size, int node)
278{
279 return vzalloc(size);
280}
281EXPORT_SYMBOL(vzalloc_node);
282
283/**
284 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
285 * @size: allocation size
286 *
287 * Allocate enough 32bit PA addressable pages to cover @size from the
288 * page level allocator and map them into contiguous kernel virtual space.
289 */
290void *vmalloc_32(unsigned long size)
291{
292 return __vmalloc(size, GFP_KERNEL);
293}
294EXPORT_SYMBOL(vmalloc_32);
295
296/**
297 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
298 * @size: allocation size
299 *
300 * The resulting memory area is 32bit addressable and zeroed so it can be
301 * mapped to userspace without leaking data.
302 *
303 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
304 * remap_vmalloc_range() are permissible.
305 */
306void *vmalloc_32_user(unsigned long size)
307{
308 /*
309 * We'll have to sort out the ZONE_DMA bits for 64-bit,
310 * but for now this can simply use vmalloc_user() directly.
311 */
312 return vmalloc_user(size);
313}
314EXPORT_SYMBOL(vmalloc_32_user);
315
316void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
317{
318 BUG();
319 return NULL;
320}
321EXPORT_SYMBOL(vmap);
322
323void vunmap(const void *addr)
324{
325 BUG();
326}
327EXPORT_SYMBOL(vunmap);
328
329void *vm_map_ram(struct page **pages, unsigned int count, int node)
330{
331 BUG();
332 return NULL;
333}
334EXPORT_SYMBOL(vm_map_ram);
335
336void vm_unmap_ram(const void *mem, unsigned int count)
337{
338 BUG();
339}
340EXPORT_SYMBOL(vm_unmap_ram);
341
342void vm_unmap_aliases(void)
343{
344}
345EXPORT_SYMBOL_GPL(vm_unmap_aliases);
346
347void free_vm_area(struct vm_struct *area)
348{
349 BUG();
350}
351EXPORT_SYMBOL_GPL(free_vm_area);
352
353int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
354 struct page *page)
355{
356 return -EINVAL;
357}
358EXPORT_SYMBOL(vm_insert_page);
359
360int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
361 unsigned long num)
362{
363 return -EINVAL;
364}
365EXPORT_SYMBOL(vm_map_pages);
366
367int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
368 unsigned long num)
369{
370 return -EINVAL;
371}
372EXPORT_SYMBOL(vm_map_pages_zero);
373
374/*
375 * sys_brk() for the most part doesn't need the global kernel
376 * lock, except when an application is doing something nasty
377 * like trying to un-brk an area that has already been mapped
378 * to a regular file. in this case, the unmapping will need
379 * to invoke file system routines that need the global lock.
380 */
381SYSCALL_DEFINE1(brk, unsigned long, brk)
382{
383 struct mm_struct *mm = current->mm;
384
385 if (brk < mm->start_brk || brk > mm->context.end_brk)
386 return mm->brk;
387
388 if (mm->brk == brk)
389 return mm->brk;
390
391 /*
392 * Always allow shrinking brk
393 */
394 if (brk <= mm->brk) {
395 mm->brk = brk;
396 return brk;
397 }
398
399 /*
400 * Ok, looks good - let it rip.
401 */
402 flush_icache_user_range(mm->brk, brk);
403 return mm->brk = brk;
404}
405
406/*
407 * initialise the percpu counter for VM and region record slabs
408 */
409void __init mmap_init(void)
410{
411 int ret;
412
413 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
414 VM_BUG_ON(ret);
415 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
416}
417
418/*
419 * validate the region tree
420 * - the caller must hold the region lock
421 */
422#ifdef CONFIG_DEBUG_NOMMU_REGIONS
423static noinline void validate_nommu_regions(void)
424{
425 struct vm_region *region, *last;
426 struct rb_node *p, *lastp;
427
428 lastp = rb_first(&nommu_region_tree);
429 if (!lastp)
430 return;
431
432 last = rb_entry(lastp, struct vm_region, vm_rb);
433 BUG_ON(last->vm_end <= last->vm_start);
434 BUG_ON(last->vm_top < last->vm_end);
435
436 while ((p = rb_next(lastp))) {
437 region = rb_entry(p, struct vm_region, vm_rb);
438 last = rb_entry(lastp, struct vm_region, vm_rb);
439
440 BUG_ON(region->vm_end <= region->vm_start);
441 BUG_ON(region->vm_top < region->vm_end);
442 BUG_ON(region->vm_start < last->vm_top);
443
444 lastp = p;
445 }
446}
447#else
448static void validate_nommu_regions(void)
449{
450}
451#endif
452
453/*
454 * add a region into the global tree
455 */
456static void add_nommu_region(struct vm_region *region)
457{
458 struct vm_region *pregion;
459 struct rb_node **p, *parent;
460
461 validate_nommu_regions();
462
463 parent = NULL;
464 p = &nommu_region_tree.rb_node;
465 while (*p) {
466 parent = *p;
467 pregion = rb_entry(parent, struct vm_region, vm_rb);
468 if (region->vm_start < pregion->vm_start)
469 p = &(*p)->rb_left;
470 else if (region->vm_start > pregion->vm_start)
471 p = &(*p)->rb_right;
472 else if (pregion == region)
473 return;
474 else
475 BUG();
476 }
477
478 rb_link_node(®ion->vm_rb, parent, p);
479 rb_insert_color(®ion->vm_rb, &nommu_region_tree);
480
481 validate_nommu_regions();
482}
483
484/*
485 * delete a region from the global tree
486 */
487static void delete_nommu_region(struct vm_region *region)
488{
489 BUG_ON(!nommu_region_tree.rb_node);
490
491 validate_nommu_regions();
492 rb_erase(®ion->vm_rb, &nommu_region_tree);
493 validate_nommu_regions();
494}
495
496/*
497 * free a contiguous series of pages
498 */
499static void free_page_series(unsigned long from, unsigned long to)
500{
501 for (; from < to; from += PAGE_SIZE) {
502 struct page *page = virt_to_page((void *)from);
503
504 atomic_long_dec(&mmap_pages_allocated);
505 put_page(page);
506 }
507}
508
509/*
510 * release a reference to a region
511 * - the caller must hold the region semaphore for writing, which this releases
512 * - the region may not have been added to the tree yet, in which case vm_top
513 * will equal vm_start
514 */
515static void __put_nommu_region(struct vm_region *region)
516 __releases(nommu_region_sem)
517{
518 BUG_ON(!nommu_region_tree.rb_node);
519
520 if (--region->vm_usage == 0) {
521 if (region->vm_top > region->vm_start)
522 delete_nommu_region(region);
523 up_write(&nommu_region_sem);
524
525 if (region->vm_file)
526 fput(region->vm_file);
527
528 /* IO memory and memory shared directly out of the pagecache
529 * from ramfs/tmpfs mustn't be released here */
530 if (region->vm_flags & VM_MAPPED_COPY)
531 free_page_series(region->vm_start, region->vm_top);
532 kmem_cache_free(vm_region_jar, region);
533 } else {
534 up_write(&nommu_region_sem);
535 }
536}
537
538/*
539 * release a reference to a region
540 */
541static void put_nommu_region(struct vm_region *region)
542{
543 down_write(&nommu_region_sem);
544 __put_nommu_region(region);
545}
546
547static void setup_vma_to_mm(struct vm_area_struct *vma, struct mm_struct *mm)
548{
549 vma->vm_mm = mm;
550
551 /* add the VMA to the mapping */
552 if (vma->vm_file) {
553 struct address_space *mapping = vma->vm_file->f_mapping;
554
555 i_mmap_lock_write(mapping);
556 flush_dcache_mmap_lock(mapping);
557 vma_interval_tree_insert(vma, &mapping->i_mmap);
558 flush_dcache_mmap_unlock(mapping);
559 i_mmap_unlock_write(mapping);
560 }
561}
562
563static void cleanup_vma_from_mm(struct vm_area_struct *vma)
564{
565 vma->vm_mm->map_count--;
566 /* remove the VMA from the mapping */
567 if (vma->vm_file) {
568 struct address_space *mapping;
569 mapping = vma->vm_file->f_mapping;
570
571 i_mmap_lock_write(mapping);
572 flush_dcache_mmap_lock(mapping);
573 vma_interval_tree_remove(vma, &mapping->i_mmap);
574 flush_dcache_mmap_unlock(mapping);
575 i_mmap_unlock_write(mapping);
576 }
577}
578
579/*
580 * delete a VMA from its owning mm_struct and address space
581 */
582static int delete_vma_from_mm(struct vm_area_struct *vma)
583{
584 VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_start);
585
586 vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
587 if (vma_iter_prealloc(&vmi, vma)) {
588 pr_warn("Allocation of vma tree for process %d failed\n",
589 current->pid);
590 return -ENOMEM;
591 }
592 cleanup_vma_from_mm(vma);
593
594 /* remove from the MM's tree and list */
595 vma_iter_clear(&vmi);
596 return 0;
597}
598/*
599 * destroy a VMA record
600 */
601static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
602{
603 if (vma->vm_ops && vma->vm_ops->close)
604 vma->vm_ops->close(vma);
605 if (vma->vm_file)
606 fput(vma->vm_file);
607 put_nommu_region(vma->vm_region);
608 vm_area_free(vma);
609}
610
611struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
612 unsigned long start_addr,
613 unsigned long end_addr)
614{
615 unsigned long index = start_addr;
616
617 mmap_assert_locked(mm);
618 return mt_find(&mm->mm_mt, &index, end_addr - 1);
619}
620EXPORT_SYMBOL(find_vma_intersection);
621
622/*
623 * look up the first VMA in which addr resides, NULL if none
624 * - should be called with mm->mmap_lock at least held readlocked
625 */
626struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
627{
628 VMA_ITERATOR(vmi, mm, addr);
629
630 return vma_iter_load(&vmi);
631}
632EXPORT_SYMBOL(find_vma);
633
634/*
635 * At least xtensa ends up having protection faults even with no
636 * MMU.. No stack expansion, at least.
637 */
638struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
639 unsigned long addr, struct pt_regs *regs)
640{
641 struct vm_area_struct *vma;
642
643 mmap_read_lock(mm);
644 vma = vma_lookup(mm, addr);
645 if (!vma)
646 mmap_read_unlock(mm);
647 return vma;
648}
649
650/*
651 * expand a stack to a given address
652 * - not supported under NOMMU conditions
653 */
654int expand_stack_locked(struct vm_area_struct *vma, unsigned long addr)
655{
656 return -ENOMEM;
657}
658
659struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr)
660{
661 mmap_read_unlock(mm);
662 return NULL;
663}
664
665/*
666 * look up the first VMA exactly that exactly matches addr
667 * - should be called with mm->mmap_lock at least held readlocked
668 */
669static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
670 unsigned long addr,
671 unsigned long len)
672{
673 struct vm_area_struct *vma;
674 unsigned long end = addr + len;
675 VMA_ITERATOR(vmi, mm, addr);
676
677 vma = vma_iter_load(&vmi);
678 if (!vma)
679 return NULL;
680 if (vma->vm_start != addr)
681 return NULL;
682 if (vma->vm_end != end)
683 return NULL;
684
685 return vma;
686}
687
688/*
689 * determine whether a mapping should be permitted and, if so, what sort of
690 * mapping we're capable of supporting
691 */
692static int validate_mmap_request(struct file *file,
693 unsigned long addr,
694 unsigned long len,
695 unsigned long prot,
696 unsigned long flags,
697 unsigned long pgoff,
698 unsigned long *_capabilities)
699{
700 unsigned long capabilities, rlen;
701 int ret;
702
703 /* do the simple checks first */
704 if (flags & MAP_FIXED)
705 return -EINVAL;
706
707 if ((flags & MAP_TYPE) != MAP_PRIVATE &&
708 (flags & MAP_TYPE) != MAP_SHARED)
709 return -EINVAL;
710
711 if (!len)
712 return -EINVAL;
713
714 /* Careful about overflows.. */
715 rlen = PAGE_ALIGN(len);
716 if (!rlen || rlen > TASK_SIZE)
717 return -ENOMEM;
718
719 /* offset overflow? */
720 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
721 return -EOVERFLOW;
722
723 if (file) {
724 /* files must support mmap */
725 if (!file->f_op->mmap)
726 return -ENODEV;
727
728 /* work out if what we've got could possibly be shared
729 * - we support chardevs that provide their own "memory"
730 * - we support files/blockdevs that are memory backed
731 */
732 if (file->f_op->mmap_capabilities) {
733 capabilities = file->f_op->mmap_capabilities(file);
734 } else {
735 /* no explicit capabilities set, so assume some
736 * defaults */
737 switch (file_inode(file)->i_mode & S_IFMT) {
738 case S_IFREG:
739 case S_IFBLK:
740 capabilities = NOMMU_MAP_COPY;
741 break;
742
743 case S_IFCHR:
744 capabilities =
745 NOMMU_MAP_DIRECT |
746 NOMMU_MAP_READ |
747 NOMMU_MAP_WRITE;
748 break;
749
750 default:
751 return -EINVAL;
752 }
753 }
754
755 /* eliminate any capabilities that we can't support on this
756 * device */
757 if (!file->f_op->get_unmapped_area)
758 capabilities &= ~NOMMU_MAP_DIRECT;
759 if (!(file->f_mode & FMODE_CAN_READ))
760 capabilities &= ~NOMMU_MAP_COPY;
761
762 /* The file shall have been opened with read permission. */
763 if (!(file->f_mode & FMODE_READ))
764 return -EACCES;
765
766 if (flags & MAP_SHARED) {
767 /* do checks for writing, appending and locking */
768 if ((prot & PROT_WRITE) &&
769 !(file->f_mode & FMODE_WRITE))
770 return -EACCES;
771
772 if (IS_APPEND(file_inode(file)) &&
773 (file->f_mode & FMODE_WRITE))
774 return -EACCES;
775
776 if (!(capabilities & NOMMU_MAP_DIRECT))
777 return -ENODEV;
778
779 /* we mustn't privatise shared mappings */
780 capabilities &= ~NOMMU_MAP_COPY;
781 } else {
782 /* we're going to read the file into private memory we
783 * allocate */
784 if (!(capabilities & NOMMU_MAP_COPY))
785 return -ENODEV;
786
787 /* we don't permit a private writable mapping to be
788 * shared with the backing device */
789 if (prot & PROT_WRITE)
790 capabilities &= ~NOMMU_MAP_DIRECT;
791 }
792
793 if (capabilities & NOMMU_MAP_DIRECT) {
794 if (((prot & PROT_READ) && !(capabilities & NOMMU_MAP_READ)) ||
795 ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
796 ((prot & PROT_EXEC) && !(capabilities & NOMMU_MAP_EXEC))
797 ) {
798 capabilities &= ~NOMMU_MAP_DIRECT;
799 if (flags & MAP_SHARED) {
800 pr_warn("MAP_SHARED not completely supported on !MMU\n");
801 return -EINVAL;
802 }
803 }
804 }
805
806 /* handle executable mappings and implied executable
807 * mappings */
808 if (path_noexec(&file->f_path)) {
809 if (prot & PROT_EXEC)
810 return -EPERM;
811 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
812 /* handle implication of PROT_EXEC by PROT_READ */
813 if (current->personality & READ_IMPLIES_EXEC) {
814 if (capabilities & NOMMU_MAP_EXEC)
815 prot |= PROT_EXEC;
816 }
817 } else if ((prot & PROT_READ) &&
818 (prot & PROT_EXEC) &&
819 !(capabilities & NOMMU_MAP_EXEC)
820 ) {
821 /* backing file is not executable, try to copy */
822 capabilities &= ~NOMMU_MAP_DIRECT;
823 }
824 } else {
825 /* anonymous mappings are always memory backed and can be
826 * privately mapped
827 */
828 capabilities = NOMMU_MAP_COPY;
829
830 /* handle PROT_EXEC implication by PROT_READ */
831 if ((prot & PROT_READ) &&
832 (current->personality & READ_IMPLIES_EXEC))
833 prot |= PROT_EXEC;
834 }
835
836 /* allow the security API to have its say */
837 ret = security_mmap_addr(addr);
838 if (ret < 0)
839 return ret;
840
841 /* looks okay */
842 *_capabilities = capabilities;
843 return 0;
844}
845
846/*
847 * we've determined that we can make the mapping, now translate what we
848 * now know into VMA flags
849 */
850static unsigned long determine_vm_flags(struct file *file,
851 unsigned long prot,
852 unsigned long flags,
853 unsigned long capabilities)
854{
855 unsigned long vm_flags;
856
857 vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags);
858
859 if (!file) {
860 /*
861 * MAP_ANONYMOUS. MAP_SHARED is mapped to MAP_PRIVATE, because
862 * there is no fork().
863 */
864 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
865 } else if (flags & MAP_PRIVATE) {
866 /* MAP_PRIVATE file mapping */
867 if (capabilities & NOMMU_MAP_DIRECT)
868 vm_flags |= (capabilities & NOMMU_VMFLAGS);
869 else
870 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
871
872 if (!(prot & PROT_WRITE) && !current->ptrace)
873 /*
874 * R/O private file mapping which cannot be used to
875 * modify memory, especially also not via active ptrace
876 * (e.g., set breakpoints) or later by upgrading
877 * permissions (no mprotect()). We can try overlaying
878 * the file mapping, which will work e.g., on chardevs,
879 * ramfs/tmpfs/shmfs and romfs/cramf.
880 */
881 vm_flags |= VM_MAYOVERLAY;
882 } else {
883 /* MAP_SHARED file mapping: NOMMU_MAP_DIRECT is set. */
884 vm_flags |= VM_SHARED | VM_MAYSHARE |
885 (capabilities & NOMMU_VMFLAGS);
886 }
887
888 return vm_flags;
889}
890
891/*
892 * set up a shared mapping on a file (the driver or filesystem provides and
893 * pins the storage)
894 */
895static int do_mmap_shared_file(struct vm_area_struct *vma)
896{
897 int ret;
898
899 ret = call_mmap(vma->vm_file, vma);
900 if (ret == 0) {
901 vma->vm_region->vm_top = vma->vm_region->vm_end;
902 return 0;
903 }
904 if (ret != -ENOSYS)
905 return ret;
906
907 /* getting -ENOSYS indicates that direct mmap isn't possible (as
908 * opposed to tried but failed) so we can only give a suitable error as
909 * it's not possible to make a private copy if MAP_SHARED was given */
910 return -ENODEV;
911}
912
913/*
914 * set up a private mapping or an anonymous shared mapping
915 */
916static int do_mmap_private(struct vm_area_struct *vma,
917 struct vm_region *region,
918 unsigned long len,
919 unsigned long capabilities)
920{
921 unsigned long total, point;
922 void *base;
923 int ret, order;
924
925 /*
926 * Invoke the file's mapping function so that it can keep track of
927 * shared mappings on devices or memory. VM_MAYOVERLAY will be set if
928 * it may attempt to share, which will make is_nommu_shared_mapping()
929 * happy.
930 */
931 if (capabilities & NOMMU_MAP_DIRECT) {
932 ret = call_mmap(vma->vm_file, vma);
933 /* shouldn't return success if we're not sharing */
934 if (WARN_ON_ONCE(!is_nommu_shared_mapping(vma->vm_flags)))
935 ret = -ENOSYS;
936 if (ret == 0) {
937 vma->vm_region->vm_top = vma->vm_region->vm_end;
938 return 0;
939 }
940 if (ret != -ENOSYS)
941 return ret;
942
943 /* getting an ENOSYS error indicates that direct mmap isn't
944 * possible (as opposed to tried but failed) so we'll try to
945 * make a private copy of the data and map that instead */
946 }
947
948
949 /* allocate some memory to hold the mapping
950 * - note that this may not return a page-aligned address if the object
951 * we're allocating is smaller than a page
952 */
953 order = get_order(len);
954 total = 1 << order;
955 point = len >> PAGE_SHIFT;
956
957 /* we don't want to allocate a power-of-2 sized page set */
958 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
959 total = point;
960
961 base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
962 if (!base)
963 goto enomem;
964
965 atomic_long_add(total, &mmap_pages_allocated);
966
967 vm_flags_set(vma, VM_MAPPED_COPY);
968 region->vm_flags = vma->vm_flags;
969 region->vm_start = (unsigned long) base;
970 region->vm_end = region->vm_start + len;
971 region->vm_top = region->vm_start + (total << PAGE_SHIFT);
972
973 vma->vm_start = region->vm_start;
974 vma->vm_end = region->vm_start + len;
975
976 if (vma->vm_file) {
977 /* read the contents of a file into the copy */
978 loff_t fpos;
979
980 fpos = vma->vm_pgoff;
981 fpos <<= PAGE_SHIFT;
982
983 ret = kernel_read(vma->vm_file, base, len, &fpos);
984 if (ret < 0)
985 goto error_free;
986
987 /* clear the last little bit */
988 if (ret < len)
989 memset(base + ret, 0, len - ret);
990
991 } else {
992 vma_set_anonymous(vma);
993 }
994
995 return 0;
996
997error_free:
998 free_page_series(region->vm_start, region->vm_top);
999 region->vm_start = vma->vm_start = 0;
1000 region->vm_end = vma->vm_end = 0;
1001 region->vm_top = 0;
1002 return ret;
1003
1004enomem:
1005 pr_err("Allocation of length %lu from process %d (%s) failed\n",
1006 len, current->pid, current->comm);
1007 show_mem();
1008 return -ENOMEM;
1009}
1010
1011/*
1012 * handle mapping creation for uClinux
1013 */
1014unsigned long do_mmap(struct file *file,
1015 unsigned long addr,
1016 unsigned long len,
1017 unsigned long prot,
1018 unsigned long flags,
1019 vm_flags_t vm_flags,
1020 unsigned long pgoff,
1021 unsigned long *populate,
1022 struct list_head *uf)
1023{
1024 struct vm_area_struct *vma;
1025 struct vm_region *region;
1026 struct rb_node *rb;
1027 unsigned long capabilities, result;
1028 int ret;
1029 VMA_ITERATOR(vmi, current->mm, 0);
1030
1031 *populate = 0;
1032
1033 /* decide whether we should attempt the mapping, and if so what sort of
1034 * mapping */
1035 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1036 &capabilities);
1037 if (ret < 0)
1038 return ret;
1039
1040 /* we ignore the address hint */
1041 addr = 0;
1042 len = PAGE_ALIGN(len);
1043
1044 /* we've determined that we can make the mapping, now translate what we
1045 * now know into VMA flags */
1046 vm_flags |= determine_vm_flags(file, prot, flags, capabilities);
1047
1048
1049 /* we're going to need to record the mapping */
1050 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1051 if (!region)
1052 goto error_getting_region;
1053
1054 vma = vm_area_alloc(current->mm);
1055 if (!vma)
1056 goto error_getting_vma;
1057
1058 region->vm_usage = 1;
1059 region->vm_flags = vm_flags;
1060 region->vm_pgoff = pgoff;
1061
1062 vm_flags_init(vma, vm_flags);
1063 vma->vm_pgoff = pgoff;
1064
1065 if (file) {
1066 region->vm_file = get_file(file);
1067 vma->vm_file = get_file(file);
1068 }
1069
1070 down_write(&nommu_region_sem);
1071
1072 /* if we want to share, we need to check for regions created by other
1073 * mmap() calls that overlap with our proposed mapping
1074 * - we can only share with a superset match on most regular files
1075 * - shared mappings on character devices and memory backed files are
1076 * permitted to overlap inexactly as far as we are concerned for in
1077 * these cases, sharing is handled in the driver or filesystem rather
1078 * than here
1079 */
1080 if (is_nommu_shared_mapping(vm_flags)) {
1081 struct vm_region *pregion;
1082 unsigned long pglen, rpglen, pgend, rpgend, start;
1083
1084 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1085 pgend = pgoff + pglen;
1086
1087 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1088 pregion = rb_entry(rb, struct vm_region, vm_rb);
1089
1090 if (!is_nommu_shared_mapping(pregion->vm_flags))
1091 continue;
1092
1093 /* search for overlapping mappings on the same file */
1094 if (file_inode(pregion->vm_file) !=
1095 file_inode(file))
1096 continue;
1097
1098 if (pregion->vm_pgoff >= pgend)
1099 continue;
1100
1101 rpglen = pregion->vm_end - pregion->vm_start;
1102 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1103 rpgend = pregion->vm_pgoff + rpglen;
1104 if (pgoff >= rpgend)
1105 continue;
1106
1107 /* handle inexactly overlapping matches between
1108 * mappings */
1109 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1110 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1111 /* new mapping is not a subset of the region */
1112 if (!(capabilities & NOMMU_MAP_DIRECT))
1113 goto sharing_violation;
1114 continue;
1115 }
1116
1117 /* we've found a region we can share */
1118 pregion->vm_usage++;
1119 vma->vm_region = pregion;
1120 start = pregion->vm_start;
1121 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1122 vma->vm_start = start;
1123 vma->vm_end = start + len;
1124
1125 if (pregion->vm_flags & VM_MAPPED_COPY)
1126 vm_flags_set(vma, VM_MAPPED_COPY);
1127 else {
1128 ret = do_mmap_shared_file(vma);
1129 if (ret < 0) {
1130 vma->vm_region = NULL;
1131 vma->vm_start = 0;
1132 vma->vm_end = 0;
1133 pregion->vm_usage--;
1134 pregion = NULL;
1135 goto error_just_free;
1136 }
1137 }
1138 fput(region->vm_file);
1139 kmem_cache_free(vm_region_jar, region);
1140 region = pregion;
1141 result = start;
1142 goto share;
1143 }
1144
1145 /* obtain the address at which to make a shared mapping
1146 * - this is the hook for quasi-memory character devices to
1147 * tell us the location of a shared mapping
1148 */
1149 if (capabilities & NOMMU_MAP_DIRECT) {
1150 addr = file->f_op->get_unmapped_area(file, addr, len,
1151 pgoff, flags);
1152 if (IS_ERR_VALUE(addr)) {
1153 ret = addr;
1154 if (ret != -ENOSYS)
1155 goto error_just_free;
1156
1157 /* the driver refused to tell us where to site
1158 * the mapping so we'll have to attempt to copy
1159 * it */
1160 ret = -ENODEV;
1161 if (!(capabilities & NOMMU_MAP_COPY))
1162 goto error_just_free;
1163
1164 capabilities &= ~NOMMU_MAP_DIRECT;
1165 } else {
1166 vma->vm_start = region->vm_start = addr;
1167 vma->vm_end = region->vm_end = addr + len;
1168 }
1169 }
1170 }
1171
1172 vma->vm_region = region;
1173
1174 /* set up the mapping
1175 * - the region is filled in if NOMMU_MAP_DIRECT is still set
1176 */
1177 if (file && vma->vm_flags & VM_SHARED)
1178 ret = do_mmap_shared_file(vma);
1179 else
1180 ret = do_mmap_private(vma, region, len, capabilities);
1181 if (ret < 0)
1182 goto error_just_free;
1183 add_nommu_region(region);
1184
1185 /* clear anonymous mappings that don't ask for uninitialized data */
1186 if (!vma->vm_file &&
1187 (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) ||
1188 !(flags & MAP_UNINITIALIZED)))
1189 memset((void *)region->vm_start, 0,
1190 region->vm_end - region->vm_start);
1191
1192 /* okay... we have a mapping; now we have to register it */
1193 result = vma->vm_start;
1194
1195 current->mm->total_vm += len >> PAGE_SHIFT;
1196
1197share:
1198 BUG_ON(!vma->vm_region);
1199 vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
1200 if (vma_iter_prealloc(&vmi, vma))
1201 goto error_just_free;
1202
1203 setup_vma_to_mm(vma, current->mm);
1204 current->mm->map_count++;
1205 /* add the VMA to the tree */
1206 vma_iter_store(&vmi, vma);
1207
1208 /* we flush the region from the icache only when the first executable
1209 * mapping of it is made */
1210 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1211 flush_icache_user_range(region->vm_start, region->vm_end);
1212 region->vm_icache_flushed = true;
1213 }
1214
1215 up_write(&nommu_region_sem);
1216
1217 return result;
1218
1219error_just_free:
1220 up_write(&nommu_region_sem);
1221error:
1222 vma_iter_free(&vmi);
1223 if (region->vm_file)
1224 fput(region->vm_file);
1225 kmem_cache_free(vm_region_jar, region);
1226 if (vma->vm_file)
1227 fput(vma->vm_file);
1228 vm_area_free(vma);
1229 return ret;
1230
1231sharing_violation:
1232 up_write(&nommu_region_sem);
1233 pr_warn("Attempt to share mismatched mappings\n");
1234 ret = -EINVAL;
1235 goto error;
1236
1237error_getting_vma:
1238 kmem_cache_free(vm_region_jar, region);
1239 pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1240 len, current->pid);
1241 show_mem();
1242 return -ENOMEM;
1243
1244error_getting_region:
1245 pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1246 len, current->pid);
1247 show_mem();
1248 return -ENOMEM;
1249}
1250
1251unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1252 unsigned long prot, unsigned long flags,
1253 unsigned long fd, unsigned long pgoff)
1254{
1255 struct file *file = NULL;
1256 unsigned long retval = -EBADF;
1257
1258 audit_mmap_fd(fd, flags);
1259 if (!(flags & MAP_ANONYMOUS)) {
1260 file = fget(fd);
1261 if (!file)
1262 goto out;
1263 }
1264
1265 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1266
1267 if (file)
1268 fput(file);
1269out:
1270 return retval;
1271}
1272
1273SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1274 unsigned long, prot, unsigned long, flags,
1275 unsigned long, fd, unsigned long, pgoff)
1276{
1277 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1278}
1279
1280#ifdef __ARCH_WANT_SYS_OLD_MMAP
1281struct mmap_arg_struct {
1282 unsigned long addr;
1283 unsigned long len;
1284 unsigned long prot;
1285 unsigned long flags;
1286 unsigned long fd;
1287 unsigned long offset;
1288};
1289
1290SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1291{
1292 struct mmap_arg_struct a;
1293
1294 if (copy_from_user(&a, arg, sizeof(a)))
1295 return -EFAULT;
1296 if (offset_in_page(a.offset))
1297 return -EINVAL;
1298
1299 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1300 a.offset >> PAGE_SHIFT);
1301}
1302#endif /* __ARCH_WANT_SYS_OLD_MMAP */
1303
1304/*
1305 * split a vma into two pieces at address 'addr', a new vma is allocated either
1306 * for the first part or the tail.
1307 */
1308static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
1309 unsigned long addr, int new_below)
1310{
1311 struct vm_area_struct *new;
1312 struct vm_region *region;
1313 unsigned long npages;
1314 struct mm_struct *mm;
1315
1316 /* we're only permitted to split anonymous regions (these should have
1317 * only a single usage on the region) */
1318 if (vma->vm_file)
1319 return -ENOMEM;
1320
1321 mm = vma->vm_mm;
1322 if (mm->map_count >= sysctl_max_map_count)
1323 return -ENOMEM;
1324
1325 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1326 if (!region)
1327 return -ENOMEM;
1328
1329 new = vm_area_dup(vma);
1330 if (!new)
1331 goto err_vma_dup;
1332
1333 /* most fields are the same, copy all, and then fixup */
1334 *region = *vma->vm_region;
1335 new->vm_region = region;
1336
1337 npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1338
1339 if (new_below) {
1340 region->vm_top = region->vm_end = new->vm_end = addr;
1341 } else {
1342 region->vm_start = new->vm_start = addr;
1343 region->vm_pgoff = new->vm_pgoff += npages;
1344 }
1345
1346 vma_iter_config(vmi, new->vm_start, new->vm_end);
1347 if (vma_iter_prealloc(vmi, vma)) {
1348 pr_warn("Allocation of vma tree for process %d failed\n",
1349 current->pid);
1350 goto err_vmi_preallocate;
1351 }
1352
1353 if (new->vm_ops && new->vm_ops->open)
1354 new->vm_ops->open(new);
1355
1356 down_write(&nommu_region_sem);
1357 delete_nommu_region(vma->vm_region);
1358 if (new_below) {
1359 vma->vm_region->vm_start = vma->vm_start = addr;
1360 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1361 } else {
1362 vma->vm_region->vm_end = vma->vm_end = addr;
1363 vma->vm_region->vm_top = addr;
1364 }
1365 add_nommu_region(vma->vm_region);
1366 add_nommu_region(new->vm_region);
1367 up_write(&nommu_region_sem);
1368
1369 setup_vma_to_mm(vma, mm);
1370 setup_vma_to_mm(new, mm);
1371 vma_iter_store(vmi, new);
1372 mm->map_count++;
1373 return 0;
1374
1375err_vmi_preallocate:
1376 vm_area_free(new);
1377err_vma_dup:
1378 kmem_cache_free(vm_region_jar, region);
1379 return -ENOMEM;
1380}
1381
1382/*
1383 * shrink a VMA by removing the specified chunk from either the beginning or
1384 * the end
1385 */
1386static int vmi_shrink_vma(struct vma_iterator *vmi,
1387 struct vm_area_struct *vma,
1388 unsigned long from, unsigned long to)
1389{
1390 struct vm_region *region;
1391
1392 /* adjust the VMA's pointers, which may reposition it in the MM's tree
1393 * and list */
1394 if (from > vma->vm_start) {
1395 if (vma_iter_clear_gfp(vmi, from, vma->vm_end, GFP_KERNEL))
1396 return -ENOMEM;
1397 vma->vm_end = from;
1398 } else {
1399 if (vma_iter_clear_gfp(vmi, vma->vm_start, to, GFP_KERNEL))
1400 return -ENOMEM;
1401 vma->vm_start = to;
1402 }
1403
1404 /* cut the backing region down to size */
1405 region = vma->vm_region;
1406 BUG_ON(region->vm_usage != 1);
1407
1408 down_write(&nommu_region_sem);
1409 delete_nommu_region(region);
1410 if (from > region->vm_start) {
1411 to = region->vm_top;
1412 region->vm_top = region->vm_end = from;
1413 } else {
1414 region->vm_start = to;
1415 }
1416 add_nommu_region(region);
1417 up_write(&nommu_region_sem);
1418
1419 free_page_series(from, to);
1420 return 0;
1421}
1422
1423/*
1424 * release a mapping
1425 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1426 * VMA, though it need not cover the whole VMA
1427 */
1428int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
1429{
1430 VMA_ITERATOR(vmi, mm, start);
1431 struct vm_area_struct *vma;
1432 unsigned long end;
1433 int ret = 0;
1434
1435 len = PAGE_ALIGN(len);
1436 if (len == 0)
1437 return -EINVAL;
1438
1439 end = start + len;
1440
1441 /* find the first potentially overlapping VMA */
1442 vma = vma_find(&vmi, end);
1443 if (!vma) {
1444 static int limit;
1445 if (limit < 5) {
1446 pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1447 current->pid, current->comm,
1448 start, start + len - 1);
1449 limit++;
1450 }
1451 return -EINVAL;
1452 }
1453
1454 /* we're allowed to split an anonymous VMA but not a file-backed one */
1455 if (vma->vm_file) {
1456 do {
1457 if (start > vma->vm_start)
1458 return -EINVAL;
1459 if (end == vma->vm_end)
1460 goto erase_whole_vma;
1461 vma = vma_find(&vmi, end);
1462 } while (vma);
1463 return -EINVAL;
1464 } else {
1465 /* the chunk must be a subset of the VMA found */
1466 if (start == vma->vm_start && end == vma->vm_end)
1467 goto erase_whole_vma;
1468 if (start < vma->vm_start || end > vma->vm_end)
1469 return -EINVAL;
1470 if (offset_in_page(start))
1471 return -EINVAL;
1472 if (end != vma->vm_end && offset_in_page(end))
1473 return -EINVAL;
1474 if (start != vma->vm_start && end != vma->vm_end) {
1475 ret = split_vma(&vmi, vma, start, 1);
1476 if (ret < 0)
1477 return ret;
1478 }
1479 return vmi_shrink_vma(&vmi, vma, start, end);
1480 }
1481
1482erase_whole_vma:
1483 if (delete_vma_from_mm(vma))
1484 ret = -ENOMEM;
1485 else
1486 delete_vma(mm, vma);
1487 return ret;
1488}
1489
1490int vm_munmap(unsigned long addr, size_t len)
1491{
1492 struct mm_struct *mm = current->mm;
1493 int ret;
1494
1495 mmap_write_lock(mm);
1496 ret = do_munmap(mm, addr, len, NULL);
1497 mmap_write_unlock(mm);
1498 return ret;
1499}
1500EXPORT_SYMBOL(vm_munmap);
1501
1502SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1503{
1504 return vm_munmap(addr, len);
1505}
1506
1507/*
1508 * release all the mappings made in a process's VM space
1509 */
1510void exit_mmap(struct mm_struct *mm)
1511{
1512 VMA_ITERATOR(vmi, mm, 0);
1513 struct vm_area_struct *vma;
1514
1515 if (!mm)
1516 return;
1517
1518 mm->total_vm = 0;
1519
1520 /*
1521 * Lock the mm to avoid assert complaining even though this is the only
1522 * user of the mm
1523 */
1524 mmap_write_lock(mm);
1525 for_each_vma(vmi, vma) {
1526 cleanup_vma_from_mm(vma);
1527 delete_vma(mm, vma);
1528 cond_resched();
1529 }
1530 __mt_destroy(&mm->mm_mt);
1531 mmap_write_unlock(mm);
1532}
1533
1534/*
1535 * expand (or shrink) an existing mapping, potentially moving it at the same
1536 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1537 *
1538 * under NOMMU conditions, we only permit changing a mapping's size, and only
1539 * as long as it stays within the region allocated by do_mmap_private() and the
1540 * block is not shareable
1541 *
1542 * MREMAP_FIXED is not supported under NOMMU conditions
1543 */
1544static unsigned long do_mremap(unsigned long addr,
1545 unsigned long old_len, unsigned long new_len,
1546 unsigned long flags, unsigned long new_addr)
1547{
1548 struct vm_area_struct *vma;
1549
1550 /* insanity checks first */
1551 old_len = PAGE_ALIGN(old_len);
1552 new_len = PAGE_ALIGN(new_len);
1553 if (old_len == 0 || new_len == 0)
1554 return (unsigned long) -EINVAL;
1555
1556 if (offset_in_page(addr))
1557 return -EINVAL;
1558
1559 if (flags & MREMAP_FIXED && new_addr != addr)
1560 return (unsigned long) -EINVAL;
1561
1562 vma = find_vma_exact(current->mm, addr, old_len);
1563 if (!vma)
1564 return (unsigned long) -EINVAL;
1565
1566 if (vma->vm_end != vma->vm_start + old_len)
1567 return (unsigned long) -EFAULT;
1568
1569 if (is_nommu_shared_mapping(vma->vm_flags))
1570 return (unsigned long) -EPERM;
1571
1572 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1573 return (unsigned long) -ENOMEM;
1574
1575 /* all checks complete - do it */
1576 vma->vm_end = vma->vm_start + new_len;
1577 return vma->vm_start;
1578}
1579
1580SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1581 unsigned long, new_len, unsigned long, flags,
1582 unsigned long, new_addr)
1583{
1584 unsigned long ret;
1585
1586 mmap_write_lock(current->mm);
1587 ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1588 mmap_write_unlock(current->mm);
1589 return ret;
1590}
1591
1592struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1593 unsigned int foll_flags)
1594{
1595 return NULL;
1596}
1597
1598int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1599 unsigned long pfn, unsigned long size, pgprot_t prot)
1600{
1601 if (addr != (pfn << PAGE_SHIFT))
1602 return -EINVAL;
1603
1604 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
1605 return 0;
1606}
1607EXPORT_SYMBOL(remap_pfn_range);
1608
1609int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1610{
1611 unsigned long pfn = start >> PAGE_SHIFT;
1612 unsigned long vm_len = vma->vm_end - vma->vm_start;
1613
1614 pfn += vma->vm_pgoff;
1615 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1616}
1617EXPORT_SYMBOL(vm_iomap_memory);
1618
1619int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1620 unsigned long pgoff)
1621{
1622 unsigned int size = vma->vm_end - vma->vm_start;
1623
1624 if (!(vma->vm_flags & VM_USERMAP))
1625 return -EINVAL;
1626
1627 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1628 vma->vm_end = vma->vm_start + size;
1629
1630 return 0;
1631}
1632EXPORT_SYMBOL(remap_vmalloc_range);
1633
1634vm_fault_t filemap_fault(struct vm_fault *vmf)
1635{
1636 BUG();
1637 return 0;
1638}
1639EXPORT_SYMBOL(filemap_fault);
1640
1641vm_fault_t filemap_map_pages(struct vm_fault *vmf,
1642 pgoff_t start_pgoff, pgoff_t end_pgoff)
1643{
1644 BUG();
1645 return 0;
1646}
1647EXPORT_SYMBOL(filemap_map_pages);
1648
1649static int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
1650 void *buf, int len, unsigned int gup_flags)
1651{
1652 struct vm_area_struct *vma;
1653 int write = gup_flags & FOLL_WRITE;
1654
1655 if (mmap_read_lock_killable(mm))
1656 return 0;
1657
1658 /* the access must start within one of the target process's mappings */
1659 vma = find_vma(mm, addr);
1660 if (vma) {
1661 /* don't overrun this mapping */
1662 if (addr + len >= vma->vm_end)
1663 len = vma->vm_end - addr;
1664
1665 /* only read or write mappings where it is permitted */
1666 if (write && vma->vm_flags & VM_MAYWRITE)
1667 copy_to_user_page(vma, NULL, addr,
1668 (void *) addr, buf, len);
1669 else if (!write && vma->vm_flags & VM_MAYREAD)
1670 copy_from_user_page(vma, NULL, addr,
1671 buf, (void *) addr, len);
1672 else
1673 len = 0;
1674 } else {
1675 len = 0;
1676 }
1677
1678 mmap_read_unlock(mm);
1679
1680 return len;
1681}
1682
1683/**
1684 * access_remote_vm - access another process' address space
1685 * @mm: the mm_struct of the target address space
1686 * @addr: start address to access
1687 * @buf: source or destination buffer
1688 * @len: number of bytes to transfer
1689 * @gup_flags: flags modifying lookup behaviour
1690 *
1691 * The caller must hold a reference on @mm.
1692 */
1693int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1694 void *buf, int len, unsigned int gup_flags)
1695{
1696 return __access_remote_vm(mm, addr, buf, len, gup_flags);
1697}
1698
1699/*
1700 * Access another process' address space.
1701 * - source/target buffer must be kernel space
1702 */
1703int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1704 unsigned int gup_flags)
1705{
1706 struct mm_struct *mm;
1707
1708 if (addr + len < addr)
1709 return 0;
1710
1711 mm = get_task_mm(tsk);
1712 if (!mm)
1713 return 0;
1714
1715 len = __access_remote_vm(mm, addr, buf, len, gup_flags);
1716
1717 mmput(mm);
1718 return len;
1719}
1720EXPORT_SYMBOL_GPL(access_process_vm);
1721
1722/**
1723 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1724 * @inode: The inode to check
1725 * @size: The current filesize of the inode
1726 * @newsize: The proposed filesize of the inode
1727 *
1728 * Check the shared mappings on an inode on behalf of a shrinking truncate to
1729 * make sure that any outstanding VMAs aren't broken and then shrink the
1730 * vm_regions that extend beyond so that do_mmap() doesn't
1731 * automatically grant mappings that are too large.
1732 */
1733int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1734 size_t newsize)
1735{
1736 struct vm_area_struct *vma;
1737 struct vm_region *region;
1738 pgoff_t low, high;
1739 size_t r_size, r_top;
1740
1741 low = newsize >> PAGE_SHIFT;
1742 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1743
1744 down_write(&nommu_region_sem);
1745 i_mmap_lock_read(inode->i_mapping);
1746
1747 /* search for VMAs that fall within the dead zone */
1748 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1749 /* found one - only interested if it's shared out of the page
1750 * cache */
1751 if (vma->vm_flags & VM_SHARED) {
1752 i_mmap_unlock_read(inode->i_mapping);
1753 up_write(&nommu_region_sem);
1754 return -ETXTBSY; /* not quite true, but near enough */
1755 }
1756 }
1757
1758 /* reduce any regions that overlap the dead zone - if in existence,
1759 * these will be pointed to by VMAs that don't overlap the dead zone
1760 *
1761 * we don't check for any regions that start beyond the EOF as there
1762 * shouldn't be any
1763 */
1764 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1765 if (!(vma->vm_flags & VM_SHARED))
1766 continue;
1767
1768 region = vma->vm_region;
1769 r_size = region->vm_top - region->vm_start;
1770 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1771
1772 if (r_top > newsize) {
1773 region->vm_top -= r_top - newsize;
1774 if (region->vm_end > region->vm_top)
1775 region->vm_end = region->vm_top;
1776 }
1777 }
1778
1779 i_mmap_unlock_read(inode->i_mapping);
1780 up_write(&nommu_region_sem);
1781 return 0;
1782}
1783
1784/*
1785 * Initialise sysctl_user_reserve_kbytes.
1786 *
1787 * This is intended to prevent a user from starting a single memory hogging
1788 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1789 * mode.
1790 *
1791 * The default value is min(3% of free memory, 128MB)
1792 * 128MB is enough to recover with sshd/login, bash, and top/kill.
1793 */
1794static int __meminit init_user_reserve(void)
1795{
1796 unsigned long free_kbytes;
1797
1798 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
1799
1800 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1801 return 0;
1802}
1803subsys_initcall(init_user_reserve);
1804
1805/*
1806 * Initialise sysctl_admin_reserve_kbytes.
1807 *
1808 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1809 * to log in and kill a memory hogging process.
1810 *
1811 * Systems with more than 256MB will reserve 8MB, enough to recover
1812 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1813 * only reserve 3% of free pages by default.
1814 */
1815static int __meminit init_admin_reserve(void)
1816{
1817 unsigned long free_kbytes;
1818
1819 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
1820
1821 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1822 return 0;
1823}
1824subsys_initcall(init_admin_reserve);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/mm/nommu.c
4 *
5 * Replacement code for mm functions to support CPU's that don't
6 * have any form of memory management unit (thus no virtual memory).
7 *
8 * See Documentation/admin-guide/mm/nommu-mmap.rst
9 *
10 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
11 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
12 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
13 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com>
14 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
15 */
16
17#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19#include <linux/export.h>
20#include <linux/mm.h>
21#include <linux/sched/mm.h>
22#include <linux/mman.h>
23#include <linux/swap.h>
24#include <linux/file.h>
25#include <linux/highmem.h>
26#include <linux/pagemap.h>
27#include <linux/slab.h>
28#include <linux/vmalloc.h>
29#include <linux/backing-dev.h>
30#include <linux/compiler.h>
31#include <linux/mount.h>
32#include <linux/personality.h>
33#include <linux/security.h>
34#include <linux/syscalls.h>
35#include <linux/audit.h>
36#include <linux/printk.h>
37
38#include <linux/uaccess.h>
39#include <asm/tlb.h>
40#include <asm/tlbflush.h>
41#include <asm/mmu_context.h>
42#include "internal.h"
43
44void *high_memory;
45EXPORT_SYMBOL(high_memory);
46struct page *mem_map;
47unsigned long max_mapnr;
48EXPORT_SYMBOL(max_mapnr);
49unsigned long highest_memmap_pfn;
50int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
51int heap_stack_gap = 0;
52
53atomic_long_t mmap_pages_allocated;
54
55EXPORT_SYMBOL(mem_map);
56
57/* list of mapped, potentially shareable regions */
58static struct kmem_cache *vm_region_jar;
59struct rb_root nommu_region_tree = RB_ROOT;
60DECLARE_RWSEM(nommu_region_sem);
61
62const struct vm_operations_struct generic_file_vm_ops = {
63};
64
65/*
66 * Return the total memory allocated for this pointer, not
67 * just what the caller asked for.
68 *
69 * Doesn't have to be accurate, i.e. may have races.
70 */
71unsigned int kobjsize(const void *objp)
72{
73 struct page *page;
74
75 /*
76 * If the object we have should not have ksize performed on it,
77 * return size of 0
78 */
79 if (!objp || !virt_addr_valid(objp))
80 return 0;
81
82 page = virt_to_head_page(objp);
83
84 /*
85 * If the allocator sets PageSlab, we know the pointer came from
86 * kmalloc().
87 */
88 if (PageSlab(page))
89 return ksize(objp);
90
91 /*
92 * If it's not a compound page, see if we have a matching VMA
93 * region. This test is intentionally done in reverse order,
94 * so if there's no VMA, we still fall through and hand back
95 * PAGE_SIZE for 0-order pages.
96 */
97 if (!PageCompound(page)) {
98 struct vm_area_struct *vma;
99
100 vma = find_vma(current->mm, (unsigned long)objp);
101 if (vma)
102 return vma->vm_end - vma->vm_start;
103 }
104
105 /*
106 * The ksize() function is only guaranteed to work for pointers
107 * returned by kmalloc(). So handle arbitrary pointers here.
108 */
109 return page_size(page);
110}
111
112/**
113 * follow_pfn - look up PFN at a user virtual address
114 * @vma: memory mapping
115 * @address: user virtual address
116 * @pfn: location to store found PFN
117 *
118 * Only IO mappings and raw PFN mappings are allowed.
119 *
120 * Returns zero and the pfn at @pfn on success, -ve otherwise.
121 */
122int follow_pfn(struct vm_area_struct *vma, unsigned long address,
123 unsigned long *pfn)
124{
125 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
126 return -EINVAL;
127
128 *pfn = address >> PAGE_SHIFT;
129 return 0;
130}
131EXPORT_SYMBOL(follow_pfn);
132
133LIST_HEAD(vmap_area_list);
134
135void vfree(const void *addr)
136{
137 kfree(addr);
138}
139EXPORT_SYMBOL(vfree);
140
141void *__vmalloc(unsigned long size, gfp_t gfp_mask)
142{
143 /*
144 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
145 * returns only a logical address.
146 */
147 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
148}
149EXPORT_SYMBOL(__vmalloc);
150
151void *__vmalloc_node_range(unsigned long size, unsigned long align,
152 unsigned long start, unsigned long end, gfp_t gfp_mask,
153 pgprot_t prot, unsigned long vm_flags, int node,
154 const void *caller)
155{
156 return __vmalloc(size, gfp_mask);
157}
158
159void *__vmalloc_node(unsigned long size, unsigned long align, gfp_t gfp_mask,
160 int node, const void *caller)
161{
162 return __vmalloc(size, gfp_mask);
163}
164
165static void *__vmalloc_user_flags(unsigned long size, gfp_t flags)
166{
167 void *ret;
168
169 ret = __vmalloc(size, flags);
170 if (ret) {
171 struct vm_area_struct *vma;
172
173 mmap_write_lock(current->mm);
174 vma = find_vma(current->mm, (unsigned long)ret);
175 if (vma)
176 vma->vm_flags |= VM_USERMAP;
177 mmap_write_unlock(current->mm);
178 }
179
180 return ret;
181}
182
183void *vmalloc_user(unsigned long size)
184{
185 return __vmalloc_user_flags(size, GFP_KERNEL | __GFP_ZERO);
186}
187EXPORT_SYMBOL(vmalloc_user);
188
189struct page *vmalloc_to_page(const void *addr)
190{
191 return virt_to_page(addr);
192}
193EXPORT_SYMBOL(vmalloc_to_page);
194
195unsigned long vmalloc_to_pfn(const void *addr)
196{
197 return page_to_pfn(virt_to_page(addr));
198}
199EXPORT_SYMBOL(vmalloc_to_pfn);
200
201long vread(char *buf, char *addr, unsigned long count)
202{
203 /* Don't allow overflow */
204 if ((unsigned long) buf + count < count)
205 count = -(unsigned long) buf;
206
207 memcpy(buf, addr, count);
208 return count;
209}
210
211/*
212 * vmalloc - allocate virtually contiguous memory
213 *
214 * @size: allocation size
215 *
216 * Allocate enough pages to cover @size from the page level
217 * allocator and map them into contiguous kernel virtual space.
218 *
219 * For tight control over page level allocator and protection flags
220 * use __vmalloc() instead.
221 */
222void *vmalloc(unsigned long size)
223{
224 return __vmalloc(size, GFP_KERNEL);
225}
226EXPORT_SYMBOL(vmalloc);
227
228void *vmalloc_huge(unsigned long size, gfp_t gfp_mask) __weak __alias(__vmalloc);
229
230/*
231 * vzalloc - allocate virtually contiguous memory with zero fill
232 *
233 * @size: allocation size
234 *
235 * Allocate enough pages to cover @size from the page level
236 * allocator and map them into contiguous kernel virtual space.
237 * The memory allocated is set to zero.
238 *
239 * For tight control over page level allocator and protection flags
240 * use __vmalloc() instead.
241 */
242void *vzalloc(unsigned long size)
243{
244 return __vmalloc(size, GFP_KERNEL | __GFP_ZERO);
245}
246EXPORT_SYMBOL(vzalloc);
247
248/**
249 * vmalloc_node - allocate memory on a specific node
250 * @size: allocation size
251 * @node: numa node
252 *
253 * Allocate enough pages to cover @size from the page level
254 * allocator and map them into contiguous kernel virtual space.
255 *
256 * For tight control over page level allocator and protection flags
257 * use __vmalloc() instead.
258 */
259void *vmalloc_node(unsigned long size, int node)
260{
261 return vmalloc(size);
262}
263EXPORT_SYMBOL(vmalloc_node);
264
265/**
266 * vzalloc_node - allocate memory on a specific node with zero fill
267 * @size: allocation size
268 * @node: numa node
269 *
270 * Allocate enough pages to cover @size from the page level
271 * allocator and map them into contiguous kernel virtual space.
272 * The memory allocated is set to zero.
273 *
274 * For tight control over page level allocator and protection flags
275 * use __vmalloc() instead.
276 */
277void *vzalloc_node(unsigned long size, int node)
278{
279 return vzalloc(size);
280}
281EXPORT_SYMBOL(vzalloc_node);
282
283/**
284 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
285 * @size: allocation size
286 *
287 * Allocate enough 32bit PA addressable pages to cover @size from the
288 * page level allocator and map them into contiguous kernel virtual space.
289 */
290void *vmalloc_32(unsigned long size)
291{
292 return __vmalloc(size, GFP_KERNEL);
293}
294EXPORT_SYMBOL(vmalloc_32);
295
296/**
297 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
298 * @size: allocation size
299 *
300 * The resulting memory area is 32bit addressable and zeroed so it can be
301 * mapped to userspace without leaking data.
302 *
303 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
304 * remap_vmalloc_range() are permissible.
305 */
306void *vmalloc_32_user(unsigned long size)
307{
308 /*
309 * We'll have to sort out the ZONE_DMA bits for 64-bit,
310 * but for now this can simply use vmalloc_user() directly.
311 */
312 return vmalloc_user(size);
313}
314EXPORT_SYMBOL(vmalloc_32_user);
315
316void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
317{
318 BUG();
319 return NULL;
320}
321EXPORT_SYMBOL(vmap);
322
323void vunmap(const void *addr)
324{
325 BUG();
326}
327EXPORT_SYMBOL(vunmap);
328
329void *vm_map_ram(struct page **pages, unsigned int count, int node)
330{
331 BUG();
332 return NULL;
333}
334EXPORT_SYMBOL(vm_map_ram);
335
336void vm_unmap_ram(const void *mem, unsigned int count)
337{
338 BUG();
339}
340EXPORT_SYMBOL(vm_unmap_ram);
341
342void vm_unmap_aliases(void)
343{
344}
345EXPORT_SYMBOL_GPL(vm_unmap_aliases);
346
347void free_vm_area(struct vm_struct *area)
348{
349 BUG();
350}
351EXPORT_SYMBOL_GPL(free_vm_area);
352
353int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
354 struct page *page)
355{
356 return -EINVAL;
357}
358EXPORT_SYMBOL(vm_insert_page);
359
360int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
361 unsigned long num)
362{
363 return -EINVAL;
364}
365EXPORT_SYMBOL(vm_map_pages);
366
367int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
368 unsigned long num)
369{
370 return -EINVAL;
371}
372EXPORT_SYMBOL(vm_map_pages_zero);
373
374/*
375 * sys_brk() for the most part doesn't need the global kernel
376 * lock, except when an application is doing something nasty
377 * like trying to un-brk an area that has already been mapped
378 * to a regular file. in this case, the unmapping will need
379 * to invoke file system routines that need the global lock.
380 */
381SYSCALL_DEFINE1(brk, unsigned long, brk)
382{
383 struct mm_struct *mm = current->mm;
384
385 if (brk < mm->start_brk || brk > mm->context.end_brk)
386 return mm->brk;
387
388 if (mm->brk == brk)
389 return mm->brk;
390
391 /*
392 * Always allow shrinking brk
393 */
394 if (brk <= mm->brk) {
395 mm->brk = brk;
396 return brk;
397 }
398
399 /*
400 * Ok, looks good - let it rip.
401 */
402 flush_icache_user_range(mm->brk, brk);
403 return mm->brk = brk;
404}
405
406/*
407 * initialise the percpu counter for VM and region record slabs
408 */
409void __init mmap_init(void)
410{
411 int ret;
412
413 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
414 VM_BUG_ON(ret);
415 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
416}
417
418/*
419 * validate the region tree
420 * - the caller must hold the region lock
421 */
422#ifdef CONFIG_DEBUG_NOMMU_REGIONS
423static noinline void validate_nommu_regions(void)
424{
425 struct vm_region *region, *last;
426 struct rb_node *p, *lastp;
427
428 lastp = rb_first(&nommu_region_tree);
429 if (!lastp)
430 return;
431
432 last = rb_entry(lastp, struct vm_region, vm_rb);
433 BUG_ON(last->vm_end <= last->vm_start);
434 BUG_ON(last->vm_top < last->vm_end);
435
436 while ((p = rb_next(lastp))) {
437 region = rb_entry(p, struct vm_region, vm_rb);
438 last = rb_entry(lastp, struct vm_region, vm_rb);
439
440 BUG_ON(region->vm_end <= region->vm_start);
441 BUG_ON(region->vm_top < region->vm_end);
442 BUG_ON(region->vm_start < last->vm_top);
443
444 lastp = p;
445 }
446}
447#else
448static void validate_nommu_regions(void)
449{
450}
451#endif
452
453/*
454 * add a region into the global tree
455 */
456static void add_nommu_region(struct vm_region *region)
457{
458 struct vm_region *pregion;
459 struct rb_node **p, *parent;
460
461 validate_nommu_regions();
462
463 parent = NULL;
464 p = &nommu_region_tree.rb_node;
465 while (*p) {
466 parent = *p;
467 pregion = rb_entry(parent, struct vm_region, vm_rb);
468 if (region->vm_start < pregion->vm_start)
469 p = &(*p)->rb_left;
470 else if (region->vm_start > pregion->vm_start)
471 p = &(*p)->rb_right;
472 else if (pregion == region)
473 return;
474 else
475 BUG();
476 }
477
478 rb_link_node(®ion->vm_rb, parent, p);
479 rb_insert_color(®ion->vm_rb, &nommu_region_tree);
480
481 validate_nommu_regions();
482}
483
484/*
485 * delete a region from the global tree
486 */
487static void delete_nommu_region(struct vm_region *region)
488{
489 BUG_ON(!nommu_region_tree.rb_node);
490
491 validate_nommu_regions();
492 rb_erase(®ion->vm_rb, &nommu_region_tree);
493 validate_nommu_regions();
494}
495
496/*
497 * free a contiguous series of pages
498 */
499static void free_page_series(unsigned long from, unsigned long to)
500{
501 for (; from < to; from += PAGE_SIZE) {
502 struct page *page = virt_to_page((void *)from);
503
504 atomic_long_dec(&mmap_pages_allocated);
505 put_page(page);
506 }
507}
508
509/*
510 * release a reference to a region
511 * - the caller must hold the region semaphore for writing, which this releases
512 * - the region may not have been added to the tree yet, in which case vm_top
513 * will equal vm_start
514 */
515static void __put_nommu_region(struct vm_region *region)
516 __releases(nommu_region_sem)
517{
518 BUG_ON(!nommu_region_tree.rb_node);
519
520 if (--region->vm_usage == 0) {
521 if (region->vm_top > region->vm_start)
522 delete_nommu_region(region);
523 up_write(&nommu_region_sem);
524
525 if (region->vm_file)
526 fput(region->vm_file);
527
528 /* IO memory and memory shared directly out of the pagecache
529 * from ramfs/tmpfs mustn't be released here */
530 if (region->vm_flags & VM_MAPPED_COPY)
531 free_page_series(region->vm_start, region->vm_top);
532 kmem_cache_free(vm_region_jar, region);
533 } else {
534 up_write(&nommu_region_sem);
535 }
536}
537
538/*
539 * release a reference to a region
540 */
541static void put_nommu_region(struct vm_region *region)
542{
543 down_write(&nommu_region_sem);
544 __put_nommu_region(region);
545}
546
547void vma_mas_store(struct vm_area_struct *vma, struct ma_state *mas)
548{
549 mas_set_range(mas, vma->vm_start, vma->vm_end - 1);
550 mas_store_prealloc(mas, vma);
551}
552
553void vma_mas_remove(struct vm_area_struct *vma, struct ma_state *mas)
554{
555 mas->index = vma->vm_start;
556 mas->last = vma->vm_end - 1;
557 mas_store_prealloc(mas, NULL);
558}
559
560static void setup_vma_to_mm(struct vm_area_struct *vma, struct mm_struct *mm)
561{
562 vma->vm_mm = mm;
563
564 /* add the VMA to the mapping */
565 if (vma->vm_file) {
566 struct address_space *mapping = vma->vm_file->f_mapping;
567
568 i_mmap_lock_write(mapping);
569 flush_dcache_mmap_lock(mapping);
570 vma_interval_tree_insert(vma, &mapping->i_mmap);
571 flush_dcache_mmap_unlock(mapping);
572 i_mmap_unlock_write(mapping);
573 }
574}
575
576/*
577 * mas_add_vma_to_mm() - Maple state variant of add_mas_to_mm().
578 * @mas: The maple state with preallocations.
579 * @mm: The mm_struct
580 * @vma: The vma to add
581 *
582 */
583static void mas_add_vma_to_mm(struct ma_state *mas, struct mm_struct *mm,
584 struct vm_area_struct *vma)
585{
586 BUG_ON(!vma->vm_region);
587
588 setup_vma_to_mm(vma, mm);
589 mm->map_count++;
590
591 /* add the VMA to the tree */
592 vma_mas_store(vma, mas);
593}
594
595/*
596 * add a VMA into a process's mm_struct in the appropriate place in the list
597 * and tree and add to the address space's page tree also if not an anonymous
598 * page
599 * - should be called with mm->mmap_lock held writelocked
600 */
601static int add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
602{
603 MA_STATE(mas, &mm->mm_mt, vma->vm_start, vma->vm_end);
604
605 if (mas_preallocate(&mas, vma, GFP_KERNEL)) {
606 pr_warn("Allocation of vma tree for process %d failed\n",
607 current->pid);
608 return -ENOMEM;
609 }
610 mas_add_vma_to_mm(&mas, mm, vma);
611 return 0;
612}
613
614static void cleanup_vma_from_mm(struct vm_area_struct *vma)
615{
616 vma->vm_mm->map_count--;
617 /* remove the VMA from the mapping */
618 if (vma->vm_file) {
619 struct address_space *mapping;
620 mapping = vma->vm_file->f_mapping;
621
622 i_mmap_lock_write(mapping);
623 flush_dcache_mmap_lock(mapping);
624 vma_interval_tree_remove(vma, &mapping->i_mmap);
625 flush_dcache_mmap_unlock(mapping);
626 i_mmap_unlock_write(mapping);
627 }
628}
629/*
630 * delete a VMA from its owning mm_struct and address space
631 */
632static int delete_vma_from_mm(struct vm_area_struct *vma)
633{
634 MA_STATE(mas, &vma->vm_mm->mm_mt, 0, 0);
635
636 if (mas_preallocate(&mas, vma, GFP_KERNEL)) {
637 pr_warn("Allocation of vma tree for process %d failed\n",
638 current->pid);
639 return -ENOMEM;
640 }
641 cleanup_vma_from_mm(vma);
642
643 /* remove from the MM's tree and list */
644 vma_mas_remove(vma, &mas);
645 return 0;
646}
647
648/*
649 * destroy a VMA record
650 */
651static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
652{
653 if (vma->vm_ops && vma->vm_ops->close)
654 vma->vm_ops->close(vma);
655 if (vma->vm_file)
656 fput(vma->vm_file);
657 put_nommu_region(vma->vm_region);
658 vm_area_free(vma);
659}
660
661struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
662 unsigned long start_addr,
663 unsigned long end_addr)
664{
665 unsigned long index = start_addr;
666
667 mmap_assert_locked(mm);
668 return mt_find(&mm->mm_mt, &index, end_addr - 1);
669}
670EXPORT_SYMBOL(find_vma_intersection);
671
672/*
673 * look up the first VMA in which addr resides, NULL if none
674 * - should be called with mm->mmap_lock at least held readlocked
675 */
676struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
677{
678 MA_STATE(mas, &mm->mm_mt, addr, addr);
679
680 return mas_walk(&mas);
681}
682EXPORT_SYMBOL(find_vma);
683
684/*
685 * find a VMA
686 * - we don't extend stack VMAs under NOMMU conditions
687 */
688struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
689{
690 return find_vma(mm, addr);
691}
692
693/*
694 * expand a stack to a given address
695 * - not supported under NOMMU conditions
696 */
697int expand_stack(struct vm_area_struct *vma, unsigned long address)
698{
699 return -ENOMEM;
700}
701
702/*
703 * look up the first VMA exactly that exactly matches addr
704 * - should be called with mm->mmap_lock at least held readlocked
705 */
706static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
707 unsigned long addr,
708 unsigned long len)
709{
710 struct vm_area_struct *vma;
711 unsigned long end = addr + len;
712 MA_STATE(mas, &mm->mm_mt, addr, addr);
713
714 vma = mas_walk(&mas);
715 if (!vma)
716 return NULL;
717 if (vma->vm_start != addr)
718 return NULL;
719 if (vma->vm_end != end)
720 return NULL;
721
722 return vma;
723}
724
725/*
726 * determine whether a mapping should be permitted and, if so, what sort of
727 * mapping we're capable of supporting
728 */
729static int validate_mmap_request(struct file *file,
730 unsigned long addr,
731 unsigned long len,
732 unsigned long prot,
733 unsigned long flags,
734 unsigned long pgoff,
735 unsigned long *_capabilities)
736{
737 unsigned long capabilities, rlen;
738 int ret;
739
740 /* do the simple checks first */
741 if (flags & MAP_FIXED)
742 return -EINVAL;
743
744 if ((flags & MAP_TYPE) != MAP_PRIVATE &&
745 (flags & MAP_TYPE) != MAP_SHARED)
746 return -EINVAL;
747
748 if (!len)
749 return -EINVAL;
750
751 /* Careful about overflows.. */
752 rlen = PAGE_ALIGN(len);
753 if (!rlen || rlen > TASK_SIZE)
754 return -ENOMEM;
755
756 /* offset overflow? */
757 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
758 return -EOVERFLOW;
759
760 if (file) {
761 /* files must support mmap */
762 if (!file->f_op->mmap)
763 return -ENODEV;
764
765 /* work out if what we've got could possibly be shared
766 * - we support chardevs that provide their own "memory"
767 * - we support files/blockdevs that are memory backed
768 */
769 if (file->f_op->mmap_capabilities) {
770 capabilities = file->f_op->mmap_capabilities(file);
771 } else {
772 /* no explicit capabilities set, so assume some
773 * defaults */
774 switch (file_inode(file)->i_mode & S_IFMT) {
775 case S_IFREG:
776 case S_IFBLK:
777 capabilities = NOMMU_MAP_COPY;
778 break;
779
780 case S_IFCHR:
781 capabilities =
782 NOMMU_MAP_DIRECT |
783 NOMMU_MAP_READ |
784 NOMMU_MAP_WRITE;
785 break;
786
787 default:
788 return -EINVAL;
789 }
790 }
791
792 /* eliminate any capabilities that we can't support on this
793 * device */
794 if (!file->f_op->get_unmapped_area)
795 capabilities &= ~NOMMU_MAP_DIRECT;
796 if (!(file->f_mode & FMODE_CAN_READ))
797 capabilities &= ~NOMMU_MAP_COPY;
798
799 /* The file shall have been opened with read permission. */
800 if (!(file->f_mode & FMODE_READ))
801 return -EACCES;
802
803 if (flags & MAP_SHARED) {
804 /* do checks for writing, appending and locking */
805 if ((prot & PROT_WRITE) &&
806 !(file->f_mode & FMODE_WRITE))
807 return -EACCES;
808
809 if (IS_APPEND(file_inode(file)) &&
810 (file->f_mode & FMODE_WRITE))
811 return -EACCES;
812
813 if (!(capabilities & NOMMU_MAP_DIRECT))
814 return -ENODEV;
815
816 /* we mustn't privatise shared mappings */
817 capabilities &= ~NOMMU_MAP_COPY;
818 } else {
819 /* we're going to read the file into private memory we
820 * allocate */
821 if (!(capabilities & NOMMU_MAP_COPY))
822 return -ENODEV;
823
824 /* we don't permit a private writable mapping to be
825 * shared with the backing device */
826 if (prot & PROT_WRITE)
827 capabilities &= ~NOMMU_MAP_DIRECT;
828 }
829
830 if (capabilities & NOMMU_MAP_DIRECT) {
831 if (((prot & PROT_READ) && !(capabilities & NOMMU_MAP_READ)) ||
832 ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
833 ((prot & PROT_EXEC) && !(capabilities & NOMMU_MAP_EXEC))
834 ) {
835 capabilities &= ~NOMMU_MAP_DIRECT;
836 if (flags & MAP_SHARED) {
837 pr_warn("MAP_SHARED not completely supported on !MMU\n");
838 return -EINVAL;
839 }
840 }
841 }
842
843 /* handle executable mappings and implied executable
844 * mappings */
845 if (path_noexec(&file->f_path)) {
846 if (prot & PROT_EXEC)
847 return -EPERM;
848 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
849 /* handle implication of PROT_EXEC by PROT_READ */
850 if (current->personality & READ_IMPLIES_EXEC) {
851 if (capabilities & NOMMU_MAP_EXEC)
852 prot |= PROT_EXEC;
853 }
854 } else if ((prot & PROT_READ) &&
855 (prot & PROT_EXEC) &&
856 !(capabilities & NOMMU_MAP_EXEC)
857 ) {
858 /* backing file is not executable, try to copy */
859 capabilities &= ~NOMMU_MAP_DIRECT;
860 }
861 } else {
862 /* anonymous mappings are always memory backed and can be
863 * privately mapped
864 */
865 capabilities = NOMMU_MAP_COPY;
866
867 /* handle PROT_EXEC implication by PROT_READ */
868 if ((prot & PROT_READ) &&
869 (current->personality & READ_IMPLIES_EXEC))
870 prot |= PROT_EXEC;
871 }
872
873 /* allow the security API to have its say */
874 ret = security_mmap_addr(addr);
875 if (ret < 0)
876 return ret;
877
878 /* looks okay */
879 *_capabilities = capabilities;
880 return 0;
881}
882
883/*
884 * we've determined that we can make the mapping, now translate what we
885 * now know into VMA flags
886 */
887static unsigned long determine_vm_flags(struct file *file,
888 unsigned long prot,
889 unsigned long flags,
890 unsigned long capabilities)
891{
892 unsigned long vm_flags;
893
894 vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags);
895 /* vm_flags |= mm->def_flags; */
896
897 if (!(capabilities & NOMMU_MAP_DIRECT)) {
898 /* attempt to share read-only copies of mapped file chunks */
899 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
900 if (file && !(prot & PROT_WRITE))
901 vm_flags |= VM_MAYSHARE;
902 } else {
903 /* overlay a shareable mapping on the backing device or inode
904 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
905 * romfs/cramfs */
906 vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS);
907 if (flags & MAP_SHARED)
908 vm_flags |= VM_SHARED;
909 }
910
911 /* refuse to let anyone share private mappings with this process if
912 * it's being traced - otherwise breakpoints set in it may interfere
913 * with another untraced process
914 */
915 if ((flags & MAP_PRIVATE) && current->ptrace)
916 vm_flags &= ~VM_MAYSHARE;
917
918 return vm_flags;
919}
920
921/*
922 * set up a shared mapping on a file (the driver or filesystem provides and
923 * pins the storage)
924 */
925static int do_mmap_shared_file(struct vm_area_struct *vma)
926{
927 int ret;
928
929 ret = call_mmap(vma->vm_file, vma);
930 if (ret == 0) {
931 vma->vm_region->vm_top = vma->vm_region->vm_end;
932 return 0;
933 }
934 if (ret != -ENOSYS)
935 return ret;
936
937 /* getting -ENOSYS indicates that direct mmap isn't possible (as
938 * opposed to tried but failed) so we can only give a suitable error as
939 * it's not possible to make a private copy if MAP_SHARED was given */
940 return -ENODEV;
941}
942
943/*
944 * set up a private mapping or an anonymous shared mapping
945 */
946static int do_mmap_private(struct vm_area_struct *vma,
947 struct vm_region *region,
948 unsigned long len,
949 unsigned long capabilities)
950{
951 unsigned long total, point;
952 void *base;
953 int ret, order;
954
955 /* invoke the file's mapping function so that it can keep track of
956 * shared mappings on devices or memory
957 * - VM_MAYSHARE will be set if it may attempt to share
958 */
959 if (capabilities & NOMMU_MAP_DIRECT) {
960 ret = call_mmap(vma->vm_file, vma);
961 if (ret == 0) {
962 /* shouldn't return success if we're not sharing */
963 BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
964 vma->vm_region->vm_top = vma->vm_region->vm_end;
965 return 0;
966 }
967 if (ret != -ENOSYS)
968 return ret;
969
970 /* getting an ENOSYS error indicates that direct mmap isn't
971 * possible (as opposed to tried but failed) so we'll try to
972 * make a private copy of the data and map that instead */
973 }
974
975
976 /* allocate some memory to hold the mapping
977 * - note that this may not return a page-aligned address if the object
978 * we're allocating is smaller than a page
979 */
980 order = get_order(len);
981 total = 1 << order;
982 point = len >> PAGE_SHIFT;
983
984 /* we don't want to allocate a power-of-2 sized page set */
985 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
986 total = point;
987
988 base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
989 if (!base)
990 goto enomem;
991
992 atomic_long_add(total, &mmap_pages_allocated);
993
994 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
995 region->vm_start = (unsigned long) base;
996 region->vm_end = region->vm_start + len;
997 region->vm_top = region->vm_start + (total << PAGE_SHIFT);
998
999 vma->vm_start = region->vm_start;
1000 vma->vm_end = region->vm_start + len;
1001
1002 if (vma->vm_file) {
1003 /* read the contents of a file into the copy */
1004 loff_t fpos;
1005
1006 fpos = vma->vm_pgoff;
1007 fpos <<= PAGE_SHIFT;
1008
1009 ret = kernel_read(vma->vm_file, base, len, &fpos);
1010 if (ret < 0)
1011 goto error_free;
1012
1013 /* clear the last little bit */
1014 if (ret < len)
1015 memset(base + ret, 0, len - ret);
1016
1017 } else {
1018 vma_set_anonymous(vma);
1019 }
1020
1021 return 0;
1022
1023error_free:
1024 free_page_series(region->vm_start, region->vm_top);
1025 region->vm_start = vma->vm_start = 0;
1026 region->vm_end = vma->vm_end = 0;
1027 region->vm_top = 0;
1028 return ret;
1029
1030enomem:
1031 pr_err("Allocation of length %lu from process %d (%s) failed\n",
1032 len, current->pid, current->comm);
1033 show_free_areas(0, NULL);
1034 return -ENOMEM;
1035}
1036
1037/*
1038 * handle mapping creation for uClinux
1039 */
1040unsigned long do_mmap(struct file *file,
1041 unsigned long addr,
1042 unsigned long len,
1043 unsigned long prot,
1044 unsigned long flags,
1045 unsigned long pgoff,
1046 unsigned long *populate,
1047 struct list_head *uf)
1048{
1049 struct vm_area_struct *vma;
1050 struct vm_region *region;
1051 struct rb_node *rb;
1052 vm_flags_t vm_flags;
1053 unsigned long capabilities, result;
1054 int ret;
1055 MA_STATE(mas, ¤t->mm->mm_mt, 0, 0);
1056
1057 *populate = 0;
1058
1059 /* decide whether we should attempt the mapping, and if so what sort of
1060 * mapping */
1061 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1062 &capabilities);
1063 if (ret < 0)
1064 return ret;
1065
1066 /* we ignore the address hint */
1067 addr = 0;
1068 len = PAGE_ALIGN(len);
1069
1070 /* we've determined that we can make the mapping, now translate what we
1071 * now know into VMA flags */
1072 vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1073
1074
1075 /* we're going to need to record the mapping */
1076 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1077 if (!region)
1078 goto error_getting_region;
1079
1080 vma = vm_area_alloc(current->mm);
1081 if (!vma)
1082 goto error_getting_vma;
1083
1084 if (mas_preallocate(&mas, vma, GFP_KERNEL))
1085 goto error_maple_preallocate;
1086
1087 region->vm_usage = 1;
1088 region->vm_flags = vm_flags;
1089 region->vm_pgoff = pgoff;
1090
1091 vma->vm_flags = vm_flags;
1092 vma->vm_pgoff = pgoff;
1093
1094 if (file) {
1095 region->vm_file = get_file(file);
1096 vma->vm_file = get_file(file);
1097 }
1098
1099 down_write(&nommu_region_sem);
1100
1101 /* if we want to share, we need to check for regions created by other
1102 * mmap() calls that overlap with our proposed mapping
1103 * - we can only share with a superset match on most regular files
1104 * - shared mappings on character devices and memory backed files are
1105 * permitted to overlap inexactly as far as we are concerned for in
1106 * these cases, sharing is handled in the driver or filesystem rather
1107 * than here
1108 */
1109 if (vm_flags & VM_MAYSHARE) {
1110 struct vm_region *pregion;
1111 unsigned long pglen, rpglen, pgend, rpgend, start;
1112
1113 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1114 pgend = pgoff + pglen;
1115
1116 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1117 pregion = rb_entry(rb, struct vm_region, vm_rb);
1118
1119 if (!(pregion->vm_flags & VM_MAYSHARE))
1120 continue;
1121
1122 /* search for overlapping mappings on the same file */
1123 if (file_inode(pregion->vm_file) !=
1124 file_inode(file))
1125 continue;
1126
1127 if (pregion->vm_pgoff >= pgend)
1128 continue;
1129
1130 rpglen = pregion->vm_end - pregion->vm_start;
1131 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1132 rpgend = pregion->vm_pgoff + rpglen;
1133 if (pgoff >= rpgend)
1134 continue;
1135
1136 /* handle inexactly overlapping matches between
1137 * mappings */
1138 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1139 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1140 /* new mapping is not a subset of the region */
1141 if (!(capabilities & NOMMU_MAP_DIRECT))
1142 goto sharing_violation;
1143 continue;
1144 }
1145
1146 /* we've found a region we can share */
1147 pregion->vm_usage++;
1148 vma->vm_region = pregion;
1149 start = pregion->vm_start;
1150 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1151 vma->vm_start = start;
1152 vma->vm_end = start + len;
1153
1154 if (pregion->vm_flags & VM_MAPPED_COPY)
1155 vma->vm_flags |= VM_MAPPED_COPY;
1156 else {
1157 ret = do_mmap_shared_file(vma);
1158 if (ret < 0) {
1159 vma->vm_region = NULL;
1160 vma->vm_start = 0;
1161 vma->vm_end = 0;
1162 pregion->vm_usage--;
1163 pregion = NULL;
1164 goto error_just_free;
1165 }
1166 }
1167 fput(region->vm_file);
1168 kmem_cache_free(vm_region_jar, region);
1169 region = pregion;
1170 result = start;
1171 goto share;
1172 }
1173
1174 /* obtain the address at which to make a shared mapping
1175 * - this is the hook for quasi-memory character devices to
1176 * tell us the location of a shared mapping
1177 */
1178 if (capabilities & NOMMU_MAP_DIRECT) {
1179 addr = file->f_op->get_unmapped_area(file, addr, len,
1180 pgoff, flags);
1181 if (IS_ERR_VALUE(addr)) {
1182 ret = addr;
1183 if (ret != -ENOSYS)
1184 goto error_just_free;
1185
1186 /* the driver refused to tell us where to site
1187 * the mapping so we'll have to attempt to copy
1188 * it */
1189 ret = -ENODEV;
1190 if (!(capabilities & NOMMU_MAP_COPY))
1191 goto error_just_free;
1192
1193 capabilities &= ~NOMMU_MAP_DIRECT;
1194 } else {
1195 vma->vm_start = region->vm_start = addr;
1196 vma->vm_end = region->vm_end = addr + len;
1197 }
1198 }
1199 }
1200
1201 vma->vm_region = region;
1202
1203 /* set up the mapping
1204 * - the region is filled in if NOMMU_MAP_DIRECT is still set
1205 */
1206 if (file && vma->vm_flags & VM_SHARED)
1207 ret = do_mmap_shared_file(vma);
1208 else
1209 ret = do_mmap_private(vma, region, len, capabilities);
1210 if (ret < 0)
1211 goto error_just_free;
1212 add_nommu_region(region);
1213
1214 /* clear anonymous mappings that don't ask for uninitialized data */
1215 if (!vma->vm_file &&
1216 (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) ||
1217 !(flags & MAP_UNINITIALIZED)))
1218 memset((void *)region->vm_start, 0,
1219 region->vm_end - region->vm_start);
1220
1221 /* okay... we have a mapping; now we have to register it */
1222 result = vma->vm_start;
1223
1224 current->mm->total_vm += len >> PAGE_SHIFT;
1225
1226share:
1227 mas_add_vma_to_mm(&mas, current->mm, vma);
1228
1229 /* we flush the region from the icache only when the first executable
1230 * mapping of it is made */
1231 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1232 flush_icache_user_range(region->vm_start, region->vm_end);
1233 region->vm_icache_flushed = true;
1234 }
1235
1236 up_write(&nommu_region_sem);
1237
1238 return result;
1239
1240error_just_free:
1241 up_write(&nommu_region_sem);
1242error:
1243 mas_destroy(&mas);
1244 if (region->vm_file)
1245 fput(region->vm_file);
1246 kmem_cache_free(vm_region_jar, region);
1247 if (vma->vm_file)
1248 fput(vma->vm_file);
1249 vm_area_free(vma);
1250 return ret;
1251
1252sharing_violation:
1253 up_write(&nommu_region_sem);
1254 pr_warn("Attempt to share mismatched mappings\n");
1255 ret = -EINVAL;
1256 goto error;
1257
1258error_getting_vma:
1259 kmem_cache_free(vm_region_jar, region);
1260 pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1261 len, current->pid);
1262 show_free_areas(0, NULL);
1263 return -ENOMEM;
1264
1265error_getting_region:
1266 pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1267 len, current->pid);
1268 show_free_areas(0, NULL);
1269 return -ENOMEM;
1270
1271error_maple_preallocate:
1272 kmem_cache_free(vm_region_jar, region);
1273 vm_area_free(vma);
1274 pr_warn("Allocation of vma tree for process %d failed\n", current->pid);
1275 show_free_areas(0, NULL);
1276 return -ENOMEM;
1277
1278}
1279
1280unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1281 unsigned long prot, unsigned long flags,
1282 unsigned long fd, unsigned long pgoff)
1283{
1284 struct file *file = NULL;
1285 unsigned long retval = -EBADF;
1286
1287 audit_mmap_fd(fd, flags);
1288 if (!(flags & MAP_ANONYMOUS)) {
1289 file = fget(fd);
1290 if (!file)
1291 goto out;
1292 }
1293
1294 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1295
1296 if (file)
1297 fput(file);
1298out:
1299 return retval;
1300}
1301
1302SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1303 unsigned long, prot, unsigned long, flags,
1304 unsigned long, fd, unsigned long, pgoff)
1305{
1306 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1307}
1308
1309#ifdef __ARCH_WANT_SYS_OLD_MMAP
1310struct mmap_arg_struct {
1311 unsigned long addr;
1312 unsigned long len;
1313 unsigned long prot;
1314 unsigned long flags;
1315 unsigned long fd;
1316 unsigned long offset;
1317};
1318
1319SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1320{
1321 struct mmap_arg_struct a;
1322
1323 if (copy_from_user(&a, arg, sizeof(a)))
1324 return -EFAULT;
1325 if (offset_in_page(a.offset))
1326 return -EINVAL;
1327
1328 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1329 a.offset >> PAGE_SHIFT);
1330}
1331#endif /* __ARCH_WANT_SYS_OLD_MMAP */
1332
1333/*
1334 * split a vma into two pieces at address 'addr', a new vma is allocated either
1335 * for the first part or the tail.
1336 */
1337int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1338 unsigned long addr, int new_below)
1339{
1340 struct vm_area_struct *new;
1341 struct vm_region *region;
1342 unsigned long npages;
1343 MA_STATE(mas, &mm->mm_mt, vma->vm_start, vma->vm_end);
1344
1345 /* we're only permitted to split anonymous regions (these should have
1346 * only a single usage on the region) */
1347 if (vma->vm_file)
1348 return -ENOMEM;
1349
1350 mm = vma->vm_mm;
1351 if (mm->map_count >= sysctl_max_map_count)
1352 return -ENOMEM;
1353
1354 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1355 if (!region)
1356 return -ENOMEM;
1357
1358 new = vm_area_dup(vma);
1359 if (!new)
1360 goto err_vma_dup;
1361
1362 if (mas_preallocate(&mas, vma, GFP_KERNEL)) {
1363 pr_warn("Allocation of vma tree for process %d failed\n",
1364 current->pid);
1365 goto err_mas_preallocate;
1366 }
1367
1368 /* most fields are the same, copy all, and then fixup */
1369 *region = *vma->vm_region;
1370 new->vm_region = region;
1371
1372 npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1373
1374 if (new_below) {
1375 region->vm_top = region->vm_end = new->vm_end = addr;
1376 } else {
1377 region->vm_start = new->vm_start = addr;
1378 region->vm_pgoff = new->vm_pgoff += npages;
1379 }
1380
1381 if (new->vm_ops && new->vm_ops->open)
1382 new->vm_ops->open(new);
1383
1384 down_write(&nommu_region_sem);
1385 delete_nommu_region(vma->vm_region);
1386 if (new_below) {
1387 vma->vm_region->vm_start = vma->vm_start = addr;
1388 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1389 } else {
1390 vma->vm_region->vm_end = vma->vm_end = addr;
1391 vma->vm_region->vm_top = addr;
1392 }
1393 add_nommu_region(vma->vm_region);
1394 add_nommu_region(new->vm_region);
1395 up_write(&nommu_region_sem);
1396
1397 setup_vma_to_mm(vma, mm);
1398 setup_vma_to_mm(new, mm);
1399 mas_set_range(&mas, vma->vm_start, vma->vm_end - 1);
1400 mas_store(&mas, vma);
1401 vma_mas_store(new, &mas);
1402 mm->map_count++;
1403 return 0;
1404
1405err_mas_preallocate:
1406 vm_area_free(new);
1407err_vma_dup:
1408 kmem_cache_free(vm_region_jar, region);
1409 return -ENOMEM;
1410}
1411
1412/*
1413 * shrink a VMA by removing the specified chunk from either the beginning or
1414 * the end
1415 */
1416static int shrink_vma(struct mm_struct *mm,
1417 struct vm_area_struct *vma,
1418 unsigned long from, unsigned long to)
1419{
1420 struct vm_region *region;
1421
1422 /* adjust the VMA's pointers, which may reposition it in the MM's tree
1423 * and list */
1424 if (delete_vma_from_mm(vma))
1425 return -ENOMEM;
1426 if (from > vma->vm_start)
1427 vma->vm_end = from;
1428 else
1429 vma->vm_start = to;
1430 if (add_vma_to_mm(mm, vma))
1431 return -ENOMEM;
1432
1433 /* cut the backing region down to size */
1434 region = vma->vm_region;
1435 BUG_ON(region->vm_usage != 1);
1436
1437 down_write(&nommu_region_sem);
1438 delete_nommu_region(region);
1439 if (from > region->vm_start) {
1440 to = region->vm_top;
1441 region->vm_top = region->vm_end = from;
1442 } else {
1443 region->vm_start = to;
1444 }
1445 add_nommu_region(region);
1446 up_write(&nommu_region_sem);
1447
1448 free_page_series(from, to);
1449 return 0;
1450}
1451
1452/*
1453 * release a mapping
1454 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1455 * VMA, though it need not cover the whole VMA
1456 */
1457int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
1458{
1459 MA_STATE(mas, &mm->mm_mt, start, start);
1460 struct vm_area_struct *vma;
1461 unsigned long end;
1462 int ret = 0;
1463
1464 len = PAGE_ALIGN(len);
1465 if (len == 0)
1466 return -EINVAL;
1467
1468 end = start + len;
1469
1470 /* find the first potentially overlapping VMA */
1471 vma = mas_find(&mas, end - 1);
1472 if (!vma) {
1473 static int limit;
1474 if (limit < 5) {
1475 pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1476 current->pid, current->comm,
1477 start, start + len - 1);
1478 limit++;
1479 }
1480 return -EINVAL;
1481 }
1482
1483 /* we're allowed to split an anonymous VMA but not a file-backed one */
1484 if (vma->vm_file) {
1485 do {
1486 if (start > vma->vm_start)
1487 return -EINVAL;
1488 if (end == vma->vm_end)
1489 goto erase_whole_vma;
1490 vma = mas_next(&mas, end - 1);
1491 } while (vma);
1492 return -EINVAL;
1493 } else {
1494 /* the chunk must be a subset of the VMA found */
1495 if (start == vma->vm_start && end == vma->vm_end)
1496 goto erase_whole_vma;
1497 if (start < vma->vm_start || end > vma->vm_end)
1498 return -EINVAL;
1499 if (offset_in_page(start))
1500 return -EINVAL;
1501 if (end != vma->vm_end && offset_in_page(end))
1502 return -EINVAL;
1503 if (start != vma->vm_start && end != vma->vm_end) {
1504 ret = split_vma(mm, vma, start, 1);
1505 if (ret < 0)
1506 return ret;
1507 }
1508 return shrink_vma(mm, vma, start, end);
1509 }
1510
1511erase_whole_vma:
1512 if (delete_vma_from_mm(vma))
1513 ret = -ENOMEM;
1514 else
1515 delete_vma(mm, vma);
1516 return ret;
1517}
1518
1519int vm_munmap(unsigned long addr, size_t len)
1520{
1521 struct mm_struct *mm = current->mm;
1522 int ret;
1523
1524 mmap_write_lock(mm);
1525 ret = do_munmap(mm, addr, len, NULL);
1526 mmap_write_unlock(mm);
1527 return ret;
1528}
1529EXPORT_SYMBOL(vm_munmap);
1530
1531SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1532{
1533 return vm_munmap(addr, len);
1534}
1535
1536/*
1537 * release all the mappings made in a process's VM space
1538 */
1539void exit_mmap(struct mm_struct *mm)
1540{
1541 VMA_ITERATOR(vmi, mm, 0);
1542 struct vm_area_struct *vma;
1543
1544 if (!mm)
1545 return;
1546
1547 mm->total_vm = 0;
1548
1549 /*
1550 * Lock the mm to avoid assert complaining even though this is the only
1551 * user of the mm
1552 */
1553 mmap_write_lock(mm);
1554 for_each_vma(vmi, vma) {
1555 cleanup_vma_from_mm(vma);
1556 delete_vma(mm, vma);
1557 cond_resched();
1558 }
1559 __mt_destroy(&mm->mm_mt);
1560 mmap_write_unlock(mm);
1561}
1562
1563int vm_brk(unsigned long addr, unsigned long len)
1564{
1565 return -ENOMEM;
1566}
1567
1568/*
1569 * expand (or shrink) an existing mapping, potentially moving it at the same
1570 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1571 *
1572 * under NOMMU conditions, we only permit changing a mapping's size, and only
1573 * as long as it stays within the region allocated by do_mmap_private() and the
1574 * block is not shareable
1575 *
1576 * MREMAP_FIXED is not supported under NOMMU conditions
1577 */
1578static unsigned long do_mremap(unsigned long addr,
1579 unsigned long old_len, unsigned long new_len,
1580 unsigned long flags, unsigned long new_addr)
1581{
1582 struct vm_area_struct *vma;
1583
1584 /* insanity checks first */
1585 old_len = PAGE_ALIGN(old_len);
1586 new_len = PAGE_ALIGN(new_len);
1587 if (old_len == 0 || new_len == 0)
1588 return (unsigned long) -EINVAL;
1589
1590 if (offset_in_page(addr))
1591 return -EINVAL;
1592
1593 if (flags & MREMAP_FIXED && new_addr != addr)
1594 return (unsigned long) -EINVAL;
1595
1596 vma = find_vma_exact(current->mm, addr, old_len);
1597 if (!vma)
1598 return (unsigned long) -EINVAL;
1599
1600 if (vma->vm_end != vma->vm_start + old_len)
1601 return (unsigned long) -EFAULT;
1602
1603 if (vma->vm_flags & VM_MAYSHARE)
1604 return (unsigned long) -EPERM;
1605
1606 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1607 return (unsigned long) -ENOMEM;
1608
1609 /* all checks complete - do it */
1610 vma->vm_end = vma->vm_start + new_len;
1611 return vma->vm_start;
1612}
1613
1614SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1615 unsigned long, new_len, unsigned long, flags,
1616 unsigned long, new_addr)
1617{
1618 unsigned long ret;
1619
1620 mmap_write_lock(current->mm);
1621 ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1622 mmap_write_unlock(current->mm);
1623 return ret;
1624}
1625
1626struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1627 unsigned int foll_flags)
1628{
1629 return NULL;
1630}
1631
1632int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1633 unsigned long pfn, unsigned long size, pgprot_t prot)
1634{
1635 if (addr != (pfn << PAGE_SHIFT))
1636 return -EINVAL;
1637
1638 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1639 return 0;
1640}
1641EXPORT_SYMBOL(remap_pfn_range);
1642
1643int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1644{
1645 unsigned long pfn = start >> PAGE_SHIFT;
1646 unsigned long vm_len = vma->vm_end - vma->vm_start;
1647
1648 pfn += vma->vm_pgoff;
1649 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1650}
1651EXPORT_SYMBOL(vm_iomap_memory);
1652
1653int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1654 unsigned long pgoff)
1655{
1656 unsigned int size = vma->vm_end - vma->vm_start;
1657
1658 if (!(vma->vm_flags & VM_USERMAP))
1659 return -EINVAL;
1660
1661 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1662 vma->vm_end = vma->vm_start + size;
1663
1664 return 0;
1665}
1666EXPORT_SYMBOL(remap_vmalloc_range);
1667
1668vm_fault_t filemap_fault(struct vm_fault *vmf)
1669{
1670 BUG();
1671 return 0;
1672}
1673EXPORT_SYMBOL(filemap_fault);
1674
1675vm_fault_t filemap_map_pages(struct vm_fault *vmf,
1676 pgoff_t start_pgoff, pgoff_t end_pgoff)
1677{
1678 BUG();
1679 return 0;
1680}
1681EXPORT_SYMBOL(filemap_map_pages);
1682
1683int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
1684 int len, unsigned int gup_flags)
1685{
1686 struct vm_area_struct *vma;
1687 int write = gup_flags & FOLL_WRITE;
1688
1689 if (mmap_read_lock_killable(mm))
1690 return 0;
1691
1692 /* the access must start within one of the target process's mappings */
1693 vma = find_vma(mm, addr);
1694 if (vma) {
1695 /* don't overrun this mapping */
1696 if (addr + len >= vma->vm_end)
1697 len = vma->vm_end - addr;
1698
1699 /* only read or write mappings where it is permitted */
1700 if (write && vma->vm_flags & VM_MAYWRITE)
1701 copy_to_user_page(vma, NULL, addr,
1702 (void *) addr, buf, len);
1703 else if (!write && vma->vm_flags & VM_MAYREAD)
1704 copy_from_user_page(vma, NULL, addr,
1705 buf, (void *) addr, len);
1706 else
1707 len = 0;
1708 } else {
1709 len = 0;
1710 }
1711
1712 mmap_read_unlock(mm);
1713
1714 return len;
1715}
1716
1717/**
1718 * access_remote_vm - access another process' address space
1719 * @mm: the mm_struct of the target address space
1720 * @addr: start address to access
1721 * @buf: source or destination buffer
1722 * @len: number of bytes to transfer
1723 * @gup_flags: flags modifying lookup behaviour
1724 *
1725 * The caller must hold a reference on @mm.
1726 */
1727int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1728 void *buf, int len, unsigned int gup_flags)
1729{
1730 return __access_remote_vm(mm, addr, buf, len, gup_flags);
1731}
1732
1733/*
1734 * Access another process' address space.
1735 * - source/target buffer must be kernel space
1736 */
1737int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1738 unsigned int gup_flags)
1739{
1740 struct mm_struct *mm;
1741
1742 if (addr + len < addr)
1743 return 0;
1744
1745 mm = get_task_mm(tsk);
1746 if (!mm)
1747 return 0;
1748
1749 len = __access_remote_vm(mm, addr, buf, len, gup_flags);
1750
1751 mmput(mm);
1752 return len;
1753}
1754EXPORT_SYMBOL_GPL(access_process_vm);
1755
1756/**
1757 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1758 * @inode: The inode to check
1759 * @size: The current filesize of the inode
1760 * @newsize: The proposed filesize of the inode
1761 *
1762 * Check the shared mappings on an inode on behalf of a shrinking truncate to
1763 * make sure that any outstanding VMAs aren't broken and then shrink the
1764 * vm_regions that extend beyond so that do_mmap() doesn't
1765 * automatically grant mappings that are too large.
1766 */
1767int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1768 size_t newsize)
1769{
1770 struct vm_area_struct *vma;
1771 struct vm_region *region;
1772 pgoff_t low, high;
1773 size_t r_size, r_top;
1774
1775 low = newsize >> PAGE_SHIFT;
1776 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1777
1778 down_write(&nommu_region_sem);
1779 i_mmap_lock_read(inode->i_mapping);
1780
1781 /* search for VMAs that fall within the dead zone */
1782 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1783 /* found one - only interested if it's shared out of the page
1784 * cache */
1785 if (vma->vm_flags & VM_SHARED) {
1786 i_mmap_unlock_read(inode->i_mapping);
1787 up_write(&nommu_region_sem);
1788 return -ETXTBSY; /* not quite true, but near enough */
1789 }
1790 }
1791
1792 /* reduce any regions that overlap the dead zone - if in existence,
1793 * these will be pointed to by VMAs that don't overlap the dead zone
1794 *
1795 * we don't check for any regions that start beyond the EOF as there
1796 * shouldn't be any
1797 */
1798 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1799 if (!(vma->vm_flags & VM_SHARED))
1800 continue;
1801
1802 region = vma->vm_region;
1803 r_size = region->vm_top - region->vm_start;
1804 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1805
1806 if (r_top > newsize) {
1807 region->vm_top -= r_top - newsize;
1808 if (region->vm_end > region->vm_top)
1809 region->vm_end = region->vm_top;
1810 }
1811 }
1812
1813 i_mmap_unlock_read(inode->i_mapping);
1814 up_write(&nommu_region_sem);
1815 return 0;
1816}
1817
1818/*
1819 * Initialise sysctl_user_reserve_kbytes.
1820 *
1821 * This is intended to prevent a user from starting a single memory hogging
1822 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1823 * mode.
1824 *
1825 * The default value is min(3% of free memory, 128MB)
1826 * 128MB is enough to recover with sshd/login, bash, and top/kill.
1827 */
1828static int __meminit init_user_reserve(void)
1829{
1830 unsigned long free_kbytes;
1831
1832 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1833
1834 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1835 return 0;
1836}
1837subsys_initcall(init_user_reserve);
1838
1839/*
1840 * Initialise sysctl_admin_reserve_kbytes.
1841 *
1842 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1843 * to log in and kill a memory hogging process.
1844 *
1845 * Systems with more than 256MB will reserve 8MB, enough to recover
1846 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1847 * only reserve 3% of free pages by default.
1848 */
1849static int __meminit init_admin_reserve(void)
1850{
1851 unsigned long free_kbytes;
1852
1853 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1854
1855 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1856 return 0;
1857}
1858subsys_initcall(init_admin_reserve);