Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_bit.h"
13#include "xfs_mount.h"
14#include "xfs_inode.h"
15#include "xfs_btree.h"
16#include "xfs_ialloc.h"
17#include "xfs_ialloc_btree.h"
18#include "xfs_alloc.h"
19#include "xfs_errortag.h"
20#include "xfs_error.h"
21#include "xfs_bmap.h"
22#include "xfs_trans.h"
23#include "xfs_buf_item.h"
24#include "xfs_icreate_item.h"
25#include "xfs_icache.h"
26#include "xfs_trace.h"
27#include "xfs_log.h"
28#include "xfs_rmap.h"
29#include "xfs_ag.h"
30
31/*
32 * Lookup a record by ino in the btree given by cur.
33 */
34int /* error */
35xfs_inobt_lookup(
36 struct xfs_btree_cur *cur, /* btree cursor */
37 xfs_agino_t ino, /* starting inode of chunk */
38 xfs_lookup_t dir, /* <=, >=, == */
39 int *stat) /* success/failure */
40{
41 cur->bc_rec.i.ir_startino = ino;
42 cur->bc_rec.i.ir_holemask = 0;
43 cur->bc_rec.i.ir_count = 0;
44 cur->bc_rec.i.ir_freecount = 0;
45 cur->bc_rec.i.ir_free = 0;
46 return xfs_btree_lookup(cur, dir, stat);
47}
48
49/*
50 * Update the record referred to by cur to the value given.
51 * This either works (return 0) or gets an EFSCORRUPTED error.
52 */
53STATIC int /* error */
54xfs_inobt_update(
55 struct xfs_btree_cur *cur, /* btree cursor */
56 xfs_inobt_rec_incore_t *irec) /* btree record */
57{
58 union xfs_btree_rec rec;
59
60 rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
61 if (xfs_has_sparseinodes(cur->bc_mp)) {
62 rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask);
63 rec.inobt.ir_u.sp.ir_count = irec->ir_count;
64 rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount;
65 } else {
66 /* ir_holemask/ir_count not supported on-disk */
67 rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount);
68 }
69 rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
70 return xfs_btree_update(cur, &rec);
71}
72
73/* Convert on-disk btree record to incore inobt record. */
74void
75xfs_inobt_btrec_to_irec(
76 struct xfs_mount *mp,
77 const union xfs_btree_rec *rec,
78 struct xfs_inobt_rec_incore *irec)
79{
80 irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
81 if (xfs_has_sparseinodes(mp)) {
82 irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask);
83 irec->ir_count = rec->inobt.ir_u.sp.ir_count;
84 irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount;
85 } else {
86 /*
87 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
88 * values for full inode chunks.
89 */
90 irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL;
91 irec->ir_count = XFS_INODES_PER_CHUNK;
92 irec->ir_freecount =
93 be32_to_cpu(rec->inobt.ir_u.f.ir_freecount);
94 }
95 irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
96}
97
98/* Compute the freecount of an incore inode record. */
99uint8_t
100xfs_inobt_rec_freecount(
101 const struct xfs_inobt_rec_incore *irec)
102{
103 uint64_t realfree = irec->ir_free;
104
105 if (xfs_inobt_issparse(irec->ir_holemask))
106 realfree &= xfs_inobt_irec_to_allocmask(irec);
107 return hweight64(realfree);
108}
109
110/* Simple checks for inode records. */
111xfs_failaddr_t
112xfs_inobt_check_irec(
113 struct xfs_perag *pag,
114 const struct xfs_inobt_rec_incore *irec)
115{
116 /* Record has to be properly aligned within the AG. */
117 if (!xfs_verify_agino(pag, irec->ir_startino))
118 return __this_address;
119 if (!xfs_verify_agino(pag,
120 irec->ir_startino + XFS_INODES_PER_CHUNK - 1))
121 return __this_address;
122 if (irec->ir_count < XFS_INODES_PER_HOLEMASK_BIT ||
123 irec->ir_count > XFS_INODES_PER_CHUNK)
124 return __this_address;
125 if (irec->ir_freecount > XFS_INODES_PER_CHUNK)
126 return __this_address;
127
128 if (xfs_inobt_rec_freecount(irec) != irec->ir_freecount)
129 return __this_address;
130
131 return NULL;
132}
133
134static inline int
135xfs_inobt_complain_bad_rec(
136 struct xfs_btree_cur *cur,
137 xfs_failaddr_t fa,
138 const struct xfs_inobt_rec_incore *irec)
139{
140 struct xfs_mount *mp = cur->bc_mp;
141
142 xfs_warn(mp,
143 "%s Inode BTree record corruption in AG %d detected at %pS!",
144 cur->bc_btnum == XFS_BTNUM_INO ? "Used" : "Free",
145 cur->bc_ag.pag->pag_agno, fa);
146 xfs_warn(mp,
147"start inode 0x%x, count 0x%x, free 0x%x freemask 0x%llx, holemask 0x%x",
148 irec->ir_startino, irec->ir_count, irec->ir_freecount,
149 irec->ir_free, irec->ir_holemask);
150 return -EFSCORRUPTED;
151}
152
153/*
154 * Get the data from the pointed-to record.
155 */
156int
157xfs_inobt_get_rec(
158 struct xfs_btree_cur *cur,
159 struct xfs_inobt_rec_incore *irec,
160 int *stat)
161{
162 struct xfs_mount *mp = cur->bc_mp;
163 union xfs_btree_rec *rec;
164 xfs_failaddr_t fa;
165 int error;
166
167 error = xfs_btree_get_rec(cur, &rec, stat);
168 if (error || *stat == 0)
169 return error;
170
171 xfs_inobt_btrec_to_irec(mp, rec, irec);
172 fa = xfs_inobt_check_irec(cur->bc_ag.pag, irec);
173 if (fa)
174 return xfs_inobt_complain_bad_rec(cur, fa, irec);
175
176 return 0;
177}
178
179/*
180 * Insert a single inobt record. Cursor must already point to desired location.
181 */
182int
183xfs_inobt_insert_rec(
184 struct xfs_btree_cur *cur,
185 uint16_t holemask,
186 uint8_t count,
187 int32_t freecount,
188 xfs_inofree_t free,
189 int *stat)
190{
191 cur->bc_rec.i.ir_holemask = holemask;
192 cur->bc_rec.i.ir_count = count;
193 cur->bc_rec.i.ir_freecount = freecount;
194 cur->bc_rec.i.ir_free = free;
195 return xfs_btree_insert(cur, stat);
196}
197
198/*
199 * Insert records describing a newly allocated inode chunk into the inobt.
200 */
201STATIC int
202xfs_inobt_insert(
203 struct xfs_perag *pag,
204 struct xfs_trans *tp,
205 struct xfs_buf *agbp,
206 xfs_agino_t newino,
207 xfs_agino_t newlen,
208 xfs_btnum_t btnum)
209{
210 struct xfs_btree_cur *cur;
211 xfs_agino_t thisino;
212 int i;
213 int error;
214
215 cur = xfs_inobt_init_cursor(pag, tp, agbp, btnum);
216
217 for (thisino = newino;
218 thisino < newino + newlen;
219 thisino += XFS_INODES_PER_CHUNK) {
220 error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
221 if (error) {
222 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
223 return error;
224 }
225 ASSERT(i == 0);
226
227 error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL,
228 XFS_INODES_PER_CHUNK,
229 XFS_INODES_PER_CHUNK,
230 XFS_INOBT_ALL_FREE, &i);
231 if (error) {
232 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
233 return error;
234 }
235 ASSERT(i == 1);
236 }
237
238 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
239
240 return 0;
241}
242
243/*
244 * Verify that the number of free inodes in the AGI is correct.
245 */
246#ifdef DEBUG
247static int
248xfs_check_agi_freecount(
249 struct xfs_btree_cur *cur)
250{
251 if (cur->bc_nlevels == 1) {
252 xfs_inobt_rec_incore_t rec;
253 int freecount = 0;
254 int error;
255 int i;
256
257 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
258 if (error)
259 return error;
260
261 do {
262 error = xfs_inobt_get_rec(cur, &rec, &i);
263 if (error)
264 return error;
265
266 if (i) {
267 freecount += rec.ir_freecount;
268 error = xfs_btree_increment(cur, 0, &i);
269 if (error)
270 return error;
271 }
272 } while (i == 1);
273
274 if (!xfs_is_shutdown(cur->bc_mp))
275 ASSERT(freecount == cur->bc_ag.pag->pagi_freecount);
276 }
277 return 0;
278}
279#else
280#define xfs_check_agi_freecount(cur) 0
281#endif
282
283/*
284 * Initialise a new set of inodes. When called without a transaction context
285 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
286 * than logging them (which in a transaction context puts them into the AIL
287 * for writeback rather than the xfsbufd queue).
288 */
289int
290xfs_ialloc_inode_init(
291 struct xfs_mount *mp,
292 struct xfs_trans *tp,
293 struct list_head *buffer_list,
294 int icount,
295 xfs_agnumber_t agno,
296 xfs_agblock_t agbno,
297 xfs_agblock_t length,
298 unsigned int gen)
299{
300 struct xfs_buf *fbuf;
301 struct xfs_dinode *free;
302 int nbufs;
303 int version;
304 int i, j;
305 xfs_daddr_t d;
306 xfs_ino_t ino = 0;
307 int error;
308
309 /*
310 * Loop over the new block(s), filling in the inodes. For small block
311 * sizes, manipulate the inodes in buffers which are multiples of the
312 * blocks size.
313 */
314 nbufs = length / M_IGEO(mp)->blocks_per_cluster;
315
316 /*
317 * Figure out what version number to use in the inodes we create. If
318 * the superblock version has caught up to the one that supports the new
319 * inode format, then use the new inode version. Otherwise use the old
320 * version so that old kernels will continue to be able to use the file
321 * system.
322 *
323 * For v3 inodes, we also need to write the inode number into the inode,
324 * so calculate the first inode number of the chunk here as
325 * XFS_AGB_TO_AGINO() only works within a filesystem block, not
326 * across multiple filesystem blocks (such as a cluster) and so cannot
327 * be used in the cluster buffer loop below.
328 *
329 * Further, because we are writing the inode directly into the buffer
330 * and calculating a CRC on the entire inode, we have ot log the entire
331 * inode so that the entire range the CRC covers is present in the log.
332 * That means for v3 inode we log the entire buffer rather than just the
333 * inode cores.
334 */
335 if (xfs_has_v3inodes(mp)) {
336 version = 3;
337 ino = XFS_AGINO_TO_INO(mp, agno, XFS_AGB_TO_AGINO(mp, agbno));
338
339 /*
340 * log the initialisation that is about to take place as an
341 * logical operation. This means the transaction does not
342 * need to log the physical changes to the inode buffers as log
343 * recovery will know what initialisation is actually needed.
344 * Hence we only need to log the buffers as "ordered" buffers so
345 * they track in the AIL as if they were physically logged.
346 */
347 if (tp)
348 xfs_icreate_log(tp, agno, agbno, icount,
349 mp->m_sb.sb_inodesize, length, gen);
350 } else
351 version = 2;
352
353 for (j = 0; j < nbufs; j++) {
354 /*
355 * Get the block.
356 */
357 d = XFS_AGB_TO_DADDR(mp, agno, agbno +
358 (j * M_IGEO(mp)->blocks_per_cluster));
359 error = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
360 mp->m_bsize * M_IGEO(mp)->blocks_per_cluster,
361 XBF_UNMAPPED, &fbuf);
362 if (error)
363 return error;
364
365 /* Initialize the inode buffers and log them appropriately. */
366 fbuf->b_ops = &xfs_inode_buf_ops;
367 xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
368 for (i = 0; i < M_IGEO(mp)->inodes_per_cluster; i++) {
369 int ioffset = i << mp->m_sb.sb_inodelog;
370
371 free = xfs_make_iptr(mp, fbuf, i);
372 free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
373 free->di_version = version;
374 free->di_gen = cpu_to_be32(gen);
375 free->di_next_unlinked = cpu_to_be32(NULLAGINO);
376
377 if (version == 3) {
378 free->di_ino = cpu_to_be64(ino);
379 ino++;
380 uuid_copy(&free->di_uuid,
381 &mp->m_sb.sb_meta_uuid);
382 xfs_dinode_calc_crc(mp, free);
383 } else if (tp) {
384 /* just log the inode core */
385 xfs_trans_log_buf(tp, fbuf, ioffset,
386 ioffset + XFS_DINODE_SIZE(mp) - 1);
387 }
388 }
389
390 if (tp) {
391 /*
392 * Mark the buffer as an inode allocation buffer so it
393 * sticks in AIL at the point of this allocation
394 * transaction. This ensures the they are on disk before
395 * the tail of the log can be moved past this
396 * transaction (i.e. by preventing relogging from moving
397 * it forward in the log).
398 */
399 xfs_trans_inode_alloc_buf(tp, fbuf);
400 if (version == 3) {
401 /*
402 * Mark the buffer as ordered so that they are
403 * not physically logged in the transaction but
404 * still tracked in the AIL as part of the
405 * transaction and pin the log appropriately.
406 */
407 xfs_trans_ordered_buf(tp, fbuf);
408 }
409 } else {
410 fbuf->b_flags |= XBF_DONE;
411 xfs_buf_delwri_queue(fbuf, buffer_list);
412 xfs_buf_relse(fbuf);
413 }
414 }
415 return 0;
416}
417
418/*
419 * Align startino and allocmask for a recently allocated sparse chunk such that
420 * they are fit for insertion (or merge) into the on-disk inode btrees.
421 *
422 * Background:
423 *
424 * When enabled, sparse inode support increases the inode alignment from cluster
425 * size to inode chunk size. This means that the minimum range between two
426 * non-adjacent inode records in the inobt is large enough for a full inode
427 * record. This allows for cluster sized, cluster aligned block allocation
428 * without need to worry about whether the resulting inode record overlaps with
429 * another record in the tree. Without this basic rule, we would have to deal
430 * with the consequences of overlap by potentially undoing recent allocations in
431 * the inode allocation codepath.
432 *
433 * Because of this alignment rule (which is enforced on mount), there are two
434 * inobt possibilities for newly allocated sparse chunks. One is that the
435 * aligned inode record for the chunk covers a range of inodes not already
436 * covered in the inobt (i.e., it is safe to insert a new sparse record). The
437 * other is that a record already exists at the aligned startino that considers
438 * the newly allocated range as sparse. In the latter case, record content is
439 * merged in hope that sparse inode chunks fill to full chunks over time.
440 */
441STATIC void
442xfs_align_sparse_ino(
443 struct xfs_mount *mp,
444 xfs_agino_t *startino,
445 uint16_t *allocmask)
446{
447 xfs_agblock_t agbno;
448 xfs_agblock_t mod;
449 int offset;
450
451 agbno = XFS_AGINO_TO_AGBNO(mp, *startino);
452 mod = agbno % mp->m_sb.sb_inoalignmt;
453 if (!mod)
454 return;
455
456 /* calculate the inode offset and align startino */
457 offset = XFS_AGB_TO_AGINO(mp, mod);
458 *startino -= offset;
459
460 /*
461 * Since startino has been aligned down, left shift allocmask such that
462 * it continues to represent the same physical inodes relative to the
463 * new startino.
464 */
465 *allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT;
466}
467
468/*
469 * Determine whether the source inode record can merge into the target. Both
470 * records must be sparse, the inode ranges must match and there must be no
471 * allocation overlap between the records.
472 */
473STATIC bool
474__xfs_inobt_can_merge(
475 struct xfs_inobt_rec_incore *trec, /* tgt record */
476 struct xfs_inobt_rec_incore *srec) /* src record */
477{
478 uint64_t talloc;
479 uint64_t salloc;
480
481 /* records must cover the same inode range */
482 if (trec->ir_startino != srec->ir_startino)
483 return false;
484
485 /* both records must be sparse */
486 if (!xfs_inobt_issparse(trec->ir_holemask) ||
487 !xfs_inobt_issparse(srec->ir_holemask))
488 return false;
489
490 /* both records must track some inodes */
491 if (!trec->ir_count || !srec->ir_count)
492 return false;
493
494 /* can't exceed capacity of a full record */
495 if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK)
496 return false;
497
498 /* verify there is no allocation overlap */
499 talloc = xfs_inobt_irec_to_allocmask(trec);
500 salloc = xfs_inobt_irec_to_allocmask(srec);
501 if (talloc & salloc)
502 return false;
503
504 return true;
505}
506
507/*
508 * Merge the source inode record into the target. The caller must call
509 * __xfs_inobt_can_merge() to ensure the merge is valid.
510 */
511STATIC void
512__xfs_inobt_rec_merge(
513 struct xfs_inobt_rec_incore *trec, /* target */
514 struct xfs_inobt_rec_incore *srec) /* src */
515{
516 ASSERT(trec->ir_startino == srec->ir_startino);
517
518 /* combine the counts */
519 trec->ir_count += srec->ir_count;
520 trec->ir_freecount += srec->ir_freecount;
521
522 /*
523 * Merge the holemask and free mask. For both fields, 0 bits refer to
524 * allocated inodes. We combine the allocated ranges with bitwise AND.
525 */
526 trec->ir_holemask &= srec->ir_holemask;
527 trec->ir_free &= srec->ir_free;
528}
529
530/*
531 * Insert a new sparse inode chunk into the associated inode btree. The inode
532 * record for the sparse chunk is pre-aligned to a startino that should match
533 * any pre-existing sparse inode record in the tree. This allows sparse chunks
534 * to fill over time.
535 *
536 * This function supports two modes of handling preexisting records depending on
537 * the merge flag. If merge is true, the provided record is merged with the
538 * existing record and updated in place. The merged record is returned in nrec.
539 * If merge is false, an existing record is replaced with the provided record.
540 * If no preexisting record exists, the provided record is always inserted.
541 *
542 * It is considered corruption if a merge is requested and not possible. Given
543 * the sparse inode alignment constraints, this should never happen.
544 */
545STATIC int
546xfs_inobt_insert_sprec(
547 struct xfs_perag *pag,
548 struct xfs_trans *tp,
549 struct xfs_buf *agbp,
550 int btnum,
551 struct xfs_inobt_rec_incore *nrec, /* in/out: new/merged rec. */
552 bool merge) /* merge or replace */
553{
554 struct xfs_mount *mp = pag->pag_mount;
555 struct xfs_btree_cur *cur;
556 int error;
557 int i;
558 struct xfs_inobt_rec_incore rec;
559
560 cur = xfs_inobt_init_cursor(pag, tp, agbp, btnum);
561
562 /* the new record is pre-aligned so we know where to look */
563 error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
564 if (error)
565 goto error;
566 /* if nothing there, insert a new record and return */
567 if (i == 0) {
568 error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
569 nrec->ir_count, nrec->ir_freecount,
570 nrec->ir_free, &i);
571 if (error)
572 goto error;
573 if (XFS_IS_CORRUPT(mp, i != 1)) {
574 error = -EFSCORRUPTED;
575 goto error;
576 }
577
578 goto out;
579 }
580
581 /*
582 * A record exists at this startino. Merge or replace the record
583 * depending on what we've been asked to do.
584 */
585 if (merge) {
586 error = xfs_inobt_get_rec(cur, &rec, &i);
587 if (error)
588 goto error;
589 if (XFS_IS_CORRUPT(mp, i != 1)) {
590 error = -EFSCORRUPTED;
591 goto error;
592 }
593 if (XFS_IS_CORRUPT(mp, rec.ir_startino != nrec->ir_startino)) {
594 error = -EFSCORRUPTED;
595 goto error;
596 }
597
598 /*
599 * This should never fail. If we have coexisting records that
600 * cannot merge, something is seriously wrong.
601 */
602 if (XFS_IS_CORRUPT(mp, !__xfs_inobt_can_merge(nrec, &rec))) {
603 error = -EFSCORRUPTED;
604 goto error;
605 }
606
607 trace_xfs_irec_merge_pre(mp, pag->pag_agno, rec.ir_startino,
608 rec.ir_holemask, nrec->ir_startino,
609 nrec->ir_holemask);
610
611 /* merge to nrec to output the updated record */
612 __xfs_inobt_rec_merge(nrec, &rec);
613
614 trace_xfs_irec_merge_post(mp, pag->pag_agno, nrec->ir_startino,
615 nrec->ir_holemask);
616
617 error = xfs_inobt_rec_check_count(mp, nrec);
618 if (error)
619 goto error;
620 }
621
622 error = xfs_inobt_update(cur, nrec);
623 if (error)
624 goto error;
625
626out:
627 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
628 return 0;
629error:
630 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
631 return error;
632}
633
634/*
635 * Allocate new inodes in the allocation group specified by agbp. Returns 0 if
636 * inodes were allocated in this AG; -EAGAIN if there was no space in this AG so
637 * the caller knows it can try another AG, a hard -ENOSPC when over the maximum
638 * inode count threshold, or the usual negative error code for other errors.
639 */
640STATIC int
641xfs_ialloc_ag_alloc(
642 struct xfs_perag *pag,
643 struct xfs_trans *tp,
644 struct xfs_buf *agbp)
645{
646 struct xfs_agi *agi;
647 struct xfs_alloc_arg args;
648 int error;
649 xfs_agino_t newino; /* new first inode's number */
650 xfs_agino_t newlen; /* new number of inodes */
651 int isaligned = 0; /* inode allocation at stripe */
652 /* unit boundary */
653 /* init. to full chunk */
654 struct xfs_inobt_rec_incore rec;
655 struct xfs_ino_geometry *igeo = M_IGEO(tp->t_mountp);
656 uint16_t allocmask = (uint16_t) -1;
657 int do_sparse = 0;
658
659 memset(&args, 0, sizeof(args));
660 args.tp = tp;
661 args.mp = tp->t_mountp;
662 args.fsbno = NULLFSBLOCK;
663 args.oinfo = XFS_RMAP_OINFO_INODES;
664 args.pag = pag;
665
666#ifdef DEBUG
667 /* randomly do sparse inode allocations */
668 if (xfs_has_sparseinodes(tp->t_mountp) &&
669 igeo->ialloc_min_blks < igeo->ialloc_blks)
670 do_sparse = get_random_u32_below(2);
671#endif
672
673 /*
674 * Locking will ensure that we don't have two callers in here
675 * at one time.
676 */
677 newlen = igeo->ialloc_inos;
678 if (igeo->maxicount &&
679 percpu_counter_read_positive(&args.mp->m_icount) + newlen >
680 igeo->maxicount)
681 return -ENOSPC;
682 args.minlen = args.maxlen = igeo->ialloc_blks;
683 /*
684 * First try to allocate inodes contiguous with the last-allocated
685 * chunk of inodes. If the filesystem is striped, this will fill
686 * an entire stripe unit with inodes.
687 */
688 agi = agbp->b_addr;
689 newino = be32_to_cpu(agi->agi_newino);
690 args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
691 igeo->ialloc_blks;
692 if (do_sparse)
693 goto sparse_alloc;
694 if (likely(newino != NULLAGINO &&
695 (args.agbno < be32_to_cpu(agi->agi_length)))) {
696 args.prod = 1;
697
698 /*
699 * We need to take into account alignment here to ensure that
700 * we don't modify the free list if we fail to have an exact
701 * block. If we don't have an exact match, and every oher
702 * attempt allocation attempt fails, we'll end up cancelling
703 * a dirty transaction and shutting down.
704 *
705 * For an exact allocation, alignment must be 1,
706 * however we need to take cluster alignment into account when
707 * fixing up the freelist. Use the minalignslop field to
708 * indicate that extra blocks might be required for alignment,
709 * but not to use them in the actual exact allocation.
710 */
711 args.alignment = 1;
712 args.minalignslop = igeo->cluster_align - 1;
713
714 /* Allow space for the inode btree to split. */
715 args.minleft = igeo->inobt_maxlevels;
716 error = xfs_alloc_vextent_exact_bno(&args,
717 XFS_AGB_TO_FSB(args.mp, pag->pag_agno,
718 args.agbno));
719 if (error)
720 return error;
721
722 /*
723 * This request might have dirtied the transaction if the AG can
724 * satisfy the request, but the exact block was not available.
725 * If the allocation did fail, subsequent requests will relax
726 * the exact agbno requirement and increase the alignment
727 * instead. It is critical that the total size of the request
728 * (len + alignment + slop) does not increase from this point
729 * on, so reset minalignslop to ensure it is not included in
730 * subsequent requests.
731 */
732 args.minalignslop = 0;
733 }
734
735 if (unlikely(args.fsbno == NULLFSBLOCK)) {
736 /*
737 * Set the alignment for the allocation.
738 * If stripe alignment is turned on then align at stripe unit
739 * boundary.
740 * If the cluster size is smaller than a filesystem block
741 * then we're doing I/O for inodes in filesystem block size
742 * pieces, so don't need alignment anyway.
743 */
744 isaligned = 0;
745 if (igeo->ialloc_align) {
746 ASSERT(!xfs_has_noalign(args.mp));
747 args.alignment = args.mp->m_dalign;
748 isaligned = 1;
749 } else
750 args.alignment = igeo->cluster_align;
751 /*
752 * Allocate a fixed-size extent of inodes.
753 */
754 args.prod = 1;
755 /*
756 * Allow space for the inode btree to split.
757 */
758 args.minleft = igeo->inobt_maxlevels;
759 error = xfs_alloc_vextent_near_bno(&args,
760 XFS_AGB_TO_FSB(args.mp, pag->pag_agno,
761 be32_to_cpu(agi->agi_root)));
762 if (error)
763 return error;
764 }
765
766 /*
767 * If stripe alignment is turned on, then try again with cluster
768 * alignment.
769 */
770 if (isaligned && args.fsbno == NULLFSBLOCK) {
771 args.alignment = igeo->cluster_align;
772 error = xfs_alloc_vextent_near_bno(&args,
773 XFS_AGB_TO_FSB(args.mp, pag->pag_agno,
774 be32_to_cpu(agi->agi_root)));
775 if (error)
776 return error;
777 }
778
779 /*
780 * Finally, try a sparse allocation if the filesystem supports it and
781 * the sparse allocation length is smaller than a full chunk.
782 */
783 if (xfs_has_sparseinodes(args.mp) &&
784 igeo->ialloc_min_blks < igeo->ialloc_blks &&
785 args.fsbno == NULLFSBLOCK) {
786sparse_alloc:
787 args.alignment = args.mp->m_sb.sb_spino_align;
788 args.prod = 1;
789
790 args.minlen = igeo->ialloc_min_blks;
791 args.maxlen = args.minlen;
792
793 /*
794 * The inode record will be aligned to full chunk size. We must
795 * prevent sparse allocation from AG boundaries that result in
796 * invalid inode records, such as records that start at agbno 0
797 * or extend beyond the AG.
798 *
799 * Set min agbno to the first aligned, non-zero agbno and max to
800 * the last aligned agbno that is at least one full chunk from
801 * the end of the AG.
802 */
803 args.min_agbno = args.mp->m_sb.sb_inoalignmt;
804 args.max_agbno = round_down(args.mp->m_sb.sb_agblocks,
805 args.mp->m_sb.sb_inoalignmt) -
806 igeo->ialloc_blks;
807
808 error = xfs_alloc_vextent_near_bno(&args,
809 XFS_AGB_TO_FSB(args.mp, pag->pag_agno,
810 be32_to_cpu(agi->agi_root)));
811 if (error)
812 return error;
813
814 newlen = XFS_AGB_TO_AGINO(args.mp, args.len);
815 ASSERT(newlen <= XFS_INODES_PER_CHUNK);
816 allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1;
817 }
818
819 if (args.fsbno == NULLFSBLOCK)
820 return -EAGAIN;
821
822 ASSERT(args.len == args.minlen);
823
824 /*
825 * Stamp and write the inode buffers.
826 *
827 * Seed the new inode cluster with a random generation number. This
828 * prevents short-term reuse of generation numbers if a chunk is
829 * freed and then immediately reallocated. We use random numbers
830 * rather than a linear progression to prevent the next generation
831 * number from being easily guessable.
832 */
833 error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, pag->pag_agno,
834 args.agbno, args.len, get_random_u32());
835
836 if (error)
837 return error;
838 /*
839 * Convert the results.
840 */
841 newino = XFS_AGB_TO_AGINO(args.mp, args.agbno);
842
843 if (xfs_inobt_issparse(~allocmask)) {
844 /*
845 * We've allocated a sparse chunk. Align the startino and mask.
846 */
847 xfs_align_sparse_ino(args.mp, &newino, &allocmask);
848
849 rec.ir_startino = newino;
850 rec.ir_holemask = ~allocmask;
851 rec.ir_count = newlen;
852 rec.ir_freecount = newlen;
853 rec.ir_free = XFS_INOBT_ALL_FREE;
854
855 /*
856 * Insert the sparse record into the inobt and allow for a merge
857 * if necessary. If a merge does occur, rec is updated to the
858 * merged record.
859 */
860 error = xfs_inobt_insert_sprec(pag, tp, agbp,
861 XFS_BTNUM_INO, &rec, true);
862 if (error == -EFSCORRUPTED) {
863 xfs_alert(args.mp,
864 "invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
865 XFS_AGINO_TO_INO(args.mp, pag->pag_agno,
866 rec.ir_startino),
867 rec.ir_holemask, rec.ir_count);
868 xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE);
869 }
870 if (error)
871 return error;
872
873 /*
874 * We can't merge the part we've just allocated as for the inobt
875 * due to finobt semantics. The original record may or may not
876 * exist independent of whether physical inodes exist in this
877 * sparse chunk.
878 *
879 * We must update the finobt record based on the inobt record.
880 * rec contains the fully merged and up to date inobt record
881 * from the previous call. Set merge false to replace any
882 * existing record with this one.
883 */
884 if (xfs_has_finobt(args.mp)) {
885 error = xfs_inobt_insert_sprec(pag, tp, agbp,
886 XFS_BTNUM_FINO, &rec, false);
887 if (error)
888 return error;
889 }
890 } else {
891 /* full chunk - insert new records to both btrees */
892 error = xfs_inobt_insert(pag, tp, agbp, newino, newlen,
893 XFS_BTNUM_INO);
894 if (error)
895 return error;
896
897 if (xfs_has_finobt(args.mp)) {
898 error = xfs_inobt_insert(pag, tp, agbp, newino,
899 newlen, XFS_BTNUM_FINO);
900 if (error)
901 return error;
902 }
903 }
904
905 /*
906 * Update AGI counts and newino.
907 */
908 be32_add_cpu(&agi->agi_count, newlen);
909 be32_add_cpu(&agi->agi_freecount, newlen);
910 pag->pagi_freecount += newlen;
911 pag->pagi_count += newlen;
912 agi->agi_newino = cpu_to_be32(newino);
913
914 /*
915 * Log allocation group header fields
916 */
917 xfs_ialloc_log_agi(tp, agbp,
918 XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
919 /*
920 * Modify/log superblock values for inode count and inode free count.
921 */
922 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
923 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
924 return 0;
925}
926
927/*
928 * Try to retrieve the next record to the left/right from the current one.
929 */
930STATIC int
931xfs_ialloc_next_rec(
932 struct xfs_btree_cur *cur,
933 xfs_inobt_rec_incore_t *rec,
934 int *done,
935 int left)
936{
937 int error;
938 int i;
939
940 if (left)
941 error = xfs_btree_decrement(cur, 0, &i);
942 else
943 error = xfs_btree_increment(cur, 0, &i);
944
945 if (error)
946 return error;
947 *done = !i;
948 if (i) {
949 error = xfs_inobt_get_rec(cur, rec, &i);
950 if (error)
951 return error;
952 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
953 return -EFSCORRUPTED;
954 }
955
956 return 0;
957}
958
959STATIC int
960xfs_ialloc_get_rec(
961 struct xfs_btree_cur *cur,
962 xfs_agino_t agino,
963 xfs_inobt_rec_incore_t *rec,
964 int *done)
965{
966 int error;
967 int i;
968
969 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
970 if (error)
971 return error;
972 *done = !i;
973 if (i) {
974 error = xfs_inobt_get_rec(cur, rec, &i);
975 if (error)
976 return error;
977 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
978 return -EFSCORRUPTED;
979 }
980
981 return 0;
982}
983
984/*
985 * Return the offset of the first free inode in the record. If the inode chunk
986 * is sparsely allocated, we convert the record holemask to inode granularity
987 * and mask off the unallocated regions from the inode free mask.
988 */
989STATIC int
990xfs_inobt_first_free_inode(
991 struct xfs_inobt_rec_incore *rec)
992{
993 xfs_inofree_t realfree;
994
995 /* if there are no holes, return the first available offset */
996 if (!xfs_inobt_issparse(rec->ir_holemask))
997 return xfs_lowbit64(rec->ir_free);
998
999 realfree = xfs_inobt_irec_to_allocmask(rec);
1000 realfree &= rec->ir_free;
1001
1002 return xfs_lowbit64(realfree);
1003}
1004
1005/*
1006 * Allocate an inode using the inobt-only algorithm.
1007 */
1008STATIC int
1009xfs_dialloc_ag_inobt(
1010 struct xfs_perag *pag,
1011 struct xfs_trans *tp,
1012 struct xfs_buf *agbp,
1013 xfs_ino_t parent,
1014 xfs_ino_t *inop)
1015{
1016 struct xfs_mount *mp = tp->t_mountp;
1017 struct xfs_agi *agi = agbp->b_addr;
1018 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
1019 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
1020 struct xfs_btree_cur *cur, *tcur;
1021 struct xfs_inobt_rec_incore rec, trec;
1022 xfs_ino_t ino;
1023 int error;
1024 int offset;
1025 int i, j;
1026 int searchdistance = 10;
1027
1028 ASSERT(xfs_perag_initialised_agi(pag));
1029 ASSERT(xfs_perag_allows_inodes(pag));
1030 ASSERT(pag->pagi_freecount > 0);
1031
1032 restart_pagno:
1033 cur = xfs_inobt_init_cursor(pag, tp, agbp, XFS_BTNUM_INO);
1034 /*
1035 * If pagino is 0 (this is the root inode allocation) use newino.
1036 * This must work because we've just allocated some.
1037 */
1038 if (!pagino)
1039 pagino = be32_to_cpu(agi->agi_newino);
1040
1041 error = xfs_check_agi_freecount(cur);
1042 if (error)
1043 goto error0;
1044
1045 /*
1046 * If in the same AG as the parent, try to get near the parent.
1047 */
1048 if (pagno == pag->pag_agno) {
1049 int doneleft; /* done, to the left */
1050 int doneright; /* done, to the right */
1051
1052 error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
1053 if (error)
1054 goto error0;
1055 if (XFS_IS_CORRUPT(mp, i != 1)) {
1056 error = -EFSCORRUPTED;
1057 goto error0;
1058 }
1059
1060 error = xfs_inobt_get_rec(cur, &rec, &j);
1061 if (error)
1062 goto error0;
1063 if (XFS_IS_CORRUPT(mp, j != 1)) {
1064 error = -EFSCORRUPTED;
1065 goto error0;
1066 }
1067
1068 if (rec.ir_freecount > 0) {
1069 /*
1070 * Found a free inode in the same chunk
1071 * as the parent, done.
1072 */
1073 goto alloc_inode;
1074 }
1075
1076
1077 /*
1078 * In the same AG as parent, but parent's chunk is full.
1079 */
1080
1081 /* duplicate the cursor, search left & right simultaneously */
1082 error = xfs_btree_dup_cursor(cur, &tcur);
1083 if (error)
1084 goto error0;
1085
1086 /*
1087 * Skip to last blocks looked up if same parent inode.
1088 */
1089 if (pagino != NULLAGINO &&
1090 pag->pagl_pagino == pagino &&
1091 pag->pagl_leftrec != NULLAGINO &&
1092 pag->pagl_rightrec != NULLAGINO) {
1093 error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
1094 &trec, &doneleft);
1095 if (error)
1096 goto error1;
1097
1098 error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
1099 &rec, &doneright);
1100 if (error)
1101 goto error1;
1102 } else {
1103 /* search left with tcur, back up 1 record */
1104 error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
1105 if (error)
1106 goto error1;
1107
1108 /* search right with cur, go forward 1 record. */
1109 error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
1110 if (error)
1111 goto error1;
1112 }
1113
1114 /*
1115 * Loop until we find an inode chunk with a free inode.
1116 */
1117 while (--searchdistance > 0 && (!doneleft || !doneright)) {
1118 int useleft; /* using left inode chunk this time */
1119
1120 /* figure out the closer block if both are valid. */
1121 if (!doneleft && !doneright) {
1122 useleft = pagino -
1123 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
1124 rec.ir_startino - pagino;
1125 } else {
1126 useleft = !doneleft;
1127 }
1128
1129 /* free inodes to the left? */
1130 if (useleft && trec.ir_freecount) {
1131 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1132 cur = tcur;
1133
1134 pag->pagl_leftrec = trec.ir_startino;
1135 pag->pagl_rightrec = rec.ir_startino;
1136 pag->pagl_pagino = pagino;
1137 rec = trec;
1138 goto alloc_inode;
1139 }
1140
1141 /* free inodes to the right? */
1142 if (!useleft && rec.ir_freecount) {
1143 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1144
1145 pag->pagl_leftrec = trec.ir_startino;
1146 pag->pagl_rightrec = rec.ir_startino;
1147 pag->pagl_pagino = pagino;
1148 goto alloc_inode;
1149 }
1150
1151 /* get next record to check */
1152 if (useleft) {
1153 error = xfs_ialloc_next_rec(tcur, &trec,
1154 &doneleft, 1);
1155 } else {
1156 error = xfs_ialloc_next_rec(cur, &rec,
1157 &doneright, 0);
1158 }
1159 if (error)
1160 goto error1;
1161 }
1162
1163 if (searchdistance <= 0) {
1164 /*
1165 * Not in range - save last search
1166 * location and allocate a new inode
1167 */
1168 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1169 pag->pagl_leftrec = trec.ir_startino;
1170 pag->pagl_rightrec = rec.ir_startino;
1171 pag->pagl_pagino = pagino;
1172
1173 } else {
1174 /*
1175 * We've reached the end of the btree. because
1176 * we are only searching a small chunk of the
1177 * btree each search, there is obviously free
1178 * inodes closer to the parent inode than we
1179 * are now. restart the search again.
1180 */
1181 pag->pagl_pagino = NULLAGINO;
1182 pag->pagl_leftrec = NULLAGINO;
1183 pag->pagl_rightrec = NULLAGINO;
1184 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1185 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1186 goto restart_pagno;
1187 }
1188 }
1189
1190 /*
1191 * In a different AG from the parent.
1192 * See if the most recently allocated block has any free.
1193 */
1194 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1195 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1196 XFS_LOOKUP_EQ, &i);
1197 if (error)
1198 goto error0;
1199
1200 if (i == 1) {
1201 error = xfs_inobt_get_rec(cur, &rec, &j);
1202 if (error)
1203 goto error0;
1204
1205 if (j == 1 && rec.ir_freecount > 0) {
1206 /*
1207 * The last chunk allocated in the group
1208 * still has a free inode.
1209 */
1210 goto alloc_inode;
1211 }
1212 }
1213 }
1214
1215 /*
1216 * None left in the last group, search the whole AG
1217 */
1218 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1219 if (error)
1220 goto error0;
1221 if (XFS_IS_CORRUPT(mp, i != 1)) {
1222 error = -EFSCORRUPTED;
1223 goto error0;
1224 }
1225
1226 for (;;) {
1227 error = xfs_inobt_get_rec(cur, &rec, &i);
1228 if (error)
1229 goto error0;
1230 if (XFS_IS_CORRUPT(mp, i != 1)) {
1231 error = -EFSCORRUPTED;
1232 goto error0;
1233 }
1234 if (rec.ir_freecount > 0)
1235 break;
1236 error = xfs_btree_increment(cur, 0, &i);
1237 if (error)
1238 goto error0;
1239 if (XFS_IS_CORRUPT(mp, i != 1)) {
1240 error = -EFSCORRUPTED;
1241 goto error0;
1242 }
1243 }
1244
1245alloc_inode:
1246 offset = xfs_inobt_first_free_inode(&rec);
1247 ASSERT(offset >= 0);
1248 ASSERT(offset < XFS_INODES_PER_CHUNK);
1249 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1250 XFS_INODES_PER_CHUNK) == 0);
1251 ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, rec.ir_startino + offset);
1252 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1253 rec.ir_freecount--;
1254 error = xfs_inobt_update(cur, &rec);
1255 if (error)
1256 goto error0;
1257 be32_add_cpu(&agi->agi_freecount, -1);
1258 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1259 pag->pagi_freecount--;
1260
1261 error = xfs_check_agi_freecount(cur);
1262 if (error)
1263 goto error0;
1264
1265 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1266 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1267 *inop = ino;
1268 return 0;
1269error1:
1270 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
1271error0:
1272 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1273 return error;
1274}
1275
1276/*
1277 * Use the free inode btree to allocate an inode based on distance from the
1278 * parent. Note that the provided cursor may be deleted and replaced.
1279 */
1280STATIC int
1281xfs_dialloc_ag_finobt_near(
1282 xfs_agino_t pagino,
1283 struct xfs_btree_cur **ocur,
1284 struct xfs_inobt_rec_incore *rec)
1285{
1286 struct xfs_btree_cur *lcur = *ocur; /* left search cursor */
1287 struct xfs_btree_cur *rcur; /* right search cursor */
1288 struct xfs_inobt_rec_incore rrec;
1289 int error;
1290 int i, j;
1291
1292 error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
1293 if (error)
1294 return error;
1295
1296 if (i == 1) {
1297 error = xfs_inobt_get_rec(lcur, rec, &i);
1298 if (error)
1299 return error;
1300 if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1))
1301 return -EFSCORRUPTED;
1302
1303 /*
1304 * See if we've landed in the parent inode record. The finobt
1305 * only tracks chunks with at least one free inode, so record
1306 * existence is enough.
1307 */
1308 if (pagino >= rec->ir_startino &&
1309 pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
1310 return 0;
1311 }
1312
1313 error = xfs_btree_dup_cursor(lcur, &rcur);
1314 if (error)
1315 return error;
1316
1317 error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
1318 if (error)
1319 goto error_rcur;
1320 if (j == 1) {
1321 error = xfs_inobt_get_rec(rcur, &rrec, &j);
1322 if (error)
1323 goto error_rcur;
1324 if (XFS_IS_CORRUPT(lcur->bc_mp, j != 1)) {
1325 error = -EFSCORRUPTED;
1326 goto error_rcur;
1327 }
1328 }
1329
1330 if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1 && j != 1)) {
1331 error = -EFSCORRUPTED;
1332 goto error_rcur;
1333 }
1334 if (i == 1 && j == 1) {
1335 /*
1336 * Both the left and right records are valid. Choose the closer
1337 * inode chunk to the target.
1338 */
1339 if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
1340 (rrec.ir_startino - pagino)) {
1341 *rec = rrec;
1342 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1343 *ocur = rcur;
1344 } else {
1345 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1346 }
1347 } else if (j == 1) {
1348 /* only the right record is valid */
1349 *rec = rrec;
1350 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1351 *ocur = rcur;
1352 } else if (i == 1) {
1353 /* only the left record is valid */
1354 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1355 }
1356
1357 return 0;
1358
1359error_rcur:
1360 xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
1361 return error;
1362}
1363
1364/*
1365 * Use the free inode btree to find a free inode based on a newino hint. If
1366 * the hint is NULL, find the first free inode in the AG.
1367 */
1368STATIC int
1369xfs_dialloc_ag_finobt_newino(
1370 struct xfs_agi *agi,
1371 struct xfs_btree_cur *cur,
1372 struct xfs_inobt_rec_incore *rec)
1373{
1374 int error;
1375 int i;
1376
1377 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1378 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1379 XFS_LOOKUP_EQ, &i);
1380 if (error)
1381 return error;
1382 if (i == 1) {
1383 error = xfs_inobt_get_rec(cur, rec, &i);
1384 if (error)
1385 return error;
1386 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1387 return -EFSCORRUPTED;
1388 return 0;
1389 }
1390 }
1391
1392 /*
1393 * Find the first inode available in the AG.
1394 */
1395 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1396 if (error)
1397 return error;
1398 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1399 return -EFSCORRUPTED;
1400
1401 error = xfs_inobt_get_rec(cur, rec, &i);
1402 if (error)
1403 return error;
1404 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1405 return -EFSCORRUPTED;
1406
1407 return 0;
1408}
1409
1410/*
1411 * Update the inobt based on a modification made to the finobt. Also ensure that
1412 * the records from both trees are equivalent post-modification.
1413 */
1414STATIC int
1415xfs_dialloc_ag_update_inobt(
1416 struct xfs_btree_cur *cur, /* inobt cursor */
1417 struct xfs_inobt_rec_incore *frec, /* finobt record */
1418 int offset) /* inode offset */
1419{
1420 struct xfs_inobt_rec_incore rec;
1421 int error;
1422 int i;
1423
1424 error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
1425 if (error)
1426 return error;
1427 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1428 return -EFSCORRUPTED;
1429
1430 error = xfs_inobt_get_rec(cur, &rec, &i);
1431 if (error)
1432 return error;
1433 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1434 return -EFSCORRUPTED;
1435 ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
1436 XFS_INODES_PER_CHUNK) == 0);
1437
1438 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1439 rec.ir_freecount--;
1440
1441 if (XFS_IS_CORRUPT(cur->bc_mp,
1442 rec.ir_free != frec->ir_free ||
1443 rec.ir_freecount != frec->ir_freecount))
1444 return -EFSCORRUPTED;
1445
1446 return xfs_inobt_update(cur, &rec);
1447}
1448
1449/*
1450 * Allocate an inode using the free inode btree, if available. Otherwise, fall
1451 * back to the inobt search algorithm.
1452 *
1453 * The caller selected an AG for us, and made sure that free inodes are
1454 * available.
1455 */
1456static int
1457xfs_dialloc_ag(
1458 struct xfs_perag *pag,
1459 struct xfs_trans *tp,
1460 struct xfs_buf *agbp,
1461 xfs_ino_t parent,
1462 xfs_ino_t *inop)
1463{
1464 struct xfs_mount *mp = tp->t_mountp;
1465 struct xfs_agi *agi = agbp->b_addr;
1466 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
1467 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
1468 struct xfs_btree_cur *cur; /* finobt cursor */
1469 struct xfs_btree_cur *icur; /* inobt cursor */
1470 struct xfs_inobt_rec_incore rec;
1471 xfs_ino_t ino;
1472 int error;
1473 int offset;
1474 int i;
1475
1476 if (!xfs_has_finobt(mp))
1477 return xfs_dialloc_ag_inobt(pag, tp, agbp, parent, inop);
1478
1479 /*
1480 * If pagino is 0 (this is the root inode allocation) use newino.
1481 * This must work because we've just allocated some.
1482 */
1483 if (!pagino)
1484 pagino = be32_to_cpu(agi->agi_newino);
1485
1486 cur = xfs_inobt_init_cursor(pag, tp, agbp, XFS_BTNUM_FINO);
1487
1488 error = xfs_check_agi_freecount(cur);
1489 if (error)
1490 goto error_cur;
1491
1492 /*
1493 * The search algorithm depends on whether we're in the same AG as the
1494 * parent. If so, find the closest available inode to the parent. If
1495 * not, consider the agi hint or find the first free inode in the AG.
1496 */
1497 if (pag->pag_agno == pagno)
1498 error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
1499 else
1500 error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
1501 if (error)
1502 goto error_cur;
1503
1504 offset = xfs_inobt_first_free_inode(&rec);
1505 ASSERT(offset >= 0);
1506 ASSERT(offset < XFS_INODES_PER_CHUNK);
1507 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1508 XFS_INODES_PER_CHUNK) == 0);
1509 ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, rec.ir_startino + offset);
1510
1511 /*
1512 * Modify or remove the finobt record.
1513 */
1514 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1515 rec.ir_freecount--;
1516 if (rec.ir_freecount)
1517 error = xfs_inobt_update(cur, &rec);
1518 else
1519 error = xfs_btree_delete(cur, &i);
1520 if (error)
1521 goto error_cur;
1522
1523 /*
1524 * The finobt has now been updated appropriately. We haven't updated the
1525 * agi and superblock yet, so we can create an inobt cursor and validate
1526 * the original freecount. If all is well, make the equivalent update to
1527 * the inobt using the finobt record and offset information.
1528 */
1529 icur = xfs_inobt_init_cursor(pag, tp, agbp, XFS_BTNUM_INO);
1530
1531 error = xfs_check_agi_freecount(icur);
1532 if (error)
1533 goto error_icur;
1534
1535 error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
1536 if (error)
1537 goto error_icur;
1538
1539 /*
1540 * Both trees have now been updated. We must update the perag and
1541 * superblock before we can check the freecount for each btree.
1542 */
1543 be32_add_cpu(&agi->agi_freecount, -1);
1544 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1545 pag->pagi_freecount--;
1546
1547 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1548
1549 error = xfs_check_agi_freecount(icur);
1550 if (error)
1551 goto error_icur;
1552 error = xfs_check_agi_freecount(cur);
1553 if (error)
1554 goto error_icur;
1555
1556 xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
1557 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1558 *inop = ino;
1559 return 0;
1560
1561error_icur:
1562 xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
1563error_cur:
1564 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1565 return error;
1566}
1567
1568static int
1569xfs_dialloc_roll(
1570 struct xfs_trans **tpp,
1571 struct xfs_buf *agibp)
1572{
1573 struct xfs_trans *tp = *tpp;
1574 struct xfs_dquot_acct *dqinfo;
1575 int error;
1576
1577 /*
1578 * Hold to on to the agibp across the commit so no other allocation can
1579 * come in and take the free inodes we just allocated for our caller.
1580 */
1581 xfs_trans_bhold(tp, agibp);
1582
1583 /*
1584 * We want the quota changes to be associated with the next transaction,
1585 * NOT this one. So, detach the dqinfo from this and attach it to the
1586 * next transaction.
1587 */
1588 dqinfo = tp->t_dqinfo;
1589 tp->t_dqinfo = NULL;
1590
1591 error = xfs_trans_roll(&tp);
1592
1593 /* Re-attach the quota info that we detached from prev trx. */
1594 tp->t_dqinfo = dqinfo;
1595
1596 /*
1597 * Join the buffer even on commit error so that the buffer is released
1598 * when the caller cancels the transaction and doesn't have to handle
1599 * this error case specially.
1600 */
1601 xfs_trans_bjoin(tp, agibp);
1602 *tpp = tp;
1603 return error;
1604}
1605
1606static bool
1607xfs_dialloc_good_ag(
1608 struct xfs_perag *pag,
1609 struct xfs_trans *tp,
1610 umode_t mode,
1611 int flags,
1612 bool ok_alloc)
1613{
1614 struct xfs_mount *mp = tp->t_mountp;
1615 xfs_extlen_t ineed;
1616 xfs_extlen_t longest = 0;
1617 int needspace;
1618 int error;
1619
1620 if (!pag)
1621 return false;
1622 if (!xfs_perag_allows_inodes(pag))
1623 return false;
1624
1625 if (!xfs_perag_initialised_agi(pag)) {
1626 error = xfs_ialloc_read_agi(pag, tp, NULL);
1627 if (error)
1628 return false;
1629 }
1630
1631 if (pag->pagi_freecount)
1632 return true;
1633 if (!ok_alloc)
1634 return false;
1635
1636 if (!xfs_perag_initialised_agf(pag)) {
1637 error = xfs_alloc_read_agf(pag, tp, flags, NULL);
1638 if (error)
1639 return false;
1640 }
1641
1642 /*
1643 * Check that there is enough free space for the file plus a chunk of
1644 * inodes if we need to allocate some. If this is the first pass across
1645 * the AGs, take into account the potential space needed for alignment
1646 * of inode chunks when checking the longest contiguous free space in
1647 * the AG - this prevents us from getting ENOSPC because we have free
1648 * space larger than ialloc_blks but alignment constraints prevent us
1649 * from using it.
1650 *
1651 * If we can't find an AG with space for full alignment slack to be
1652 * taken into account, we must be near ENOSPC in all AGs. Hence we
1653 * don't include alignment for the second pass and so if we fail
1654 * allocation due to alignment issues then it is most likely a real
1655 * ENOSPC condition.
1656 *
1657 * XXX(dgc): this calculation is now bogus thanks to the per-ag
1658 * reservations that xfs_alloc_fix_freelist() now does via
1659 * xfs_alloc_space_available(). When the AG fills up, pagf_freeblks will
1660 * be more than large enough for the check below to succeed, but
1661 * xfs_alloc_space_available() will fail because of the non-zero
1662 * metadata reservation and hence we won't actually be able to allocate
1663 * more inodes in this AG. We do soooo much unnecessary work near ENOSPC
1664 * because of this.
1665 */
1666 ineed = M_IGEO(mp)->ialloc_min_blks;
1667 if (flags && ineed > 1)
1668 ineed += M_IGEO(mp)->cluster_align;
1669 longest = pag->pagf_longest;
1670 if (!longest)
1671 longest = pag->pagf_flcount > 0;
1672 needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
1673
1674 if (pag->pagf_freeblks < needspace + ineed || longest < ineed)
1675 return false;
1676 return true;
1677}
1678
1679static int
1680xfs_dialloc_try_ag(
1681 struct xfs_perag *pag,
1682 struct xfs_trans **tpp,
1683 xfs_ino_t parent,
1684 xfs_ino_t *new_ino,
1685 bool ok_alloc)
1686{
1687 struct xfs_buf *agbp;
1688 xfs_ino_t ino;
1689 int error;
1690
1691 /*
1692 * Then read in the AGI buffer and recheck with the AGI buffer
1693 * lock held.
1694 */
1695 error = xfs_ialloc_read_agi(pag, *tpp, &agbp);
1696 if (error)
1697 return error;
1698
1699 if (!pag->pagi_freecount) {
1700 if (!ok_alloc) {
1701 error = -EAGAIN;
1702 goto out_release;
1703 }
1704
1705 error = xfs_ialloc_ag_alloc(pag, *tpp, agbp);
1706 if (error < 0)
1707 goto out_release;
1708
1709 /*
1710 * We successfully allocated space for an inode cluster in this
1711 * AG. Roll the transaction so that we can allocate one of the
1712 * new inodes.
1713 */
1714 ASSERT(pag->pagi_freecount > 0);
1715 error = xfs_dialloc_roll(tpp, agbp);
1716 if (error)
1717 goto out_release;
1718 }
1719
1720 /* Allocate an inode in the found AG */
1721 error = xfs_dialloc_ag(pag, *tpp, agbp, parent, &ino);
1722 if (!error)
1723 *new_ino = ino;
1724 return error;
1725
1726out_release:
1727 xfs_trans_brelse(*tpp, agbp);
1728 return error;
1729}
1730
1731/*
1732 * Allocate an on-disk inode.
1733 *
1734 * Mode is used to tell whether the new inode is a directory and hence where to
1735 * locate it. The on-disk inode that is allocated will be returned in @new_ino
1736 * on success, otherwise an error will be set to indicate the failure (e.g.
1737 * -ENOSPC).
1738 */
1739int
1740xfs_dialloc(
1741 struct xfs_trans **tpp,
1742 xfs_ino_t parent,
1743 umode_t mode,
1744 xfs_ino_t *new_ino)
1745{
1746 struct xfs_mount *mp = (*tpp)->t_mountp;
1747 xfs_agnumber_t agno;
1748 int error = 0;
1749 xfs_agnumber_t start_agno;
1750 struct xfs_perag *pag;
1751 struct xfs_ino_geometry *igeo = M_IGEO(mp);
1752 bool ok_alloc = true;
1753 bool low_space = false;
1754 int flags;
1755 xfs_ino_t ino = NULLFSINO;
1756
1757 /*
1758 * Directories, symlinks, and regular files frequently allocate at least
1759 * one block, so factor that potential expansion when we examine whether
1760 * an AG has enough space for file creation.
1761 */
1762 if (S_ISDIR(mode))
1763 start_agno = (atomic_inc_return(&mp->m_agirotor) - 1) %
1764 mp->m_maxagi;
1765 else {
1766 start_agno = XFS_INO_TO_AGNO(mp, parent);
1767 if (start_agno >= mp->m_maxagi)
1768 start_agno = 0;
1769 }
1770
1771 /*
1772 * If we have already hit the ceiling of inode blocks then clear
1773 * ok_alloc so we scan all available agi structures for a free
1774 * inode.
1775 *
1776 * Read rough value of mp->m_icount by percpu_counter_read_positive,
1777 * which will sacrifice the preciseness but improve the performance.
1778 */
1779 if (igeo->maxicount &&
1780 percpu_counter_read_positive(&mp->m_icount) + igeo->ialloc_inos
1781 > igeo->maxicount) {
1782 ok_alloc = false;
1783 }
1784
1785 /*
1786 * If we are near to ENOSPC, we want to prefer allocation from AGs that
1787 * have free inodes in them rather than use up free space allocating new
1788 * inode chunks. Hence we turn off allocation for the first non-blocking
1789 * pass through the AGs if we are near ENOSPC to consume free inodes
1790 * that we can immediately allocate, but then we allow allocation on the
1791 * second pass if we fail to find an AG with free inodes in it.
1792 */
1793 if (percpu_counter_read_positive(&mp->m_fdblocks) <
1794 mp->m_low_space[XFS_LOWSP_1_PCNT]) {
1795 ok_alloc = false;
1796 low_space = true;
1797 }
1798
1799 /*
1800 * Loop until we find an allocation group that either has free inodes
1801 * or in which we can allocate some inodes. Iterate through the
1802 * allocation groups upward, wrapping at the end.
1803 */
1804 flags = XFS_ALLOC_FLAG_TRYLOCK;
1805retry:
1806 for_each_perag_wrap_at(mp, start_agno, mp->m_maxagi, agno, pag) {
1807 if (xfs_dialloc_good_ag(pag, *tpp, mode, flags, ok_alloc)) {
1808 error = xfs_dialloc_try_ag(pag, tpp, parent,
1809 &ino, ok_alloc);
1810 if (error != -EAGAIN)
1811 break;
1812 error = 0;
1813 }
1814
1815 if (xfs_is_shutdown(mp)) {
1816 error = -EFSCORRUPTED;
1817 break;
1818 }
1819 }
1820 if (pag)
1821 xfs_perag_rele(pag);
1822 if (error)
1823 return error;
1824 if (ino == NULLFSINO) {
1825 if (flags) {
1826 flags = 0;
1827 if (low_space)
1828 ok_alloc = true;
1829 goto retry;
1830 }
1831 return -ENOSPC;
1832 }
1833 *new_ino = ino;
1834 return 0;
1835}
1836
1837/*
1838 * Free the blocks of an inode chunk. We must consider that the inode chunk
1839 * might be sparse and only free the regions that are allocated as part of the
1840 * chunk.
1841 */
1842static int
1843xfs_difree_inode_chunk(
1844 struct xfs_trans *tp,
1845 xfs_agnumber_t agno,
1846 struct xfs_inobt_rec_incore *rec)
1847{
1848 struct xfs_mount *mp = tp->t_mountp;
1849 xfs_agblock_t sagbno = XFS_AGINO_TO_AGBNO(mp,
1850 rec->ir_startino);
1851 int startidx, endidx;
1852 int nextbit;
1853 xfs_agblock_t agbno;
1854 int contigblk;
1855 DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS);
1856
1857 if (!xfs_inobt_issparse(rec->ir_holemask)) {
1858 /* not sparse, calculate extent info directly */
1859 return xfs_free_extent_later(tp,
1860 XFS_AGB_TO_FSB(mp, agno, sagbno),
1861 M_IGEO(mp)->ialloc_blks, &XFS_RMAP_OINFO_INODES,
1862 XFS_AG_RESV_NONE, false);
1863 }
1864
1865 /* holemask is only 16-bits (fits in an unsigned long) */
1866 ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0]));
1867 holemask[0] = rec->ir_holemask;
1868
1869 /*
1870 * Find contiguous ranges of zeroes (i.e., allocated regions) in the
1871 * holemask and convert the start/end index of each range to an extent.
1872 * We start with the start and end index both pointing at the first 0 in
1873 * the mask.
1874 */
1875 startidx = endidx = find_first_zero_bit(holemask,
1876 XFS_INOBT_HOLEMASK_BITS);
1877 nextbit = startidx + 1;
1878 while (startidx < XFS_INOBT_HOLEMASK_BITS) {
1879 int error;
1880
1881 nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS,
1882 nextbit);
1883 /*
1884 * If the next zero bit is contiguous, update the end index of
1885 * the current range and continue.
1886 */
1887 if (nextbit != XFS_INOBT_HOLEMASK_BITS &&
1888 nextbit == endidx + 1) {
1889 endidx = nextbit;
1890 goto next;
1891 }
1892
1893 /*
1894 * nextbit is not contiguous with the current end index. Convert
1895 * the current start/end to an extent and add it to the free
1896 * list.
1897 */
1898 agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) /
1899 mp->m_sb.sb_inopblock;
1900 contigblk = ((endidx - startidx + 1) *
1901 XFS_INODES_PER_HOLEMASK_BIT) /
1902 mp->m_sb.sb_inopblock;
1903
1904 ASSERT(agbno % mp->m_sb.sb_spino_align == 0);
1905 ASSERT(contigblk % mp->m_sb.sb_spino_align == 0);
1906 error = xfs_free_extent_later(tp,
1907 XFS_AGB_TO_FSB(mp, agno, agbno), contigblk,
1908 &XFS_RMAP_OINFO_INODES, XFS_AG_RESV_NONE,
1909 false);
1910 if (error)
1911 return error;
1912
1913 /* reset range to current bit and carry on... */
1914 startidx = endidx = nextbit;
1915
1916next:
1917 nextbit++;
1918 }
1919 return 0;
1920}
1921
1922STATIC int
1923xfs_difree_inobt(
1924 struct xfs_perag *pag,
1925 struct xfs_trans *tp,
1926 struct xfs_buf *agbp,
1927 xfs_agino_t agino,
1928 struct xfs_icluster *xic,
1929 struct xfs_inobt_rec_incore *orec)
1930{
1931 struct xfs_mount *mp = pag->pag_mount;
1932 struct xfs_agi *agi = agbp->b_addr;
1933 struct xfs_btree_cur *cur;
1934 struct xfs_inobt_rec_incore rec;
1935 int ilen;
1936 int error;
1937 int i;
1938 int off;
1939
1940 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
1941 ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
1942
1943 /*
1944 * Initialize the cursor.
1945 */
1946 cur = xfs_inobt_init_cursor(pag, tp, agbp, XFS_BTNUM_INO);
1947
1948 error = xfs_check_agi_freecount(cur);
1949 if (error)
1950 goto error0;
1951
1952 /*
1953 * Look for the entry describing this inode.
1954 */
1955 if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
1956 xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
1957 __func__, error);
1958 goto error0;
1959 }
1960 if (XFS_IS_CORRUPT(mp, i != 1)) {
1961 error = -EFSCORRUPTED;
1962 goto error0;
1963 }
1964 error = xfs_inobt_get_rec(cur, &rec, &i);
1965 if (error) {
1966 xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
1967 __func__, error);
1968 goto error0;
1969 }
1970 if (XFS_IS_CORRUPT(mp, i != 1)) {
1971 error = -EFSCORRUPTED;
1972 goto error0;
1973 }
1974 /*
1975 * Get the offset in the inode chunk.
1976 */
1977 off = agino - rec.ir_startino;
1978 ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
1979 ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
1980 /*
1981 * Mark the inode free & increment the count.
1982 */
1983 rec.ir_free |= XFS_INOBT_MASK(off);
1984 rec.ir_freecount++;
1985
1986 /*
1987 * When an inode chunk is free, it becomes eligible for removal. Don't
1988 * remove the chunk if the block size is large enough for multiple inode
1989 * chunks (that might not be free).
1990 */
1991 if (!xfs_has_ikeep(mp) && rec.ir_free == XFS_INOBT_ALL_FREE &&
1992 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
1993 xic->deleted = true;
1994 xic->first_ino = XFS_AGINO_TO_INO(mp, pag->pag_agno,
1995 rec.ir_startino);
1996 xic->alloc = xfs_inobt_irec_to_allocmask(&rec);
1997
1998 /*
1999 * Remove the inode cluster from the AGI B+Tree, adjust the
2000 * AGI and Superblock inode counts, and mark the disk space
2001 * to be freed when the transaction is committed.
2002 */
2003 ilen = rec.ir_freecount;
2004 be32_add_cpu(&agi->agi_count, -ilen);
2005 be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
2006 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
2007 pag->pagi_freecount -= ilen - 1;
2008 pag->pagi_count -= ilen;
2009 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
2010 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
2011
2012 if ((error = xfs_btree_delete(cur, &i))) {
2013 xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
2014 __func__, error);
2015 goto error0;
2016 }
2017
2018 error = xfs_difree_inode_chunk(tp, pag->pag_agno, &rec);
2019 if (error)
2020 goto error0;
2021 } else {
2022 xic->deleted = false;
2023
2024 error = xfs_inobt_update(cur, &rec);
2025 if (error) {
2026 xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
2027 __func__, error);
2028 goto error0;
2029 }
2030
2031 /*
2032 * Change the inode free counts and log the ag/sb changes.
2033 */
2034 be32_add_cpu(&agi->agi_freecount, 1);
2035 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
2036 pag->pagi_freecount++;
2037 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
2038 }
2039
2040 error = xfs_check_agi_freecount(cur);
2041 if (error)
2042 goto error0;
2043
2044 *orec = rec;
2045 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2046 return 0;
2047
2048error0:
2049 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2050 return error;
2051}
2052
2053/*
2054 * Free an inode in the free inode btree.
2055 */
2056STATIC int
2057xfs_difree_finobt(
2058 struct xfs_perag *pag,
2059 struct xfs_trans *tp,
2060 struct xfs_buf *agbp,
2061 xfs_agino_t agino,
2062 struct xfs_inobt_rec_incore *ibtrec) /* inobt record */
2063{
2064 struct xfs_mount *mp = pag->pag_mount;
2065 struct xfs_btree_cur *cur;
2066 struct xfs_inobt_rec_incore rec;
2067 int offset = agino - ibtrec->ir_startino;
2068 int error;
2069 int i;
2070
2071 cur = xfs_inobt_init_cursor(pag, tp, agbp, XFS_BTNUM_FINO);
2072
2073 error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
2074 if (error)
2075 goto error;
2076 if (i == 0) {
2077 /*
2078 * If the record does not exist in the finobt, we must have just
2079 * freed an inode in a previously fully allocated chunk. If not,
2080 * something is out of sync.
2081 */
2082 if (XFS_IS_CORRUPT(mp, ibtrec->ir_freecount != 1)) {
2083 error = -EFSCORRUPTED;
2084 goto error;
2085 }
2086
2087 error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask,
2088 ibtrec->ir_count,
2089 ibtrec->ir_freecount,
2090 ibtrec->ir_free, &i);
2091 if (error)
2092 goto error;
2093 ASSERT(i == 1);
2094
2095 goto out;
2096 }
2097
2098 /*
2099 * Read and update the existing record. We could just copy the ibtrec
2100 * across here, but that would defeat the purpose of having redundant
2101 * metadata. By making the modifications independently, we can catch
2102 * corruptions that we wouldn't see if we just copied from one record
2103 * to another.
2104 */
2105 error = xfs_inobt_get_rec(cur, &rec, &i);
2106 if (error)
2107 goto error;
2108 if (XFS_IS_CORRUPT(mp, i != 1)) {
2109 error = -EFSCORRUPTED;
2110 goto error;
2111 }
2112
2113 rec.ir_free |= XFS_INOBT_MASK(offset);
2114 rec.ir_freecount++;
2115
2116 if (XFS_IS_CORRUPT(mp,
2117 rec.ir_free != ibtrec->ir_free ||
2118 rec.ir_freecount != ibtrec->ir_freecount)) {
2119 error = -EFSCORRUPTED;
2120 goto error;
2121 }
2122
2123 /*
2124 * The content of inobt records should always match between the inobt
2125 * and finobt. The lifecycle of records in the finobt is different from
2126 * the inobt in that the finobt only tracks records with at least one
2127 * free inode. Hence, if all of the inodes are free and we aren't
2128 * keeping inode chunks permanently on disk, remove the record.
2129 * Otherwise, update the record with the new information.
2130 *
2131 * Note that we currently can't free chunks when the block size is large
2132 * enough for multiple chunks. Leave the finobt record to remain in sync
2133 * with the inobt.
2134 */
2135 if (!xfs_has_ikeep(mp) && rec.ir_free == XFS_INOBT_ALL_FREE &&
2136 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
2137 error = xfs_btree_delete(cur, &i);
2138 if (error)
2139 goto error;
2140 ASSERT(i == 1);
2141 } else {
2142 error = xfs_inobt_update(cur, &rec);
2143 if (error)
2144 goto error;
2145 }
2146
2147out:
2148 error = xfs_check_agi_freecount(cur);
2149 if (error)
2150 goto error;
2151
2152 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2153 return 0;
2154
2155error:
2156 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2157 return error;
2158}
2159
2160/*
2161 * Free disk inode. Carefully avoids touching the incore inode, all
2162 * manipulations incore are the caller's responsibility.
2163 * The on-disk inode is not changed by this operation, only the
2164 * btree (free inode mask) is changed.
2165 */
2166int
2167xfs_difree(
2168 struct xfs_trans *tp,
2169 struct xfs_perag *pag,
2170 xfs_ino_t inode,
2171 struct xfs_icluster *xic)
2172{
2173 /* REFERENCED */
2174 xfs_agblock_t agbno; /* block number containing inode */
2175 struct xfs_buf *agbp; /* buffer for allocation group header */
2176 xfs_agino_t agino; /* allocation group inode number */
2177 int error; /* error return value */
2178 struct xfs_mount *mp = tp->t_mountp;
2179 struct xfs_inobt_rec_incore rec;/* btree record */
2180
2181 /*
2182 * Break up inode number into its components.
2183 */
2184 if (pag->pag_agno != XFS_INO_TO_AGNO(mp, inode)) {
2185 xfs_warn(mp, "%s: agno != pag->pag_agno (%d != %d).",
2186 __func__, XFS_INO_TO_AGNO(mp, inode), pag->pag_agno);
2187 ASSERT(0);
2188 return -EINVAL;
2189 }
2190 agino = XFS_INO_TO_AGINO(mp, inode);
2191 if (inode != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) {
2192 xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
2193 __func__, (unsigned long long)inode,
2194 (unsigned long long)XFS_AGINO_TO_INO(mp, pag->pag_agno, agino));
2195 ASSERT(0);
2196 return -EINVAL;
2197 }
2198 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2199 if (agbno >= mp->m_sb.sb_agblocks) {
2200 xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
2201 __func__, agbno, mp->m_sb.sb_agblocks);
2202 ASSERT(0);
2203 return -EINVAL;
2204 }
2205 /*
2206 * Get the allocation group header.
2207 */
2208 error = xfs_ialloc_read_agi(pag, tp, &agbp);
2209 if (error) {
2210 xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
2211 __func__, error);
2212 return error;
2213 }
2214
2215 /*
2216 * Fix up the inode allocation btree.
2217 */
2218 error = xfs_difree_inobt(pag, tp, agbp, agino, xic, &rec);
2219 if (error)
2220 goto error0;
2221
2222 /*
2223 * Fix up the free inode btree.
2224 */
2225 if (xfs_has_finobt(mp)) {
2226 error = xfs_difree_finobt(pag, tp, agbp, agino, &rec);
2227 if (error)
2228 goto error0;
2229 }
2230
2231 return 0;
2232
2233error0:
2234 return error;
2235}
2236
2237STATIC int
2238xfs_imap_lookup(
2239 struct xfs_perag *pag,
2240 struct xfs_trans *tp,
2241 xfs_agino_t agino,
2242 xfs_agblock_t agbno,
2243 xfs_agblock_t *chunk_agbno,
2244 xfs_agblock_t *offset_agbno,
2245 int flags)
2246{
2247 struct xfs_mount *mp = pag->pag_mount;
2248 struct xfs_inobt_rec_incore rec;
2249 struct xfs_btree_cur *cur;
2250 struct xfs_buf *agbp;
2251 int error;
2252 int i;
2253
2254 error = xfs_ialloc_read_agi(pag, tp, &agbp);
2255 if (error) {
2256 xfs_alert(mp,
2257 "%s: xfs_ialloc_read_agi() returned error %d, agno %d",
2258 __func__, error, pag->pag_agno);
2259 return error;
2260 }
2261
2262 /*
2263 * Lookup the inode record for the given agino. If the record cannot be
2264 * found, then it's an invalid inode number and we should abort. Once
2265 * we have a record, we need to ensure it contains the inode number
2266 * we are looking up.
2267 */
2268 cur = xfs_inobt_init_cursor(pag, tp, agbp, XFS_BTNUM_INO);
2269 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
2270 if (!error) {
2271 if (i)
2272 error = xfs_inobt_get_rec(cur, &rec, &i);
2273 if (!error && i == 0)
2274 error = -EINVAL;
2275 }
2276
2277 xfs_trans_brelse(tp, agbp);
2278 xfs_btree_del_cursor(cur, error);
2279 if (error)
2280 return error;
2281
2282 /* check that the returned record contains the required inode */
2283 if (rec.ir_startino > agino ||
2284 rec.ir_startino + M_IGEO(mp)->ialloc_inos <= agino)
2285 return -EINVAL;
2286
2287 /* for untrusted inodes check it is allocated first */
2288 if ((flags & XFS_IGET_UNTRUSTED) &&
2289 (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
2290 return -EINVAL;
2291
2292 *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
2293 *offset_agbno = agbno - *chunk_agbno;
2294 return 0;
2295}
2296
2297/*
2298 * Return the location of the inode in imap, for mapping it into a buffer.
2299 */
2300int
2301xfs_imap(
2302 struct xfs_perag *pag,
2303 struct xfs_trans *tp,
2304 xfs_ino_t ino, /* inode to locate */
2305 struct xfs_imap *imap, /* location map structure */
2306 uint flags) /* flags for inode btree lookup */
2307{
2308 struct xfs_mount *mp = pag->pag_mount;
2309 xfs_agblock_t agbno; /* block number of inode in the alloc group */
2310 xfs_agino_t agino; /* inode number within alloc group */
2311 xfs_agblock_t chunk_agbno; /* first block in inode chunk */
2312 xfs_agblock_t cluster_agbno; /* first block in inode cluster */
2313 int error; /* error code */
2314 int offset; /* index of inode in its buffer */
2315 xfs_agblock_t offset_agbno; /* blks from chunk start to inode */
2316
2317 ASSERT(ino != NULLFSINO);
2318
2319 /*
2320 * Split up the inode number into its parts.
2321 */
2322 agino = XFS_INO_TO_AGINO(mp, ino);
2323 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2324 if (agbno >= mp->m_sb.sb_agblocks ||
2325 ino != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) {
2326 error = -EINVAL;
2327#ifdef DEBUG
2328 /*
2329 * Don't output diagnostic information for untrusted inodes
2330 * as they can be invalid without implying corruption.
2331 */
2332 if (flags & XFS_IGET_UNTRUSTED)
2333 return error;
2334 if (agbno >= mp->m_sb.sb_agblocks) {
2335 xfs_alert(mp,
2336 "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
2337 __func__, (unsigned long long)agbno,
2338 (unsigned long)mp->m_sb.sb_agblocks);
2339 }
2340 if (ino != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) {
2341 xfs_alert(mp,
2342 "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
2343 __func__, ino,
2344 XFS_AGINO_TO_INO(mp, pag->pag_agno, agino));
2345 }
2346 xfs_stack_trace();
2347#endif /* DEBUG */
2348 return error;
2349 }
2350
2351 /*
2352 * For bulkstat and handle lookups, we have an untrusted inode number
2353 * that we have to verify is valid. We cannot do this just by reading
2354 * the inode buffer as it may have been unlinked and removed leaving
2355 * inodes in stale state on disk. Hence we have to do a btree lookup
2356 * in all cases where an untrusted inode number is passed.
2357 */
2358 if (flags & XFS_IGET_UNTRUSTED) {
2359 error = xfs_imap_lookup(pag, tp, agino, agbno,
2360 &chunk_agbno, &offset_agbno, flags);
2361 if (error)
2362 return error;
2363 goto out_map;
2364 }
2365
2366 /*
2367 * If the inode cluster size is the same as the blocksize or
2368 * smaller we get to the buffer by simple arithmetics.
2369 */
2370 if (M_IGEO(mp)->blocks_per_cluster == 1) {
2371 offset = XFS_INO_TO_OFFSET(mp, ino);
2372 ASSERT(offset < mp->m_sb.sb_inopblock);
2373
2374 imap->im_blkno = XFS_AGB_TO_DADDR(mp, pag->pag_agno, agbno);
2375 imap->im_len = XFS_FSB_TO_BB(mp, 1);
2376 imap->im_boffset = (unsigned short)(offset <<
2377 mp->m_sb.sb_inodelog);
2378 return 0;
2379 }
2380
2381 /*
2382 * If the inode chunks are aligned then use simple maths to
2383 * find the location. Otherwise we have to do a btree
2384 * lookup to find the location.
2385 */
2386 if (M_IGEO(mp)->inoalign_mask) {
2387 offset_agbno = agbno & M_IGEO(mp)->inoalign_mask;
2388 chunk_agbno = agbno - offset_agbno;
2389 } else {
2390 error = xfs_imap_lookup(pag, tp, agino, agbno,
2391 &chunk_agbno, &offset_agbno, flags);
2392 if (error)
2393 return error;
2394 }
2395
2396out_map:
2397 ASSERT(agbno >= chunk_agbno);
2398 cluster_agbno = chunk_agbno +
2399 ((offset_agbno / M_IGEO(mp)->blocks_per_cluster) *
2400 M_IGEO(mp)->blocks_per_cluster);
2401 offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
2402 XFS_INO_TO_OFFSET(mp, ino);
2403
2404 imap->im_blkno = XFS_AGB_TO_DADDR(mp, pag->pag_agno, cluster_agbno);
2405 imap->im_len = XFS_FSB_TO_BB(mp, M_IGEO(mp)->blocks_per_cluster);
2406 imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog);
2407
2408 /*
2409 * If the inode number maps to a block outside the bounds
2410 * of the file system then return NULL rather than calling
2411 * read_buf and panicing when we get an error from the
2412 * driver.
2413 */
2414 if ((imap->im_blkno + imap->im_len) >
2415 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
2416 xfs_alert(mp,
2417 "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
2418 __func__, (unsigned long long) imap->im_blkno,
2419 (unsigned long long) imap->im_len,
2420 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2421 return -EINVAL;
2422 }
2423 return 0;
2424}
2425
2426/*
2427 * Log specified fields for the ag hdr (inode section). The growth of the agi
2428 * structure over time requires that we interpret the buffer as two logical
2429 * regions delineated by the end of the unlinked list. This is due to the size
2430 * of the hash table and its location in the middle of the agi.
2431 *
2432 * For example, a request to log a field before agi_unlinked and a field after
2433 * agi_unlinked could cause us to log the entire hash table and use an excessive
2434 * amount of log space. To avoid this behavior, log the region up through
2435 * agi_unlinked in one call and the region after agi_unlinked through the end of
2436 * the structure in another.
2437 */
2438void
2439xfs_ialloc_log_agi(
2440 struct xfs_trans *tp,
2441 struct xfs_buf *bp,
2442 uint32_t fields)
2443{
2444 int first; /* first byte number */
2445 int last; /* last byte number */
2446 static const short offsets[] = { /* field starting offsets */
2447 /* keep in sync with bit definitions */
2448 offsetof(xfs_agi_t, agi_magicnum),
2449 offsetof(xfs_agi_t, agi_versionnum),
2450 offsetof(xfs_agi_t, agi_seqno),
2451 offsetof(xfs_agi_t, agi_length),
2452 offsetof(xfs_agi_t, agi_count),
2453 offsetof(xfs_agi_t, agi_root),
2454 offsetof(xfs_agi_t, agi_level),
2455 offsetof(xfs_agi_t, agi_freecount),
2456 offsetof(xfs_agi_t, agi_newino),
2457 offsetof(xfs_agi_t, agi_dirino),
2458 offsetof(xfs_agi_t, agi_unlinked),
2459 offsetof(xfs_agi_t, agi_free_root),
2460 offsetof(xfs_agi_t, agi_free_level),
2461 offsetof(xfs_agi_t, agi_iblocks),
2462 sizeof(xfs_agi_t)
2463 };
2464#ifdef DEBUG
2465 struct xfs_agi *agi = bp->b_addr;
2466
2467 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2468#endif
2469
2470 /*
2471 * Compute byte offsets for the first and last fields in the first
2472 * region and log the agi buffer. This only logs up through
2473 * agi_unlinked.
2474 */
2475 if (fields & XFS_AGI_ALL_BITS_R1) {
2476 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
2477 &first, &last);
2478 xfs_trans_log_buf(tp, bp, first, last);
2479 }
2480
2481 /*
2482 * Mask off the bits in the first region and calculate the first and
2483 * last field offsets for any bits in the second region.
2484 */
2485 fields &= ~XFS_AGI_ALL_BITS_R1;
2486 if (fields) {
2487 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
2488 &first, &last);
2489 xfs_trans_log_buf(tp, bp, first, last);
2490 }
2491}
2492
2493static xfs_failaddr_t
2494xfs_agi_verify(
2495 struct xfs_buf *bp)
2496{
2497 struct xfs_mount *mp = bp->b_mount;
2498 struct xfs_agi *agi = bp->b_addr;
2499 xfs_failaddr_t fa;
2500 uint32_t agi_seqno = be32_to_cpu(agi->agi_seqno);
2501 uint32_t agi_length = be32_to_cpu(agi->agi_length);
2502 int i;
2503
2504 if (xfs_has_crc(mp)) {
2505 if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid))
2506 return __this_address;
2507 if (!xfs_log_check_lsn(mp, be64_to_cpu(agi->agi_lsn)))
2508 return __this_address;
2509 }
2510
2511 /*
2512 * Validate the magic number of the agi block.
2513 */
2514 if (!xfs_verify_magic(bp, agi->agi_magicnum))
2515 return __this_address;
2516 if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
2517 return __this_address;
2518
2519 fa = xfs_validate_ag_length(bp, agi_seqno, agi_length);
2520 if (fa)
2521 return fa;
2522
2523 if (be32_to_cpu(agi->agi_level) < 1 ||
2524 be32_to_cpu(agi->agi_level) > M_IGEO(mp)->inobt_maxlevels)
2525 return __this_address;
2526
2527 if (xfs_has_finobt(mp) &&
2528 (be32_to_cpu(agi->agi_free_level) < 1 ||
2529 be32_to_cpu(agi->agi_free_level) > M_IGEO(mp)->inobt_maxlevels))
2530 return __this_address;
2531
2532 for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) {
2533 if (agi->agi_unlinked[i] == cpu_to_be32(NULLAGINO))
2534 continue;
2535 if (!xfs_verify_ino(mp, be32_to_cpu(agi->agi_unlinked[i])))
2536 return __this_address;
2537 }
2538
2539 return NULL;
2540}
2541
2542static void
2543xfs_agi_read_verify(
2544 struct xfs_buf *bp)
2545{
2546 struct xfs_mount *mp = bp->b_mount;
2547 xfs_failaddr_t fa;
2548
2549 if (xfs_has_crc(mp) &&
2550 !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
2551 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
2552 else {
2553 fa = xfs_agi_verify(bp);
2554 if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_IALLOC_READ_AGI))
2555 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2556 }
2557}
2558
2559static void
2560xfs_agi_write_verify(
2561 struct xfs_buf *bp)
2562{
2563 struct xfs_mount *mp = bp->b_mount;
2564 struct xfs_buf_log_item *bip = bp->b_log_item;
2565 struct xfs_agi *agi = bp->b_addr;
2566 xfs_failaddr_t fa;
2567
2568 fa = xfs_agi_verify(bp);
2569 if (fa) {
2570 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2571 return;
2572 }
2573
2574 if (!xfs_has_crc(mp))
2575 return;
2576
2577 if (bip)
2578 agi->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
2579 xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
2580}
2581
2582const struct xfs_buf_ops xfs_agi_buf_ops = {
2583 .name = "xfs_agi",
2584 .magic = { cpu_to_be32(XFS_AGI_MAGIC), cpu_to_be32(XFS_AGI_MAGIC) },
2585 .verify_read = xfs_agi_read_verify,
2586 .verify_write = xfs_agi_write_verify,
2587 .verify_struct = xfs_agi_verify,
2588};
2589
2590/*
2591 * Read in the allocation group header (inode allocation section)
2592 */
2593int
2594xfs_read_agi(
2595 struct xfs_perag *pag,
2596 struct xfs_trans *tp,
2597 struct xfs_buf **agibpp)
2598{
2599 struct xfs_mount *mp = pag->pag_mount;
2600 int error;
2601
2602 trace_xfs_read_agi(pag->pag_mount, pag->pag_agno);
2603
2604 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
2605 XFS_AG_DADDR(mp, pag->pag_agno, XFS_AGI_DADDR(mp)),
2606 XFS_FSS_TO_BB(mp, 1), 0, agibpp, &xfs_agi_buf_ops);
2607 if (error)
2608 return error;
2609 if (tp)
2610 xfs_trans_buf_set_type(tp, *agibpp, XFS_BLFT_AGI_BUF);
2611
2612 xfs_buf_set_ref(*agibpp, XFS_AGI_REF);
2613 return 0;
2614}
2615
2616/*
2617 * Read in the agi and initialise the per-ag data. If the caller supplies a
2618 * @agibpp, return the locked AGI buffer to them, otherwise release it.
2619 */
2620int
2621xfs_ialloc_read_agi(
2622 struct xfs_perag *pag,
2623 struct xfs_trans *tp,
2624 struct xfs_buf **agibpp)
2625{
2626 struct xfs_buf *agibp;
2627 struct xfs_agi *agi;
2628 int error;
2629
2630 trace_xfs_ialloc_read_agi(pag->pag_mount, pag->pag_agno);
2631
2632 error = xfs_read_agi(pag, tp, &agibp);
2633 if (error)
2634 return error;
2635
2636 agi = agibp->b_addr;
2637 if (!xfs_perag_initialised_agi(pag)) {
2638 pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
2639 pag->pagi_count = be32_to_cpu(agi->agi_count);
2640 set_bit(XFS_AGSTATE_AGI_INIT, &pag->pag_opstate);
2641 }
2642
2643 /*
2644 * It's possible for these to be out of sync if
2645 * we are in the middle of a forced shutdown.
2646 */
2647 ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
2648 xfs_is_shutdown(pag->pag_mount));
2649 if (agibpp)
2650 *agibpp = agibp;
2651 else
2652 xfs_trans_brelse(tp, agibp);
2653 return 0;
2654}
2655
2656/* How many inodes are backed by inode clusters ondisk? */
2657STATIC int
2658xfs_ialloc_count_ondisk(
2659 struct xfs_btree_cur *cur,
2660 xfs_agino_t low,
2661 xfs_agino_t high,
2662 unsigned int *allocated)
2663{
2664 struct xfs_inobt_rec_incore irec;
2665 unsigned int ret = 0;
2666 int has_record;
2667 int error;
2668
2669 error = xfs_inobt_lookup(cur, low, XFS_LOOKUP_LE, &has_record);
2670 if (error)
2671 return error;
2672
2673 while (has_record) {
2674 unsigned int i, hole_idx;
2675
2676 error = xfs_inobt_get_rec(cur, &irec, &has_record);
2677 if (error)
2678 return error;
2679 if (irec.ir_startino > high)
2680 break;
2681
2682 for (i = 0; i < XFS_INODES_PER_CHUNK; i++) {
2683 if (irec.ir_startino + i < low)
2684 continue;
2685 if (irec.ir_startino + i > high)
2686 break;
2687
2688 hole_idx = i / XFS_INODES_PER_HOLEMASK_BIT;
2689 if (!(irec.ir_holemask & (1U << hole_idx)))
2690 ret++;
2691 }
2692
2693 error = xfs_btree_increment(cur, 0, &has_record);
2694 if (error)
2695 return error;
2696 }
2697
2698 *allocated = ret;
2699 return 0;
2700}
2701
2702/* Is there an inode record covering a given extent? */
2703int
2704xfs_ialloc_has_inodes_at_extent(
2705 struct xfs_btree_cur *cur,
2706 xfs_agblock_t bno,
2707 xfs_extlen_t len,
2708 enum xbtree_recpacking *outcome)
2709{
2710 xfs_agino_t agino;
2711 xfs_agino_t last_agino;
2712 unsigned int allocated;
2713 int error;
2714
2715 agino = XFS_AGB_TO_AGINO(cur->bc_mp, bno);
2716 last_agino = XFS_AGB_TO_AGINO(cur->bc_mp, bno + len) - 1;
2717
2718 error = xfs_ialloc_count_ondisk(cur, agino, last_agino, &allocated);
2719 if (error)
2720 return error;
2721
2722 if (allocated == 0)
2723 *outcome = XBTREE_RECPACKING_EMPTY;
2724 else if (allocated == last_agino - agino + 1)
2725 *outcome = XBTREE_RECPACKING_FULL;
2726 else
2727 *outcome = XBTREE_RECPACKING_SPARSE;
2728 return 0;
2729}
2730
2731struct xfs_ialloc_count_inodes {
2732 xfs_agino_t count;
2733 xfs_agino_t freecount;
2734};
2735
2736/* Record inode counts across all inobt records. */
2737STATIC int
2738xfs_ialloc_count_inodes_rec(
2739 struct xfs_btree_cur *cur,
2740 const union xfs_btree_rec *rec,
2741 void *priv)
2742{
2743 struct xfs_inobt_rec_incore irec;
2744 struct xfs_ialloc_count_inodes *ci = priv;
2745 xfs_failaddr_t fa;
2746
2747 xfs_inobt_btrec_to_irec(cur->bc_mp, rec, &irec);
2748 fa = xfs_inobt_check_irec(cur->bc_ag.pag, &irec);
2749 if (fa)
2750 return xfs_inobt_complain_bad_rec(cur, fa, &irec);
2751
2752 ci->count += irec.ir_count;
2753 ci->freecount += irec.ir_freecount;
2754
2755 return 0;
2756}
2757
2758/* Count allocated and free inodes under an inobt. */
2759int
2760xfs_ialloc_count_inodes(
2761 struct xfs_btree_cur *cur,
2762 xfs_agino_t *count,
2763 xfs_agino_t *freecount)
2764{
2765 struct xfs_ialloc_count_inodes ci = {0};
2766 int error;
2767
2768 ASSERT(cur->bc_btnum == XFS_BTNUM_INO);
2769 error = xfs_btree_query_all(cur, xfs_ialloc_count_inodes_rec, &ci);
2770 if (error)
2771 return error;
2772
2773 *count = ci.count;
2774 *freecount = ci.freecount;
2775 return 0;
2776}
2777
2778/*
2779 * Initialize inode-related geometry information.
2780 *
2781 * Compute the inode btree min and max levels and set maxicount.
2782 *
2783 * Set the inode cluster size. This may still be overridden by the file
2784 * system block size if it is larger than the chosen cluster size.
2785 *
2786 * For v5 filesystems, scale the cluster size with the inode size to keep a
2787 * constant ratio of inode per cluster buffer, but only if mkfs has set the
2788 * inode alignment value appropriately for larger cluster sizes.
2789 *
2790 * Then compute the inode cluster alignment information.
2791 */
2792void
2793xfs_ialloc_setup_geometry(
2794 struct xfs_mount *mp)
2795{
2796 struct xfs_sb *sbp = &mp->m_sb;
2797 struct xfs_ino_geometry *igeo = M_IGEO(mp);
2798 uint64_t icount;
2799 uint inodes;
2800
2801 igeo->new_diflags2 = 0;
2802 if (xfs_has_bigtime(mp))
2803 igeo->new_diflags2 |= XFS_DIFLAG2_BIGTIME;
2804 if (xfs_has_large_extent_counts(mp))
2805 igeo->new_diflags2 |= XFS_DIFLAG2_NREXT64;
2806
2807 /* Compute inode btree geometry. */
2808 igeo->agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
2809 igeo->inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1);
2810 igeo->inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0);
2811 igeo->inobt_mnr[0] = igeo->inobt_mxr[0] / 2;
2812 igeo->inobt_mnr[1] = igeo->inobt_mxr[1] / 2;
2813
2814 igeo->ialloc_inos = max_t(uint16_t, XFS_INODES_PER_CHUNK,
2815 sbp->sb_inopblock);
2816 igeo->ialloc_blks = igeo->ialloc_inos >> sbp->sb_inopblog;
2817
2818 if (sbp->sb_spino_align)
2819 igeo->ialloc_min_blks = sbp->sb_spino_align;
2820 else
2821 igeo->ialloc_min_blks = igeo->ialloc_blks;
2822
2823 /* Compute and fill in value of m_ino_geo.inobt_maxlevels. */
2824 inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG;
2825 igeo->inobt_maxlevels = xfs_btree_compute_maxlevels(igeo->inobt_mnr,
2826 inodes);
2827 ASSERT(igeo->inobt_maxlevels <= xfs_iallocbt_maxlevels_ondisk());
2828
2829 /*
2830 * Set the maximum inode count for this filesystem, being careful not
2831 * to use obviously garbage sb_inopblog/sb_inopblock values. Regular
2832 * users should never get here due to failing sb verification, but
2833 * certain users (xfs_db) need to be usable even with corrupt metadata.
2834 */
2835 if (sbp->sb_imax_pct && igeo->ialloc_blks) {
2836 /*
2837 * Make sure the maximum inode count is a multiple
2838 * of the units we allocate inodes in.
2839 */
2840 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
2841 do_div(icount, 100);
2842 do_div(icount, igeo->ialloc_blks);
2843 igeo->maxicount = XFS_FSB_TO_INO(mp,
2844 icount * igeo->ialloc_blks);
2845 } else {
2846 igeo->maxicount = 0;
2847 }
2848
2849 /*
2850 * Compute the desired size of an inode cluster buffer size, which
2851 * starts at 8K and (on v5 filesystems) scales up with larger inode
2852 * sizes.
2853 *
2854 * Preserve the desired inode cluster size because the sparse inodes
2855 * feature uses that desired size (not the actual size) to compute the
2856 * sparse inode alignment. The mount code validates this value, so we
2857 * cannot change the behavior.
2858 */
2859 igeo->inode_cluster_size_raw = XFS_INODE_BIG_CLUSTER_SIZE;
2860 if (xfs_has_v3inodes(mp)) {
2861 int new_size = igeo->inode_cluster_size_raw;
2862
2863 new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
2864 if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
2865 igeo->inode_cluster_size_raw = new_size;
2866 }
2867
2868 /* Calculate inode cluster ratios. */
2869 if (igeo->inode_cluster_size_raw > mp->m_sb.sb_blocksize)
2870 igeo->blocks_per_cluster = XFS_B_TO_FSBT(mp,
2871 igeo->inode_cluster_size_raw);
2872 else
2873 igeo->blocks_per_cluster = 1;
2874 igeo->inode_cluster_size = XFS_FSB_TO_B(mp, igeo->blocks_per_cluster);
2875 igeo->inodes_per_cluster = XFS_FSB_TO_INO(mp, igeo->blocks_per_cluster);
2876
2877 /* Calculate inode cluster alignment. */
2878 if (xfs_has_align(mp) &&
2879 mp->m_sb.sb_inoalignmt >= igeo->blocks_per_cluster)
2880 igeo->cluster_align = mp->m_sb.sb_inoalignmt;
2881 else
2882 igeo->cluster_align = 1;
2883 igeo->inoalign_mask = igeo->cluster_align - 1;
2884 igeo->cluster_align_inodes = XFS_FSB_TO_INO(mp, igeo->cluster_align);
2885
2886 /*
2887 * If we are using stripe alignment, check whether
2888 * the stripe unit is a multiple of the inode alignment
2889 */
2890 if (mp->m_dalign && igeo->inoalign_mask &&
2891 !(mp->m_dalign & igeo->inoalign_mask))
2892 igeo->ialloc_align = mp->m_dalign;
2893 else
2894 igeo->ialloc_align = 0;
2895}
2896
2897/* Compute the location of the root directory inode that is laid out by mkfs. */
2898xfs_ino_t
2899xfs_ialloc_calc_rootino(
2900 struct xfs_mount *mp,
2901 int sunit)
2902{
2903 struct xfs_ino_geometry *igeo = M_IGEO(mp);
2904 xfs_agblock_t first_bno;
2905
2906 /*
2907 * Pre-calculate the geometry of AG 0. We know what it looks like
2908 * because libxfs knows how to create allocation groups now.
2909 *
2910 * first_bno is the first block in which mkfs could possibly have
2911 * allocated the root directory inode, once we factor in the metadata
2912 * that mkfs formats before it. Namely, the four AG headers...
2913 */
2914 first_bno = howmany(4 * mp->m_sb.sb_sectsize, mp->m_sb.sb_blocksize);
2915
2916 /* ...the two free space btree roots... */
2917 first_bno += 2;
2918
2919 /* ...the inode btree root... */
2920 first_bno += 1;
2921
2922 /* ...the initial AGFL... */
2923 first_bno += xfs_alloc_min_freelist(mp, NULL);
2924
2925 /* ...the free inode btree root... */
2926 if (xfs_has_finobt(mp))
2927 first_bno++;
2928
2929 /* ...the reverse mapping btree root... */
2930 if (xfs_has_rmapbt(mp))
2931 first_bno++;
2932
2933 /* ...the reference count btree... */
2934 if (xfs_has_reflink(mp))
2935 first_bno++;
2936
2937 /*
2938 * ...and the log, if it is allocated in the first allocation group.
2939 *
2940 * This can happen with filesystems that only have a single
2941 * allocation group, or very odd geometries created by old mkfs
2942 * versions on very small filesystems.
2943 */
2944 if (xfs_ag_contains_log(mp, 0))
2945 first_bno += mp->m_sb.sb_logblocks;
2946
2947 /*
2948 * Now round first_bno up to whatever allocation alignment is given
2949 * by the filesystem or was passed in.
2950 */
2951 if (xfs_has_dalign(mp) && igeo->ialloc_align > 0)
2952 first_bno = roundup(first_bno, sunit);
2953 else if (xfs_has_align(mp) &&
2954 mp->m_sb.sb_inoalignmt > 1)
2955 first_bno = roundup(first_bno, mp->m_sb.sb_inoalignmt);
2956
2957 return XFS_AGINO_TO_INO(mp, 0, XFS_AGB_TO_AGINO(mp, first_bno));
2958}
2959
2960/*
2961 * Ensure there are not sparse inode clusters that cross the new EOAG.
2962 *
2963 * This is a no-op for non-spinode filesystems since clusters are always fully
2964 * allocated and checking the bnobt suffices. However, a spinode filesystem
2965 * could have a record where the upper inodes are free blocks. If those blocks
2966 * were removed from the filesystem, the inode record would extend beyond EOAG,
2967 * which will be flagged as corruption.
2968 */
2969int
2970xfs_ialloc_check_shrink(
2971 struct xfs_perag *pag,
2972 struct xfs_trans *tp,
2973 struct xfs_buf *agibp,
2974 xfs_agblock_t new_length)
2975{
2976 struct xfs_inobt_rec_incore rec;
2977 struct xfs_btree_cur *cur;
2978 xfs_agino_t agino;
2979 int has;
2980 int error;
2981
2982 if (!xfs_has_sparseinodes(pag->pag_mount))
2983 return 0;
2984
2985 cur = xfs_inobt_init_cursor(pag, tp, agibp, XFS_BTNUM_INO);
2986
2987 /* Look up the inobt record that would correspond to the new EOFS. */
2988 agino = XFS_AGB_TO_AGINO(pag->pag_mount, new_length);
2989 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &has);
2990 if (error || !has)
2991 goto out;
2992
2993 error = xfs_inobt_get_rec(cur, &rec, &has);
2994 if (error)
2995 goto out;
2996
2997 if (!has) {
2998 error = -EFSCORRUPTED;
2999 goto out;
3000 }
3001
3002 /* If the record covers inodes that would be beyond EOFS, bail out. */
3003 if (rec.ir_startino + XFS_INODES_PER_CHUNK > agino) {
3004 error = -ENOSPC;
3005 goto out;
3006 }
3007out:
3008 xfs_btree_del_cursor(cur, error);
3009 return error;
3010}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_bit.h"
13#include "xfs_mount.h"
14#include "xfs_inode.h"
15#include "xfs_btree.h"
16#include "xfs_ialloc.h"
17#include "xfs_ialloc_btree.h"
18#include "xfs_alloc.h"
19#include "xfs_errortag.h"
20#include "xfs_error.h"
21#include "xfs_bmap.h"
22#include "xfs_trans.h"
23#include "xfs_buf_item.h"
24#include "xfs_icreate_item.h"
25#include "xfs_icache.h"
26#include "xfs_trace.h"
27#include "xfs_log.h"
28#include "xfs_rmap.h"
29#include "xfs_ag.h"
30
31/*
32 * Lookup a record by ino in the btree given by cur.
33 */
34int /* error */
35xfs_inobt_lookup(
36 struct xfs_btree_cur *cur, /* btree cursor */
37 xfs_agino_t ino, /* starting inode of chunk */
38 xfs_lookup_t dir, /* <=, >=, == */
39 int *stat) /* success/failure */
40{
41 cur->bc_rec.i.ir_startino = ino;
42 cur->bc_rec.i.ir_holemask = 0;
43 cur->bc_rec.i.ir_count = 0;
44 cur->bc_rec.i.ir_freecount = 0;
45 cur->bc_rec.i.ir_free = 0;
46 return xfs_btree_lookup(cur, dir, stat);
47}
48
49/*
50 * Update the record referred to by cur to the value given.
51 * This either works (return 0) or gets an EFSCORRUPTED error.
52 */
53STATIC int /* error */
54xfs_inobt_update(
55 struct xfs_btree_cur *cur, /* btree cursor */
56 xfs_inobt_rec_incore_t *irec) /* btree record */
57{
58 union xfs_btree_rec rec;
59
60 rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
61 if (xfs_has_sparseinodes(cur->bc_mp)) {
62 rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask);
63 rec.inobt.ir_u.sp.ir_count = irec->ir_count;
64 rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount;
65 } else {
66 /* ir_holemask/ir_count not supported on-disk */
67 rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount);
68 }
69 rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
70 return xfs_btree_update(cur, &rec);
71}
72
73/* Convert on-disk btree record to incore inobt record. */
74void
75xfs_inobt_btrec_to_irec(
76 struct xfs_mount *mp,
77 const union xfs_btree_rec *rec,
78 struct xfs_inobt_rec_incore *irec)
79{
80 irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
81 if (xfs_has_sparseinodes(mp)) {
82 irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask);
83 irec->ir_count = rec->inobt.ir_u.sp.ir_count;
84 irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount;
85 } else {
86 /*
87 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
88 * values for full inode chunks.
89 */
90 irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL;
91 irec->ir_count = XFS_INODES_PER_CHUNK;
92 irec->ir_freecount =
93 be32_to_cpu(rec->inobt.ir_u.f.ir_freecount);
94 }
95 irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
96}
97
98/*
99 * Get the data from the pointed-to record.
100 */
101int
102xfs_inobt_get_rec(
103 struct xfs_btree_cur *cur,
104 struct xfs_inobt_rec_incore *irec,
105 int *stat)
106{
107 struct xfs_mount *mp = cur->bc_mp;
108 union xfs_btree_rec *rec;
109 int error;
110 uint64_t realfree;
111
112 error = xfs_btree_get_rec(cur, &rec, stat);
113 if (error || *stat == 0)
114 return error;
115
116 xfs_inobt_btrec_to_irec(mp, rec, irec);
117
118 if (!xfs_verify_agino(cur->bc_ag.pag, irec->ir_startino))
119 goto out_bad_rec;
120 if (irec->ir_count < XFS_INODES_PER_HOLEMASK_BIT ||
121 irec->ir_count > XFS_INODES_PER_CHUNK)
122 goto out_bad_rec;
123 if (irec->ir_freecount > XFS_INODES_PER_CHUNK)
124 goto out_bad_rec;
125
126 /* if there are no holes, return the first available offset */
127 if (!xfs_inobt_issparse(irec->ir_holemask))
128 realfree = irec->ir_free;
129 else
130 realfree = irec->ir_free & xfs_inobt_irec_to_allocmask(irec);
131 if (hweight64(realfree) != irec->ir_freecount)
132 goto out_bad_rec;
133
134 return 0;
135
136out_bad_rec:
137 xfs_warn(mp,
138 "%s Inode BTree record corruption in AG %d detected!",
139 cur->bc_btnum == XFS_BTNUM_INO ? "Used" : "Free",
140 cur->bc_ag.pag->pag_agno);
141 xfs_warn(mp,
142"start inode 0x%x, count 0x%x, free 0x%x freemask 0x%llx, holemask 0x%x",
143 irec->ir_startino, irec->ir_count, irec->ir_freecount,
144 irec->ir_free, irec->ir_holemask);
145 return -EFSCORRUPTED;
146}
147
148/*
149 * Insert a single inobt record. Cursor must already point to desired location.
150 */
151int
152xfs_inobt_insert_rec(
153 struct xfs_btree_cur *cur,
154 uint16_t holemask,
155 uint8_t count,
156 int32_t freecount,
157 xfs_inofree_t free,
158 int *stat)
159{
160 cur->bc_rec.i.ir_holemask = holemask;
161 cur->bc_rec.i.ir_count = count;
162 cur->bc_rec.i.ir_freecount = freecount;
163 cur->bc_rec.i.ir_free = free;
164 return xfs_btree_insert(cur, stat);
165}
166
167/*
168 * Insert records describing a newly allocated inode chunk into the inobt.
169 */
170STATIC int
171xfs_inobt_insert(
172 struct xfs_mount *mp,
173 struct xfs_trans *tp,
174 struct xfs_buf *agbp,
175 struct xfs_perag *pag,
176 xfs_agino_t newino,
177 xfs_agino_t newlen,
178 xfs_btnum_t btnum)
179{
180 struct xfs_btree_cur *cur;
181 xfs_agino_t thisino;
182 int i;
183 int error;
184
185 cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, btnum);
186
187 for (thisino = newino;
188 thisino < newino + newlen;
189 thisino += XFS_INODES_PER_CHUNK) {
190 error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
191 if (error) {
192 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
193 return error;
194 }
195 ASSERT(i == 0);
196
197 error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL,
198 XFS_INODES_PER_CHUNK,
199 XFS_INODES_PER_CHUNK,
200 XFS_INOBT_ALL_FREE, &i);
201 if (error) {
202 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
203 return error;
204 }
205 ASSERT(i == 1);
206 }
207
208 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
209
210 return 0;
211}
212
213/*
214 * Verify that the number of free inodes in the AGI is correct.
215 */
216#ifdef DEBUG
217static int
218xfs_check_agi_freecount(
219 struct xfs_btree_cur *cur)
220{
221 if (cur->bc_nlevels == 1) {
222 xfs_inobt_rec_incore_t rec;
223 int freecount = 0;
224 int error;
225 int i;
226
227 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
228 if (error)
229 return error;
230
231 do {
232 error = xfs_inobt_get_rec(cur, &rec, &i);
233 if (error)
234 return error;
235
236 if (i) {
237 freecount += rec.ir_freecount;
238 error = xfs_btree_increment(cur, 0, &i);
239 if (error)
240 return error;
241 }
242 } while (i == 1);
243
244 if (!xfs_is_shutdown(cur->bc_mp))
245 ASSERT(freecount == cur->bc_ag.pag->pagi_freecount);
246 }
247 return 0;
248}
249#else
250#define xfs_check_agi_freecount(cur) 0
251#endif
252
253/*
254 * Initialise a new set of inodes. When called without a transaction context
255 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
256 * than logging them (which in a transaction context puts them into the AIL
257 * for writeback rather than the xfsbufd queue).
258 */
259int
260xfs_ialloc_inode_init(
261 struct xfs_mount *mp,
262 struct xfs_trans *tp,
263 struct list_head *buffer_list,
264 int icount,
265 xfs_agnumber_t agno,
266 xfs_agblock_t agbno,
267 xfs_agblock_t length,
268 unsigned int gen)
269{
270 struct xfs_buf *fbuf;
271 struct xfs_dinode *free;
272 int nbufs;
273 int version;
274 int i, j;
275 xfs_daddr_t d;
276 xfs_ino_t ino = 0;
277 int error;
278
279 /*
280 * Loop over the new block(s), filling in the inodes. For small block
281 * sizes, manipulate the inodes in buffers which are multiples of the
282 * blocks size.
283 */
284 nbufs = length / M_IGEO(mp)->blocks_per_cluster;
285
286 /*
287 * Figure out what version number to use in the inodes we create. If
288 * the superblock version has caught up to the one that supports the new
289 * inode format, then use the new inode version. Otherwise use the old
290 * version so that old kernels will continue to be able to use the file
291 * system.
292 *
293 * For v3 inodes, we also need to write the inode number into the inode,
294 * so calculate the first inode number of the chunk here as
295 * XFS_AGB_TO_AGINO() only works within a filesystem block, not
296 * across multiple filesystem blocks (such as a cluster) and so cannot
297 * be used in the cluster buffer loop below.
298 *
299 * Further, because we are writing the inode directly into the buffer
300 * and calculating a CRC on the entire inode, we have ot log the entire
301 * inode so that the entire range the CRC covers is present in the log.
302 * That means for v3 inode we log the entire buffer rather than just the
303 * inode cores.
304 */
305 if (xfs_has_v3inodes(mp)) {
306 version = 3;
307 ino = XFS_AGINO_TO_INO(mp, agno, XFS_AGB_TO_AGINO(mp, agbno));
308
309 /*
310 * log the initialisation that is about to take place as an
311 * logical operation. This means the transaction does not
312 * need to log the physical changes to the inode buffers as log
313 * recovery will know what initialisation is actually needed.
314 * Hence we only need to log the buffers as "ordered" buffers so
315 * they track in the AIL as if they were physically logged.
316 */
317 if (tp)
318 xfs_icreate_log(tp, agno, agbno, icount,
319 mp->m_sb.sb_inodesize, length, gen);
320 } else
321 version = 2;
322
323 for (j = 0; j < nbufs; j++) {
324 /*
325 * Get the block.
326 */
327 d = XFS_AGB_TO_DADDR(mp, agno, agbno +
328 (j * M_IGEO(mp)->blocks_per_cluster));
329 error = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
330 mp->m_bsize * M_IGEO(mp)->blocks_per_cluster,
331 XBF_UNMAPPED, &fbuf);
332 if (error)
333 return error;
334
335 /* Initialize the inode buffers and log them appropriately. */
336 fbuf->b_ops = &xfs_inode_buf_ops;
337 xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
338 for (i = 0; i < M_IGEO(mp)->inodes_per_cluster; i++) {
339 int ioffset = i << mp->m_sb.sb_inodelog;
340
341 free = xfs_make_iptr(mp, fbuf, i);
342 free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
343 free->di_version = version;
344 free->di_gen = cpu_to_be32(gen);
345 free->di_next_unlinked = cpu_to_be32(NULLAGINO);
346
347 if (version == 3) {
348 free->di_ino = cpu_to_be64(ino);
349 ino++;
350 uuid_copy(&free->di_uuid,
351 &mp->m_sb.sb_meta_uuid);
352 xfs_dinode_calc_crc(mp, free);
353 } else if (tp) {
354 /* just log the inode core */
355 xfs_trans_log_buf(tp, fbuf, ioffset,
356 ioffset + XFS_DINODE_SIZE(mp) - 1);
357 }
358 }
359
360 if (tp) {
361 /*
362 * Mark the buffer as an inode allocation buffer so it
363 * sticks in AIL at the point of this allocation
364 * transaction. This ensures the they are on disk before
365 * the tail of the log can be moved past this
366 * transaction (i.e. by preventing relogging from moving
367 * it forward in the log).
368 */
369 xfs_trans_inode_alloc_buf(tp, fbuf);
370 if (version == 3) {
371 /*
372 * Mark the buffer as ordered so that they are
373 * not physically logged in the transaction but
374 * still tracked in the AIL as part of the
375 * transaction and pin the log appropriately.
376 */
377 xfs_trans_ordered_buf(tp, fbuf);
378 }
379 } else {
380 fbuf->b_flags |= XBF_DONE;
381 xfs_buf_delwri_queue(fbuf, buffer_list);
382 xfs_buf_relse(fbuf);
383 }
384 }
385 return 0;
386}
387
388/*
389 * Align startino and allocmask for a recently allocated sparse chunk such that
390 * they are fit for insertion (or merge) into the on-disk inode btrees.
391 *
392 * Background:
393 *
394 * When enabled, sparse inode support increases the inode alignment from cluster
395 * size to inode chunk size. This means that the minimum range between two
396 * non-adjacent inode records in the inobt is large enough for a full inode
397 * record. This allows for cluster sized, cluster aligned block allocation
398 * without need to worry about whether the resulting inode record overlaps with
399 * another record in the tree. Without this basic rule, we would have to deal
400 * with the consequences of overlap by potentially undoing recent allocations in
401 * the inode allocation codepath.
402 *
403 * Because of this alignment rule (which is enforced on mount), there are two
404 * inobt possibilities for newly allocated sparse chunks. One is that the
405 * aligned inode record for the chunk covers a range of inodes not already
406 * covered in the inobt (i.e., it is safe to insert a new sparse record). The
407 * other is that a record already exists at the aligned startino that considers
408 * the newly allocated range as sparse. In the latter case, record content is
409 * merged in hope that sparse inode chunks fill to full chunks over time.
410 */
411STATIC void
412xfs_align_sparse_ino(
413 struct xfs_mount *mp,
414 xfs_agino_t *startino,
415 uint16_t *allocmask)
416{
417 xfs_agblock_t agbno;
418 xfs_agblock_t mod;
419 int offset;
420
421 agbno = XFS_AGINO_TO_AGBNO(mp, *startino);
422 mod = agbno % mp->m_sb.sb_inoalignmt;
423 if (!mod)
424 return;
425
426 /* calculate the inode offset and align startino */
427 offset = XFS_AGB_TO_AGINO(mp, mod);
428 *startino -= offset;
429
430 /*
431 * Since startino has been aligned down, left shift allocmask such that
432 * it continues to represent the same physical inodes relative to the
433 * new startino.
434 */
435 *allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT;
436}
437
438/*
439 * Determine whether the source inode record can merge into the target. Both
440 * records must be sparse, the inode ranges must match and there must be no
441 * allocation overlap between the records.
442 */
443STATIC bool
444__xfs_inobt_can_merge(
445 struct xfs_inobt_rec_incore *trec, /* tgt record */
446 struct xfs_inobt_rec_incore *srec) /* src record */
447{
448 uint64_t talloc;
449 uint64_t salloc;
450
451 /* records must cover the same inode range */
452 if (trec->ir_startino != srec->ir_startino)
453 return false;
454
455 /* both records must be sparse */
456 if (!xfs_inobt_issparse(trec->ir_holemask) ||
457 !xfs_inobt_issparse(srec->ir_holemask))
458 return false;
459
460 /* both records must track some inodes */
461 if (!trec->ir_count || !srec->ir_count)
462 return false;
463
464 /* can't exceed capacity of a full record */
465 if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK)
466 return false;
467
468 /* verify there is no allocation overlap */
469 talloc = xfs_inobt_irec_to_allocmask(trec);
470 salloc = xfs_inobt_irec_to_allocmask(srec);
471 if (talloc & salloc)
472 return false;
473
474 return true;
475}
476
477/*
478 * Merge the source inode record into the target. The caller must call
479 * __xfs_inobt_can_merge() to ensure the merge is valid.
480 */
481STATIC void
482__xfs_inobt_rec_merge(
483 struct xfs_inobt_rec_incore *trec, /* target */
484 struct xfs_inobt_rec_incore *srec) /* src */
485{
486 ASSERT(trec->ir_startino == srec->ir_startino);
487
488 /* combine the counts */
489 trec->ir_count += srec->ir_count;
490 trec->ir_freecount += srec->ir_freecount;
491
492 /*
493 * Merge the holemask and free mask. For both fields, 0 bits refer to
494 * allocated inodes. We combine the allocated ranges with bitwise AND.
495 */
496 trec->ir_holemask &= srec->ir_holemask;
497 trec->ir_free &= srec->ir_free;
498}
499
500/*
501 * Insert a new sparse inode chunk into the associated inode btree. The inode
502 * record for the sparse chunk is pre-aligned to a startino that should match
503 * any pre-existing sparse inode record in the tree. This allows sparse chunks
504 * to fill over time.
505 *
506 * This function supports two modes of handling preexisting records depending on
507 * the merge flag. If merge is true, the provided record is merged with the
508 * existing record and updated in place. The merged record is returned in nrec.
509 * If merge is false, an existing record is replaced with the provided record.
510 * If no preexisting record exists, the provided record is always inserted.
511 *
512 * It is considered corruption if a merge is requested and not possible. Given
513 * the sparse inode alignment constraints, this should never happen.
514 */
515STATIC int
516xfs_inobt_insert_sprec(
517 struct xfs_mount *mp,
518 struct xfs_trans *tp,
519 struct xfs_buf *agbp,
520 struct xfs_perag *pag,
521 int btnum,
522 struct xfs_inobt_rec_incore *nrec, /* in/out: new/merged rec. */
523 bool merge) /* merge or replace */
524{
525 struct xfs_btree_cur *cur;
526 int error;
527 int i;
528 struct xfs_inobt_rec_incore rec;
529
530 cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, btnum);
531
532 /* the new record is pre-aligned so we know where to look */
533 error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
534 if (error)
535 goto error;
536 /* if nothing there, insert a new record and return */
537 if (i == 0) {
538 error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
539 nrec->ir_count, nrec->ir_freecount,
540 nrec->ir_free, &i);
541 if (error)
542 goto error;
543 if (XFS_IS_CORRUPT(mp, i != 1)) {
544 error = -EFSCORRUPTED;
545 goto error;
546 }
547
548 goto out;
549 }
550
551 /*
552 * A record exists at this startino. Merge or replace the record
553 * depending on what we've been asked to do.
554 */
555 if (merge) {
556 error = xfs_inobt_get_rec(cur, &rec, &i);
557 if (error)
558 goto error;
559 if (XFS_IS_CORRUPT(mp, i != 1)) {
560 error = -EFSCORRUPTED;
561 goto error;
562 }
563 if (XFS_IS_CORRUPT(mp, rec.ir_startino != nrec->ir_startino)) {
564 error = -EFSCORRUPTED;
565 goto error;
566 }
567
568 /*
569 * This should never fail. If we have coexisting records that
570 * cannot merge, something is seriously wrong.
571 */
572 if (XFS_IS_CORRUPT(mp, !__xfs_inobt_can_merge(nrec, &rec))) {
573 error = -EFSCORRUPTED;
574 goto error;
575 }
576
577 trace_xfs_irec_merge_pre(mp, pag->pag_agno, rec.ir_startino,
578 rec.ir_holemask, nrec->ir_startino,
579 nrec->ir_holemask);
580
581 /* merge to nrec to output the updated record */
582 __xfs_inobt_rec_merge(nrec, &rec);
583
584 trace_xfs_irec_merge_post(mp, pag->pag_agno, nrec->ir_startino,
585 nrec->ir_holemask);
586
587 error = xfs_inobt_rec_check_count(mp, nrec);
588 if (error)
589 goto error;
590 }
591
592 error = xfs_inobt_update(cur, nrec);
593 if (error)
594 goto error;
595
596out:
597 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
598 return 0;
599error:
600 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
601 return error;
602}
603
604/*
605 * Allocate new inodes in the allocation group specified by agbp. Returns 0 if
606 * inodes were allocated in this AG; -EAGAIN if there was no space in this AG so
607 * the caller knows it can try another AG, a hard -ENOSPC when over the maximum
608 * inode count threshold, or the usual negative error code for other errors.
609 */
610STATIC int
611xfs_ialloc_ag_alloc(
612 struct xfs_trans *tp,
613 struct xfs_buf *agbp,
614 struct xfs_perag *pag)
615{
616 struct xfs_agi *agi;
617 struct xfs_alloc_arg args;
618 int error;
619 xfs_agino_t newino; /* new first inode's number */
620 xfs_agino_t newlen; /* new number of inodes */
621 int isaligned = 0; /* inode allocation at stripe */
622 /* unit boundary */
623 /* init. to full chunk */
624 struct xfs_inobt_rec_incore rec;
625 struct xfs_ino_geometry *igeo = M_IGEO(tp->t_mountp);
626 uint16_t allocmask = (uint16_t) -1;
627 int do_sparse = 0;
628
629 memset(&args, 0, sizeof(args));
630 args.tp = tp;
631 args.mp = tp->t_mountp;
632 args.fsbno = NULLFSBLOCK;
633 args.oinfo = XFS_RMAP_OINFO_INODES;
634
635#ifdef DEBUG
636 /* randomly do sparse inode allocations */
637 if (xfs_has_sparseinodes(tp->t_mountp) &&
638 igeo->ialloc_min_blks < igeo->ialloc_blks)
639 do_sparse = get_random_u32_below(2);
640#endif
641
642 /*
643 * Locking will ensure that we don't have two callers in here
644 * at one time.
645 */
646 newlen = igeo->ialloc_inos;
647 if (igeo->maxicount &&
648 percpu_counter_read_positive(&args.mp->m_icount) + newlen >
649 igeo->maxicount)
650 return -ENOSPC;
651 args.minlen = args.maxlen = igeo->ialloc_blks;
652 /*
653 * First try to allocate inodes contiguous with the last-allocated
654 * chunk of inodes. If the filesystem is striped, this will fill
655 * an entire stripe unit with inodes.
656 */
657 agi = agbp->b_addr;
658 newino = be32_to_cpu(agi->agi_newino);
659 args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
660 igeo->ialloc_blks;
661 if (do_sparse)
662 goto sparse_alloc;
663 if (likely(newino != NULLAGINO &&
664 (args.agbno < be32_to_cpu(agi->agi_length)))) {
665 args.fsbno = XFS_AGB_TO_FSB(args.mp, pag->pag_agno, args.agbno);
666 args.type = XFS_ALLOCTYPE_THIS_BNO;
667 args.prod = 1;
668
669 /*
670 * We need to take into account alignment here to ensure that
671 * we don't modify the free list if we fail to have an exact
672 * block. If we don't have an exact match, and every oher
673 * attempt allocation attempt fails, we'll end up cancelling
674 * a dirty transaction and shutting down.
675 *
676 * For an exact allocation, alignment must be 1,
677 * however we need to take cluster alignment into account when
678 * fixing up the freelist. Use the minalignslop field to
679 * indicate that extra blocks might be required for alignment,
680 * but not to use them in the actual exact allocation.
681 */
682 args.alignment = 1;
683 args.minalignslop = igeo->cluster_align - 1;
684
685 /* Allow space for the inode btree to split. */
686 args.minleft = igeo->inobt_maxlevels;
687 if ((error = xfs_alloc_vextent(&args)))
688 return error;
689
690 /*
691 * This request might have dirtied the transaction if the AG can
692 * satisfy the request, but the exact block was not available.
693 * If the allocation did fail, subsequent requests will relax
694 * the exact agbno requirement and increase the alignment
695 * instead. It is critical that the total size of the request
696 * (len + alignment + slop) does not increase from this point
697 * on, so reset minalignslop to ensure it is not included in
698 * subsequent requests.
699 */
700 args.minalignslop = 0;
701 }
702
703 if (unlikely(args.fsbno == NULLFSBLOCK)) {
704 /*
705 * Set the alignment for the allocation.
706 * If stripe alignment is turned on then align at stripe unit
707 * boundary.
708 * If the cluster size is smaller than a filesystem block
709 * then we're doing I/O for inodes in filesystem block size
710 * pieces, so don't need alignment anyway.
711 */
712 isaligned = 0;
713 if (igeo->ialloc_align) {
714 ASSERT(!xfs_has_noalign(args.mp));
715 args.alignment = args.mp->m_dalign;
716 isaligned = 1;
717 } else
718 args.alignment = igeo->cluster_align;
719 /*
720 * Need to figure out where to allocate the inode blocks.
721 * Ideally they should be spaced out through the a.g.
722 * For now, just allocate blocks up front.
723 */
724 args.agbno = be32_to_cpu(agi->agi_root);
725 args.fsbno = XFS_AGB_TO_FSB(args.mp, pag->pag_agno, args.agbno);
726 /*
727 * Allocate a fixed-size extent of inodes.
728 */
729 args.type = XFS_ALLOCTYPE_NEAR_BNO;
730 args.prod = 1;
731 /*
732 * Allow space for the inode btree to split.
733 */
734 args.minleft = igeo->inobt_maxlevels;
735 if ((error = xfs_alloc_vextent(&args)))
736 return error;
737 }
738
739 /*
740 * If stripe alignment is turned on, then try again with cluster
741 * alignment.
742 */
743 if (isaligned && args.fsbno == NULLFSBLOCK) {
744 args.type = XFS_ALLOCTYPE_NEAR_BNO;
745 args.agbno = be32_to_cpu(agi->agi_root);
746 args.fsbno = XFS_AGB_TO_FSB(args.mp, pag->pag_agno, args.agbno);
747 args.alignment = igeo->cluster_align;
748 if ((error = xfs_alloc_vextent(&args)))
749 return error;
750 }
751
752 /*
753 * Finally, try a sparse allocation if the filesystem supports it and
754 * the sparse allocation length is smaller than a full chunk.
755 */
756 if (xfs_has_sparseinodes(args.mp) &&
757 igeo->ialloc_min_blks < igeo->ialloc_blks &&
758 args.fsbno == NULLFSBLOCK) {
759sparse_alloc:
760 args.type = XFS_ALLOCTYPE_NEAR_BNO;
761 args.agbno = be32_to_cpu(agi->agi_root);
762 args.fsbno = XFS_AGB_TO_FSB(args.mp, pag->pag_agno, args.agbno);
763 args.alignment = args.mp->m_sb.sb_spino_align;
764 args.prod = 1;
765
766 args.minlen = igeo->ialloc_min_blks;
767 args.maxlen = args.minlen;
768
769 /*
770 * The inode record will be aligned to full chunk size. We must
771 * prevent sparse allocation from AG boundaries that result in
772 * invalid inode records, such as records that start at agbno 0
773 * or extend beyond the AG.
774 *
775 * Set min agbno to the first aligned, non-zero agbno and max to
776 * the last aligned agbno that is at least one full chunk from
777 * the end of the AG.
778 */
779 args.min_agbno = args.mp->m_sb.sb_inoalignmt;
780 args.max_agbno = round_down(args.mp->m_sb.sb_agblocks,
781 args.mp->m_sb.sb_inoalignmt) -
782 igeo->ialloc_blks;
783
784 error = xfs_alloc_vextent(&args);
785 if (error)
786 return error;
787
788 newlen = XFS_AGB_TO_AGINO(args.mp, args.len);
789 ASSERT(newlen <= XFS_INODES_PER_CHUNK);
790 allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1;
791 }
792
793 if (args.fsbno == NULLFSBLOCK)
794 return -EAGAIN;
795
796 ASSERT(args.len == args.minlen);
797
798 /*
799 * Stamp and write the inode buffers.
800 *
801 * Seed the new inode cluster with a random generation number. This
802 * prevents short-term reuse of generation numbers if a chunk is
803 * freed and then immediately reallocated. We use random numbers
804 * rather than a linear progression to prevent the next generation
805 * number from being easily guessable.
806 */
807 error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, pag->pag_agno,
808 args.agbno, args.len, get_random_u32());
809
810 if (error)
811 return error;
812 /*
813 * Convert the results.
814 */
815 newino = XFS_AGB_TO_AGINO(args.mp, args.agbno);
816
817 if (xfs_inobt_issparse(~allocmask)) {
818 /*
819 * We've allocated a sparse chunk. Align the startino and mask.
820 */
821 xfs_align_sparse_ino(args.mp, &newino, &allocmask);
822
823 rec.ir_startino = newino;
824 rec.ir_holemask = ~allocmask;
825 rec.ir_count = newlen;
826 rec.ir_freecount = newlen;
827 rec.ir_free = XFS_INOBT_ALL_FREE;
828
829 /*
830 * Insert the sparse record into the inobt and allow for a merge
831 * if necessary. If a merge does occur, rec is updated to the
832 * merged record.
833 */
834 error = xfs_inobt_insert_sprec(args.mp, tp, agbp, pag,
835 XFS_BTNUM_INO, &rec, true);
836 if (error == -EFSCORRUPTED) {
837 xfs_alert(args.mp,
838 "invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
839 XFS_AGINO_TO_INO(args.mp, pag->pag_agno,
840 rec.ir_startino),
841 rec.ir_holemask, rec.ir_count);
842 xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE);
843 }
844 if (error)
845 return error;
846
847 /*
848 * We can't merge the part we've just allocated as for the inobt
849 * due to finobt semantics. The original record may or may not
850 * exist independent of whether physical inodes exist in this
851 * sparse chunk.
852 *
853 * We must update the finobt record based on the inobt record.
854 * rec contains the fully merged and up to date inobt record
855 * from the previous call. Set merge false to replace any
856 * existing record with this one.
857 */
858 if (xfs_has_finobt(args.mp)) {
859 error = xfs_inobt_insert_sprec(args.mp, tp, agbp, pag,
860 XFS_BTNUM_FINO, &rec, false);
861 if (error)
862 return error;
863 }
864 } else {
865 /* full chunk - insert new records to both btrees */
866 error = xfs_inobt_insert(args.mp, tp, agbp, pag, newino, newlen,
867 XFS_BTNUM_INO);
868 if (error)
869 return error;
870
871 if (xfs_has_finobt(args.mp)) {
872 error = xfs_inobt_insert(args.mp, tp, agbp, pag, newino,
873 newlen, XFS_BTNUM_FINO);
874 if (error)
875 return error;
876 }
877 }
878
879 /*
880 * Update AGI counts and newino.
881 */
882 be32_add_cpu(&agi->agi_count, newlen);
883 be32_add_cpu(&agi->agi_freecount, newlen);
884 pag->pagi_freecount += newlen;
885 pag->pagi_count += newlen;
886 agi->agi_newino = cpu_to_be32(newino);
887
888 /*
889 * Log allocation group header fields
890 */
891 xfs_ialloc_log_agi(tp, agbp,
892 XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
893 /*
894 * Modify/log superblock values for inode count and inode free count.
895 */
896 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
897 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
898 return 0;
899}
900
901/*
902 * Try to retrieve the next record to the left/right from the current one.
903 */
904STATIC int
905xfs_ialloc_next_rec(
906 struct xfs_btree_cur *cur,
907 xfs_inobt_rec_incore_t *rec,
908 int *done,
909 int left)
910{
911 int error;
912 int i;
913
914 if (left)
915 error = xfs_btree_decrement(cur, 0, &i);
916 else
917 error = xfs_btree_increment(cur, 0, &i);
918
919 if (error)
920 return error;
921 *done = !i;
922 if (i) {
923 error = xfs_inobt_get_rec(cur, rec, &i);
924 if (error)
925 return error;
926 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
927 return -EFSCORRUPTED;
928 }
929
930 return 0;
931}
932
933STATIC int
934xfs_ialloc_get_rec(
935 struct xfs_btree_cur *cur,
936 xfs_agino_t agino,
937 xfs_inobt_rec_incore_t *rec,
938 int *done)
939{
940 int error;
941 int i;
942
943 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
944 if (error)
945 return error;
946 *done = !i;
947 if (i) {
948 error = xfs_inobt_get_rec(cur, rec, &i);
949 if (error)
950 return error;
951 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
952 return -EFSCORRUPTED;
953 }
954
955 return 0;
956}
957
958/*
959 * Return the offset of the first free inode in the record. If the inode chunk
960 * is sparsely allocated, we convert the record holemask to inode granularity
961 * and mask off the unallocated regions from the inode free mask.
962 */
963STATIC int
964xfs_inobt_first_free_inode(
965 struct xfs_inobt_rec_incore *rec)
966{
967 xfs_inofree_t realfree;
968
969 /* if there are no holes, return the first available offset */
970 if (!xfs_inobt_issparse(rec->ir_holemask))
971 return xfs_lowbit64(rec->ir_free);
972
973 realfree = xfs_inobt_irec_to_allocmask(rec);
974 realfree &= rec->ir_free;
975
976 return xfs_lowbit64(realfree);
977}
978
979/*
980 * Allocate an inode using the inobt-only algorithm.
981 */
982STATIC int
983xfs_dialloc_ag_inobt(
984 struct xfs_trans *tp,
985 struct xfs_buf *agbp,
986 struct xfs_perag *pag,
987 xfs_ino_t parent,
988 xfs_ino_t *inop)
989{
990 struct xfs_mount *mp = tp->t_mountp;
991 struct xfs_agi *agi = agbp->b_addr;
992 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
993 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
994 struct xfs_btree_cur *cur, *tcur;
995 struct xfs_inobt_rec_incore rec, trec;
996 xfs_ino_t ino;
997 int error;
998 int offset;
999 int i, j;
1000 int searchdistance = 10;
1001
1002 ASSERT(pag->pagi_init);
1003 ASSERT(pag->pagi_inodeok);
1004 ASSERT(pag->pagi_freecount > 0);
1005
1006 restart_pagno:
1007 cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_INO);
1008 /*
1009 * If pagino is 0 (this is the root inode allocation) use newino.
1010 * This must work because we've just allocated some.
1011 */
1012 if (!pagino)
1013 pagino = be32_to_cpu(agi->agi_newino);
1014
1015 error = xfs_check_agi_freecount(cur);
1016 if (error)
1017 goto error0;
1018
1019 /*
1020 * If in the same AG as the parent, try to get near the parent.
1021 */
1022 if (pagno == pag->pag_agno) {
1023 int doneleft; /* done, to the left */
1024 int doneright; /* done, to the right */
1025
1026 error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
1027 if (error)
1028 goto error0;
1029 if (XFS_IS_CORRUPT(mp, i != 1)) {
1030 error = -EFSCORRUPTED;
1031 goto error0;
1032 }
1033
1034 error = xfs_inobt_get_rec(cur, &rec, &j);
1035 if (error)
1036 goto error0;
1037 if (XFS_IS_CORRUPT(mp, j != 1)) {
1038 error = -EFSCORRUPTED;
1039 goto error0;
1040 }
1041
1042 if (rec.ir_freecount > 0) {
1043 /*
1044 * Found a free inode in the same chunk
1045 * as the parent, done.
1046 */
1047 goto alloc_inode;
1048 }
1049
1050
1051 /*
1052 * In the same AG as parent, but parent's chunk is full.
1053 */
1054
1055 /* duplicate the cursor, search left & right simultaneously */
1056 error = xfs_btree_dup_cursor(cur, &tcur);
1057 if (error)
1058 goto error0;
1059
1060 /*
1061 * Skip to last blocks looked up if same parent inode.
1062 */
1063 if (pagino != NULLAGINO &&
1064 pag->pagl_pagino == pagino &&
1065 pag->pagl_leftrec != NULLAGINO &&
1066 pag->pagl_rightrec != NULLAGINO) {
1067 error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
1068 &trec, &doneleft);
1069 if (error)
1070 goto error1;
1071
1072 error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
1073 &rec, &doneright);
1074 if (error)
1075 goto error1;
1076 } else {
1077 /* search left with tcur, back up 1 record */
1078 error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
1079 if (error)
1080 goto error1;
1081
1082 /* search right with cur, go forward 1 record. */
1083 error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
1084 if (error)
1085 goto error1;
1086 }
1087
1088 /*
1089 * Loop until we find an inode chunk with a free inode.
1090 */
1091 while (--searchdistance > 0 && (!doneleft || !doneright)) {
1092 int useleft; /* using left inode chunk this time */
1093
1094 /* figure out the closer block if both are valid. */
1095 if (!doneleft && !doneright) {
1096 useleft = pagino -
1097 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
1098 rec.ir_startino - pagino;
1099 } else {
1100 useleft = !doneleft;
1101 }
1102
1103 /* free inodes to the left? */
1104 if (useleft && trec.ir_freecount) {
1105 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1106 cur = tcur;
1107
1108 pag->pagl_leftrec = trec.ir_startino;
1109 pag->pagl_rightrec = rec.ir_startino;
1110 pag->pagl_pagino = pagino;
1111 rec = trec;
1112 goto alloc_inode;
1113 }
1114
1115 /* free inodes to the right? */
1116 if (!useleft && rec.ir_freecount) {
1117 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1118
1119 pag->pagl_leftrec = trec.ir_startino;
1120 pag->pagl_rightrec = rec.ir_startino;
1121 pag->pagl_pagino = pagino;
1122 goto alloc_inode;
1123 }
1124
1125 /* get next record to check */
1126 if (useleft) {
1127 error = xfs_ialloc_next_rec(tcur, &trec,
1128 &doneleft, 1);
1129 } else {
1130 error = xfs_ialloc_next_rec(cur, &rec,
1131 &doneright, 0);
1132 }
1133 if (error)
1134 goto error1;
1135 }
1136
1137 if (searchdistance <= 0) {
1138 /*
1139 * Not in range - save last search
1140 * location and allocate a new inode
1141 */
1142 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1143 pag->pagl_leftrec = trec.ir_startino;
1144 pag->pagl_rightrec = rec.ir_startino;
1145 pag->pagl_pagino = pagino;
1146
1147 } else {
1148 /*
1149 * We've reached the end of the btree. because
1150 * we are only searching a small chunk of the
1151 * btree each search, there is obviously free
1152 * inodes closer to the parent inode than we
1153 * are now. restart the search again.
1154 */
1155 pag->pagl_pagino = NULLAGINO;
1156 pag->pagl_leftrec = NULLAGINO;
1157 pag->pagl_rightrec = NULLAGINO;
1158 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1159 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1160 goto restart_pagno;
1161 }
1162 }
1163
1164 /*
1165 * In a different AG from the parent.
1166 * See if the most recently allocated block has any free.
1167 */
1168 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1169 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1170 XFS_LOOKUP_EQ, &i);
1171 if (error)
1172 goto error0;
1173
1174 if (i == 1) {
1175 error = xfs_inobt_get_rec(cur, &rec, &j);
1176 if (error)
1177 goto error0;
1178
1179 if (j == 1 && rec.ir_freecount > 0) {
1180 /*
1181 * The last chunk allocated in the group
1182 * still has a free inode.
1183 */
1184 goto alloc_inode;
1185 }
1186 }
1187 }
1188
1189 /*
1190 * None left in the last group, search the whole AG
1191 */
1192 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1193 if (error)
1194 goto error0;
1195 if (XFS_IS_CORRUPT(mp, i != 1)) {
1196 error = -EFSCORRUPTED;
1197 goto error0;
1198 }
1199
1200 for (;;) {
1201 error = xfs_inobt_get_rec(cur, &rec, &i);
1202 if (error)
1203 goto error0;
1204 if (XFS_IS_CORRUPT(mp, i != 1)) {
1205 error = -EFSCORRUPTED;
1206 goto error0;
1207 }
1208 if (rec.ir_freecount > 0)
1209 break;
1210 error = xfs_btree_increment(cur, 0, &i);
1211 if (error)
1212 goto error0;
1213 if (XFS_IS_CORRUPT(mp, i != 1)) {
1214 error = -EFSCORRUPTED;
1215 goto error0;
1216 }
1217 }
1218
1219alloc_inode:
1220 offset = xfs_inobt_first_free_inode(&rec);
1221 ASSERT(offset >= 0);
1222 ASSERT(offset < XFS_INODES_PER_CHUNK);
1223 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1224 XFS_INODES_PER_CHUNK) == 0);
1225 ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, rec.ir_startino + offset);
1226 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1227 rec.ir_freecount--;
1228 error = xfs_inobt_update(cur, &rec);
1229 if (error)
1230 goto error0;
1231 be32_add_cpu(&agi->agi_freecount, -1);
1232 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1233 pag->pagi_freecount--;
1234
1235 error = xfs_check_agi_freecount(cur);
1236 if (error)
1237 goto error0;
1238
1239 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1240 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1241 *inop = ino;
1242 return 0;
1243error1:
1244 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
1245error0:
1246 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1247 return error;
1248}
1249
1250/*
1251 * Use the free inode btree to allocate an inode based on distance from the
1252 * parent. Note that the provided cursor may be deleted and replaced.
1253 */
1254STATIC int
1255xfs_dialloc_ag_finobt_near(
1256 xfs_agino_t pagino,
1257 struct xfs_btree_cur **ocur,
1258 struct xfs_inobt_rec_incore *rec)
1259{
1260 struct xfs_btree_cur *lcur = *ocur; /* left search cursor */
1261 struct xfs_btree_cur *rcur; /* right search cursor */
1262 struct xfs_inobt_rec_incore rrec;
1263 int error;
1264 int i, j;
1265
1266 error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
1267 if (error)
1268 return error;
1269
1270 if (i == 1) {
1271 error = xfs_inobt_get_rec(lcur, rec, &i);
1272 if (error)
1273 return error;
1274 if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1))
1275 return -EFSCORRUPTED;
1276
1277 /*
1278 * See if we've landed in the parent inode record. The finobt
1279 * only tracks chunks with at least one free inode, so record
1280 * existence is enough.
1281 */
1282 if (pagino >= rec->ir_startino &&
1283 pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
1284 return 0;
1285 }
1286
1287 error = xfs_btree_dup_cursor(lcur, &rcur);
1288 if (error)
1289 return error;
1290
1291 error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
1292 if (error)
1293 goto error_rcur;
1294 if (j == 1) {
1295 error = xfs_inobt_get_rec(rcur, &rrec, &j);
1296 if (error)
1297 goto error_rcur;
1298 if (XFS_IS_CORRUPT(lcur->bc_mp, j != 1)) {
1299 error = -EFSCORRUPTED;
1300 goto error_rcur;
1301 }
1302 }
1303
1304 if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1 && j != 1)) {
1305 error = -EFSCORRUPTED;
1306 goto error_rcur;
1307 }
1308 if (i == 1 && j == 1) {
1309 /*
1310 * Both the left and right records are valid. Choose the closer
1311 * inode chunk to the target.
1312 */
1313 if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
1314 (rrec.ir_startino - pagino)) {
1315 *rec = rrec;
1316 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1317 *ocur = rcur;
1318 } else {
1319 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1320 }
1321 } else if (j == 1) {
1322 /* only the right record is valid */
1323 *rec = rrec;
1324 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1325 *ocur = rcur;
1326 } else if (i == 1) {
1327 /* only the left record is valid */
1328 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1329 }
1330
1331 return 0;
1332
1333error_rcur:
1334 xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
1335 return error;
1336}
1337
1338/*
1339 * Use the free inode btree to find a free inode based on a newino hint. If
1340 * the hint is NULL, find the first free inode in the AG.
1341 */
1342STATIC int
1343xfs_dialloc_ag_finobt_newino(
1344 struct xfs_agi *agi,
1345 struct xfs_btree_cur *cur,
1346 struct xfs_inobt_rec_incore *rec)
1347{
1348 int error;
1349 int i;
1350
1351 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1352 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1353 XFS_LOOKUP_EQ, &i);
1354 if (error)
1355 return error;
1356 if (i == 1) {
1357 error = xfs_inobt_get_rec(cur, rec, &i);
1358 if (error)
1359 return error;
1360 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1361 return -EFSCORRUPTED;
1362 return 0;
1363 }
1364 }
1365
1366 /*
1367 * Find the first inode available in the AG.
1368 */
1369 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1370 if (error)
1371 return error;
1372 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1373 return -EFSCORRUPTED;
1374
1375 error = xfs_inobt_get_rec(cur, rec, &i);
1376 if (error)
1377 return error;
1378 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1379 return -EFSCORRUPTED;
1380
1381 return 0;
1382}
1383
1384/*
1385 * Update the inobt based on a modification made to the finobt. Also ensure that
1386 * the records from both trees are equivalent post-modification.
1387 */
1388STATIC int
1389xfs_dialloc_ag_update_inobt(
1390 struct xfs_btree_cur *cur, /* inobt cursor */
1391 struct xfs_inobt_rec_incore *frec, /* finobt record */
1392 int offset) /* inode offset */
1393{
1394 struct xfs_inobt_rec_incore rec;
1395 int error;
1396 int i;
1397
1398 error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
1399 if (error)
1400 return error;
1401 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1402 return -EFSCORRUPTED;
1403
1404 error = xfs_inobt_get_rec(cur, &rec, &i);
1405 if (error)
1406 return error;
1407 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1408 return -EFSCORRUPTED;
1409 ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
1410 XFS_INODES_PER_CHUNK) == 0);
1411
1412 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1413 rec.ir_freecount--;
1414
1415 if (XFS_IS_CORRUPT(cur->bc_mp,
1416 rec.ir_free != frec->ir_free ||
1417 rec.ir_freecount != frec->ir_freecount))
1418 return -EFSCORRUPTED;
1419
1420 return xfs_inobt_update(cur, &rec);
1421}
1422
1423/*
1424 * Allocate an inode using the free inode btree, if available. Otherwise, fall
1425 * back to the inobt search algorithm.
1426 *
1427 * The caller selected an AG for us, and made sure that free inodes are
1428 * available.
1429 */
1430static int
1431xfs_dialloc_ag(
1432 struct xfs_trans *tp,
1433 struct xfs_buf *agbp,
1434 struct xfs_perag *pag,
1435 xfs_ino_t parent,
1436 xfs_ino_t *inop)
1437{
1438 struct xfs_mount *mp = tp->t_mountp;
1439 struct xfs_agi *agi = agbp->b_addr;
1440 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
1441 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
1442 struct xfs_btree_cur *cur; /* finobt cursor */
1443 struct xfs_btree_cur *icur; /* inobt cursor */
1444 struct xfs_inobt_rec_incore rec;
1445 xfs_ino_t ino;
1446 int error;
1447 int offset;
1448 int i;
1449
1450 if (!xfs_has_finobt(mp))
1451 return xfs_dialloc_ag_inobt(tp, agbp, pag, parent, inop);
1452
1453 /*
1454 * If pagino is 0 (this is the root inode allocation) use newino.
1455 * This must work because we've just allocated some.
1456 */
1457 if (!pagino)
1458 pagino = be32_to_cpu(agi->agi_newino);
1459
1460 cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_FINO);
1461
1462 error = xfs_check_agi_freecount(cur);
1463 if (error)
1464 goto error_cur;
1465
1466 /*
1467 * The search algorithm depends on whether we're in the same AG as the
1468 * parent. If so, find the closest available inode to the parent. If
1469 * not, consider the agi hint or find the first free inode in the AG.
1470 */
1471 if (pag->pag_agno == pagno)
1472 error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
1473 else
1474 error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
1475 if (error)
1476 goto error_cur;
1477
1478 offset = xfs_inobt_first_free_inode(&rec);
1479 ASSERT(offset >= 0);
1480 ASSERT(offset < XFS_INODES_PER_CHUNK);
1481 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1482 XFS_INODES_PER_CHUNK) == 0);
1483 ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, rec.ir_startino + offset);
1484
1485 /*
1486 * Modify or remove the finobt record.
1487 */
1488 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1489 rec.ir_freecount--;
1490 if (rec.ir_freecount)
1491 error = xfs_inobt_update(cur, &rec);
1492 else
1493 error = xfs_btree_delete(cur, &i);
1494 if (error)
1495 goto error_cur;
1496
1497 /*
1498 * The finobt has now been updated appropriately. We haven't updated the
1499 * agi and superblock yet, so we can create an inobt cursor and validate
1500 * the original freecount. If all is well, make the equivalent update to
1501 * the inobt using the finobt record and offset information.
1502 */
1503 icur = xfs_inobt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_INO);
1504
1505 error = xfs_check_agi_freecount(icur);
1506 if (error)
1507 goto error_icur;
1508
1509 error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
1510 if (error)
1511 goto error_icur;
1512
1513 /*
1514 * Both trees have now been updated. We must update the perag and
1515 * superblock before we can check the freecount for each btree.
1516 */
1517 be32_add_cpu(&agi->agi_freecount, -1);
1518 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1519 pag->pagi_freecount--;
1520
1521 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1522
1523 error = xfs_check_agi_freecount(icur);
1524 if (error)
1525 goto error_icur;
1526 error = xfs_check_agi_freecount(cur);
1527 if (error)
1528 goto error_icur;
1529
1530 xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
1531 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1532 *inop = ino;
1533 return 0;
1534
1535error_icur:
1536 xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
1537error_cur:
1538 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1539 return error;
1540}
1541
1542static int
1543xfs_dialloc_roll(
1544 struct xfs_trans **tpp,
1545 struct xfs_buf *agibp)
1546{
1547 struct xfs_trans *tp = *tpp;
1548 struct xfs_dquot_acct *dqinfo;
1549 int error;
1550
1551 /*
1552 * Hold to on to the agibp across the commit so no other allocation can
1553 * come in and take the free inodes we just allocated for our caller.
1554 */
1555 xfs_trans_bhold(tp, agibp);
1556
1557 /*
1558 * We want the quota changes to be associated with the next transaction,
1559 * NOT this one. So, detach the dqinfo from this and attach it to the
1560 * next transaction.
1561 */
1562 dqinfo = tp->t_dqinfo;
1563 tp->t_dqinfo = NULL;
1564
1565 error = xfs_trans_roll(&tp);
1566
1567 /* Re-attach the quota info that we detached from prev trx. */
1568 tp->t_dqinfo = dqinfo;
1569
1570 /*
1571 * Join the buffer even on commit error so that the buffer is released
1572 * when the caller cancels the transaction and doesn't have to handle
1573 * this error case specially.
1574 */
1575 xfs_trans_bjoin(tp, agibp);
1576 *tpp = tp;
1577 return error;
1578}
1579
1580static xfs_agnumber_t
1581xfs_ialloc_next_ag(
1582 xfs_mount_t *mp)
1583{
1584 xfs_agnumber_t agno;
1585
1586 spin_lock(&mp->m_agirotor_lock);
1587 agno = mp->m_agirotor;
1588 if (++mp->m_agirotor >= mp->m_maxagi)
1589 mp->m_agirotor = 0;
1590 spin_unlock(&mp->m_agirotor_lock);
1591
1592 return agno;
1593}
1594
1595static bool
1596xfs_dialloc_good_ag(
1597 struct xfs_trans *tp,
1598 struct xfs_perag *pag,
1599 umode_t mode,
1600 int flags,
1601 bool ok_alloc)
1602{
1603 struct xfs_mount *mp = tp->t_mountp;
1604 xfs_extlen_t ineed;
1605 xfs_extlen_t longest = 0;
1606 int needspace;
1607 int error;
1608
1609 if (!pag->pagi_inodeok)
1610 return false;
1611
1612 if (!pag->pagi_init) {
1613 error = xfs_ialloc_read_agi(pag, tp, NULL);
1614 if (error)
1615 return false;
1616 }
1617
1618 if (pag->pagi_freecount)
1619 return true;
1620 if (!ok_alloc)
1621 return false;
1622
1623 if (!pag->pagf_init) {
1624 error = xfs_alloc_read_agf(pag, tp, flags, NULL);
1625 if (error)
1626 return false;
1627 }
1628
1629 /*
1630 * Check that there is enough free space for the file plus a chunk of
1631 * inodes if we need to allocate some. If this is the first pass across
1632 * the AGs, take into account the potential space needed for alignment
1633 * of inode chunks when checking the longest contiguous free space in
1634 * the AG - this prevents us from getting ENOSPC because we have free
1635 * space larger than ialloc_blks but alignment constraints prevent us
1636 * from using it.
1637 *
1638 * If we can't find an AG with space for full alignment slack to be
1639 * taken into account, we must be near ENOSPC in all AGs. Hence we
1640 * don't include alignment for the second pass and so if we fail
1641 * allocation due to alignment issues then it is most likely a real
1642 * ENOSPC condition.
1643 *
1644 * XXX(dgc): this calculation is now bogus thanks to the per-ag
1645 * reservations that xfs_alloc_fix_freelist() now does via
1646 * xfs_alloc_space_available(). When the AG fills up, pagf_freeblks will
1647 * be more than large enough for the check below to succeed, but
1648 * xfs_alloc_space_available() will fail because of the non-zero
1649 * metadata reservation and hence we won't actually be able to allocate
1650 * more inodes in this AG. We do soooo much unnecessary work near ENOSPC
1651 * because of this.
1652 */
1653 ineed = M_IGEO(mp)->ialloc_min_blks;
1654 if (flags && ineed > 1)
1655 ineed += M_IGEO(mp)->cluster_align;
1656 longest = pag->pagf_longest;
1657 if (!longest)
1658 longest = pag->pagf_flcount > 0;
1659 needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
1660
1661 if (pag->pagf_freeblks < needspace + ineed || longest < ineed)
1662 return false;
1663 return true;
1664}
1665
1666static int
1667xfs_dialloc_try_ag(
1668 struct xfs_trans **tpp,
1669 struct xfs_perag *pag,
1670 xfs_ino_t parent,
1671 xfs_ino_t *new_ino,
1672 bool ok_alloc)
1673{
1674 struct xfs_buf *agbp;
1675 xfs_ino_t ino;
1676 int error;
1677
1678 /*
1679 * Then read in the AGI buffer and recheck with the AGI buffer
1680 * lock held.
1681 */
1682 error = xfs_ialloc_read_agi(pag, *tpp, &agbp);
1683 if (error)
1684 return error;
1685
1686 if (!pag->pagi_freecount) {
1687 if (!ok_alloc) {
1688 error = -EAGAIN;
1689 goto out_release;
1690 }
1691
1692 error = xfs_ialloc_ag_alloc(*tpp, agbp, pag);
1693 if (error < 0)
1694 goto out_release;
1695
1696 /*
1697 * We successfully allocated space for an inode cluster in this
1698 * AG. Roll the transaction so that we can allocate one of the
1699 * new inodes.
1700 */
1701 ASSERT(pag->pagi_freecount > 0);
1702 error = xfs_dialloc_roll(tpp, agbp);
1703 if (error)
1704 goto out_release;
1705 }
1706
1707 /* Allocate an inode in the found AG */
1708 error = xfs_dialloc_ag(*tpp, agbp, pag, parent, &ino);
1709 if (!error)
1710 *new_ino = ino;
1711 return error;
1712
1713out_release:
1714 xfs_trans_brelse(*tpp, agbp);
1715 return error;
1716}
1717
1718/*
1719 * Allocate an on-disk inode.
1720 *
1721 * Mode is used to tell whether the new inode is a directory and hence where to
1722 * locate it. The on-disk inode that is allocated will be returned in @new_ino
1723 * on success, otherwise an error will be set to indicate the failure (e.g.
1724 * -ENOSPC).
1725 */
1726int
1727xfs_dialloc(
1728 struct xfs_trans **tpp,
1729 xfs_ino_t parent,
1730 umode_t mode,
1731 xfs_ino_t *new_ino)
1732{
1733 struct xfs_mount *mp = (*tpp)->t_mountp;
1734 xfs_agnumber_t agno;
1735 int error = 0;
1736 xfs_agnumber_t start_agno;
1737 struct xfs_perag *pag;
1738 struct xfs_ino_geometry *igeo = M_IGEO(mp);
1739 bool ok_alloc = true;
1740 int flags;
1741 xfs_ino_t ino;
1742
1743 /*
1744 * Directories, symlinks, and regular files frequently allocate at least
1745 * one block, so factor that potential expansion when we examine whether
1746 * an AG has enough space for file creation.
1747 */
1748 if (S_ISDIR(mode))
1749 start_agno = xfs_ialloc_next_ag(mp);
1750 else {
1751 start_agno = XFS_INO_TO_AGNO(mp, parent);
1752 if (start_agno >= mp->m_maxagi)
1753 start_agno = 0;
1754 }
1755
1756 /*
1757 * If we have already hit the ceiling of inode blocks then clear
1758 * ok_alloc so we scan all available agi structures for a free
1759 * inode.
1760 *
1761 * Read rough value of mp->m_icount by percpu_counter_read_positive,
1762 * which will sacrifice the preciseness but improve the performance.
1763 */
1764 if (igeo->maxicount &&
1765 percpu_counter_read_positive(&mp->m_icount) + igeo->ialloc_inos
1766 > igeo->maxicount) {
1767 ok_alloc = false;
1768 }
1769
1770 /*
1771 * Loop until we find an allocation group that either has free inodes
1772 * or in which we can allocate some inodes. Iterate through the
1773 * allocation groups upward, wrapping at the end.
1774 */
1775 agno = start_agno;
1776 flags = XFS_ALLOC_FLAG_TRYLOCK;
1777 for (;;) {
1778 pag = xfs_perag_get(mp, agno);
1779 if (xfs_dialloc_good_ag(*tpp, pag, mode, flags, ok_alloc)) {
1780 error = xfs_dialloc_try_ag(tpp, pag, parent,
1781 &ino, ok_alloc);
1782 if (error != -EAGAIN)
1783 break;
1784 }
1785
1786 if (xfs_is_shutdown(mp)) {
1787 error = -EFSCORRUPTED;
1788 break;
1789 }
1790 if (++agno == mp->m_maxagi)
1791 agno = 0;
1792 if (agno == start_agno) {
1793 if (!flags) {
1794 error = -ENOSPC;
1795 break;
1796 }
1797 flags = 0;
1798 }
1799 xfs_perag_put(pag);
1800 }
1801
1802 if (!error)
1803 *new_ino = ino;
1804 xfs_perag_put(pag);
1805 return error;
1806}
1807
1808/*
1809 * Free the blocks of an inode chunk. We must consider that the inode chunk
1810 * might be sparse and only free the regions that are allocated as part of the
1811 * chunk.
1812 */
1813STATIC void
1814xfs_difree_inode_chunk(
1815 struct xfs_trans *tp,
1816 xfs_agnumber_t agno,
1817 struct xfs_inobt_rec_incore *rec)
1818{
1819 struct xfs_mount *mp = tp->t_mountp;
1820 xfs_agblock_t sagbno = XFS_AGINO_TO_AGBNO(mp,
1821 rec->ir_startino);
1822 int startidx, endidx;
1823 int nextbit;
1824 xfs_agblock_t agbno;
1825 int contigblk;
1826 DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS);
1827
1828 if (!xfs_inobt_issparse(rec->ir_holemask)) {
1829 /* not sparse, calculate extent info directly */
1830 xfs_free_extent_later(tp, XFS_AGB_TO_FSB(mp, agno, sagbno),
1831 M_IGEO(mp)->ialloc_blks,
1832 &XFS_RMAP_OINFO_INODES);
1833 return;
1834 }
1835
1836 /* holemask is only 16-bits (fits in an unsigned long) */
1837 ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0]));
1838 holemask[0] = rec->ir_holemask;
1839
1840 /*
1841 * Find contiguous ranges of zeroes (i.e., allocated regions) in the
1842 * holemask and convert the start/end index of each range to an extent.
1843 * We start with the start and end index both pointing at the first 0 in
1844 * the mask.
1845 */
1846 startidx = endidx = find_first_zero_bit(holemask,
1847 XFS_INOBT_HOLEMASK_BITS);
1848 nextbit = startidx + 1;
1849 while (startidx < XFS_INOBT_HOLEMASK_BITS) {
1850 nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS,
1851 nextbit);
1852 /*
1853 * If the next zero bit is contiguous, update the end index of
1854 * the current range and continue.
1855 */
1856 if (nextbit != XFS_INOBT_HOLEMASK_BITS &&
1857 nextbit == endidx + 1) {
1858 endidx = nextbit;
1859 goto next;
1860 }
1861
1862 /*
1863 * nextbit is not contiguous with the current end index. Convert
1864 * the current start/end to an extent and add it to the free
1865 * list.
1866 */
1867 agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) /
1868 mp->m_sb.sb_inopblock;
1869 contigblk = ((endidx - startidx + 1) *
1870 XFS_INODES_PER_HOLEMASK_BIT) /
1871 mp->m_sb.sb_inopblock;
1872
1873 ASSERT(agbno % mp->m_sb.sb_spino_align == 0);
1874 ASSERT(contigblk % mp->m_sb.sb_spino_align == 0);
1875 xfs_free_extent_later(tp, XFS_AGB_TO_FSB(mp, agno, agbno),
1876 contigblk, &XFS_RMAP_OINFO_INODES);
1877
1878 /* reset range to current bit and carry on... */
1879 startidx = endidx = nextbit;
1880
1881next:
1882 nextbit++;
1883 }
1884}
1885
1886STATIC int
1887xfs_difree_inobt(
1888 struct xfs_mount *mp,
1889 struct xfs_trans *tp,
1890 struct xfs_buf *agbp,
1891 struct xfs_perag *pag,
1892 xfs_agino_t agino,
1893 struct xfs_icluster *xic,
1894 struct xfs_inobt_rec_incore *orec)
1895{
1896 struct xfs_agi *agi = agbp->b_addr;
1897 struct xfs_btree_cur *cur;
1898 struct xfs_inobt_rec_incore rec;
1899 int ilen;
1900 int error;
1901 int i;
1902 int off;
1903
1904 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
1905 ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
1906
1907 /*
1908 * Initialize the cursor.
1909 */
1910 cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_INO);
1911
1912 error = xfs_check_agi_freecount(cur);
1913 if (error)
1914 goto error0;
1915
1916 /*
1917 * Look for the entry describing this inode.
1918 */
1919 if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
1920 xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
1921 __func__, error);
1922 goto error0;
1923 }
1924 if (XFS_IS_CORRUPT(mp, i != 1)) {
1925 error = -EFSCORRUPTED;
1926 goto error0;
1927 }
1928 error = xfs_inobt_get_rec(cur, &rec, &i);
1929 if (error) {
1930 xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
1931 __func__, error);
1932 goto error0;
1933 }
1934 if (XFS_IS_CORRUPT(mp, i != 1)) {
1935 error = -EFSCORRUPTED;
1936 goto error0;
1937 }
1938 /*
1939 * Get the offset in the inode chunk.
1940 */
1941 off = agino - rec.ir_startino;
1942 ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
1943 ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
1944 /*
1945 * Mark the inode free & increment the count.
1946 */
1947 rec.ir_free |= XFS_INOBT_MASK(off);
1948 rec.ir_freecount++;
1949
1950 /*
1951 * When an inode chunk is free, it becomes eligible for removal. Don't
1952 * remove the chunk if the block size is large enough for multiple inode
1953 * chunks (that might not be free).
1954 */
1955 if (!xfs_has_ikeep(mp) && rec.ir_free == XFS_INOBT_ALL_FREE &&
1956 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
1957 struct xfs_perag *pag = agbp->b_pag;
1958
1959 xic->deleted = true;
1960 xic->first_ino = XFS_AGINO_TO_INO(mp, pag->pag_agno,
1961 rec.ir_startino);
1962 xic->alloc = xfs_inobt_irec_to_allocmask(&rec);
1963
1964 /*
1965 * Remove the inode cluster from the AGI B+Tree, adjust the
1966 * AGI and Superblock inode counts, and mark the disk space
1967 * to be freed when the transaction is committed.
1968 */
1969 ilen = rec.ir_freecount;
1970 be32_add_cpu(&agi->agi_count, -ilen);
1971 be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
1972 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
1973 pag->pagi_freecount -= ilen - 1;
1974 pag->pagi_count -= ilen;
1975 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
1976 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
1977
1978 if ((error = xfs_btree_delete(cur, &i))) {
1979 xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
1980 __func__, error);
1981 goto error0;
1982 }
1983
1984 xfs_difree_inode_chunk(tp, pag->pag_agno, &rec);
1985 } else {
1986 xic->deleted = false;
1987
1988 error = xfs_inobt_update(cur, &rec);
1989 if (error) {
1990 xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
1991 __func__, error);
1992 goto error0;
1993 }
1994
1995 /*
1996 * Change the inode free counts and log the ag/sb changes.
1997 */
1998 be32_add_cpu(&agi->agi_freecount, 1);
1999 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
2000 pag->pagi_freecount++;
2001 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
2002 }
2003
2004 error = xfs_check_agi_freecount(cur);
2005 if (error)
2006 goto error0;
2007
2008 *orec = rec;
2009 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2010 return 0;
2011
2012error0:
2013 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2014 return error;
2015}
2016
2017/*
2018 * Free an inode in the free inode btree.
2019 */
2020STATIC int
2021xfs_difree_finobt(
2022 struct xfs_mount *mp,
2023 struct xfs_trans *tp,
2024 struct xfs_buf *agbp,
2025 struct xfs_perag *pag,
2026 xfs_agino_t agino,
2027 struct xfs_inobt_rec_incore *ibtrec) /* inobt record */
2028{
2029 struct xfs_btree_cur *cur;
2030 struct xfs_inobt_rec_incore rec;
2031 int offset = agino - ibtrec->ir_startino;
2032 int error;
2033 int i;
2034
2035 cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_FINO);
2036
2037 error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
2038 if (error)
2039 goto error;
2040 if (i == 0) {
2041 /*
2042 * If the record does not exist in the finobt, we must have just
2043 * freed an inode in a previously fully allocated chunk. If not,
2044 * something is out of sync.
2045 */
2046 if (XFS_IS_CORRUPT(mp, ibtrec->ir_freecount != 1)) {
2047 error = -EFSCORRUPTED;
2048 goto error;
2049 }
2050
2051 error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask,
2052 ibtrec->ir_count,
2053 ibtrec->ir_freecount,
2054 ibtrec->ir_free, &i);
2055 if (error)
2056 goto error;
2057 ASSERT(i == 1);
2058
2059 goto out;
2060 }
2061
2062 /*
2063 * Read and update the existing record. We could just copy the ibtrec
2064 * across here, but that would defeat the purpose of having redundant
2065 * metadata. By making the modifications independently, we can catch
2066 * corruptions that we wouldn't see if we just copied from one record
2067 * to another.
2068 */
2069 error = xfs_inobt_get_rec(cur, &rec, &i);
2070 if (error)
2071 goto error;
2072 if (XFS_IS_CORRUPT(mp, i != 1)) {
2073 error = -EFSCORRUPTED;
2074 goto error;
2075 }
2076
2077 rec.ir_free |= XFS_INOBT_MASK(offset);
2078 rec.ir_freecount++;
2079
2080 if (XFS_IS_CORRUPT(mp,
2081 rec.ir_free != ibtrec->ir_free ||
2082 rec.ir_freecount != ibtrec->ir_freecount)) {
2083 error = -EFSCORRUPTED;
2084 goto error;
2085 }
2086
2087 /*
2088 * The content of inobt records should always match between the inobt
2089 * and finobt. The lifecycle of records in the finobt is different from
2090 * the inobt in that the finobt only tracks records with at least one
2091 * free inode. Hence, if all of the inodes are free and we aren't
2092 * keeping inode chunks permanently on disk, remove the record.
2093 * Otherwise, update the record with the new information.
2094 *
2095 * Note that we currently can't free chunks when the block size is large
2096 * enough for multiple chunks. Leave the finobt record to remain in sync
2097 * with the inobt.
2098 */
2099 if (!xfs_has_ikeep(mp) && rec.ir_free == XFS_INOBT_ALL_FREE &&
2100 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
2101 error = xfs_btree_delete(cur, &i);
2102 if (error)
2103 goto error;
2104 ASSERT(i == 1);
2105 } else {
2106 error = xfs_inobt_update(cur, &rec);
2107 if (error)
2108 goto error;
2109 }
2110
2111out:
2112 error = xfs_check_agi_freecount(cur);
2113 if (error)
2114 goto error;
2115
2116 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2117 return 0;
2118
2119error:
2120 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2121 return error;
2122}
2123
2124/*
2125 * Free disk inode. Carefully avoids touching the incore inode, all
2126 * manipulations incore are the caller's responsibility.
2127 * The on-disk inode is not changed by this operation, only the
2128 * btree (free inode mask) is changed.
2129 */
2130int
2131xfs_difree(
2132 struct xfs_trans *tp,
2133 struct xfs_perag *pag,
2134 xfs_ino_t inode,
2135 struct xfs_icluster *xic)
2136{
2137 /* REFERENCED */
2138 xfs_agblock_t agbno; /* block number containing inode */
2139 struct xfs_buf *agbp; /* buffer for allocation group header */
2140 xfs_agino_t agino; /* allocation group inode number */
2141 int error; /* error return value */
2142 struct xfs_mount *mp = tp->t_mountp;
2143 struct xfs_inobt_rec_incore rec;/* btree record */
2144
2145 /*
2146 * Break up inode number into its components.
2147 */
2148 if (pag->pag_agno != XFS_INO_TO_AGNO(mp, inode)) {
2149 xfs_warn(mp, "%s: agno != pag->pag_agno (%d != %d).",
2150 __func__, XFS_INO_TO_AGNO(mp, inode), pag->pag_agno);
2151 ASSERT(0);
2152 return -EINVAL;
2153 }
2154 agino = XFS_INO_TO_AGINO(mp, inode);
2155 if (inode != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) {
2156 xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
2157 __func__, (unsigned long long)inode,
2158 (unsigned long long)XFS_AGINO_TO_INO(mp, pag->pag_agno, agino));
2159 ASSERT(0);
2160 return -EINVAL;
2161 }
2162 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2163 if (agbno >= mp->m_sb.sb_agblocks) {
2164 xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
2165 __func__, agbno, mp->m_sb.sb_agblocks);
2166 ASSERT(0);
2167 return -EINVAL;
2168 }
2169 /*
2170 * Get the allocation group header.
2171 */
2172 error = xfs_ialloc_read_agi(pag, tp, &agbp);
2173 if (error) {
2174 xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
2175 __func__, error);
2176 return error;
2177 }
2178
2179 /*
2180 * Fix up the inode allocation btree.
2181 */
2182 error = xfs_difree_inobt(mp, tp, agbp, pag, agino, xic, &rec);
2183 if (error)
2184 goto error0;
2185
2186 /*
2187 * Fix up the free inode btree.
2188 */
2189 if (xfs_has_finobt(mp)) {
2190 error = xfs_difree_finobt(mp, tp, agbp, pag, agino, &rec);
2191 if (error)
2192 goto error0;
2193 }
2194
2195 return 0;
2196
2197error0:
2198 return error;
2199}
2200
2201STATIC int
2202xfs_imap_lookup(
2203 struct xfs_mount *mp,
2204 struct xfs_trans *tp,
2205 struct xfs_perag *pag,
2206 xfs_agino_t agino,
2207 xfs_agblock_t agbno,
2208 xfs_agblock_t *chunk_agbno,
2209 xfs_agblock_t *offset_agbno,
2210 int flags)
2211{
2212 struct xfs_inobt_rec_incore rec;
2213 struct xfs_btree_cur *cur;
2214 struct xfs_buf *agbp;
2215 int error;
2216 int i;
2217
2218 error = xfs_ialloc_read_agi(pag, tp, &agbp);
2219 if (error) {
2220 xfs_alert(mp,
2221 "%s: xfs_ialloc_read_agi() returned error %d, agno %d",
2222 __func__, error, pag->pag_agno);
2223 return error;
2224 }
2225
2226 /*
2227 * Lookup the inode record for the given agino. If the record cannot be
2228 * found, then it's an invalid inode number and we should abort. Once
2229 * we have a record, we need to ensure it contains the inode number
2230 * we are looking up.
2231 */
2232 cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_INO);
2233 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
2234 if (!error) {
2235 if (i)
2236 error = xfs_inobt_get_rec(cur, &rec, &i);
2237 if (!error && i == 0)
2238 error = -EINVAL;
2239 }
2240
2241 xfs_trans_brelse(tp, agbp);
2242 xfs_btree_del_cursor(cur, error);
2243 if (error)
2244 return error;
2245
2246 /* check that the returned record contains the required inode */
2247 if (rec.ir_startino > agino ||
2248 rec.ir_startino + M_IGEO(mp)->ialloc_inos <= agino)
2249 return -EINVAL;
2250
2251 /* for untrusted inodes check it is allocated first */
2252 if ((flags & XFS_IGET_UNTRUSTED) &&
2253 (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
2254 return -EINVAL;
2255
2256 *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
2257 *offset_agbno = agbno - *chunk_agbno;
2258 return 0;
2259}
2260
2261/*
2262 * Return the location of the inode in imap, for mapping it into a buffer.
2263 */
2264int
2265xfs_imap(
2266 struct xfs_mount *mp, /* file system mount structure */
2267 struct xfs_trans *tp, /* transaction pointer */
2268 xfs_ino_t ino, /* inode to locate */
2269 struct xfs_imap *imap, /* location map structure */
2270 uint flags) /* flags for inode btree lookup */
2271{
2272 xfs_agblock_t agbno; /* block number of inode in the alloc group */
2273 xfs_agino_t agino; /* inode number within alloc group */
2274 xfs_agblock_t chunk_agbno; /* first block in inode chunk */
2275 xfs_agblock_t cluster_agbno; /* first block in inode cluster */
2276 int error; /* error code */
2277 int offset; /* index of inode in its buffer */
2278 xfs_agblock_t offset_agbno; /* blks from chunk start to inode */
2279 struct xfs_perag *pag;
2280
2281 ASSERT(ino != NULLFSINO);
2282
2283 /*
2284 * Split up the inode number into its parts.
2285 */
2286 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
2287 agino = XFS_INO_TO_AGINO(mp, ino);
2288 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2289 if (!pag || agbno >= mp->m_sb.sb_agblocks ||
2290 ino != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) {
2291 error = -EINVAL;
2292#ifdef DEBUG
2293 /*
2294 * Don't output diagnostic information for untrusted inodes
2295 * as they can be invalid without implying corruption.
2296 */
2297 if (flags & XFS_IGET_UNTRUSTED)
2298 goto out_drop;
2299 if (!pag) {
2300 xfs_alert(mp,
2301 "%s: agno (%d) >= mp->m_sb.sb_agcount (%d)",
2302 __func__, XFS_INO_TO_AGNO(mp, ino),
2303 mp->m_sb.sb_agcount);
2304 }
2305 if (agbno >= mp->m_sb.sb_agblocks) {
2306 xfs_alert(mp,
2307 "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
2308 __func__, (unsigned long long)agbno,
2309 (unsigned long)mp->m_sb.sb_agblocks);
2310 }
2311 if (pag && ino != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) {
2312 xfs_alert(mp,
2313 "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
2314 __func__, ino,
2315 XFS_AGINO_TO_INO(mp, pag->pag_agno, agino));
2316 }
2317 xfs_stack_trace();
2318#endif /* DEBUG */
2319 goto out_drop;
2320 }
2321
2322 /*
2323 * For bulkstat and handle lookups, we have an untrusted inode number
2324 * that we have to verify is valid. We cannot do this just by reading
2325 * the inode buffer as it may have been unlinked and removed leaving
2326 * inodes in stale state on disk. Hence we have to do a btree lookup
2327 * in all cases where an untrusted inode number is passed.
2328 */
2329 if (flags & XFS_IGET_UNTRUSTED) {
2330 error = xfs_imap_lookup(mp, tp, pag, agino, agbno,
2331 &chunk_agbno, &offset_agbno, flags);
2332 if (error)
2333 goto out_drop;
2334 goto out_map;
2335 }
2336
2337 /*
2338 * If the inode cluster size is the same as the blocksize or
2339 * smaller we get to the buffer by simple arithmetics.
2340 */
2341 if (M_IGEO(mp)->blocks_per_cluster == 1) {
2342 offset = XFS_INO_TO_OFFSET(mp, ino);
2343 ASSERT(offset < mp->m_sb.sb_inopblock);
2344
2345 imap->im_blkno = XFS_AGB_TO_DADDR(mp, pag->pag_agno, agbno);
2346 imap->im_len = XFS_FSB_TO_BB(mp, 1);
2347 imap->im_boffset = (unsigned short)(offset <<
2348 mp->m_sb.sb_inodelog);
2349 error = 0;
2350 goto out_drop;
2351 }
2352
2353 /*
2354 * If the inode chunks are aligned then use simple maths to
2355 * find the location. Otherwise we have to do a btree
2356 * lookup to find the location.
2357 */
2358 if (M_IGEO(mp)->inoalign_mask) {
2359 offset_agbno = agbno & M_IGEO(mp)->inoalign_mask;
2360 chunk_agbno = agbno - offset_agbno;
2361 } else {
2362 error = xfs_imap_lookup(mp, tp, pag, agino, agbno,
2363 &chunk_agbno, &offset_agbno, flags);
2364 if (error)
2365 goto out_drop;
2366 }
2367
2368out_map:
2369 ASSERT(agbno >= chunk_agbno);
2370 cluster_agbno = chunk_agbno +
2371 ((offset_agbno / M_IGEO(mp)->blocks_per_cluster) *
2372 M_IGEO(mp)->blocks_per_cluster);
2373 offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
2374 XFS_INO_TO_OFFSET(mp, ino);
2375
2376 imap->im_blkno = XFS_AGB_TO_DADDR(mp, pag->pag_agno, cluster_agbno);
2377 imap->im_len = XFS_FSB_TO_BB(mp, M_IGEO(mp)->blocks_per_cluster);
2378 imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog);
2379
2380 /*
2381 * If the inode number maps to a block outside the bounds
2382 * of the file system then return NULL rather than calling
2383 * read_buf and panicing when we get an error from the
2384 * driver.
2385 */
2386 if ((imap->im_blkno + imap->im_len) >
2387 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
2388 xfs_alert(mp,
2389 "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
2390 __func__, (unsigned long long) imap->im_blkno,
2391 (unsigned long long) imap->im_len,
2392 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2393 error = -EINVAL;
2394 goto out_drop;
2395 }
2396 error = 0;
2397out_drop:
2398 if (pag)
2399 xfs_perag_put(pag);
2400 return error;
2401}
2402
2403/*
2404 * Log specified fields for the ag hdr (inode section). The growth of the agi
2405 * structure over time requires that we interpret the buffer as two logical
2406 * regions delineated by the end of the unlinked list. This is due to the size
2407 * of the hash table and its location in the middle of the agi.
2408 *
2409 * For example, a request to log a field before agi_unlinked and a field after
2410 * agi_unlinked could cause us to log the entire hash table and use an excessive
2411 * amount of log space. To avoid this behavior, log the region up through
2412 * agi_unlinked in one call and the region after agi_unlinked through the end of
2413 * the structure in another.
2414 */
2415void
2416xfs_ialloc_log_agi(
2417 struct xfs_trans *tp,
2418 struct xfs_buf *bp,
2419 uint32_t fields)
2420{
2421 int first; /* first byte number */
2422 int last; /* last byte number */
2423 static const short offsets[] = { /* field starting offsets */
2424 /* keep in sync with bit definitions */
2425 offsetof(xfs_agi_t, agi_magicnum),
2426 offsetof(xfs_agi_t, agi_versionnum),
2427 offsetof(xfs_agi_t, agi_seqno),
2428 offsetof(xfs_agi_t, agi_length),
2429 offsetof(xfs_agi_t, agi_count),
2430 offsetof(xfs_agi_t, agi_root),
2431 offsetof(xfs_agi_t, agi_level),
2432 offsetof(xfs_agi_t, agi_freecount),
2433 offsetof(xfs_agi_t, agi_newino),
2434 offsetof(xfs_agi_t, agi_dirino),
2435 offsetof(xfs_agi_t, agi_unlinked),
2436 offsetof(xfs_agi_t, agi_free_root),
2437 offsetof(xfs_agi_t, agi_free_level),
2438 offsetof(xfs_agi_t, agi_iblocks),
2439 sizeof(xfs_agi_t)
2440 };
2441#ifdef DEBUG
2442 struct xfs_agi *agi = bp->b_addr;
2443
2444 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2445#endif
2446
2447 /*
2448 * Compute byte offsets for the first and last fields in the first
2449 * region and log the agi buffer. This only logs up through
2450 * agi_unlinked.
2451 */
2452 if (fields & XFS_AGI_ALL_BITS_R1) {
2453 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
2454 &first, &last);
2455 xfs_trans_log_buf(tp, bp, first, last);
2456 }
2457
2458 /*
2459 * Mask off the bits in the first region and calculate the first and
2460 * last field offsets for any bits in the second region.
2461 */
2462 fields &= ~XFS_AGI_ALL_BITS_R1;
2463 if (fields) {
2464 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
2465 &first, &last);
2466 xfs_trans_log_buf(tp, bp, first, last);
2467 }
2468}
2469
2470static xfs_failaddr_t
2471xfs_agi_verify(
2472 struct xfs_buf *bp)
2473{
2474 struct xfs_mount *mp = bp->b_mount;
2475 struct xfs_agi *agi = bp->b_addr;
2476 int i;
2477
2478 if (xfs_has_crc(mp)) {
2479 if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid))
2480 return __this_address;
2481 if (!xfs_log_check_lsn(mp, be64_to_cpu(agi->agi_lsn)))
2482 return __this_address;
2483 }
2484
2485 /*
2486 * Validate the magic number of the agi block.
2487 */
2488 if (!xfs_verify_magic(bp, agi->agi_magicnum))
2489 return __this_address;
2490 if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
2491 return __this_address;
2492
2493 if (be32_to_cpu(agi->agi_level) < 1 ||
2494 be32_to_cpu(agi->agi_level) > M_IGEO(mp)->inobt_maxlevels)
2495 return __this_address;
2496
2497 if (xfs_has_finobt(mp) &&
2498 (be32_to_cpu(agi->agi_free_level) < 1 ||
2499 be32_to_cpu(agi->agi_free_level) > M_IGEO(mp)->inobt_maxlevels))
2500 return __this_address;
2501
2502 /*
2503 * during growfs operations, the perag is not fully initialised,
2504 * so we can't use it for any useful checking. growfs ensures we can't
2505 * use it by using uncached buffers that don't have the perag attached
2506 * so we can detect and avoid this problem.
2507 */
2508 if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno)
2509 return __this_address;
2510
2511 for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) {
2512 if (agi->agi_unlinked[i] == cpu_to_be32(NULLAGINO))
2513 continue;
2514 if (!xfs_verify_ino(mp, be32_to_cpu(agi->agi_unlinked[i])))
2515 return __this_address;
2516 }
2517
2518 return NULL;
2519}
2520
2521static void
2522xfs_agi_read_verify(
2523 struct xfs_buf *bp)
2524{
2525 struct xfs_mount *mp = bp->b_mount;
2526 xfs_failaddr_t fa;
2527
2528 if (xfs_has_crc(mp) &&
2529 !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
2530 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
2531 else {
2532 fa = xfs_agi_verify(bp);
2533 if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_IALLOC_READ_AGI))
2534 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2535 }
2536}
2537
2538static void
2539xfs_agi_write_verify(
2540 struct xfs_buf *bp)
2541{
2542 struct xfs_mount *mp = bp->b_mount;
2543 struct xfs_buf_log_item *bip = bp->b_log_item;
2544 struct xfs_agi *agi = bp->b_addr;
2545 xfs_failaddr_t fa;
2546
2547 fa = xfs_agi_verify(bp);
2548 if (fa) {
2549 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2550 return;
2551 }
2552
2553 if (!xfs_has_crc(mp))
2554 return;
2555
2556 if (bip)
2557 agi->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
2558 xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
2559}
2560
2561const struct xfs_buf_ops xfs_agi_buf_ops = {
2562 .name = "xfs_agi",
2563 .magic = { cpu_to_be32(XFS_AGI_MAGIC), cpu_to_be32(XFS_AGI_MAGIC) },
2564 .verify_read = xfs_agi_read_verify,
2565 .verify_write = xfs_agi_write_verify,
2566 .verify_struct = xfs_agi_verify,
2567};
2568
2569/*
2570 * Read in the allocation group header (inode allocation section)
2571 */
2572int
2573xfs_read_agi(
2574 struct xfs_perag *pag,
2575 struct xfs_trans *tp,
2576 struct xfs_buf **agibpp)
2577{
2578 struct xfs_mount *mp = pag->pag_mount;
2579 int error;
2580
2581 trace_xfs_read_agi(pag->pag_mount, pag->pag_agno);
2582
2583 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
2584 XFS_AG_DADDR(mp, pag->pag_agno, XFS_AGI_DADDR(mp)),
2585 XFS_FSS_TO_BB(mp, 1), 0, agibpp, &xfs_agi_buf_ops);
2586 if (error)
2587 return error;
2588 if (tp)
2589 xfs_trans_buf_set_type(tp, *agibpp, XFS_BLFT_AGI_BUF);
2590
2591 xfs_buf_set_ref(*agibpp, XFS_AGI_REF);
2592 return 0;
2593}
2594
2595/*
2596 * Read in the agi and initialise the per-ag data. If the caller supplies a
2597 * @agibpp, return the locked AGI buffer to them, otherwise release it.
2598 */
2599int
2600xfs_ialloc_read_agi(
2601 struct xfs_perag *pag,
2602 struct xfs_trans *tp,
2603 struct xfs_buf **agibpp)
2604{
2605 struct xfs_buf *agibp;
2606 struct xfs_agi *agi;
2607 int error;
2608
2609 trace_xfs_ialloc_read_agi(pag->pag_mount, pag->pag_agno);
2610
2611 error = xfs_read_agi(pag, tp, &agibp);
2612 if (error)
2613 return error;
2614
2615 agi = agibp->b_addr;
2616 if (!pag->pagi_init) {
2617 pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
2618 pag->pagi_count = be32_to_cpu(agi->agi_count);
2619 pag->pagi_init = 1;
2620 }
2621
2622 /*
2623 * It's possible for these to be out of sync if
2624 * we are in the middle of a forced shutdown.
2625 */
2626 ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
2627 xfs_is_shutdown(pag->pag_mount));
2628 if (agibpp)
2629 *agibpp = agibp;
2630 else
2631 xfs_trans_brelse(tp, agibp);
2632 return 0;
2633}
2634
2635/* Is there an inode record covering a given range of inode numbers? */
2636int
2637xfs_ialloc_has_inode_record(
2638 struct xfs_btree_cur *cur,
2639 xfs_agino_t low,
2640 xfs_agino_t high,
2641 bool *exists)
2642{
2643 struct xfs_inobt_rec_incore irec;
2644 xfs_agino_t agino;
2645 uint16_t holemask;
2646 int has_record;
2647 int i;
2648 int error;
2649
2650 *exists = false;
2651 error = xfs_inobt_lookup(cur, low, XFS_LOOKUP_LE, &has_record);
2652 while (error == 0 && has_record) {
2653 error = xfs_inobt_get_rec(cur, &irec, &has_record);
2654 if (error || irec.ir_startino > high)
2655 break;
2656
2657 agino = irec.ir_startino;
2658 holemask = irec.ir_holemask;
2659 for (i = 0; i < XFS_INOBT_HOLEMASK_BITS; holemask >>= 1,
2660 i++, agino += XFS_INODES_PER_HOLEMASK_BIT) {
2661 if (holemask & 1)
2662 continue;
2663 if (agino + XFS_INODES_PER_HOLEMASK_BIT > low &&
2664 agino <= high) {
2665 *exists = true;
2666 return 0;
2667 }
2668 }
2669
2670 error = xfs_btree_increment(cur, 0, &has_record);
2671 }
2672 return error;
2673}
2674
2675/* Is there an inode record covering a given extent? */
2676int
2677xfs_ialloc_has_inodes_at_extent(
2678 struct xfs_btree_cur *cur,
2679 xfs_agblock_t bno,
2680 xfs_extlen_t len,
2681 bool *exists)
2682{
2683 xfs_agino_t low;
2684 xfs_agino_t high;
2685
2686 low = XFS_AGB_TO_AGINO(cur->bc_mp, bno);
2687 high = XFS_AGB_TO_AGINO(cur->bc_mp, bno + len) - 1;
2688
2689 return xfs_ialloc_has_inode_record(cur, low, high, exists);
2690}
2691
2692struct xfs_ialloc_count_inodes {
2693 xfs_agino_t count;
2694 xfs_agino_t freecount;
2695};
2696
2697/* Record inode counts across all inobt records. */
2698STATIC int
2699xfs_ialloc_count_inodes_rec(
2700 struct xfs_btree_cur *cur,
2701 const union xfs_btree_rec *rec,
2702 void *priv)
2703{
2704 struct xfs_inobt_rec_incore irec;
2705 struct xfs_ialloc_count_inodes *ci = priv;
2706
2707 xfs_inobt_btrec_to_irec(cur->bc_mp, rec, &irec);
2708 ci->count += irec.ir_count;
2709 ci->freecount += irec.ir_freecount;
2710
2711 return 0;
2712}
2713
2714/* Count allocated and free inodes under an inobt. */
2715int
2716xfs_ialloc_count_inodes(
2717 struct xfs_btree_cur *cur,
2718 xfs_agino_t *count,
2719 xfs_agino_t *freecount)
2720{
2721 struct xfs_ialloc_count_inodes ci = {0};
2722 int error;
2723
2724 ASSERT(cur->bc_btnum == XFS_BTNUM_INO);
2725 error = xfs_btree_query_all(cur, xfs_ialloc_count_inodes_rec, &ci);
2726 if (error)
2727 return error;
2728
2729 *count = ci.count;
2730 *freecount = ci.freecount;
2731 return 0;
2732}
2733
2734/*
2735 * Initialize inode-related geometry information.
2736 *
2737 * Compute the inode btree min and max levels and set maxicount.
2738 *
2739 * Set the inode cluster size. This may still be overridden by the file
2740 * system block size if it is larger than the chosen cluster size.
2741 *
2742 * For v5 filesystems, scale the cluster size with the inode size to keep a
2743 * constant ratio of inode per cluster buffer, but only if mkfs has set the
2744 * inode alignment value appropriately for larger cluster sizes.
2745 *
2746 * Then compute the inode cluster alignment information.
2747 */
2748void
2749xfs_ialloc_setup_geometry(
2750 struct xfs_mount *mp)
2751{
2752 struct xfs_sb *sbp = &mp->m_sb;
2753 struct xfs_ino_geometry *igeo = M_IGEO(mp);
2754 uint64_t icount;
2755 uint inodes;
2756
2757 igeo->new_diflags2 = 0;
2758 if (xfs_has_bigtime(mp))
2759 igeo->new_diflags2 |= XFS_DIFLAG2_BIGTIME;
2760 if (xfs_has_large_extent_counts(mp))
2761 igeo->new_diflags2 |= XFS_DIFLAG2_NREXT64;
2762
2763 /* Compute inode btree geometry. */
2764 igeo->agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
2765 igeo->inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1);
2766 igeo->inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0);
2767 igeo->inobt_mnr[0] = igeo->inobt_mxr[0] / 2;
2768 igeo->inobt_mnr[1] = igeo->inobt_mxr[1] / 2;
2769
2770 igeo->ialloc_inos = max_t(uint16_t, XFS_INODES_PER_CHUNK,
2771 sbp->sb_inopblock);
2772 igeo->ialloc_blks = igeo->ialloc_inos >> sbp->sb_inopblog;
2773
2774 if (sbp->sb_spino_align)
2775 igeo->ialloc_min_blks = sbp->sb_spino_align;
2776 else
2777 igeo->ialloc_min_blks = igeo->ialloc_blks;
2778
2779 /* Compute and fill in value of m_ino_geo.inobt_maxlevels. */
2780 inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG;
2781 igeo->inobt_maxlevels = xfs_btree_compute_maxlevels(igeo->inobt_mnr,
2782 inodes);
2783 ASSERT(igeo->inobt_maxlevels <= xfs_iallocbt_maxlevels_ondisk());
2784
2785 /*
2786 * Set the maximum inode count for this filesystem, being careful not
2787 * to use obviously garbage sb_inopblog/sb_inopblock values. Regular
2788 * users should never get here due to failing sb verification, but
2789 * certain users (xfs_db) need to be usable even with corrupt metadata.
2790 */
2791 if (sbp->sb_imax_pct && igeo->ialloc_blks) {
2792 /*
2793 * Make sure the maximum inode count is a multiple
2794 * of the units we allocate inodes in.
2795 */
2796 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
2797 do_div(icount, 100);
2798 do_div(icount, igeo->ialloc_blks);
2799 igeo->maxicount = XFS_FSB_TO_INO(mp,
2800 icount * igeo->ialloc_blks);
2801 } else {
2802 igeo->maxicount = 0;
2803 }
2804
2805 /*
2806 * Compute the desired size of an inode cluster buffer size, which
2807 * starts at 8K and (on v5 filesystems) scales up with larger inode
2808 * sizes.
2809 *
2810 * Preserve the desired inode cluster size because the sparse inodes
2811 * feature uses that desired size (not the actual size) to compute the
2812 * sparse inode alignment. The mount code validates this value, so we
2813 * cannot change the behavior.
2814 */
2815 igeo->inode_cluster_size_raw = XFS_INODE_BIG_CLUSTER_SIZE;
2816 if (xfs_has_v3inodes(mp)) {
2817 int new_size = igeo->inode_cluster_size_raw;
2818
2819 new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
2820 if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
2821 igeo->inode_cluster_size_raw = new_size;
2822 }
2823
2824 /* Calculate inode cluster ratios. */
2825 if (igeo->inode_cluster_size_raw > mp->m_sb.sb_blocksize)
2826 igeo->blocks_per_cluster = XFS_B_TO_FSBT(mp,
2827 igeo->inode_cluster_size_raw);
2828 else
2829 igeo->blocks_per_cluster = 1;
2830 igeo->inode_cluster_size = XFS_FSB_TO_B(mp, igeo->blocks_per_cluster);
2831 igeo->inodes_per_cluster = XFS_FSB_TO_INO(mp, igeo->blocks_per_cluster);
2832
2833 /* Calculate inode cluster alignment. */
2834 if (xfs_has_align(mp) &&
2835 mp->m_sb.sb_inoalignmt >= igeo->blocks_per_cluster)
2836 igeo->cluster_align = mp->m_sb.sb_inoalignmt;
2837 else
2838 igeo->cluster_align = 1;
2839 igeo->inoalign_mask = igeo->cluster_align - 1;
2840 igeo->cluster_align_inodes = XFS_FSB_TO_INO(mp, igeo->cluster_align);
2841
2842 /*
2843 * If we are using stripe alignment, check whether
2844 * the stripe unit is a multiple of the inode alignment
2845 */
2846 if (mp->m_dalign && igeo->inoalign_mask &&
2847 !(mp->m_dalign & igeo->inoalign_mask))
2848 igeo->ialloc_align = mp->m_dalign;
2849 else
2850 igeo->ialloc_align = 0;
2851}
2852
2853/* Compute the location of the root directory inode that is laid out by mkfs. */
2854xfs_ino_t
2855xfs_ialloc_calc_rootino(
2856 struct xfs_mount *mp,
2857 int sunit)
2858{
2859 struct xfs_ino_geometry *igeo = M_IGEO(mp);
2860 xfs_agblock_t first_bno;
2861
2862 /*
2863 * Pre-calculate the geometry of AG 0. We know what it looks like
2864 * because libxfs knows how to create allocation groups now.
2865 *
2866 * first_bno is the first block in which mkfs could possibly have
2867 * allocated the root directory inode, once we factor in the metadata
2868 * that mkfs formats before it. Namely, the four AG headers...
2869 */
2870 first_bno = howmany(4 * mp->m_sb.sb_sectsize, mp->m_sb.sb_blocksize);
2871
2872 /* ...the two free space btree roots... */
2873 first_bno += 2;
2874
2875 /* ...the inode btree root... */
2876 first_bno += 1;
2877
2878 /* ...the initial AGFL... */
2879 first_bno += xfs_alloc_min_freelist(mp, NULL);
2880
2881 /* ...the free inode btree root... */
2882 if (xfs_has_finobt(mp))
2883 first_bno++;
2884
2885 /* ...the reverse mapping btree root... */
2886 if (xfs_has_rmapbt(mp))
2887 first_bno++;
2888
2889 /* ...the reference count btree... */
2890 if (xfs_has_reflink(mp))
2891 first_bno++;
2892
2893 /*
2894 * ...and the log, if it is allocated in the first allocation group.
2895 *
2896 * This can happen with filesystems that only have a single
2897 * allocation group, or very odd geometries created by old mkfs
2898 * versions on very small filesystems.
2899 */
2900 if (xfs_ag_contains_log(mp, 0))
2901 first_bno += mp->m_sb.sb_logblocks;
2902
2903 /*
2904 * Now round first_bno up to whatever allocation alignment is given
2905 * by the filesystem or was passed in.
2906 */
2907 if (xfs_has_dalign(mp) && igeo->ialloc_align > 0)
2908 first_bno = roundup(first_bno, sunit);
2909 else if (xfs_has_align(mp) &&
2910 mp->m_sb.sb_inoalignmt > 1)
2911 first_bno = roundup(first_bno, mp->m_sb.sb_inoalignmt);
2912
2913 return XFS_AGINO_TO_INO(mp, 0, XFS_AGB_TO_AGINO(mp, first_bno));
2914}
2915
2916/*
2917 * Ensure there are not sparse inode clusters that cross the new EOAG.
2918 *
2919 * This is a no-op for non-spinode filesystems since clusters are always fully
2920 * allocated and checking the bnobt suffices. However, a spinode filesystem
2921 * could have a record where the upper inodes are free blocks. If those blocks
2922 * were removed from the filesystem, the inode record would extend beyond EOAG,
2923 * which will be flagged as corruption.
2924 */
2925int
2926xfs_ialloc_check_shrink(
2927 struct xfs_trans *tp,
2928 xfs_agnumber_t agno,
2929 struct xfs_buf *agibp,
2930 xfs_agblock_t new_length)
2931{
2932 struct xfs_inobt_rec_incore rec;
2933 struct xfs_btree_cur *cur;
2934 struct xfs_mount *mp = tp->t_mountp;
2935 struct xfs_perag *pag;
2936 xfs_agino_t agino = XFS_AGB_TO_AGINO(mp, new_length);
2937 int has;
2938 int error;
2939
2940 if (!xfs_has_sparseinodes(mp))
2941 return 0;
2942
2943 pag = xfs_perag_get(mp, agno);
2944 cur = xfs_inobt_init_cursor(mp, tp, agibp, pag, XFS_BTNUM_INO);
2945
2946 /* Look up the inobt record that would correspond to the new EOFS. */
2947 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &has);
2948 if (error || !has)
2949 goto out;
2950
2951 error = xfs_inobt_get_rec(cur, &rec, &has);
2952 if (error)
2953 goto out;
2954
2955 if (!has) {
2956 error = -EFSCORRUPTED;
2957 goto out;
2958 }
2959
2960 /* If the record covers inodes that would be beyond EOFS, bail out. */
2961 if (rec.ir_startino + XFS_INODES_PER_CHUNK > agino) {
2962 error = -ENOSPC;
2963 goto out;
2964 }
2965out:
2966 xfs_btree_del_cursor(cur, error);
2967 xfs_perag_put(pag);
2968 return error;
2969}