Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_bit.h"
13#include "xfs_mount.h"
14#include "xfs_inode.h"
15#include "xfs_btree.h"
16#include "xfs_ialloc.h"
17#include "xfs_ialloc_btree.h"
18#include "xfs_alloc.h"
19#include "xfs_errortag.h"
20#include "xfs_error.h"
21#include "xfs_bmap.h"
22#include "xfs_trans.h"
23#include "xfs_buf_item.h"
24#include "xfs_icreate_item.h"
25#include "xfs_icache.h"
26#include "xfs_trace.h"
27#include "xfs_log.h"
28#include "xfs_rmap.h"
29#include "xfs_ag.h"
30
31/*
32 * Lookup a record by ino in the btree given by cur.
33 */
34int /* error */
35xfs_inobt_lookup(
36 struct xfs_btree_cur *cur, /* btree cursor */
37 xfs_agino_t ino, /* starting inode of chunk */
38 xfs_lookup_t dir, /* <=, >=, == */
39 int *stat) /* success/failure */
40{
41 cur->bc_rec.i.ir_startino = ino;
42 cur->bc_rec.i.ir_holemask = 0;
43 cur->bc_rec.i.ir_count = 0;
44 cur->bc_rec.i.ir_freecount = 0;
45 cur->bc_rec.i.ir_free = 0;
46 return xfs_btree_lookup(cur, dir, stat);
47}
48
49/*
50 * Update the record referred to by cur to the value given.
51 * This either works (return 0) or gets an EFSCORRUPTED error.
52 */
53STATIC int /* error */
54xfs_inobt_update(
55 struct xfs_btree_cur *cur, /* btree cursor */
56 xfs_inobt_rec_incore_t *irec) /* btree record */
57{
58 union xfs_btree_rec rec;
59
60 rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
61 if (xfs_has_sparseinodes(cur->bc_mp)) {
62 rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask);
63 rec.inobt.ir_u.sp.ir_count = irec->ir_count;
64 rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount;
65 } else {
66 /* ir_holemask/ir_count not supported on-disk */
67 rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount);
68 }
69 rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
70 return xfs_btree_update(cur, &rec);
71}
72
73/* Convert on-disk btree record to incore inobt record. */
74void
75xfs_inobt_btrec_to_irec(
76 struct xfs_mount *mp,
77 const union xfs_btree_rec *rec,
78 struct xfs_inobt_rec_incore *irec)
79{
80 irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
81 if (xfs_has_sparseinodes(mp)) {
82 irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask);
83 irec->ir_count = rec->inobt.ir_u.sp.ir_count;
84 irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount;
85 } else {
86 /*
87 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
88 * values for full inode chunks.
89 */
90 irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL;
91 irec->ir_count = XFS_INODES_PER_CHUNK;
92 irec->ir_freecount =
93 be32_to_cpu(rec->inobt.ir_u.f.ir_freecount);
94 }
95 irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
96}
97
98/* Compute the freecount of an incore inode record. */
99uint8_t
100xfs_inobt_rec_freecount(
101 const struct xfs_inobt_rec_incore *irec)
102{
103 uint64_t realfree = irec->ir_free;
104
105 if (xfs_inobt_issparse(irec->ir_holemask))
106 realfree &= xfs_inobt_irec_to_allocmask(irec);
107 return hweight64(realfree);
108}
109
110/* Simple checks for inode records. */
111xfs_failaddr_t
112xfs_inobt_check_irec(
113 struct xfs_perag *pag,
114 const struct xfs_inobt_rec_incore *irec)
115{
116 /* Record has to be properly aligned within the AG. */
117 if (!xfs_verify_agino(pag, irec->ir_startino))
118 return __this_address;
119 if (!xfs_verify_agino(pag,
120 irec->ir_startino + XFS_INODES_PER_CHUNK - 1))
121 return __this_address;
122 if (irec->ir_count < XFS_INODES_PER_HOLEMASK_BIT ||
123 irec->ir_count > XFS_INODES_PER_CHUNK)
124 return __this_address;
125 if (irec->ir_freecount > XFS_INODES_PER_CHUNK)
126 return __this_address;
127
128 if (xfs_inobt_rec_freecount(irec) != irec->ir_freecount)
129 return __this_address;
130
131 return NULL;
132}
133
134static inline int
135xfs_inobt_complain_bad_rec(
136 struct xfs_btree_cur *cur,
137 xfs_failaddr_t fa,
138 const struct xfs_inobt_rec_incore *irec)
139{
140 struct xfs_mount *mp = cur->bc_mp;
141
142 xfs_warn(mp,
143 "%s Inode BTree record corruption in AG %d detected at %pS!",
144 cur->bc_btnum == XFS_BTNUM_INO ? "Used" : "Free",
145 cur->bc_ag.pag->pag_agno, fa);
146 xfs_warn(mp,
147"start inode 0x%x, count 0x%x, free 0x%x freemask 0x%llx, holemask 0x%x",
148 irec->ir_startino, irec->ir_count, irec->ir_freecount,
149 irec->ir_free, irec->ir_holemask);
150 return -EFSCORRUPTED;
151}
152
153/*
154 * Get the data from the pointed-to record.
155 */
156int
157xfs_inobt_get_rec(
158 struct xfs_btree_cur *cur,
159 struct xfs_inobt_rec_incore *irec,
160 int *stat)
161{
162 struct xfs_mount *mp = cur->bc_mp;
163 union xfs_btree_rec *rec;
164 xfs_failaddr_t fa;
165 int error;
166
167 error = xfs_btree_get_rec(cur, &rec, stat);
168 if (error || *stat == 0)
169 return error;
170
171 xfs_inobt_btrec_to_irec(mp, rec, irec);
172 fa = xfs_inobt_check_irec(cur->bc_ag.pag, irec);
173 if (fa)
174 return xfs_inobt_complain_bad_rec(cur, fa, irec);
175
176 return 0;
177}
178
179/*
180 * Insert a single inobt record. Cursor must already point to desired location.
181 */
182int
183xfs_inobt_insert_rec(
184 struct xfs_btree_cur *cur,
185 uint16_t holemask,
186 uint8_t count,
187 int32_t freecount,
188 xfs_inofree_t free,
189 int *stat)
190{
191 cur->bc_rec.i.ir_holemask = holemask;
192 cur->bc_rec.i.ir_count = count;
193 cur->bc_rec.i.ir_freecount = freecount;
194 cur->bc_rec.i.ir_free = free;
195 return xfs_btree_insert(cur, stat);
196}
197
198/*
199 * Insert records describing a newly allocated inode chunk into the inobt.
200 */
201STATIC int
202xfs_inobt_insert(
203 struct xfs_perag *pag,
204 struct xfs_trans *tp,
205 struct xfs_buf *agbp,
206 xfs_agino_t newino,
207 xfs_agino_t newlen,
208 xfs_btnum_t btnum)
209{
210 struct xfs_btree_cur *cur;
211 xfs_agino_t thisino;
212 int i;
213 int error;
214
215 cur = xfs_inobt_init_cursor(pag, tp, agbp, btnum);
216
217 for (thisino = newino;
218 thisino < newino + newlen;
219 thisino += XFS_INODES_PER_CHUNK) {
220 error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
221 if (error) {
222 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
223 return error;
224 }
225 ASSERT(i == 0);
226
227 error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL,
228 XFS_INODES_PER_CHUNK,
229 XFS_INODES_PER_CHUNK,
230 XFS_INOBT_ALL_FREE, &i);
231 if (error) {
232 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
233 return error;
234 }
235 ASSERT(i == 1);
236 }
237
238 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
239
240 return 0;
241}
242
243/*
244 * Verify that the number of free inodes in the AGI is correct.
245 */
246#ifdef DEBUG
247static int
248xfs_check_agi_freecount(
249 struct xfs_btree_cur *cur)
250{
251 if (cur->bc_nlevels == 1) {
252 xfs_inobt_rec_incore_t rec;
253 int freecount = 0;
254 int error;
255 int i;
256
257 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
258 if (error)
259 return error;
260
261 do {
262 error = xfs_inobt_get_rec(cur, &rec, &i);
263 if (error)
264 return error;
265
266 if (i) {
267 freecount += rec.ir_freecount;
268 error = xfs_btree_increment(cur, 0, &i);
269 if (error)
270 return error;
271 }
272 } while (i == 1);
273
274 if (!xfs_is_shutdown(cur->bc_mp))
275 ASSERT(freecount == cur->bc_ag.pag->pagi_freecount);
276 }
277 return 0;
278}
279#else
280#define xfs_check_agi_freecount(cur) 0
281#endif
282
283/*
284 * Initialise a new set of inodes. When called without a transaction context
285 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
286 * than logging them (which in a transaction context puts them into the AIL
287 * for writeback rather than the xfsbufd queue).
288 */
289int
290xfs_ialloc_inode_init(
291 struct xfs_mount *mp,
292 struct xfs_trans *tp,
293 struct list_head *buffer_list,
294 int icount,
295 xfs_agnumber_t agno,
296 xfs_agblock_t agbno,
297 xfs_agblock_t length,
298 unsigned int gen)
299{
300 struct xfs_buf *fbuf;
301 struct xfs_dinode *free;
302 int nbufs;
303 int version;
304 int i, j;
305 xfs_daddr_t d;
306 xfs_ino_t ino = 0;
307 int error;
308
309 /*
310 * Loop over the new block(s), filling in the inodes. For small block
311 * sizes, manipulate the inodes in buffers which are multiples of the
312 * blocks size.
313 */
314 nbufs = length / M_IGEO(mp)->blocks_per_cluster;
315
316 /*
317 * Figure out what version number to use in the inodes we create. If
318 * the superblock version has caught up to the one that supports the new
319 * inode format, then use the new inode version. Otherwise use the old
320 * version so that old kernels will continue to be able to use the file
321 * system.
322 *
323 * For v3 inodes, we also need to write the inode number into the inode,
324 * so calculate the first inode number of the chunk here as
325 * XFS_AGB_TO_AGINO() only works within a filesystem block, not
326 * across multiple filesystem blocks (such as a cluster) and so cannot
327 * be used in the cluster buffer loop below.
328 *
329 * Further, because we are writing the inode directly into the buffer
330 * and calculating a CRC on the entire inode, we have ot log the entire
331 * inode so that the entire range the CRC covers is present in the log.
332 * That means for v3 inode we log the entire buffer rather than just the
333 * inode cores.
334 */
335 if (xfs_has_v3inodes(mp)) {
336 version = 3;
337 ino = XFS_AGINO_TO_INO(mp, agno, XFS_AGB_TO_AGINO(mp, agbno));
338
339 /*
340 * log the initialisation that is about to take place as an
341 * logical operation. This means the transaction does not
342 * need to log the physical changes to the inode buffers as log
343 * recovery will know what initialisation is actually needed.
344 * Hence we only need to log the buffers as "ordered" buffers so
345 * they track in the AIL as if they were physically logged.
346 */
347 if (tp)
348 xfs_icreate_log(tp, agno, agbno, icount,
349 mp->m_sb.sb_inodesize, length, gen);
350 } else
351 version = 2;
352
353 for (j = 0; j < nbufs; j++) {
354 /*
355 * Get the block.
356 */
357 d = XFS_AGB_TO_DADDR(mp, agno, agbno +
358 (j * M_IGEO(mp)->blocks_per_cluster));
359 error = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
360 mp->m_bsize * M_IGEO(mp)->blocks_per_cluster,
361 XBF_UNMAPPED, &fbuf);
362 if (error)
363 return error;
364
365 /* Initialize the inode buffers and log them appropriately. */
366 fbuf->b_ops = &xfs_inode_buf_ops;
367 xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
368 for (i = 0; i < M_IGEO(mp)->inodes_per_cluster; i++) {
369 int ioffset = i << mp->m_sb.sb_inodelog;
370
371 free = xfs_make_iptr(mp, fbuf, i);
372 free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
373 free->di_version = version;
374 free->di_gen = cpu_to_be32(gen);
375 free->di_next_unlinked = cpu_to_be32(NULLAGINO);
376
377 if (version == 3) {
378 free->di_ino = cpu_to_be64(ino);
379 ino++;
380 uuid_copy(&free->di_uuid,
381 &mp->m_sb.sb_meta_uuid);
382 xfs_dinode_calc_crc(mp, free);
383 } else if (tp) {
384 /* just log the inode core */
385 xfs_trans_log_buf(tp, fbuf, ioffset,
386 ioffset + XFS_DINODE_SIZE(mp) - 1);
387 }
388 }
389
390 if (tp) {
391 /*
392 * Mark the buffer as an inode allocation buffer so it
393 * sticks in AIL at the point of this allocation
394 * transaction. This ensures the they are on disk before
395 * the tail of the log can be moved past this
396 * transaction (i.e. by preventing relogging from moving
397 * it forward in the log).
398 */
399 xfs_trans_inode_alloc_buf(tp, fbuf);
400 if (version == 3) {
401 /*
402 * Mark the buffer as ordered so that they are
403 * not physically logged in the transaction but
404 * still tracked in the AIL as part of the
405 * transaction and pin the log appropriately.
406 */
407 xfs_trans_ordered_buf(tp, fbuf);
408 }
409 } else {
410 fbuf->b_flags |= XBF_DONE;
411 xfs_buf_delwri_queue(fbuf, buffer_list);
412 xfs_buf_relse(fbuf);
413 }
414 }
415 return 0;
416}
417
418/*
419 * Align startino and allocmask for a recently allocated sparse chunk such that
420 * they are fit for insertion (or merge) into the on-disk inode btrees.
421 *
422 * Background:
423 *
424 * When enabled, sparse inode support increases the inode alignment from cluster
425 * size to inode chunk size. This means that the minimum range between two
426 * non-adjacent inode records in the inobt is large enough for a full inode
427 * record. This allows for cluster sized, cluster aligned block allocation
428 * without need to worry about whether the resulting inode record overlaps with
429 * another record in the tree. Without this basic rule, we would have to deal
430 * with the consequences of overlap by potentially undoing recent allocations in
431 * the inode allocation codepath.
432 *
433 * Because of this alignment rule (which is enforced on mount), there are two
434 * inobt possibilities for newly allocated sparse chunks. One is that the
435 * aligned inode record for the chunk covers a range of inodes not already
436 * covered in the inobt (i.e., it is safe to insert a new sparse record). The
437 * other is that a record already exists at the aligned startino that considers
438 * the newly allocated range as sparse. In the latter case, record content is
439 * merged in hope that sparse inode chunks fill to full chunks over time.
440 */
441STATIC void
442xfs_align_sparse_ino(
443 struct xfs_mount *mp,
444 xfs_agino_t *startino,
445 uint16_t *allocmask)
446{
447 xfs_agblock_t agbno;
448 xfs_agblock_t mod;
449 int offset;
450
451 agbno = XFS_AGINO_TO_AGBNO(mp, *startino);
452 mod = agbno % mp->m_sb.sb_inoalignmt;
453 if (!mod)
454 return;
455
456 /* calculate the inode offset and align startino */
457 offset = XFS_AGB_TO_AGINO(mp, mod);
458 *startino -= offset;
459
460 /*
461 * Since startino has been aligned down, left shift allocmask such that
462 * it continues to represent the same physical inodes relative to the
463 * new startino.
464 */
465 *allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT;
466}
467
468/*
469 * Determine whether the source inode record can merge into the target. Both
470 * records must be sparse, the inode ranges must match and there must be no
471 * allocation overlap between the records.
472 */
473STATIC bool
474__xfs_inobt_can_merge(
475 struct xfs_inobt_rec_incore *trec, /* tgt record */
476 struct xfs_inobt_rec_incore *srec) /* src record */
477{
478 uint64_t talloc;
479 uint64_t salloc;
480
481 /* records must cover the same inode range */
482 if (trec->ir_startino != srec->ir_startino)
483 return false;
484
485 /* both records must be sparse */
486 if (!xfs_inobt_issparse(trec->ir_holemask) ||
487 !xfs_inobt_issparse(srec->ir_holemask))
488 return false;
489
490 /* both records must track some inodes */
491 if (!trec->ir_count || !srec->ir_count)
492 return false;
493
494 /* can't exceed capacity of a full record */
495 if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK)
496 return false;
497
498 /* verify there is no allocation overlap */
499 talloc = xfs_inobt_irec_to_allocmask(trec);
500 salloc = xfs_inobt_irec_to_allocmask(srec);
501 if (talloc & salloc)
502 return false;
503
504 return true;
505}
506
507/*
508 * Merge the source inode record into the target. The caller must call
509 * __xfs_inobt_can_merge() to ensure the merge is valid.
510 */
511STATIC void
512__xfs_inobt_rec_merge(
513 struct xfs_inobt_rec_incore *trec, /* target */
514 struct xfs_inobt_rec_incore *srec) /* src */
515{
516 ASSERT(trec->ir_startino == srec->ir_startino);
517
518 /* combine the counts */
519 trec->ir_count += srec->ir_count;
520 trec->ir_freecount += srec->ir_freecount;
521
522 /*
523 * Merge the holemask and free mask. For both fields, 0 bits refer to
524 * allocated inodes. We combine the allocated ranges with bitwise AND.
525 */
526 trec->ir_holemask &= srec->ir_holemask;
527 trec->ir_free &= srec->ir_free;
528}
529
530/*
531 * Insert a new sparse inode chunk into the associated inode btree. The inode
532 * record for the sparse chunk is pre-aligned to a startino that should match
533 * any pre-existing sparse inode record in the tree. This allows sparse chunks
534 * to fill over time.
535 *
536 * This function supports two modes of handling preexisting records depending on
537 * the merge flag. If merge is true, the provided record is merged with the
538 * existing record and updated in place. The merged record is returned in nrec.
539 * If merge is false, an existing record is replaced with the provided record.
540 * If no preexisting record exists, the provided record is always inserted.
541 *
542 * It is considered corruption if a merge is requested and not possible. Given
543 * the sparse inode alignment constraints, this should never happen.
544 */
545STATIC int
546xfs_inobt_insert_sprec(
547 struct xfs_perag *pag,
548 struct xfs_trans *tp,
549 struct xfs_buf *agbp,
550 int btnum,
551 struct xfs_inobt_rec_incore *nrec, /* in/out: new/merged rec. */
552 bool merge) /* merge or replace */
553{
554 struct xfs_mount *mp = pag->pag_mount;
555 struct xfs_btree_cur *cur;
556 int error;
557 int i;
558 struct xfs_inobt_rec_incore rec;
559
560 cur = xfs_inobt_init_cursor(pag, tp, agbp, btnum);
561
562 /* the new record is pre-aligned so we know where to look */
563 error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
564 if (error)
565 goto error;
566 /* if nothing there, insert a new record and return */
567 if (i == 0) {
568 error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
569 nrec->ir_count, nrec->ir_freecount,
570 nrec->ir_free, &i);
571 if (error)
572 goto error;
573 if (XFS_IS_CORRUPT(mp, i != 1)) {
574 error = -EFSCORRUPTED;
575 goto error;
576 }
577
578 goto out;
579 }
580
581 /*
582 * A record exists at this startino. Merge or replace the record
583 * depending on what we've been asked to do.
584 */
585 if (merge) {
586 error = xfs_inobt_get_rec(cur, &rec, &i);
587 if (error)
588 goto error;
589 if (XFS_IS_CORRUPT(mp, i != 1)) {
590 error = -EFSCORRUPTED;
591 goto error;
592 }
593 if (XFS_IS_CORRUPT(mp, rec.ir_startino != nrec->ir_startino)) {
594 error = -EFSCORRUPTED;
595 goto error;
596 }
597
598 /*
599 * This should never fail. If we have coexisting records that
600 * cannot merge, something is seriously wrong.
601 */
602 if (XFS_IS_CORRUPT(mp, !__xfs_inobt_can_merge(nrec, &rec))) {
603 error = -EFSCORRUPTED;
604 goto error;
605 }
606
607 trace_xfs_irec_merge_pre(mp, pag->pag_agno, rec.ir_startino,
608 rec.ir_holemask, nrec->ir_startino,
609 nrec->ir_holemask);
610
611 /* merge to nrec to output the updated record */
612 __xfs_inobt_rec_merge(nrec, &rec);
613
614 trace_xfs_irec_merge_post(mp, pag->pag_agno, nrec->ir_startino,
615 nrec->ir_holemask);
616
617 error = xfs_inobt_rec_check_count(mp, nrec);
618 if (error)
619 goto error;
620 }
621
622 error = xfs_inobt_update(cur, nrec);
623 if (error)
624 goto error;
625
626out:
627 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
628 return 0;
629error:
630 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
631 return error;
632}
633
634/*
635 * Allocate new inodes in the allocation group specified by agbp. Returns 0 if
636 * inodes were allocated in this AG; -EAGAIN if there was no space in this AG so
637 * the caller knows it can try another AG, a hard -ENOSPC when over the maximum
638 * inode count threshold, or the usual negative error code for other errors.
639 */
640STATIC int
641xfs_ialloc_ag_alloc(
642 struct xfs_perag *pag,
643 struct xfs_trans *tp,
644 struct xfs_buf *agbp)
645{
646 struct xfs_agi *agi;
647 struct xfs_alloc_arg args;
648 int error;
649 xfs_agino_t newino; /* new first inode's number */
650 xfs_agino_t newlen; /* new number of inodes */
651 int isaligned = 0; /* inode allocation at stripe */
652 /* unit boundary */
653 /* init. to full chunk */
654 struct xfs_inobt_rec_incore rec;
655 struct xfs_ino_geometry *igeo = M_IGEO(tp->t_mountp);
656 uint16_t allocmask = (uint16_t) -1;
657 int do_sparse = 0;
658
659 memset(&args, 0, sizeof(args));
660 args.tp = tp;
661 args.mp = tp->t_mountp;
662 args.fsbno = NULLFSBLOCK;
663 args.oinfo = XFS_RMAP_OINFO_INODES;
664 args.pag = pag;
665
666#ifdef DEBUG
667 /* randomly do sparse inode allocations */
668 if (xfs_has_sparseinodes(tp->t_mountp) &&
669 igeo->ialloc_min_blks < igeo->ialloc_blks)
670 do_sparse = get_random_u32_below(2);
671#endif
672
673 /*
674 * Locking will ensure that we don't have two callers in here
675 * at one time.
676 */
677 newlen = igeo->ialloc_inos;
678 if (igeo->maxicount &&
679 percpu_counter_read_positive(&args.mp->m_icount) + newlen >
680 igeo->maxicount)
681 return -ENOSPC;
682 args.minlen = args.maxlen = igeo->ialloc_blks;
683 /*
684 * First try to allocate inodes contiguous with the last-allocated
685 * chunk of inodes. If the filesystem is striped, this will fill
686 * an entire stripe unit with inodes.
687 */
688 agi = agbp->b_addr;
689 newino = be32_to_cpu(agi->agi_newino);
690 args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
691 igeo->ialloc_blks;
692 if (do_sparse)
693 goto sparse_alloc;
694 if (likely(newino != NULLAGINO &&
695 (args.agbno < be32_to_cpu(agi->agi_length)))) {
696 args.prod = 1;
697
698 /*
699 * We need to take into account alignment here to ensure that
700 * we don't modify the free list if we fail to have an exact
701 * block. If we don't have an exact match, and every oher
702 * attempt allocation attempt fails, we'll end up cancelling
703 * a dirty transaction and shutting down.
704 *
705 * For an exact allocation, alignment must be 1,
706 * however we need to take cluster alignment into account when
707 * fixing up the freelist. Use the minalignslop field to
708 * indicate that extra blocks might be required for alignment,
709 * but not to use them in the actual exact allocation.
710 */
711 args.alignment = 1;
712 args.minalignslop = igeo->cluster_align - 1;
713
714 /* Allow space for the inode btree to split. */
715 args.minleft = igeo->inobt_maxlevels;
716 error = xfs_alloc_vextent_exact_bno(&args,
717 XFS_AGB_TO_FSB(args.mp, pag->pag_agno,
718 args.agbno));
719 if (error)
720 return error;
721
722 /*
723 * This request might have dirtied the transaction if the AG can
724 * satisfy the request, but the exact block was not available.
725 * If the allocation did fail, subsequent requests will relax
726 * the exact agbno requirement and increase the alignment
727 * instead. It is critical that the total size of the request
728 * (len + alignment + slop) does not increase from this point
729 * on, so reset minalignslop to ensure it is not included in
730 * subsequent requests.
731 */
732 args.minalignslop = 0;
733 }
734
735 if (unlikely(args.fsbno == NULLFSBLOCK)) {
736 /*
737 * Set the alignment for the allocation.
738 * If stripe alignment is turned on then align at stripe unit
739 * boundary.
740 * If the cluster size is smaller than a filesystem block
741 * then we're doing I/O for inodes in filesystem block size
742 * pieces, so don't need alignment anyway.
743 */
744 isaligned = 0;
745 if (igeo->ialloc_align) {
746 ASSERT(!xfs_has_noalign(args.mp));
747 args.alignment = args.mp->m_dalign;
748 isaligned = 1;
749 } else
750 args.alignment = igeo->cluster_align;
751 /*
752 * Allocate a fixed-size extent of inodes.
753 */
754 args.prod = 1;
755 /*
756 * Allow space for the inode btree to split.
757 */
758 args.minleft = igeo->inobt_maxlevels;
759 error = xfs_alloc_vextent_near_bno(&args,
760 XFS_AGB_TO_FSB(args.mp, pag->pag_agno,
761 be32_to_cpu(agi->agi_root)));
762 if (error)
763 return error;
764 }
765
766 /*
767 * If stripe alignment is turned on, then try again with cluster
768 * alignment.
769 */
770 if (isaligned && args.fsbno == NULLFSBLOCK) {
771 args.alignment = igeo->cluster_align;
772 error = xfs_alloc_vextent_near_bno(&args,
773 XFS_AGB_TO_FSB(args.mp, pag->pag_agno,
774 be32_to_cpu(agi->agi_root)));
775 if (error)
776 return error;
777 }
778
779 /*
780 * Finally, try a sparse allocation if the filesystem supports it and
781 * the sparse allocation length is smaller than a full chunk.
782 */
783 if (xfs_has_sparseinodes(args.mp) &&
784 igeo->ialloc_min_blks < igeo->ialloc_blks &&
785 args.fsbno == NULLFSBLOCK) {
786sparse_alloc:
787 args.alignment = args.mp->m_sb.sb_spino_align;
788 args.prod = 1;
789
790 args.minlen = igeo->ialloc_min_blks;
791 args.maxlen = args.minlen;
792
793 /*
794 * The inode record will be aligned to full chunk size. We must
795 * prevent sparse allocation from AG boundaries that result in
796 * invalid inode records, such as records that start at agbno 0
797 * or extend beyond the AG.
798 *
799 * Set min agbno to the first aligned, non-zero agbno and max to
800 * the last aligned agbno that is at least one full chunk from
801 * the end of the AG.
802 */
803 args.min_agbno = args.mp->m_sb.sb_inoalignmt;
804 args.max_agbno = round_down(args.mp->m_sb.sb_agblocks,
805 args.mp->m_sb.sb_inoalignmt) -
806 igeo->ialloc_blks;
807
808 error = xfs_alloc_vextent_near_bno(&args,
809 XFS_AGB_TO_FSB(args.mp, pag->pag_agno,
810 be32_to_cpu(agi->agi_root)));
811 if (error)
812 return error;
813
814 newlen = XFS_AGB_TO_AGINO(args.mp, args.len);
815 ASSERT(newlen <= XFS_INODES_PER_CHUNK);
816 allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1;
817 }
818
819 if (args.fsbno == NULLFSBLOCK)
820 return -EAGAIN;
821
822 ASSERT(args.len == args.minlen);
823
824 /*
825 * Stamp and write the inode buffers.
826 *
827 * Seed the new inode cluster with a random generation number. This
828 * prevents short-term reuse of generation numbers if a chunk is
829 * freed and then immediately reallocated. We use random numbers
830 * rather than a linear progression to prevent the next generation
831 * number from being easily guessable.
832 */
833 error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, pag->pag_agno,
834 args.agbno, args.len, get_random_u32());
835
836 if (error)
837 return error;
838 /*
839 * Convert the results.
840 */
841 newino = XFS_AGB_TO_AGINO(args.mp, args.agbno);
842
843 if (xfs_inobt_issparse(~allocmask)) {
844 /*
845 * We've allocated a sparse chunk. Align the startino and mask.
846 */
847 xfs_align_sparse_ino(args.mp, &newino, &allocmask);
848
849 rec.ir_startino = newino;
850 rec.ir_holemask = ~allocmask;
851 rec.ir_count = newlen;
852 rec.ir_freecount = newlen;
853 rec.ir_free = XFS_INOBT_ALL_FREE;
854
855 /*
856 * Insert the sparse record into the inobt and allow for a merge
857 * if necessary. If a merge does occur, rec is updated to the
858 * merged record.
859 */
860 error = xfs_inobt_insert_sprec(pag, tp, agbp,
861 XFS_BTNUM_INO, &rec, true);
862 if (error == -EFSCORRUPTED) {
863 xfs_alert(args.mp,
864 "invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
865 XFS_AGINO_TO_INO(args.mp, pag->pag_agno,
866 rec.ir_startino),
867 rec.ir_holemask, rec.ir_count);
868 xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE);
869 }
870 if (error)
871 return error;
872
873 /*
874 * We can't merge the part we've just allocated as for the inobt
875 * due to finobt semantics. The original record may or may not
876 * exist independent of whether physical inodes exist in this
877 * sparse chunk.
878 *
879 * We must update the finobt record based on the inobt record.
880 * rec contains the fully merged and up to date inobt record
881 * from the previous call. Set merge false to replace any
882 * existing record with this one.
883 */
884 if (xfs_has_finobt(args.mp)) {
885 error = xfs_inobt_insert_sprec(pag, tp, agbp,
886 XFS_BTNUM_FINO, &rec, false);
887 if (error)
888 return error;
889 }
890 } else {
891 /* full chunk - insert new records to both btrees */
892 error = xfs_inobt_insert(pag, tp, agbp, newino, newlen,
893 XFS_BTNUM_INO);
894 if (error)
895 return error;
896
897 if (xfs_has_finobt(args.mp)) {
898 error = xfs_inobt_insert(pag, tp, agbp, newino,
899 newlen, XFS_BTNUM_FINO);
900 if (error)
901 return error;
902 }
903 }
904
905 /*
906 * Update AGI counts and newino.
907 */
908 be32_add_cpu(&agi->agi_count, newlen);
909 be32_add_cpu(&agi->agi_freecount, newlen);
910 pag->pagi_freecount += newlen;
911 pag->pagi_count += newlen;
912 agi->agi_newino = cpu_to_be32(newino);
913
914 /*
915 * Log allocation group header fields
916 */
917 xfs_ialloc_log_agi(tp, agbp,
918 XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
919 /*
920 * Modify/log superblock values for inode count and inode free count.
921 */
922 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
923 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
924 return 0;
925}
926
927/*
928 * Try to retrieve the next record to the left/right from the current one.
929 */
930STATIC int
931xfs_ialloc_next_rec(
932 struct xfs_btree_cur *cur,
933 xfs_inobt_rec_incore_t *rec,
934 int *done,
935 int left)
936{
937 int error;
938 int i;
939
940 if (left)
941 error = xfs_btree_decrement(cur, 0, &i);
942 else
943 error = xfs_btree_increment(cur, 0, &i);
944
945 if (error)
946 return error;
947 *done = !i;
948 if (i) {
949 error = xfs_inobt_get_rec(cur, rec, &i);
950 if (error)
951 return error;
952 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
953 return -EFSCORRUPTED;
954 }
955
956 return 0;
957}
958
959STATIC int
960xfs_ialloc_get_rec(
961 struct xfs_btree_cur *cur,
962 xfs_agino_t agino,
963 xfs_inobt_rec_incore_t *rec,
964 int *done)
965{
966 int error;
967 int i;
968
969 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
970 if (error)
971 return error;
972 *done = !i;
973 if (i) {
974 error = xfs_inobt_get_rec(cur, rec, &i);
975 if (error)
976 return error;
977 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
978 return -EFSCORRUPTED;
979 }
980
981 return 0;
982}
983
984/*
985 * Return the offset of the first free inode in the record. If the inode chunk
986 * is sparsely allocated, we convert the record holemask to inode granularity
987 * and mask off the unallocated regions from the inode free mask.
988 */
989STATIC int
990xfs_inobt_first_free_inode(
991 struct xfs_inobt_rec_incore *rec)
992{
993 xfs_inofree_t realfree;
994
995 /* if there are no holes, return the first available offset */
996 if (!xfs_inobt_issparse(rec->ir_holemask))
997 return xfs_lowbit64(rec->ir_free);
998
999 realfree = xfs_inobt_irec_to_allocmask(rec);
1000 realfree &= rec->ir_free;
1001
1002 return xfs_lowbit64(realfree);
1003}
1004
1005/*
1006 * Allocate an inode using the inobt-only algorithm.
1007 */
1008STATIC int
1009xfs_dialloc_ag_inobt(
1010 struct xfs_perag *pag,
1011 struct xfs_trans *tp,
1012 struct xfs_buf *agbp,
1013 xfs_ino_t parent,
1014 xfs_ino_t *inop)
1015{
1016 struct xfs_mount *mp = tp->t_mountp;
1017 struct xfs_agi *agi = agbp->b_addr;
1018 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
1019 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
1020 struct xfs_btree_cur *cur, *tcur;
1021 struct xfs_inobt_rec_incore rec, trec;
1022 xfs_ino_t ino;
1023 int error;
1024 int offset;
1025 int i, j;
1026 int searchdistance = 10;
1027
1028 ASSERT(xfs_perag_initialised_agi(pag));
1029 ASSERT(xfs_perag_allows_inodes(pag));
1030 ASSERT(pag->pagi_freecount > 0);
1031
1032 restart_pagno:
1033 cur = xfs_inobt_init_cursor(pag, tp, agbp, XFS_BTNUM_INO);
1034 /*
1035 * If pagino is 0 (this is the root inode allocation) use newino.
1036 * This must work because we've just allocated some.
1037 */
1038 if (!pagino)
1039 pagino = be32_to_cpu(agi->agi_newino);
1040
1041 error = xfs_check_agi_freecount(cur);
1042 if (error)
1043 goto error0;
1044
1045 /*
1046 * If in the same AG as the parent, try to get near the parent.
1047 */
1048 if (pagno == pag->pag_agno) {
1049 int doneleft; /* done, to the left */
1050 int doneright; /* done, to the right */
1051
1052 error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
1053 if (error)
1054 goto error0;
1055 if (XFS_IS_CORRUPT(mp, i != 1)) {
1056 error = -EFSCORRUPTED;
1057 goto error0;
1058 }
1059
1060 error = xfs_inobt_get_rec(cur, &rec, &j);
1061 if (error)
1062 goto error0;
1063 if (XFS_IS_CORRUPT(mp, j != 1)) {
1064 error = -EFSCORRUPTED;
1065 goto error0;
1066 }
1067
1068 if (rec.ir_freecount > 0) {
1069 /*
1070 * Found a free inode in the same chunk
1071 * as the parent, done.
1072 */
1073 goto alloc_inode;
1074 }
1075
1076
1077 /*
1078 * In the same AG as parent, but parent's chunk is full.
1079 */
1080
1081 /* duplicate the cursor, search left & right simultaneously */
1082 error = xfs_btree_dup_cursor(cur, &tcur);
1083 if (error)
1084 goto error0;
1085
1086 /*
1087 * Skip to last blocks looked up if same parent inode.
1088 */
1089 if (pagino != NULLAGINO &&
1090 pag->pagl_pagino == pagino &&
1091 pag->pagl_leftrec != NULLAGINO &&
1092 pag->pagl_rightrec != NULLAGINO) {
1093 error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
1094 &trec, &doneleft);
1095 if (error)
1096 goto error1;
1097
1098 error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
1099 &rec, &doneright);
1100 if (error)
1101 goto error1;
1102 } else {
1103 /* search left with tcur, back up 1 record */
1104 error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
1105 if (error)
1106 goto error1;
1107
1108 /* search right with cur, go forward 1 record. */
1109 error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
1110 if (error)
1111 goto error1;
1112 }
1113
1114 /*
1115 * Loop until we find an inode chunk with a free inode.
1116 */
1117 while (--searchdistance > 0 && (!doneleft || !doneright)) {
1118 int useleft; /* using left inode chunk this time */
1119
1120 /* figure out the closer block if both are valid. */
1121 if (!doneleft && !doneright) {
1122 useleft = pagino -
1123 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
1124 rec.ir_startino - pagino;
1125 } else {
1126 useleft = !doneleft;
1127 }
1128
1129 /* free inodes to the left? */
1130 if (useleft && trec.ir_freecount) {
1131 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1132 cur = tcur;
1133
1134 pag->pagl_leftrec = trec.ir_startino;
1135 pag->pagl_rightrec = rec.ir_startino;
1136 pag->pagl_pagino = pagino;
1137 rec = trec;
1138 goto alloc_inode;
1139 }
1140
1141 /* free inodes to the right? */
1142 if (!useleft && rec.ir_freecount) {
1143 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1144
1145 pag->pagl_leftrec = trec.ir_startino;
1146 pag->pagl_rightrec = rec.ir_startino;
1147 pag->pagl_pagino = pagino;
1148 goto alloc_inode;
1149 }
1150
1151 /* get next record to check */
1152 if (useleft) {
1153 error = xfs_ialloc_next_rec(tcur, &trec,
1154 &doneleft, 1);
1155 } else {
1156 error = xfs_ialloc_next_rec(cur, &rec,
1157 &doneright, 0);
1158 }
1159 if (error)
1160 goto error1;
1161 }
1162
1163 if (searchdistance <= 0) {
1164 /*
1165 * Not in range - save last search
1166 * location and allocate a new inode
1167 */
1168 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1169 pag->pagl_leftrec = trec.ir_startino;
1170 pag->pagl_rightrec = rec.ir_startino;
1171 pag->pagl_pagino = pagino;
1172
1173 } else {
1174 /*
1175 * We've reached the end of the btree. because
1176 * we are only searching a small chunk of the
1177 * btree each search, there is obviously free
1178 * inodes closer to the parent inode than we
1179 * are now. restart the search again.
1180 */
1181 pag->pagl_pagino = NULLAGINO;
1182 pag->pagl_leftrec = NULLAGINO;
1183 pag->pagl_rightrec = NULLAGINO;
1184 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1185 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1186 goto restart_pagno;
1187 }
1188 }
1189
1190 /*
1191 * In a different AG from the parent.
1192 * See if the most recently allocated block has any free.
1193 */
1194 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1195 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1196 XFS_LOOKUP_EQ, &i);
1197 if (error)
1198 goto error0;
1199
1200 if (i == 1) {
1201 error = xfs_inobt_get_rec(cur, &rec, &j);
1202 if (error)
1203 goto error0;
1204
1205 if (j == 1 && rec.ir_freecount > 0) {
1206 /*
1207 * The last chunk allocated in the group
1208 * still has a free inode.
1209 */
1210 goto alloc_inode;
1211 }
1212 }
1213 }
1214
1215 /*
1216 * None left in the last group, search the whole AG
1217 */
1218 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1219 if (error)
1220 goto error0;
1221 if (XFS_IS_CORRUPT(mp, i != 1)) {
1222 error = -EFSCORRUPTED;
1223 goto error0;
1224 }
1225
1226 for (;;) {
1227 error = xfs_inobt_get_rec(cur, &rec, &i);
1228 if (error)
1229 goto error0;
1230 if (XFS_IS_CORRUPT(mp, i != 1)) {
1231 error = -EFSCORRUPTED;
1232 goto error0;
1233 }
1234 if (rec.ir_freecount > 0)
1235 break;
1236 error = xfs_btree_increment(cur, 0, &i);
1237 if (error)
1238 goto error0;
1239 if (XFS_IS_CORRUPT(mp, i != 1)) {
1240 error = -EFSCORRUPTED;
1241 goto error0;
1242 }
1243 }
1244
1245alloc_inode:
1246 offset = xfs_inobt_first_free_inode(&rec);
1247 ASSERT(offset >= 0);
1248 ASSERT(offset < XFS_INODES_PER_CHUNK);
1249 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1250 XFS_INODES_PER_CHUNK) == 0);
1251 ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, rec.ir_startino + offset);
1252 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1253 rec.ir_freecount--;
1254 error = xfs_inobt_update(cur, &rec);
1255 if (error)
1256 goto error0;
1257 be32_add_cpu(&agi->agi_freecount, -1);
1258 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1259 pag->pagi_freecount--;
1260
1261 error = xfs_check_agi_freecount(cur);
1262 if (error)
1263 goto error0;
1264
1265 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1266 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1267 *inop = ino;
1268 return 0;
1269error1:
1270 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
1271error0:
1272 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1273 return error;
1274}
1275
1276/*
1277 * Use the free inode btree to allocate an inode based on distance from the
1278 * parent. Note that the provided cursor may be deleted and replaced.
1279 */
1280STATIC int
1281xfs_dialloc_ag_finobt_near(
1282 xfs_agino_t pagino,
1283 struct xfs_btree_cur **ocur,
1284 struct xfs_inobt_rec_incore *rec)
1285{
1286 struct xfs_btree_cur *lcur = *ocur; /* left search cursor */
1287 struct xfs_btree_cur *rcur; /* right search cursor */
1288 struct xfs_inobt_rec_incore rrec;
1289 int error;
1290 int i, j;
1291
1292 error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
1293 if (error)
1294 return error;
1295
1296 if (i == 1) {
1297 error = xfs_inobt_get_rec(lcur, rec, &i);
1298 if (error)
1299 return error;
1300 if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1))
1301 return -EFSCORRUPTED;
1302
1303 /*
1304 * See if we've landed in the parent inode record. The finobt
1305 * only tracks chunks with at least one free inode, so record
1306 * existence is enough.
1307 */
1308 if (pagino >= rec->ir_startino &&
1309 pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
1310 return 0;
1311 }
1312
1313 error = xfs_btree_dup_cursor(lcur, &rcur);
1314 if (error)
1315 return error;
1316
1317 error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
1318 if (error)
1319 goto error_rcur;
1320 if (j == 1) {
1321 error = xfs_inobt_get_rec(rcur, &rrec, &j);
1322 if (error)
1323 goto error_rcur;
1324 if (XFS_IS_CORRUPT(lcur->bc_mp, j != 1)) {
1325 error = -EFSCORRUPTED;
1326 goto error_rcur;
1327 }
1328 }
1329
1330 if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1 && j != 1)) {
1331 error = -EFSCORRUPTED;
1332 goto error_rcur;
1333 }
1334 if (i == 1 && j == 1) {
1335 /*
1336 * Both the left and right records are valid. Choose the closer
1337 * inode chunk to the target.
1338 */
1339 if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
1340 (rrec.ir_startino - pagino)) {
1341 *rec = rrec;
1342 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1343 *ocur = rcur;
1344 } else {
1345 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1346 }
1347 } else if (j == 1) {
1348 /* only the right record is valid */
1349 *rec = rrec;
1350 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1351 *ocur = rcur;
1352 } else if (i == 1) {
1353 /* only the left record is valid */
1354 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1355 }
1356
1357 return 0;
1358
1359error_rcur:
1360 xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
1361 return error;
1362}
1363
1364/*
1365 * Use the free inode btree to find a free inode based on a newino hint. If
1366 * the hint is NULL, find the first free inode in the AG.
1367 */
1368STATIC int
1369xfs_dialloc_ag_finobt_newino(
1370 struct xfs_agi *agi,
1371 struct xfs_btree_cur *cur,
1372 struct xfs_inobt_rec_incore *rec)
1373{
1374 int error;
1375 int i;
1376
1377 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1378 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1379 XFS_LOOKUP_EQ, &i);
1380 if (error)
1381 return error;
1382 if (i == 1) {
1383 error = xfs_inobt_get_rec(cur, rec, &i);
1384 if (error)
1385 return error;
1386 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1387 return -EFSCORRUPTED;
1388 return 0;
1389 }
1390 }
1391
1392 /*
1393 * Find the first inode available in the AG.
1394 */
1395 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1396 if (error)
1397 return error;
1398 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1399 return -EFSCORRUPTED;
1400
1401 error = xfs_inobt_get_rec(cur, rec, &i);
1402 if (error)
1403 return error;
1404 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1405 return -EFSCORRUPTED;
1406
1407 return 0;
1408}
1409
1410/*
1411 * Update the inobt based on a modification made to the finobt. Also ensure that
1412 * the records from both trees are equivalent post-modification.
1413 */
1414STATIC int
1415xfs_dialloc_ag_update_inobt(
1416 struct xfs_btree_cur *cur, /* inobt cursor */
1417 struct xfs_inobt_rec_incore *frec, /* finobt record */
1418 int offset) /* inode offset */
1419{
1420 struct xfs_inobt_rec_incore rec;
1421 int error;
1422 int i;
1423
1424 error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
1425 if (error)
1426 return error;
1427 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1428 return -EFSCORRUPTED;
1429
1430 error = xfs_inobt_get_rec(cur, &rec, &i);
1431 if (error)
1432 return error;
1433 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1434 return -EFSCORRUPTED;
1435 ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
1436 XFS_INODES_PER_CHUNK) == 0);
1437
1438 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1439 rec.ir_freecount--;
1440
1441 if (XFS_IS_CORRUPT(cur->bc_mp,
1442 rec.ir_free != frec->ir_free ||
1443 rec.ir_freecount != frec->ir_freecount))
1444 return -EFSCORRUPTED;
1445
1446 return xfs_inobt_update(cur, &rec);
1447}
1448
1449/*
1450 * Allocate an inode using the free inode btree, if available. Otherwise, fall
1451 * back to the inobt search algorithm.
1452 *
1453 * The caller selected an AG for us, and made sure that free inodes are
1454 * available.
1455 */
1456static int
1457xfs_dialloc_ag(
1458 struct xfs_perag *pag,
1459 struct xfs_trans *tp,
1460 struct xfs_buf *agbp,
1461 xfs_ino_t parent,
1462 xfs_ino_t *inop)
1463{
1464 struct xfs_mount *mp = tp->t_mountp;
1465 struct xfs_agi *agi = agbp->b_addr;
1466 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
1467 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
1468 struct xfs_btree_cur *cur; /* finobt cursor */
1469 struct xfs_btree_cur *icur; /* inobt cursor */
1470 struct xfs_inobt_rec_incore rec;
1471 xfs_ino_t ino;
1472 int error;
1473 int offset;
1474 int i;
1475
1476 if (!xfs_has_finobt(mp))
1477 return xfs_dialloc_ag_inobt(pag, tp, agbp, parent, inop);
1478
1479 /*
1480 * If pagino is 0 (this is the root inode allocation) use newino.
1481 * This must work because we've just allocated some.
1482 */
1483 if (!pagino)
1484 pagino = be32_to_cpu(agi->agi_newino);
1485
1486 cur = xfs_inobt_init_cursor(pag, tp, agbp, XFS_BTNUM_FINO);
1487
1488 error = xfs_check_agi_freecount(cur);
1489 if (error)
1490 goto error_cur;
1491
1492 /*
1493 * The search algorithm depends on whether we're in the same AG as the
1494 * parent. If so, find the closest available inode to the parent. If
1495 * not, consider the agi hint or find the first free inode in the AG.
1496 */
1497 if (pag->pag_agno == pagno)
1498 error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
1499 else
1500 error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
1501 if (error)
1502 goto error_cur;
1503
1504 offset = xfs_inobt_first_free_inode(&rec);
1505 ASSERT(offset >= 0);
1506 ASSERT(offset < XFS_INODES_PER_CHUNK);
1507 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1508 XFS_INODES_PER_CHUNK) == 0);
1509 ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, rec.ir_startino + offset);
1510
1511 /*
1512 * Modify or remove the finobt record.
1513 */
1514 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1515 rec.ir_freecount--;
1516 if (rec.ir_freecount)
1517 error = xfs_inobt_update(cur, &rec);
1518 else
1519 error = xfs_btree_delete(cur, &i);
1520 if (error)
1521 goto error_cur;
1522
1523 /*
1524 * The finobt has now been updated appropriately. We haven't updated the
1525 * agi and superblock yet, so we can create an inobt cursor and validate
1526 * the original freecount. If all is well, make the equivalent update to
1527 * the inobt using the finobt record and offset information.
1528 */
1529 icur = xfs_inobt_init_cursor(pag, tp, agbp, XFS_BTNUM_INO);
1530
1531 error = xfs_check_agi_freecount(icur);
1532 if (error)
1533 goto error_icur;
1534
1535 error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
1536 if (error)
1537 goto error_icur;
1538
1539 /*
1540 * Both trees have now been updated. We must update the perag and
1541 * superblock before we can check the freecount for each btree.
1542 */
1543 be32_add_cpu(&agi->agi_freecount, -1);
1544 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1545 pag->pagi_freecount--;
1546
1547 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1548
1549 error = xfs_check_agi_freecount(icur);
1550 if (error)
1551 goto error_icur;
1552 error = xfs_check_agi_freecount(cur);
1553 if (error)
1554 goto error_icur;
1555
1556 xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
1557 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1558 *inop = ino;
1559 return 0;
1560
1561error_icur:
1562 xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
1563error_cur:
1564 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1565 return error;
1566}
1567
1568static int
1569xfs_dialloc_roll(
1570 struct xfs_trans **tpp,
1571 struct xfs_buf *agibp)
1572{
1573 struct xfs_trans *tp = *tpp;
1574 struct xfs_dquot_acct *dqinfo;
1575 int error;
1576
1577 /*
1578 * Hold to on to the agibp across the commit so no other allocation can
1579 * come in and take the free inodes we just allocated for our caller.
1580 */
1581 xfs_trans_bhold(tp, agibp);
1582
1583 /*
1584 * We want the quota changes to be associated with the next transaction,
1585 * NOT this one. So, detach the dqinfo from this and attach it to the
1586 * next transaction.
1587 */
1588 dqinfo = tp->t_dqinfo;
1589 tp->t_dqinfo = NULL;
1590
1591 error = xfs_trans_roll(&tp);
1592
1593 /* Re-attach the quota info that we detached from prev trx. */
1594 tp->t_dqinfo = dqinfo;
1595
1596 /*
1597 * Join the buffer even on commit error so that the buffer is released
1598 * when the caller cancels the transaction and doesn't have to handle
1599 * this error case specially.
1600 */
1601 xfs_trans_bjoin(tp, agibp);
1602 *tpp = tp;
1603 return error;
1604}
1605
1606static bool
1607xfs_dialloc_good_ag(
1608 struct xfs_perag *pag,
1609 struct xfs_trans *tp,
1610 umode_t mode,
1611 int flags,
1612 bool ok_alloc)
1613{
1614 struct xfs_mount *mp = tp->t_mountp;
1615 xfs_extlen_t ineed;
1616 xfs_extlen_t longest = 0;
1617 int needspace;
1618 int error;
1619
1620 if (!pag)
1621 return false;
1622 if (!xfs_perag_allows_inodes(pag))
1623 return false;
1624
1625 if (!xfs_perag_initialised_agi(pag)) {
1626 error = xfs_ialloc_read_agi(pag, tp, NULL);
1627 if (error)
1628 return false;
1629 }
1630
1631 if (pag->pagi_freecount)
1632 return true;
1633 if (!ok_alloc)
1634 return false;
1635
1636 if (!xfs_perag_initialised_agf(pag)) {
1637 error = xfs_alloc_read_agf(pag, tp, flags, NULL);
1638 if (error)
1639 return false;
1640 }
1641
1642 /*
1643 * Check that there is enough free space for the file plus a chunk of
1644 * inodes if we need to allocate some. If this is the first pass across
1645 * the AGs, take into account the potential space needed for alignment
1646 * of inode chunks when checking the longest contiguous free space in
1647 * the AG - this prevents us from getting ENOSPC because we have free
1648 * space larger than ialloc_blks but alignment constraints prevent us
1649 * from using it.
1650 *
1651 * If we can't find an AG with space for full alignment slack to be
1652 * taken into account, we must be near ENOSPC in all AGs. Hence we
1653 * don't include alignment for the second pass and so if we fail
1654 * allocation due to alignment issues then it is most likely a real
1655 * ENOSPC condition.
1656 *
1657 * XXX(dgc): this calculation is now bogus thanks to the per-ag
1658 * reservations that xfs_alloc_fix_freelist() now does via
1659 * xfs_alloc_space_available(). When the AG fills up, pagf_freeblks will
1660 * be more than large enough for the check below to succeed, but
1661 * xfs_alloc_space_available() will fail because of the non-zero
1662 * metadata reservation and hence we won't actually be able to allocate
1663 * more inodes in this AG. We do soooo much unnecessary work near ENOSPC
1664 * because of this.
1665 */
1666 ineed = M_IGEO(mp)->ialloc_min_blks;
1667 if (flags && ineed > 1)
1668 ineed += M_IGEO(mp)->cluster_align;
1669 longest = pag->pagf_longest;
1670 if (!longest)
1671 longest = pag->pagf_flcount > 0;
1672 needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
1673
1674 if (pag->pagf_freeblks < needspace + ineed || longest < ineed)
1675 return false;
1676 return true;
1677}
1678
1679static int
1680xfs_dialloc_try_ag(
1681 struct xfs_perag *pag,
1682 struct xfs_trans **tpp,
1683 xfs_ino_t parent,
1684 xfs_ino_t *new_ino,
1685 bool ok_alloc)
1686{
1687 struct xfs_buf *agbp;
1688 xfs_ino_t ino;
1689 int error;
1690
1691 /*
1692 * Then read in the AGI buffer and recheck with the AGI buffer
1693 * lock held.
1694 */
1695 error = xfs_ialloc_read_agi(pag, *tpp, &agbp);
1696 if (error)
1697 return error;
1698
1699 if (!pag->pagi_freecount) {
1700 if (!ok_alloc) {
1701 error = -EAGAIN;
1702 goto out_release;
1703 }
1704
1705 error = xfs_ialloc_ag_alloc(pag, *tpp, agbp);
1706 if (error < 0)
1707 goto out_release;
1708
1709 /*
1710 * We successfully allocated space for an inode cluster in this
1711 * AG. Roll the transaction so that we can allocate one of the
1712 * new inodes.
1713 */
1714 ASSERT(pag->pagi_freecount > 0);
1715 error = xfs_dialloc_roll(tpp, agbp);
1716 if (error)
1717 goto out_release;
1718 }
1719
1720 /* Allocate an inode in the found AG */
1721 error = xfs_dialloc_ag(pag, *tpp, agbp, parent, &ino);
1722 if (!error)
1723 *new_ino = ino;
1724 return error;
1725
1726out_release:
1727 xfs_trans_brelse(*tpp, agbp);
1728 return error;
1729}
1730
1731/*
1732 * Allocate an on-disk inode.
1733 *
1734 * Mode is used to tell whether the new inode is a directory and hence where to
1735 * locate it. The on-disk inode that is allocated will be returned in @new_ino
1736 * on success, otherwise an error will be set to indicate the failure (e.g.
1737 * -ENOSPC).
1738 */
1739int
1740xfs_dialloc(
1741 struct xfs_trans **tpp,
1742 xfs_ino_t parent,
1743 umode_t mode,
1744 xfs_ino_t *new_ino)
1745{
1746 struct xfs_mount *mp = (*tpp)->t_mountp;
1747 xfs_agnumber_t agno;
1748 int error = 0;
1749 xfs_agnumber_t start_agno;
1750 struct xfs_perag *pag;
1751 struct xfs_ino_geometry *igeo = M_IGEO(mp);
1752 bool ok_alloc = true;
1753 bool low_space = false;
1754 int flags;
1755 xfs_ino_t ino = NULLFSINO;
1756
1757 /*
1758 * Directories, symlinks, and regular files frequently allocate at least
1759 * one block, so factor that potential expansion when we examine whether
1760 * an AG has enough space for file creation.
1761 */
1762 if (S_ISDIR(mode))
1763 start_agno = (atomic_inc_return(&mp->m_agirotor) - 1) %
1764 mp->m_maxagi;
1765 else {
1766 start_agno = XFS_INO_TO_AGNO(mp, parent);
1767 if (start_agno >= mp->m_maxagi)
1768 start_agno = 0;
1769 }
1770
1771 /*
1772 * If we have already hit the ceiling of inode blocks then clear
1773 * ok_alloc so we scan all available agi structures for a free
1774 * inode.
1775 *
1776 * Read rough value of mp->m_icount by percpu_counter_read_positive,
1777 * which will sacrifice the preciseness but improve the performance.
1778 */
1779 if (igeo->maxicount &&
1780 percpu_counter_read_positive(&mp->m_icount) + igeo->ialloc_inos
1781 > igeo->maxicount) {
1782 ok_alloc = false;
1783 }
1784
1785 /*
1786 * If we are near to ENOSPC, we want to prefer allocation from AGs that
1787 * have free inodes in them rather than use up free space allocating new
1788 * inode chunks. Hence we turn off allocation for the first non-blocking
1789 * pass through the AGs if we are near ENOSPC to consume free inodes
1790 * that we can immediately allocate, but then we allow allocation on the
1791 * second pass if we fail to find an AG with free inodes in it.
1792 */
1793 if (percpu_counter_read_positive(&mp->m_fdblocks) <
1794 mp->m_low_space[XFS_LOWSP_1_PCNT]) {
1795 ok_alloc = false;
1796 low_space = true;
1797 }
1798
1799 /*
1800 * Loop until we find an allocation group that either has free inodes
1801 * or in which we can allocate some inodes. Iterate through the
1802 * allocation groups upward, wrapping at the end.
1803 */
1804 flags = XFS_ALLOC_FLAG_TRYLOCK;
1805retry:
1806 for_each_perag_wrap_at(mp, start_agno, mp->m_maxagi, agno, pag) {
1807 if (xfs_dialloc_good_ag(pag, *tpp, mode, flags, ok_alloc)) {
1808 error = xfs_dialloc_try_ag(pag, tpp, parent,
1809 &ino, ok_alloc);
1810 if (error != -EAGAIN)
1811 break;
1812 error = 0;
1813 }
1814
1815 if (xfs_is_shutdown(mp)) {
1816 error = -EFSCORRUPTED;
1817 break;
1818 }
1819 }
1820 if (pag)
1821 xfs_perag_rele(pag);
1822 if (error)
1823 return error;
1824 if (ino == NULLFSINO) {
1825 if (flags) {
1826 flags = 0;
1827 if (low_space)
1828 ok_alloc = true;
1829 goto retry;
1830 }
1831 return -ENOSPC;
1832 }
1833 *new_ino = ino;
1834 return 0;
1835}
1836
1837/*
1838 * Free the blocks of an inode chunk. We must consider that the inode chunk
1839 * might be sparse and only free the regions that are allocated as part of the
1840 * chunk.
1841 */
1842static int
1843xfs_difree_inode_chunk(
1844 struct xfs_trans *tp,
1845 xfs_agnumber_t agno,
1846 struct xfs_inobt_rec_incore *rec)
1847{
1848 struct xfs_mount *mp = tp->t_mountp;
1849 xfs_agblock_t sagbno = XFS_AGINO_TO_AGBNO(mp,
1850 rec->ir_startino);
1851 int startidx, endidx;
1852 int nextbit;
1853 xfs_agblock_t agbno;
1854 int contigblk;
1855 DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS);
1856
1857 if (!xfs_inobt_issparse(rec->ir_holemask)) {
1858 /* not sparse, calculate extent info directly */
1859 return xfs_free_extent_later(tp,
1860 XFS_AGB_TO_FSB(mp, agno, sagbno),
1861 M_IGEO(mp)->ialloc_blks, &XFS_RMAP_OINFO_INODES,
1862 XFS_AG_RESV_NONE, false);
1863 }
1864
1865 /* holemask is only 16-bits (fits in an unsigned long) */
1866 ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0]));
1867 holemask[0] = rec->ir_holemask;
1868
1869 /*
1870 * Find contiguous ranges of zeroes (i.e., allocated regions) in the
1871 * holemask and convert the start/end index of each range to an extent.
1872 * We start with the start and end index both pointing at the first 0 in
1873 * the mask.
1874 */
1875 startidx = endidx = find_first_zero_bit(holemask,
1876 XFS_INOBT_HOLEMASK_BITS);
1877 nextbit = startidx + 1;
1878 while (startidx < XFS_INOBT_HOLEMASK_BITS) {
1879 int error;
1880
1881 nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS,
1882 nextbit);
1883 /*
1884 * If the next zero bit is contiguous, update the end index of
1885 * the current range and continue.
1886 */
1887 if (nextbit != XFS_INOBT_HOLEMASK_BITS &&
1888 nextbit == endidx + 1) {
1889 endidx = nextbit;
1890 goto next;
1891 }
1892
1893 /*
1894 * nextbit is not contiguous with the current end index. Convert
1895 * the current start/end to an extent and add it to the free
1896 * list.
1897 */
1898 agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) /
1899 mp->m_sb.sb_inopblock;
1900 contigblk = ((endidx - startidx + 1) *
1901 XFS_INODES_PER_HOLEMASK_BIT) /
1902 mp->m_sb.sb_inopblock;
1903
1904 ASSERT(agbno % mp->m_sb.sb_spino_align == 0);
1905 ASSERT(contigblk % mp->m_sb.sb_spino_align == 0);
1906 error = xfs_free_extent_later(tp,
1907 XFS_AGB_TO_FSB(mp, agno, agbno), contigblk,
1908 &XFS_RMAP_OINFO_INODES, XFS_AG_RESV_NONE,
1909 false);
1910 if (error)
1911 return error;
1912
1913 /* reset range to current bit and carry on... */
1914 startidx = endidx = nextbit;
1915
1916next:
1917 nextbit++;
1918 }
1919 return 0;
1920}
1921
1922STATIC int
1923xfs_difree_inobt(
1924 struct xfs_perag *pag,
1925 struct xfs_trans *tp,
1926 struct xfs_buf *agbp,
1927 xfs_agino_t agino,
1928 struct xfs_icluster *xic,
1929 struct xfs_inobt_rec_incore *orec)
1930{
1931 struct xfs_mount *mp = pag->pag_mount;
1932 struct xfs_agi *agi = agbp->b_addr;
1933 struct xfs_btree_cur *cur;
1934 struct xfs_inobt_rec_incore rec;
1935 int ilen;
1936 int error;
1937 int i;
1938 int off;
1939
1940 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
1941 ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
1942
1943 /*
1944 * Initialize the cursor.
1945 */
1946 cur = xfs_inobt_init_cursor(pag, tp, agbp, XFS_BTNUM_INO);
1947
1948 error = xfs_check_agi_freecount(cur);
1949 if (error)
1950 goto error0;
1951
1952 /*
1953 * Look for the entry describing this inode.
1954 */
1955 if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
1956 xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
1957 __func__, error);
1958 goto error0;
1959 }
1960 if (XFS_IS_CORRUPT(mp, i != 1)) {
1961 error = -EFSCORRUPTED;
1962 goto error0;
1963 }
1964 error = xfs_inobt_get_rec(cur, &rec, &i);
1965 if (error) {
1966 xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
1967 __func__, error);
1968 goto error0;
1969 }
1970 if (XFS_IS_CORRUPT(mp, i != 1)) {
1971 error = -EFSCORRUPTED;
1972 goto error0;
1973 }
1974 /*
1975 * Get the offset in the inode chunk.
1976 */
1977 off = agino - rec.ir_startino;
1978 ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
1979 ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
1980 /*
1981 * Mark the inode free & increment the count.
1982 */
1983 rec.ir_free |= XFS_INOBT_MASK(off);
1984 rec.ir_freecount++;
1985
1986 /*
1987 * When an inode chunk is free, it becomes eligible for removal. Don't
1988 * remove the chunk if the block size is large enough for multiple inode
1989 * chunks (that might not be free).
1990 */
1991 if (!xfs_has_ikeep(mp) && rec.ir_free == XFS_INOBT_ALL_FREE &&
1992 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
1993 xic->deleted = true;
1994 xic->first_ino = XFS_AGINO_TO_INO(mp, pag->pag_agno,
1995 rec.ir_startino);
1996 xic->alloc = xfs_inobt_irec_to_allocmask(&rec);
1997
1998 /*
1999 * Remove the inode cluster from the AGI B+Tree, adjust the
2000 * AGI and Superblock inode counts, and mark the disk space
2001 * to be freed when the transaction is committed.
2002 */
2003 ilen = rec.ir_freecount;
2004 be32_add_cpu(&agi->agi_count, -ilen);
2005 be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
2006 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
2007 pag->pagi_freecount -= ilen - 1;
2008 pag->pagi_count -= ilen;
2009 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
2010 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
2011
2012 if ((error = xfs_btree_delete(cur, &i))) {
2013 xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
2014 __func__, error);
2015 goto error0;
2016 }
2017
2018 error = xfs_difree_inode_chunk(tp, pag->pag_agno, &rec);
2019 if (error)
2020 goto error0;
2021 } else {
2022 xic->deleted = false;
2023
2024 error = xfs_inobt_update(cur, &rec);
2025 if (error) {
2026 xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
2027 __func__, error);
2028 goto error0;
2029 }
2030
2031 /*
2032 * Change the inode free counts and log the ag/sb changes.
2033 */
2034 be32_add_cpu(&agi->agi_freecount, 1);
2035 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
2036 pag->pagi_freecount++;
2037 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
2038 }
2039
2040 error = xfs_check_agi_freecount(cur);
2041 if (error)
2042 goto error0;
2043
2044 *orec = rec;
2045 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2046 return 0;
2047
2048error0:
2049 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2050 return error;
2051}
2052
2053/*
2054 * Free an inode in the free inode btree.
2055 */
2056STATIC int
2057xfs_difree_finobt(
2058 struct xfs_perag *pag,
2059 struct xfs_trans *tp,
2060 struct xfs_buf *agbp,
2061 xfs_agino_t agino,
2062 struct xfs_inobt_rec_incore *ibtrec) /* inobt record */
2063{
2064 struct xfs_mount *mp = pag->pag_mount;
2065 struct xfs_btree_cur *cur;
2066 struct xfs_inobt_rec_incore rec;
2067 int offset = agino - ibtrec->ir_startino;
2068 int error;
2069 int i;
2070
2071 cur = xfs_inobt_init_cursor(pag, tp, agbp, XFS_BTNUM_FINO);
2072
2073 error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
2074 if (error)
2075 goto error;
2076 if (i == 0) {
2077 /*
2078 * If the record does not exist in the finobt, we must have just
2079 * freed an inode in a previously fully allocated chunk. If not,
2080 * something is out of sync.
2081 */
2082 if (XFS_IS_CORRUPT(mp, ibtrec->ir_freecount != 1)) {
2083 error = -EFSCORRUPTED;
2084 goto error;
2085 }
2086
2087 error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask,
2088 ibtrec->ir_count,
2089 ibtrec->ir_freecount,
2090 ibtrec->ir_free, &i);
2091 if (error)
2092 goto error;
2093 ASSERT(i == 1);
2094
2095 goto out;
2096 }
2097
2098 /*
2099 * Read and update the existing record. We could just copy the ibtrec
2100 * across here, but that would defeat the purpose of having redundant
2101 * metadata. By making the modifications independently, we can catch
2102 * corruptions that we wouldn't see if we just copied from one record
2103 * to another.
2104 */
2105 error = xfs_inobt_get_rec(cur, &rec, &i);
2106 if (error)
2107 goto error;
2108 if (XFS_IS_CORRUPT(mp, i != 1)) {
2109 error = -EFSCORRUPTED;
2110 goto error;
2111 }
2112
2113 rec.ir_free |= XFS_INOBT_MASK(offset);
2114 rec.ir_freecount++;
2115
2116 if (XFS_IS_CORRUPT(mp,
2117 rec.ir_free != ibtrec->ir_free ||
2118 rec.ir_freecount != ibtrec->ir_freecount)) {
2119 error = -EFSCORRUPTED;
2120 goto error;
2121 }
2122
2123 /*
2124 * The content of inobt records should always match between the inobt
2125 * and finobt. The lifecycle of records in the finobt is different from
2126 * the inobt in that the finobt only tracks records with at least one
2127 * free inode. Hence, if all of the inodes are free and we aren't
2128 * keeping inode chunks permanently on disk, remove the record.
2129 * Otherwise, update the record with the new information.
2130 *
2131 * Note that we currently can't free chunks when the block size is large
2132 * enough for multiple chunks. Leave the finobt record to remain in sync
2133 * with the inobt.
2134 */
2135 if (!xfs_has_ikeep(mp) && rec.ir_free == XFS_INOBT_ALL_FREE &&
2136 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
2137 error = xfs_btree_delete(cur, &i);
2138 if (error)
2139 goto error;
2140 ASSERT(i == 1);
2141 } else {
2142 error = xfs_inobt_update(cur, &rec);
2143 if (error)
2144 goto error;
2145 }
2146
2147out:
2148 error = xfs_check_agi_freecount(cur);
2149 if (error)
2150 goto error;
2151
2152 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2153 return 0;
2154
2155error:
2156 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2157 return error;
2158}
2159
2160/*
2161 * Free disk inode. Carefully avoids touching the incore inode, all
2162 * manipulations incore are the caller's responsibility.
2163 * The on-disk inode is not changed by this operation, only the
2164 * btree (free inode mask) is changed.
2165 */
2166int
2167xfs_difree(
2168 struct xfs_trans *tp,
2169 struct xfs_perag *pag,
2170 xfs_ino_t inode,
2171 struct xfs_icluster *xic)
2172{
2173 /* REFERENCED */
2174 xfs_agblock_t agbno; /* block number containing inode */
2175 struct xfs_buf *agbp; /* buffer for allocation group header */
2176 xfs_agino_t agino; /* allocation group inode number */
2177 int error; /* error return value */
2178 struct xfs_mount *mp = tp->t_mountp;
2179 struct xfs_inobt_rec_incore rec;/* btree record */
2180
2181 /*
2182 * Break up inode number into its components.
2183 */
2184 if (pag->pag_agno != XFS_INO_TO_AGNO(mp, inode)) {
2185 xfs_warn(mp, "%s: agno != pag->pag_agno (%d != %d).",
2186 __func__, XFS_INO_TO_AGNO(mp, inode), pag->pag_agno);
2187 ASSERT(0);
2188 return -EINVAL;
2189 }
2190 agino = XFS_INO_TO_AGINO(mp, inode);
2191 if (inode != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) {
2192 xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
2193 __func__, (unsigned long long)inode,
2194 (unsigned long long)XFS_AGINO_TO_INO(mp, pag->pag_agno, agino));
2195 ASSERT(0);
2196 return -EINVAL;
2197 }
2198 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2199 if (agbno >= mp->m_sb.sb_agblocks) {
2200 xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
2201 __func__, agbno, mp->m_sb.sb_agblocks);
2202 ASSERT(0);
2203 return -EINVAL;
2204 }
2205 /*
2206 * Get the allocation group header.
2207 */
2208 error = xfs_ialloc_read_agi(pag, tp, &agbp);
2209 if (error) {
2210 xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
2211 __func__, error);
2212 return error;
2213 }
2214
2215 /*
2216 * Fix up the inode allocation btree.
2217 */
2218 error = xfs_difree_inobt(pag, tp, agbp, agino, xic, &rec);
2219 if (error)
2220 goto error0;
2221
2222 /*
2223 * Fix up the free inode btree.
2224 */
2225 if (xfs_has_finobt(mp)) {
2226 error = xfs_difree_finobt(pag, tp, agbp, agino, &rec);
2227 if (error)
2228 goto error0;
2229 }
2230
2231 return 0;
2232
2233error0:
2234 return error;
2235}
2236
2237STATIC int
2238xfs_imap_lookup(
2239 struct xfs_perag *pag,
2240 struct xfs_trans *tp,
2241 xfs_agino_t agino,
2242 xfs_agblock_t agbno,
2243 xfs_agblock_t *chunk_agbno,
2244 xfs_agblock_t *offset_agbno,
2245 int flags)
2246{
2247 struct xfs_mount *mp = pag->pag_mount;
2248 struct xfs_inobt_rec_incore rec;
2249 struct xfs_btree_cur *cur;
2250 struct xfs_buf *agbp;
2251 int error;
2252 int i;
2253
2254 error = xfs_ialloc_read_agi(pag, tp, &agbp);
2255 if (error) {
2256 xfs_alert(mp,
2257 "%s: xfs_ialloc_read_agi() returned error %d, agno %d",
2258 __func__, error, pag->pag_agno);
2259 return error;
2260 }
2261
2262 /*
2263 * Lookup the inode record for the given agino. If the record cannot be
2264 * found, then it's an invalid inode number and we should abort. Once
2265 * we have a record, we need to ensure it contains the inode number
2266 * we are looking up.
2267 */
2268 cur = xfs_inobt_init_cursor(pag, tp, agbp, XFS_BTNUM_INO);
2269 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
2270 if (!error) {
2271 if (i)
2272 error = xfs_inobt_get_rec(cur, &rec, &i);
2273 if (!error && i == 0)
2274 error = -EINVAL;
2275 }
2276
2277 xfs_trans_brelse(tp, agbp);
2278 xfs_btree_del_cursor(cur, error);
2279 if (error)
2280 return error;
2281
2282 /* check that the returned record contains the required inode */
2283 if (rec.ir_startino > agino ||
2284 rec.ir_startino + M_IGEO(mp)->ialloc_inos <= agino)
2285 return -EINVAL;
2286
2287 /* for untrusted inodes check it is allocated first */
2288 if ((flags & XFS_IGET_UNTRUSTED) &&
2289 (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
2290 return -EINVAL;
2291
2292 *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
2293 *offset_agbno = agbno - *chunk_agbno;
2294 return 0;
2295}
2296
2297/*
2298 * Return the location of the inode in imap, for mapping it into a buffer.
2299 */
2300int
2301xfs_imap(
2302 struct xfs_perag *pag,
2303 struct xfs_trans *tp,
2304 xfs_ino_t ino, /* inode to locate */
2305 struct xfs_imap *imap, /* location map structure */
2306 uint flags) /* flags for inode btree lookup */
2307{
2308 struct xfs_mount *mp = pag->pag_mount;
2309 xfs_agblock_t agbno; /* block number of inode in the alloc group */
2310 xfs_agino_t agino; /* inode number within alloc group */
2311 xfs_agblock_t chunk_agbno; /* first block in inode chunk */
2312 xfs_agblock_t cluster_agbno; /* first block in inode cluster */
2313 int error; /* error code */
2314 int offset; /* index of inode in its buffer */
2315 xfs_agblock_t offset_agbno; /* blks from chunk start to inode */
2316
2317 ASSERT(ino != NULLFSINO);
2318
2319 /*
2320 * Split up the inode number into its parts.
2321 */
2322 agino = XFS_INO_TO_AGINO(mp, ino);
2323 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2324 if (agbno >= mp->m_sb.sb_agblocks ||
2325 ino != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) {
2326 error = -EINVAL;
2327#ifdef DEBUG
2328 /*
2329 * Don't output diagnostic information for untrusted inodes
2330 * as they can be invalid without implying corruption.
2331 */
2332 if (flags & XFS_IGET_UNTRUSTED)
2333 return error;
2334 if (agbno >= mp->m_sb.sb_agblocks) {
2335 xfs_alert(mp,
2336 "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
2337 __func__, (unsigned long long)agbno,
2338 (unsigned long)mp->m_sb.sb_agblocks);
2339 }
2340 if (ino != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) {
2341 xfs_alert(mp,
2342 "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
2343 __func__, ino,
2344 XFS_AGINO_TO_INO(mp, pag->pag_agno, agino));
2345 }
2346 xfs_stack_trace();
2347#endif /* DEBUG */
2348 return error;
2349 }
2350
2351 /*
2352 * For bulkstat and handle lookups, we have an untrusted inode number
2353 * that we have to verify is valid. We cannot do this just by reading
2354 * the inode buffer as it may have been unlinked and removed leaving
2355 * inodes in stale state on disk. Hence we have to do a btree lookup
2356 * in all cases where an untrusted inode number is passed.
2357 */
2358 if (flags & XFS_IGET_UNTRUSTED) {
2359 error = xfs_imap_lookup(pag, tp, agino, agbno,
2360 &chunk_agbno, &offset_agbno, flags);
2361 if (error)
2362 return error;
2363 goto out_map;
2364 }
2365
2366 /*
2367 * If the inode cluster size is the same as the blocksize or
2368 * smaller we get to the buffer by simple arithmetics.
2369 */
2370 if (M_IGEO(mp)->blocks_per_cluster == 1) {
2371 offset = XFS_INO_TO_OFFSET(mp, ino);
2372 ASSERT(offset < mp->m_sb.sb_inopblock);
2373
2374 imap->im_blkno = XFS_AGB_TO_DADDR(mp, pag->pag_agno, agbno);
2375 imap->im_len = XFS_FSB_TO_BB(mp, 1);
2376 imap->im_boffset = (unsigned short)(offset <<
2377 mp->m_sb.sb_inodelog);
2378 return 0;
2379 }
2380
2381 /*
2382 * If the inode chunks are aligned then use simple maths to
2383 * find the location. Otherwise we have to do a btree
2384 * lookup to find the location.
2385 */
2386 if (M_IGEO(mp)->inoalign_mask) {
2387 offset_agbno = agbno & M_IGEO(mp)->inoalign_mask;
2388 chunk_agbno = agbno - offset_agbno;
2389 } else {
2390 error = xfs_imap_lookup(pag, tp, agino, agbno,
2391 &chunk_agbno, &offset_agbno, flags);
2392 if (error)
2393 return error;
2394 }
2395
2396out_map:
2397 ASSERT(agbno >= chunk_agbno);
2398 cluster_agbno = chunk_agbno +
2399 ((offset_agbno / M_IGEO(mp)->blocks_per_cluster) *
2400 M_IGEO(mp)->blocks_per_cluster);
2401 offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
2402 XFS_INO_TO_OFFSET(mp, ino);
2403
2404 imap->im_blkno = XFS_AGB_TO_DADDR(mp, pag->pag_agno, cluster_agbno);
2405 imap->im_len = XFS_FSB_TO_BB(mp, M_IGEO(mp)->blocks_per_cluster);
2406 imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog);
2407
2408 /*
2409 * If the inode number maps to a block outside the bounds
2410 * of the file system then return NULL rather than calling
2411 * read_buf and panicing when we get an error from the
2412 * driver.
2413 */
2414 if ((imap->im_blkno + imap->im_len) >
2415 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
2416 xfs_alert(mp,
2417 "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
2418 __func__, (unsigned long long) imap->im_blkno,
2419 (unsigned long long) imap->im_len,
2420 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2421 return -EINVAL;
2422 }
2423 return 0;
2424}
2425
2426/*
2427 * Log specified fields for the ag hdr (inode section). The growth of the agi
2428 * structure over time requires that we interpret the buffer as two logical
2429 * regions delineated by the end of the unlinked list. This is due to the size
2430 * of the hash table and its location in the middle of the agi.
2431 *
2432 * For example, a request to log a field before agi_unlinked and a field after
2433 * agi_unlinked could cause us to log the entire hash table and use an excessive
2434 * amount of log space. To avoid this behavior, log the region up through
2435 * agi_unlinked in one call and the region after agi_unlinked through the end of
2436 * the structure in another.
2437 */
2438void
2439xfs_ialloc_log_agi(
2440 struct xfs_trans *tp,
2441 struct xfs_buf *bp,
2442 uint32_t fields)
2443{
2444 int first; /* first byte number */
2445 int last; /* last byte number */
2446 static const short offsets[] = { /* field starting offsets */
2447 /* keep in sync with bit definitions */
2448 offsetof(xfs_agi_t, agi_magicnum),
2449 offsetof(xfs_agi_t, agi_versionnum),
2450 offsetof(xfs_agi_t, agi_seqno),
2451 offsetof(xfs_agi_t, agi_length),
2452 offsetof(xfs_agi_t, agi_count),
2453 offsetof(xfs_agi_t, agi_root),
2454 offsetof(xfs_agi_t, agi_level),
2455 offsetof(xfs_agi_t, agi_freecount),
2456 offsetof(xfs_agi_t, agi_newino),
2457 offsetof(xfs_agi_t, agi_dirino),
2458 offsetof(xfs_agi_t, agi_unlinked),
2459 offsetof(xfs_agi_t, agi_free_root),
2460 offsetof(xfs_agi_t, agi_free_level),
2461 offsetof(xfs_agi_t, agi_iblocks),
2462 sizeof(xfs_agi_t)
2463 };
2464#ifdef DEBUG
2465 struct xfs_agi *agi = bp->b_addr;
2466
2467 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2468#endif
2469
2470 /*
2471 * Compute byte offsets for the first and last fields in the first
2472 * region and log the agi buffer. This only logs up through
2473 * agi_unlinked.
2474 */
2475 if (fields & XFS_AGI_ALL_BITS_R1) {
2476 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
2477 &first, &last);
2478 xfs_trans_log_buf(tp, bp, first, last);
2479 }
2480
2481 /*
2482 * Mask off the bits in the first region and calculate the first and
2483 * last field offsets for any bits in the second region.
2484 */
2485 fields &= ~XFS_AGI_ALL_BITS_R1;
2486 if (fields) {
2487 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
2488 &first, &last);
2489 xfs_trans_log_buf(tp, bp, first, last);
2490 }
2491}
2492
2493static xfs_failaddr_t
2494xfs_agi_verify(
2495 struct xfs_buf *bp)
2496{
2497 struct xfs_mount *mp = bp->b_mount;
2498 struct xfs_agi *agi = bp->b_addr;
2499 xfs_failaddr_t fa;
2500 uint32_t agi_seqno = be32_to_cpu(agi->agi_seqno);
2501 uint32_t agi_length = be32_to_cpu(agi->agi_length);
2502 int i;
2503
2504 if (xfs_has_crc(mp)) {
2505 if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid))
2506 return __this_address;
2507 if (!xfs_log_check_lsn(mp, be64_to_cpu(agi->agi_lsn)))
2508 return __this_address;
2509 }
2510
2511 /*
2512 * Validate the magic number of the agi block.
2513 */
2514 if (!xfs_verify_magic(bp, agi->agi_magicnum))
2515 return __this_address;
2516 if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
2517 return __this_address;
2518
2519 fa = xfs_validate_ag_length(bp, agi_seqno, agi_length);
2520 if (fa)
2521 return fa;
2522
2523 if (be32_to_cpu(agi->agi_level) < 1 ||
2524 be32_to_cpu(agi->agi_level) > M_IGEO(mp)->inobt_maxlevels)
2525 return __this_address;
2526
2527 if (xfs_has_finobt(mp) &&
2528 (be32_to_cpu(agi->agi_free_level) < 1 ||
2529 be32_to_cpu(agi->agi_free_level) > M_IGEO(mp)->inobt_maxlevels))
2530 return __this_address;
2531
2532 for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) {
2533 if (agi->agi_unlinked[i] == cpu_to_be32(NULLAGINO))
2534 continue;
2535 if (!xfs_verify_ino(mp, be32_to_cpu(agi->agi_unlinked[i])))
2536 return __this_address;
2537 }
2538
2539 return NULL;
2540}
2541
2542static void
2543xfs_agi_read_verify(
2544 struct xfs_buf *bp)
2545{
2546 struct xfs_mount *mp = bp->b_mount;
2547 xfs_failaddr_t fa;
2548
2549 if (xfs_has_crc(mp) &&
2550 !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
2551 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
2552 else {
2553 fa = xfs_agi_verify(bp);
2554 if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_IALLOC_READ_AGI))
2555 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2556 }
2557}
2558
2559static void
2560xfs_agi_write_verify(
2561 struct xfs_buf *bp)
2562{
2563 struct xfs_mount *mp = bp->b_mount;
2564 struct xfs_buf_log_item *bip = bp->b_log_item;
2565 struct xfs_agi *agi = bp->b_addr;
2566 xfs_failaddr_t fa;
2567
2568 fa = xfs_agi_verify(bp);
2569 if (fa) {
2570 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2571 return;
2572 }
2573
2574 if (!xfs_has_crc(mp))
2575 return;
2576
2577 if (bip)
2578 agi->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
2579 xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
2580}
2581
2582const struct xfs_buf_ops xfs_agi_buf_ops = {
2583 .name = "xfs_agi",
2584 .magic = { cpu_to_be32(XFS_AGI_MAGIC), cpu_to_be32(XFS_AGI_MAGIC) },
2585 .verify_read = xfs_agi_read_verify,
2586 .verify_write = xfs_agi_write_verify,
2587 .verify_struct = xfs_agi_verify,
2588};
2589
2590/*
2591 * Read in the allocation group header (inode allocation section)
2592 */
2593int
2594xfs_read_agi(
2595 struct xfs_perag *pag,
2596 struct xfs_trans *tp,
2597 struct xfs_buf **agibpp)
2598{
2599 struct xfs_mount *mp = pag->pag_mount;
2600 int error;
2601
2602 trace_xfs_read_agi(pag->pag_mount, pag->pag_agno);
2603
2604 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
2605 XFS_AG_DADDR(mp, pag->pag_agno, XFS_AGI_DADDR(mp)),
2606 XFS_FSS_TO_BB(mp, 1), 0, agibpp, &xfs_agi_buf_ops);
2607 if (error)
2608 return error;
2609 if (tp)
2610 xfs_trans_buf_set_type(tp, *agibpp, XFS_BLFT_AGI_BUF);
2611
2612 xfs_buf_set_ref(*agibpp, XFS_AGI_REF);
2613 return 0;
2614}
2615
2616/*
2617 * Read in the agi and initialise the per-ag data. If the caller supplies a
2618 * @agibpp, return the locked AGI buffer to them, otherwise release it.
2619 */
2620int
2621xfs_ialloc_read_agi(
2622 struct xfs_perag *pag,
2623 struct xfs_trans *tp,
2624 struct xfs_buf **agibpp)
2625{
2626 struct xfs_buf *agibp;
2627 struct xfs_agi *agi;
2628 int error;
2629
2630 trace_xfs_ialloc_read_agi(pag->pag_mount, pag->pag_agno);
2631
2632 error = xfs_read_agi(pag, tp, &agibp);
2633 if (error)
2634 return error;
2635
2636 agi = agibp->b_addr;
2637 if (!xfs_perag_initialised_agi(pag)) {
2638 pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
2639 pag->pagi_count = be32_to_cpu(agi->agi_count);
2640 set_bit(XFS_AGSTATE_AGI_INIT, &pag->pag_opstate);
2641 }
2642
2643 /*
2644 * It's possible for these to be out of sync if
2645 * we are in the middle of a forced shutdown.
2646 */
2647 ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
2648 xfs_is_shutdown(pag->pag_mount));
2649 if (agibpp)
2650 *agibpp = agibp;
2651 else
2652 xfs_trans_brelse(tp, agibp);
2653 return 0;
2654}
2655
2656/* How many inodes are backed by inode clusters ondisk? */
2657STATIC int
2658xfs_ialloc_count_ondisk(
2659 struct xfs_btree_cur *cur,
2660 xfs_agino_t low,
2661 xfs_agino_t high,
2662 unsigned int *allocated)
2663{
2664 struct xfs_inobt_rec_incore irec;
2665 unsigned int ret = 0;
2666 int has_record;
2667 int error;
2668
2669 error = xfs_inobt_lookup(cur, low, XFS_LOOKUP_LE, &has_record);
2670 if (error)
2671 return error;
2672
2673 while (has_record) {
2674 unsigned int i, hole_idx;
2675
2676 error = xfs_inobt_get_rec(cur, &irec, &has_record);
2677 if (error)
2678 return error;
2679 if (irec.ir_startino > high)
2680 break;
2681
2682 for (i = 0; i < XFS_INODES_PER_CHUNK; i++) {
2683 if (irec.ir_startino + i < low)
2684 continue;
2685 if (irec.ir_startino + i > high)
2686 break;
2687
2688 hole_idx = i / XFS_INODES_PER_HOLEMASK_BIT;
2689 if (!(irec.ir_holemask & (1U << hole_idx)))
2690 ret++;
2691 }
2692
2693 error = xfs_btree_increment(cur, 0, &has_record);
2694 if (error)
2695 return error;
2696 }
2697
2698 *allocated = ret;
2699 return 0;
2700}
2701
2702/* Is there an inode record covering a given extent? */
2703int
2704xfs_ialloc_has_inodes_at_extent(
2705 struct xfs_btree_cur *cur,
2706 xfs_agblock_t bno,
2707 xfs_extlen_t len,
2708 enum xbtree_recpacking *outcome)
2709{
2710 xfs_agino_t agino;
2711 xfs_agino_t last_agino;
2712 unsigned int allocated;
2713 int error;
2714
2715 agino = XFS_AGB_TO_AGINO(cur->bc_mp, bno);
2716 last_agino = XFS_AGB_TO_AGINO(cur->bc_mp, bno + len) - 1;
2717
2718 error = xfs_ialloc_count_ondisk(cur, agino, last_agino, &allocated);
2719 if (error)
2720 return error;
2721
2722 if (allocated == 0)
2723 *outcome = XBTREE_RECPACKING_EMPTY;
2724 else if (allocated == last_agino - agino + 1)
2725 *outcome = XBTREE_RECPACKING_FULL;
2726 else
2727 *outcome = XBTREE_RECPACKING_SPARSE;
2728 return 0;
2729}
2730
2731struct xfs_ialloc_count_inodes {
2732 xfs_agino_t count;
2733 xfs_agino_t freecount;
2734};
2735
2736/* Record inode counts across all inobt records. */
2737STATIC int
2738xfs_ialloc_count_inodes_rec(
2739 struct xfs_btree_cur *cur,
2740 const union xfs_btree_rec *rec,
2741 void *priv)
2742{
2743 struct xfs_inobt_rec_incore irec;
2744 struct xfs_ialloc_count_inodes *ci = priv;
2745 xfs_failaddr_t fa;
2746
2747 xfs_inobt_btrec_to_irec(cur->bc_mp, rec, &irec);
2748 fa = xfs_inobt_check_irec(cur->bc_ag.pag, &irec);
2749 if (fa)
2750 return xfs_inobt_complain_bad_rec(cur, fa, &irec);
2751
2752 ci->count += irec.ir_count;
2753 ci->freecount += irec.ir_freecount;
2754
2755 return 0;
2756}
2757
2758/* Count allocated and free inodes under an inobt. */
2759int
2760xfs_ialloc_count_inodes(
2761 struct xfs_btree_cur *cur,
2762 xfs_agino_t *count,
2763 xfs_agino_t *freecount)
2764{
2765 struct xfs_ialloc_count_inodes ci = {0};
2766 int error;
2767
2768 ASSERT(cur->bc_btnum == XFS_BTNUM_INO);
2769 error = xfs_btree_query_all(cur, xfs_ialloc_count_inodes_rec, &ci);
2770 if (error)
2771 return error;
2772
2773 *count = ci.count;
2774 *freecount = ci.freecount;
2775 return 0;
2776}
2777
2778/*
2779 * Initialize inode-related geometry information.
2780 *
2781 * Compute the inode btree min and max levels and set maxicount.
2782 *
2783 * Set the inode cluster size. This may still be overridden by the file
2784 * system block size if it is larger than the chosen cluster size.
2785 *
2786 * For v5 filesystems, scale the cluster size with the inode size to keep a
2787 * constant ratio of inode per cluster buffer, but only if mkfs has set the
2788 * inode alignment value appropriately for larger cluster sizes.
2789 *
2790 * Then compute the inode cluster alignment information.
2791 */
2792void
2793xfs_ialloc_setup_geometry(
2794 struct xfs_mount *mp)
2795{
2796 struct xfs_sb *sbp = &mp->m_sb;
2797 struct xfs_ino_geometry *igeo = M_IGEO(mp);
2798 uint64_t icount;
2799 uint inodes;
2800
2801 igeo->new_diflags2 = 0;
2802 if (xfs_has_bigtime(mp))
2803 igeo->new_diflags2 |= XFS_DIFLAG2_BIGTIME;
2804 if (xfs_has_large_extent_counts(mp))
2805 igeo->new_diflags2 |= XFS_DIFLAG2_NREXT64;
2806
2807 /* Compute inode btree geometry. */
2808 igeo->agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
2809 igeo->inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1);
2810 igeo->inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0);
2811 igeo->inobt_mnr[0] = igeo->inobt_mxr[0] / 2;
2812 igeo->inobt_mnr[1] = igeo->inobt_mxr[1] / 2;
2813
2814 igeo->ialloc_inos = max_t(uint16_t, XFS_INODES_PER_CHUNK,
2815 sbp->sb_inopblock);
2816 igeo->ialloc_blks = igeo->ialloc_inos >> sbp->sb_inopblog;
2817
2818 if (sbp->sb_spino_align)
2819 igeo->ialloc_min_blks = sbp->sb_spino_align;
2820 else
2821 igeo->ialloc_min_blks = igeo->ialloc_blks;
2822
2823 /* Compute and fill in value of m_ino_geo.inobt_maxlevels. */
2824 inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG;
2825 igeo->inobt_maxlevels = xfs_btree_compute_maxlevels(igeo->inobt_mnr,
2826 inodes);
2827 ASSERT(igeo->inobt_maxlevels <= xfs_iallocbt_maxlevels_ondisk());
2828
2829 /*
2830 * Set the maximum inode count for this filesystem, being careful not
2831 * to use obviously garbage sb_inopblog/sb_inopblock values. Regular
2832 * users should never get here due to failing sb verification, but
2833 * certain users (xfs_db) need to be usable even with corrupt metadata.
2834 */
2835 if (sbp->sb_imax_pct && igeo->ialloc_blks) {
2836 /*
2837 * Make sure the maximum inode count is a multiple
2838 * of the units we allocate inodes in.
2839 */
2840 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
2841 do_div(icount, 100);
2842 do_div(icount, igeo->ialloc_blks);
2843 igeo->maxicount = XFS_FSB_TO_INO(mp,
2844 icount * igeo->ialloc_blks);
2845 } else {
2846 igeo->maxicount = 0;
2847 }
2848
2849 /*
2850 * Compute the desired size of an inode cluster buffer size, which
2851 * starts at 8K and (on v5 filesystems) scales up with larger inode
2852 * sizes.
2853 *
2854 * Preserve the desired inode cluster size because the sparse inodes
2855 * feature uses that desired size (not the actual size) to compute the
2856 * sparse inode alignment. The mount code validates this value, so we
2857 * cannot change the behavior.
2858 */
2859 igeo->inode_cluster_size_raw = XFS_INODE_BIG_CLUSTER_SIZE;
2860 if (xfs_has_v3inodes(mp)) {
2861 int new_size = igeo->inode_cluster_size_raw;
2862
2863 new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
2864 if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
2865 igeo->inode_cluster_size_raw = new_size;
2866 }
2867
2868 /* Calculate inode cluster ratios. */
2869 if (igeo->inode_cluster_size_raw > mp->m_sb.sb_blocksize)
2870 igeo->blocks_per_cluster = XFS_B_TO_FSBT(mp,
2871 igeo->inode_cluster_size_raw);
2872 else
2873 igeo->blocks_per_cluster = 1;
2874 igeo->inode_cluster_size = XFS_FSB_TO_B(mp, igeo->blocks_per_cluster);
2875 igeo->inodes_per_cluster = XFS_FSB_TO_INO(mp, igeo->blocks_per_cluster);
2876
2877 /* Calculate inode cluster alignment. */
2878 if (xfs_has_align(mp) &&
2879 mp->m_sb.sb_inoalignmt >= igeo->blocks_per_cluster)
2880 igeo->cluster_align = mp->m_sb.sb_inoalignmt;
2881 else
2882 igeo->cluster_align = 1;
2883 igeo->inoalign_mask = igeo->cluster_align - 1;
2884 igeo->cluster_align_inodes = XFS_FSB_TO_INO(mp, igeo->cluster_align);
2885
2886 /*
2887 * If we are using stripe alignment, check whether
2888 * the stripe unit is a multiple of the inode alignment
2889 */
2890 if (mp->m_dalign && igeo->inoalign_mask &&
2891 !(mp->m_dalign & igeo->inoalign_mask))
2892 igeo->ialloc_align = mp->m_dalign;
2893 else
2894 igeo->ialloc_align = 0;
2895}
2896
2897/* Compute the location of the root directory inode that is laid out by mkfs. */
2898xfs_ino_t
2899xfs_ialloc_calc_rootino(
2900 struct xfs_mount *mp,
2901 int sunit)
2902{
2903 struct xfs_ino_geometry *igeo = M_IGEO(mp);
2904 xfs_agblock_t first_bno;
2905
2906 /*
2907 * Pre-calculate the geometry of AG 0. We know what it looks like
2908 * because libxfs knows how to create allocation groups now.
2909 *
2910 * first_bno is the first block in which mkfs could possibly have
2911 * allocated the root directory inode, once we factor in the metadata
2912 * that mkfs formats before it. Namely, the four AG headers...
2913 */
2914 first_bno = howmany(4 * mp->m_sb.sb_sectsize, mp->m_sb.sb_blocksize);
2915
2916 /* ...the two free space btree roots... */
2917 first_bno += 2;
2918
2919 /* ...the inode btree root... */
2920 first_bno += 1;
2921
2922 /* ...the initial AGFL... */
2923 first_bno += xfs_alloc_min_freelist(mp, NULL);
2924
2925 /* ...the free inode btree root... */
2926 if (xfs_has_finobt(mp))
2927 first_bno++;
2928
2929 /* ...the reverse mapping btree root... */
2930 if (xfs_has_rmapbt(mp))
2931 first_bno++;
2932
2933 /* ...the reference count btree... */
2934 if (xfs_has_reflink(mp))
2935 first_bno++;
2936
2937 /*
2938 * ...and the log, if it is allocated in the first allocation group.
2939 *
2940 * This can happen with filesystems that only have a single
2941 * allocation group, or very odd geometries created by old mkfs
2942 * versions on very small filesystems.
2943 */
2944 if (xfs_ag_contains_log(mp, 0))
2945 first_bno += mp->m_sb.sb_logblocks;
2946
2947 /*
2948 * Now round first_bno up to whatever allocation alignment is given
2949 * by the filesystem or was passed in.
2950 */
2951 if (xfs_has_dalign(mp) && igeo->ialloc_align > 0)
2952 first_bno = roundup(first_bno, sunit);
2953 else if (xfs_has_align(mp) &&
2954 mp->m_sb.sb_inoalignmt > 1)
2955 first_bno = roundup(first_bno, mp->m_sb.sb_inoalignmt);
2956
2957 return XFS_AGINO_TO_INO(mp, 0, XFS_AGB_TO_AGINO(mp, first_bno));
2958}
2959
2960/*
2961 * Ensure there are not sparse inode clusters that cross the new EOAG.
2962 *
2963 * This is a no-op for non-spinode filesystems since clusters are always fully
2964 * allocated and checking the bnobt suffices. However, a spinode filesystem
2965 * could have a record where the upper inodes are free blocks. If those blocks
2966 * were removed from the filesystem, the inode record would extend beyond EOAG,
2967 * which will be flagged as corruption.
2968 */
2969int
2970xfs_ialloc_check_shrink(
2971 struct xfs_perag *pag,
2972 struct xfs_trans *tp,
2973 struct xfs_buf *agibp,
2974 xfs_agblock_t new_length)
2975{
2976 struct xfs_inobt_rec_incore rec;
2977 struct xfs_btree_cur *cur;
2978 xfs_agino_t agino;
2979 int has;
2980 int error;
2981
2982 if (!xfs_has_sparseinodes(pag->pag_mount))
2983 return 0;
2984
2985 cur = xfs_inobt_init_cursor(pag, tp, agibp, XFS_BTNUM_INO);
2986
2987 /* Look up the inobt record that would correspond to the new EOFS. */
2988 agino = XFS_AGB_TO_AGINO(pag->pag_mount, new_length);
2989 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &has);
2990 if (error || !has)
2991 goto out;
2992
2993 error = xfs_inobt_get_rec(cur, &rec, &has);
2994 if (error)
2995 goto out;
2996
2997 if (!has) {
2998 error = -EFSCORRUPTED;
2999 goto out;
3000 }
3001
3002 /* If the record covers inodes that would be beyond EOFS, bail out. */
3003 if (rec.ir_startino + XFS_INODES_PER_CHUNK > agino) {
3004 error = -ENOSPC;
3005 goto out;
3006 }
3007out:
3008 xfs_btree_del_cursor(cur, error);
3009 return error;
3010}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_bit.h"
13#include "xfs_sb.h"
14#include "xfs_mount.h"
15#include "xfs_inode.h"
16#include "xfs_btree.h"
17#include "xfs_ialloc.h"
18#include "xfs_ialloc_btree.h"
19#include "xfs_alloc.h"
20#include "xfs_errortag.h"
21#include "xfs_error.h"
22#include "xfs_bmap.h"
23#include "xfs_trans.h"
24#include "xfs_buf_item.h"
25#include "xfs_icreate_item.h"
26#include "xfs_icache.h"
27#include "xfs_trace.h"
28#include "xfs_log.h"
29#include "xfs_rmap.h"
30
31/*
32 * Lookup a record by ino in the btree given by cur.
33 */
34int /* error */
35xfs_inobt_lookup(
36 struct xfs_btree_cur *cur, /* btree cursor */
37 xfs_agino_t ino, /* starting inode of chunk */
38 xfs_lookup_t dir, /* <=, >=, == */
39 int *stat) /* success/failure */
40{
41 cur->bc_rec.i.ir_startino = ino;
42 cur->bc_rec.i.ir_holemask = 0;
43 cur->bc_rec.i.ir_count = 0;
44 cur->bc_rec.i.ir_freecount = 0;
45 cur->bc_rec.i.ir_free = 0;
46 return xfs_btree_lookup(cur, dir, stat);
47}
48
49/*
50 * Update the record referred to by cur to the value given.
51 * This either works (return 0) or gets an EFSCORRUPTED error.
52 */
53STATIC int /* error */
54xfs_inobt_update(
55 struct xfs_btree_cur *cur, /* btree cursor */
56 xfs_inobt_rec_incore_t *irec) /* btree record */
57{
58 union xfs_btree_rec rec;
59
60 rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
61 if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
62 rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask);
63 rec.inobt.ir_u.sp.ir_count = irec->ir_count;
64 rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount;
65 } else {
66 /* ir_holemask/ir_count not supported on-disk */
67 rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount);
68 }
69 rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
70 return xfs_btree_update(cur, &rec);
71}
72
73/* Convert on-disk btree record to incore inobt record. */
74void
75xfs_inobt_btrec_to_irec(
76 struct xfs_mount *mp,
77 union xfs_btree_rec *rec,
78 struct xfs_inobt_rec_incore *irec)
79{
80 irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
81 if (xfs_sb_version_hassparseinodes(&mp->m_sb)) {
82 irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask);
83 irec->ir_count = rec->inobt.ir_u.sp.ir_count;
84 irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount;
85 } else {
86 /*
87 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
88 * values for full inode chunks.
89 */
90 irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL;
91 irec->ir_count = XFS_INODES_PER_CHUNK;
92 irec->ir_freecount =
93 be32_to_cpu(rec->inobt.ir_u.f.ir_freecount);
94 }
95 irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
96}
97
98/*
99 * Get the data from the pointed-to record.
100 */
101int
102xfs_inobt_get_rec(
103 struct xfs_btree_cur *cur,
104 struct xfs_inobt_rec_incore *irec,
105 int *stat)
106{
107 struct xfs_mount *mp = cur->bc_mp;
108 xfs_agnumber_t agno = cur->bc_private.a.agno;
109 union xfs_btree_rec *rec;
110 int error;
111 uint64_t realfree;
112
113 error = xfs_btree_get_rec(cur, &rec, stat);
114 if (error || *stat == 0)
115 return error;
116
117 xfs_inobt_btrec_to_irec(mp, rec, irec);
118
119 if (!xfs_verify_agino(mp, agno, irec->ir_startino))
120 goto out_bad_rec;
121 if (irec->ir_count < XFS_INODES_PER_HOLEMASK_BIT ||
122 irec->ir_count > XFS_INODES_PER_CHUNK)
123 goto out_bad_rec;
124 if (irec->ir_freecount > XFS_INODES_PER_CHUNK)
125 goto out_bad_rec;
126
127 /* if there are no holes, return the first available offset */
128 if (!xfs_inobt_issparse(irec->ir_holemask))
129 realfree = irec->ir_free;
130 else
131 realfree = irec->ir_free & xfs_inobt_irec_to_allocmask(irec);
132 if (hweight64(realfree) != irec->ir_freecount)
133 goto out_bad_rec;
134
135 return 0;
136
137out_bad_rec:
138 xfs_warn(mp,
139 "%s Inode BTree record corruption in AG %d detected!",
140 cur->bc_btnum == XFS_BTNUM_INO ? "Used" : "Free", agno);
141 xfs_warn(mp,
142"start inode 0x%x, count 0x%x, free 0x%x freemask 0x%llx, holemask 0x%x",
143 irec->ir_startino, irec->ir_count, irec->ir_freecount,
144 irec->ir_free, irec->ir_holemask);
145 return -EFSCORRUPTED;
146}
147
148/*
149 * Insert a single inobt record. Cursor must already point to desired location.
150 */
151int
152xfs_inobt_insert_rec(
153 struct xfs_btree_cur *cur,
154 uint16_t holemask,
155 uint8_t count,
156 int32_t freecount,
157 xfs_inofree_t free,
158 int *stat)
159{
160 cur->bc_rec.i.ir_holemask = holemask;
161 cur->bc_rec.i.ir_count = count;
162 cur->bc_rec.i.ir_freecount = freecount;
163 cur->bc_rec.i.ir_free = free;
164 return xfs_btree_insert(cur, stat);
165}
166
167/*
168 * Insert records describing a newly allocated inode chunk into the inobt.
169 */
170STATIC int
171xfs_inobt_insert(
172 struct xfs_mount *mp,
173 struct xfs_trans *tp,
174 struct xfs_buf *agbp,
175 xfs_agino_t newino,
176 xfs_agino_t newlen,
177 xfs_btnum_t btnum)
178{
179 struct xfs_btree_cur *cur;
180 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
181 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
182 xfs_agino_t thisino;
183 int i;
184 int error;
185
186 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
187
188 for (thisino = newino;
189 thisino < newino + newlen;
190 thisino += XFS_INODES_PER_CHUNK) {
191 error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
192 if (error) {
193 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
194 return error;
195 }
196 ASSERT(i == 0);
197
198 error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL,
199 XFS_INODES_PER_CHUNK,
200 XFS_INODES_PER_CHUNK,
201 XFS_INOBT_ALL_FREE, &i);
202 if (error) {
203 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
204 return error;
205 }
206 ASSERT(i == 1);
207 }
208
209 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
210
211 return 0;
212}
213
214/*
215 * Verify that the number of free inodes in the AGI is correct.
216 */
217#ifdef DEBUG
218STATIC int
219xfs_check_agi_freecount(
220 struct xfs_btree_cur *cur,
221 struct xfs_agi *agi)
222{
223 if (cur->bc_nlevels == 1) {
224 xfs_inobt_rec_incore_t rec;
225 int freecount = 0;
226 int error;
227 int i;
228
229 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
230 if (error)
231 return error;
232
233 do {
234 error = xfs_inobt_get_rec(cur, &rec, &i);
235 if (error)
236 return error;
237
238 if (i) {
239 freecount += rec.ir_freecount;
240 error = xfs_btree_increment(cur, 0, &i);
241 if (error)
242 return error;
243 }
244 } while (i == 1);
245
246 if (!XFS_FORCED_SHUTDOWN(cur->bc_mp))
247 ASSERT(freecount == be32_to_cpu(agi->agi_freecount));
248 }
249 return 0;
250}
251#else
252#define xfs_check_agi_freecount(cur, agi) 0
253#endif
254
255/*
256 * Initialise a new set of inodes. When called without a transaction context
257 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
258 * than logging them (which in a transaction context puts them into the AIL
259 * for writeback rather than the xfsbufd queue).
260 */
261int
262xfs_ialloc_inode_init(
263 struct xfs_mount *mp,
264 struct xfs_trans *tp,
265 struct list_head *buffer_list,
266 int icount,
267 xfs_agnumber_t agno,
268 xfs_agblock_t agbno,
269 xfs_agblock_t length,
270 unsigned int gen)
271{
272 struct xfs_buf *fbuf;
273 struct xfs_dinode *free;
274 int nbufs;
275 int version;
276 int i, j;
277 xfs_daddr_t d;
278 xfs_ino_t ino = 0;
279
280 /*
281 * Loop over the new block(s), filling in the inodes. For small block
282 * sizes, manipulate the inodes in buffers which are multiples of the
283 * blocks size.
284 */
285 nbufs = length / M_IGEO(mp)->blocks_per_cluster;
286
287 /*
288 * Figure out what version number to use in the inodes we create. If
289 * the superblock version has caught up to the one that supports the new
290 * inode format, then use the new inode version. Otherwise use the old
291 * version so that old kernels will continue to be able to use the file
292 * system.
293 *
294 * For v3 inodes, we also need to write the inode number into the inode,
295 * so calculate the first inode number of the chunk here as
296 * XFS_AGB_TO_AGINO() only works within a filesystem block, not
297 * across multiple filesystem blocks (such as a cluster) and so cannot
298 * be used in the cluster buffer loop below.
299 *
300 * Further, because we are writing the inode directly into the buffer
301 * and calculating a CRC on the entire inode, we have ot log the entire
302 * inode so that the entire range the CRC covers is present in the log.
303 * That means for v3 inode we log the entire buffer rather than just the
304 * inode cores.
305 */
306 if (xfs_sb_version_hascrc(&mp->m_sb)) {
307 version = 3;
308 ino = XFS_AGINO_TO_INO(mp, agno, XFS_AGB_TO_AGINO(mp, agbno));
309
310 /*
311 * log the initialisation that is about to take place as an
312 * logical operation. This means the transaction does not
313 * need to log the physical changes to the inode buffers as log
314 * recovery will know what initialisation is actually needed.
315 * Hence we only need to log the buffers as "ordered" buffers so
316 * they track in the AIL as if they were physically logged.
317 */
318 if (tp)
319 xfs_icreate_log(tp, agno, agbno, icount,
320 mp->m_sb.sb_inodesize, length, gen);
321 } else
322 version = 2;
323
324 for (j = 0; j < nbufs; j++) {
325 /*
326 * Get the block.
327 */
328 d = XFS_AGB_TO_DADDR(mp, agno, agbno +
329 (j * M_IGEO(mp)->blocks_per_cluster));
330 fbuf = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
331 mp->m_bsize *
332 M_IGEO(mp)->blocks_per_cluster,
333 XBF_UNMAPPED);
334 if (!fbuf)
335 return -ENOMEM;
336
337 /* Initialize the inode buffers and log them appropriately. */
338 fbuf->b_ops = &xfs_inode_buf_ops;
339 xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
340 for (i = 0; i < M_IGEO(mp)->inodes_per_cluster; i++) {
341 int ioffset = i << mp->m_sb.sb_inodelog;
342 uint isize = xfs_dinode_size(version);
343
344 free = xfs_make_iptr(mp, fbuf, i);
345 free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
346 free->di_version = version;
347 free->di_gen = cpu_to_be32(gen);
348 free->di_next_unlinked = cpu_to_be32(NULLAGINO);
349
350 if (version == 3) {
351 free->di_ino = cpu_to_be64(ino);
352 ino++;
353 uuid_copy(&free->di_uuid,
354 &mp->m_sb.sb_meta_uuid);
355 xfs_dinode_calc_crc(mp, free);
356 } else if (tp) {
357 /* just log the inode core */
358 xfs_trans_log_buf(tp, fbuf, ioffset,
359 ioffset + isize - 1);
360 }
361 }
362
363 if (tp) {
364 /*
365 * Mark the buffer as an inode allocation buffer so it
366 * sticks in AIL at the point of this allocation
367 * transaction. This ensures the they are on disk before
368 * the tail of the log can be moved past this
369 * transaction (i.e. by preventing relogging from moving
370 * it forward in the log).
371 */
372 xfs_trans_inode_alloc_buf(tp, fbuf);
373 if (version == 3) {
374 /*
375 * Mark the buffer as ordered so that they are
376 * not physically logged in the transaction but
377 * still tracked in the AIL as part of the
378 * transaction and pin the log appropriately.
379 */
380 xfs_trans_ordered_buf(tp, fbuf);
381 }
382 } else {
383 fbuf->b_flags |= XBF_DONE;
384 xfs_buf_delwri_queue(fbuf, buffer_list);
385 xfs_buf_relse(fbuf);
386 }
387 }
388 return 0;
389}
390
391/*
392 * Align startino and allocmask for a recently allocated sparse chunk such that
393 * they are fit for insertion (or merge) into the on-disk inode btrees.
394 *
395 * Background:
396 *
397 * When enabled, sparse inode support increases the inode alignment from cluster
398 * size to inode chunk size. This means that the minimum range between two
399 * non-adjacent inode records in the inobt is large enough for a full inode
400 * record. This allows for cluster sized, cluster aligned block allocation
401 * without need to worry about whether the resulting inode record overlaps with
402 * another record in the tree. Without this basic rule, we would have to deal
403 * with the consequences of overlap by potentially undoing recent allocations in
404 * the inode allocation codepath.
405 *
406 * Because of this alignment rule (which is enforced on mount), there are two
407 * inobt possibilities for newly allocated sparse chunks. One is that the
408 * aligned inode record for the chunk covers a range of inodes not already
409 * covered in the inobt (i.e., it is safe to insert a new sparse record). The
410 * other is that a record already exists at the aligned startino that considers
411 * the newly allocated range as sparse. In the latter case, record content is
412 * merged in hope that sparse inode chunks fill to full chunks over time.
413 */
414STATIC void
415xfs_align_sparse_ino(
416 struct xfs_mount *mp,
417 xfs_agino_t *startino,
418 uint16_t *allocmask)
419{
420 xfs_agblock_t agbno;
421 xfs_agblock_t mod;
422 int offset;
423
424 agbno = XFS_AGINO_TO_AGBNO(mp, *startino);
425 mod = agbno % mp->m_sb.sb_inoalignmt;
426 if (!mod)
427 return;
428
429 /* calculate the inode offset and align startino */
430 offset = XFS_AGB_TO_AGINO(mp, mod);
431 *startino -= offset;
432
433 /*
434 * Since startino has been aligned down, left shift allocmask such that
435 * it continues to represent the same physical inodes relative to the
436 * new startino.
437 */
438 *allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT;
439}
440
441/*
442 * Determine whether the source inode record can merge into the target. Both
443 * records must be sparse, the inode ranges must match and there must be no
444 * allocation overlap between the records.
445 */
446STATIC bool
447__xfs_inobt_can_merge(
448 struct xfs_inobt_rec_incore *trec, /* tgt record */
449 struct xfs_inobt_rec_incore *srec) /* src record */
450{
451 uint64_t talloc;
452 uint64_t salloc;
453
454 /* records must cover the same inode range */
455 if (trec->ir_startino != srec->ir_startino)
456 return false;
457
458 /* both records must be sparse */
459 if (!xfs_inobt_issparse(trec->ir_holemask) ||
460 !xfs_inobt_issparse(srec->ir_holemask))
461 return false;
462
463 /* both records must track some inodes */
464 if (!trec->ir_count || !srec->ir_count)
465 return false;
466
467 /* can't exceed capacity of a full record */
468 if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK)
469 return false;
470
471 /* verify there is no allocation overlap */
472 talloc = xfs_inobt_irec_to_allocmask(trec);
473 salloc = xfs_inobt_irec_to_allocmask(srec);
474 if (talloc & salloc)
475 return false;
476
477 return true;
478}
479
480/*
481 * Merge the source inode record into the target. The caller must call
482 * __xfs_inobt_can_merge() to ensure the merge is valid.
483 */
484STATIC void
485__xfs_inobt_rec_merge(
486 struct xfs_inobt_rec_incore *trec, /* target */
487 struct xfs_inobt_rec_incore *srec) /* src */
488{
489 ASSERT(trec->ir_startino == srec->ir_startino);
490
491 /* combine the counts */
492 trec->ir_count += srec->ir_count;
493 trec->ir_freecount += srec->ir_freecount;
494
495 /*
496 * Merge the holemask and free mask. For both fields, 0 bits refer to
497 * allocated inodes. We combine the allocated ranges with bitwise AND.
498 */
499 trec->ir_holemask &= srec->ir_holemask;
500 trec->ir_free &= srec->ir_free;
501}
502
503/*
504 * Insert a new sparse inode chunk into the associated inode btree. The inode
505 * record for the sparse chunk is pre-aligned to a startino that should match
506 * any pre-existing sparse inode record in the tree. This allows sparse chunks
507 * to fill over time.
508 *
509 * This function supports two modes of handling preexisting records depending on
510 * the merge flag. If merge is true, the provided record is merged with the
511 * existing record and updated in place. The merged record is returned in nrec.
512 * If merge is false, an existing record is replaced with the provided record.
513 * If no preexisting record exists, the provided record is always inserted.
514 *
515 * It is considered corruption if a merge is requested and not possible. Given
516 * the sparse inode alignment constraints, this should never happen.
517 */
518STATIC int
519xfs_inobt_insert_sprec(
520 struct xfs_mount *mp,
521 struct xfs_trans *tp,
522 struct xfs_buf *agbp,
523 int btnum,
524 struct xfs_inobt_rec_incore *nrec, /* in/out: new/merged rec. */
525 bool merge) /* merge or replace */
526{
527 struct xfs_btree_cur *cur;
528 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
529 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
530 int error;
531 int i;
532 struct xfs_inobt_rec_incore rec;
533
534 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
535
536 /* the new record is pre-aligned so we know where to look */
537 error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
538 if (error)
539 goto error;
540 /* if nothing there, insert a new record and return */
541 if (i == 0) {
542 error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
543 nrec->ir_count, nrec->ir_freecount,
544 nrec->ir_free, &i);
545 if (error)
546 goto error;
547 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
548
549 goto out;
550 }
551
552 /*
553 * A record exists at this startino. Merge or replace the record
554 * depending on what we've been asked to do.
555 */
556 if (merge) {
557 error = xfs_inobt_get_rec(cur, &rec, &i);
558 if (error)
559 goto error;
560 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
561 XFS_WANT_CORRUPTED_GOTO(mp,
562 rec.ir_startino == nrec->ir_startino,
563 error);
564
565 /*
566 * This should never fail. If we have coexisting records that
567 * cannot merge, something is seriously wrong.
568 */
569 XFS_WANT_CORRUPTED_GOTO(mp, __xfs_inobt_can_merge(nrec, &rec),
570 error);
571
572 trace_xfs_irec_merge_pre(mp, agno, rec.ir_startino,
573 rec.ir_holemask, nrec->ir_startino,
574 nrec->ir_holemask);
575
576 /* merge to nrec to output the updated record */
577 __xfs_inobt_rec_merge(nrec, &rec);
578
579 trace_xfs_irec_merge_post(mp, agno, nrec->ir_startino,
580 nrec->ir_holemask);
581
582 error = xfs_inobt_rec_check_count(mp, nrec);
583 if (error)
584 goto error;
585 }
586
587 error = xfs_inobt_update(cur, nrec);
588 if (error)
589 goto error;
590
591out:
592 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
593 return 0;
594error:
595 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
596 return error;
597}
598
599/*
600 * Allocate new inodes in the allocation group specified by agbp.
601 * Return 0 for success, else error code.
602 */
603STATIC int
604xfs_ialloc_ag_alloc(
605 struct xfs_trans *tp,
606 struct xfs_buf *agbp,
607 int *alloc)
608{
609 struct xfs_agi *agi;
610 struct xfs_alloc_arg args;
611 xfs_agnumber_t agno;
612 int error;
613 xfs_agino_t newino; /* new first inode's number */
614 xfs_agino_t newlen; /* new number of inodes */
615 int isaligned = 0; /* inode allocation at stripe */
616 /* unit boundary */
617 /* init. to full chunk */
618 uint16_t allocmask = (uint16_t) -1;
619 struct xfs_inobt_rec_incore rec;
620 struct xfs_perag *pag;
621 struct xfs_ino_geometry *igeo = M_IGEO(tp->t_mountp);
622 int do_sparse = 0;
623
624 memset(&args, 0, sizeof(args));
625 args.tp = tp;
626 args.mp = tp->t_mountp;
627 args.fsbno = NULLFSBLOCK;
628 args.oinfo = XFS_RMAP_OINFO_INODES;
629
630#ifdef DEBUG
631 /* randomly do sparse inode allocations */
632 if (xfs_sb_version_hassparseinodes(&tp->t_mountp->m_sb) &&
633 igeo->ialloc_min_blks < igeo->ialloc_blks)
634 do_sparse = prandom_u32() & 1;
635#endif
636
637 /*
638 * Locking will ensure that we don't have two callers in here
639 * at one time.
640 */
641 newlen = igeo->ialloc_inos;
642 if (igeo->maxicount &&
643 percpu_counter_read_positive(&args.mp->m_icount) + newlen >
644 igeo->maxicount)
645 return -ENOSPC;
646 args.minlen = args.maxlen = igeo->ialloc_blks;
647 /*
648 * First try to allocate inodes contiguous with the last-allocated
649 * chunk of inodes. If the filesystem is striped, this will fill
650 * an entire stripe unit with inodes.
651 */
652 agi = XFS_BUF_TO_AGI(agbp);
653 newino = be32_to_cpu(agi->agi_newino);
654 agno = be32_to_cpu(agi->agi_seqno);
655 args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
656 igeo->ialloc_blks;
657 if (do_sparse)
658 goto sparse_alloc;
659 if (likely(newino != NULLAGINO &&
660 (args.agbno < be32_to_cpu(agi->agi_length)))) {
661 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
662 args.type = XFS_ALLOCTYPE_THIS_BNO;
663 args.prod = 1;
664
665 /*
666 * We need to take into account alignment here to ensure that
667 * we don't modify the free list if we fail to have an exact
668 * block. If we don't have an exact match, and every oher
669 * attempt allocation attempt fails, we'll end up cancelling
670 * a dirty transaction and shutting down.
671 *
672 * For an exact allocation, alignment must be 1,
673 * however we need to take cluster alignment into account when
674 * fixing up the freelist. Use the minalignslop field to
675 * indicate that extra blocks might be required for alignment,
676 * but not to use them in the actual exact allocation.
677 */
678 args.alignment = 1;
679 args.minalignslop = igeo->cluster_align - 1;
680
681 /* Allow space for the inode btree to split. */
682 args.minleft = igeo->inobt_maxlevels - 1;
683 if ((error = xfs_alloc_vextent(&args)))
684 return error;
685
686 /*
687 * This request might have dirtied the transaction if the AG can
688 * satisfy the request, but the exact block was not available.
689 * If the allocation did fail, subsequent requests will relax
690 * the exact agbno requirement and increase the alignment
691 * instead. It is critical that the total size of the request
692 * (len + alignment + slop) does not increase from this point
693 * on, so reset minalignslop to ensure it is not included in
694 * subsequent requests.
695 */
696 args.minalignslop = 0;
697 }
698
699 if (unlikely(args.fsbno == NULLFSBLOCK)) {
700 /*
701 * Set the alignment for the allocation.
702 * If stripe alignment is turned on then align at stripe unit
703 * boundary.
704 * If the cluster size is smaller than a filesystem block
705 * then we're doing I/O for inodes in filesystem block size
706 * pieces, so don't need alignment anyway.
707 */
708 isaligned = 0;
709 if (igeo->ialloc_align) {
710 ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN));
711 args.alignment = args.mp->m_dalign;
712 isaligned = 1;
713 } else
714 args.alignment = igeo->cluster_align;
715 /*
716 * Need to figure out where to allocate the inode blocks.
717 * Ideally they should be spaced out through the a.g.
718 * For now, just allocate blocks up front.
719 */
720 args.agbno = be32_to_cpu(agi->agi_root);
721 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
722 /*
723 * Allocate a fixed-size extent of inodes.
724 */
725 args.type = XFS_ALLOCTYPE_NEAR_BNO;
726 args.prod = 1;
727 /*
728 * Allow space for the inode btree to split.
729 */
730 args.minleft = igeo->inobt_maxlevels - 1;
731 if ((error = xfs_alloc_vextent(&args)))
732 return error;
733 }
734
735 /*
736 * If stripe alignment is turned on, then try again with cluster
737 * alignment.
738 */
739 if (isaligned && args.fsbno == NULLFSBLOCK) {
740 args.type = XFS_ALLOCTYPE_NEAR_BNO;
741 args.agbno = be32_to_cpu(agi->agi_root);
742 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
743 args.alignment = igeo->cluster_align;
744 if ((error = xfs_alloc_vextent(&args)))
745 return error;
746 }
747
748 /*
749 * Finally, try a sparse allocation if the filesystem supports it and
750 * the sparse allocation length is smaller than a full chunk.
751 */
752 if (xfs_sb_version_hassparseinodes(&args.mp->m_sb) &&
753 igeo->ialloc_min_blks < igeo->ialloc_blks &&
754 args.fsbno == NULLFSBLOCK) {
755sparse_alloc:
756 args.type = XFS_ALLOCTYPE_NEAR_BNO;
757 args.agbno = be32_to_cpu(agi->agi_root);
758 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
759 args.alignment = args.mp->m_sb.sb_spino_align;
760 args.prod = 1;
761
762 args.minlen = igeo->ialloc_min_blks;
763 args.maxlen = args.minlen;
764
765 /*
766 * The inode record will be aligned to full chunk size. We must
767 * prevent sparse allocation from AG boundaries that result in
768 * invalid inode records, such as records that start at agbno 0
769 * or extend beyond the AG.
770 *
771 * Set min agbno to the first aligned, non-zero agbno and max to
772 * the last aligned agbno that is at least one full chunk from
773 * the end of the AG.
774 */
775 args.min_agbno = args.mp->m_sb.sb_inoalignmt;
776 args.max_agbno = round_down(args.mp->m_sb.sb_agblocks,
777 args.mp->m_sb.sb_inoalignmt) -
778 igeo->ialloc_blks;
779
780 error = xfs_alloc_vextent(&args);
781 if (error)
782 return error;
783
784 newlen = XFS_AGB_TO_AGINO(args.mp, args.len);
785 ASSERT(newlen <= XFS_INODES_PER_CHUNK);
786 allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1;
787 }
788
789 if (args.fsbno == NULLFSBLOCK) {
790 *alloc = 0;
791 return 0;
792 }
793 ASSERT(args.len == args.minlen);
794
795 /*
796 * Stamp and write the inode buffers.
797 *
798 * Seed the new inode cluster with a random generation number. This
799 * prevents short-term reuse of generation numbers if a chunk is
800 * freed and then immediately reallocated. We use random numbers
801 * rather than a linear progression to prevent the next generation
802 * number from being easily guessable.
803 */
804 error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, agno,
805 args.agbno, args.len, prandom_u32());
806
807 if (error)
808 return error;
809 /*
810 * Convert the results.
811 */
812 newino = XFS_AGB_TO_AGINO(args.mp, args.agbno);
813
814 if (xfs_inobt_issparse(~allocmask)) {
815 /*
816 * We've allocated a sparse chunk. Align the startino and mask.
817 */
818 xfs_align_sparse_ino(args.mp, &newino, &allocmask);
819
820 rec.ir_startino = newino;
821 rec.ir_holemask = ~allocmask;
822 rec.ir_count = newlen;
823 rec.ir_freecount = newlen;
824 rec.ir_free = XFS_INOBT_ALL_FREE;
825
826 /*
827 * Insert the sparse record into the inobt and allow for a merge
828 * if necessary. If a merge does occur, rec is updated to the
829 * merged record.
830 */
831 error = xfs_inobt_insert_sprec(args.mp, tp, agbp, XFS_BTNUM_INO,
832 &rec, true);
833 if (error == -EFSCORRUPTED) {
834 xfs_alert(args.mp,
835 "invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
836 XFS_AGINO_TO_INO(args.mp, agno,
837 rec.ir_startino),
838 rec.ir_holemask, rec.ir_count);
839 xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE);
840 }
841 if (error)
842 return error;
843
844 /*
845 * We can't merge the part we've just allocated as for the inobt
846 * due to finobt semantics. The original record may or may not
847 * exist independent of whether physical inodes exist in this
848 * sparse chunk.
849 *
850 * We must update the finobt record based on the inobt record.
851 * rec contains the fully merged and up to date inobt record
852 * from the previous call. Set merge false to replace any
853 * existing record with this one.
854 */
855 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
856 error = xfs_inobt_insert_sprec(args.mp, tp, agbp,
857 XFS_BTNUM_FINO, &rec,
858 false);
859 if (error)
860 return error;
861 }
862 } else {
863 /* full chunk - insert new records to both btrees */
864 error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen,
865 XFS_BTNUM_INO);
866 if (error)
867 return error;
868
869 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
870 error = xfs_inobt_insert(args.mp, tp, agbp, newino,
871 newlen, XFS_BTNUM_FINO);
872 if (error)
873 return error;
874 }
875 }
876
877 /*
878 * Update AGI counts and newino.
879 */
880 be32_add_cpu(&agi->agi_count, newlen);
881 be32_add_cpu(&agi->agi_freecount, newlen);
882 pag = xfs_perag_get(args.mp, agno);
883 pag->pagi_freecount += newlen;
884 pag->pagi_count += newlen;
885 xfs_perag_put(pag);
886 agi->agi_newino = cpu_to_be32(newino);
887
888 /*
889 * Log allocation group header fields
890 */
891 xfs_ialloc_log_agi(tp, agbp,
892 XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
893 /*
894 * Modify/log superblock values for inode count and inode free count.
895 */
896 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
897 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
898 *alloc = 1;
899 return 0;
900}
901
902STATIC xfs_agnumber_t
903xfs_ialloc_next_ag(
904 xfs_mount_t *mp)
905{
906 xfs_agnumber_t agno;
907
908 spin_lock(&mp->m_agirotor_lock);
909 agno = mp->m_agirotor;
910 if (++mp->m_agirotor >= mp->m_maxagi)
911 mp->m_agirotor = 0;
912 spin_unlock(&mp->m_agirotor_lock);
913
914 return agno;
915}
916
917/*
918 * Select an allocation group to look for a free inode in, based on the parent
919 * inode and the mode. Return the allocation group buffer.
920 */
921STATIC xfs_agnumber_t
922xfs_ialloc_ag_select(
923 xfs_trans_t *tp, /* transaction pointer */
924 xfs_ino_t parent, /* parent directory inode number */
925 umode_t mode) /* bits set to indicate file type */
926{
927 xfs_agnumber_t agcount; /* number of ag's in the filesystem */
928 xfs_agnumber_t agno; /* current ag number */
929 int flags; /* alloc buffer locking flags */
930 xfs_extlen_t ineed; /* blocks needed for inode allocation */
931 xfs_extlen_t longest = 0; /* longest extent available */
932 xfs_mount_t *mp; /* mount point structure */
933 int needspace; /* file mode implies space allocated */
934 xfs_perag_t *pag; /* per allocation group data */
935 xfs_agnumber_t pagno; /* parent (starting) ag number */
936 int error;
937
938 /*
939 * Files of these types need at least one block if length > 0
940 * (and they won't fit in the inode, but that's hard to figure out).
941 */
942 needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
943 mp = tp->t_mountp;
944 agcount = mp->m_maxagi;
945 if (S_ISDIR(mode))
946 pagno = xfs_ialloc_next_ag(mp);
947 else {
948 pagno = XFS_INO_TO_AGNO(mp, parent);
949 if (pagno >= agcount)
950 pagno = 0;
951 }
952
953 ASSERT(pagno < agcount);
954
955 /*
956 * Loop through allocation groups, looking for one with a little
957 * free space in it. Note we don't look for free inodes, exactly.
958 * Instead, we include whether there is a need to allocate inodes
959 * to mean that blocks must be allocated for them,
960 * if none are currently free.
961 */
962 agno = pagno;
963 flags = XFS_ALLOC_FLAG_TRYLOCK;
964 for (;;) {
965 pag = xfs_perag_get(mp, agno);
966 if (!pag->pagi_inodeok) {
967 xfs_ialloc_next_ag(mp);
968 goto nextag;
969 }
970
971 if (!pag->pagi_init) {
972 error = xfs_ialloc_pagi_init(mp, tp, agno);
973 if (error)
974 goto nextag;
975 }
976
977 if (pag->pagi_freecount) {
978 xfs_perag_put(pag);
979 return agno;
980 }
981
982 if (!pag->pagf_init) {
983 error = xfs_alloc_pagf_init(mp, tp, agno, flags);
984 if (error)
985 goto nextag;
986 }
987
988 /*
989 * Check that there is enough free space for the file plus a
990 * chunk of inodes if we need to allocate some. If this is the
991 * first pass across the AGs, take into account the potential
992 * space needed for alignment of inode chunks when checking the
993 * longest contiguous free space in the AG - this prevents us
994 * from getting ENOSPC because we have free space larger than
995 * ialloc_blks but alignment constraints prevent us from using
996 * it.
997 *
998 * If we can't find an AG with space for full alignment slack to
999 * be taken into account, we must be near ENOSPC in all AGs.
1000 * Hence we don't include alignment for the second pass and so
1001 * if we fail allocation due to alignment issues then it is most
1002 * likely a real ENOSPC condition.
1003 */
1004 ineed = M_IGEO(mp)->ialloc_min_blks;
1005 if (flags && ineed > 1)
1006 ineed += M_IGEO(mp)->cluster_align;
1007 longest = pag->pagf_longest;
1008 if (!longest)
1009 longest = pag->pagf_flcount > 0;
1010
1011 if (pag->pagf_freeblks >= needspace + ineed &&
1012 longest >= ineed) {
1013 xfs_perag_put(pag);
1014 return agno;
1015 }
1016nextag:
1017 xfs_perag_put(pag);
1018 /*
1019 * No point in iterating over the rest, if we're shutting
1020 * down.
1021 */
1022 if (XFS_FORCED_SHUTDOWN(mp))
1023 return NULLAGNUMBER;
1024 agno++;
1025 if (agno >= agcount)
1026 agno = 0;
1027 if (agno == pagno) {
1028 if (flags == 0)
1029 return NULLAGNUMBER;
1030 flags = 0;
1031 }
1032 }
1033}
1034
1035/*
1036 * Try to retrieve the next record to the left/right from the current one.
1037 */
1038STATIC int
1039xfs_ialloc_next_rec(
1040 struct xfs_btree_cur *cur,
1041 xfs_inobt_rec_incore_t *rec,
1042 int *done,
1043 int left)
1044{
1045 int error;
1046 int i;
1047
1048 if (left)
1049 error = xfs_btree_decrement(cur, 0, &i);
1050 else
1051 error = xfs_btree_increment(cur, 0, &i);
1052
1053 if (error)
1054 return error;
1055 *done = !i;
1056 if (i) {
1057 error = xfs_inobt_get_rec(cur, rec, &i);
1058 if (error)
1059 return error;
1060 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1061 }
1062
1063 return 0;
1064}
1065
1066STATIC int
1067xfs_ialloc_get_rec(
1068 struct xfs_btree_cur *cur,
1069 xfs_agino_t agino,
1070 xfs_inobt_rec_incore_t *rec,
1071 int *done)
1072{
1073 int error;
1074 int i;
1075
1076 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
1077 if (error)
1078 return error;
1079 *done = !i;
1080 if (i) {
1081 error = xfs_inobt_get_rec(cur, rec, &i);
1082 if (error)
1083 return error;
1084 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1085 }
1086
1087 return 0;
1088}
1089
1090/*
1091 * Return the offset of the first free inode in the record. If the inode chunk
1092 * is sparsely allocated, we convert the record holemask to inode granularity
1093 * and mask off the unallocated regions from the inode free mask.
1094 */
1095STATIC int
1096xfs_inobt_first_free_inode(
1097 struct xfs_inobt_rec_incore *rec)
1098{
1099 xfs_inofree_t realfree;
1100
1101 /* if there are no holes, return the first available offset */
1102 if (!xfs_inobt_issparse(rec->ir_holemask))
1103 return xfs_lowbit64(rec->ir_free);
1104
1105 realfree = xfs_inobt_irec_to_allocmask(rec);
1106 realfree &= rec->ir_free;
1107
1108 return xfs_lowbit64(realfree);
1109}
1110
1111/*
1112 * Allocate an inode using the inobt-only algorithm.
1113 */
1114STATIC int
1115xfs_dialloc_ag_inobt(
1116 struct xfs_trans *tp,
1117 struct xfs_buf *agbp,
1118 xfs_ino_t parent,
1119 xfs_ino_t *inop)
1120{
1121 struct xfs_mount *mp = tp->t_mountp;
1122 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
1123 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1124 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
1125 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
1126 struct xfs_perag *pag;
1127 struct xfs_btree_cur *cur, *tcur;
1128 struct xfs_inobt_rec_incore rec, trec;
1129 xfs_ino_t ino;
1130 int error;
1131 int offset;
1132 int i, j;
1133 int searchdistance = 10;
1134
1135 pag = xfs_perag_get(mp, agno);
1136
1137 ASSERT(pag->pagi_init);
1138 ASSERT(pag->pagi_inodeok);
1139 ASSERT(pag->pagi_freecount > 0);
1140
1141 restart_pagno:
1142 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1143 /*
1144 * If pagino is 0 (this is the root inode allocation) use newino.
1145 * This must work because we've just allocated some.
1146 */
1147 if (!pagino)
1148 pagino = be32_to_cpu(agi->agi_newino);
1149
1150 error = xfs_check_agi_freecount(cur, agi);
1151 if (error)
1152 goto error0;
1153
1154 /*
1155 * If in the same AG as the parent, try to get near the parent.
1156 */
1157 if (pagno == agno) {
1158 int doneleft; /* done, to the left */
1159 int doneright; /* done, to the right */
1160
1161 error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
1162 if (error)
1163 goto error0;
1164 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1165
1166 error = xfs_inobt_get_rec(cur, &rec, &j);
1167 if (error)
1168 goto error0;
1169 XFS_WANT_CORRUPTED_GOTO(mp, j == 1, error0);
1170
1171 if (rec.ir_freecount > 0) {
1172 /*
1173 * Found a free inode in the same chunk
1174 * as the parent, done.
1175 */
1176 goto alloc_inode;
1177 }
1178
1179
1180 /*
1181 * In the same AG as parent, but parent's chunk is full.
1182 */
1183
1184 /* duplicate the cursor, search left & right simultaneously */
1185 error = xfs_btree_dup_cursor(cur, &tcur);
1186 if (error)
1187 goto error0;
1188
1189 /*
1190 * Skip to last blocks looked up if same parent inode.
1191 */
1192 if (pagino != NULLAGINO &&
1193 pag->pagl_pagino == pagino &&
1194 pag->pagl_leftrec != NULLAGINO &&
1195 pag->pagl_rightrec != NULLAGINO) {
1196 error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
1197 &trec, &doneleft);
1198 if (error)
1199 goto error1;
1200
1201 error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
1202 &rec, &doneright);
1203 if (error)
1204 goto error1;
1205 } else {
1206 /* search left with tcur, back up 1 record */
1207 error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
1208 if (error)
1209 goto error1;
1210
1211 /* search right with cur, go forward 1 record. */
1212 error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
1213 if (error)
1214 goto error1;
1215 }
1216
1217 /*
1218 * Loop until we find an inode chunk with a free inode.
1219 */
1220 while (--searchdistance > 0 && (!doneleft || !doneright)) {
1221 int useleft; /* using left inode chunk this time */
1222
1223 /* figure out the closer block if both are valid. */
1224 if (!doneleft && !doneright) {
1225 useleft = pagino -
1226 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
1227 rec.ir_startino - pagino;
1228 } else {
1229 useleft = !doneleft;
1230 }
1231
1232 /* free inodes to the left? */
1233 if (useleft && trec.ir_freecount) {
1234 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1235 cur = tcur;
1236
1237 pag->pagl_leftrec = trec.ir_startino;
1238 pag->pagl_rightrec = rec.ir_startino;
1239 pag->pagl_pagino = pagino;
1240 rec = trec;
1241 goto alloc_inode;
1242 }
1243
1244 /* free inodes to the right? */
1245 if (!useleft && rec.ir_freecount) {
1246 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1247
1248 pag->pagl_leftrec = trec.ir_startino;
1249 pag->pagl_rightrec = rec.ir_startino;
1250 pag->pagl_pagino = pagino;
1251 goto alloc_inode;
1252 }
1253
1254 /* get next record to check */
1255 if (useleft) {
1256 error = xfs_ialloc_next_rec(tcur, &trec,
1257 &doneleft, 1);
1258 } else {
1259 error = xfs_ialloc_next_rec(cur, &rec,
1260 &doneright, 0);
1261 }
1262 if (error)
1263 goto error1;
1264 }
1265
1266 if (searchdistance <= 0) {
1267 /*
1268 * Not in range - save last search
1269 * location and allocate a new inode
1270 */
1271 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1272 pag->pagl_leftrec = trec.ir_startino;
1273 pag->pagl_rightrec = rec.ir_startino;
1274 pag->pagl_pagino = pagino;
1275
1276 } else {
1277 /*
1278 * We've reached the end of the btree. because
1279 * we are only searching a small chunk of the
1280 * btree each search, there is obviously free
1281 * inodes closer to the parent inode than we
1282 * are now. restart the search again.
1283 */
1284 pag->pagl_pagino = NULLAGINO;
1285 pag->pagl_leftrec = NULLAGINO;
1286 pag->pagl_rightrec = NULLAGINO;
1287 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1288 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1289 goto restart_pagno;
1290 }
1291 }
1292
1293 /*
1294 * In a different AG from the parent.
1295 * See if the most recently allocated block has any free.
1296 */
1297 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1298 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1299 XFS_LOOKUP_EQ, &i);
1300 if (error)
1301 goto error0;
1302
1303 if (i == 1) {
1304 error = xfs_inobt_get_rec(cur, &rec, &j);
1305 if (error)
1306 goto error0;
1307
1308 if (j == 1 && rec.ir_freecount > 0) {
1309 /*
1310 * The last chunk allocated in the group
1311 * still has a free inode.
1312 */
1313 goto alloc_inode;
1314 }
1315 }
1316 }
1317
1318 /*
1319 * None left in the last group, search the whole AG
1320 */
1321 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1322 if (error)
1323 goto error0;
1324 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1325
1326 for (;;) {
1327 error = xfs_inobt_get_rec(cur, &rec, &i);
1328 if (error)
1329 goto error0;
1330 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1331 if (rec.ir_freecount > 0)
1332 break;
1333 error = xfs_btree_increment(cur, 0, &i);
1334 if (error)
1335 goto error0;
1336 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1337 }
1338
1339alloc_inode:
1340 offset = xfs_inobt_first_free_inode(&rec);
1341 ASSERT(offset >= 0);
1342 ASSERT(offset < XFS_INODES_PER_CHUNK);
1343 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1344 XFS_INODES_PER_CHUNK) == 0);
1345 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1346 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1347 rec.ir_freecount--;
1348 error = xfs_inobt_update(cur, &rec);
1349 if (error)
1350 goto error0;
1351 be32_add_cpu(&agi->agi_freecount, -1);
1352 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1353 pag->pagi_freecount--;
1354
1355 error = xfs_check_agi_freecount(cur, agi);
1356 if (error)
1357 goto error0;
1358
1359 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1360 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1361 xfs_perag_put(pag);
1362 *inop = ino;
1363 return 0;
1364error1:
1365 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
1366error0:
1367 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1368 xfs_perag_put(pag);
1369 return error;
1370}
1371
1372/*
1373 * Use the free inode btree to allocate an inode based on distance from the
1374 * parent. Note that the provided cursor may be deleted and replaced.
1375 */
1376STATIC int
1377xfs_dialloc_ag_finobt_near(
1378 xfs_agino_t pagino,
1379 struct xfs_btree_cur **ocur,
1380 struct xfs_inobt_rec_incore *rec)
1381{
1382 struct xfs_btree_cur *lcur = *ocur; /* left search cursor */
1383 struct xfs_btree_cur *rcur; /* right search cursor */
1384 struct xfs_inobt_rec_incore rrec;
1385 int error;
1386 int i, j;
1387
1388 error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
1389 if (error)
1390 return error;
1391
1392 if (i == 1) {
1393 error = xfs_inobt_get_rec(lcur, rec, &i);
1394 if (error)
1395 return error;
1396 XFS_WANT_CORRUPTED_RETURN(lcur->bc_mp, i == 1);
1397
1398 /*
1399 * See if we've landed in the parent inode record. The finobt
1400 * only tracks chunks with at least one free inode, so record
1401 * existence is enough.
1402 */
1403 if (pagino >= rec->ir_startino &&
1404 pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
1405 return 0;
1406 }
1407
1408 error = xfs_btree_dup_cursor(lcur, &rcur);
1409 if (error)
1410 return error;
1411
1412 error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
1413 if (error)
1414 goto error_rcur;
1415 if (j == 1) {
1416 error = xfs_inobt_get_rec(rcur, &rrec, &j);
1417 if (error)
1418 goto error_rcur;
1419 XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, j == 1, error_rcur);
1420 }
1421
1422 XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, i == 1 || j == 1, error_rcur);
1423 if (i == 1 && j == 1) {
1424 /*
1425 * Both the left and right records are valid. Choose the closer
1426 * inode chunk to the target.
1427 */
1428 if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
1429 (rrec.ir_startino - pagino)) {
1430 *rec = rrec;
1431 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1432 *ocur = rcur;
1433 } else {
1434 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1435 }
1436 } else if (j == 1) {
1437 /* only the right record is valid */
1438 *rec = rrec;
1439 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1440 *ocur = rcur;
1441 } else if (i == 1) {
1442 /* only the left record is valid */
1443 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1444 }
1445
1446 return 0;
1447
1448error_rcur:
1449 xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
1450 return error;
1451}
1452
1453/*
1454 * Use the free inode btree to find a free inode based on a newino hint. If
1455 * the hint is NULL, find the first free inode in the AG.
1456 */
1457STATIC int
1458xfs_dialloc_ag_finobt_newino(
1459 struct xfs_agi *agi,
1460 struct xfs_btree_cur *cur,
1461 struct xfs_inobt_rec_incore *rec)
1462{
1463 int error;
1464 int i;
1465
1466 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1467 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1468 XFS_LOOKUP_EQ, &i);
1469 if (error)
1470 return error;
1471 if (i == 1) {
1472 error = xfs_inobt_get_rec(cur, rec, &i);
1473 if (error)
1474 return error;
1475 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1476 return 0;
1477 }
1478 }
1479
1480 /*
1481 * Find the first inode available in the AG.
1482 */
1483 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1484 if (error)
1485 return error;
1486 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1487
1488 error = xfs_inobt_get_rec(cur, rec, &i);
1489 if (error)
1490 return error;
1491 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1492
1493 return 0;
1494}
1495
1496/*
1497 * Update the inobt based on a modification made to the finobt. Also ensure that
1498 * the records from both trees are equivalent post-modification.
1499 */
1500STATIC int
1501xfs_dialloc_ag_update_inobt(
1502 struct xfs_btree_cur *cur, /* inobt cursor */
1503 struct xfs_inobt_rec_incore *frec, /* finobt record */
1504 int offset) /* inode offset */
1505{
1506 struct xfs_inobt_rec_incore rec;
1507 int error;
1508 int i;
1509
1510 error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
1511 if (error)
1512 return error;
1513 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1514
1515 error = xfs_inobt_get_rec(cur, &rec, &i);
1516 if (error)
1517 return error;
1518 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1519 ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
1520 XFS_INODES_PER_CHUNK) == 0);
1521
1522 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1523 rec.ir_freecount--;
1524
1525 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, (rec.ir_free == frec->ir_free) &&
1526 (rec.ir_freecount == frec->ir_freecount));
1527
1528 return xfs_inobt_update(cur, &rec);
1529}
1530
1531/*
1532 * Allocate an inode using the free inode btree, if available. Otherwise, fall
1533 * back to the inobt search algorithm.
1534 *
1535 * The caller selected an AG for us, and made sure that free inodes are
1536 * available.
1537 */
1538STATIC int
1539xfs_dialloc_ag(
1540 struct xfs_trans *tp,
1541 struct xfs_buf *agbp,
1542 xfs_ino_t parent,
1543 xfs_ino_t *inop)
1544{
1545 struct xfs_mount *mp = tp->t_mountp;
1546 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
1547 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1548 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
1549 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
1550 struct xfs_perag *pag;
1551 struct xfs_btree_cur *cur; /* finobt cursor */
1552 struct xfs_btree_cur *icur; /* inobt cursor */
1553 struct xfs_inobt_rec_incore rec;
1554 xfs_ino_t ino;
1555 int error;
1556 int offset;
1557 int i;
1558
1559 if (!xfs_sb_version_hasfinobt(&mp->m_sb))
1560 return xfs_dialloc_ag_inobt(tp, agbp, parent, inop);
1561
1562 pag = xfs_perag_get(mp, agno);
1563
1564 /*
1565 * If pagino is 0 (this is the root inode allocation) use newino.
1566 * This must work because we've just allocated some.
1567 */
1568 if (!pagino)
1569 pagino = be32_to_cpu(agi->agi_newino);
1570
1571 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
1572
1573 error = xfs_check_agi_freecount(cur, agi);
1574 if (error)
1575 goto error_cur;
1576
1577 /*
1578 * The search algorithm depends on whether we're in the same AG as the
1579 * parent. If so, find the closest available inode to the parent. If
1580 * not, consider the agi hint or find the first free inode in the AG.
1581 */
1582 if (agno == pagno)
1583 error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
1584 else
1585 error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
1586 if (error)
1587 goto error_cur;
1588
1589 offset = xfs_inobt_first_free_inode(&rec);
1590 ASSERT(offset >= 0);
1591 ASSERT(offset < XFS_INODES_PER_CHUNK);
1592 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1593 XFS_INODES_PER_CHUNK) == 0);
1594 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1595
1596 /*
1597 * Modify or remove the finobt record.
1598 */
1599 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1600 rec.ir_freecount--;
1601 if (rec.ir_freecount)
1602 error = xfs_inobt_update(cur, &rec);
1603 else
1604 error = xfs_btree_delete(cur, &i);
1605 if (error)
1606 goto error_cur;
1607
1608 /*
1609 * The finobt has now been updated appropriately. We haven't updated the
1610 * agi and superblock yet, so we can create an inobt cursor and validate
1611 * the original freecount. If all is well, make the equivalent update to
1612 * the inobt using the finobt record and offset information.
1613 */
1614 icur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1615
1616 error = xfs_check_agi_freecount(icur, agi);
1617 if (error)
1618 goto error_icur;
1619
1620 error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
1621 if (error)
1622 goto error_icur;
1623
1624 /*
1625 * Both trees have now been updated. We must update the perag and
1626 * superblock before we can check the freecount for each btree.
1627 */
1628 be32_add_cpu(&agi->agi_freecount, -1);
1629 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1630 pag->pagi_freecount--;
1631
1632 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1633
1634 error = xfs_check_agi_freecount(icur, agi);
1635 if (error)
1636 goto error_icur;
1637 error = xfs_check_agi_freecount(cur, agi);
1638 if (error)
1639 goto error_icur;
1640
1641 xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
1642 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1643 xfs_perag_put(pag);
1644 *inop = ino;
1645 return 0;
1646
1647error_icur:
1648 xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
1649error_cur:
1650 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1651 xfs_perag_put(pag);
1652 return error;
1653}
1654
1655/*
1656 * Allocate an inode on disk.
1657 *
1658 * Mode is used to tell whether the new inode will need space, and whether it
1659 * is a directory.
1660 *
1661 * This function is designed to be called twice if it has to do an allocation
1662 * to make more free inodes. On the first call, *IO_agbp should be set to NULL.
1663 * If an inode is available without having to performn an allocation, an inode
1664 * number is returned. In this case, *IO_agbp is set to NULL. If an allocation
1665 * needs to be done, xfs_dialloc returns the current AGI buffer in *IO_agbp.
1666 * The caller should then commit the current transaction, allocate a
1667 * new transaction, and call xfs_dialloc() again, passing in the previous value
1668 * of *IO_agbp. IO_agbp should be held across the transactions. Since the AGI
1669 * buffer is locked across the two calls, the second call is guaranteed to have
1670 * a free inode available.
1671 *
1672 * Once we successfully pick an inode its number is returned and the on-disk
1673 * data structures are updated. The inode itself is not read in, since doing so
1674 * would break ordering constraints with xfs_reclaim.
1675 */
1676int
1677xfs_dialloc(
1678 struct xfs_trans *tp,
1679 xfs_ino_t parent,
1680 umode_t mode,
1681 struct xfs_buf **IO_agbp,
1682 xfs_ino_t *inop)
1683{
1684 struct xfs_mount *mp = tp->t_mountp;
1685 struct xfs_buf *agbp;
1686 xfs_agnumber_t agno;
1687 int error;
1688 int ialloced;
1689 int noroom = 0;
1690 xfs_agnumber_t start_agno;
1691 struct xfs_perag *pag;
1692 struct xfs_ino_geometry *igeo = M_IGEO(mp);
1693 int okalloc = 1;
1694
1695 if (*IO_agbp) {
1696 /*
1697 * If the caller passes in a pointer to the AGI buffer,
1698 * continue where we left off before. In this case, we
1699 * know that the allocation group has free inodes.
1700 */
1701 agbp = *IO_agbp;
1702 goto out_alloc;
1703 }
1704
1705 /*
1706 * We do not have an agbp, so select an initial allocation
1707 * group for inode allocation.
1708 */
1709 start_agno = xfs_ialloc_ag_select(tp, parent, mode);
1710 if (start_agno == NULLAGNUMBER) {
1711 *inop = NULLFSINO;
1712 return 0;
1713 }
1714
1715 /*
1716 * If we have already hit the ceiling of inode blocks then clear
1717 * okalloc so we scan all available agi structures for a free
1718 * inode.
1719 *
1720 * Read rough value of mp->m_icount by percpu_counter_read_positive,
1721 * which will sacrifice the preciseness but improve the performance.
1722 */
1723 if (igeo->maxicount &&
1724 percpu_counter_read_positive(&mp->m_icount) + igeo->ialloc_inos
1725 > igeo->maxicount) {
1726 noroom = 1;
1727 okalloc = 0;
1728 }
1729
1730 /*
1731 * Loop until we find an allocation group that either has free inodes
1732 * or in which we can allocate some inodes. Iterate through the
1733 * allocation groups upward, wrapping at the end.
1734 */
1735 agno = start_agno;
1736 for (;;) {
1737 pag = xfs_perag_get(mp, agno);
1738 if (!pag->pagi_inodeok) {
1739 xfs_ialloc_next_ag(mp);
1740 goto nextag;
1741 }
1742
1743 if (!pag->pagi_init) {
1744 error = xfs_ialloc_pagi_init(mp, tp, agno);
1745 if (error)
1746 goto out_error;
1747 }
1748
1749 /*
1750 * Do a first racy fast path check if this AG is usable.
1751 */
1752 if (!pag->pagi_freecount && !okalloc)
1753 goto nextag;
1754
1755 /*
1756 * Then read in the AGI buffer and recheck with the AGI buffer
1757 * lock held.
1758 */
1759 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
1760 if (error)
1761 goto out_error;
1762
1763 if (pag->pagi_freecount) {
1764 xfs_perag_put(pag);
1765 goto out_alloc;
1766 }
1767
1768 if (!okalloc)
1769 goto nextag_relse_buffer;
1770
1771
1772 error = xfs_ialloc_ag_alloc(tp, agbp, &ialloced);
1773 if (error) {
1774 xfs_trans_brelse(tp, agbp);
1775
1776 if (error != -ENOSPC)
1777 goto out_error;
1778
1779 xfs_perag_put(pag);
1780 *inop = NULLFSINO;
1781 return 0;
1782 }
1783
1784 if (ialloced) {
1785 /*
1786 * We successfully allocated some inodes, return
1787 * the current context to the caller so that it
1788 * can commit the current transaction and call
1789 * us again where we left off.
1790 */
1791 ASSERT(pag->pagi_freecount > 0);
1792 xfs_perag_put(pag);
1793
1794 *IO_agbp = agbp;
1795 *inop = NULLFSINO;
1796 return 0;
1797 }
1798
1799nextag_relse_buffer:
1800 xfs_trans_brelse(tp, agbp);
1801nextag:
1802 xfs_perag_put(pag);
1803 if (++agno == mp->m_sb.sb_agcount)
1804 agno = 0;
1805 if (agno == start_agno) {
1806 *inop = NULLFSINO;
1807 return noroom ? -ENOSPC : 0;
1808 }
1809 }
1810
1811out_alloc:
1812 *IO_agbp = NULL;
1813 return xfs_dialloc_ag(tp, agbp, parent, inop);
1814out_error:
1815 xfs_perag_put(pag);
1816 return error;
1817}
1818
1819/*
1820 * Free the blocks of an inode chunk. We must consider that the inode chunk
1821 * might be sparse and only free the regions that are allocated as part of the
1822 * chunk.
1823 */
1824STATIC void
1825xfs_difree_inode_chunk(
1826 struct xfs_trans *tp,
1827 xfs_agnumber_t agno,
1828 struct xfs_inobt_rec_incore *rec)
1829{
1830 struct xfs_mount *mp = tp->t_mountp;
1831 xfs_agblock_t sagbno = XFS_AGINO_TO_AGBNO(mp,
1832 rec->ir_startino);
1833 int startidx, endidx;
1834 int nextbit;
1835 xfs_agblock_t agbno;
1836 int contigblk;
1837 DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS);
1838
1839 if (!xfs_inobt_issparse(rec->ir_holemask)) {
1840 /* not sparse, calculate extent info directly */
1841 xfs_bmap_add_free(tp, XFS_AGB_TO_FSB(mp, agno, sagbno),
1842 M_IGEO(mp)->ialloc_blks,
1843 &XFS_RMAP_OINFO_INODES);
1844 return;
1845 }
1846
1847 /* holemask is only 16-bits (fits in an unsigned long) */
1848 ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0]));
1849 holemask[0] = rec->ir_holemask;
1850
1851 /*
1852 * Find contiguous ranges of zeroes (i.e., allocated regions) in the
1853 * holemask and convert the start/end index of each range to an extent.
1854 * We start with the start and end index both pointing at the first 0 in
1855 * the mask.
1856 */
1857 startidx = endidx = find_first_zero_bit(holemask,
1858 XFS_INOBT_HOLEMASK_BITS);
1859 nextbit = startidx + 1;
1860 while (startidx < XFS_INOBT_HOLEMASK_BITS) {
1861 nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS,
1862 nextbit);
1863 /*
1864 * If the next zero bit is contiguous, update the end index of
1865 * the current range and continue.
1866 */
1867 if (nextbit != XFS_INOBT_HOLEMASK_BITS &&
1868 nextbit == endidx + 1) {
1869 endidx = nextbit;
1870 goto next;
1871 }
1872
1873 /*
1874 * nextbit is not contiguous with the current end index. Convert
1875 * the current start/end to an extent and add it to the free
1876 * list.
1877 */
1878 agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) /
1879 mp->m_sb.sb_inopblock;
1880 contigblk = ((endidx - startidx + 1) *
1881 XFS_INODES_PER_HOLEMASK_BIT) /
1882 mp->m_sb.sb_inopblock;
1883
1884 ASSERT(agbno % mp->m_sb.sb_spino_align == 0);
1885 ASSERT(contigblk % mp->m_sb.sb_spino_align == 0);
1886 xfs_bmap_add_free(tp, XFS_AGB_TO_FSB(mp, agno, agbno),
1887 contigblk, &XFS_RMAP_OINFO_INODES);
1888
1889 /* reset range to current bit and carry on... */
1890 startidx = endidx = nextbit;
1891
1892next:
1893 nextbit++;
1894 }
1895}
1896
1897STATIC int
1898xfs_difree_inobt(
1899 struct xfs_mount *mp,
1900 struct xfs_trans *tp,
1901 struct xfs_buf *agbp,
1902 xfs_agino_t agino,
1903 struct xfs_icluster *xic,
1904 struct xfs_inobt_rec_incore *orec)
1905{
1906 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
1907 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1908 struct xfs_perag *pag;
1909 struct xfs_btree_cur *cur;
1910 struct xfs_inobt_rec_incore rec;
1911 int ilen;
1912 int error;
1913 int i;
1914 int off;
1915
1916 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
1917 ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
1918
1919 /*
1920 * Initialize the cursor.
1921 */
1922 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1923
1924 error = xfs_check_agi_freecount(cur, agi);
1925 if (error)
1926 goto error0;
1927
1928 /*
1929 * Look for the entry describing this inode.
1930 */
1931 if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
1932 xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
1933 __func__, error);
1934 goto error0;
1935 }
1936 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1937 error = xfs_inobt_get_rec(cur, &rec, &i);
1938 if (error) {
1939 xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
1940 __func__, error);
1941 goto error0;
1942 }
1943 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1944 /*
1945 * Get the offset in the inode chunk.
1946 */
1947 off = agino - rec.ir_startino;
1948 ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
1949 ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
1950 /*
1951 * Mark the inode free & increment the count.
1952 */
1953 rec.ir_free |= XFS_INOBT_MASK(off);
1954 rec.ir_freecount++;
1955
1956 /*
1957 * When an inode chunk is free, it becomes eligible for removal. Don't
1958 * remove the chunk if the block size is large enough for multiple inode
1959 * chunks (that might not be free).
1960 */
1961 if (!(mp->m_flags & XFS_MOUNT_IKEEP) &&
1962 rec.ir_free == XFS_INOBT_ALL_FREE &&
1963 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
1964 xic->deleted = true;
1965 xic->first_ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino);
1966 xic->alloc = xfs_inobt_irec_to_allocmask(&rec);
1967
1968 /*
1969 * Remove the inode cluster from the AGI B+Tree, adjust the
1970 * AGI and Superblock inode counts, and mark the disk space
1971 * to be freed when the transaction is committed.
1972 */
1973 ilen = rec.ir_freecount;
1974 be32_add_cpu(&agi->agi_count, -ilen);
1975 be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
1976 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
1977 pag = xfs_perag_get(mp, agno);
1978 pag->pagi_freecount -= ilen - 1;
1979 pag->pagi_count -= ilen;
1980 xfs_perag_put(pag);
1981 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
1982 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
1983
1984 if ((error = xfs_btree_delete(cur, &i))) {
1985 xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
1986 __func__, error);
1987 goto error0;
1988 }
1989
1990 xfs_difree_inode_chunk(tp, agno, &rec);
1991 } else {
1992 xic->deleted = false;
1993
1994 error = xfs_inobt_update(cur, &rec);
1995 if (error) {
1996 xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
1997 __func__, error);
1998 goto error0;
1999 }
2000
2001 /*
2002 * Change the inode free counts and log the ag/sb changes.
2003 */
2004 be32_add_cpu(&agi->agi_freecount, 1);
2005 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
2006 pag = xfs_perag_get(mp, agno);
2007 pag->pagi_freecount++;
2008 xfs_perag_put(pag);
2009 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
2010 }
2011
2012 error = xfs_check_agi_freecount(cur, agi);
2013 if (error)
2014 goto error0;
2015
2016 *orec = rec;
2017 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2018 return 0;
2019
2020error0:
2021 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2022 return error;
2023}
2024
2025/*
2026 * Free an inode in the free inode btree.
2027 */
2028STATIC int
2029xfs_difree_finobt(
2030 struct xfs_mount *mp,
2031 struct xfs_trans *tp,
2032 struct xfs_buf *agbp,
2033 xfs_agino_t agino,
2034 struct xfs_inobt_rec_incore *ibtrec) /* inobt record */
2035{
2036 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
2037 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
2038 struct xfs_btree_cur *cur;
2039 struct xfs_inobt_rec_incore rec;
2040 int offset = agino - ibtrec->ir_startino;
2041 int error;
2042 int i;
2043
2044 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
2045
2046 error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
2047 if (error)
2048 goto error;
2049 if (i == 0) {
2050 /*
2051 * If the record does not exist in the finobt, we must have just
2052 * freed an inode in a previously fully allocated chunk. If not,
2053 * something is out of sync.
2054 */
2055 XFS_WANT_CORRUPTED_GOTO(mp, ibtrec->ir_freecount == 1, error);
2056
2057 error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask,
2058 ibtrec->ir_count,
2059 ibtrec->ir_freecount,
2060 ibtrec->ir_free, &i);
2061 if (error)
2062 goto error;
2063 ASSERT(i == 1);
2064
2065 goto out;
2066 }
2067
2068 /*
2069 * Read and update the existing record. We could just copy the ibtrec
2070 * across here, but that would defeat the purpose of having redundant
2071 * metadata. By making the modifications independently, we can catch
2072 * corruptions that we wouldn't see if we just copied from one record
2073 * to another.
2074 */
2075 error = xfs_inobt_get_rec(cur, &rec, &i);
2076 if (error)
2077 goto error;
2078 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
2079
2080 rec.ir_free |= XFS_INOBT_MASK(offset);
2081 rec.ir_freecount++;
2082
2083 XFS_WANT_CORRUPTED_GOTO(mp, (rec.ir_free == ibtrec->ir_free) &&
2084 (rec.ir_freecount == ibtrec->ir_freecount),
2085 error);
2086
2087 /*
2088 * The content of inobt records should always match between the inobt
2089 * and finobt. The lifecycle of records in the finobt is different from
2090 * the inobt in that the finobt only tracks records with at least one
2091 * free inode. Hence, if all of the inodes are free and we aren't
2092 * keeping inode chunks permanently on disk, remove the record.
2093 * Otherwise, update the record with the new information.
2094 *
2095 * Note that we currently can't free chunks when the block size is large
2096 * enough for multiple chunks. Leave the finobt record to remain in sync
2097 * with the inobt.
2098 */
2099 if (rec.ir_free == XFS_INOBT_ALL_FREE &&
2100 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK &&
2101 !(mp->m_flags & XFS_MOUNT_IKEEP)) {
2102 error = xfs_btree_delete(cur, &i);
2103 if (error)
2104 goto error;
2105 ASSERT(i == 1);
2106 } else {
2107 error = xfs_inobt_update(cur, &rec);
2108 if (error)
2109 goto error;
2110 }
2111
2112out:
2113 error = xfs_check_agi_freecount(cur, agi);
2114 if (error)
2115 goto error;
2116
2117 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2118 return 0;
2119
2120error:
2121 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2122 return error;
2123}
2124
2125/*
2126 * Free disk inode. Carefully avoids touching the incore inode, all
2127 * manipulations incore are the caller's responsibility.
2128 * The on-disk inode is not changed by this operation, only the
2129 * btree (free inode mask) is changed.
2130 */
2131int
2132xfs_difree(
2133 struct xfs_trans *tp, /* transaction pointer */
2134 xfs_ino_t inode, /* inode to be freed */
2135 struct xfs_icluster *xic) /* cluster info if deleted */
2136{
2137 /* REFERENCED */
2138 xfs_agblock_t agbno; /* block number containing inode */
2139 struct xfs_buf *agbp; /* buffer for allocation group header */
2140 xfs_agino_t agino; /* allocation group inode number */
2141 xfs_agnumber_t agno; /* allocation group number */
2142 int error; /* error return value */
2143 struct xfs_mount *mp; /* mount structure for filesystem */
2144 struct xfs_inobt_rec_incore rec;/* btree record */
2145
2146 mp = tp->t_mountp;
2147
2148 /*
2149 * Break up inode number into its components.
2150 */
2151 agno = XFS_INO_TO_AGNO(mp, inode);
2152 if (agno >= mp->m_sb.sb_agcount) {
2153 xfs_warn(mp, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).",
2154 __func__, agno, mp->m_sb.sb_agcount);
2155 ASSERT(0);
2156 return -EINVAL;
2157 }
2158 agino = XFS_INO_TO_AGINO(mp, inode);
2159 if (inode != XFS_AGINO_TO_INO(mp, agno, agino)) {
2160 xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
2161 __func__, (unsigned long long)inode,
2162 (unsigned long long)XFS_AGINO_TO_INO(mp, agno, agino));
2163 ASSERT(0);
2164 return -EINVAL;
2165 }
2166 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2167 if (agbno >= mp->m_sb.sb_agblocks) {
2168 xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
2169 __func__, agbno, mp->m_sb.sb_agblocks);
2170 ASSERT(0);
2171 return -EINVAL;
2172 }
2173 /*
2174 * Get the allocation group header.
2175 */
2176 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2177 if (error) {
2178 xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
2179 __func__, error);
2180 return error;
2181 }
2182
2183 /*
2184 * Fix up the inode allocation btree.
2185 */
2186 error = xfs_difree_inobt(mp, tp, agbp, agino, xic, &rec);
2187 if (error)
2188 goto error0;
2189
2190 /*
2191 * Fix up the free inode btree.
2192 */
2193 if (xfs_sb_version_hasfinobt(&mp->m_sb)) {
2194 error = xfs_difree_finobt(mp, tp, agbp, agino, &rec);
2195 if (error)
2196 goto error0;
2197 }
2198
2199 return 0;
2200
2201error0:
2202 return error;
2203}
2204
2205STATIC int
2206xfs_imap_lookup(
2207 struct xfs_mount *mp,
2208 struct xfs_trans *tp,
2209 xfs_agnumber_t agno,
2210 xfs_agino_t agino,
2211 xfs_agblock_t agbno,
2212 xfs_agblock_t *chunk_agbno,
2213 xfs_agblock_t *offset_agbno,
2214 int flags)
2215{
2216 struct xfs_inobt_rec_incore rec;
2217 struct xfs_btree_cur *cur;
2218 struct xfs_buf *agbp;
2219 int error;
2220 int i;
2221
2222 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2223 if (error) {
2224 xfs_alert(mp,
2225 "%s: xfs_ialloc_read_agi() returned error %d, agno %d",
2226 __func__, error, agno);
2227 return error;
2228 }
2229
2230 /*
2231 * Lookup the inode record for the given agino. If the record cannot be
2232 * found, then it's an invalid inode number and we should abort. Once
2233 * we have a record, we need to ensure it contains the inode number
2234 * we are looking up.
2235 */
2236 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
2237 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
2238 if (!error) {
2239 if (i)
2240 error = xfs_inobt_get_rec(cur, &rec, &i);
2241 if (!error && i == 0)
2242 error = -EINVAL;
2243 }
2244
2245 xfs_trans_brelse(tp, agbp);
2246 xfs_btree_del_cursor(cur, error);
2247 if (error)
2248 return error;
2249
2250 /* check that the returned record contains the required inode */
2251 if (rec.ir_startino > agino ||
2252 rec.ir_startino + M_IGEO(mp)->ialloc_inos <= agino)
2253 return -EINVAL;
2254
2255 /* for untrusted inodes check it is allocated first */
2256 if ((flags & XFS_IGET_UNTRUSTED) &&
2257 (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
2258 return -EINVAL;
2259
2260 *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
2261 *offset_agbno = agbno - *chunk_agbno;
2262 return 0;
2263}
2264
2265/*
2266 * Return the location of the inode in imap, for mapping it into a buffer.
2267 */
2268int
2269xfs_imap(
2270 xfs_mount_t *mp, /* file system mount structure */
2271 xfs_trans_t *tp, /* transaction pointer */
2272 xfs_ino_t ino, /* inode to locate */
2273 struct xfs_imap *imap, /* location map structure */
2274 uint flags) /* flags for inode btree lookup */
2275{
2276 xfs_agblock_t agbno; /* block number of inode in the alloc group */
2277 xfs_agino_t agino; /* inode number within alloc group */
2278 xfs_agnumber_t agno; /* allocation group number */
2279 xfs_agblock_t chunk_agbno; /* first block in inode chunk */
2280 xfs_agblock_t cluster_agbno; /* first block in inode cluster */
2281 int error; /* error code */
2282 int offset; /* index of inode in its buffer */
2283 xfs_agblock_t offset_agbno; /* blks from chunk start to inode */
2284
2285 ASSERT(ino != NULLFSINO);
2286
2287 /*
2288 * Split up the inode number into its parts.
2289 */
2290 agno = XFS_INO_TO_AGNO(mp, ino);
2291 agino = XFS_INO_TO_AGINO(mp, ino);
2292 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2293 if (agno >= mp->m_sb.sb_agcount || agbno >= mp->m_sb.sb_agblocks ||
2294 ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2295#ifdef DEBUG
2296 /*
2297 * Don't output diagnostic information for untrusted inodes
2298 * as they can be invalid without implying corruption.
2299 */
2300 if (flags & XFS_IGET_UNTRUSTED)
2301 return -EINVAL;
2302 if (agno >= mp->m_sb.sb_agcount) {
2303 xfs_alert(mp,
2304 "%s: agno (%d) >= mp->m_sb.sb_agcount (%d)",
2305 __func__, agno, mp->m_sb.sb_agcount);
2306 }
2307 if (agbno >= mp->m_sb.sb_agblocks) {
2308 xfs_alert(mp,
2309 "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
2310 __func__, (unsigned long long)agbno,
2311 (unsigned long)mp->m_sb.sb_agblocks);
2312 }
2313 if (ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2314 xfs_alert(mp,
2315 "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
2316 __func__, ino,
2317 XFS_AGINO_TO_INO(mp, agno, agino));
2318 }
2319 xfs_stack_trace();
2320#endif /* DEBUG */
2321 return -EINVAL;
2322 }
2323
2324 /*
2325 * For bulkstat and handle lookups, we have an untrusted inode number
2326 * that we have to verify is valid. We cannot do this just by reading
2327 * the inode buffer as it may have been unlinked and removed leaving
2328 * inodes in stale state on disk. Hence we have to do a btree lookup
2329 * in all cases where an untrusted inode number is passed.
2330 */
2331 if (flags & XFS_IGET_UNTRUSTED) {
2332 error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2333 &chunk_agbno, &offset_agbno, flags);
2334 if (error)
2335 return error;
2336 goto out_map;
2337 }
2338
2339 /*
2340 * If the inode cluster size is the same as the blocksize or
2341 * smaller we get to the buffer by simple arithmetics.
2342 */
2343 if (M_IGEO(mp)->blocks_per_cluster == 1) {
2344 offset = XFS_INO_TO_OFFSET(mp, ino);
2345 ASSERT(offset < mp->m_sb.sb_inopblock);
2346
2347 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, agbno);
2348 imap->im_len = XFS_FSB_TO_BB(mp, 1);
2349 imap->im_boffset = (unsigned short)(offset <<
2350 mp->m_sb.sb_inodelog);
2351 return 0;
2352 }
2353
2354 /*
2355 * If the inode chunks are aligned then use simple maths to
2356 * find the location. Otherwise we have to do a btree
2357 * lookup to find the location.
2358 */
2359 if (M_IGEO(mp)->inoalign_mask) {
2360 offset_agbno = agbno & M_IGEO(mp)->inoalign_mask;
2361 chunk_agbno = agbno - offset_agbno;
2362 } else {
2363 error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2364 &chunk_agbno, &offset_agbno, flags);
2365 if (error)
2366 return error;
2367 }
2368
2369out_map:
2370 ASSERT(agbno >= chunk_agbno);
2371 cluster_agbno = chunk_agbno +
2372 ((offset_agbno / M_IGEO(mp)->blocks_per_cluster) *
2373 M_IGEO(mp)->blocks_per_cluster);
2374 offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
2375 XFS_INO_TO_OFFSET(mp, ino);
2376
2377 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, cluster_agbno);
2378 imap->im_len = XFS_FSB_TO_BB(mp, M_IGEO(mp)->blocks_per_cluster);
2379 imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog);
2380
2381 /*
2382 * If the inode number maps to a block outside the bounds
2383 * of the file system then return NULL rather than calling
2384 * read_buf and panicing when we get an error from the
2385 * driver.
2386 */
2387 if ((imap->im_blkno + imap->im_len) >
2388 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
2389 xfs_alert(mp,
2390 "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
2391 __func__, (unsigned long long) imap->im_blkno,
2392 (unsigned long long) imap->im_len,
2393 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2394 return -EINVAL;
2395 }
2396 return 0;
2397}
2398
2399/*
2400 * Log specified fields for the ag hdr (inode section). The growth of the agi
2401 * structure over time requires that we interpret the buffer as two logical
2402 * regions delineated by the end of the unlinked list. This is due to the size
2403 * of the hash table and its location in the middle of the agi.
2404 *
2405 * For example, a request to log a field before agi_unlinked and a field after
2406 * agi_unlinked could cause us to log the entire hash table and use an excessive
2407 * amount of log space. To avoid this behavior, log the region up through
2408 * agi_unlinked in one call and the region after agi_unlinked through the end of
2409 * the structure in another.
2410 */
2411void
2412xfs_ialloc_log_agi(
2413 xfs_trans_t *tp, /* transaction pointer */
2414 xfs_buf_t *bp, /* allocation group header buffer */
2415 int fields) /* bitmask of fields to log */
2416{
2417 int first; /* first byte number */
2418 int last; /* last byte number */
2419 static const short offsets[] = { /* field starting offsets */
2420 /* keep in sync with bit definitions */
2421 offsetof(xfs_agi_t, agi_magicnum),
2422 offsetof(xfs_agi_t, agi_versionnum),
2423 offsetof(xfs_agi_t, agi_seqno),
2424 offsetof(xfs_agi_t, agi_length),
2425 offsetof(xfs_agi_t, agi_count),
2426 offsetof(xfs_agi_t, agi_root),
2427 offsetof(xfs_agi_t, agi_level),
2428 offsetof(xfs_agi_t, agi_freecount),
2429 offsetof(xfs_agi_t, agi_newino),
2430 offsetof(xfs_agi_t, agi_dirino),
2431 offsetof(xfs_agi_t, agi_unlinked),
2432 offsetof(xfs_agi_t, agi_free_root),
2433 offsetof(xfs_agi_t, agi_free_level),
2434 sizeof(xfs_agi_t)
2435 };
2436#ifdef DEBUG
2437 xfs_agi_t *agi; /* allocation group header */
2438
2439 agi = XFS_BUF_TO_AGI(bp);
2440 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2441#endif
2442
2443 /*
2444 * Compute byte offsets for the first and last fields in the first
2445 * region and log the agi buffer. This only logs up through
2446 * agi_unlinked.
2447 */
2448 if (fields & XFS_AGI_ALL_BITS_R1) {
2449 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
2450 &first, &last);
2451 xfs_trans_log_buf(tp, bp, first, last);
2452 }
2453
2454 /*
2455 * Mask off the bits in the first region and calculate the first and
2456 * last field offsets for any bits in the second region.
2457 */
2458 fields &= ~XFS_AGI_ALL_BITS_R1;
2459 if (fields) {
2460 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
2461 &first, &last);
2462 xfs_trans_log_buf(tp, bp, first, last);
2463 }
2464}
2465
2466static xfs_failaddr_t
2467xfs_agi_verify(
2468 struct xfs_buf *bp)
2469{
2470 struct xfs_mount *mp = bp->b_mount;
2471 struct xfs_agi *agi = XFS_BUF_TO_AGI(bp);
2472 int i;
2473
2474 if (xfs_sb_version_hascrc(&mp->m_sb)) {
2475 if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid))
2476 return __this_address;
2477 if (!xfs_log_check_lsn(mp,
2478 be64_to_cpu(XFS_BUF_TO_AGI(bp)->agi_lsn)))
2479 return __this_address;
2480 }
2481
2482 /*
2483 * Validate the magic number of the agi block.
2484 */
2485 if (!xfs_verify_magic(bp, agi->agi_magicnum))
2486 return __this_address;
2487 if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
2488 return __this_address;
2489
2490 if (be32_to_cpu(agi->agi_level) < 1 ||
2491 be32_to_cpu(agi->agi_level) > XFS_BTREE_MAXLEVELS)
2492 return __this_address;
2493
2494 if (xfs_sb_version_hasfinobt(&mp->m_sb) &&
2495 (be32_to_cpu(agi->agi_free_level) < 1 ||
2496 be32_to_cpu(agi->agi_free_level) > XFS_BTREE_MAXLEVELS))
2497 return __this_address;
2498
2499 /*
2500 * during growfs operations, the perag is not fully initialised,
2501 * so we can't use it for any useful checking. growfs ensures we can't
2502 * use it by using uncached buffers that don't have the perag attached
2503 * so we can detect and avoid this problem.
2504 */
2505 if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno)
2506 return __this_address;
2507
2508 for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) {
2509 if (agi->agi_unlinked[i] == cpu_to_be32(NULLAGINO))
2510 continue;
2511 if (!xfs_verify_ino(mp, be32_to_cpu(agi->agi_unlinked[i])))
2512 return __this_address;
2513 }
2514
2515 return NULL;
2516}
2517
2518static void
2519xfs_agi_read_verify(
2520 struct xfs_buf *bp)
2521{
2522 struct xfs_mount *mp = bp->b_mount;
2523 xfs_failaddr_t fa;
2524
2525 if (xfs_sb_version_hascrc(&mp->m_sb) &&
2526 !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
2527 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
2528 else {
2529 fa = xfs_agi_verify(bp);
2530 if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_IALLOC_READ_AGI))
2531 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2532 }
2533}
2534
2535static void
2536xfs_agi_write_verify(
2537 struct xfs_buf *bp)
2538{
2539 struct xfs_mount *mp = bp->b_mount;
2540 struct xfs_buf_log_item *bip = bp->b_log_item;
2541 xfs_failaddr_t fa;
2542
2543 fa = xfs_agi_verify(bp);
2544 if (fa) {
2545 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2546 return;
2547 }
2548
2549 if (!xfs_sb_version_hascrc(&mp->m_sb))
2550 return;
2551
2552 if (bip)
2553 XFS_BUF_TO_AGI(bp)->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
2554 xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
2555}
2556
2557const struct xfs_buf_ops xfs_agi_buf_ops = {
2558 .name = "xfs_agi",
2559 .magic = { cpu_to_be32(XFS_AGI_MAGIC), cpu_to_be32(XFS_AGI_MAGIC) },
2560 .verify_read = xfs_agi_read_verify,
2561 .verify_write = xfs_agi_write_verify,
2562 .verify_struct = xfs_agi_verify,
2563};
2564
2565/*
2566 * Read in the allocation group header (inode allocation section)
2567 */
2568int
2569xfs_read_agi(
2570 struct xfs_mount *mp, /* file system mount structure */
2571 struct xfs_trans *tp, /* transaction pointer */
2572 xfs_agnumber_t agno, /* allocation group number */
2573 struct xfs_buf **bpp) /* allocation group hdr buf */
2574{
2575 int error;
2576
2577 trace_xfs_read_agi(mp, agno);
2578
2579 ASSERT(agno != NULLAGNUMBER);
2580 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
2581 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
2582 XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops);
2583 if (error)
2584 return error;
2585 if (tp)
2586 xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_AGI_BUF);
2587
2588 xfs_buf_set_ref(*bpp, XFS_AGI_REF);
2589 return 0;
2590}
2591
2592int
2593xfs_ialloc_read_agi(
2594 struct xfs_mount *mp, /* file system mount structure */
2595 struct xfs_trans *tp, /* transaction pointer */
2596 xfs_agnumber_t agno, /* allocation group number */
2597 struct xfs_buf **bpp) /* allocation group hdr buf */
2598{
2599 struct xfs_agi *agi; /* allocation group header */
2600 struct xfs_perag *pag; /* per allocation group data */
2601 int error;
2602
2603 trace_xfs_ialloc_read_agi(mp, agno);
2604
2605 error = xfs_read_agi(mp, tp, agno, bpp);
2606 if (error)
2607 return error;
2608
2609 agi = XFS_BUF_TO_AGI(*bpp);
2610 pag = xfs_perag_get(mp, agno);
2611 if (!pag->pagi_init) {
2612 pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
2613 pag->pagi_count = be32_to_cpu(agi->agi_count);
2614 pag->pagi_init = 1;
2615 }
2616
2617 /*
2618 * It's possible for these to be out of sync if
2619 * we are in the middle of a forced shutdown.
2620 */
2621 ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
2622 XFS_FORCED_SHUTDOWN(mp));
2623 xfs_perag_put(pag);
2624 return 0;
2625}
2626
2627/*
2628 * Read in the agi to initialise the per-ag data in the mount structure
2629 */
2630int
2631xfs_ialloc_pagi_init(
2632 xfs_mount_t *mp, /* file system mount structure */
2633 xfs_trans_t *tp, /* transaction pointer */
2634 xfs_agnumber_t agno) /* allocation group number */
2635{
2636 xfs_buf_t *bp = NULL;
2637 int error;
2638
2639 error = xfs_ialloc_read_agi(mp, tp, agno, &bp);
2640 if (error)
2641 return error;
2642 if (bp)
2643 xfs_trans_brelse(tp, bp);
2644 return 0;
2645}
2646
2647/* Is there an inode record covering a given range of inode numbers? */
2648int
2649xfs_ialloc_has_inode_record(
2650 struct xfs_btree_cur *cur,
2651 xfs_agino_t low,
2652 xfs_agino_t high,
2653 bool *exists)
2654{
2655 struct xfs_inobt_rec_incore irec;
2656 xfs_agino_t agino;
2657 uint16_t holemask;
2658 int has_record;
2659 int i;
2660 int error;
2661
2662 *exists = false;
2663 error = xfs_inobt_lookup(cur, low, XFS_LOOKUP_LE, &has_record);
2664 while (error == 0 && has_record) {
2665 error = xfs_inobt_get_rec(cur, &irec, &has_record);
2666 if (error || irec.ir_startino > high)
2667 break;
2668
2669 agino = irec.ir_startino;
2670 holemask = irec.ir_holemask;
2671 for (i = 0; i < XFS_INOBT_HOLEMASK_BITS; holemask >>= 1,
2672 i++, agino += XFS_INODES_PER_HOLEMASK_BIT) {
2673 if (holemask & 1)
2674 continue;
2675 if (agino + XFS_INODES_PER_HOLEMASK_BIT > low &&
2676 agino <= high) {
2677 *exists = true;
2678 return 0;
2679 }
2680 }
2681
2682 error = xfs_btree_increment(cur, 0, &has_record);
2683 }
2684 return error;
2685}
2686
2687/* Is there an inode record covering a given extent? */
2688int
2689xfs_ialloc_has_inodes_at_extent(
2690 struct xfs_btree_cur *cur,
2691 xfs_agblock_t bno,
2692 xfs_extlen_t len,
2693 bool *exists)
2694{
2695 xfs_agino_t low;
2696 xfs_agino_t high;
2697
2698 low = XFS_AGB_TO_AGINO(cur->bc_mp, bno);
2699 high = XFS_AGB_TO_AGINO(cur->bc_mp, bno + len) - 1;
2700
2701 return xfs_ialloc_has_inode_record(cur, low, high, exists);
2702}
2703
2704struct xfs_ialloc_count_inodes {
2705 xfs_agino_t count;
2706 xfs_agino_t freecount;
2707};
2708
2709/* Record inode counts across all inobt records. */
2710STATIC int
2711xfs_ialloc_count_inodes_rec(
2712 struct xfs_btree_cur *cur,
2713 union xfs_btree_rec *rec,
2714 void *priv)
2715{
2716 struct xfs_inobt_rec_incore irec;
2717 struct xfs_ialloc_count_inodes *ci = priv;
2718
2719 xfs_inobt_btrec_to_irec(cur->bc_mp, rec, &irec);
2720 ci->count += irec.ir_count;
2721 ci->freecount += irec.ir_freecount;
2722
2723 return 0;
2724}
2725
2726/* Count allocated and free inodes under an inobt. */
2727int
2728xfs_ialloc_count_inodes(
2729 struct xfs_btree_cur *cur,
2730 xfs_agino_t *count,
2731 xfs_agino_t *freecount)
2732{
2733 struct xfs_ialloc_count_inodes ci = {0};
2734 int error;
2735
2736 ASSERT(cur->bc_btnum == XFS_BTNUM_INO);
2737 error = xfs_btree_query_all(cur, xfs_ialloc_count_inodes_rec, &ci);
2738 if (error)
2739 return error;
2740
2741 *count = ci.count;
2742 *freecount = ci.freecount;
2743 return 0;
2744}
2745
2746/*
2747 * Initialize inode-related geometry information.
2748 *
2749 * Compute the inode btree min and max levels and set maxicount.
2750 *
2751 * Set the inode cluster size. This may still be overridden by the file
2752 * system block size if it is larger than the chosen cluster size.
2753 *
2754 * For v5 filesystems, scale the cluster size with the inode size to keep a
2755 * constant ratio of inode per cluster buffer, but only if mkfs has set the
2756 * inode alignment value appropriately for larger cluster sizes.
2757 *
2758 * Then compute the inode cluster alignment information.
2759 */
2760void
2761xfs_ialloc_setup_geometry(
2762 struct xfs_mount *mp)
2763{
2764 struct xfs_sb *sbp = &mp->m_sb;
2765 struct xfs_ino_geometry *igeo = M_IGEO(mp);
2766 uint64_t icount;
2767 uint inodes;
2768
2769 /* Compute inode btree geometry. */
2770 igeo->agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
2771 igeo->inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1);
2772 igeo->inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0);
2773 igeo->inobt_mnr[0] = igeo->inobt_mxr[0] / 2;
2774 igeo->inobt_mnr[1] = igeo->inobt_mxr[1] / 2;
2775
2776 igeo->ialloc_inos = max_t(uint16_t, XFS_INODES_PER_CHUNK,
2777 sbp->sb_inopblock);
2778 igeo->ialloc_blks = igeo->ialloc_inos >> sbp->sb_inopblog;
2779
2780 if (sbp->sb_spino_align)
2781 igeo->ialloc_min_blks = sbp->sb_spino_align;
2782 else
2783 igeo->ialloc_min_blks = igeo->ialloc_blks;
2784
2785 /* Compute and fill in value of m_ino_geo.inobt_maxlevels. */
2786 inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG;
2787 igeo->inobt_maxlevels = xfs_btree_compute_maxlevels(igeo->inobt_mnr,
2788 inodes);
2789
2790 /*
2791 * Set the maximum inode count for this filesystem, being careful not
2792 * to use obviously garbage sb_inopblog/sb_inopblock values. Regular
2793 * users should never get here due to failing sb verification, but
2794 * certain users (xfs_db) need to be usable even with corrupt metadata.
2795 */
2796 if (sbp->sb_imax_pct && igeo->ialloc_blks) {
2797 /*
2798 * Make sure the maximum inode count is a multiple
2799 * of the units we allocate inodes in.
2800 */
2801 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
2802 do_div(icount, 100);
2803 do_div(icount, igeo->ialloc_blks);
2804 igeo->maxicount = XFS_FSB_TO_INO(mp,
2805 icount * igeo->ialloc_blks);
2806 } else {
2807 igeo->maxicount = 0;
2808 }
2809
2810 /*
2811 * Compute the desired size of an inode cluster buffer size, which
2812 * starts at 8K and (on v5 filesystems) scales up with larger inode
2813 * sizes.
2814 *
2815 * Preserve the desired inode cluster size because the sparse inodes
2816 * feature uses that desired size (not the actual size) to compute the
2817 * sparse inode alignment. The mount code validates this value, so we
2818 * cannot change the behavior.
2819 */
2820 igeo->inode_cluster_size_raw = XFS_INODE_BIG_CLUSTER_SIZE;
2821 if (xfs_sb_version_hascrc(&mp->m_sb)) {
2822 int new_size = igeo->inode_cluster_size_raw;
2823
2824 new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
2825 if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
2826 igeo->inode_cluster_size_raw = new_size;
2827 }
2828
2829 /* Calculate inode cluster ratios. */
2830 if (igeo->inode_cluster_size_raw > mp->m_sb.sb_blocksize)
2831 igeo->blocks_per_cluster = XFS_B_TO_FSBT(mp,
2832 igeo->inode_cluster_size_raw);
2833 else
2834 igeo->blocks_per_cluster = 1;
2835 igeo->inode_cluster_size = XFS_FSB_TO_B(mp, igeo->blocks_per_cluster);
2836 igeo->inodes_per_cluster = XFS_FSB_TO_INO(mp, igeo->blocks_per_cluster);
2837
2838 /* Calculate inode cluster alignment. */
2839 if (xfs_sb_version_hasalign(&mp->m_sb) &&
2840 mp->m_sb.sb_inoalignmt >= igeo->blocks_per_cluster)
2841 igeo->cluster_align = mp->m_sb.sb_inoalignmt;
2842 else
2843 igeo->cluster_align = 1;
2844 igeo->inoalign_mask = igeo->cluster_align - 1;
2845 igeo->cluster_align_inodes = XFS_FSB_TO_INO(mp, igeo->cluster_align);
2846
2847 /*
2848 * If we are using stripe alignment, check whether
2849 * the stripe unit is a multiple of the inode alignment
2850 */
2851 if (mp->m_dalign && igeo->inoalign_mask &&
2852 !(mp->m_dalign & igeo->inoalign_mask))
2853 igeo->ialloc_align = mp->m_dalign;
2854 else
2855 igeo->ialloc_align = 0;
2856}