Loading...
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * Copyright (c) 2018 Red Hat, Inc.
5 * All rights reserved.
6 */
7
8#include "xfs.h"
9#include "xfs_fs.h"
10#include "xfs_shared.h"
11#include "xfs_format.h"
12#include "xfs_trans_resv.h"
13#include "xfs_bit.h"
14#include "xfs_sb.h"
15#include "xfs_mount.h"
16#include "xfs_btree.h"
17#include "xfs_alloc_btree.h"
18#include "xfs_rmap_btree.h"
19#include "xfs_alloc.h"
20#include "xfs_ialloc.h"
21#include "xfs_rmap.h"
22#include "xfs_ag.h"
23#include "xfs_ag_resv.h"
24#include "xfs_health.h"
25#include "xfs_error.h"
26#include "xfs_bmap.h"
27#include "xfs_defer.h"
28#include "xfs_log_format.h"
29#include "xfs_trans.h"
30#include "xfs_trace.h"
31#include "xfs_inode.h"
32#include "xfs_icache.h"
33
34
35/*
36 * Passive reference counting access wrappers to the perag structures. If the
37 * per-ag structure is to be freed, the freeing code is responsible for cleaning
38 * up objects with passive references before freeing the structure. This is
39 * things like cached buffers.
40 */
41struct xfs_perag *
42xfs_perag_get(
43 struct xfs_mount *mp,
44 xfs_agnumber_t agno)
45{
46 struct xfs_perag *pag;
47
48 rcu_read_lock();
49 pag = radix_tree_lookup(&mp->m_perag_tree, agno);
50 if (pag) {
51 trace_xfs_perag_get(pag, _RET_IP_);
52 ASSERT(atomic_read(&pag->pag_ref) >= 0);
53 atomic_inc(&pag->pag_ref);
54 }
55 rcu_read_unlock();
56 return pag;
57}
58
59/*
60 * search from @first to find the next perag with the given tag set.
61 */
62struct xfs_perag *
63xfs_perag_get_tag(
64 struct xfs_mount *mp,
65 xfs_agnumber_t first,
66 unsigned int tag)
67{
68 struct xfs_perag *pag;
69 int found;
70
71 rcu_read_lock();
72 found = radix_tree_gang_lookup_tag(&mp->m_perag_tree,
73 (void **)&pag, first, 1, tag);
74 if (found <= 0) {
75 rcu_read_unlock();
76 return NULL;
77 }
78 trace_xfs_perag_get_tag(pag, _RET_IP_);
79 atomic_inc(&pag->pag_ref);
80 rcu_read_unlock();
81 return pag;
82}
83
84/* Get a passive reference to the given perag. */
85struct xfs_perag *
86xfs_perag_hold(
87 struct xfs_perag *pag)
88{
89 ASSERT(atomic_read(&pag->pag_ref) > 0 ||
90 atomic_read(&pag->pag_active_ref) > 0);
91
92 trace_xfs_perag_hold(pag, _RET_IP_);
93 atomic_inc(&pag->pag_ref);
94 return pag;
95}
96
97void
98xfs_perag_put(
99 struct xfs_perag *pag)
100{
101 trace_xfs_perag_put(pag, _RET_IP_);
102 ASSERT(atomic_read(&pag->pag_ref) > 0);
103 atomic_dec(&pag->pag_ref);
104}
105
106/*
107 * Active references for perag structures. This is for short term access to the
108 * per ag structures for walking trees or accessing state. If an AG is being
109 * shrunk or is offline, then this will fail to find that AG and return NULL
110 * instead.
111 */
112struct xfs_perag *
113xfs_perag_grab(
114 struct xfs_mount *mp,
115 xfs_agnumber_t agno)
116{
117 struct xfs_perag *pag;
118
119 rcu_read_lock();
120 pag = radix_tree_lookup(&mp->m_perag_tree, agno);
121 if (pag) {
122 trace_xfs_perag_grab(pag, _RET_IP_);
123 if (!atomic_inc_not_zero(&pag->pag_active_ref))
124 pag = NULL;
125 }
126 rcu_read_unlock();
127 return pag;
128}
129
130/*
131 * search from @first to find the next perag with the given tag set.
132 */
133struct xfs_perag *
134xfs_perag_grab_tag(
135 struct xfs_mount *mp,
136 xfs_agnumber_t first,
137 int tag)
138{
139 struct xfs_perag *pag;
140 int found;
141
142 rcu_read_lock();
143 found = radix_tree_gang_lookup_tag(&mp->m_perag_tree,
144 (void **)&pag, first, 1, tag);
145 if (found <= 0) {
146 rcu_read_unlock();
147 return NULL;
148 }
149 trace_xfs_perag_grab_tag(pag, _RET_IP_);
150 if (!atomic_inc_not_zero(&pag->pag_active_ref))
151 pag = NULL;
152 rcu_read_unlock();
153 return pag;
154}
155
156void
157xfs_perag_rele(
158 struct xfs_perag *pag)
159{
160 trace_xfs_perag_rele(pag, _RET_IP_);
161 if (atomic_dec_and_test(&pag->pag_active_ref))
162 wake_up(&pag->pag_active_wq);
163}
164
165/*
166 * xfs_initialize_perag_data
167 *
168 * Read in each per-ag structure so we can count up the number of
169 * allocated inodes, free inodes and used filesystem blocks as this
170 * information is no longer persistent in the superblock. Once we have
171 * this information, write it into the in-core superblock structure.
172 */
173int
174xfs_initialize_perag_data(
175 struct xfs_mount *mp,
176 xfs_agnumber_t agcount)
177{
178 xfs_agnumber_t index;
179 struct xfs_perag *pag;
180 struct xfs_sb *sbp = &mp->m_sb;
181 uint64_t ifree = 0;
182 uint64_t ialloc = 0;
183 uint64_t bfree = 0;
184 uint64_t bfreelst = 0;
185 uint64_t btree = 0;
186 uint64_t fdblocks;
187 int error = 0;
188
189 for (index = 0; index < agcount; index++) {
190 /*
191 * Read the AGF and AGI buffers to populate the per-ag
192 * structures for us.
193 */
194 pag = xfs_perag_get(mp, index);
195 error = xfs_alloc_read_agf(pag, NULL, 0, NULL);
196 if (!error)
197 error = xfs_ialloc_read_agi(pag, NULL, NULL);
198 if (error) {
199 xfs_perag_put(pag);
200 return error;
201 }
202
203 ifree += pag->pagi_freecount;
204 ialloc += pag->pagi_count;
205 bfree += pag->pagf_freeblks;
206 bfreelst += pag->pagf_flcount;
207 btree += pag->pagf_btreeblks;
208 xfs_perag_put(pag);
209 }
210 fdblocks = bfree + bfreelst + btree;
211
212 /*
213 * If the new summary counts are obviously incorrect, fail the
214 * mount operation because that implies the AGFs are also corrupt.
215 * Clear FS_COUNTERS so that we don't unmount with a dirty log, which
216 * will prevent xfs_repair from fixing anything.
217 */
218 if (fdblocks > sbp->sb_dblocks || ifree > ialloc) {
219 xfs_alert(mp, "AGF corruption. Please run xfs_repair.");
220 error = -EFSCORRUPTED;
221 goto out;
222 }
223
224 /* Overwrite incore superblock counters with just-read data */
225 spin_lock(&mp->m_sb_lock);
226 sbp->sb_ifree = ifree;
227 sbp->sb_icount = ialloc;
228 sbp->sb_fdblocks = fdblocks;
229 spin_unlock(&mp->m_sb_lock);
230
231 xfs_reinit_percpu_counters(mp);
232out:
233 xfs_fs_mark_healthy(mp, XFS_SICK_FS_COUNTERS);
234 return error;
235}
236
237STATIC void
238__xfs_free_perag(
239 struct rcu_head *head)
240{
241 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
242
243 ASSERT(!delayed_work_pending(&pag->pag_blockgc_work));
244 kmem_free(pag);
245}
246
247/*
248 * Free up the per-ag resources associated with the mount structure.
249 */
250void
251xfs_free_perag(
252 struct xfs_mount *mp)
253{
254 struct xfs_perag *pag;
255 xfs_agnumber_t agno;
256
257 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
258 spin_lock(&mp->m_perag_lock);
259 pag = radix_tree_delete(&mp->m_perag_tree, agno);
260 spin_unlock(&mp->m_perag_lock);
261 ASSERT(pag);
262 XFS_IS_CORRUPT(pag->pag_mount, atomic_read(&pag->pag_ref) != 0);
263 xfs_defer_drain_free(&pag->pag_intents_drain);
264
265 cancel_delayed_work_sync(&pag->pag_blockgc_work);
266 xfs_buf_hash_destroy(pag);
267
268 /* drop the mount's active reference */
269 xfs_perag_rele(pag);
270 XFS_IS_CORRUPT(pag->pag_mount,
271 atomic_read(&pag->pag_active_ref) != 0);
272 call_rcu(&pag->rcu_head, __xfs_free_perag);
273 }
274}
275
276/* Find the size of the AG, in blocks. */
277static xfs_agblock_t
278__xfs_ag_block_count(
279 struct xfs_mount *mp,
280 xfs_agnumber_t agno,
281 xfs_agnumber_t agcount,
282 xfs_rfsblock_t dblocks)
283{
284 ASSERT(agno < agcount);
285
286 if (agno < agcount - 1)
287 return mp->m_sb.sb_agblocks;
288 return dblocks - (agno * mp->m_sb.sb_agblocks);
289}
290
291xfs_agblock_t
292xfs_ag_block_count(
293 struct xfs_mount *mp,
294 xfs_agnumber_t agno)
295{
296 return __xfs_ag_block_count(mp, agno, mp->m_sb.sb_agcount,
297 mp->m_sb.sb_dblocks);
298}
299
300/* Calculate the first and last possible inode number in an AG. */
301static void
302__xfs_agino_range(
303 struct xfs_mount *mp,
304 xfs_agblock_t eoag,
305 xfs_agino_t *first,
306 xfs_agino_t *last)
307{
308 xfs_agblock_t bno;
309
310 /*
311 * Calculate the first inode, which will be in the first
312 * cluster-aligned block after the AGFL.
313 */
314 bno = round_up(XFS_AGFL_BLOCK(mp) + 1, M_IGEO(mp)->cluster_align);
315 *first = XFS_AGB_TO_AGINO(mp, bno);
316
317 /*
318 * Calculate the last inode, which will be at the end of the
319 * last (aligned) cluster that can be allocated in the AG.
320 */
321 bno = round_down(eoag, M_IGEO(mp)->cluster_align);
322 *last = XFS_AGB_TO_AGINO(mp, bno) - 1;
323}
324
325void
326xfs_agino_range(
327 struct xfs_mount *mp,
328 xfs_agnumber_t agno,
329 xfs_agino_t *first,
330 xfs_agino_t *last)
331{
332 return __xfs_agino_range(mp, xfs_ag_block_count(mp, agno), first, last);
333}
334
335/*
336 * Free perag within the specified AG range, it is only used to free unused
337 * perags under the error handling path.
338 */
339void
340xfs_free_unused_perag_range(
341 struct xfs_mount *mp,
342 xfs_agnumber_t agstart,
343 xfs_agnumber_t agend)
344{
345 struct xfs_perag *pag;
346 xfs_agnumber_t index;
347
348 for (index = agstart; index < agend; index++) {
349 spin_lock(&mp->m_perag_lock);
350 pag = radix_tree_delete(&mp->m_perag_tree, index);
351 spin_unlock(&mp->m_perag_lock);
352 if (!pag)
353 break;
354 xfs_buf_hash_destroy(pag);
355 xfs_defer_drain_free(&pag->pag_intents_drain);
356 kmem_free(pag);
357 }
358}
359
360int
361xfs_initialize_perag(
362 struct xfs_mount *mp,
363 xfs_agnumber_t agcount,
364 xfs_rfsblock_t dblocks,
365 xfs_agnumber_t *maxagi)
366{
367 struct xfs_perag *pag;
368 xfs_agnumber_t index;
369 xfs_agnumber_t first_initialised = NULLAGNUMBER;
370 int error;
371
372 /*
373 * Walk the current per-ag tree so we don't try to initialise AGs
374 * that already exist (growfs case). Allocate and insert all the
375 * AGs we don't find ready for initialisation.
376 */
377 for (index = 0; index < agcount; index++) {
378 pag = xfs_perag_get(mp, index);
379 if (pag) {
380 xfs_perag_put(pag);
381 continue;
382 }
383
384 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
385 if (!pag) {
386 error = -ENOMEM;
387 goto out_unwind_new_pags;
388 }
389 pag->pag_agno = index;
390 pag->pag_mount = mp;
391
392 error = radix_tree_preload(GFP_NOFS);
393 if (error)
394 goto out_free_pag;
395
396 spin_lock(&mp->m_perag_lock);
397 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
398 WARN_ON_ONCE(1);
399 spin_unlock(&mp->m_perag_lock);
400 radix_tree_preload_end();
401 error = -EEXIST;
402 goto out_free_pag;
403 }
404 spin_unlock(&mp->m_perag_lock);
405 radix_tree_preload_end();
406
407#ifdef __KERNEL__
408 /* Place kernel structure only init below this point. */
409 spin_lock_init(&pag->pag_ici_lock);
410 spin_lock_init(&pag->pagb_lock);
411 spin_lock_init(&pag->pag_state_lock);
412 INIT_DELAYED_WORK(&pag->pag_blockgc_work, xfs_blockgc_worker);
413 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
414 xfs_defer_drain_init(&pag->pag_intents_drain);
415 init_waitqueue_head(&pag->pagb_wait);
416 init_waitqueue_head(&pag->pag_active_wq);
417 pag->pagb_count = 0;
418 pag->pagb_tree = RB_ROOT;
419#endif /* __KERNEL__ */
420
421 error = xfs_buf_hash_init(pag);
422 if (error)
423 goto out_remove_pag;
424
425 /* Active ref owned by mount indicates AG is online. */
426 atomic_set(&pag->pag_active_ref, 1);
427
428 /* first new pag is fully initialized */
429 if (first_initialised == NULLAGNUMBER)
430 first_initialised = index;
431
432 /*
433 * Pre-calculated geometry
434 */
435 pag->block_count = __xfs_ag_block_count(mp, index, agcount,
436 dblocks);
437 pag->min_block = XFS_AGFL_BLOCK(mp);
438 __xfs_agino_range(mp, pag->block_count, &pag->agino_min,
439 &pag->agino_max);
440 }
441
442 index = xfs_set_inode_alloc(mp, agcount);
443
444 if (maxagi)
445 *maxagi = index;
446
447 mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp);
448 return 0;
449
450out_remove_pag:
451 xfs_defer_drain_free(&pag->pag_intents_drain);
452 spin_lock(&mp->m_perag_lock);
453 radix_tree_delete(&mp->m_perag_tree, index);
454 spin_unlock(&mp->m_perag_lock);
455out_free_pag:
456 kmem_free(pag);
457out_unwind_new_pags:
458 /* unwind any prior newly initialized pags */
459 xfs_free_unused_perag_range(mp, first_initialised, agcount);
460 return error;
461}
462
463static int
464xfs_get_aghdr_buf(
465 struct xfs_mount *mp,
466 xfs_daddr_t blkno,
467 size_t numblks,
468 struct xfs_buf **bpp,
469 const struct xfs_buf_ops *ops)
470{
471 struct xfs_buf *bp;
472 int error;
473
474 error = xfs_buf_get_uncached(mp->m_ddev_targp, numblks, 0, &bp);
475 if (error)
476 return error;
477
478 bp->b_maps[0].bm_bn = blkno;
479 bp->b_ops = ops;
480
481 *bpp = bp;
482 return 0;
483}
484
485/*
486 * Generic btree root block init function
487 */
488static void
489xfs_btroot_init(
490 struct xfs_mount *mp,
491 struct xfs_buf *bp,
492 struct aghdr_init_data *id)
493{
494 xfs_btree_init_block(mp, bp, id->type, 0, 0, id->agno);
495}
496
497/* Finish initializing a free space btree. */
498static void
499xfs_freesp_init_recs(
500 struct xfs_mount *mp,
501 struct xfs_buf *bp,
502 struct aghdr_init_data *id)
503{
504 struct xfs_alloc_rec *arec;
505 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
506
507 arec = XFS_ALLOC_REC_ADDR(mp, XFS_BUF_TO_BLOCK(bp), 1);
508 arec->ar_startblock = cpu_to_be32(mp->m_ag_prealloc_blocks);
509
510 if (xfs_ag_contains_log(mp, id->agno)) {
511 struct xfs_alloc_rec *nrec;
512 xfs_agblock_t start = XFS_FSB_TO_AGBNO(mp,
513 mp->m_sb.sb_logstart);
514
515 ASSERT(start >= mp->m_ag_prealloc_blocks);
516 if (start != mp->m_ag_prealloc_blocks) {
517 /*
518 * Modify first record to pad stripe align of log and
519 * bump the record count.
520 */
521 arec->ar_blockcount = cpu_to_be32(start -
522 mp->m_ag_prealloc_blocks);
523 be16_add_cpu(&block->bb_numrecs, 1);
524 nrec = arec + 1;
525
526 /*
527 * Insert second record at start of internal log
528 * which then gets trimmed.
529 */
530 nrec->ar_startblock = cpu_to_be32(
531 be32_to_cpu(arec->ar_startblock) +
532 be32_to_cpu(arec->ar_blockcount));
533 arec = nrec;
534 }
535 /*
536 * Change record start to after the internal log
537 */
538 be32_add_cpu(&arec->ar_startblock, mp->m_sb.sb_logblocks);
539 }
540
541 /*
542 * Calculate the block count of this record; if it is nonzero,
543 * increment the record count.
544 */
545 arec->ar_blockcount = cpu_to_be32(id->agsize -
546 be32_to_cpu(arec->ar_startblock));
547 if (arec->ar_blockcount)
548 be16_add_cpu(&block->bb_numrecs, 1);
549}
550
551/*
552 * Alloc btree root block init functions
553 */
554static void
555xfs_bnoroot_init(
556 struct xfs_mount *mp,
557 struct xfs_buf *bp,
558 struct aghdr_init_data *id)
559{
560 xfs_btree_init_block(mp, bp, XFS_BTNUM_BNO, 0, 0, id->agno);
561 xfs_freesp_init_recs(mp, bp, id);
562}
563
564static void
565xfs_cntroot_init(
566 struct xfs_mount *mp,
567 struct xfs_buf *bp,
568 struct aghdr_init_data *id)
569{
570 xfs_btree_init_block(mp, bp, XFS_BTNUM_CNT, 0, 0, id->agno);
571 xfs_freesp_init_recs(mp, bp, id);
572}
573
574/*
575 * Reverse map root block init
576 */
577static void
578xfs_rmaproot_init(
579 struct xfs_mount *mp,
580 struct xfs_buf *bp,
581 struct aghdr_init_data *id)
582{
583 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
584 struct xfs_rmap_rec *rrec;
585
586 xfs_btree_init_block(mp, bp, XFS_BTNUM_RMAP, 0, 4, id->agno);
587
588 /*
589 * mark the AG header regions as static metadata The BNO
590 * btree block is the first block after the headers, so
591 * it's location defines the size of region the static
592 * metadata consumes.
593 *
594 * Note: unlike mkfs, we never have to account for log
595 * space when growing the data regions
596 */
597 rrec = XFS_RMAP_REC_ADDR(block, 1);
598 rrec->rm_startblock = 0;
599 rrec->rm_blockcount = cpu_to_be32(XFS_BNO_BLOCK(mp));
600 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_FS);
601 rrec->rm_offset = 0;
602
603 /* account freespace btree root blocks */
604 rrec = XFS_RMAP_REC_ADDR(block, 2);
605 rrec->rm_startblock = cpu_to_be32(XFS_BNO_BLOCK(mp));
606 rrec->rm_blockcount = cpu_to_be32(2);
607 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_AG);
608 rrec->rm_offset = 0;
609
610 /* account inode btree root blocks */
611 rrec = XFS_RMAP_REC_ADDR(block, 3);
612 rrec->rm_startblock = cpu_to_be32(XFS_IBT_BLOCK(mp));
613 rrec->rm_blockcount = cpu_to_be32(XFS_RMAP_BLOCK(mp) -
614 XFS_IBT_BLOCK(mp));
615 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_INOBT);
616 rrec->rm_offset = 0;
617
618 /* account for rmap btree root */
619 rrec = XFS_RMAP_REC_ADDR(block, 4);
620 rrec->rm_startblock = cpu_to_be32(XFS_RMAP_BLOCK(mp));
621 rrec->rm_blockcount = cpu_to_be32(1);
622 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_AG);
623 rrec->rm_offset = 0;
624
625 /* account for refc btree root */
626 if (xfs_has_reflink(mp)) {
627 rrec = XFS_RMAP_REC_ADDR(block, 5);
628 rrec->rm_startblock = cpu_to_be32(xfs_refc_block(mp));
629 rrec->rm_blockcount = cpu_to_be32(1);
630 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_REFC);
631 rrec->rm_offset = 0;
632 be16_add_cpu(&block->bb_numrecs, 1);
633 }
634
635 /* account for the log space */
636 if (xfs_ag_contains_log(mp, id->agno)) {
637 rrec = XFS_RMAP_REC_ADDR(block,
638 be16_to_cpu(block->bb_numrecs) + 1);
639 rrec->rm_startblock = cpu_to_be32(
640 XFS_FSB_TO_AGBNO(mp, mp->m_sb.sb_logstart));
641 rrec->rm_blockcount = cpu_to_be32(mp->m_sb.sb_logblocks);
642 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_LOG);
643 rrec->rm_offset = 0;
644 be16_add_cpu(&block->bb_numrecs, 1);
645 }
646}
647
648/*
649 * Initialise new secondary superblocks with the pre-grow geometry, but mark
650 * them as "in progress" so we know they haven't yet been activated. This will
651 * get cleared when the update with the new geometry information is done after
652 * changes to the primary are committed. This isn't strictly necessary, but we
653 * get it for free with the delayed buffer write lists and it means we can tell
654 * if a grow operation didn't complete properly after the fact.
655 */
656static void
657xfs_sbblock_init(
658 struct xfs_mount *mp,
659 struct xfs_buf *bp,
660 struct aghdr_init_data *id)
661{
662 struct xfs_dsb *dsb = bp->b_addr;
663
664 xfs_sb_to_disk(dsb, &mp->m_sb);
665 dsb->sb_inprogress = 1;
666}
667
668static void
669xfs_agfblock_init(
670 struct xfs_mount *mp,
671 struct xfs_buf *bp,
672 struct aghdr_init_data *id)
673{
674 struct xfs_agf *agf = bp->b_addr;
675 xfs_extlen_t tmpsize;
676
677 agf->agf_magicnum = cpu_to_be32(XFS_AGF_MAGIC);
678 agf->agf_versionnum = cpu_to_be32(XFS_AGF_VERSION);
679 agf->agf_seqno = cpu_to_be32(id->agno);
680 agf->agf_length = cpu_to_be32(id->agsize);
681 agf->agf_roots[XFS_BTNUM_BNOi] = cpu_to_be32(XFS_BNO_BLOCK(mp));
682 agf->agf_roots[XFS_BTNUM_CNTi] = cpu_to_be32(XFS_CNT_BLOCK(mp));
683 agf->agf_levels[XFS_BTNUM_BNOi] = cpu_to_be32(1);
684 agf->agf_levels[XFS_BTNUM_CNTi] = cpu_to_be32(1);
685 if (xfs_has_rmapbt(mp)) {
686 agf->agf_roots[XFS_BTNUM_RMAPi] =
687 cpu_to_be32(XFS_RMAP_BLOCK(mp));
688 agf->agf_levels[XFS_BTNUM_RMAPi] = cpu_to_be32(1);
689 agf->agf_rmap_blocks = cpu_to_be32(1);
690 }
691
692 agf->agf_flfirst = cpu_to_be32(1);
693 agf->agf_fllast = 0;
694 agf->agf_flcount = 0;
695 tmpsize = id->agsize - mp->m_ag_prealloc_blocks;
696 agf->agf_freeblks = cpu_to_be32(tmpsize);
697 agf->agf_longest = cpu_to_be32(tmpsize);
698 if (xfs_has_crc(mp))
699 uuid_copy(&agf->agf_uuid, &mp->m_sb.sb_meta_uuid);
700 if (xfs_has_reflink(mp)) {
701 agf->agf_refcount_root = cpu_to_be32(
702 xfs_refc_block(mp));
703 agf->agf_refcount_level = cpu_to_be32(1);
704 agf->agf_refcount_blocks = cpu_to_be32(1);
705 }
706
707 if (xfs_ag_contains_log(mp, id->agno)) {
708 int64_t logblocks = mp->m_sb.sb_logblocks;
709
710 be32_add_cpu(&agf->agf_freeblks, -logblocks);
711 agf->agf_longest = cpu_to_be32(id->agsize -
712 XFS_FSB_TO_AGBNO(mp, mp->m_sb.sb_logstart) - logblocks);
713 }
714}
715
716static void
717xfs_agflblock_init(
718 struct xfs_mount *mp,
719 struct xfs_buf *bp,
720 struct aghdr_init_data *id)
721{
722 struct xfs_agfl *agfl = XFS_BUF_TO_AGFL(bp);
723 __be32 *agfl_bno;
724 int bucket;
725
726 if (xfs_has_crc(mp)) {
727 agfl->agfl_magicnum = cpu_to_be32(XFS_AGFL_MAGIC);
728 agfl->agfl_seqno = cpu_to_be32(id->agno);
729 uuid_copy(&agfl->agfl_uuid, &mp->m_sb.sb_meta_uuid);
730 }
731
732 agfl_bno = xfs_buf_to_agfl_bno(bp);
733 for (bucket = 0; bucket < xfs_agfl_size(mp); bucket++)
734 agfl_bno[bucket] = cpu_to_be32(NULLAGBLOCK);
735}
736
737static void
738xfs_agiblock_init(
739 struct xfs_mount *mp,
740 struct xfs_buf *bp,
741 struct aghdr_init_data *id)
742{
743 struct xfs_agi *agi = bp->b_addr;
744 int bucket;
745
746 agi->agi_magicnum = cpu_to_be32(XFS_AGI_MAGIC);
747 agi->agi_versionnum = cpu_to_be32(XFS_AGI_VERSION);
748 agi->agi_seqno = cpu_to_be32(id->agno);
749 agi->agi_length = cpu_to_be32(id->agsize);
750 agi->agi_count = 0;
751 agi->agi_root = cpu_to_be32(XFS_IBT_BLOCK(mp));
752 agi->agi_level = cpu_to_be32(1);
753 agi->agi_freecount = 0;
754 agi->agi_newino = cpu_to_be32(NULLAGINO);
755 agi->agi_dirino = cpu_to_be32(NULLAGINO);
756 if (xfs_has_crc(mp))
757 uuid_copy(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid);
758 if (xfs_has_finobt(mp)) {
759 agi->agi_free_root = cpu_to_be32(XFS_FIBT_BLOCK(mp));
760 agi->agi_free_level = cpu_to_be32(1);
761 }
762 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++)
763 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
764 if (xfs_has_inobtcounts(mp)) {
765 agi->agi_iblocks = cpu_to_be32(1);
766 if (xfs_has_finobt(mp))
767 agi->agi_fblocks = cpu_to_be32(1);
768 }
769}
770
771typedef void (*aghdr_init_work_f)(struct xfs_mount *mp, struct xfs_buf *bp,
772 struct aghdr_init_data *id);
773static int
774xfs_ag_init_hdr(
775 struct xfs_mount *mp,
776 struct aghdr_init_data *id,
777 aghdr_init_work_f work,
778 const struct xfs_buf_ops *ops)
779{
780 struct xfs_buf *bp;
781 int error;
782
783 error = xfs_get_aghdr_buf(mp, id->daddr, id->numblks, &bp, ops);
784 if (error)
785 return error;
786
787 (*work)(mp, bp, id);
788
789 xfs_buf_delwri_queue(bp, &id->buffer_list);
790 xfs_buf_relse(bp);
791 return 0;
792}
793
794struct xfs_aghdr_grow_data {
795 xfs_daddr_t daddr;
796 size_t numblks;
797 const struct xfs_buf_ops *ops;
798 aghdr_init_work_f work;
799 xfs_btnum_t type;
800 bool need_init;
801};
802
803/*
804 * Prepare new AG headers to be written to disk. We use uncached buffers here,
805 * as it is assumed these new AG headers are currently beyond the currently
806 * valid filesystem address space. Using cached buffers would trip over EOFS
807 * corruption detection alogrithms in the buffer cache lookup routines.
808 *
809 * This is a non-transactional function, but the prepared buffers are added to a
810 * delayed write buffer list supplied by the caller so they can submit them to
811 * disk and wait on them as required.
812 */
813int
814xfs_ag_init_headers(
815 struct xfs_mount *mp,
816 struct aghdr_init_data *id)
817
818{
819 struct xfs_aghdr_grow_data aghdr_data[] = {
820 { /* SB */
821 .daddr = XFS_AG_DADDR(mp, id->agno, XFS_SB_DADDR),
822 .numblks = XFS_FSS_TO_BB(mp, 1),
823 .ops = &xfs_sb_buf_ops,
824 .work = &xfs_sbblock_init,
825 .need_init = true
826 },
827 { /* AGF */
828 .daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGF_DADDR(mp)),
829 .numblks = XFS_FSS_TO_BB(mp, 1),
830 .ops = &xfs_agf_buf_ops,
831 .work = &xfs_agfblock_init,
832 .need_init = true
833 },
834 { /* AGFL */
835 .daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGFL_DADDR(mp)),
836 .numblks = XFS_FSS_TO_BB(mp, 1),
837 .ops = &xfs_agfl_buf_ops,
838 .work = &xfs_agflblock_init,
839 .need_init = true
840 },
841 { /* AGI */
842 .daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGI_DADDR(mp)),
843 .numblks = XFS_FSS_TO_BB(mp, 1),
844 .ops = &xfs_agi_buf_ops,
845 .work = &xfs_agiblock_init,
846 .need_init = true
847 },
848 { /* BNO root block */
849 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_BNO_BLOCK(mp)),
850 .numblks = BTOBB(mp->m_sb.sb_blocksize),
851 .ops = &xfs_bnobt_buf_ops,
852 .work = &xfs_bnoroot_init,
853 .need_init = true
854 },
855 { /* CNT root block */
856 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_CNT_BLOCK(mp)),
857 .numblks = BTOBB(mp->m_sb.sb_blocksize),
858 .ops = &xfs_cntbt_buf_ops,
859 .work = &xfs_cntroot_init,
860 .need_init = true
861 },
862 { /* INO root block */
863 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_IBT_BLOCK(mp)),
864 .numblks = BTOBB(mp->m_sb.sb_blocksize),
865 .ops = &xfs_inobt_buf_ops,
866 .work = &xfs_btroot_init,
867 .type = XFS_BTNUM_INO,
868 .need_init = true
869 },
870 { /* FINO root block */
871 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_FIBT_BLOCK(mp)),
872 .numblks = BTOBB(mp->m_sb.sb_blocksize),
873 .ops = &xfs_finobt_buf_ops,
874 .work = &xfs_btroot_init,
875 .type = XFS_BTNUM_FINO,
876 .need_init = xfs_has_finobt(mp)
877 },
878 { /* RMAP root block */
879 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_RMAP_BLOCK(mp)),
880 .numblks = BTOBB(mp->m_sb.sb_blocksize),
881 .ops = &xfs_rmapbt_buf_ops,
882 .work = &xfs_rmaproot_init,
883 .need_init = xfs_has_rmapbt(mp)
884 },
885 { /* REFC root block */
886 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, xfs_refc_block(mp)),
887 .numblks = BTOBB(mp->m_sb.sb_blocksize),
888 .ops = &xfs_refcountbt_buf_ops,
889 .work = &xfs_btroot_init,
890 .type = XFS_BTNUM_REFC,
891 .need_init = xfs_has_reflink(mp)
892 },
893 { /* NULL terminating block */
894 .daddr = XFS_BUF_DADDR_NULL,
895 }
896 };
897 struct xfs_aghdr_grow_data *dp;
898 int error = 0;
899
900 /* Account for AG free space in new AG */
901 id->nfree += id->agsize - mp->m_ag_prealloc_blocks;
902 for (dp = &aghdr_data[0]; dp->daddr != XFS_BUF_DADDR_NULL; dp++) {
903 if (!dp->need_init)
904 continue;
905
906 id->daddr = dp->daddr;
907 id->numblks = dp->numblks;
908 id->type = dp->type;
909 error = xfs_ag_init_hdr(mp, id, dp->work, dp->ops);
910 if (error)
911 break;
912 }
913 return error;
914}
915
916int
917xfs_ag_shrink_space(
918 struct xfs_perag *pag,
919 struct xfs_trans **tpp,
920 xfs_extlen_t delta)
921{
922 struct xfs_mount *mp = pag->pag_mount;
923 struct xfs_alloc_arg args = {
924 .tp = *tpp,
925 .mp = mp,
926 .pag = pag,
927 .minlen = delta,
928 .maxlen = delta,
929 .oinfo = XFS_RMAP_OINFO_SKIP_UPDATE,
930 .resv = XFS_AG_RESV_NONE,
931 .prod = 1
932 };
933 struct xfs_buf *agibp, *agfbp;
934 struct xfs_agi *agi;
935 struct xfs_agf *agf;
936 xfs_agblock_t aglen;
937 int error, err2;
938
939 ASSERT(pag->pag_agno == mp->m_sb.sb_agcount - 1);
940 error = xfs_ialloc_read_agi(pag, *tpp, &agibp);
941 if (error)
942 return error;
943
944 agi = agibp->b_addr;
945
946 error = xfs_alloc_read_agf(pag, *tpp, 0, &agfbp);
947 if (error)
948 return error;
949
950 agf = agfbp->b_addr;
951 aglen = be32_to_cpu(agi->agi_length);
952 /* some extra paranoid checks before we shrink the ag */
953 if (XFS_IS_CORRUPT(mp, agf->agf_length != agi->agi_length))
954 return -EFSCORRUPTED;
955 if (delta >= aglen)
956 return -EINVAL;
957
958 /*
959 * Make sure that the last inode cluster cannot overlap with the new
960 * end of the AG, even if it's sparse.
961 */
962 error = xfs_ialloc_check_shrink(pag, *tpp, agibp, aglen - delta);
963 if (error)
964 return error;
965
966 /*
967 * Disable perag reservations so it doesn't cause the allocation request
968 * to fail. We'll reestablish reservation before we return.
969 */
970 error = xfs_ag_resv_free(pag);
971 if (error)
972 return error;
973
974 /* internal log shouldn't also show up in the free space btrees */
975 error = xfs_alloc_vextent_exact_bno(&args,
976 XFS_AGB_TO_FSB(mp, pag->pag_agno, aglen - delta));
977 if (!error && args.agbno == NULLAGBLOCK)
978 error = -ENOSPC;
979
980 if (error) {
981 /*
982 * if extent allocation fails, need to roll the transaction to
983 * ensure that the AGFL fixup has been committed anyway.
984 */
985 xfs_trans_bhold(*tpp, agfbp);
986 err2 = xfs_trans_roll(tpp);
987 if (err2)
988 return err2;
989 xfs_trans_bjoin(*tpp, agfbp);
990 goto resv_init_out;
991 }
992
993 /*
994 * if successfully deleted from freespace btrees, need to confirm
995 * per-AG reservation works as expected.
996 */
997 be32_add_cpu(&agi->agi_length, -delta);
998 be32_add_cpu(&agf->agf_length, -delta);
999
1000 err2 = xfs_ag_resv_init(pag, *tpp);
1001 if (err2) {
1002 be32_add_cpu(&agi->agi_length, delta);
1003 be32_add_cpu(&agf->agf_length, delta);
1004 if (err2 != -ENOSPC)
1005 goto resv_err;
1006
1007 err2 = xfs_free_extent_later(*tpp, args.fsbno, delta, NULL,
1008 XFS_AG_RESV_NONE, true);
1009 if (err2)
1010 goto resv_err;
1011
1012 /*
1013 * Roll the transaction before trying to re-init the per-ag
1014 * reservation. The new transaction is clean so it will cancel
1015 * without any side effects.
1016 */
1017 error = xfs_defer_finish(tpp);
1018 if (error)
1019 return error;
1020
1021 error = -ENOSPC;
1022 goto resv_init_out;
1023 }
1024
1025 /* Update perag geometry */
1026 pag->block_count -= delta;
1027 __xfs_agino_range(pag->pag_mount, pag->block_count, &pag->agino_min,
1028 &pag->agino_max);
1029
1030 xfs_ialloc_log_agi(*tpp, agibp, XFS_AGI_LENGTH);
1031 xfs_alloc_log_agf(*tpp, agfbp, XFS_AGF_LENGTH);
1032 return 0;
1033
1034resv_init_out:
1035 err2 = xfs_ag_resv_init(pag, *tpp);
1036 if (!err2)
1037 return error;
1038resv_err:
1039 xfs_warn(mp, "Error %d reserving per-AG metadata reserve pool.", err2);
1040 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1041 return err2;
1042}
1043
1044/*
1045 * Extent the AG indicated by the @id by the length passed in
1046 */
1047int
1048xfs_ag_extend_space(
1049 struct xfs_perag *pag,
1050 struct xfs_trans *tp,
1051 xfs_extlen_t len)
1052{
1053 struct xfs_buf *bp;
1054 struct xfs_agi *agi;
1055 struct xfs_agf *agf;
1056 int error;
1057
1058 ASSERT(pag->pag_agno == pag->pag_mount->m_sb.sb_agcount - 1);
1059
1060 error = xfs_ialloc_read_agi(pag, tp, &bp);
1061 if (error)
1062 return error;
1063
1064 agi = bp->b_addr;
1065 be32_add_cpu(&agi->agi_length, len);
1066 xfs_ialloc_log_agi(tp, bp, XFS_AGI_LENGTH);
1067
1068 /*
1069 * Change agf length.
1070 */
1071 error = xfs_alloc_read_agf(pag, tp, 0, &bp);
1072 if (error)
1073 return error;
1074
1075 agf = bp->b_addr;
1076 be32_add_cpu(&agf->agf_length, len);
1077 ASSERT(agf->agf_length == agi->agi_length);
1078 xfs_alloc_log_agf(tp, bp, XFS_AGF_LENGTH);
1079
1080 /*
1081 * Free the new space.
1082 *
1083 * XFS_RMAP_OINFO_SKIP_UPDATE is used here to tell the rmap btree that
1084 * this doesn't actually exist in the rmap btree.
1085 */
1086 error = xfs_rmap_free(tp, bp, pag, be32_to_cpu(agf->agf_length) - len,
1087 len, &XFS_RMAP_OINFO_SKIP_UPDATE);
1088 if (error)
1089 return error;
1090
1091 error = xfs_free_extent(tp, pag, be32_to_cpu(agf->agf_length) - len,
1092 len, &XFS_RMAP_OINFO_SKIP_UPDATE, XFS_AG_RESV_NONE);
1093 if (error)
1094 return error;
1095
1096 /* Update perag geometry */
1097 pag->block_count = be32_to_cpu(agf->agf_length);
1098 __xfs_agino_range(pag->pag_mount, pag->block_count, &pag->agino_min,
1099 &pag->agino_max);
1100 return 0;
1101}
1102
1103/* Retrieve AG geometry. */
1104int
1105xfs_ag_get_geometry(
1106 struct xfs_perag *pag,
1107 struct xfs_ag_geometry *ageo)
1108{
1109 struct xfs_buf *agi_bp;
1110 struct xfs_buf *agf_bp;
1111 struct xfs_agi *agi;
1112 struct xfs_agf *agf;
1113 unsigned int freeblks;
1114 int error;
1115
1116 /* Lock the AG headers. */
1117 error = xfs_ialloc_read_agi(pag, NULL, &agi_bp);
1118 if (error)
1119 return error;
1120 error = xfs_alloc_read_agf(pag, NULL, 0, &agf_bp);
1121 if (error)
1122 goto out_agi;
1123
1124 /* Fill out form. */
1125 memset(ageo, 0, sizeof(*ageo));
1126 ageo->ag_number = pag->pag_agno;
1127
1128 agi = agi_bp->b_addr;
1129 ageo->ag_icount = be32_to_cpu(agi->agi_count);
1130 ageo->ag_ifree = be32_to_cpu(agi->agi_freecount);
1131
1132 agf = agf_bp->b_addr;
1133 ageo->ag_length = be32_to_cpu(agf->agf_length);
1134 freeblks = pag->pagf_freeblks +
1135 pag->pagf_flcount +
1136 pag->pagf_btreeblks -
1137 xfs_ag_resv_needed(pag, XFS_AG_RESV_NONE);
1138 ageo->ag_freeblks = freeblks;
1139 xfs_ag_geom_health(pag, ageo);
1140
1141 /* Release resources. */
1142 xfs_buf_relse(agf_bp);
1143out_agi:
1144 xfs_buf_relse(agi_bp);
1145 return error;
1146}
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * Copyright (c) 2018 Red Hat, Inc.
5 * All rights reserved.
6 */
7
8#include "xfs.h"
9#include "xfs_fs.h"
10#include "xfs_shared.h"
11#include "xfs_format.h"
12#include "xfs_trans_resv.h"
13#include "xfs_bit.h"
14#include "xfs_sb.h"
15#include "xfs_mount.h"
16#include "xfs_btree.h"
17#include "xfs_alloc_btree.h"
18#include "xfs_rmap_btree.h"
19#include "xfs_alloc.h"
20#include "xfs_ialloc.h"
21#include "xfs_rmap.h"
22#include "xfs_ag.h"
23#include "xfs_ag_resv.h"
24#include "xfs_health.h"
25#include "xfs_error.h"
26#include "xfs_bmap.h"
27#include "xfs_defer.h"
28#include "xfs_log_format.h"
29#include "xfs_trans.h"
30#include "xfs_trace.h"
31#include "xfs_inode.h"
32#include "xfs_icache.h"
33
34
35/*
36 * Passive reference counting access wrappers to the perag structures. If the
37 * per-ag structure is to be freed, the freeing code is responsible for cleaning
38 * up objects with passive references before freeing the structure. This is
39 * things like cached buffers.
40 */
41struct xfs_perag *
42xfs_perag_get(
43 struct xfs_mount *mp,
44 xfs_agnumber_t agno)
45{
46 struct xfs_perag *pag;
47 int ref = 0;
48
49 rcu_read_lock();
50 pag = radix_tree_lookup(&mp->m_perag_tree, agno);
51 if (pag) {
52 ASSERT(atomic_read(&pag->pag_ref) >= 0);
53 ref = atomic_inc_return(&pag->pag_ref);
54 }
55 rcu_read_unlock();
56 trace_xfs_perag_get(mp, agno, ref, _RET_IP_);
57 return pag;
58}
59
60/*
61 * search from @first to find the next perag with the given tag set.
62 */
63struct xfs_perag *
64xfs_perag_get_tag(
65 struct xfs_mount *mp,
66 xfs_agnumber_t first,
67 unsigned int tag)
68{
69 struct xfs_perag *pag;
70 int found;
71 int ref;
72
73 rcu_read_lock();
74 found = radix_tree_gang_lookup_tag(&mp->m_perag_tree,
75 (void **)&pag, first, 1, tag);
76 if (found <= 0) {
77 rcu_read_unlock();
78 return NULL;
79 }
80 ref = atomic_inc_return(&pag->pag_ref);
81 rcu_read_unlock();
82 trace_xfs_perag_get_tag(mp, pag->pag_agno, ref, _RET_IP_);
83 return pag;
84}
85
86void
87xfs_perag_put(
88 struct xfs_perag *pag)
89{
90 int ref;
91
92 ASSERT(atomic_read(&pag->pag_ref) > 0);
93 ref = atomic_dec_return(&pag->pag_ref);
94 trace_xfs_perag_put(pag->pag_mount, pag->pag_agno, ref, _RET_IP_);
95}
96
97/*
98 * xfs_initialize_perag_data
99 *
100 * Read in each per-ag structure so we can count up the number of
101 * allocated inodes, free inodes and used filesystem blocks as this
102 * information is no longer persistent in the superblock. Once we have
103 * this information, write it into the in-core superblock structure.
104 */
105int
106xfs_initialize_perag_data(
107 struct xfs_mount *mp,
108 xfs_agnumber_t agcount)
109{
110 xfs_agnumber_t index;
111 struct xfs_perag *pag;
112 struct xfs_sb *sbp = &mp->m_sb;
113 uint64_t ifree = 0;
114 uint64_t ialloc = 0;
115 uint64_t bfree = 0;
116 uint64_t bfreelst = 0;
117 uint64_t btree = 0;
118 uint64_t fdblocks;
119 int error = 0;
120
121 for (index = 0; index < agcount; index++) {
122 /*
123 * Read the AGF and AGI buffers to populate the per-ag
124 * structures for us.
125 */
126 pag = xfs_perag_get(mp, index);
127 error = xfs_alloc_read_agf(pag, NULL, 0, NULL);
128 if (!error)
129 error = xfs_ialloc_read_agi(pag, NULL, NULL);
130 if (error) {
131 xfs_perag_put(pag);
132 return error;
133 }
134
135 ifree += pag->pagi_freecount;
136 ialloc += pag->pagi_count;
137 bfree += pag->pagf_freeblks;
138 bfreelst += pag->pagf_flcount;
139 btree += pag->pagf_btreeblks;
140 xfs_perag_put(pag);
141 }
142 fdblocks = bfree + bfreelst + btree;
143
144 /*
145 * If the new summary counts are obviously incorrect, fail the
146 * mount operation because that implies the AGFs are also corrupt.
147 * Clear FS_COUNTERS so that we don't unmount with a dirty log, which
148 * will prevent xfs_repair from fixing anything.
149 */
150 if (fdblocks > sbp->sb_dblocks || ifree > ialloc) {
151 xfs_alert(mp, "AGF corruption. Please run xfs_repair.");
152 error = -EFSCORRUPTED;
153 goto out;
154 }
155
156 /* Overwrite incore superblock counters with just-read data */
157 spin_lock(&mp->m_sb_lock);
158 sbp->sb_ifree = ifree;
159 sbp->sb_icount = ialloc;
160 sbp->sb_fdblocks = fdblocks;
161 spin_unlock(&mp->m_sb_lock);
162
163 xfs_reinit_percpu_counters(mp);
164out:
165 xfs_fs_mark_healthy(mp, XFS_SICK_FS_COUNTERS);
166 return error;
167}
168
169STATIC void
170__xfs_free_perag(
171 struct rcu_head *head)
172{
173 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
174
175 ASSERT(!delayed_work_pending(&pag->pag_blockgc_work));
176 kmem_free(pag);
177}
178
179/*
180 * Free up the per-ag resources associated with the mount structure.
181 */
182void
183xfs_free_perag(
184 struct xfs_mount *mp)
185{
186 struct xfs_perag *pag;
187 xfs_agnumber_t agno;
188
189 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
190 spin_lock(&mp->m_perag_lock);
191 pag = radix_tree_delete(&mp->m_perag_tree, agno);
192 spin_unlock(&mp->m_perag_lock);
193 ASSERT(pag);
194 XFS_IS_CORRUPT(pag->pag_mount, atomic_read(&pag->pag_ref) != 0);
195
196 cancel_delayed_work_sync(&pag->pag_blockgc_work);
197 xfs_buf_hash_destroy(pag);
198
199 call_rcu(&pag->rcu_head, __xfs_free_perag);
200 }
201}
202
203/* Find the size of the AG, in blocks. */
204static xfs_agblock_t
205__xfs_ag_block_count(
206 struct xfs_mount *mp,
207 xfs_agnumber_t agno,
208 xfs_agnumber_t agcount,
209 xfs_rfsblock_t dblocks)
210{
211 ASSERT(agno < agcount);
212
213 if (agno < agcount - 1)
214 return mp->m_sb.sb_agblocks;
215 return dblocks - (agno * mp->m_sb.sb_agblocks);
216}
217
218xfs_agblock_t
219xfs_ag_block_count(
220 struct xfs_mount *mp,
221 xfs_agnumber_t agno)
222{
223 return __xfs_ag_block_count(mp, agno, mp->m_sb.sb_agcount,
224 mp->m_sb.sb_dblocks);
225}
226
227/* Calculate the first and last possible inode number in an AG. */
228static void
229__xfs_agino_range(
230 struct xfs_mount *mp,
231 xfs_agblock_t eoag,
232 xfs_agino_t *first,
233 xfs_agino_t *last)
234{
235 xfs_agblock_t bno;
236
237 /*
238 * Calculate the first inode, which will be in the first
239 * cluster-aligned block after the AGFL.
240 */
241 bno = round_up(XFS_AGFL_BLOCK(mp) + 1, M_IGEO(mp)->cluster_align);
242 *first = XFS_AGB_TO_AGINO(mp, bno);
243
244 /*
245 * Calculate the last inode, which will be at the end of the
246 * last (aligned) cluster that can be allocated in the AG.
247 */
248 bno = round_down(eoag, M_IGEO(mp)->cluster_align);
249 *last = XFS_AGB_TO_AGINO(mp, bno) - 1;
250}
251
252void
253xfs_agino_range(
254 struct xfs_mount *mp,
255 xfs_agnumber_t agno,
256 xfs_agino_t *first,
257 xfs_agino_t *last)
258{
259 return __xfs_agino_range(mp, xfs_ag_block_count(mp, agno), first, last);
260}
261
262int
263xfs_initialize_perag(
264 struct xfs_mount *mp,
265 xfs_agnumber_t agcount,
266 xfs_rfsblock_t dblocks,
267 xfs_agnumber_t *maxagi)
268{
269 struct xfs_perag *pag;
270 xfs_agnumber_t index;
271 xfs_agnumber_t first_initialised = NULLAGNUMBER;
272 int error;
273
274 /*
275 * Walk the current per-ag tree so we don't try to initialise AGs
276 * that already exist (growfs case). Allocate and insert all the
277 * AGs we don't find ready for initialisation.
278 */
279 for (index = 0; index < agcount; index++) {
280 pag = xfs_perag_get(mp, index);
281 if (pag) {
282 xfs_perag_put(pag);
283 continue;
284 }
285
286 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
287 if (!pag) {
288 error = -ENOMEM;
289 goto out_unwind_new_pags;
290 }
291 pag->pag_agno = index;
292 pag->pag_mount = mp;
293
294 error = radix_tree_preload(GFP_NOFS);
295 if (error)
296 goto out_free_pag;
297
298 spin_lock(&mp->m_perag_lock);
299 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
300 WARN_ON_ONCE(1);
301 spin_unlock(&mp->m_perag_lock);
302 radix_tree_preload_end();
303 error = -EEXIST;
304 goto out_free_pag;
305 }
306 spin_unlock(&mp->m_perag_lock);
307 radix_tree_preload_end();
308
309#ifdef __KERNEL__
310 /* Place kernel structure only init below this point. */
311 spin_lock_init(&pag->pag_ici_lock);
312 spin_lock_init(&pag->pagb_lock);
313 spin_lock_init(&pag->pag_state_lock);
314 INIT_DELAYED_WORK(&pag->pag_blockgc_work, xfs_blockgc_worker);
315 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
316 init_waitqueue_head(&pag->pagb_wait);
317 pag->pagb_count = 0;
318 pag->pagb_tree = RB_ROOT;
319#endif /* __KERNEL__ */
320
321 error = xfs_buf_hash_init(pag);
322 if (error)
323 goto out_remove_pag;
324
325 /* first new pag is fully initialized */
326 if (first_initialised == NULLAGNUMBER)
327 first_initialised = index;
328
329 /*
330 * Pre-calculated geometry
331 */
332 pag->block_count = __xfs_ag_block_count(mp, index, agcount,
333 dblocks);
334 pag->min_block = XFS_AGFL_BLOCK(mp);
335 __xfs_agino_range(mp, pag->block_count, &pag->agino_min,
336 &pag->agino_max);
337 }
338
339 index = xfs_set_inode_alloc(mp, agcount);
340
341 if (maxagi)
342 *maxagi = index;
343
344 mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp);
345 return 0;
346
347out_remove_pag:
348 radix_tree_delete(&mp->m_perag_tree, index);
349out_free_pag:
350 kmem_free(pag);
351out_unwind_new_pags:
352 /* unwind any prior newly initialized pags */
353 for (index = first_initialised; index < agcount; index++) {
354 pag = radix_tree_delete(&mp->m_perag_tree, index);
355 if (!pag)
356 break;
357 xfs_buf_hash_destroy(pag);
358 kmem_free(pag);
359 }
360 return error;
361}
362
363static int
364xfs_get_aghdr_buf(
365 struct xfs_mount *mp,
366 xfs_daddr_t blkno,
367 size_t numblks,
368 struct xfs_buf **bpp,
369 const struct xfs_buf_ops *ops)
370{
371 struct xfs_buf *bp;
372 int error;
373
374 error = xfs_buf_get_uncached(mp->m_ddev_targp, numblks, 0, &bp);
375 if (error)
376 return error;
377
378 bp->b_maps[0].bm_bn = blkno;
379 bp->b_ops = ops;
380
381 *bpp = bp;
382 return 0;
383}
384
385/*
386 * Generic btree root block init function
387 */
388static void
389xfs_btroot_init(
390 struct xfs_mount *mp,
391 struct xfs_buf *bp,
392 struct aghdr_init_data *id)
393{
394 xfs_btree_init_block(mp, bp, id->type, 0, 0, id->agno);
395}
396
397/* Finish initializing a free space btree. */
398static void
399xfs_freesp_init_recs(
400 struct xfs_mount *mp,
401 struct xfs_buf *bp,
402 struct aghdr_init_data *id)
403{
404 struct xfs_alloc_rec *arec;
405 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
406
407 arec = XFS_ALLOC_REC_ADDR(mp, XFS_BUF_TO_BLOCK(bp), 1);
408 arec->ar_startblock = cpu_to_be32(mp->m_ag_prealloc_blocks);
409
410 if (xfs_ag_contains_log(mp, id->agno)) {
411 struct xfs_alloc_rec *nrec;
412 xfs_agblock_t start = XFS_FSB_TO_AGBNO(mp,
413 mp->m_sb.sb_logstart);
414
415 ASSERT(start >= mp->m_ag_prealloc_blocks);
416 if (start != mp->m_ag_prealloc_blocks) {
417 /*
418 * Modify first record to pad stripe align of log
419 */
420 arec->ar_blockcount = cpu_to_be32(start -
421 mp->m_ag_prealloc_blocks);
422 nrec = arec + 1;
423
424 /*
425 * Insert second record at start of internal log
426 * which then gets trimmed.
427 */
428 nrec->ar_startblock = cpu_to_be32(
429 be32_to_cpu(arec->ar_startblock) +
430 be32_to_cpu(arec->ar_blockcount));
431 arec = nrec;
432 be16_add_cpu(&block->bb_numrecs, 1);
433 }
434 /*
435 * Change record start to after the internal log
436 */
437 be32_add_cpu(&arec->ar_startblock, mp->m_sb.sb_logblocks);
438 }
439
440 /*
441 * Calculate the record block count and check for the case where
442 * the log might have consumed all available space in the AG. If
443 * so, reset the record count to 0 to avoid exposure of an invalid
444 * record start block.
445 */
446 arec->ar_blockcount = cpu_to_be32(id->agsize -
447 be32_to_cpu(arec->ar_startblock));
448 if (!arec->ar_blockcount)
449 block->bb_numrecs = 0;
450}
451
452/*
453 * Alloc btree root block init functions
454 */
455static void
456xfs_bnoroot_init(
457 struct xfs_mount *mp,
458 struct xfs_buf *bp,
459 struct aghdr_init_data *id)
460{
461 xfs_btree_init_block(mp, bp, XFS_BTNUM_BNO, 0, 1, id->agno);
462 xfs_freesp_init_recs(mp, bp, id);
463}
464
465static void
466xfs_cntroot_init(
467 struct xfs_mount *mp,
468 struct xfs_buf *bp,
469 struct aghdr_init_data *id)
470{
471 xfs_btree_init_block(mp, bp, XFS_BTNUM_CNT, 0, 1, id->agno);
472 xfs_freesp_init_recs(mp, bp, id);
473}
474
475/*
476 * Reverse map root block init
477 */
478static void
479xfs_rmaproot_init(
480 struct xfs_mount *mp,
481 struct xfs_buf *bp,
482 struct aghdr_init_data *id)
483{
484 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
485 struct xfs_rmap_rec *rrec;
486
487 xfs_btree_init_block(mp, bp, XFS_BTNUM_RMAP, 0, 4, id->agno);
488
489 /*
490 * mark the AG header regions as static metadata The BNO
491 * btree block is the first block after the headers, so
492 * it's location defines the size of region the static
493 * metadata consumes.
494 *
495 * Note: unlike mkfs, we never have to account for log
496 * space when growing the data regions
497 */
498 rrec = XFS_RMAP_REC_ADDR(block, 1);
499 rrec->rm_startblock = 0;
500 rrec->rm_blockcount = cpu_to_be32(XFS_BNO_BLOCK(mp));
501 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_FS);
502 rrec->rm_offset = 0;
503
504 /* account freespace btree root blocks */
505 rrec = XFS_RMAP_REC_ADDR(block, 2);
506 rrec->rm_startblock = cpu_to_be32(XFS_BNO_BLOCK(mp));
507 rrec->rm_blockcount = cpu_to_be32(2);
508 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_AG);
509 rrec->rm_offset = 0;
510
511 /* account inode btree root blocks */
512 rrec = XFS_RMAP_REC_ADDR(block, 3);
513 rrec->rm_startblock = cpu_to_be32(XFS_IBT_BLOCK(mp));
514 rrec->rm_blockcount = cpu_to_be32(XFS_RMAP_BLOCK(mp) -
515 XFS_IBT_BLOCK(mp));
516 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_INOBT);
517 rrec->rm_offset = 0;
518
519 /* account for rmap btree root */
520 rrec = XFS_RMAP_REC_ADDR(block, 4);
521 rrec->rm_startblock = cpu_to_be32(XFS_RMAP_BLOCK(mp));
522 rrec->rm_blockcount = cpu_to_be32(1);
523 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_AG);
524 rrec->rm_offset = 0;
525
526 /* account for refc btree root */
527 if (xfs_has_reflink(mp)) {
528 rrec = XFS_RMAP_REC_ADDR(block, 5);
529 rrec->rm_startblock = cpu_to_be32(xfs_refc_block(mp));
530 rrec->rm_blockcount = cpu_to_be32(1);
531 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_REFC);
532 rrec->rm_offset = 0;
533 be16_add_cpu(&block->bb_numrecs, 1);
534 }
535
536 /* account for the log space */
537 if (xfs_ag_contains_log(mp, id->agno)) {
538 rrec = XFS_RMAP_REC_ADDR(block,
539 be16_to_cpu(block->bb_numrecs) + 1);
540 rrec->rm_startblock = cpu_to_be32(
541 XFS_FSB_TO_AGBNO(mp, mp->m_sb.sb_logstart));
542 rrec->rm_blockcount = cpu_to_be32(mp->m_sb.sb_logblocks);
543 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_LOG);
544 rrec->rm_offset = 0;
545 be16_add_cpu(&block->bb_numrecs, 1);
546 }
547}
548
549/*
550 * Initialise new secondary superblocks with the pre-grow geometry, but mark
551 * them as "in progress" so we know they haven't yet been activated. This will
552 * get cleared when the update with the new geometry information is done after
553 * changes to the primary are committed. This isn't strictly necessary, but we
554 * get it for free with the delayed buffer write lists and it means we can tell
555 * if a grow operation didn't complete properly after the fact.
556 */
557static void
558xfs_sbblock_init(
559 struct xfs_mount *mp,
560 struct xfs_buf *bp,
561 struct aghdr_init_data *id)
562{
563 struct xfs_dsb *dsb = bp->b_addr;
564
565 xfs_sb_to_disk(dsb, &mp->m_sb);
566 dsb->sb_inprogress = 1;
567}
568
569static void
570xfs_agfblock_init(
571 struct xfs_mount *mp,
572 struct xfs_buf *bp,
573 struct aghdr_init_data *id)
574{
575 struct xfs_agf *agf = bp->b_addr;
576 xfs_extlen_t tmpsize;
577
578 agf->agf_magicnum = cpu_to_be32(XFS_AGF_MAGIC);
579 agf->agf_versionnum = cpu_to_be32(XFS_AGF_VERSION);
580 agf->agf_seqno = cpu_to_be32(id->agno);
581 agf->agf_length = cpu_to_be32(id->agsize);
582 agf->agf_roots[XFS_BTNUM_BNOi] = cpu_to_be32(XFS_BNO_BLOCK(mp));
583 agf->agf_roots[XFS_BTNUM_CNTi] = cpu_to_be32(XFS_CNT_BLOCK(mp));
584 agf->agf_levels[XFS_BTNUM_BNOi] = cpu_to_be32(1);
585 agf->agf_levels[XFS_BTNUM_CNTi] = cpu_to_be32(1);
586 if (xfs_has_rmapbt(mp)) {
587 agf->agf_roots[XFS_BTNUM_RMAPi] =
588 cpu_to_be32(XFS_RMAP_BLOCK(mp));
589 agf->agf_levels[XFS_BTNUM_RMAPi] = cpu_to_be32(1);
590 agf->agf_rmap_blocks = cpu_to_be32(1);
591 }
592
593 agf->agf_flfirst = cpu_to_be32(1);
594 agf->agf_fllast = 0;
595 agf->agf_flcount = 0;
596 tmpsize = id->agsize - mp->m_ag_prealloc_blocks;
597 agf->agf_freeblks = cpu_to_be32(tmpsize);
598 agf->agf_longest = cpu_to_be32(tmpsize);
599 if (xfs_has_crc(mp))
600 uuid_copy(&agf->agf_uuid, &mp->m_sb.sb_meta_uuid);
601 if (xfs_has_reflink(mp)) {
602 agf->agf_refcount_root = cpu_to_be32(
603 xfs_refc_block(mp));
604 agf->agf_refcount_level = cpu_to_be32(1);
605 agf->agf_refcount_blocks = cpu_to_be32(1);
606 }
607
608 if (xfs_ag_contains_log(mp, id->agno)) {
609 int64_t logblocks = mp->m_sb.sb_logblocks;
610
611 be32_add_cpu(&agf->agf_freeblks, -logblocks);
612 agf->agf_longest = cpu_to_be32(id->agsize -
613 XFS_FSB_TO_AGBNO(mp, mp->m_sb.sb_logstart) - logblocks);
614 }
615}
616
617static void
618xfs_agflblock_init(
619 struct xfs_mount *mp,
620 struct xfs_buf *bp,
621 struct aghdr_init_data *id)
622{
623 struct xfs_agfl *agfl = XFS_BUF_TO_AGFL(bp);
624 __be32 *agfl_bno;
625 int bucket;
626
627 if (xfs_has_crc(mp)) {
628 agfl->agfl_magicnum = cpu_to_be32(XFS_AGFL_MAGIC);
629 agfl->agfl_seqno = cpu_to_be32(id->agno);
630 uuid_copy(&agfl->agfl_uuid, &mp->m_sb.sb_meta_uuid);
631 }
632
633 agfl_bno = xfs_buf_to_agfl_bno(bp);
634 for (bucket = 0; bucket < xfs_agfl_size(mp); bucket++)
635 agfl_bno[bucket] = cpu_to_be32(NULLAGBLOCK);
636}
637
638static void
639xfs_agiblock_init(
640 struct xfs_mount *mp,
641 struct xfs_buf *bp,
642 struct aghdr_init_data *id)
643{
644 struct xfs_agi *agi = bp->b_addr;
645 int bucket;
646
647 agi->agi_magicnum = cpu_to_be32(XFS_AGI_MAGIC);
648 agi->agi_versionnum = cpu_to_be32(XFS_AGI_VERSION);
649 agi->agi_seqno = cpu_to_be32(id->agno);
650 agi->agi_length = cpu_to_be32(id->agsize);
651 agi->agi_count = 0;
652 agi->agi_root = cpu_to_be32(XFS_IBT_BLOCK(mp));
653 agi->agi_level = cpu_to_be32(1);
654 agi->agi_freecount = 0;
655 agi->agi_newino = cpu_to_be32(NULLAGINO);
656 agi->agi_dirino = cpu_to_be32(NULLAGINO);
657 if (xfs_has_crc(mp))
658 uuid_copy(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid);
659 if (xfs_has_finobt(mp)) {
660 agi->agi_free_root = cpu_to_be32(XFS_FIBT_BLOCK(mp));
661 agi->agi_free_level = cpu_to_be32(1);
662 }
663 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++)
664 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
665 if (xfs_has_inobtcounts(mp)) {
666 agi->agi_iblocks = cpu_to_be32(1);
667 if (xfs_has_finobt(mp))
668 agi->agi_fblocks = cpu_to_be32(1);
669 }
670}
671
672typedef void (*aghdr_init_work_f)(struct xfs_mount *mp, struct xfs_buf *bp,
673 struct aghdr_init_data *id);
674static int
675xfs_ag_init_hdr(
676 struct xfs_mount *mp,
677 struct aghdr_init_data *id,
678 aghdr_init_work_f work,
679 const struct xfs_buf_ops *ops)
680{
681 struct xfs_buf *bp;
682 int error;
683
684 error = xfs_get_aghdr_buf(mp, id->daddr, id->numblks, &bp, ops);
685 if (error)
686 return error;
687
688 (*work)(mp, bp, id);
689
690 xfs_buf_delwri_queue(bp, &id->buffer_list);
691 xfs_buf_relse(bp);
692 return 0;
693}
694
695struct xfs_aghdr_grow_data {
696 xfs_daddr_t daddr;
697 size_t numblks;
698 const struct xfs_buf_ops *ops;
699 aghdr_init_work_f work;
700 xfs_btnum_t type;
701 bool need_init;
702};
703
704/*
705 * Prepare new AG headers to be written to disk. We use uncached buffers here,
706 * as it is assumed these new AG headers are currently beyond the currently
707 * valid filesystem address space. Using cached buffers would trip over EOFS
708 * corruption detection alogrithms in the buffer cache lookup routines.
709 *
710 * This is a non-transactional function, but the prepared buffers are added to a
711 * delayed write buffer list supplied by the caller so they can submit them to
712 * disk and wait on them as required.
713 */
714int
715xfs_ag_init_headers(
716 struct xfs_mount *mp,
717 struct aghdr_init_data *id)
718
719{
720 struct xfs_aghdr_grow_data aghdr_data[] = {
721 { /* SB */
722 .daddr = XFS_AG_DADDR(mp, id->agno, XFS_SB_DADDR),
723 .numblks = XFS_FSS_TO_BB(mp, 1),
724 .ops = &xfs_sb_buf_ops,
725 .work = &xfs_sbblock_init,
726 .need_init = true
727 },
728 { /* AGF */
729 .daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGF_DADDR(mp)),
730 .numblks = XFS_FSS_TO_BB(mp, 1),
731 .ops = &xfs_agf_buf_ops,
732 .work = &xfs_agfblock_init,
733 .need_init = true
734 },
735 { /* AGFL */
736 .daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGFL_DADDR(mp)),
737 .numblks = XFS_FSS_TO_BB(mp, 1),
738 .ops = &xfs_agfl_buf_ops,
739 .work = &xfs_agflblock_init,
740 .need_init = true
741 },
742 { /* AGI */
743 .daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGI_DADDR(mp)),
744 .numblks = XFS_FSS_TO_BB(mp, 1),
745 .ops = &xfs_agi_buf_ops,
746 .work = &xfs_agiblock_init,
747 .need_init = true
748 },
749 { /* BNO root block */
750 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_BNO_BLOCK(mp)),
751 .numblks = BTOBB(mp->m_sb.sb_blocksize),
752 .ops = &xfs_bnobt_buf_ops,
753 .work = &xfs_bnoroot_init,
754 .need_init = true
755 },
756 { /* CNT root block */
757 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_CNT_BLOCK(mp)),
758 .numblks = BTOBB(mp->m_sb.sb_blocksize),
759 .ops = &xfs_cntbt_buf_ops,
760 .work = &xfs_cntroot_init,
761 .need_init = true
762 },
763 { /* INO root block */
764 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_IBT_BLOCK(mp)),
765 .numblks = BTOBB(mp->m_sb.sb_blocksize),
766 .ops = &xfs_inobt_buf_ops,
767 .work = &xfs_btroot_init,
768 .type = XFS_BTNUM_INO,
769 .need_init = true
770 },
771 { /* FINO root block */
772 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_FIBT_BLOCK(mp)),
773 .numblks = BTOBB(mp->m_sb.sb_blocksize),
774 .ops = &xfs_finobt_buf_ops,
775 .work = &xfs_btroot_init,
776 .type = XFS_BTNUM_FINO,
777 .need_init = xfs_has_finobt(mp)
778 },
779 { /* RMAP root block */
780 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_RMAP_BLOCK(mp)),
781 .numblks = BTOBB(mp->m_sb.sb_blocksize),
782 .ops = &xfs_rmapbt_buf_ops,
783 .work = &xfs_rmaproot_init,
784 .need_init = xfs_has_rmapbt(mp)
785 },
786 { /* REFC root block */
787 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, xfs_refc_block(mp)),
788 .numblks = BTOBB(mp->m_sb.sb_blocksize),
789 .ops = &xfs_refcountbt_buf_ops,
790 .work = &xfs_btroot_init,
791 .type = XFS_BTNUM_REFC,
792 .need_init = xfs_has_reflink(mp)
793 },
794 { /* NULL terminating block */
795 .daddr = XFS_BUF_DADDR_NULL,
796 }
797 };
798 struct xfs_aghdr_grow_data *dp;
799 int error = 0;
800
801 /* Account for AG free space in new AG */
802 id->nfree += id->agsize - mp->m_ag_prealloc_blocks;
803 for (dp = &aghdr_data[0]; dp->daddr != XFS_BUF_DADDR_NULL; dp++) {
804 if (!dp->need_init)
805 continue;
806
807 id->daddr = dp->daddr;
808 id->numblks = dp->numblks;
809 id->type = dp->type;
810 error = xfs_ag_init_hdr(mp, id, dp->work, dp->ops);
811 if (error)
812 break;
813 }
814 return error;
815}
816
817int
818xfs_ag_shrink_space(
819 struct xfs_perag *pag,
820 struct xfs_trans **tpp,
821 xfs_extlen_t delta)
822{
823 struct xfs_mount *mp = pag->pag_mount;
824 struct xfs_alloc_arg args = {
825 .tp = *tpp,
826 .mp = mp,
827 .type = XFS_ALLOCTYPE_THIS_BNO,
828 .minlen = delta,
829 .maxlen = delta,
830 .oinfo = XFS_RMAP_OINFO_SKIP_UPDATE,
831 .resv = XFS_AG_RESV_NONE,
832 .prod = 1
833 };
834 struct xfs_buf *agibp, *agfbp;
835 struct xfs_agi *agi;
836 struct xfs_agf *agf;
837 xfs_agblock_t aglen;
838 int error, err2;
839
840 ASSERT(pag->pag_agno == mp->m_sb.sb_agcount - 1);
841 error = xfs_ialloc_read_agi(pag, *tpp, &agibp);
842 if (error)
843 return error;
844
845 agi = agibp->b_addr;
846
847 error = xfs_alloc_read_agf(pag, *tpp, 0, &agfbp);
848 if (error)
849 return error;
850
851 agf = agfbp->b_addr;
852 aglen = be32_to_cpu(agi->agi_length);
853 /* some extra paranoid checks before we shrink the ag */
854 if (XFS_IS_CORRUPT(mp, agf->agf_length != agi->agi_length))
855 return -EFSCORRUPTED;
856 if (delta >= aglen)
857 return -EINVAL;
858
859 args.fsbno = XFS_AGB_TO_FSB(mp, pag->pag_agno, aglen - delta);
860
861 /*
862 * Make sure that the last inode cluster cannot overlap with the new
863 * end of the AG, even if it's sparse.
864 */
865 error = xfs_ialloc_check_shrink(*tpp, pag->pag_agno, agibp,
866 aglen - delta);
867 if (error)
868 return error;
869
870 /*
871 * Disable perag reservations so it doesn't cause the allocation request
872 * to fail. We'll reestablish reservation before we return.
873 */
874 error = xfs_ag_resv_free(pag);
875 if (error)
876 return error;
877
878 /* internal log shouldn't also show up in the free space btrees */
879 error = xfs_alloc_vextent(&args);
880 if (!error && args.agbno == NULLAGBLOCK)
881 error = -ENOSPC;
882
883 if (error) {
884 /*
885 * if extent allocation fails, need to roll the transaction to
886 * ensure that the AGFL fixup has been committed anyway.
887 */
888 xfs_trans_bhold(*tpp, agfbp);
889 err2 = xfs_trans_roll(tpp);
890 if (err2)
891 return err2;
892 xfs_trans_bjoin(*tpp, agfbp);
893 goto resv_init_out;
894 }
895
896 /*
897 * if successfully deleted from freespace btrees, need to confirm
898 * per-AG reservation works as expected.
899 */
900 be32_add_cpu(&agi->agi_length, -delta);
901 be32_add_cpu(&agf->agf_length, -delta);
902
903 err2 = xfs_ag_resv_init(pag, *tpp);
904 if (err2) {
905 be32_add_cpu(&agi->agi_length, delta);
906 be32_add_cpu(&agf->agf_length, delta);
907 if (err2 != -ENOSPC)
908 goto resv_err;
909
910 __xfs_free_extent_later(*tpp, args.fsbno, delta, NULL, true);
911
912 /*
913 * Roll the transaction before trying to re-init the per-ag
914 * reservation. The new transaction is clean so it will cancel
915 * without any side effects.
916 */
917 error = xfs_defer_finish(tpp);
918 if (error)
919 return error;
920
921 error = -ENOSPC;
922 goto resv_init_out;
923 }
924 xfs_ialloc_log_agi(*tpp, agibp, XFS_AGI_LENGTH);
925 xfs_alloc_log_agf(*tpp, agfbp, XFS_AGF_LENGTH);
926 return 0;
927
928resv_init_out:
929 err2 = xfs_ag_resv_init(pag, *tpp);
930 if (!err2)
931 return error;
932resv_err:
933 xfs_warn(mp, "Error %d reserving per-AG metadata reserve pool.", err2);
934 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
935 return err2;
936}
937
938/*
939 * Extent the AG indicated by the @id by the length passed in
940 */
941int
942xfs_ag_extend_space(
943 struct xfs_perag *pag,
944 struct xfs_trans *tp,
945 xfs_extlen_t len)
946{
947 struct xfs_buf *bp;
948 struct xfs_agi *agi;
949 struct xfs_agf *agf;
950 int error;
951
952 ASSERT(pag->pag_agno == pag->pag_mount->m_sb.sb_agcount - 1);
953
954 error = xfs_ialloc_read_agi(pag, tp, &bp);
955 if (error)
956 return error;
957
958 agi = bp->b_addr;
959 be32_add_cpu(&agi->agi_length, len);
960 xfs_ialloc_log_agi(tp, bp, XFS_AGI_LENGTH);
961
962 /*
963 * Change agf length.
964 */
965 error = xfs_alloc_read_agf(pag, tp, 0, &bp);
966 if (error)
967 return error;
968
969 agf = bp->b_addr;
970 be32_add_cpu(&agf->agf_length, len);
971 ASSERT(agf->agf_length == agi->agi_length);
972 xfs_alloc_log_agf(tp, bp, XFS_AGF_LENGTH);
973
974 /*
975 * Free the new space.
976 *
977 * XFS_RMAP_OINFO_SKIP_UPDATE is used here to tell the rmap btree that
978 * this doesn't actually exist in the rmap btree.
979 */
980 error = xfs_rmap_free(tp, bp, pag, be32_to_cpu(agf->agf_length) - len,
981 len, &XFS_RMAP_OINFO_SKIP_UPDATE);
982 if (error)
983 return error;
984
985 error = xfs_free_extent(tp, XFS_AGB_TO_FSB(pag->pag_mount, pag->pag_agno,
986 be32_to_cpu(agf->agf_length) - len),
987 len, &XFS_RMAP_OINFO_SKIP_UPDATE,
988 XFS_AG_RESV_NONE);
989 if (error)
990 return error;
991
992 /* Update perag geometry */
993 pag->block_count = be32_to_cpu(agf->agf_length);
994 __xfs_agino_range(pag->pag_mount, pag->block_count, &pag->agino_min,
995 &pag->agino_max);
996 return 0;
997}
998
999/* Retrieve AG geometry. */
1000int
1001xfs_ag_get_geometry(
1002 struct xfs_perag *pag,
1003 struct xfs_ag_geometry *ageo)
1004{
1005 struct xfs_buf *agi_bp;
1006 struct xfs_buf *agf_bp;
1007 struct xfs_agi *agi;
1008 struct xfs_agf *agf;
1009 unsigned int freeblks;
1010 int error;
1011
1012 /* Lock the AG headers. */
1013 error = xfs_ialloc_read_agi(pag, NULL, &agi_bp);
1014 if (error)
1015 return error;
1016 error = xfs_alloc_read_agf(pag, NULL, 0, &agf_bp);
1017 if (error)
1018 goto out_agi;
1019
1020 /* Fill out form. */
1021 memset(ageo, 0, sizeof(*ageo));
1022 ageo->ag_number = pag->pag_agno;
1023
1024 agi = agi_bp->b_addr;
1025 ageo->ag_icount = be32_to_cpu(agi->agi_count);
1026 ageo->ag_ifree = be32_to_cpu(agi->agi_freecount);
1027
1028 agf = agf_bp->b_addr;
1029 ageo->ag_length = be32_to_cpu(agf->agf_length);
1030 freeblks = pag->pagf_freeblks +
1031 pag->pagf_flcount +
1032 pag->pagf_btreeblks -
1033 xfs_ag_resv_needed(pag, XFS_AG_RESV_NONE);
1034 ageo->ag_freeblks = freeblks;
1035 xfs_ag_geom_health(pag, ageo);
1036
1037 /* Release resources. */
1038 xfs_buf_relse(agf_bp);
1039out_agi:
1040 xfs_buf_relse(agi_bp);
1041 return error;
1042}