Linux Audio

Check our new training course

Loading...
v6.8
   1/* SPDX-License-Identifier: GPL-2.0 */
   2/*
   3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   4 * Copyright (c) 2018 Red Hat, Inc.
   5 * All rights reserved.
   6 */
   7
   8#include "xfs.h"
   9#include "xfs_fs.h"
  10#include "xfs_shared.h"
  11#include "xfs_format.h"
  12#include "xfs_trans_resv.h"
  13#include "xfs_bit.h"
  14#include "xfs_sb.h"
  15#include "xfs_mount.h"
  16#include "xfs_btree.h"
  17#include "xfs_alloc_btree.h"
  18#include "xfs_rmap_btree.h"
  19#include "xfs_alloc.h"
  20#include "xfs_ialloc.h"
  21#include "xfs_rmap.h"
  22#include "xfs_ag.h"
  23#include "xfs_ag_resv.h"
  24#include "xfs_health.h"
  25#include "xfs_error.h"
  26#include "xfs_bmap.h"
  27#include "xfs_defer.h"
  28#include "xfs_log_format.h"
  29#include "xfs_trans.h"
  30#include "xfs_trace.h"
  31#include "xfs_inode.h"
  32#include "xfs_icache.h"
  33
  34
  35/*
  36 * Passive reference counting access wrappers to the perag structures.  If the
  37 * per-ag structure is to be freed, the freeing code is responsible for cleaning
  38 * up objects with passive references before freeing the structure. This is
  39 * things like cached buffers.
  40 */
  41struct xfs_perag *
  42xfs_perag_get(
  43	struct xfs_mount	*mp,
  44	xfs_agnumber_t		agno)
  45{
  46	struct xfs_perag	*pag;
  47
  48	rcu_read_lock();
  49	pag = radix_tree_lookup(&mp->m_perag_tree, agno);
  50	if (pag) {
  51		trace_xfs_perag_get(pag, _RET_IP_);
  52		ASSERT(atomic_read(&pag->pag_ref) >= 0);
  53		atomic_inc(&pag->pag_ref);
  54	}
  55	rcu_read_unlock();
  56	return pag;
  57}
  58
  59/*
  60 * search from @first to find the next perag with the given tag set.
  61 */
  62struct xfs_perag *
  63xfs_perag_get_tag(
  64	struct xfs_mount	*mp,
  65	xfs_agnumber_t		first,
  66	unsigned int		tag)
  67{
  68	struct xfs_perag	*pag;
  69	int			found;
  70
  71	rcu_read_lock();
  72	found = radix_tree_gang_lookup_tag(&mp->m_perag_tree,
  73					(void **)&pag, first, 1, tag);
  74	if (found <= 0) {
  75		rcu_read_unlock();
  76		return NULL;
  77	}
  78	trace_xfs_perag_get_tag(pag, _RET_IP_);
  79	atomic_inc(&pag->pag_ref);
  80	rcu_read_unlock();
  81	return pag;
  82}
  83
  84/* Get a passive reference to the given perag. */
  85struct xfs_perag *
  86xfs_perag_hold(
  87	struct xfs_perag	*pag)
  88{
  89	ASSERT(atomic_read(&pag->pag_ref) > 0 ||
  90	       atomic_read(&pag->pag_active_ref) > 0);
  91
  92	trace_xfs_perag_hold(pag, _RET_IP_);
  93	atomic_inc(&pag->pag_ref);
  94	return pag;
  95}
  96
  97void
  98xfs_perag_put(
  99	struct xfs_perag	*pag)
 100{
 101	trace_xfs_perag_put(pag, _RET_IP_);
 102	ASSERT(atomic_read(&pag->pag_ref) > 0);
 103	atomic_dec(&pag->pag_ref);
 104}
 105
 106/*
 107 * Active references for perag structures. This is for short term access to the
 108 * per ag structures for walking trees or accessing state. If an AG is being
 109 * shrunk or is offline, then this will fail to find that AG and return NULL
 110 * instead.
 111 */
 112struct xfs_perag *
 113xfs_perag_grab(
 114	struct xfs_mount	*mp,
 115	xfs_agnumber_t		agno)
 116{
 117	struct xfs_perag	*pag;
 118
 119	rcu_read_lock();
 120	pag = radix_tree_lookup(&mp->m_perag_tree, agno);
 121	if (pag) {
 122		trace_xfs_perag_grab(pag, _RET_IP_);
 123		if (!atomic_inc_not_zero(&pag->pag_active_ref))
 124			pag = NULL;
 125	}
 126	rcu_read_unlock();
 127	return pag;
 128}
 129
 130/*
 131 * search from @first to find the next perag with the given tag set.
 132 */
 133struct xfs_perag *
 134xfs_perag_grab_tag(
 135	struct xfs_mount	*mp,
 136	xfs_agnumber_t		first,
 137	int			tag)
 138{
 139	struct xfs_perag	*pag;
 140	int			found;
 141
 142	rcu_read_lock();
 143	found = radix_tree_gang_lookup_tag(&mp->m_perag_tree,
 144					(void **)&pag, first, 1, tag);
 145	if (found <= 0) {
 146		rcu_read_unlock();
 147		return NULL;
 148	}
 149	trace_xfs_perag_grab_tag(pag, _RET_IP_);
 150	if (!atomic_inc_not_zero(&pag->pag_active_ref))
 151		pag = NULL;
 152	rcu_read_unlock();
 153	return pag;
 154}
 155
 156void
 157xfs_perag_rele(
 158	struct xfs_perag	*pag)
 159{
 160	trace_xfs_perag_rele(pag, _RET_IP_);
 161	if (atomic_dec_and_test(&pag->pag_active_ref))
 162		wake_up(&pag->pag_active_wq);
 163}
 164
 165/*
 166 * xfs_initialize_perag_data
 167 *
 168 * Read in each per-ag structure so we can count up the number of
 169 * allocated inodes, free inodes and used filesystem blocks as this
 170 * information is no longer persistent in the superblock. Once we have
 171 * this information, write it into the in-core superblock structure.
 172 */
 173int
 174xfs_initialize_perag_data(
 175	struct xfs_mount	*mp,
 176	xfs_agnumber_t		agcount)
 177{
 178	xfs_agnumber_t		index;
 179	struct xfs_perag	*pag;
 180	struct xfs_sb		*sbp = &mp->m_sb;
 181	uint64_t		ifree = 0;
 182	uint64_t		ialloc = 0;
 183	uint64_t		bfree = 0;
 184	uint64_t		bfreelst = 0;
 185	uint64_t		btree = 0;
 186	uint64_t		fdblocks;
 187	int			error = 0;
 188
 189	for (index = 0; index < agcount; index++) {
 190		/*
 191		 * Read the AGF and AGI buffers to populate the per-ag
 192		 * structures for us.
 193		 */
 194		pag = xfs_perag_get(mp, index);
 195		error = xfs_alloc_read_agf(pag, NULL, 0, NULL);
 196		if (!error)
 197			error = xfs_ialloc_read_agi(pag, NULL, NULL);
 198		if (error) {
 199			xfs_perag_put(pag);
 200			return error;
 201		}
 202
 203		ifree += pag->pagi_freecount;
 204		ialloc += pag->pagi_count;
 205		bfree += pag->pagf_freeblks;
 206		bfreelst += pag->pagf_flcount;
 207		btree += pag->pagf_btreeblks;
 208		xfs_perag_put(pag);
 209	}
 210	fdblocks = bfree + bfreelst + btree;
 211
 212	/*
 213	 * If the new summary counts are obviously incorrect, fail the
 214	 * mount operation because that implies the AGFs are also corrupt.
 215	 * Clear FS_COUNTERS so that we don't unmount with a dirty log, which
 216	 * will prevent xfs_repair from fixing anything.
 217	 */
 218	if (fdblocks > sbp->sb_dblocks || ifree > ialloc) {
 219		xfs_alert(mp, "AGF corruption. Please run xfs_repair.");
 
 220		error = -EFSCORRUPTED;
 221		goto out;
 222	}
 223
 224	/* Overwrite incore superblock counters with just-read data */
 225	spin_lock(&mp->m_sb_lock);
 226	sbp->sb_ifree = ifree;
 227	sbp->sb_icount = ialloc;
 228	sbp->sb_fdblocks = fdblocks;
 229	spin_unlock(&mp->m_sb_lock);
 230
 231	xfs_reinit_percpu_counters(mp);
 232out:
 233	xfs_fs_mark_healthy(mp, XFS_SICK_FS_COUNTERS);
 234	return error;
 235}
 236
 237STATIC void
 238__xfs_free_perag(
 239	struct rcu_head	*head)
 240{
 241	struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
 
 242
 243	ASSERT(!delayed_work_pending(&pag->pag_blockgc_work));
 244	kmem_free(pag);
 
 245}
 246
 247/*
 248 * Free up the per-ag resources associated with the mount structure.
 249 */
 250void
 251xfs_free_perag(
 252	struct xfs_mount	*mp)
 
 
 
 253{
 254	struct xfs_perag	*pag;
 255	xfs_agnumber_t		agno;
 256
 257	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
 258		spin_lock(&mp->m_perag_lock);
 259		pag = radix_tree_delete(&mp->m_perag_tree, agno);
 260		spin_unlock(&mp->m_perag_lock);
 261		ASSERT(pag);
 262		XFS_IS_CORRUPT(pag->pag_mount, atomic_read(&pag->pag_ref) != 0);
 263		xfs_defer_drain_free(&pag->pag_intents_drain);
 264
 265		cancel_delayed_work_sync(&pag->pag_blockgc_work);
 266		xfs_buf_hash_destroy(pag);
 267
 268		/* drop the mount's active reference */
 269		xfs_perag_rele(pag);
 270		XFS_IS_CORRUPT(pag->pag_mount,
 271				atomic_read(&pag->pag_active_ref) != 0);
 272		call_rcu(&pag->rcu_head, __xfs_free_perag);
 273	}
 274}
 275
 276/* Find the size of the AG, in blocks. */
 277static xfs_agblock_t
 278__xfs_ag_block_count(
 279	struct xfs_mount	*mp,
 280	xfs_agnumber_t		agno,
 281	xfs_agnumber_t		agcount,
 282	xfs_rfsblock_t		dblocks)
 283{
 284	ASSERT(agno < agcount);
 285
 286	if (agno < agcount - 1)
 287		return mp->m_sb.sb_agblocks;
 288	return dblocks - (agno * mp->m_sb.sb_agblocks);
 289}
 290
 291xfs_agblock_t
 292xfs_ag_block_count(
 293	struct xfs_mount	*mp,
 294	xfs_agnumber_t		agno)
 295{
 296	return __xfs_ag_block_count(mp, agno, mp->m_sb.sb_agcount,
 297			mp->m_sb.sb_dblocks);
 298}
 299
 300/* Calculate the first and last possible inode number in an AG. */
 301static void
 302__xfs_agino_range(
 303	struct xfs_mount	*mp,
 304	xfs_agblock_t		eoag,
 305	xfs_agino_t		*first,
 306	xfs_agino_t		*last)
 307{
 308	xfs_agblock_t		bno;
 309
 310	/*
 311	 * Calculate the first inode, which will be in the first
 312	 * cluster-aligned block after the AGFL.
 313	 */
 314	bno = round_up(XFS_AGFL_BLOCK(mp) + 1, M_IGEO(mp)->cluster_align);
 315	*first = XFS_AGB_TO_AGINO(mp, bno);
 316
 317	/*
 318	 * Calculate the last inode, which will be at the end of the
 319	 * last (aligned) cluster that can be allocated in the AG.
 320	 */
 321	bno = round_down(eoag, M_IGEO(mp)->cluster_align);
 322	*last = XFS_AGB_TO_AGINO(mp, bno) - 1;
 323}
 324
 325void
 326xfs_agino_range(
 327	struct xfs_mount	*mp,
 328	xfs_agnumber_t		agno,
 329	xfs_agino_t		*first,
 330	xfs_agino_t		*last)
 331{
 332	return __xfs_agino_range(mp, xfs_ag_block_count(mp, agno), first, last);
 333}
 334
 335/*
 336 * Free perag within the specified AG range, it is only used to free unused
 337 * perags under the error handling path.
 338 */
 339void
 340xfs_free_unused_perag_range(
 341	struct xfs_mount	*mp,
 342	xfs_agnumber_t		agstart,
 343	xfs_agnumber_t		agend)
 344{
 345	struct xfs_perag	*pag;
 346	xfs_agnumber_t		index;
 347
 348	for (index = agstart; index < agend; index++) {
 349		spin_lock(&mp->m_perag_lock);
 350		pag = radix_tree_delete(&mp->m_perag_tree, index);
 351		spin_unlock(&mp->m_perag_lock);
 352		if (!pag)
 353			break;
 354		xfs_buf_hash_destroy(pag);
 355		xfs_defer_drain_free(&pag->pag_intents_drain);
 356		kmem_free(pag);
 357	}
 358}
 359
 360int
 361xfs_initialize_perag(
 362	struct xfs_mount	*mp,
 
 363	xfs_agnumber_t		agcount,
 364	xfs_rfsblock_t		dblocks,
 365	xfs_agnumber_t		*maxagi)
 366{
 367	struct xfs_perag	*pag;
 368	xfs_agnumber_t		index;
 369	xfs_agnumber_t		first_initialised = NULLAGNUMBER;
 370	int			error;
 371
 372	/*
 373	 * Walk the current per-ag tree so we don't try to initialise AGs
 374	 * that already exist (growfs case). Allocate and insert all the
 375	 * AGs we don't find ready for initialisation.
 376	 */
 377	for (index = 0; index < agcount; index++) {
 378		pag = xfs_perag_get(mp, index);
 379		if (pag) {
 380			xfs_perag_put(pag);
 381			continue;
 382		}
 383
 384		pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
 385		if (!pag) {
 386			error = -ENOMEM;
 387			goto out_unwind_new_pags;
 388		}
 389		pag->pag_agno = index;
 390		pag->pag_mount = mp;
 391
 392		error = radix_tree_preload(GFP_NOFS);
 393		if (error)
 394			goto out_free_pag;
 395
 396		spin_lock(&mp->m_perag_lock);
 397		if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
 398			WARN_ON_ONCE(1);
 399			spin_unlock(&mp->m_perag_lock);
 400			radix_tree_preload_end();
 401			error = -EEXIST;
 402			goto out_free_pag;
 403		}
 404		spin_unlock(&mp->m_perag_lock);
 405		radix_tree_preload_end();
 406
 407#ifdef __KERNEL__
 408		/* Place kernel structure only init below this point. */
 409		spin_lock_init(&pag->pag_ici_lock);
 410		spin_lock_init(&pag->pagb_lock);
 411		spin_lock_init(&pag->pag_state_lock);
 412		INIT_DELAYED_WORK(&pag->pag_blockgc_work, xfs_blockgc_worker);
 413		INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
 414		xfs_defer_drain_init(&pag->pag_intents_drain);
 415		init_waitqueue_head(&pag->pagb_wait);
 416		init_waitqueue_head(&pag->pag_active_wq);
 417		pag->pagb_count = 0;
 418		pag->pagb_tree = RB_ROOT;
 419#endif /* __KERNEL__ */
 420
 421		error = xfs_buf_hash_init(pag);
 422		if (error)
 423			goto out_remove_pag;
 424
 425		/* Active ref owned by mount indicates AG is online. */
 426		atomic_set(&pag->pag_active_ref, 1);
 
 
 
 
 
 
 427
 428		/* first new pag is fully initialized */
 429		if (first_initialised == NULLAGNUMBER)
 430			first_initialised = index;
 431
 432		/*
 433		 * Pre-calculated geometry
 434		 */
 435		pag->block_count = __xfs_ag_block_count(mp, index, agcount,
 436				dblocks);
 437		pag->min_block = XFS_AGFL_BLOCK(mp);
 438		__xfs_agino_range(mp, pag->block_count, &pag->agino_min,
 439				&pag->agino_max);
 440	}
 
 
 
 
 
 
 
 
 
 
 441
 442	index = xfs_set_inode_alloc(mp, agcount);
 
 443
 444	if (maxagi)
 445		*maxagi = index;
 
 
 
 446
 
 447	mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp);
 448	return 0;
 449
 450out_remove_pag:
 451	xfs_defer_drain_free(&pag->pag_intents_drain);
 452	spin_lock(&mp->m_perag_lock);
 453	radix_tree_delete(&mp->m_perag_tree, index);
 454	spin_unlock(&mp->m_perag_lock);
 455out_free_pag:
 456	kmem_free(pag);
 457out_unwind_new_pags:
 458	/* unwind any prior newly initialized pags */
 459	xfs_free_unused_perag_range(mp, first_initialised, agcount);
 460	return error;
 461}
 462
 463static int
 464xfs_get_aghdr_buf(
 465	struct xfs_mount	*mp,
 466	xfs_daddr_t		blkno,
 467	size_t			numblks,
 468	struct xfs_buf		**bpp,
 469	const struct xfs_buf_ops *ops)
 470{
 471	struct xfs_buf		*bp;
 472	int			error;
 473
 474	error = xfs_buf_get_uncached(mp->m_ddev_targp, numblks, 0, &bp);
 475	if (error)
 476		return error;
 477
 478	bp->b_maps[0].bm_bn = blkno;
 479	bp->b_ops = ops;
 480
 481	*bpp = bp;
 482	return 0;
 483}
 484
 485/*
 486 * Generic btree root block init function
 487 */
 488static void
 489xfs_btroot_init(
 490	struct xfs_mount	*mp,
 491	struct xfs_buf		*bp,
 492	struct aghdr_init_data	*id)
 493{
 494	xfs_btree_init_block(mp, bp, id->type, 0, 0, id->agno);
 495}
 496
 497/* Finish initializing a free space btree. */
 498static void
 499xfs_freesp_init_recs(
 500	struct xfs_mount	*mp,
 501	struct xfs_buf		*bp,
 502	struct aghdr_init_data	*id)
 503{
 504	struct xfs_alloc_rec	*arec;
 505	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
 506
 507	arec = XFS_ALLOC_REC_ADDR(mp, XFS_BUF_TO_BLOCK(bp), 1);
 508	arec->ar_startblock = cpu_to_be32(mp->m_ag_prealloc_blocks);
 509
 510	if (xfs_ag_contains_log(mp, id->agno)) {
 511		struct xfs_alloc_rec	*nrec;
 512		xfs_agblock_t		start = XFS_FSB_TO_AGBNO(mp,
 513							mp->m_sb.sb_logstart);
 514
 515		ASSERT(start >= mp->m_ag_prealloc_blocks);
 516		if (start != mp->m_ag_prealloc_blocks) {
 517			/*
 518			 * Modify first record to pad stripe align of log and
 519			 * bump the record count.
 520			 */
 521			arec->ar_blockcount = cpu_to_be32(start -
 522						mp->m_ag_prealloc_blocks);
 523			be16_add_cpu(&block->bb_numrecs, 1);
 524			nrec = arec + 1;
 525
 526			/*
 527			 * Insert second record at start of internal log
 528			 * which then gets trimmed.
 529			 */
 530			nrec->ar_startblock = cpu_to_be32(
 531					be32_to_cpu(arec->ar_startblock) +
 532					be32_to_cpu(arec->ar_blockcount));
 533			arec = nrec;
 534		}
 535		/*
 536		 * Change record start to after the internal log
 537		 */
 538		be32_add_cpu(&arec->ar_startblock, mp->m_sb.sb_logblocks);
 539	}
 540
 541	/*
 542	 * Calculate the block count of this record; if it is nonzero,
 543	 * increment the record count.
 544	 */
 545	arec->ar_blockcount = cpu_to_be32(id->agsize -
 546					  be32_to_cpu(arec->ar_startblock));
 547	if (arec->ar_blockcount)
 548		be16_add_cpu(&block->bb_numrecs, 1);
 549}
 550
 551/*
 552 * Alloc btree root block init functions
 553 */
 554static void
 555xfs_bnoroot_init(
 556	struct xfs_mount	*mp,
 557	struct xfs_buf		*bp,
 558	struct aghdr_init_data	*id)
 559{
 560	xfs_btree_init_block(mp, bp, XFS_BTNUM_BNO, 0, 0, id->agno);
 561	xfs_freesp_init_recs(mp, bp, id);
 562}
 563
 564static void
 565xfs_cntroot_init(
 566	struct xfs_mount	*mp,
 567	struct xfs_buf		*bp,
 568	struct aghdr_init_data	*id)
 569{
 570	xfs_btree_init_block(mp, bp, XFS_BTNUM_CNT, 0, 0, id->agno);
 571	xfs_freesp_init_recs(mp, bp, id);
 572}
 573
 574/*
 575 * Reverse map root block init
 576 */
 577static void
 578xfs_rmaproot_init(
 579	struct xfs_mount	*mp,
 580	struct xfs_buf		*bp,
 581	struct aghdr_init_data	*id)
 582{
 583	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
 584	struct xfs_rmap_rec	*rrec;
 585
 586	xfs_btree_init_block(mp, bp, XFS_BTNUM_RMAP, 0, 4, id->agno);
 587
 588	/*
 589	 * mark the AG header regions as static metadata The BNO
 590	 * btree block is the first block after the headers, so
 591	 * it's location defines the size of region the static
 592	 * metadata consumes.
 593	 *
 594	 * Note: unlike mkfs, we never have to account for log
 595	 * space when growing the data regions
 596	 */
 597	rrec = XFS_RMAP_REC_ADDR(block, 1);
 598	rrec->rm_startblock = 0;
 599	rrec->rm_blockcount = cpu_to_be32(XFS_BNO_BLOCK(mp));
 600	rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_FS);
 601	rrec->rm_offset = 0;
 602
 603	/* account freespace btree root blocks */
 604	rrec = XFS_RMAP_REC_ADDR(block, 2);
 605	rrec->rm_startblock = cpu_to_be32(XFS_BNO_BLOCK(mp));
 606	rrec->rm_blockcount = cpu_to_be32(2);
 607	rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_AG);
 608	rrec->rm_offset = 0;
 609
 610	/* account inode btree root blocks */
 611	rrec = XFS_RMAP_REC_ADDR(block, 3);
 612	rrec->rm_startblock = cpu_to_be32(XFS_IBT_BLOCK(mp));
 613	rrec->rm_blockcount = cpu_to_be32(XFS_RMAP_BLOCK(mp) -
 614					  XFS_IBT_BLOCK(mp));
 615	rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_INOBT);
 616	rrec->rm_offset = 0;
 617
 618	/* account for rmap btree root */
 619	rrec = XFS_RMAP_REC_ADDR(block, 4);
 620	rrec->rm_startblock = cpu_to_be32(XFS_RMAP_BLOCK(mp));
 621	rrec->rm_blockcount = cpu_to_be32(1);
 622	rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_AG);
 623	rrec->rm_offset = 0;
 624
 625	/* account for refc btree root */
 626	if (xfs_has_reflink(mp)) {
 627		rrec = XFS_RMAP_REC_ADDR(block, 5);
 628		rrec->rm_startblock = cpu_to_be32(xfs_refc_block(mp));
 629		rrec->rm_blockcount = cpu_to_be32(1);
 630		rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_REFC);
 631		rrec->rm_offset = 0;
 632		be16_add_cpu(&block->bb_numrecs, 1);
 633	}
 634
 635	/* account for the log space */
 636	if (xfs_ag_contains_log(mp, id->agno)) {
 637		rrec = XFS_RMAP_REC_ADDR(block,
 638				be16_to_cpu(block->bb_numrecs) + 1);
 639		rrec->rm_startblock = cpu_to_be32(
 640				XFS_FSB_TO_AGBNO(mp, mp->m_sb.sb_logstart));
 641		rrec->rm_blockcount = cpu_to_be32(mp->m_sb.sb_logblocks);
 642		rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_LOG);
 643		rrec->rm_offset = 0;
 644		be16_add_cpu(&block->bb_numrecs, 1);
 645	}
 646}
 647
 648/*
 649 * Initialise new secondary superblocks with the pre-grow geometry, but mark
 650 * them as "in progress" so we know they haven't yet been activated. This will
 651 * get cleared when the update with the new geometry information is done after
 652 * changes to the primary are committed. This isn't strictly necessary, but we
 653 * get it for free with the delayed buffer write lists and it means we can tell
 654 * if a grow operation didn't complete properly after the fact.
 655 */
 656static void
 657xfs_sbblock_init(
 658	struct xfs_mount	*mp,
 659	struct xfs_buf		*bp,
 660	struct aghdr_init_data	*id)
 661{
 662	struct xfs_dsb		*dsb = bp->b_addr;
 663
 664	xfs_sb_to_disk(dsb, &mp->m_sb);
 665	dsb->sb_inprogress = 1;
 666}
 667
 668static void
 669xfs_agfblock_init(
 670	struct xfs_mount	*mp,
 671	struct xfs_buf		*bp,
 672	struct aghdr_init_data	*id)
 673{
 674	struct xfs_agf		*agf = bp->b_addr;
 675	xfs_extlen_t		tmpsize;
 676
 677	agf->agf_magicnum = cpu_to_be32(XFS_AGF_MAGIC);
 678	agf->agf_versionnum = cpu_to_be32(XFS_AGF_VERSION);
 679	agf->agf_seqno = cpu_to_be32(id->agno);
 680	agf->agf_length = cpu_to_be32(id->agsize);
 681	agf->agf_roots[XFS_BTNUM_BNOi] = cpu_to_be32(XFS_BNO_BLOCK(mp));
 682	agf->agf_roots[XFS_BTNUM_CNTi] = cpu_to_be32(XFS_CNT_BLOCK(mp));
 683	agf->agf_levels[XFS_BTNUM_BNOi] = cpu_to_be32(1);
 684	agf->agf_levels[XFS_BTNUM_CNTi] = cpu_to_be32(1);
 685	if (xfs_has_rmapbt(mp)) {
 686		agf->agf_roots[XFS_BTNUM_RMAPi] =
 687					cpu_to_be32(XFS_RMAP_BLOCK(mp));
 688		agf->agf_levels[XFS_BTNUM_RMAPi] = cpu_to_be32(1);
 689		agf->agf_rmap_blocks = cpu_to_be32(1);
 690	}
 691
 692	agf->agf_flfirst = cpu_to_be32(1);
 693	agf->agf_fllast = 0;
 694	agf->agf_flcount = 0;
 695	tmpsize = id->agsize - mp->m_ag_prealloc_blocks;
 696	agf->agf_freeblks = cpu_to_be32(tmpsize);
 697	agf->agf_longest = cpu_to_be32(tmpsize);
 698	if (xfs_has_crc(mp))
 699		uuid_copy(&agf->agf_uuid, &mp->m_sb.sb_meta_uuid);
 700	if (xfs_has_reflink(mp)) {
 701		agf->agf_refcount_root = cpu_to_be32(
 702				xfs_refc_block(mp));
 703		agf->agf_refcount_level = cpu_to_be32(1);
 704		agf->agf_refcount_blocks = cpu_to_be32(1);
 705	}
 706
 707	if (xfs_ag_contains_log(mp, id->agno)) {
 708		int64_t	logblocks = mp->m_sb.sb_logblocks;
 709
 710		be32_add_cpu(&agf->agf_freeblks, -logblocks);
 711		agf->agf_longest = cpu_to_be32(id->agsize -
 712			XFS_FSB_TO_AGBNO(mp, mp->m_sb.sb_logstart) - logblocks);
 713	}
 714}
 715
 716static void
 717xfs_agflblock_init(
 718	struct xfs_mount	*mp,
 719	struct xfs_buf		*bp,
 720	struct aghdr_init_data	*id)
 721{
 722	struct xfs_agfl		*agfl = XFS_BUF_TO_AGFL(bp);
 723	__be32			*agfl_bno;
 724	int			bucket;
 725
 726	if (xfs_has_crc(mp)) {
 727		agfl->agfl_magicnum = cpu_to_be32(XFS_AGFL_MAGIC);
 728		agfl->agfl_seqno = cpu_to_be32(id->agno);
 729		uuid_copy(&agfl->agfl_uuid, &mp->m_sb.sb_meta_uuid);
 730	}
 731
 732	agfl_bno = xfs_buf_to_agfl_bno(bp);
 733	for (bucket = 0; bucket < xfs_agfl_size(mp); bucket++)
 734		agfl_bno[bucket] = cpu_to_be32(NULLAGBLOCK);
 735}
 736
 737static void
 738xfs_agiblock_init(
 739	struct xfs_mount	*mp,
 740	struct xfs_buf		*bp,
 741	struct aghdr_init_data	*id)
 742{
 743	struct xfs_agi		*agi = bp->b_addr;
 744	int			bucket;
 745
 746	agi->agi_magicnum = cpu_to_be32(XFS_AGI_MAGIC);
 747	agi->agi_versionnum = cpu_to_be32(XFS_AGI_VERSION);
 748	agi->agi_seqno = cpu_to_be32(id->agno);
 749	agi->agi_length = cpu_to_be32(id->agsize);
 750	agi->agi_count = 0;
 751	agi->agi_root = cpu_to_be32(XFS_IBT_BLOCK(mp));
 752	agi->agi_level = cpu_to_be32(1);
 753	agi->agi_freecount = 0;
 754	agi->agi_newino = cpu_to_be32(NULLAGINO);
 755	agi->agi_dirino = cpu_to_be32(NULLAGINO);
 756	if (xfs_has_crc(mp))
 757		uuid_copy(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid);
 758	if (xfs_has_finobt(mp)) {
 759		agi->agi_free_root = cpu_to_be32(XFS_FIBT_BLOCK(mp));
 760		agi->agi_free_level = cpu_to_be32(1);
 761	}
 762	for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++)
 763		agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
 764	if (xfs_has_inobtcounts(mp)) {
 765		agi->agi_iblocks = cpu_to_be32(1);
 766		if (xfs_has_finobt(mp))
 767			agi->agi_fblocks = cpu_to_be32(1);
 768	}
 769}
 770
 771typedef void (*aghdr_init_work_f)(struct xfs_mount *mp, struct xfs_buf *bp,
 772				  struct aghdr_init_data *id);
 773static int
 774xfs_ag_init_hdr(
 775	struct xfs_mount	*mp,
 776	struct aghdr_init_data	*id,
 777	aghdr_init_work_f	work,
 778	const struct xfs_buf_ops *ops)
 779{
 780	struct xfs_buf		*bp;
 781	int			error;
 782
 783	error = xfs_get_aghdr_buf(mp, id->daddr, id->numblks, &bp, ops);
 784	if (error)
 785		return error;
 786
 787	(*work)(mp, bp, id);
 788
 789	xfs_buf_delwri_queue(bp, &id->buffer_list);
 790	xfs_buf_relse(bp);
 791	return 0;
 792}
 793
 794struct xfs_aghdr_grow_data {
 795	xfs_daddr_t		daddr;
 796	size_t			numblks;
 797	const struct xfs_buf_ops *ops;
 798	aghdr_init_work_f	work;
 799	xfs_btnum_t		type;
 800	bool			need_init;
 801};
 802
 803/*
 804 * Prepare new AG headers to be written to disk. We use uncached buffers here,
 805 * as it is assumed these new AG headers are currently beyond the currently
 806 * valid filesystem address space. Using cached buffers would trip over EOFS
 807 * corruption detection alogrithms in the buffer cache lookup routines.
 808 *
 809 * This is a non-transactional function, but the prepared buffers are added to a
 810 * delayed write buffer list supplied by the caller so they can submit them to
 811 * disk and wait on them as required.
 812 */
 813int
 814xfs_ag_init_headers(
 815	struct xfs_mount	*mp,
 816	struct aghdr_init_data	*id)
 817
 818{
 819	struct xfs_aghdr_grow_data aghdr_data[] = {
 820	{ /* SB */
 821		.daddr = XFS_AG_DADDR(mp, id->agno, XFS_SB_DADDR),
 822		.numblks = XFS_FSS_TO_BB(mp, 1),
 823		.ops = &xfs_sb_buf_ops,
 824		.work = &xfs_sbblock_init,
 825		.need_init = true
 826	},
 827	{ /* AGF */
 828		.daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGF_DADDR(mp)),
 829		.numblks = XFS_FSS_TO_BB(mp, 1),
 830		.ops = &xfs_agf_buf_ops,
 831		.work = &xfs_agfblock_init,
 832		.need_init = true
 833	},
 834	{ /* AGFL */
 835		.daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGFL_DADDR(mp)),
 836		.numblks = XFS_FSS_TO_BB(mp, 1),
 837		.ops = &xfs_agfl_buf_ops,
 838		.work = &xfs_agflblock_init,
 839		.need_init = true
 840	},
 841	{ /* AGI */
 842		.daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGI_DADDR(mp)),
 843		.numblks = XFS_FSS_TO_BB(mp, 1),
 844		.ops = &xfs_agi_buf_ops,
 845		.work = &xfs_agiblock_init,
 846		.need_init = true
 847	},
 848	{ /* BNO root block */
 849		.daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_BNO_BLOCK(mp)),
 850		.numblks = BTOBB(mp->m_sb.sb_blocksize),
 851		.ops = &xfs_bnobt_buf_ops,
 852		.work = &xfs_bnoroot_init,
 
 853		.need_init = true
 854	},
 855	{ /* CNT root block */
 856		.daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_CNT_BLOCK(mp)),
 857		.numblks = BTOBB(mp->m_sb.sb_blocksize),
 858		.ops = &xfs_cntbt_buf_ops,
 859		.work = &xfs_cntroot_init,
 
 860		.need_init = true
 861	},
 862	{ /* INO root block */
 863		.daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_IBT_BLOCK(mp)),
 864		.numblks = BTOBB(mp->m_sb.sb_blocksize),
 865		.ops = &xfs_inobt_buf_ops,
 866		.work = &xfs_btroot_init,
 867		.type = XFS_BTNUM_INO,
 868		.need_init = true
 869	},
 870	{ /* FINO root block */
 871		.daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_FIBT_BLOCK(mp)),
 872		.numblks = BTOBB(mp->m_sb.sb_blocksize),
 873		.ops = &xfs_finobt_buf_ops,
 874		.work = &xfs_btroot_init,
 875		.type = XFS_BTNUM_FINO,
 876		.need_init =  xfs_has_finobt(mp)
 877	},
 878	{ /* RMAP root block */
 879		.daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_RMAP_BLOCK(mp)),
 880		.numblks = BTOBB(mp->m_sb.sb_blocksize),
 881		.ops = &xfs_rmapbt_buf_ops,
 882		.work = &xfs_rmaproot_init,
 
 883		.need_init = xfs_has_rmapbt(mp)
 884	},
 885	{ /* REFC root block */
 886		.daddr = XFS_AGB_TO_DADDR(mp, id->agno, xfs_refc_block(mp)),
 887		.numblks = BTOBB(mp->m_sb.sb_blocksize),
 888		.ops = &xfs_refcountbt_buf_ops,
 889		.work = &xfs_btroot_init,
 890		.type = XFS_BTNUM_REFC,
 891		.need_init = xfs_has_reflink(mp)
 892	},
 893	{ /* NULL terminating block */
 894		.daddr = XFS_BUF_DADDR_NULL,
 895	}
 896	};
 897	struct  xfs_aghdr_grow_data *dp;
 898	int			error = 0;
 899
 900	/* Account for AG free space in new AG */
 901	id->nfree += id->agsize - mp->m_ag_prealloc_blocks;
 902	for (dp = &aghdr_data[0]; dp->daddr != XFS_BUF_DADDR_NULL; dp++) {
 903		if (!dp->need_init)
 904			continue;
 905
 906		id->daddr = dp->daddr;
 907		id->numblks = dp->numblks;
 908		id->type = dp->type;
 909		error = xfs_ag_init_hdr(mp, id, dp->work, dp->ops);
 910		if (error)
 911			break;
 912	}
 913	return error;
 914}
 915
 916int
 917xfs_ag_shrink_space(
 918	struct xfs_perag	*pag,
 919	struct xfs_trans	**tpp,
 920	xfs_extlen_t		delta)
 921{
 922	struct xfs_mount	*mp = pag->pag_mount;
 923	struct xfs_alloc_arg	args = {
 924		.tp	= *tpp,
 925		.mp	= mp,
 926		.pag	= pag,
 927		.minlen = delta,
 928		.maxlen = delta,
 929		.oinfo	= XFS_RMAP_OINFO_SKIP_UPDATE,
 930		.resv	= XFS_AG_RESV_NONE,
 931		.prod	= 1
 932	};
 933	struct xfs_buf		*agibp, *agfbp;
 934	struct xfs_agi		*agi;
 935	struct xfs_agf		*agf;
 936	xfs_agblock_t		aglen;
 937	int			error, err2;
 938
 939	ASSERT(pag->pag_agno == mp->m_sb.sb_agcount - 1);
 940	error = xfs_ialloc_read_agi(pag, *tpp, &agibp);
 941	if (error)
 942		return error;
 943
 944	agi = agibp->b_addr;
 945
 946	error = xfs_alloc_read_agf(pag, *tpp, 0, &agfbp);
 947	if (error)
 948		return error;
 949
 950	agf = agfbp->b_addr;
 951	aglen = be32_to_cpu(agi->agi_length);
 952	/* some extra paranoid checks before we shrink the ag */
 953	if (XFS_IS_CORRUPT(mp, agf->agf_length != agi->agi_length))
 
 954		return -EFSCORRUPTED;
 
 955	if (delta >= aglen)
 956		return -EINVAL;
 957
 958	/*
 959	 * Make sure that the last inode cluster cannot overlap with the new
 960	 * end of the AG, even if it's sparse.
 961	 */
 962	error = xfs_ialloc_check_shrink(pag, *tpp, agibp, aglen - delta);
 963	if (error)
 964		return error;
 965
 966	/*
 967	 * Disable perag reservations so it doesn't cause the allocation request
 968	 * to fail. We'll reestablish reservation before we return.
 969	 */
 970	error = xfs_ag_resv_free(pag);
 971	if (error)
 972		return error;
 973
 974	/* internal log shouldn't also show up in the free space btrees */
 975	error = xfs_alloc_vextent_exact_bno(&args,
 976			XFS_AGB_TO_FSB(mp, pag->pag_agno, aglen - delta));
 977	if (!error && args.agbno == NULLAGBLOCK)
 978		error = -ENOSPC;
 979
 980	if (error) {
 981		/*
 982		 * if extent allocation fails, need to roll the transaction to
 983		 * ensure that the AGFL fixup has been committed anyway.
 
 
 
 
 
 
 
 984		 */
 985		xfs_trans_bhold(*tpp, agfbp);
 
 986		err2 = xfs_trans_roll(tpp);
 987		if (err2)
 988			return err2;
 989		xfs_trans_bjoin(*tpp, agfbp);
 
 990		goto resv_init_out;
 991	}
 992
 993	/*
 994	 * if successfully deleted from freespace btrees, need to confirm
 995	 * per-AG reservation works as expected.
 996	 */
 997	be32_add_cpu(&agi->agi_length, -delta);
 998	be32_add_cpu(&agf->agf_length, -delta);
 999
1000	err2 = xfs_ag_resv_init(pag, *tpp);
1001	if (err2) {
1002		be32_add_cpu(&agi->agi_length, delta);
1003		be32_add_cpu(&agf->agf_length, delta);
1004		if (err2 != -ENOSPC)
1005			goto resv_err;
1006
1007		err2 = xfs_free_extent_later(*tpp, args.fsbno, delta, NULL,
1008				XFS_AG_RESV_NONE, true);
1009		if (err2)
1010			goto resv_err;
1011
1012		/*
1013		 * Roll the transaction before trying to re-init the per-ag
1014		 * reservation. The new transaction is clean so it will cancel
1015		 * without any side effects.
1016		 */
1017		error = xfs_defer_finish(tpp);
1018		if (error)
1019			return error;
1020
1021		error = -ENOSPC;
1022		goto resv_init_out;
1023	}
1024
1025	/* Update perag geometry */
1026	pag->block_count -= delta;
1027	__xfs_agino_range(pag->pag_mount, pag->block_count, &pag->agino_min,
1028				&pag->agino_max);
1029
1030	xfs_ialloc_log_agi(*tpp, agibp, XFS_AGI_LENGTH);
1031	xfs_alloc_log_agf(*tpp, agfbp, XFS_AGF_LENGTH);
1032	return 0;
1033
1034resv_init_out:
1035	err2 = xfs_ag_resv_init(pag, *tpp);
1036	if (!err2)
1037		return error;
1038resv_err:
1039	xfs_warn(mp, "Error %d reserving per-AG metadata reserve pool.", err2);
1040	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1041	return err2;
1042}
1043
1044/*
1045 * Extent the AG indicated by the @id by the length passed in
1046 */
1047int
1048xfs_ag_extend_space(
1049	struct xfs_perag	*pag,
1050	struct xfs_trans	*tp,
1051	xfs_extlen_t		len)
1052{
 
1053	struct xfs_buf		*bp;
1054	struct xfs_agi		*agi;
1055	struct xfs_agf		*agf;
1056	int			error;
1057
1058	ASSERT(pag->pag_agno == pag->pag_mount->m_sb.sb_agcount - 1);
1059
1060	error = xfs_ialloc_read_agi(pag, tp, &bp);
1061	if (error)
1062		return error;
1063
1064	agi = bp->b_addr;
1065	be32_add_cpu(&agi->agi_length, len);
1066	xfs_ialloc_log_agi(tp, bp, XFS_AGI_LENGTH);
1067
1068	/*
1069	 * Change agf length.
1070	 */
1071	error = xfs_alloc_read_agf(pag, tp, 0, &bp);
1072	if (error)
1073		return error;
1074
1075	agf = bp->b_addr;
1076	be32_add_cpu(&agf->agf_length, len);
1077	ASSERT(agf->agf_length == agi->agi_length);
1078	xfs_alloc_log_agf(tp, bp, XFS_AGF_LENGTH);
1079
1080	/*
1081	 * Free the new space.
1082	 *
1083	 * XFS_RMAP_OINFO_SKIP_UPDATE is used here to tell the rmap btree that
1084	 * this doesn't actually exist in the rmap btree.
1085	 */
1086	error = xfs_rmap_free(tp, bp, pag, be32_to_cpu(agf->agf_length) - len,
1087				len, &XFS_RMAP_OINFO_SKIP_UPDATE);
1088	if (error)
1089		return error;
1090
1091	error = xfs_free_extent(tp, pag, be32_to_cpu(agf->agf_length) - len,
1092			len, &XFS_RMAP_OINFO_SKIP_UPDATE, XFS_AG_RESV_NONE);
1093	if (error)
1094		return error;
1095
1096	/* Update perag geometry */
1097	pag->block_count = be32_to_cpu(agf->agf_length);
1098	__xfs_agino_range(pag->pag_mount, pag->block_count, &pag->agino_min,
1099				&pag->agino_max);
1100	return 0;
1101}
1102
1103/* Retrieve AG geometry. */
1104int
1105xfs_ag_get_geometry(
1106	struct xfs_perag	*pag,
1107	struct xfs_ag_geometry	*ageo)
1108{
1109	struct xfs_buf		*agi_bp;
1110	struct xfs_buf		*agf_bp;
1111	struct xfs_agi		*agi;
1112	struct xfs_agf		*agf;
1113	unsigned int		freeblks;
1114	int			error;
1115
1116	/* Lock the AG headers. */
1117	error = xfs_ialloc_read_agi(pag, NULL, &agi_bp);
1118	if (error)
1119		return error;
1120	error = xfs_alloc_read_agf(pag, NULL, 0, &agf_bp);
1121	if (error)
1122		goto out_agi;
1123
1124	/* Fill out form. */
1125	memset(ageo, 0, sizeof(*ageo));
1126	ageo->ag_number = pag->pag_agno;
1127
1128	agi = agi_bp->b_addr;
1129	ageo->ag_icount = be32_to_cpu(agi->agi_count);
1130	ageo->ag_ifree = be32_to_cpu(agi->agi_freecount);
1131
1132	agf = agf_bp->b_addr;
1133	ageo->ag_length = be32_to_cpu(agf->agf_length);
1134	freeblks = pag->pagf_freeblks +
1135		   pag->pagf_flcount +
1136		   pag->pagf_btreeblks -
1137		   xfs_ag_resv_needed(pag, XFS_AG_RESV_NONE);
1138	ageo->ag_freeblks = freeblks;
1139	xfs_ag_geom_health(pag, ageo);
1140
1141	/* Release resources. */
1142	xfs_buf_relse(agf_bp);
1143out_agi:
1144	xfs_buf_relse(agi_bp);
1145	return error;
1146}
v6.13.7
  1/* SPDX-License-Identifier: GPL-2.0 */
  2/*
  3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
  4 * Copyright (c) 2018 Red Hat, Inc.
  5 * All rights reserved.
  6 */
  7
  8#include "xfs.h"
  9#include "xfs_fs.h"
 10#include "xfs_shared.h"
 11#include "xfs_format.h"
 12#include "xfs_trans_resv.h"
 13#include "xfs_bit.h"
 14#include "xfs_sb.h"
 15#include "xfs_mount.h"
 16#include "xfs_btree.h"
 17#include "xfs_alloc_btree.h"
 18#include "xfs_rmap_btree.h"
 19#include "xfs_alloc.h"
 20#include "xfs_ialloc.h"
 21#include "xfs_rmap.h"
 22#include "xfs_ag.h"
 23#include "xfs_ag_resv.h"
 24#include "xfs_health.h"
 25#include "xfs_error.h"
 26#include "xfs_bmap.h"
 27#include "xfs_defer.h"
 28#include "xfs_log_format.h"
 29#include "xfs_trans.h"
 30#include "xfs_trace.h"
 31#include "xfs_inode.h"
 32#include "xfs_icache.h"
 33#include "xfs_group.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 34
 35/*
 36 * xfs_initialize_perag_data
 37 *
 38 * Read in each per-ag structure so we can count up the number of
 39 * allocated inodes, free inodes and used filesystem blocks as this
 40 * information is no longer persistent in the superblock. Once we have
 41 * this information, write it into the in-core superblock structure.
 42 */
 43int
 44xfs_initialize_perag_data(
 45	struct xfs_mount	*mp,
 46	xfs_agnumber_t		agcount)
 47{
 48	xfs_agnumber_t		index;
 49	struct xfs_perag	*pag;
 50	struct xfs_sb		*sbp = &mp->m_sb;
 51	uint64_t		ifree = 0;
 52	uint64_t		ialloc = 0;
 53	uint64_t		bfree = 0;
 54	uint64_t		bfreelst = 0;
 55	uint64_t		btree = 0;
 56	uint64_t		fdblocks;
 57	int			error = 0;
 58
 59	for (index = 0; index < agcount; index++) {
 60		/*
 61		 * Read the AGF and AGI buffers to populate the per-ag
 62		 * structures for us.
 63		 */
 64		pag = xfs_perag_get(mp, index);
 65		error = xfs_alloc_read_agf(pag, NULL, 0, NULL);
 66		if (!error)
 67			error = xfs_ialloc_read_agi(pag, NULL, 0, NULL);
 68		if (error) {
 69			xfs_perag_put(pag);
 70			return error;
 71		}
 72
 73		ifree += pag->pagi_freecount;
 74		ialloc += pag->pagi_count;
 75		bfree += pag->pagf_freeblks;
 76		bfreelst += pag->pagf_flcount;
 77		btree += pag->pagf_btreeblks;
 78		xfs_perag_put(pag);
 79	}
 80	fdblocks = bfree + bfreelst + btree;
 81
 82	/*
 83	 * If the new summary counts are obviously incorrect, fail the
 84	 * mount operation because that implies the AGFs are also corrupt.
 85	 * Clear FS_COUNTERS so that we don't unmount with a dirty log, which
 86	 * will prevent xfs_repair from fixing anything.
 87	 */
 88	if (fdblocks > sbp->sb_dblocks || ifree > ialloc) {
 89		xfs_alert(mp, "AGF corruption. Please run xfs_repair.");
 90		xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
 91		error = -EFSCORRUPTED;
 92		goto out;
 93	}
 94
 95	/* Overwrite incore superblock counters with just-read data */
 96	spin_lock(&mp->m_sb_lock);
 97	sbp->sb_ifree = ifree;
 98	sbp->sb_icount = ialloc;
 99	sbp->sb_fdblocks = fdblocks;
100	spin_unlock(&mp->m_sb_lock);
101
102	xfs_reinit_percpu_counters(mp);
103out:
104	xfs_fs_mark_healthy(mp, XFS_SICK_FS_COUNTERS);
105	return error;
106}
107
108static void
109xfs_perag_uninit(
110	struct xfs_group	*xg)
111{
112#ifdef __KERNEL__
113	struct xfs_perag	*pag = to_perag(xg);
114
115	cancel_delayed_work_sync(&pag->pag_blockgc_work);
116	xfs_buf_cache_destroy(&pag->pag_bcache);
117#endif
118}
119
120/*
121 * Free up the per-ag resources  within the specified AG range.
122 */
123void
124xfs_free_perag_range(
125	struct xfs_mount	*mp,
126	xfs_agnumber_t		first_agno,
127	xfs_agnumber_t		end_agno)
128
129{
 
130	xfs_agnumber_t		agno;
131
132	for (agno = first_agno; agno < end_agno; agno++)
133		xfs_group_free(mp, agno, XG_TYPE_AG, xfs_perag_uninit);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
134}
135
136/* Find the size of the AG, in blocks. */
137static xfs_agblock_t
138__xfs_ag_block_count(
139	struct xfs_mount	*mp,
140	xfs_agnumber_t		agno,
141	xfs_agnumber_t		agcount,
142	xfs_rfsblock_t		dblocks)
143{
144	ASSERT(agno < agcount);
145
146	if (agno < agcount - 1)
147		return mp->m_sb.sb_agblocks;
148	return dblocks - (agno * mp->m_sb.sb_agblocks);
149}
150
151xfs_agblock_t
152xfs_ag_block_count(
153	struct xfs_mount	*mp,
154	xfs_agnumber_t		agno)
155{
156	return __xfs_ag_block_count(mp, agno, mp->m_sb.sb_agcount,
157			mp->m_sb.sb_dblocks);
158}
159
160/* Calculate the first and last possible inode number in an AG. */
161static void
162__xfs_agino_range(
163	struct xfs_mount	*mp,
164	xfs_agblock_t		eoag,
165	xfs_agino_t		*first,
166	xfs_agino_t		*last)
167{
168	xfs_agblock_t		bno;
169
170	/*
171	 * Calculate the first inode, which will be in the first
172	 * cluster-aligned block after the AGFL.
173	 */
174	bno = round_up(XFS_AGFL_BLOCK(mp) + 1, M_IGEO(mp)->cluster_align);
175	*first = XFS_AGB_TO_AGINO(mp, bno);
176
177	/*
178	 * Calculate the last inode, which will be at the end of the
179	 * last (aligned) cluster that can be allocated in the AG.
180	 */
181	bno = round_down(eoag, M_IGEO(mp)->cluster_align);
182	*last = XFS_AGB_TO_AGINO(mp, bno) - 1;
183}
184
185void
186xfs_agino_range(
187	struct xfs_mount	*mp,
188	xfs_agnumber_t		agno,
189	xfs_agino_t		*first,
190	xfs_agino_t		*last)
191{
192	return __xfs_agino_range(mp, xfs_ag_block_count(mp, agno), first, last);
193}
194
195/*
196 * Update the perag of the previous tail AG if it has been changed during
197 * recovery (i.e. recovery of a growfs).
198 */
199int
200xfs_update_last_ag_size(
201	struct xfs_mount	*mp,
202	xfs_agnumber_t		prev_agcount)
 
203{
204	struct xfs_perag	*pag = xfs_perag_grab(mp, prev_agcount - 1);
 
205
206	if (!pag)
207		return -EFSCORRUPTED;
208	pag_group(pag)->xg_block_count = __xfs_ag_block_count(mp,
209			prev_agcount - 1, mp->m_sb.sb_agcount,
210			mp->m_sb.sb_dblocks);
211	__xfs_agino_range(mp, pag_group(pag)->xg_block_count, &pag->agino_min,
212			&pag->agino_max);
213	xfs_perag_rele(pag);
214	return 0;
 
215}
216
217static int
218xfs_perag_alloc(
219	struct xfs_mount	*mp,
220	xfs_agnumber_t		index,
221	xfs_agnumber_t		agcount,
222	xfs_rfsblock_t		dblocks)
 
223{
224	struct xfs_perag	*pag;
 
 
225	int			error;
226
227	pag = kzalloc(sizeof(*pag), GFP_KERNEL);
228	if (!pag)
229		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
230
231#ifdef __KERNEL__
232	/* Place kernel structure only init below this point. */
233	spin_lock_init(&pag->pag_ici_lock);
234	INIT_DELAYED_WORK(&pag->pag_blockgc_work, xfs_blockgc_worker);
235	INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
 
 
 
 
 
 
 
236#endif /* __KERNEL__ */
237
238	error = xfs_buf_cache_init(&pag->pag_bcache);
239	if (error)
240		goto out_free_perag;
241
242	/*
243	 * Pre-calculated geometry
244	 */
245	pag_group(pag)->xg_block_count = __xfs_ag_block_count(mp, index, agcount,
246				dblocks);
247	pag_group(pag)->xg_min_gbno = XFS_AGFL_BLOCK(mp) + 1;
248	__xfs_agino_range(mp, pag_group(pag)->xg_block_count, &pag->agino_min,
249			&pag->agino_max);
250
251	error = xfs_group_insert(mp, pag_group(pag), index, XG_TYPE_AG);
252	if (error)
253		goto out_buf_cache_destroy;
254
255	return 0;
256
257out_buf_cache_destroy:
258	xfs_buf_cache_destroy(&pag->pag_bcache);
259out_free_perag:
260	kfree(pag);
261	return error;
262}
263
264int
265xfs_initialize_perag(
266	struct xfs_mount	*mp,
267	xfs_agnumber_t		orig_agcount,
268	xfs_agnumber_t		new_agcount,
269	xfs_rfsblock_t		dblocks,
270	xfs_agnumber_t		*maxagi)
271{
272	xfs_agnumber_t		index;
273	int			error;
274
275	if (orig_agcount >= new_agcount)
276		return 0;
277
278	for (index = orig_agcount; index < new_agcount; index++) {
279		error = xfs_perag_alloc(mp, index, new_agcount, dblocks);
280		if (error)
281			goto out_unwind_new_pags;
282	}
283
284	*maxagi = xfs_set_inode_alloc(mp, new_agcount);
285	mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp);
286	return 0;
287
 
 
 
 
 
 
 
288out_unwind_new_pags:
289	xfs_free_perag_range(mp, orig_agcount, index);
 
290	return error;
291}
292
293static int
294xfs_get_aghdr_buf(
295	struct xfs_mount	*mp,
296	xfs_daddr_t		blkno,
297	size_t			numblks,
298	struct xfs_buf		**bpp,
299	const struct xfs_buf_ops *ops)
300{
301	struct xfs_buf		*bp;
302	int			error;
303
304	error = xfs_buf_get_uncached(mp->m_ddev_targp, numblks, 0, &bp);
305	if (error)
306		return error;
307
308	bp->b_maps[0].bm_bn = blkno;
309	bp->b_ops = ops;
310
311	*bpp = bp;
312	return 0;
313}
314
315/*
316 * Generic btree root block init function
317 */
318static void
319xfs_btroot_init(
320	struct xfs_mount	*mp,
321	struct xfs_buf		*bp,
322	struct aghdr_init_data	*id)
323{
324	xfs_btree_init_buf(mp, bp, id->bc_ops, 0, 0, id->agno);
325}
326
327/* Finish initializing a free space btree. */
328static void
329xfs_freesp_init_recs(
330	struct xfs_mount	*mp,
331	struct xfs_buf		*bp,
332	struct aghdr_init_data	*id)
333{
334	struct xfs_alloc_rec	*arec;
335	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
336
337	arec = XFS_ALLOC_REC_ADDR(mp, XFS_BUF_TO_BLOCK(bp), 1);
338	arec->ar_startblock = cpu_to_be32(mp->m_ag_prealloc_blocks);
339
340	if (xfs_ag_contains_log(mp, id->agno)) {
341		struct xfs_alloc_rec	*nrec;
342		xfs_agblock_t		start = XFS_FSB_TO_AGBNO(mp,
343							mp->m_sb.sb_logstart);
344
345		ASSERT(start >= mp->m_ag_prealloc_blocks);
346		if (start != mp->m_ag_prealloc_blocks) {
347			/*
348			 * Modify first record to pad stripe align of log and
349			 * bump the record count.
350			 */
351			arec->ar_blockcount = cpu_to_be32(start -
352						mp->m_ag_prealloc_blocks);
353			be16_add_cpu(&block->bb_numrecs, 1);
354			nrec = arec + 1;
355
356			/*
357			 * Insert second record at start of internal log
358			 * which then gets trimmed.
359			 */
360			nrec->ar_startblock = cpu_to_be32(
361					be32_to_cpu(arec->ar_startblock) +
362					be32_to_cpu(arec->ar_blockcount));
363			arec = nrec;
364		}
365		/*
366		 * Change record start to after the internal log
367		 */
368		be32_add_cpu(&arec->ar_startblock, mp->m_sb.sb_logblocks);
369	}
370
371	/*
372	 * Calculate the block count of this record; if it is nonzero,
373	 * increment the record count.
374	 */
375	arec->ar_blockcount = cpu_to_be32(id->agsize -
376					  be32_to_cpu(arec->ar_startblock));
377	if (arec->ar_blockcount)
378		be16_add_cpu(&block->bb_numrecs, 1);
379}
380
381/*
382 * bnobt/cntbt btree root block init functions
383 */
384static void
385xfs_bnoroot_init(
386	struct xfs_mount	*mp,
387	struct xfs_buf		*bp,
388	struct aghdr_init_data	*id)
389{
390	xfs_btree_init_buf(mp, bp, id->bc_ops, 0, 0, id->agno);
 
 
 
 
 
 
 
 
 
 
391	xfs_freesp_init_recs(mp, bp, id);
392}
393
394/*
395 * Reverse map root block init
396 */
397static void
398xfs_rmaproot_init(
399	struct xfs_mount	*mp,
400	struct xfs_buf		*bp,
401	struct aghdr_init_data	*id)
402{
403	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
404	struct xfs_rmap_rec	*rrec;
405
406	xfs_btree_init_buf(mp, bp, id->bc_ops, 0, 4, id->agno);
407
408	/*
409	 * mark the AG header regions as static metadata The BNO
410	 * btree block is the first block after the headers, so
411	 * it's location defines the size of region the static
412	 * metadata consumes.
413	 *
414	 * Note: unlike mkfs, we never have to account for log
415	 * space when growing the data regions
416	 */
417	rrec = XFS_RMAP_REC_ADDR(block, 1);
418	rrec->rm_startblock = 0;
419	rrec->rm_blockcount = cpu_to_be32(XFS_BNO_BLOCK(mp));
420	rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_FS);
421	rrec->rm_offset = 0;
422
423	/* account freespace btree root blocks */
424	rrec = XFS_RMAP_REC_ADDR(block, 2);
425	rrec->rm_startblock = cpu_to_be32(XFS_BNO_BLOCK(mp));
426	rrec->rm_blockcount = cpu_to_be32(2);
427	rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_AG);
428	rrec->rm_offset = 0;
429
430	/* account inode btree root blocks */
431	rrec = XFS_RMAP_REC_ADDR(block, 3);
432	rrec->rm_startblock = cpu_to_be32(XFS_IBT_BLOCK(mp));
433	rrec->rm_blockcount = cpu_to_be32(XFS_RMAP_BLOCK(mp) -
434					  XFS_IBT_BLOCK(mp));
435	rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_INOBT);
436	rrec->rm_offset = 0;
437
438	/* account for rmap btree root */
439	rrec = XFS_RMAP_REC_ADDR(block, 4);
440	rrec->rm_startblock = cpu_to_be32(XFS_RMAP_BLOCK(mp));
441	rrec->rm_blockcount = cpu_to_be32(1);
442	rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_AG);
443	rrec->rm_offset = 0;
444
445	/* account for refc btree root */
446	if (xfs_has_reflink(mp)) {
447		rrec = XFS_RMAP_REC_ADDR(block, 5);
448		rrec->rm_startblock = cpu_to_be32(xfs_refc_block(mp));
449		rrec->rm_blockcount = cpu_to_be32(1);
450		rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_REFC);
451		rrec->rm_offset = 0;
452		be16_add_cpu(&block->bb_numrecs, 1);
453	}
454
455	/* account for the log space */
456	if (xfs_ag_contains_log(mp, id->agno)) {
457		rrec = XFS_RMAP_REC_ADDR(block,
458				be16_to_cpu(block->bb_numrecs) + 1);
459		rrec->rm_startblock = cpu_to_be32(
460				XFS_FSB_TO_AGBNO(mp, mp->m_sb.sb_logstart));
461		rrec->rm_blockcount = cpu_to_be32(mp->m_sb.sb_logblocks);
462		rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_LOG);
463		rrec->rm_offset = 0;
464		be16_add_cpu(&block->bb_numrecs, 1);
465	}
466}
467
468/*
469 * Initialise new secondary superblocks with the pre-grow geometry, but mark
470 * them as "in progress" so we know they haven't yet been activated. This will
471 * get cleared when the update with the new geometry information is done after
472 * changes to the primary are committed. This isn't strictly necessary, but we
473 * get it for free with the delayed buffer write lists and it means we can tell
474 * if a grow operation didn't complete properly after the fact.
475 */
476static void
477xfs_sbblock_init(
478	struct xfs_mount	*mp,
479	struct xfs_buf		*bp,
480	struct aghdr_init_data	*id)
481{
482	struct xfs_dsb		*dsb = bp->b_addr;
483
484	xfs_sb_to_disk(dsb, &mp->m_sb);
485	dsb->sb_inprogress = 1;
486}
487
488static void
489xfs_agfblock_init(
490	struct xfs_mount	*mp,
491	struct xfs_buf		*bp,
492	struct aghdr_init_data	*id)
493{
494	struct xfs_agf		*agf = bp->b_addr;
495	xfs_extlen_t		tmpsize;
496
497	agf->agf_magicnum = cpu_to_be32(XFS_AGF_MAGIC);
498	agf->agf_versionnum = cpu_to_be32(XFS_AGF_VERSION);
499	agf->agf_seqno = cpu_to_be32(id->agno);
500	agf->agf_length = cpu_to_be32(id->agsize);
501	agf->agf_bno_root = cpu_to_be32(XFS_BNO_BLOCK(mp));
502	agf->agf_cnt_root = cpu_to_be32(XFS_CNT_BLOCK(mp));
503	agf->agf_bno_level = cpu_to_be32(1);
504	agf->agf_cnt_level = cpu_to_be32(1);
505	if (xfs_has_rmapbt(mp)) {
506		agf->agf_rmap_root = cpu_to_be32(XFS_RMAP_BLOCK(mp));
507		agf->agf_rmap_level = cpu_to_be32(1);
 
508		agf->agf_rmap_blocks = cpu_to_be32(1);
509	}
510
511	agf->agf_flfirst = cpu_to_be32(1);
512	agf->agf_fllast = 0;
513	agf->agf_flcount = 0;
514	tmpsize = id->agsize - mp->m_ag_prealloc_blocks;
515	agf->agf_freeblks = cpu_to_be32(tmpsize);
516	agf->agf_longest = cpu_to_be32(tmpsize);
517	if (xfs_has_crc(mp))
518		uuid_copy(&agf->agf_uuid, &mp->m_sb.sb_meta_uuid);
519	if (xfs_has_reflink(mp)) {
520		agf->agf_refcount_root = cpu_to_be32(
521				xfs_refc_block(mp));
522		agf->agf_refcount_level = cpu_to_be32(1);
523		agf->agf_refcount_blocks = cpu_to_be32(1);
524	}
525
526	if (xfs_ag_contains_log(mp, id->agno)) {
527		int64_t	logblocks = mp->m_sb.sb_logblocks;
528
529		be32_add_cpu(&agf->agf_freeblks, -logblocks);
530		agf->agf_longest = cpu_to_be32(id->agsize -
531			XFS_FSB_TO_AGBNO(mp, mp->m_sb.sb_logstart) - logblocks);
532	}
533}
534
535static void
536xfs_agflblock_init(
537	struct xfs_mount	*mp,
538	struct xfs_buf		*bp,
539	struct aghdr_init_data	*id)
540{
541	struct xfs_agfl		*agfl = XFS_BUF_TO_AGFL(bp);
542	__be32			*agfl_bno;
543	int			bucket;
544
545	if (xfs_has_crc(mp)) {
546		agfl->agfl_magicnum = cpu_to_be32(XFS_AGFL_MAGIC);
547		agfl->agfl_seqno = cpu_to_be32(id->agno);
548		uuid_copy(&agfl->agfl_uuid, &mp->m_sb.sb_meta_uuid);
549	}
550
551	agfl_bno = xfs_buf_to_agfl_bno(bp);
552	for (bucket = 0; bucket < xfs_agfl_size(mp); bucket++)
553		agfl_bno[bucket] = cpu_to_be32(NULLAGBLOCK);
554}
555
556static void
557xfs_agiblock_init(
558	struct xfs_mount	*mp,
559	struct xfs_buf		*bp,
560	struct aghdr_init_data	*id)
561{
562	struct xfs_agi		*agi = bp->b_addr;
563	int			bucket;
564
565	agi->agi_magicnum = cpu_to_be32(XFS_AGI_MAGIC);
566	agi->agi_versionnum = cpu_to_be32(XFS_AGI_VERSION);
567	agi->agi_seqno = cpu_to_be32(id->agno);
568	agi->agi_length = cpu_to_be32(id->agsize);
569	agi->agi_count = 0;
570	agi->agi_root = cpu_to_be32(XFS_IBT_BLOCK(mp));
571	agi->agi_level = cpu_to_be32(1);
572	agi->agi_freecount = 0;
573	agi->agi_newino = cpu_to_be32(NULLAGINO);
574	agi->agi_dirino = cpu_to_be32(NULLAGINO);
575	if (xfs_has_crc(mp))
576		uuid_copy(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid);
577	if (xfs_has_finobt(mp)) {
578		agi->agi_free_root = cpu_to_be32(XFS_FIBT_BLOCK(mp));
579		agi->agi_free_level = cpu_to_be32(1);
580	}
581	for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++)
582		agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
583	if (xfs_has_inobtcounts(mp)) {
584		agi->agi_iblocks = cpu_to_be32(1);
585		if (xfs_has_finobt(mp))
586			agi->agi_fblocks = cpu_to_be32(1);
587	}
588}
589
590typedef void (*aghdr_init_work_f)(struct xfs_mount *mp, struct xfs_buf *bp,
591				  struct aghdr_init_data *id);
592static int
593xfs_ag_init_hdr(
594	struct xfs_mount	*mp,
595	struct aghdr_init_data	*id,
596	aghdr_init_work_f	work,
597	const struct xfs_buf_ops *ops)
598{
599	struct xfs_buf		*bp;
600	int			error;
601
602	error = xfs_get_aghdr_buf(mp, id->daddr, id->numblks, &bp, ops);
603	if (error)
604		return error;
605
606	(*work)(mp, bp, id);
607
608	xfs_buf_delwri_queue(bp, &id->buffer_list);
609	xfs_buf_relse(bp);
610	return 0;
611}
612
613struct xfs_aghdr_grow_data {
614	xfs_daddr_t		daddr;
615	size_t			numblks;
616	const struct xfs_buf_ops *ops;
617	aghdr_init_work_f	work;
618	const struct xfs_btree_ops *bc_ops;
619	bool			need_init;
620};
621
622/*
623 * Prepare new AG headers to be written to disk. We use uncached buffers here,
624 * as it is assumed these new AG headers are currently beyond the currently
625 * valid filesystem address space. Using cached buffers would trip over EOFS
626 * corruption detection alogrithms in the buffer cache lookup routines.
627 *
628 * This is a non-transactional function, but the prepared buffers are added to a
629 * delayed write buffer list supplied by the caller so they can submit them to
630 * disk and wait on them as required.
631 */
632int
633xfs_ag_init_headers(
634	struct xfs_mount	*mp,
635	struct aghdr_init_data	*id)
636
637{
638	struct xfs_aghdr_grow_data aghdr_data[] = {
639	{ /* SB */
640		.daddr = XFS_AG_DADDR(mp, id->agno, XFS_SB_DADDR),
641		.numblks = XFS_FSS_TO_BB(mp, 1),
642		.ops = &xfs_sb_buf_ops,
643		.work = &xfs_sbblock_init,
644		.need_init = true
645	},
646	{ /* AGF */
647		.daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGF_DADDR(mp)),
648		.numblks = XFS_FSS_TO_BB(mp, 1),
649		.ops = &xfs_agf_buf_ops,
650		.work = &xfs_agfblock_init,
651		.need_init = true
652	},
653	{ /* AGFL */
654		.daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGFL_DADDR(mp)),
655		.numblks = XFS_FSS_TO_BB(mp, 1),
656		.ops = &xfs_agfl_buf_ops,
657		.work = &xfs_agflblock_init,
658		.need_init = true
659	},
660	{ /* AGI */
661		.daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGI_DADDR(mp)),
662		.numblks = XFS_FSS_TO_BB(mp, 1),
663		.ops = &xfs_agi_buf_ops,
664		.work = &xfs_agiblock_init,
665		.need_init = true
666	},
667	{ /* BNO root block */
668		.daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_BNO_BLOCK(mp)),
669		.numblks = BTOBB(mp->m_sb.sb_blocksize),
670		.ops = &xfs_bnobt_buf_ops,
671		.work = &xfs_bnoroot_init,
672		.bc_ops = &xfs_bnobt_ops,
673		.need_init = true
674	},
675	{ /* CNT root block */
676		.daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_CNT_BLOCK(mp)),
677		.numblks = BTOBB(mp->m_sb.sb_blocksize),
678		.ops = &xfs_cntbt_buf_ops,
679		.work = &xfs_bnoroot_init,
680		.bc_ops = &xfs_cntbt_ops,
681		.need_init = true
682	},
683	{ /* INO root block */
684		.daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_IBT_BLOCK(mp)),
685		.numblks = BTOBB(mp->m_sb.sb_blocksize),
686		.ops = &xfs_inobt_buf_ops,
687		.work = &xfs_btroot_init,
688		.bc_ops = &xfs_inobt_ops,
689		.need_init = true
690	},
691	{ /* FINO root block */
692		.daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_FIBT_BLOCK(mp)),
693		.numblks = BTOBB(mp->m_sb.sb_blocksize),
694		.ops = &xfs_finobt_buf_ops,
695		.work = &xfs_btroot_init,
696		.bc_ops = &xfs_finobt_ops,
697		.need_init =  xfs_has_finobt(mp)
698	},
699	{ /* RMAP root block */
700		.daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_RMAP_BLOCK(mp)),
701		.numblks = BTOBB(mp->m_sb.sb_blocksize),
702		.ops = &xfs_rmapbt_buf_ops,
703		.work = &xfs_rmaproot_init,
704		.bc_ops = &xfs_rmapbt_ops,
705		.need_init = xfs_has_rmapbt(mp)
706	},
707	{ /* REFC root block */
708		.daddr = XFS_AGB_TO_DADDR(mp, id->agno, xfs_refc_block(mp)),
709		.numblks = BTOBB(mp->m_sb.sb_blocksize),
710		.ops = &xfs_refcountbt_buf_ops,
711		.work = &xfs_btroot_init,
712		.bc_ops = &xfs_refcountbt_ops,
713		.need_init = xfs_has_reflink(mp)
714	},
715	{ /* NULL terminating block */
716		.daddr = XFS_BUF_DADDR_NULL,
717	}
718	};
719	struct  xfs_aghdr_grow_data *dp;
720	int			error = 0;
721
722	/* Account for AG free space in new AG */
723	id->nfree += id->agsize - mp->m_ag_prealloc_blocks;
724	for (dp = &aghdr_data[0]; dp->daddr != XFS_BUF_DADDR_NULL; dp++) {
725		if (!dp->need_init)
726			continue;
727
728		id->daddr = dp->daddr;
729		id->numblks = dp->numblks;
730		id->bc_ops = dp->bc_ops;
731		error = xfs_ag_init_hdr(mp, id, dp->work, dp->ops);
732		if (error)
733			break;
734	}
735	return error;
736}
737
738int
739xfs_ag_shrink_space(
740	struct xfs_perag	*pag,
741	struct xfs_trans	**tpp,
742	xfs_extlen_t		delta)
743{
744	struct xfs_mount	*mp = pag_mount(pag);
745	struct xfs_alloc_arg	args = {
746		.tp	= *tpp,
747		.mp	= mp,
748		.pag	= pag,
749		.minlen = delta,
750		.maxlen = delta,
751		.oinfo	= XFS_RMAP_OINFO_SKIP_UPDATE,
752		.resv	= XFS_AG_RESV_NONE,
753		.prod	= 1
754	};
755	struct xfs_buf		*agibp, *agfbp;
756	struct xfs_agi		*agi;
757	struct xfs_agf		*agf;
758	xfs_agblock_t		aglen;
759	int			error, err2;
760
761	ASSERT(pag_agno(pag) == mp->m_sb.sb_agcount - 1);
762	error = xfs_ialloc_read_agi(pag, *tpp, 0, &agibp);
763	if (error)
764		return error;
765
766	agi = agibp->b_addr;
767
768	error = xfs_alloc_read_agf(pag, *tpp, 0, &agfbp);
769	if (error)
770		return error;
771
772	agf = agfbp->b_addr;
773	aglen = be32_to_cpu(agi->agi_length);
774	/* some extra paranoid checks before we shrink the ag */
775	if (XFS_IS_CORRUPT(mp, agf->agf_length != agi->agi_length)) {
776		xfs_ag_mark_sick(pag, XFS_SICK_AG_AGF);
777		return -EFSCORRUPTED;
778	}
779	if (delta >= aglen)
780		return -EINVAL;
781
782	/*
783	 * Make sure that the last inode cluster cannot overlap with the new
784	 * end of the AG, even if it's sparse.
785	 */
786	error = xfs_ialloc_check_shrink(pag, *tpp, agibp, aglen - delta);
787	if (error)
788		return error;
789
790	/*
791	 * Disable perag reservations so it doesn't cause the allocation request
792	 * to fail. We'll reestablish reservation before we return.
793	 */
794	xfs_ag_resv_free(pag);
 
 
795
796	/* internal log shouldn't also show up in the free space btrees */
797	error = xfs_alloc_vextent_exact_bno(&args,
798			xfs_agbno_to_fsb(pag, aglen - delta));
799	if (!error && args.agbno == NULLAGBLOCK)
800		error = -ENOSPC;
801
802	if (error) {
803		/*
804		 * If extent allocation fails, need to roll the transaction to
805		 * ensure that the AGFL fixup has been committed anyway.
806		 *
807		 * We need to hold the AGF across the roll to ensure nothing can
808		 * access the AG for allocation until the shrink is fully
809		 * cleaned up. And due to the resetting of the AG block
810		 * reservation space needing to lock the AGI, we also have to
811		 * hold that so we don't get AGI/AGF lock order inversions in
812		 * the error handling path.
813		 */
814		xfs_trans_bhold(*tpp, agfbp);
815		xfs_trans_bhold(*tpp, agibp);
816		err2 = xfs_trans_roll(tpp);
817		if (err2)
818			return err2;
819		xfs_trans_bjoin(*tpp, agfbp);
820		xfs_trans_bjoin(*tpp, agibp);
821		goto resv_init_out;
822	}
823
824	/*
825	 * if successfully deleted from freespace btrees, need to confirm
826	 * per-AG reservation works as expected.
827	 */
828	be32_add_cpu(&agi->agi_length, -delta);
829	be32_add_cpu(&agf->agf_length, -delta);
830
831	err2 = xfs_ag_resv_init(pag, *tpp);
832	if (err2) {
833		be32_add_cpu(&agi->agi_length, delta);
834		be32_add_cpu(&agf->agf_length, delta);
835		if (err2 != -ENOSPC)
836			goto resv_err;
837
838		err2 = xfs_free_extent_later(*tpp, args.fsbno, delta, NULL,
839				XFS_AG_RESV_NONE, XFS_FREE_EXTENT_SKIP_DISCARD);
840		if (err2)
841			goto resv_err;
842
843		/*
844		 * Roll the transaction before trying to re-init the per-ag
845		 * reservation. The new transaction is clean so it will cancel
846		 * without any side effects.
847		 */
848		error = xfs_defer_finish(tpp);
849		if (error)
850			return error;
851
852		error = -ENOSPC;
853		goto resv_init_out;
854	}
855
856	/* Update perag geometry */
857	pag_group(pag)->xg_block_count -= delta;
858	__xfs_agino_range(mp, pag_group(pag)->xg_block_count, &pag->agino_min,
859			&pag->agino_max);
860
861	xfs_ialloc_log_agi(*tpp, agibp, XFS_AGI_LENGTH);
862	xfs_alloc_log_agf(*tpp, agfbp, XFS_AGF_LENGTH);
863	return 0;
864
865resv_init_out:
866	err2 = xfs_ag_resv_init(pag, *tpp);
867	if (!err2)
868		return error;
869resv_err:
870	xfs_warn(mp, "Error %d reserving per-AG metadata reserve pool.", err2);
871	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
872	return err2;
873}
874
875/*
876 * Extent the AG indicated by the @id by the length passed in
877 */
878int
879xfs_ag_extend_space(
880	struct xfs_perag	*pag,
881	struct xfs_trans	*tp,
882	xfs_extlen_t		len)
883{
884	struct xfs_mount	*mp = pag_mount(pag);
885	struct xfs_buf		*bp;
886	struct xfs_agi		*agi;
887	struct xfs_agf		*agf;
888	int			error;
889
890	ASSERT(pag_agno(pag) == mp->m_sb.sb_agcount - 1);
891
892	error = xfs_ialloc_read_agi(pag, tp, 0, &bp);
893	if (error)
894		return error;
895
896	agi = bp->b_addr;
897	be32_add_cpu(&agi->agi_length, len);
898	xfs_ialloc_log_agi(tp, bp, XFS_AGI_LENGTH);
899
900	/*
901	 * Change agf length.
902	 */
903	error = xfs_alloc_read_agf(pag, tp, 0, &bp);
904	if (error)
905		return error;
906
907	agf = bp->b_addr;
908	be32_add_cpu(&agf->agf_length, len);
909	ASSERT(agf->agf_length == agi->agi_length);
910	xfs_alloc_log_agf(tp, bp, XFS_AGF_LENGTH);
911
912	/*
913	 * Free the new space.
914	 *
915	 * XFS_RMAP_OINFO_SKIP_UPDATE is used here to tell the rmap btree that
916	 * this doesn't actually exist in the rmap btree.
917	 */
918	error = xfs_rmap_free(tp, bp, pag, be32_to_cpu(agf->agf_length) - len,
919				len, &XFS_RMAP_OINFO_SKIP_UPDATE);
920	if (error)
921		return error;
922
923	error = xfs_free_extent(tp, pag, be32_to_cpu(agf->agf_length) - len,
924			len, &XFS_RMAP_OINFO_SKIP_UPDATE, XFS_AG_RESV_NONE);
925	if (error)
926		return error;
927
928	/* Update perag geometry */
929	pag_group(pag)->xg_block_count = be32_to_cpu(agf->agf_length);
930	__xfs_agino_range(mp, pag_group(pag)->xg_block_count, &pag->agino_min,
931			&pag->agino_max);
932	return 0;
933}
934
935/* Retrieve AG geometry. */
936int
937xfs_ag_get_geometry(
938	struct xfs_perag	*pag,
939	struct xfs_ag_geometry	*ageo)
940{
941	struct xfs_buf		*agi_bp;
942	struct xfs_buf		*agf_bp;
943	struct xfs_agi		*agi;
944	struct xfs_agf		*agf;
945	unsigned int		freeblks;
946	int			error;
947
948	/* Lock the AG headers. */
949	error = xfs_ialloc_read_agi(pag, NULL, 0, &agi_bp);
950	if (error)
951		return error;
952	error = xfs_alloc_read_agf(pag, NULL, 0, &agf_bp);
953	if (error)
954		goto out_agi;
955
956	/* Fill out form. */
957	memset(ageo, 0, sizeof(*ageo));
958	ageo->ag_number = pag_agno(pag);
959
960	agi = agi_bp->b_addr;
961	ageo->ag_icount = be32_to_cpu(agi->agi_count);
962	ageo->ag_ifree = be32_to_cpu(agi->agi_freecount);
963
964	agf = agf_bp->b_addr;
965	ageo->ag_length = be32_to_cpu(agf->agf_length);
966	freeblks = pag->pagf_freeblks +
967		   pag->pagf_flcount +
968		   pag->pagf_btreeblks -
969		   xfs_ag_resv_needed(pag, XFS_AG_RESV_NONE);
970	ageo->ag_freeblks = freeblks;
971	xfs_ag_geom_health(pag, ageo);
972
973	/* Release resources. */
974	xfs_buf_relse(agf_bp);
975out_agi:
976	xfs_buf_relse(agi_bp);
977	return error;
978}