Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * USB4 specific functionality
4 *
5 * Copyright (C) 2019, Intel Corporation
6 * Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
7 * Rajmohan Mani <rajmohan.mani@intel.com>
8 */
9
10#include <linux/delay.h>
11#include <linux/ktime.h>
12#include <linux/units.h>
13
14#include "sb_regs.h"
15#include "tb.h"
16
17#define USB4_DATA_RETRIES 3
18#define USB4_DATA_DWORDS 16
19
20enum usb4_sb_target {
21 USB4_SB_TARGET_ROUTER,
22 USB4_SB_TARGET_PARTNER,
23 USB4_SB_TARGET_RETIMER,
24};
25
26#define USB4_NVM_READ_OFFSET_MASK GENMASK(23, 2)
27#define USB4_NVM_READ_OFFSET_SHIFT 2
28#define USB4_NVM_READ_LENGTH_MASK GENMASK(27, 24)
29#define USB4_NVM_READ_LENGTH_SHIFT 24
30
31#define USB4_NVM_SET_OFFSET_MASK USB4_NVM_READ_OFFSET_MASK
32#define USB4_NVM_SET_OFFSET_SHIFT USB4_NVM_READ_OFFSET_SHIFT
33
34#define USB4_DROM_ADDRESS_MASK GENMASK(14, 2)
35#define USB4_DROM_ADDRESS_SHIFT 2
36#define USB4_DROM_SIZE_MASK GENMASK(19, 15)
37#define USB4_DROM_SIZE_SHIFT 15
38
39#define USB4_NVM_SECTOR_SIZE_MASK GENMASK(23, 0)
40
41#define USB4_BA_LENGTH_MASK GENMASK(7, 0)
42#define USB4_BA_INDEX_MASK GENMASK(15, 0)
43
44enum usb4_ba_index {
45 USB4_BA_MAX_USB3 = 0x1,
46 USB4_BA_MIN_DP_AUX = 0x2,
47 USB4_BA_MIN_DP_MAIN = 0x3,
48 USB4_BA_MAX_PCIE = 0x4,
49 USB4_BA_MAX_HI = 0x5,
50};
51
52#define USB4_BA_VALUE_MASK GENMASK(31, 16)
53#define USB4_BA_VALUE_SHIFT 16
54
55static int usb4_native_switch_op(struct tb_switch *sw, u16 opcode,
56 u32 *metadata, u8 *status,
57 const void *tx_data, size_t tx_dwords,
58 void *rx_data, size_t rx_dwords)
59{
60 u32 val;
61 int ret;
62
63 if (metadata) {
64 ret = tb_sw_write(sw, metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1);
65 if (ret)
66 return ret;
67 }
68 if (tx_dwords) {
69 ret = tb_sw_write(sw, tx_data, TB_CFG_SWITCH, ROUTER_CS_9,
70 tx_dwords);
71 if (ret)
72 return ret;
73 }
74
75 val = opcode | ROUTER_CS_26_OV;
76 ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
77 if (ret)
78 return ret;
79
80 ret = tb_switch_wait_for_bit(sw, ROUTER_CS_26, ROUTER_CS_26_OV, 0, 500);
81 if (ret)
82 return ret;
83
84 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
85 if (ret)
86 return ret;
87
88 if (val & ROUTER_CS_26_ONS)
89 return -EOPNOTSUPP;
90
91 if (status)
92 *status = (val & ROUTER_CS_26_STATUS_MASK) >>
93 ROUTER_CS_26_STATUS_SHIFT;
94
95 if (metadata) {
96 ret = tb_sw_read(sw, metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1);
97 if (ret)
98 return ret;
99 }
100 if (rx_dwords) {
101 ret = tb_sw_read(sw, rx_data, TB_CFG_SWITCH, ROUTER_CS_9,
102 rx_dwords);
103 if (ret)
104 return ret;
105 }
106
107 return 0;
108}
109
110static int __usb4_switch_op(struct tb_switch *sw, u16 opcode, u32 *metadata,
111 u8 *status, const void *tx_data, size_t tx_dwords,
112 void *rx_data, size_t rx_dwords)
113{
114 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
115
116 if (tx_dwords > USB4_DATA_DWORDS || rx_dwords > USB4_DATA_DWORDS)
117 return -EINVAL;
118
119 /*
120 * If the connection manager implementation provides USB4 router
121 * operation proxy callback, call it here instead of running the
122 * operation natively.
123 */
124 if (cm_ops->usb4_switch_op) {
125 int ret;
126
127 ret = cm_ops->usb4_switch_op(sw, opcode, metadata, status,
128 tx_data, tx_dwords, rx_data,
129 rx_dwords);
130 if (ret != -EOPNOTSUPP)
131 return ret;
132
133 /*
134 * If the proxy was not supported then run the native
135 * router operation instead.
136 */
137 }
138
139 return usb4_native_switch_op(sw, opcode, metadata, status, tx_data,
140 tx_dwords, rx_data, rx_dwords);
141}
142
143static inline int usb4_switch_op(struct tb_switch *sw, u16 opcode,
144 u32 *metadata, u8 *status)
145{
146 return __usb4_switch_op(sw, opcode, metadata, status, NULL, 0, NULL, 0);
147}
148
149static inline int usb4_switch_op_data(struct tb_switch *sw, u16 opcode,
150 u32 *metadata, u8 *status,
151 const void *tx_data, size_t tx_dwords,
152 void *rx_data, size_t rx_dwords)
153{
154 return __usb4_switch_op(sw, opcode, metadata, status, tx_data,
155 tx_dwords, rx_data, rx_dwords);
156}
157
158static void usb4_switch_check_wakes(struct tb_switch *sw)
159{
160 bool wakeup_usb4 = false;
161 struct usb4_port *usb4;
162 struct tb_port *port;
163 bool wakeup = false;
164 u32 val;
165
166 if (!device_may_wakeup(&sw->dev))
167 return;
168
169 if (tb_route(sw)) {
170 if (tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_6, 1))
171 return;
172
173 tb_sw_dbg(sw, "PCIe wake: %s, USB3 wake: %s\n",
174 (val & ROUTER_CS_6_WOPS) ? "yes" : "no",
175 (val & ROUTER_CS_6_WOUS) ? "yes" : "no");
176
177 wakeup = val & (ROUTER_CS_6_WOPS | ROUTER_CS_6_WOUS);
178 }
179
180 /*
181 * Check for any downstream ports for USB4 wake,
182 * connection wake and disconnection wake.
183 */
184 tb_switch_for_each_port(sw, port) {
185 if (!port->cap_usb4)
186 continue;
187
188 if (tb_port_read(port, &val, TB_CFG_PORT,
189 port->cap_usb4 + PORT_CS_18, 1))
190 break;
191
192 tb_port_dbg(port, "USB4 wake: %s, connection wake: %s, disconnection wake: %s\n",
193 (val & PORT_CS_18_WOU4S) ? "yes" : "no",
194 (val & PORT_CS_18_WOCS) ? "yes" : "no",
195 (val & PORT_CS_18_WODS) ? "yes" : "no");
196
197 wakeup_usb4 = val & (PORT_CS_18_WOU4S | PORT_CS_18_WOCS |
198 PORT_CS_18_WODS);
199
200 usb4 = port->usb4;
201 if (device_may_wakeup(&usb4->dev) && wakeup_usb4)
202 pm_wakeup_event(&usb4->dev, 0);
203
204 wakeup |= wakeup_usb4;
205 }
206
207 if (wakeup)
208 pm_wakeup_event(&sw->dev, 0);
209}
210
211static bool link_is_usb4(struct tb_port *port)
212{
213 u32 val;
214
215 if (!port->cap_usb4)
216 return false;
217
218 if (tb_port_read(port, &val, TB_CFG_PORT,
219 port->cap_usb4 + PORT_CS_18, 1))
220 return false;
221
222 return !(val & PORT_CS_18_TCM);
223}
224
225/**
226 * usb4_switch_setup() - Additional setup for USB4 device
227 * @sw: USB4 router to setup
228 *
229 * USB4 routers need additional settings in order to enable all the
230 * tunneling. This function enables USB and PCIe tunneling if it can be
231 * enabled (e.g the parent switch also supports them). If USB tunneling
232 * is not available for some reason (like that there is Thunderbolt 3
233 * switch upstream) then the internal xHCI controller is enabled
234 * instead.
235 *
236 * This does not set the configuration valid bit of the router. To do
237 * that call usb4_switch_configuration_valid().
238 */
239int usb4_switch_setup(struct tb_switch *sw)
240{
241 struct tb_switch *parent = tb_switch_parent(sw);
242 struct tb_port *down;
243 bool tbt3, xhci;
244 u32 val = 0;
245 int ret;
246
247 usb4_switch_check_wakes(sw);
248
249 if (!tb_route(sw))
250 return 0;
251
252 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_6, 1);
253 if (ret)
254 return ret;
255
256 down = tb_switch_downstream_port(sw);
257 sw->link_usb4 = link_is_usb4(down);
258 tb_sw_dbg(sw, "link: %s\n", sw->link_usb4 ? "USB4" : "TBT");
259
260 xhci = val & ROUTER_CS_6_HCI;
261 tbt3 = !(val & ROUTER_CS_6_TNS);
262
263 tb_sw_dbg(sw, "TBT3 support: %s, xHCI: %s\n",
264 tbt3 ? "yes" : "no", xhci ? "yes" : "no");
265
266 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
267 if (ret)
268 return ret;
269
270 if (tb_acpi_may_tunnel_usb3() && sw->link_usb4 &&
271 tb_switch_find_port(parent, TB_TYPE_USB3_DOWN)) {
272 val |= ROUTER_CS_5_UTO;
273 xhci = false;
274 }
275
276 /*
277 * Only enable PCIe tunneling if the parent router supports it
278 * and it is not disabled.
279 */
280 if (tb_acpi_may_tunnel_pcie() &&
281 tb_switch_find_port(parent, TB_TYPE_PCIE_DOWN)) {
282 val |= ROUTER_CS_5_PTO;
283 /*
284 * xHCI can be enabled if PCIe tunneling is supported
285 * and the parent does not have any USB3 dowstream
286 * adapters (so we cannot do USB 3.x tunneling).
287 */
288 if (xhci)
289 val |= ROUTER_CS_5_HCO;
290 }
291
292 /* TBT3 supported by the CM */
293 val &= ~ROUTER_CS_5_CNS;
294
295 return tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
296}
297
298/**
299 * usb4_switch_configuration_valid() - Set tunneling configuration to be valid
300 * @sw: USB4 router
301 *
302 * Sets configuration valid bit for the router. Must be called before
303 * any tunnels can be set through the router and after
304 * usb4_switch_setup() has been called. Can be called to host and device
305 * routers (does nothing for the latter).
306 *
307 * Returns %0 in success and negative errno otherwise.
308 */
309int usb4_switch_configuration_valid(struct tb_switch *sw)
310{
311 u32 val;
312 int ret;
313
314 if (!tb_route(sw))
315 return 0;
316
317 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
318 if (ret)
319 return ret;
320
321 val |= ROUTER_CS_5_CV;
322
323 ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
324 if (ret)
325 return ret;
326
327 return tb_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_CR,
328 ROUTER_CS_6_CR, 50);
329}
330
331/**
332 * usb4_switch_read_uid() - Read UID from USB4 router
333 * @sw: USB4 router
334 * @uid: UID is stored here
335 *
336 * Reads 64-bit UID from USB4 router config space.
337 */
338int usb4_switch_read_uid(struct tb_switch *sw, u64 *uid)
339{
340 return tb_sw_read(sw, uid, TB_CFG_SWITCH, ROUTER_CS_7, 2);
341}
342
343static int usb4_switch_drom_read_block(void *data,
344 unsigned int dwaddress, void *buf,
345 size_t dwords)
346{
347 struct tb_switch *sw = data;
348 u8 status = 0;
349 u32 metadata;
350 int ret;
351
352 metadata = (dwords << USB4_DROM_SIZE_SHIFT) & USB4_DROM_SIZE_MASK;
353 metadata |= (dwaddress << USB4_DROM_ADDRESS_SHIFT) &
354 USB4_DROM_ADDRESS_MASK;
355
356 ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_DROM_READ, &metadata,
357 &status, NULL, 0, buf, dwords);
358 if (ret)
359 return ret;
360
361 return status ? -EIO : 0;
362}
363
364/**
365 * usb4_switch_drom_read() - Read arbitrary bytes from USB4 router DROM
366 * @sw: USB4 router
367 * @address: Byte address inside DROM to start reading
368 * @buf: Buffer where the DROM content is stored
369 * @size: Number of bytes to read from DROM
370 *
371 * Uses USB4 router operations to read router DROM. For devices this
372 * should always work but for hosts it may return %-EOPNOTSUPP in which
373 * case the host router does not have DROM.
374 */
375int usb4_switch_drom_read(struct tb_switch *sw, unsigned int address, void *buf,
376 size_t size)
377{
378 return tb_nvm_read_data(address, buf, size, USB4_DATA_RETRIES,
379 usb4_switch_drom_read_block, sw);
380}
381
382/**
383 * usb4_switch_lane_bonding_possible() - Are conditions met for lane bonding
384 * @sw: USB4 router
385 *
386 * Checks whether conditions are met so that lane bonding can be
387 * established with the upstream router. Call only for device routers.
388 */
389bool usb4_switch_lane_bonding_possible(struct tb_switch *sw)
390{
391 struct tb_port *up;
392 int ret;
393 u32 val;
394
395 up = tb_upstream_port(sw);
396 ret = tb_port_read(up, &val, TB_CFG_PORT, up->cap_usb4 + PORT_CS_18, 1);
397 if (ret)
398 return false;
399
400 return !!(val & PORT_CS_18_BE);
401}
402
403/**
404 * usb4_switch_set_wake() - Enabled/disable wake
405 * @sw: USB4 router
406 * @flags: Wakeup flags (%0 to disable)
407 *
408 * Enables/disables router to wake up from sleep.
409 */
410int usb4_switch_set_wake(struct tb_switch *sw, unsigned int flags)
411{
412 struct usb4_port *usb4;
413 struct tb_port *port;
414 u64 route = tb_route(sw);
415 u32 val;
416 int ret;
417
418 /*
419 * Enable wakes coming from all USB4 downstream ports (from
420 * child routers). For device routers do this also for the
421 * upstream USB4 port.
422 */
423 tb_switch_for_each_port(sw, port) {
424 if (!tb_port_is_null(port))
425 continue;
426 if (!route && tb_is_upstream_port(port))
427 continue;
428 if (!port->cap_usb4)
429 continue;
430
431 ret = tb_port_read(port, &val, TB_CFG_PORT,
432 port->cap_usb4 + PORT_CS_19, 1);
433 if (ret)
434 return ret;
435
436 val &= ~(PORT_CS_19_WOC | PORT_CS_19_WOD | PORT_CS_19_WOU4);
437
438 if (tb_is_upstream_port(port)) {
439 val |= PORT_CS_19_WOU4;
440 } else {
441 bool configured = val & PORT_CS_19_PC;
442 usb4 = port->usb4;
443
444 if (((flags & TB_WAKE_ON_CONNECT) |
445 device_may_wakeup(&usb4->dev)) && !configured)
446 val |= PORT_CS_19_WOC;
447 if (((flags & TB_WAKE_ON_DISCONNECT) |
448 device_may_wakeup(&usb4->dev)) && configured)
449 val |= PORT_CS_19_WOD;
450 if ((flags & TB_WAKE_ON_USB4) && configured)
451 val |= PORT_CS_19_WOU4;
452 }
453
454 ret = tb_port_write(port, &val, TB_CFG_PORT,
455 port->cap_usb4 + PORT_CS_19, 1);
456 if (ret)
457 return ret;
458 }
459
460 /*
461 * Enable wakes from PCIe, USB 3.x and DP on this router. Only
462 * needed for device routers.
463 */
464 if (route) {
465 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
466 if (ret)
467 return ret;
468
469 val &= ~(ROUTER_CS_5_WOP | ROUTER_CS_5_WOU | ROUTER_CS_5_WOD);
470 if (flags & TB_WAKE_ON_USB3)
471 val |= ROUTER_CS_5_WOU;
472 if (flags & TB_WAKE_ON_PCIE)
473 val |= ROUTER_CS_5_WOP;
474 if (flags & TB_WAKE_ON_DP)
475 val |= ROUTER_CS_5_WOD;
476
477 ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
478 if (ret)
479 return ret;
480 }
481
482 return 0;
483}
484
485/**
486 * usb4_switch_set_sleep() - Prepare the router to enter sleep
487 * @sw: USB4 router
488 *
489 * Sets sleep bit for the router. Returns when the router sleep ready
490 * bit has been asserted.
491 */
492int usb4_switch_set_sleep(struct tb_switch *sw)
493{
494 int ret;
495 u32 val;
496
497 /* Set sleep bit and wait for sleep ready to be asserted */
498 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
499 if (ret)
500 return ret;
501
502 val |= ROUTER_CS_5_SLP;
503
504 ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
505 if (ret)
506 return ret;
507
508 return tb_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_SLPR,
509 ROUTER_CS_6_SLPR, 500);
510}
511
512/**
513 * usb4_switch_nvm_sector_size() - Return router NVM sector size
514 * @sw: USB4 router
515 *
516 * If the router supports NVM operations this function returns the NVM
517 * sector size in bytes. If NVM operations are not supported returns
518 * %-EOPNOTSUPP.
519 */
520int usb4_switch_nvm_sector_size(struct tb_switch *sw)
521{
522 u32 metadata;
523 u8 status;
524 int ret;
525
526 ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SECTOR_SIZE, &metadata,
527 &status);
528 if (ret)
529 return ret;
530
531 if (status)
532 return status == 0x2 ? -EOPNOTSUPP : -EIO;
533
534 return metadata & USB4_NVM_SECTOR_SIZE_MASK;
535}
536
537static int usb4_switch_nvm_read_block(void *data,
538 unsigned int dwaddress, void *buf, size_t dwords)
539{
540 struct tb_switch *sw = data;
541 u8 status = 0;
542 u32 metadata;
543 int ret;
544
545 metadata = (dwords << USB4_NVM_READ_LENGTH_SHIFT) &
546 USB4_NVM_READ_LENGTH_MASK;
547 metadata |= (dwaddress << USB4_NVM_READ_OFFSET_SHIFT) &
548 USB4_NVM_READ_OFFSET_MASK;
549
550 ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_NVM_READ, &metadata,
551 &status, NULL, 0, buf, dwords);
552 if (ret)
553 return ret;
554
555 return status ? -EIO : 0;
556}
557
558/**
559 * usb4_switch_nvm_read() - Read arbitrary bytes from router NVM
560 * @sw: USB4 router
561 * @address: Starting address in bytes
562 * @buf: Read data is placed here
563 * @size: How many bytes to read
564 *
565 * Reads NVM contents of the router. If NVM is not supported returns
566 * %-EOPNOTSUPP.
567 */
568int usb4_switch_nvm_read(struct tb_switch *sw, unsigned int address, void *buf,
569 size_t size)
570{
571 return tb_nvm_read_data(address, buf, size, USB4_DATA_RETRIES,
572 usb4_switch_nvm_read_block, sw);
573}
574
575/**
576 * usb4_switch_nvm_set_offset() - Set NVM write offset
577 * @sw: USB4 router
578 * @address: Start offset
579 *
580 * Explicitly sets NVM write offset. Normally when writing to NVM this
581 * is done automatically by usb4_switch_nvm_write().
582 *
583 * Returns %0 in success and negative errno if there was a failure.
584 */
585int usb4_switch_nvm_set_offset(struct tb_switch *sw, unsigned int address)
586{
587 u32 metadata, dwaddress;
588 u8 status = 0;
589 int ret;
590
591 dwaddress = address / 4;
592 metadata = (dwaddress << USB4_NVM_SET_OFFSET_SHIFT) &
593 USB4_NVM_SET_OFFSET_MASK;
594
595 ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SET_OFFSET, &metadata,
596 &status);
597 if (ret)
598 return ret;
599
600 return status ? -EIO : 0;
601}
602
603static int usb4_switch_nvm_write_next_block(void *data, unsigned int dwaddress,
604 const void *buf, size_t dwords)
605{
606 struct tb_switch *sw = data;
607 u8 status;
608 int ret;
609
610 ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_NVM_WRITE, NULL, &status,
611 buf, dwords, NULL, 0);
612 if (ret)
613 return ret;
614
615 return status ? -EIO : 0;
616}
617
618/**
619 * usb4_switch_nvm_write() - Write to the router NVM
620 * @sw: USB4 router
621 * @address: Start address where to write in bytes
622 * @buf: Pointer to the data to write
623 * @size: Size of @buf in bytes
624 *
625 * Writes @buf to the router NVM using USB4 router operations. If NVM
626 * write is not supported returns %-EOPNOTSUPP.
627 */
628int usb4_switch_nvm_write(struct tb_switch *sw, unsigned int address,
629 const void *buf, size_t size)
630{
631 int ret;
632
633 ret = usb4_switch_nvm_set_offset(sw, address);
634 if (ret)
635 return ret;
636
637 return tb_nvm_write_data(address, buf, size, USB4_DATA_RETRIES,
638 usb4_switch_nvm_write_next_block, sw);
639}
640
641/**
642 * usb4_switch_nvm_authenticate() - Authenticate new NVM
643 * @sw: USB4 router
644 *
645 * After the new NVM has been written via usb4_switch_nvm_write(), this
646 * function triggers NVM authentication process. The router gets power
647 * cycled and if the authentication is successful the new NVM starts
648 * running. In case of failure returns negative errno.
649 *
650 * The caller should call usb4_switch_nvm_authenticate_status() to read
651 * the status of the authentication after power cycle. It should be the
652 * first router operation to avoid the status being lost.
653 */
654int usb4_switch_nvm_authenticate(struct tb_switch *sw)
655{
656 int ret;
657
658 ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_AUTH, NULL, NULL);
659 switch (ret) {
660 /*
661 * The router is power cycled once NVM_AUTH is started so it is
662 * expected to get any of the following errors back.
663 */
664 case -EACCES:
665 case -ENOTCONN:
666 case -ETIMEDOUT:
667 return 0;
668
669 default:
670 return ret;
671 }
672}
673
674/**
675 * usb4_switch_nvm_authenticate_status() - Read status of last NVM authenticate
676 * @sw: USB4 router
677 * @status: Status code of the operation
678 *
679 * The function checks if there is status available from the last NVM
680 * authenticate router operation. If there is status then %0 is returned
681 * and the status code is placed in @status. Returns negative errno in case
682 * of failure.
683 *
684 * Must be called before any other router operation.
685 */
686int usb4_switch_nvm_authenticate_status(struct tb_switch *sw, u32 *status)
687{
688 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
689 u16 opcode;
690 u32 val;
691 int ret;
692
693 if (cm_ops->usb4_switch_nvm_authenticate_status) {
694 ret = cm_ops->usb4_switch_nvm_authenticate_status(sw, status);
695 if (ret != -EOPNOTSUPP)
696 return ret;
697 }
698
699 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
700 if (ret)
701 return ret;
702
703 /* Check that the opcode is correct */
704 opcode = val & ROUTER_CS_26_OPCODE_MASK;
705 if (opcode == USB4_SWITCH_OP_NVM_AUTH) {
706 if (val & ROUTER_CS_26_OV)
707 return -EBUSY;
708 if (val & ROUTER_CS_26_ONS)
709 return -EOPNOTSUPP;
710
711 *status = (val & ROUTER_CS_26_STATUS_MASK) >>
712 ROUTER_CS_26_STATUS_SHIFT;
713 } else {
714 *status = 0;
715 }
716
717 return 0;
718}
719
720/**
721 * usb4_switch_credits_init() - Read buffer allocation parameters
722 * @sw: USB4 router
723 *
724 * Reads @sw buffer allocation parameters and initializes @sw buffer
725 * allocation fields accordingly. Specifically @sw->credits_allocation
726 * is set to %true if these parameters can be used in tunneling.
727 *
728 * Returns %0 on success and negative errno otherwise.
729 */
730int usb4_switch_credits_init(struct tb_switch *sw)
731{
732 int max_usb3, min_dp_aux, min_dp_main, max_pcie, max_dma;
733 int ret, length, i, nports;
734 const struct tb_port *port;
735 u32 data[USB4_DATA_DWORDS];
736 u32 metadata = 0;
737 u8 status = 0;
738
739 memset(data, 0, sizeof(data));
740 ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_BUFFER_ALLOC, &metadata,
741 &status, NULL, 0, data, ARRAY_SIZE(data));
742 if (ret)
743 return ret;
744 if (status)
745 return -EIO;
746
747 length = metadata & USB4_BA_LENGTH_MASK;
748 if (WARN_ON(length > ARRAY_SIZE(data)))
749 return -EMSGSIZE;
750
751 max_usb3 = -1;
752 min_dp_aux = -1;
753 min_dp_main = -1;
754 max_pcie = -1;
755 max_dma = -1;
756
757 tb_sw_dbg(sw, "credit allocation parameters:\n");
758
759 for (i = 0; i < length; i++) {
760 u16 index, value;
761
762 index = data[i] & USB4_BA_INDEX_MASK;
763 value = (data[i] & USB4_BA_VALUE_MASK) >> USB4_BA_VALUE_SHIFT;
764
765 switch (index) {
766 case USB4_BA_MAX_USB3:
767 tb_sw_dbg(sw, " USB3: %u\n", value);
768 max_usb3 = value;
769 break;
770 case USB4_BA_MIN_DP_AUX:
771 tb_sw_dbg(sw, " DP AUX: %u\n", value);
772 min_dp_aux = value;
773 break;
774 case USB4_BA_MIN_DP_MAIN:
775 tb_sw_dbg(sw, " DP main: %u\n", value);
776 min_dp_main = value;
777 break;
778 case USB4_BA_MAX_PCIE:
779 tb_sw_dbg(sw, " PCIe: %u\n", value);
780 max_pcie = value;
781 break;
782 case USB4_BA_MAX_HI:
783 tb_sw_dbg(sw, " DMA: %u\n", value);
784 max_dma = value;
785 break;
786 default:
787 tb_sw_dbg(sw, " unknown credit allocation index %#x, skipping\n",
788 index);
789 break;
790 }
791 }
792
793 /*
794 * Validate the buffer allocation preferences. If we find
795 * issues, log a warning and fall back using the hard-coded
796 * values.
797 */
798
799 /* Host router must report baMaxHI */
800 if (!tb_route(sw) && max_dma < 0) {
801 tb_sw_warn(sw, "host router is missing baMaxHI\n");
802 goto err_invalid;
803 }
804
805 nports = 0;
806 tb_switch_for_each_port(sw, port) {
807 if (tb_port_is_null(port))
808 nports++;
809 }
810
811 /* Must have DP buffer allocation (multiple USB4 ports) */
812 if (nports > 2 && (min_dp_aux < 0 || min_dp_main < 0)) {
813 tb_sw_warn(sw, "multiple USB4 ports require baMinDPaux/baMinDPmain\n");
814 goto err_invalid;
815 }
816
817 tb_switch_for_each_port(sw, port) {
818 if (tb_port_is_dpout(port) && min_dp_main < 0) {
819 tb_sw_warn(sw, "missing baMinDPmain");
820 goto err_invalid;
821 }
822 if ((tb_port_is_dpin(port) || tb_port_is_dpout(port)) &&
823 min_dp_aux < 0) {
824 tb_sw_warn(sw, "missing baMinDPaux");
825 goto err_invalid;
826 }
827 if ((tb_port_is_usb3_down(port) || tb_port_is_usb3_up(port)) &&
828 max_usb3 < 0) {
829 tb_sw_warn(sw, "missing baMaxUSB3");
830 goto err_invalid;
831 }
832 if ((tb_port_is_pcie_down(port) || tb_port_is_pcie_up(port)) &&
833 max_pcie < 0) {
834 tb_sw_warn(sw, "missing baMaxPCIe");
835 goto err_invalid;
836 }
837 }
838
839 /*
840 * Buffer allocation passed the validation so we can use it in
841 * path creation.
842 */
843 sw->credit_allocation = true;
844 if (max_usb3 > 0)
845 sw->max_usb3_credits = max_usb3;
846 if (min_dp_aux > 0)
847 sw->min_dp_aux_credits = min_dp_aux;
848 if (min_dp_main > 0)
849 sw->min_dp_main_credits = min_dp_main;
850 if (max_pcie > 0)
851 sw->max_pcie_credits = max_pcie;
852 if (max_dma > 0)
853 sw->max_dma_credits = max_dma;
854
855 return 0;
856
857err_invalid:
858 return -EINVAL;
859}
860
861/**
862 * usb4_switch_query_dp_resource() - Query availability of DP IN resource
863 * @sw: USB4 router
864 * @in: DP IN adapter
865 *
866 * For DP tunneling this function can be used to query availability of
867 * DP IN resource. Returns true if the resource is available for DP
868 * tunneling, false otherwise.
869 */
870bool usb4_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
871{
872 u32 metadata = in->port;
873 u8 status;
874 int ret;
875
876 ret = usb4_switch_op(sw, USB4_SWITCH_OP_QUERY_DP_RESOURCE, &metadata,
877 &status);
878 /*
879 * If DP resource allocation is not supported assume it is
880 * always available.
881 */
882 if (ret == -EOPNOTSUPP)
883 return true;
884 if (ret)
885 return false;
886
887 return !status;
888}
889
890/**
891 * usb4_switch_alloc_dp_resource() - Allocate DP IN resource
892 * @sw: USB4 router
893 * @in: DP IN adapter
894 *
895 * Allocates DP IN resource for DP tunneling using USB4 router
896 * operations. If the resource was allocated returns %0. Otherwise
897 * returns negative errno, in particular %-EBUSY if the resource is
898 * already allocated.
899 */
900int usb4_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
901{
902 u32 metadata = in->port;
903 u8 status;
904 int ret;
905
906 ret = usb4_switch_op(sw, USB4_SWITCH_OP_ALLOC_DP_RESOURCE, &metadata,
907 &status);
908 if (ret == -EOPNOTSUPP)
909 return 0;
910 if (ret)
911 return ret;
912
913 return status ? -EBUSY : 0;
914}
915
916/**
917 * usb4_switch_dealloc_dp_resource() - Releases allocated DP IN resource
918 * @sw: USB4 router
919 * @in: DP IN adapter
920 *
921 * Releases the previously allocated DP IN resource.
922 */
923int usb4_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
924{
925 u32 metadata = in->port;
926 u8 status;
927 int ret;
928
929 ret = usb4_switch_op(sw, USB4_SWITCH_OP_DEALLOC_DP_RESOURCE, &metadata,
930 &status);
931 if (ret == -EOPNOTSUPP)
932 return 0;
933 if (ret)
934 return ret;
935
936 return status ? -EIO : 0;
937}
938
939static int usb4_port_idx(const struct tb_switch *sw, const struct tb_port *port)
940{
941 struct tb_port *p;
942 int usb4_idx = 0;
943
944 /* Assume port is primary */
945 tb_switch_for_each_port(sw, p) {
946 if (!tb_port_is_null(p))
947 continue;
948 if (tb_is_upstream_port(p))
949 continue;
950 if (!p->link_nr) {
951 if (p == port)
952 break;
953 usb4_idx++;
954 }
955 }
956
957 return usb4_idx;
958}
959
960/**
961 * usb4_switch_map_pcie_down() - Map USB4 port to a PCIe downstream adapter
962 * @sw: USB4 router
963 * @port: USB4 port
964 *
965 * USB4 routers have direct mapping between USB4 ports and PCIe
966 * downstream adapters where the PCIe topology is extended. This
967 * function returns the corresponding downstream PCIe adapter or %NULL
968 * if no such mapping was possible.
969 */
970struct tb_port *usb4_switch_map_pcie_down(struct tb_switch *sw,
971 const struct tb_port *port)
972{
973 int usb4_idx = usb4_port_idx(sw, port);
974 struct tb_port *p;
975 int pcie_idx = 0;
976
977 /* Find PCIe down port matching usb4_port */
978 tb_switch_for_each_port(sw, p) {
979 if (!tb_port_is_pcie_down(p))
980 continue;
981
982 if (pcie_idx == usb4_idx)
983 return p;
984
985 pcie_idx++;
986 }
987
988 return NULL;
989}
990
991/**
992 * usb4_switch_map_usb3_down() - Map USB4 port to a USB3 downstream adapter
993 * @sw: USB4 router
994 * @port: USB4 port
995 *
996 * USB4 routers have direct mapping between USB4 ports and USB 3.x
997 * downstream adapters where the USB 3.x topology is extended. This
998 * function returns the corresponding downstream USB 3.x adapter or
999 * %NULL if no such mapping was possible.
1000 */
1001struct tb_port *usb4_switch_map_usb3_down(struct tb_switch *sw,
1002 const struct tb_port *port)
1003{
1004 int usb4_idx = usb4_port_idx(sw, port);
1005 struct tb_port *p;
1006 int usb_idx = 0;
1007
1008 /* Find USB3 down port matching usb4_port */
1009 tb_switch_for_each_port(sw, p) {
1010 if (!tb_port_is_usb3_down(p))
1011 continue;
1012
1013 if (usb_idx == usb4_idx)
1014 return p;
1015
1016 usb_idx++;
1017 }
1018
1019 return NULL;
1020}
1021
1022/**
1023 * usb4_switch_add_ports() - Add USB4 ports for this router
1024 * @sw: USB4 router
1025 *
1026 * For USB4 router finds all USB4 ports and registers devices for each.
1027 * Can be called to any router.
1028 *
1029 * Return %0 in case of success and negative errno in case of failure.
1030 */
1031int usb4_switch_add_ports(struct tb_switch *sw)
1032{
1033 struct tb_port *port;
1034
1035 if (tb_switch_is_icm(sw) || !tb_switch_is_usb4(sw))
1036 return 0;
1037
1038 tb_switch_for_each_port(sw, port) {
1039 struct usb4_port *usb4;
1040
1041 if (!tb_port_is_null(port))
1042 continue;
1043 if (!port->cap_usb4)
1044 continue;
1045
1046 usb4 = usb4_port_device_add(port);
1047 if (IS_ERR(usb4)) {
1048 usb4_switch_remove_ports(sw);
1049 return PTR_ERR(usb4);
1050 }
1051
1052 port->usb4 = usb4;
1053 }
1054
1055 return 0;
1056}
1057
1058/**
1059 * usb4_switch_remove_ports() - Removes USB4 ports from this router
1060 * @sw: USB4 router
1061 *
1062 * Unregisters previously registered USB4 ports.
1063 */
1064void usb4_switch_remove_ports(struct tb_switch *sw)
1065{
1066 struct tb_port *port;
1067
1068 tb_switch_for_each_port(sw, port) {
1069 if (port->usb4) {
1070 usb4_port_device_remove(port->usb4);
1071 port->usb4 = NULL;
1072 }
1073 }
1074}
1075
1076/**
1077 * usb4_port_unlock() - Unlock USB4 downstream port
1078 * @port: USB4 port to unlock
1079 *
1080 * Unlocks USB4 downstream port so that the connection manager can
1081 * access the router below this port.
1082 */
1083int usb4_port_unlock(struct tb_port *port)
1084{
1085 int ret;
1086 u32 val;
1087
1088 ret = tb_port_read(port, &val, TB_CFG_PORT, ADP_CS_4, 1);
1089 if (ret)
1090 return ret;
1091
1092 val &= ~ADP_CS_4_LCK;
1093 return tb_port_write(port, &val, TB_CFG_PORT, ADP_CS_4, 1);
1094}
1095
1096/**
1097 * usb4_port_hotplug_enable() - Enables hotplug for a port
1098 * @port: USB4 port to operate on
1099 *
1100 * Enables hot plug events on a given port. This is only intended
1101 * to be used on lane, DP-IN, and DP-OUT adapters.
1102 */
1103int usb4_port_hotplug_enable(struct tb_port *port)
1104{
1105 int ret;
1106 u32 val;
1107
1108 ret = tb_port_read(port, &val, TB_CFG_PORT, ADP_CS_5, 1);
1109 if (ret)
1110 return ret;
1111
1112 val &= ~ADP_CS_5_DHP;
1113 return tb_port_write(port, &val, TB_CFG_PORT, ADP_CS_5, 1);
1114}
1115
1116static int usb4_port_set_configured(struct tb_port *port, bool configured)
1117{
1118 int ret;
1119 u32 val;
1120
1121 if (!port->cap_usb4)
1122 return -EINVAL;
1123
1124 ret = tb_port_read(port, &val, TB_CFG_PORT,
1125 port->cap_usb4 + PORT_CS_19, 1);
1126 if (ret)
1127 return ret;
1128
1129 if (configured)
1130 val |= PORT_CS_19_PC;
1131 else
1132 val &= ~PORT_CS_19_PC;
1133
1134 return tb_port_write(port, &val, TB_CFG_PORT,
1135 port->cap_usb4 + PORT_CS_19, 1);
1136}
1137
1138/**
1139 * usb4_port_configure() - Set USB4 port configured
1140 * @port: USB4 router
1141 *
1142 * Sets the USB4 link to be configured for power management purposes.
1143 */
1144int usb4_port_configure(struct tb_port *port)
1145{
1146 return usb4_port_set_configured(port, true);
1147}
1148
1149/**
1150 * usb4_port_unconfigure() - Set USB4 port unconfigured
1151 * @port: USB4 router
1152 *
1153 * Sets the USB4 link to be unconfigured for power management purposes.
1154 */
1155void usb4_port_unconfigure(struct tb_port *port)
1156{
1157 usb4_port_set_configured(port, false);
1158}
1159
1160static int usb4_set_xdomain_configured(struct tb_port *port, bool configured)
1161{
1162 int ret;
1163 u32 val;
1164
1165 if (!port->cap_usb4)
1166 return -EINVAL;
1167
1168 ret = tb_port_read(port, &val, TB_CFG_PORT,
1169 port->cap_usb4 + PORT_CS_19, 1);
1170 if (ret)
1171 return ret;
1172
1173 if (configured)
1174 val |= PORT_CS_19_PID;
1175 else
1176 val &= ~PORT_CS_19_PID;
1177
1178 return tb_port_write(port, &val, TB_CFG_PORT,
1179 port->cap_usb4 + PORT_CS_19, 1);
1180}
1181
1182/**
1183 * usb4_port_configure_xdomain() - Configure port for XDomain
1184 * @port: USB4 port connected to another host
1185 * @xd: XDomain that is connected to the port
1186 *
1187 * Marks the USB4 port as being connected to another host and updates
1188 * the link type. Returns %0 in success and negative errno in failure.
1189 */
1190int usb4_port_configure_xdomain(struct tb_port *port, struct tb_xdomain *xd)
1191{
1192 xd->link_usb4 = link_is_usb4(port);
1193 return usb4_set_xdomain_configured(port, true);
1194}
1195
1196/**
1197 * usb4_port_unconfigure_xdomain() - Unconfigure port for XDomain
1198 * @port: USB4 port that was connected to another host
1199 *
1200 * Clears USB4 port from being marked as XDomain.
1201 */
1202void usb4_port_unconfigure_xdomain(struct tb_port *port)
1203{
1204 usb4_set_xdomain_configured(port, false);
1205}
1206
1207static int usb4_port_wait_for_bit(struct tb_port *port, u32 offset, u32 bit,
1208 u32 value, int timeout_msec)
1209{
1210 ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
1211
1212 do {
1213 u32 val;
1214 int ret;
1215
1216 ret = tb_port_read(port, &val, TB_CFG_PORT, offset, 1);
1217 if (ret)
1218 return ret;
1219
1220 if ((val & bit) == value)
1221 return 0;
1222
1223 usleep_range(50, 100);
1224 } while (ktime_before(ktime_get(), timeout));
1225
1226 return -ETIMEDOUT;
1227}
1228
1229static int usb4_port_read_data(struct tb_port *port, void *data, size_t dwords)
1230{
1231 if (dwords > USB4_DATA_DWORDS)
1232 return -EINVAL;
1233
1234 return tb_port_read(port, data, TB_CFG_PORT, port->cap_usb4 + PORT_CS_2,
1235 dwords);
1236}
1237
1238static int usb4_port_write_data(struct tb_port *port, const void *data,
1239 size_t dwords)
1240{
1241 if (dwords > USB4_DATA_DWORDS)
1242 return -EINVAL;
1243
1244 return tb_port_write(port, data, TB_CFG_PORT, port->cap_usb4 + PORT_CS_2,
1245 dwords);
1246}
1247
1248static int usb4_port_sb_read(struct tb_port *port, enum usb4_sb_target target,
1249 u8 index, u8 reg, void *buf, u8 size)
1250{
1251 size_t dwords = DIV_ROUND_UP(size, 4);
1252 int ret;
1253 u32 val;
1254
1255 if (!port->cap_usb4)
1256 return -EINVAL;
1257
1258 val = reg;
1259 val |= size << PORT_CS_1_LENGTH_SHIFT;
1260 val |= (target << PORT_CS_1_TARGET_SHIFT) & PORT_CS_1_TARGET_MASK;
1261 if (target == USB4_SB_TARGET_RETIMER)
1262 val |= (index << PORT_CS_1_RETIMER_INDEX_SHIFT);
1263 val |= PORT_CS_1_PND;
1264
1265 ret = tb_port_write(port, &val, TB_CFG_PORT,
1266 port->cap_usb4 + PORT_CS_1, 1);
1267 if (ret)
1268 return ret;
1269
1270 ret = usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_1,
1271 PORT_CS_1_PND, 0, 500);
1272 if (ret)
1273 return ret;
1274
1275 ret = tb_port_read(port, &val, TB_CFG_PORT,
1276 port->cap_usb4 + PORT_CS_1, 1);
1277 if (ret)
1278 return ret;
1279
1280 if (val & PORT_CS_1_NR)
1281 return -ENODEV;
1282 if (val & PORT_CS_1_RC)
1283 return -EIO;
1284
1285 return buf ? usb4_port_read_data(port, buf, dwords) : 0;
1286}
1287
1288static int usb4_port_sb_write(struct tb_port *port, enum usb4_sb_target target,
1289 u8 index, u8 reg, const void *buf, u8 size)
1290{
1291 size_t dwords = DIV_ROUND_UP(size, 4);
1292 int ret;
1293 u32 val;
1294
1295 if (!port->cap_usb4)
1296 return -EINVAL;
1297
1298 if (buf) {
1299 ret = usb4_port_write_data(port, buf, dwords);
1300 if (ret)
1301 return ret;
1302 }
1303
1304 val = reg;
1305 val |= size << PORT_CS_1_LENGTH_SHIFT;
1306 val |= PORT_CS_1_WNR_WRITE;
1307 val |= (target << PORT_CS_1_TARGET_SHIFT) & PORT_CS_1_TARGET_MASK;
1308 if (target == USB4_SB_TARGET_RETIMER)
1309 val |= (index << PORT_CS_1_RETIMER_INDEX_SHIFT);
1310 val |= PORT_CS_1_PND;
1311
1312 ret = tb_port_write(port, &val, TB_CFG_PORT,
1313 port->cap_usb4 + PORT_CS_1, 1);
1314 if (ret)
1315 return ret;
1316
1317 ret = usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_1,
1318 PORT_CS_1_PND, 0, 500);
1319 if (ret)
1320 return ret;
1321
1322 ret = tb_port_read(port, &val, TB_CFG_PORT,
1323 port->cap_usb4 + PORT_CS_1, 1);
1324 if (ret)
1325 return ret;
1326
1327 if (val & PORT_CS_1_NR)
1328 return -ENODEV;
1329 if (val & PORT_CS_1_RC)
1330 return -EIO;
1331
1332 return 0;
1333}
1334
1335static int usb4_port_sb_opcode_err_to_errno(u32 val)
1336{
1337 switch (val) {
1338 case 0:
1339 return 0;
1340 case USB4_SB_OPCODE_ERR:
1341 return -EAGAIN;
1342 case USB4_SB_OPCODE_ONS:
1343 return -EOPNOTSUPP;
1344 default:
1345 return -EIO;
1346 }
1347}
1348
1349static int usb4_port_sb_op(struct tb_port *port, enum usb4_sb_target target,
1350 u8 index, enum usb4_sb_opcode opcode, int timeout_msec)
1351{
1352 ktime_t timeout;
1353 u32 val;
1354 int ret;
1355
1356 val = opcode;
1357 ret = usb4_port_sb_write(port, target, index, USB4_SB_OPCODE, &val,
1358 sizeof(val));
1359 if (ret)
1360 return ret;
1361
1362 timeout = ktime_add_ms(ktime_get(), timeout_msec);
1363
1364 do {
1365 /* Check results */
1366 ret = usb4_port_sb_read(port, target, index, USB4_SB_OPCODE,
1367 &val, sizeof(val));
1368 if (ret)
1369 return ret;
1370
1371 if (val != opcode)
1372 return usb4_port_sb_opcode_err_to_errno(val);
1373 } while (ktime_before(ktime_get(), timeout));
1374
1375 return -ETIMEDOUT;
1376}
1377
1378static int usb4_port_set_router_offline(struct tb_port *port, bool offline)
1379{
1380 u32 val = !offline;
1381 int ret;
1382
1383 ret = usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1384 USB4_SB_METADATA, &val, sizeof(val));
1385 if (ret)
1386 return ret;
1387
1388 val = USB4_SB_OPCODE_ROUTER_OFFLINE;
1389 return usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1390 USB4_SB_OPCODE, &val, sizeof(val));
1391}
1392
1393/**
1394 * usb4_port_router_offline() - Put the USB4 port to offline mode
1395 * @port: USB4 port
1396 *
1397 * This function puts the USB4 port into offline mode. In this mode the
1398 * port does not react on hotplug events anymore. This needs to be
1399 * called before retimer access is done when the USB4 links is not up.
1400 *
1401 * Returns %0 in case of success and negative errno if there was an
1402 * error.
1403 */
1404int usb4_port_router_offline(struct tb_port *port)
1405{
1406 return usb4_port_set_router_offline(port, true);
1407}
1408
1409/**
1410 * usb4_port_router_online() - Put the USB4 port back to online
1411 * @port: USB4 port
1412 *
1413 * Makes the USB4 port functional again.
1414 */
1415int usb4_port_router_online(struct tb_port *port)
1416{
1417 return usb4_port_set_router_offline(port, false);
1418}
1419
1420/**
1421 * usb4_port_enumerate_retimers() - Send RT broadcast transaction
1422 * @port: USB4 port
1423 *
1424 * This forces the USB4 port to send broadcast RT transaction which
1425 * makes the retimers on the link to assign index to themselves. Returns
1426 * %0 in case of success and negative errno if there was an error.
1427 */
1428int usb4_port_enumerate_retimers(struct tb_port *port)
1429{
1430 u32 val;
1431
1432 val = USB4_SB_OPCODE_ENUMERATE_RETIMERS;
1433 return usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1434 USB4_SB_OPCODE, &val, sizeof(val));
1435}
1436
1437/**
1438 * usb4_port_clx_supported() - Check if CLx is supported by the link
1439 * @port: Port to check for CLx support for
1440 *
1441 * PORT_CS_18_CPS bit reflects if the link supports CLx including
1442 * active cables (if connected on the link).
1443 */
1444bool usb4_port_clx_supported(struct tb_port *port)
1445{
1446 int ret;
1447 u32 val;
1448
1449 ret = tb_port_read(port, &val, TB_CFG_PORT,
1450 port->cap_usb4 + PORT_CS_18, 1);
1451 if (ret)
1452 return false;
1453
1454 return !!(val & PORT_CS_18_CPS);
1455}
1456
1457/**
1458 * usb4_port_asym_supported() - If the port supports asymmetric link
1459 * @port: USB4 port
1460 *
1461 * Checks if the port and the cable supports asymmetric link and returns
1462 * %true in that case.
1463 */
1464bool usb4_port_asym_supported(struct tb_port *port)
1465{
1466 u32 val;
1467
1468 if (!port->cap_usb4)
1469 return false;
1470
1471 if (tb_port_read(port, &val, TB_CFG_PORT, port->cap_usb4 + PORT_CS_18, 1))
1472 return false;
1473
1474 return !!(val & PORT_CS_18_CSA);
1475}
1476
1477/**
1478 * usb4_port_asym_set_link_width() - Set link width to asymmetric or symmetric
1479 * @port: USB4 port
1480 * @width: Asymmetric width to configure
1481 *
1482 * Sets USB4 port link width to @width. Can be called for widths where
1483 * usb4_port_asym_width_supported() returned @true.
1484 */
1485int usb4_port_asym_set_link_width(struct tb_port *port, enum tb_link_width width)
1486{
1487 u32 val;
1488 int ret;
1489
1490 if (!port->cap_phy)
1491 return -EINVAL;
1492
1493 ret = tb_port_read(port, &val, TB_CFG_PORT,
1494 port->cap_phy + LANE_ADP_CS_1, 1);
1495 if (ret)
1496 return ret;
1497
1498 val &= ~LANE_ADP_CS_1_TARGET_WIDTH_ASYM_MASK;
1499 switch (width) {
1500 case TB_LINK_WIDTH_DUAL:
1501 val |= FIELD_PREP(LANE_ADP_CS_1_TARGET_WIDTH_ASYM_MASK,
1502 LANE_ADP_CS_1_TARGET_WIDTH_ASYM_DUAL);
1503 break;
1504 case TB_LINK_WIDTH_ASYM_TX:
1505 val |= FIELD_PREP(LANE_ADP_CS_1_TARGET_WIDTH_ASYM_MASK,
1506 LANE_ADP_CS_1_TARGET_WIDTH_ASYM_TX);
1507 break;
1508 case TB_LINK_WIDTH_ASYM_RX:
1509 val |= FIELD_PREP(LANE_ADP_CS_1_TARGET_WIDTH_ASYM_MASK,
1510 LANE_ADP_CS_1_TARGET_WIDTH_ASYM_RX);
1511 break;
1512 default:
1513 return -EINVAL;
1514 }
1515
1516 return tb_port_write(port, &val, TB_CFG_PORT,
1517 port->cap_phy + LANE_ADP_CS_1, 1);
1518}
1519
1520/**
1521 * usb4_port_asym_start() - Start symmetry change and wait for completion
1522 * @port: USB4 port
1523 *
1524 * Start symmetry change of the link to asymmetric or symmetric
1525 * (according to what was previously set in tb_port_set_link_width().
1526 * Wait for completion of the change.
1527 *
1528 * Returns %0 in case of success, %-ETIMEDOUT if case of timeout or
1529 * a negative errno in case of a failure.
1530 */
1531int usb4_port_asym_start(struct tb_port *port)
1532{
1533 int ret;
1534 u32 val;
1535
1536 ret = tb_port_read(port, &val, TB_CFG_PORT,
1537 port->cap_usb4 + PORT_CS_19, 1);
1538 if (ret)
1539 return ret;
1540
1541 val &= ~PORT_CS_19_START_ASYM;
1542 val |= FIELD_PREP(PORT_CS_19_START_ASYM, 1);
1543
1544 ret = tb_port_write(port, &val, TB_CFG_PORT,
1545 port->cap_usb4 + PORT_CS_19, 1);
1546 if (ret)
1547 return ret;
1548
1549 /*
1550 * Wait for PORT_CS_19_START_ASYM to be 0. This means the USB4
1551 * port started the symmetry transition.
1552 */
1553 ret = usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_19,
1554 PORT_CS_19_START_ASYM, 0, 1000);
1555 if (ret)
1556 return ret;
1557
1558 /* Then wait for the transtion to be completed */
1559 return usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_18,
1560 PORT_CS_18_TIP, 0, 5000);
1561}
1562
1563/**
1564 * usb4_port_margining_caps() - Read USB4 port marginig capabilities
1565 * @port: USB4 port
1566 * @caps: Array with at least two elements to hold the results
1567 *
1568 * Reads the USB4 port lane margining capabilities into @caps.
1569 */
1570int usb4_port_margining_caps(struct tb_port *port, u32 *caps)
1571{
1572 int ret;
1573
1574 ret = usb4_port_sb_op(port, USB4_SB_TARGET_ROUTER, 0,
1575 USB4_SB_OPCODE_READ_LANE_MARGINING_CAP, 500);
1576 if (ret)
1577 return ret;
1578
1579 return usb4_port_sb_read(port, USB4_SB_TARGET_ROUTER, 0,
1580 USB4_SB_DATA, caps, sizeof(*caps) * 2);
1581}
1582
1583/**
1584 * usb4_port_hw_margin() - Run hardware lane margining on port
1585 * @port: USB4 port
1586 * @lanes: Which lanes to run (must match the port capabilities). Can be
1587 * %0, %1 or %7.
1588 * @ber_level: BER level contour value
1589 * @timing: Perform timing margining instead of voltage
1590 * @right_high: Use Right/high margin instead of left/low
1591 * @results: Array with at least two elements to hold the results
1592 *
1593 * Runs hardware lane margining on USB4 port and returns the result in
1594 * @results.
1595 */
1596int usb4_port_hw_margin(struct tb_port *port, unsigned int lanes,
1597 unsigned int ber_level, bool timing, bool right_high,
1598 u32 *results)
1599{
1600 u32 val;
1601 int ret;
1602
1603 val = lanes;
1604 if (timing)
1605 val |= USB4_MARGIN_HW_TIME;
1606 if (right_high)
1607 val |= USB4_MARGIN_HW_RH;
1608 if (ber_level)
1609 val |= (ber_level << USB4_MARGIN_HW_BER_SHIFT) &
1610 USB4_MARGIN_HW_BER_MASK;
1611
1612 ret = usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1613 USB4_SB_METADATA, &val, sizeof(val));
1614 if (ret)
1615 return ret;
1616
1617 ret = usb4_port_sb_op(port, USB4_SB_TARGET_ROUTER, 0,
1618 USB4_SB_OPCODE_RUN_HW_LANE_MARGINING, 2500);
1619 if (ret)
1620 return ret;
1621
1622 return usb4_port_sb_read(port, USB4_SB_TARGET_ROUTER, 0,
1623 USB4_SB_DATA, results, sizeof(*results) * 2);
1624}
1625
1626/**
1627 * usb4_port_sw_margin() - Run software lane margining on port
1628 * @port: USB4 port
1629 * @lanes: Which lanes to run (must match the port capabilities). Can be
1630 * %0, %1 or %7.
1631 * @timing: Perform timing margining instead of voltage
1632 * @right_high: Use Right/high margin instead of left/low
1633 * @counter: What to do with the error counter
1634 *
1635 * Runs software lane margining on USB4 port. Read back the error
1636 * counters by calling usb4_port_sw_margin_errors(). Returns %0 in
1637 * success and negative errno otherwise.
1638 */
1639int usb4_port_sw_margin(struct tb_port *port, unsigned int lanes, bool timing,
1640 bool right_high, u32 counter)
1641{
1642 u32 val;
1643 int ret;
1644
1645 val = lanes;
1646 if (timing)
1647 val |= USB4_MARGIN_SW_TIME;
1648 if (right_high)
1649 val |= USB4_MARGIN_SW_RH;
1650 val |= (counter << USB4_MARGIN_SW_COUNTER_SHIFT) &
1651 USB4_MARGIN_SW_COUNTER_MASK;
1652
1653 ret = usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1654 USB4_SB_METADATA, &val, sizeof(val));
1655 if (ret)
1656 return ret;
1657
1658 return usb4_port_sb_op(port, USB4_SB_TARGET_ROUTER, 0,
1659 USB4_SB_OPCODE_RUN_SW_LANE_MARGINING, 2500);
1660}
1661
1662/**
1663 * usb4_port_sw_margin_errors() - Read the software margining error counters
1664 * @port: USB4 port
1665 * @errors: Error metadata is copied here.
1666 *
1667 * This reads back the software margining error counters from the port.
1668 * Returns %0 in success and negative errno otherwise.
1669 */
1670int usb4_port_sw_margin_errors(struct tb_port *port, u32 *errors)
1671{
1672 int ret;
1673
1674 ret = usb4_port_sb_op(port, USB4_SB_TARGET_ROUTER, 0,
1675 USB4_SB_OPCODE_READ_SW_MARGIN_ERR, 150);
1676 if (ret)
1677 return ret;
1678
1679 return usb4_port_sb_read(port, USB4_SB_TARGET_ROUTER, 0,
1680 USB4_SB_METADATA, errors, sizeof(*errors));
1681}
1682
1683static inline int usb4_port_retimer_op(struct tb_port *port, u8 index,
1684 enum usb4_sb_opcode opcode,
1685 int timeout_msec)
1686{
1687 return usb4_port_sb_op(port, USB4_SB_TARGET_RETIMER, index, opcode,
1688 timeout_msec);
1689}
1690
1691/**
1692 * usb4_port_retimer_set_inbound_sbtx() - Enable sideband channel transactions
1693 * @port: USB4 port
1694 * @index: Retimer index
1695 *
1696 * Enables sideband channel transations on SBTX. Can be used when USB4
1697 * link does not go up, for example if there is no device connected.
1698 */
1699int usb4_port_retimer_set_inbound_sbtx(struct tb_port *port, u8 index)
1700{
1701 int ret;
1702
1703 ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_SET_INBOUND_SBTX,
1704 500);
1705
1706 if (ret != -ENODEV)
1707 return ret;
1708
1709 /*
1710 * Per the USB4 retimer spec, the retimer is not required to
1711 * send an RT (Retimer Transaction) response for the first
1712 * SET_INBOUND_SBTX command
1713 */
1714 return usb4_port_retimer_op(port, index, USB4_SB_OPCODE_SET_INBOUND_SBTX,
1715 500);
1716}
1717
1718/**
1719 * usb4_port_retimer_unset_inbound_sbtx() - Disable sideband channel transactions
1720 * @port: USB4 port
1721 * @index: Retimer index
1722 *
1723 * Disables sideband channel transations on SBTX. The reverse of
1724 * usb4_port_retimer_set_inbound_sbtx().
1725 */
1726int usb4_port_retimer_unset_inbound_sbtx(struct tb_port *port, u8 index)
1727{
1728 return usb4_port_retimer_op(port, index,
1729 USB4_SB_OPCODE_UNSET_INBOUND_SBTX, 500);
1730}
1731
1732/**
1733 * usb4_port_retimer_read() - Read from retimer sideband registers
1734 * @port: USB4 port
1735 * @index: Retimer index
1736 * @reg: Sideband register to read
1737 * @buf: Data from @reg is stored here
1738 * @size: Number of bytes to read
1739 *
1740 * Function reads retimer sideband registers starting from @reg. The
1741 * retimer is connected to @port at @index. Returns %0 in case of
1742 * success, and read data is copied to @buf. If there is no retimer
1743 * present at given @index returns %-ENODEV. In any other failure
1744 * returns negative errno.
1745 */
1746int usb4_port_retimer_read(struct tb_port *port, u8 index, u8 reg, void *buf,
1747 u8 size)
1748{
1749 return usb4_port_sb_read(port, USB4_SB_TARGET_RETIMER, index, reg, buf,
1750 size);
1751}
1752
1753/**
1754 * usb4_port_retimer_write() - Write to retimer sideband registers
1755 * @port: USB4 port
1756 * @index: Retimer index
1757 * @reg: Sideband register to write
1758 * @buf: Data that is written starting from @reg
1759 * @size: Number of bytes to write
1760 *
1761 * Writes retimer sideband registers starting from @reg. The retimer is
1762 * connected to @port at @index. Returns %0 in case of success. If there
1763 * is no retimer present at given @index returns %-ENODEV. In any other
1764 * failure returns negative errno.
1765 */
1766int usb4_port_retimer_write(struct tb_port *port, u8 index, u8 reg,
1767 const void *buf, u8 size)
1768{
1769 return usb4_port_sb_write(port, USB4_SB_TARGET_RETIMER, index, reg, buf,
1770 size);
1771}
1772
1773/**
1774 * usb4_port_retimer_is_last() - Is the retimer last on-board retimer
1775 * @port: USB4 port
1776 * @index: Retimer index
1777 *
1778 * If the retimer at @index is last one (connected directly to the
1779 * Type-C port) this function returns %1. If it is not returns %0. If
1780 * the retimer is not present returns %-ENODEV. Otherwise returns
1781 * negative errno.
1782 */
1783int usb4_port_retimer_is_last(struct tb_port *port, u8 index)
1784{
1785 u32 metadata;
1786 int ret;
1787
1788 ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_QUERY_LAST_RETIMER,
1789 500);
1790 if (ret)
1791 return ret;
1792
1793 ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA, &metadata,
1794 sizeof(metadata));
1795 return ret ? ret : metadata & 1;
1796}
1797
1798/**
1799 * usb4_port_retimer_nvm_sector_size() - Read retimer NVM sector size
1800 * @port: USB4 port
1801 * @index: Retimer index
1802 *
1803 * Reads NVM sector size (in bytes) of a retimer at @index. This
1804 * operation can be used to determine whether the retimer supports NVM
1805 * upgrade for example. Returns sector size in bytes or negative errno
1806 * in case of error. Specifically returns %-ENODEV if there is no
1807 * retimer at @index.
1808 */
1809int usb4_port_retimer_nvm_sector_size(struct tb_port *port, u8 index)
1810{
1811 u32 metadata;
1812 int ret;
1813
1814 ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_GET_NVM_SECTOR_SIZE,
1815 500);
1816 if (ret)
1817 return ret;
1818
1819 ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA, &metadata,
1820 sizeof(metadata));
1821 return ret ? ret : metadata & USB4_NVM_SECTOR_SIZE_MASK;
1822}
1823
1824/**
1825 * usb4_port_retimer_nvm_set_offset() - Set NVM write offset
1826 * @port: USB4 port
1827 * @index: Retimer index
1828 * @address: Start offset
1829 *
1830 * Exlicitly sets NVM write offset. Normally when writing to NVM this is
1831 * done automatically by usb4_port_retimer_nvm_write().
1832 *
1833 * Returns %0 in success and negative errno if there was a failure.
1834 */
1835int usb4_port_retimer_nvm_set_offset(struct tb_port *port, u8 index,
1836 unsigned int address)
1837{
1838 u32 metadata, dwaddress;
1839 int ret;
1840
1841 dwaddress = address / 4;
1842 metadata = (dwaddress << USB4_NVM_SET_OFFSET_SHIFT) &
1843 USB4_NVM_SET_OFFSET_MASK;
1844
1845 ret = usb4_port_retimer_write(port, index, USB4_SB_METADATA, &metadata,
1846 sizeof(metadata));
1847 if (ret)
1848 return ret;
1849
1850 return usb4_port_retimer_op(port, index, USB4_SB_OPCODE_NVM_SET_OFFSET,
1851 500);
1852}
1853
1854struct retimer_info {
1855 struct tb_port *port;
1856 u8 index;
1857};
1858
1859static int usb4_port_retimer_nvm_write_next_block(void *data,
1860 unsigned int dwaddress, const void *buf, size_t dwords)
1861
1862{
1863 const struct retimer_info *info = data;
1864 struct tb_port *port = info->port;
1865 u8 index = info->index;
1866 int ret;
1867
1868 ret = usb4_port_retimer_write(port, index, USB4_SB_DATA,
1869 buf, dwords * 4);
1870 if (ret)
1871 return ret;
1872
1873 return usb4_port_retimer_op(port, index,
1874 USB4_SB_OPCODE_NVM_BLOCK_WRITE, 1000);
1875}
1876
1877/**
1878 * usb4_port_retimer_nvm_write() - Write to retimer NVM
1879 * @port: USB4 port
1880 * @index: Retimer index
1881 * @address: Byte address where to start the write
1882 * @buf: Data to write
1883 * @size: Size in bytes how much to write
1884 *
1885 * Writes @size bytes from @buf to the retimer NVM. Used for NVM
1886 * upgrade. Returns %0 if the data was written successfully and negative
1887 * errno in case of failure. Specifically returns %-ENODEV if there is
1888 * no retimer at @index.
1889 */
1890int usb4_port_retimer_nvm_write(struct tb_port *port, u8 index, unsigned int address,
1891 const void *buf, size_t size)
1892{
1893 struct retimer_info info = { .port = port, .index = index };
1894 int ret;
1895
1896 ret = usb4_port_retimer_nvm_set_offset(port, index, address);
1897 if (ret)
1898 return ret;
1899
1900 return tb_nvm_write_data(address, buf, size, USB4_DATA_RETRIES,
1901 usb4_port_retimer_nvm_write_next_block, &info);
1902}
1903
1904/**
1905 * usb4_port_retimer_nvm_authenticate() - Start retimer NVM upgrade
1906 * @port: USB4 port
1907 * @index: Retimer index
1908 *
1909 * After the new NVM image has been written via usb4_port_retimer_nvm_write()
1910 * this function can be used to trigger the NVM upgrade process. If
1911 * successful the retimer restarts with the new NVM and may not have the
1912 * index set so one needs to call usb4_port_enumerate_retimers() to
1913 * force index to be assigned.
1914 */
1915int usb4_port_retimer_nvm_authenticate(struct tb_port *port, u8 index)
1916{
1917 u32 val;
1918
1919 /*
1920 * We need to use the raw operation here because once the
1921 * authentication completes the retimer index is not set anymore
1922 * so we do not get back the status now.
1923 */
1924 val = USB4_SB_OPCODE_NVM_AUTH_WRITE;
1925 return usb4_port_sb_write(port, USB4_SB_TARGET_RETIMER, index,
1926 USB4_SB_OPCODE, &val, sizeof(val));
1927}
1928
1929/**
1930 * usb4_port_retimer_nvm_authenticate_status() - Read status of NVM upgrade
1931 * @port: USB4 port
1932 * @index: Retimer index
1933 * @status: Raw status code read from metadata
1934 *
1935 * This can be called after usb4_port_retimer_nvm_authenticate() and
1936 * usb4_port_enumerate_retimers() to fetch status of the NVM upgrade.
1937 *
1938 * Returns %0 if the authentication status was successfully read. The
1939 * completion metadata (the result) is then stored into @status. If
1940 * reading the status fails, returns negative errno.
1941 */
1942int usb4_port_retimer_nvm_authenticate_status(struct tb_port *port, u8 index,
1943 u32 *status)
1944{
1945 u32 metadata, val;
1946 int ret;
1947
1948 ret = usb4_port_retimer_read(port, index, USB4_SB_OPCODE, &val,
1949 sizeof(val));
1950 if (ret)
1951 return ret;
1952
1953 ret = usb4_port_sb_opcode_err_to_errno(val);
1954 switch (ret) {
1955 case 0:
1956 *status = 0;
1957 return 0;
1958
1959 case -EAGAIN:
1960 ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA,
1961 &metadata, sizeof(metadata));
1962 if (ret)
1963 return ret;
1964
1965 *status = metadata & USB4_SB_METADATA_NVM_AUTH_WRITE_MASK;
1966 return 0;
1967
1968 default:
1969 return ret;
1970 }
1971}
1972
1973static int usb4_port_retimer_nvm_read_block(void *data, unsigned int dwaddress,
1974 void *buf, size_t dwords)
1975{
1976 const struct retimer_info *info = data;
1977 struct tb_port *port = info->port;
1978 u8 index = info->index;
1979 u32 metadata;
1980 int ret;
1981
1982 metadata = dwaddress << USB4_NVM_READ_OFFSET_SHIFT;
1983 if (dwords < USB4_DATA_DWORDS)
1984 metadata |= dwords << USB4_NVM_READ_LENGTH_SHIFT;
1985
1986 ret = usb4_port_retimer_write(port, index, USB4_SB_METADATA, &metadata,
1987 sizeof(metadata));
1988 if (ret)
1989 return ret;
1990
1991 ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_NVM_READ, 500);
1992 if (ret)
1993 return ret;
1994
1995 return usb4_port_retimer_read(port, index, USB4_SB_DATA, buf,
1996 dwords * 4);
1997}
1998
1999/**
2000 * usb4_port_retimer_nvm_read() - Read contents of retimer NVM
2001 * @port: USB4 port
2002 * @index: Retimer index
2003 * @address: NVM address (in bytes) to start reading
2004 * @buf: Data read from NVM is stored here
2005 * @size: Number of bytes to read
2006 *
2007 * Reads retimer NVM and copies the contents to @buf. Returns %0 if the
2008 * read was successful and negative errno in case of failure.
2009 * Specifically returns %-ENODEV if there is no retimer at @index.
2010 */
2011int usb4_port_retimer_nvm_read(struct tb_port *port, u8 index,
2012 unsigned int address, void *buf, size_t size)
2013{
2014 struct retimer_info info = { .port = port, .index = index };
2015
2016 return tb_nvm_read_data(address, buf, size, USB4_DATA_RETRIES,
2017 usb4_port_retimer_nvm_read_block, &info);
2018}
2019
2020static inline unsigned int
2021usb4_usb3_port_max_bandwidth(const struct tb_port *port, unsigned int bw)
2022{
2023 /* Take the possible bandwidth limitation into account */
2024 if (port->max_bw)
2025 return min(bw, port->max_bw);
2026 return bw;
2027}
2028
2029/**
2030 * usb4_usb3_port_max_link_rate() - Maximum support USB3 link rate
2031 * @port: USB3 adapter port
2032 *
2033 * Return maximum supported link rate of a USB3 adapter in Mb/s.
2034 * Negative errno in case of error.
2035 */
2036int usb4_usb3_port_max_link_rate(struct tb_port *port)
2037{
2038 int ret, lr;
2039 u32 val;
2040
2041 if (!tb_port_is_usb3_down(port) && !tb_port_is_usb3_up(port))
2042 return -EINVAL;
2043
2044 ret = tb_port_read(port, &val, TB_CFG_PORT,
2045 port->cap_adap + ADP_USB3_CS_4, 1);
2046 if (ret)
2047 return ret;
2048
2049 lr = (val & ADP_USB3_CS_4_MSLR_MASK) >> ADP_USB3_CS_4_MSLR_SHIFT;
2050 ret = lr == ADP_USB3_CS_4_MSLR_20G ? 20000 : 10000;
2051
2052 return usb4_usb3_port_max_bandwidth(port, ret);
2053}
2054
2055static int usb4_usb3_port_cm_request(struct tb_port *port, bool request)
2056{
2057 int ret;
2058 u32 val;
2059
2060 if (!tb_port_is_usb3_down(port))
2061 return -EINVAL;
2062 if (tb_route(port->sw))
2063 return -EINVAL;
2064
2065 ret = tb_port_read(port, &val, TB_CFG_PORT,
2066 port->cap_adap + ADP_USB3_CS_2, 1);
2067 if (ret)
2068 return ret;
2069
2070 if (request)
2071 val |= ADP_USB3_CS_2_CMR;
2072 else
2073 val &= ~ADP_USB3_CS_2_CMR;
2074
2075 ret = tb_port_write(port, &val, TB_CFG_PORT,
2076 port->cap_adap + ADP_USB3_CS_2, 1);
2077 if (ret)
2078 return ret;
2079
2080 /*
2081 * We can use val here directly as the CMR bit is in the same place
2082 * as HCA. Just mask out others.
2083 */
2084 val &= ADP_USB3_CS_2_CMR;
2085 return usb4_port_wait_for_bit(port, port->cap_adap + ADP_USB3_CS_1,
2086 ADP_USB3_CS_1_HCA, val, 1500);
2087}
2088
2089static inline int usb4_usb3_port_set_cm_request(struct tb_port *port)
2090{
2091 return usb4_usb3_port_cm_request(port, true);
2092}
2093
2094static inline int usb4_usb3_port_clear_cm_request(struct tb_port *port)
2095{
2096 return usb4_usb3_port_cm_request(port, false);
2097}
2098
2099static unsigned int usb3_bw_to_mbps(u32 bw, u8 scale)
2100{
2101 unsigned long uframes;
2102
2103 uframes = bw * 512UL << scale;
2104 return DIV_ROUND_CLOSEST(uframes * 8000, MEGA);
2105}
2106
2107static u32 mbps_to_usb3_bw(unsigned int mbps, u8 scale)
2108{
2109 unsigned long uframes;
2110
2111 /* 1 uframe is 1/8 ms (125 us) -> 1 / 8000 s */
2112 uframes = ((unsigned long)mbps * MEGA) / 8000;
2113 return DIV_ROUND_UP(uframes, 512UL << scale);
2114}
2115
2116static int usb4_usb3_port_read_allocated_bandwidth(struct tb_port *port,
2117 int *upstream_bw,
2118 int *downstream_bw)
2119{
2120 u32 val, bw, scale;
2121 int ret;
2122
2123 ret = tb_port_read(port, &val, TB_CFG_PORT,
2124 port->cap_adap + ADP_USB3_CS_2, 1);
2125 if (ret)
2126 return ret;
2127
2128 ret = tb_port_read(port, &scale, TB_CFG_PORT,
2129 port->cap_adap + ADP_USB3_CS_3, 1);
2130 if (ret)
2131 return ret;
2132
2133 scale &= ADP_USB3_CS_3_SCALE_MASK;
2134
2135 bw = val & ADP_USB3_CS_2_AUBW_MASK;
2136 *upstream_bw = usb3_bw_to_mbps(bw, scale);
2137
2138 bw = (val & ADP_USB3_CS_2_ADBW_MASK) >> ADP_USB3_CS_2_ADBW_SHIFT;
2139 *downstream_bw = usb3_bw_to_mbps(bw, scale);
2140
2141 return 0;
2142}
2143
2144/**
2145 * usb4_usb3_port_allocated_bandwidth() - Bandwidth allocated for USB3
2146 * @port: USB3 adapter port
2147 * @upstream_bw: Allocated upstream bandwidth is stored here
2148 * @downstream_bw: Allocated downstream bandwidth is stored here
2149 *
2150 * Stores currently allocated USB3 bandwidth into @upstream_bw and
2151 * @downstream_bw in Mb/s. Returns %0 in case of success and negative
2152 * errno in failure.
2153 */
2154int usb4_usb3_port_allocated_bandwidth(struct tb_port *port, int *upstream_bw,
2155 int *downstream_bw)
2156{
2157 int ret;
2158
2159 ret = usb4_usb3_port_set_cm_request(port);
2160 if (ret)
2161 return ret;
2162
2163 ret = usb4_usb3_port_read_allocated_bandwidth(port, upstream_bw,
2164 downstream_bw);
2165 usb4_usb3_port_clear_cm_request(port);
2166
2167 return ret;
2168}
2169
2170static int usb4_usb3_port_read_consumed_bandwidth(struct tb_port *port,
2171 int *upstream_bw,
2172 int *downstream_bw)
2173{
2174 u32 val, bw, scale;
2175 int ret;
2176
2177 ret = tb_port_read(port, &val, TB_CFG_PORT,
2178 port->cap_adap + ADP_USB3_CS_1, 1);
2179 if (ret)
2180 return ret;
2181
2182 ret = tb_port_read(port, &scale, TB_CFG_PORT,
2183 port->cap_adap + ADP_USB3_CS_3, 1);
2184 if (ret)
2185 return ret;
2186
2187 scale &= ADP_USB3_CS_3_SCALE_MASK;
2188
2189 bw = val & ADP_USB3_CS_1_CUBW_MASK;
2190 *upstream_bw = usb3_bw_to_mbps(bw, scale);
2191
2192 bw = (val & ADP_USB3_CS_1_CDBW_MASK) >> ADP_USB3_CS_1_CDBW_SHIFT;
2193 *downstream_bw = usb3_bw_to_mbps(bw, scale);
2194
2195 return 0;
2196}
2197
2198static int usb4_usb3_port_write_allocated_bandwidth(struct tb_port *port,
2199 int upstream_bw,
2200 int downstream_bw)
2201{
2202 u32 val, ubw, dbw, scale;
2203 int ret, max_bw;
2204
2205 /* Figure out suitable scale */
2206 scale = 0;
2207 max_bw = max(upstream_bw, downstream_bw);
2208 while (scale < 64) {
2209 if (mbps_to_usb3_bw(max_bw, scale) < 4096)
2210 break;
2211 scale++;
2212 }
2213
2214 if (WARN_ON(scale >= 64))
2215 return -EINVAL;
2216
2217 ret = tb_port_write(port, &scale, TB_CFG_PORT,
2218 port->cap_adap + ADP_USB3_CS_3, 1);
2219 if (ret)
2220 return ret;
2221
2222 ubw = mbps_to_usb3_bw(upstream_bw, scale);
2223 dbw = mbps_to_usb3_bw(downstream_bw, scale);
2224
2225 tb_port_dbg(port, "scaled bandwidth %u/%u, scale %u\n", ubw, dbw, scale);
2226
2227 ret = tb_port_read(port, &val, TB_CFG_PORT,
2228 port->cap_adap + ADP_USB3_CS_2, 1);
2229 if (ret)
2230 return ret;
2231
2232 val &= ~(ADP_USB3_CS_2_AUBW_MASK | ADP_USB3_CS_2_ADBW_MASK);
2233 val |= dbw << ADP_USB3_CS_2_ADBW_SHIFT;
2234 val |= ubw;
2235
2236 return tb_port_write(port, &val, TB_CFG_PORT,
2237 port->cap_adap + ADP_USB3_CS_2, 1);
2238}
2239
2240/**
2241 * usb4_usb3_port_allocate_bandwidth() - Allocate bandwidth for USB3
2242 * @port: USB3 adapter port
2243 * @upstream_bw: New upstream bandwidth
2244 * @downstream_bw: New downstream bandwidth
2245 *
2246 * This can be used to set how much bandwidth is allocated for the USB3
2247 * tunneled isochronous traffic. @upstream_bw and @downstream_bw are the
2248 * new values programmed to the USB3 adapter allocation registers. If
2249 * the values are lower than what is currently consumed the allocation
2250 * is set to what is currently consumed instead (consumed bandwidth
2251 * cannot be taken away by CM). The actual new values are returned in
2252 * @upstream_bw and @downstream_bw.
2253 *
2254 * Returns %0 in case of success and negative errno if there was a
2255 * failure.
2256 */
2257int usb4_usb3_port_allocate_bandwidth(struct tb_port *port, int *upstream_bw,
2258 int *downstream_bw)
2259{
2260 int ret, consumed_up, consumed_down, allocate_up, allocate_down;
2261
2262 ret = usb4_usb3_port_set_cm_request(port);
2263 if (ret)
2264 return ret;
2265
2266 ret = usb4_usb3_port_read_consumed_bandwidth(port, &consumed_up,
2267 &consumed_down);
2268 if (ret)
2269 goto err_request;
2270
2271 /* Don't allow it go lower than what is consumed */
2272 allocate_up = max(*upstream_bw, consumed_up);
2273 allocate_down = max(*downstream_bw, consumed_down);
2274
2275 ret = usb4_usb3_port_write_allocated_bandwidth(port, allocate_up,
2276 allocate_down);
2277 if (ret)
2278 goto err_request;
2279
2280 *upstream_bw = allocate_up;
2281 *downstream_bw = allocate_down;
2282
2283err_request:
2284 usb4_usb3_port_clear_cm_request(port);
2285 return ret;
2286}
2287
2288/**
2289 * usb4_usb3_port_release_bandwidth() - Release allocated USB3 bandwidth
2290 * @port: USB3 adapter port
2291 * @upstream_bw: New allocated upstream bandwidth
2292 * @downstream_bw: New allocated downstream bandwidth
2293 *
2294 * Releases USB3 allocated bandwidth down to what is actually consumed.
2295 * The new bandwidth is returned in @upstream_bw and @downstream_bw.
2296 *
2297 * Returns 0% in success and negative errno in case of failure.
2298 */
2299int usb4_usb3_port_release_bandwidth(struct tb_port *port, int *upstream_bw,
2300 int *downstream_bw)
2301{
2302 int ret, consumed_up, consumed_down;
2303
2304 ret = usb4_usb3_port_set_cm_request(port);
2305 if (ret)
2306 return ret;
2307
2308 ret = usb4_usb3_port_read_consumed_bandwidth(port, &consumed_up,
2309 &consumed_down);
2310 if (ret)
2311 goto err_request;
2312
2313 /*
2314 * Always keep 900 Mb/s to make sure xHCI has at least some
2315 * bandwidth available for isochronous traffic.
2316 */
2317 if (consumed_up < 900)
2318 consumed_up = 900;
2319 if (consumed_down < 900)
2320 consumed_down = 900;
2321
2322 ret = usb4_usb3_port_write_allocated_bandwidth(port, consumed_up,
2323 consumed_down);
2324 if (ret)
2325 goto err_request;
2326
2327 *upstream_bw = consumed_up;
2328 *downstream_bw = consumed_down;
2329
2330err_request:
2331 usb4_usb3_port_clear_cm_request(port);
2332 return ret;
2333}
2334
2335static bool is_usb4_dpin(const struct tb_port *port)
2336{
2337 if (!tb_port_is_dpin(port))
2338 return false;
2339 if (!tb_switch_is_usb4(port->sw))
2340 return false;
2341 return true;
2342}
2343
2344/**
2345 * usb4_dp_port_set_cm_id() - Assign CM ID to the DP IN adapter
2346 * @port: DP IN adapter
2347 * @cm_id: CM ID to assign
2348 *
2349 * Sets CM ID for the @port. Returns %0 on success and negative errno
2350 * otherwise. Speficially returns %-EOPNOTSUPP if the @port does not
2351 * support this.
2352 */
2353int usb4_dp_port_set_cm_id(struct tb_port *port, int cm_id)
2354{
2355 u32 val;
2356 int ret;
2357
2358 if (!is_usb4_dpin(port))
2359 return -EOPNOTSUPP;
2360
2361 ret = tb_port_read(port, &val, TB_CFG_PORT,
2362 port->cap_adap + ADP_DP_CS_2, 1);
2363 if (ret)
2364 return ret;
2365
2366 val &= ~ADP_DP_CS_2_CM_ID_MASK;
2367 val |= cm_id << ADP_DP_CS_2_CM_ID_SHIFT;
2368
2369 return tb_port_write(port, &val, TB_CFG_PORT,
2370 port->cap_adap + ADP_DP_CS_2, 1);
2371}
2372
2373/**
2374 * usb4_dp_port_bandwidth_mode_supported() - Is the bandwidth allocation mode
2375 * supported
2376 * @port: DP IN adapter to check
2377 *
2378 * Can be called to any DP IN adapter. Returns true if the adapter
2379 * supports USB4 bandwidth allocation mode, false otherwise.
2380 */
2381bool usb4_dp_port_bandwidth_mode_supported(struct tb_port *port)
2382{
2383 int ret;
2384 u32 val;
2385
2386 if (!is_usb4_dpin(port))
2387 return false;
2388
2389 ret = tb_port_read(port, &val, TB_CFG_PORT,
2390 port->cap_adap + DP_LOCAL_CAP, 1);
2391 if (ret)
2392 return false;
2393
2394 return !!(val & DP_COMMON_CAP_BW_MODE);
2395}
2396
2397/**
2398 * usb4_dp_port_bandwidth_mode_enabled() - Is the bandwidth allocation mode
2399 * enabled
2400 * @port: DP IN adapter to check
2401 *
2402 * Can be called to any DP IN adapter. Returns true if the bandwidth
2403 * allocation mode has been enabled, false otherwise.
2404 */
2405bool usb4_dp_port_bandwidth_mode_enabled(struct tb_port *port)
2406{
2407 int ret;
2408 u32 val;
2409
2410 if (!is_usb4_dpin(port))
2411 return false;
2412
2413 ret = tb_port_read(port, &val, TB_CFG_PORT,
2414 port->cap_adap + ADP_DP_CS_8, 1);
2415 if (ret)
2416 return false;
2417
2418 return !!(val & ADP_DP_CS_8_DPME);
2419}
2420
2421/**
2422 * usb4_dp_port_set_cm_bandwidth_mode_supported() - Set/clear CM support for
2423 * bandwidth allocation mode
2424 * @port: DP IN adapter
2425 * @supported: Does the CM support bandwidth allocation mode
2426 *
2427 * Can be called to any DP IN adapter. Sets or clears the CM support bit
2428 * of the DP IN adapter. Returns %0 in success and negative errno
2429 * otherwise. Specifically returns %-OPNOTSUPP if the passed in adapter
2430 * does not support this.
2431 */
2432int usb4_dp_port_set_cm_bandwidth_mode_supported(struct tb_port *port,
2433 bool supported)
2434{
2435 u32 val;
2436 int ret;
2437
2438 if (!is_usb4_dpin(port))
2439 return -EOPNOTSUPP;
2440
2441 ret = tb_port_read(port, &val, TB_CFG_PORT,
2442 port->cap_adap + ADP_DP_CS_2, 1);
2443 if (ret)
2444 return ret;
2445
2446 if (supported)
2447 val |= ADP_DP_CS_2_CMMS;
2448 else
2449 val &= ~ADP_DP_CS_2_CMMS;
2450
2451 return tb_port_write(port, &val, TB_CFG_PORT,
2452 port->cap_adap + ADP_DP_CS_2, 1);
2453}
2454
2455/**
2456 * usb4_dp_port_group_id() - Return Group ID assigned for the adapter
2457 * @port: DP IN adapter
2458 *
2459 * Reads bandwidth allocation Group ID from the DP IN adapter and
2460 * returns it. If the adapter does not support setting Group_ID
2461 * %-EOPNOTSUPP is returned.
2462 */
2463int usb4_dp_port_group_id(struct tb_port *port)
2464{
2465 u32 val;
2466 int ret;
2467
2468 if (!is_usb4_dpin(port))
2469 return -EOPNOTSUPP;
2470
2471 ret = tb_port_read(port, &val, TB_CFG_PORT,
2472 port->cap_adap + ADP_DP_CS_2, 1);
2473 if (ret)
2474 return ret;
2475
2476 return (val & ADP_DP_CS_2_GROUP_ID_MASK) >> ADP_DP_CS_2_GROUP_ID_SHIFT;
2477}
2478
2479/**
2480 * usb4_dp_port_set_group_id() - Set adapter Group ID
2481 * @port: DP IN adapter
2482 * @group_id: Group ID for the adapter
2483 *
2484 * Sets bandwidth allocation mode Group ID for the DP IN adapter.
2485 * Returns %0 in case of success and negative errno otherwise.
2486 * Specifically returns %-EOPNOTSUPP if the adapter does not support
2487 * this.
2488 */
2489int usb4_dp_port_set_group_id(struct tb_port *port, int group_id)
2490{
2491 u32 val;
2492 int ret;
2493
2494 if (!is_usb4_dpin(port))
2495 return -EOPNOTSUPP;
2496
2497 ret = tb_port_read(port, &val, TB_CFG_PORT,
2498 port->cap_adap + ADP_DP_CS_2, 1);
2499 if (ret)
2500 return ret;
2501
2502 val &= ~ADP_DP_CS_2_GROUP_ID_MASK;
2503 val |= group_id << ADP_DP_CS_2_GROUP_ID_SHIFT;
2504
2505 return tb_port_write(port, &val, TB_CFG_PORT,
2506 port->cap_adap + ADP_DP_CS_2, 1);
2507}
2508
2509/**
2510 * usb4_dp_port_nrd() - Read non-reduced rate and lanes
2511 * @port: DP IN adapter
2512 * @rate: Non-reduced rate in Mb/s is placed here
2513 * @lanes: Non-reduced lanes are placed here
2514 *
2515 * Reads the non-reduced rate and lanes from the DP IN adapter. Returns
2516 * %0 in success and negative errno otherwise. Specifically returns
2517 * %-EOPNOTSUPP if the adapter does not support this.
2518 */
2519int usb4_dp_port_nrd(struct tb_port *port, int *rate, int *lanes)
2520{
2521 u32 val, tmp;
2522 int ret;
2523
2524 if (!is_usb4_dpin(port))
2525 return -EOPNOTSUPP;
2526
2527 ret = tb_port_read(port, &val, TB_CFG_PORT,
2528 port->cap_adap + ADP_DP_CS_2, 1);
2529 if (ret)
2530 return ret;
2531
2532 tmp = (val & ADP_DP_CS_2_NRD_MLR_MASK) >> ADP_DP_CS_2_NRD_MLR_SHIFT;
2533 switch (tmp) {
2534 case DP_COMMON_CAP_RATE_RBR:
2535 *rate = 1620;
2536 break;
2537 case DP_COMMON_CAP_RATE_HBR:
2538 *rate = 2700;
2539 break;
2540 case DP_COMMON_CAP_RATE_HBR2:
2541 *rate = 5400;
2542 break;
2543 case DP_COMMON_CAP_RATE_HBR3:
2544 *rate = 8100;
2545 break;
2546 }
2547
2548 tmp = val & ADP_DP_CS_2_NRD_MLC_MASK;
2549 switch (tmp) {
2550 case DP_COMMON_CAP_1_LANE:
2551 *lanes = 1;
2552 break;
2553 case DP_COMMON_CAP_2_LANES:
2554 *lanes = 2;
2555 break;
2556 case DP_COMMON_CAP_4_LANES:
2557 *lanes = 4;
2558 break;
2559 }
2560
2561 return 0;
2562}
2563
2564/**
2565 * usb4_dp_port_set_nrd() - Set non-reduced rate and lanes
2566 * @port: DP IN adapter
2567 * @rate: Non-reduced rate in Mb/s
2568 * @lanes: Non-reduced lanes
2569 *
2570 * Before the capabilities reduction this function can be used to set
2571 * the non-reduced values for the DP IN adapter. Returns %0 in success
2572 * and negative errno otherwise. If the adapter does not support this
2573 * %-EOPNOTSUPP is returned.
2574 */
2575int usb4_dp_port_set_nrd(struct tb_port *port, int rate, int lanes)
2576{
2577 u32 val;
2578 int ret;
2579
2580 if (!is_usb4_dpin(port))
2581 return -EOPNOTSUPP;
2582
2583 ret = tb_port_read(port, &val, TB_CFG_PORT,
2584 port->cap_adap + ADP_DP_CS_2, 1);
2585 if (ret)
2586 return ret;
2587
2588 val &= ~ADP_DP_CS_2_NRD_MLR_MASK;
2589
2590 switch (rate) {
2591 case 1620:
2592 break;
2593 case 2700:
2594 val |= (DP_COMMON_CAP_RATE_HBR << ADP_DP_CS_2_NRD_MLR_SHIFT)
2595 & ADP_DP_CS_2_NRD_MLR_MASK;
2596 break;
2597 case 5400:
2598 val |= (DP_COMMON_CAP_RATE_HBR2 << ADP_DP_CS_2_NRD_MLR_SHIFT)
2599 & ADP_DP_CS_2_NRD_MLR_MASK;
2600 break;
2601 case 8100:
2602 val |= (DP_COMMON_CAP_RATE_HBR3 << ADP_DP_CS_2_NRD_MLR_SHIFT)
2603 & ADP_DP_CS_2_NRD_MLR_MASK;
2604 break;
2605 default:
2606 return -EINVAL;
2607 }
2608
2609 val &= ~ADP_DP_CS_2_NRD_MLC_MASK;
2610
2611 switch (lanes) {
2612 case 1:
2613 break;
2614 case 2:
2615 val |= DP_COMMON_CAP_2_LANES;
2616 break;
2617 case 4:
2618 val |= DP_COMMON_CAP_4_LANES;
2619 break;
2620 default:
2621 return -EINVAL;
2622 }
2623
2624 return tb_port_write(port, &val, TB_CFG_PORT,
2625 port->cap_adap + ADP_DP_CS_2, 1);
2626}
2627
2628/**
2629 * usb4_dp_port_granularity() - Return granularity for the bandwidth values
2630 * @port: DP IN adapter
2631 *
2632 * Reads the programmed granularity from @port. If the DP IN adapter does
2633 * not support bandwidth allocation mode returns %-EOPNOTSUPP and negative
2634 * errno in other error cases.
2635 */
2636int usb4_dp_port_granularity(struct tb_port *port)
2637{
2638 u32 val;
2639 int ret;
2640
2641 if (!is_usb4_dpin(port))
2642 return -EOPNOTSUPP;
2643
2644 ret = tb_port_read(port, &val, TB_CFG_PORT,
2645 port->cap_adap + ADP_DP_CS_2, 1);
2646 if (ret)
2647 return ret;
2648
2649 val &= ADP_DP_CS_2_GR_MASK;
2650 val >>= ADP_DP_CS_2_GR_SHIFT;
2651
2652 switch (val) {
2653 case ADP_DP_CS_2_GR_0_25G:
2654 return 250;
2655 case ADP_DP_CS_2_GR_0_5G:
2656 return 500;
2657 case ADP_DP_CS_2_GR_1G:
2658 return 1000;
2659 }
2660
2661 return -EINVAL;
2662}
2663
2664/**
2665 * usb4_dp_port_set_granularity() - Set granularity for the bandwidth values
2666 * @port: DP IN adapter
2667 * @granularity: Granularity in Mb/s. Supported values: 1000, 500 and 250.
2668 *
2669 * Sets the granularity used with the estimated, allocated and requested
2670 * bandwidth. Returns %0 in success and negative errno otherwise. If the
2671 * adapter does not support this %-EOPNOTSUPP is returned.
2672 */
2673int usb4_dp_port_set_granularity(struct tb_port *port, int granularity)
2674{
2675 u32 val;
2676 int ret;
2677
2678 if (!is_usb4_dpin(port))
2679 return -EOPNOTSUPP;
2680
2681 ret = tb_port_read(port, &val, TB_CFG_PORT,
2682 port->cap_adap + ADP_DP_CS_2, 1);
2683 if (ret)
2684 return ret;
2685
2686 val &= ~ADP_DP_CS_2_GR_MASK;
2687
2688 switch (granularity) {
2689 case 250:
2690 val |= ADP_DP_CS_2_GR_0_25G << ADP_DP_CS_2_GR_SHIFT;
2691 break;
2692 case 500:
2693 val |= ADP_DP_CS_2_GR_0_5G << ADP_DP_CS_2_GR_SHIFT;
2694 break;
2695 case 1000:
2696 val |= ADP_DP_CS_2_GR_1G << ADP_DP_CS_2_GR_SHIFT;
2697 break;
2698 default:
2699 return -EINVAL;
2700 }
2701
2702 return tb_port_write(port, &val, TB_CFG_PORT,
2703 port->cap_adap + ADP_DP_CS_2, 1);
2704}
2705
2706/**
2707 * usb4_dp_port_set_estimated_bandwidth() - Set estimated bandwidth
2708 * @port: DP IN adapter
2709 * @bw: Estimated bandwidth in Mb/s.
2710 *
2711 * Sets the estimated bandwidth to @bw. Set the granularity by calling
2712 * usb4_dp_port_set_granularity() before calling this. The @bw is round
2713 * down to the closest granularity multiplier. Returns %0 in success
2714 * and negative errno otherwise. Specifically returns %-EOPNOTSUPP if
2715 * the adapter does not support this.
2716 */
2717int usb4_dp_port_set_estimated_bandwidth(struct tb_port *port, int bw)
2718{
2719 u32 val, granularity;
2720 int ret;
2721
2722 if (!is_usb4_dpin(port))
2723 return -EOPNOTSUPP;
2724
2725 ret = usb4_dp_port_granularity(port);
2726 if (ret < 0)
2727 return ret;
2728 granularity = ret;
2729
2730 ret = tb_port_read(port, &val, TB_CFG_PORT,
2731 port->cap_adap + ADP_DP_CS_2, 1);
2732 if (ret)
2733 return ret;
2734
2735 val &= ~ADP_DP_CS_2_ESTIMATED_BW_MASK;
2736 val |= (bw / granularity) << ADP_DP_CS_2_ESTIMATED_BW_SHIFT;
2737
2738 return tb_port_write(port, &val, TB_CFG_PORT,
2739 port->cap_adap + ADP_DP_CS_2, 1);
2740}
2741
2742/**
2743 * usb4_dp_port_allocated_bandwidth() - Return allocated bandwidth
2744 * @port: DP IN adapter
2745 *
2746 * Reads and returns allocated bandwidth for @port in Mb/s (taking into
2747 * account the programmed granularity). Returns negative errno in case
2748 * of error.
2749 */
2750int usb4_dp_port_allocated_bandwidth(struct tb_port *port)
2751{
2752 u32 val, granularity;
2753 int ret;
2754
2755 if (!is_usb4_dpin(port))
2756 return -EOPNOTSUPP;
2757
2758 ret = usb4_dp_port_granularity(port);
2759 if (ret < 0)
2760 return ret;
2761 granularity = ret;
2762
2763 ret = tb_port_read(port, &val, TB_CFG_PORT,
2764 port->cap_adap + DP_STATUS, 1);
2765 if (ret)
2766 return ret;
2767
2768 val &= DP_STATUS_ALLOCATED_BW_MASK;
2769 val >>= DP_STATUS_ALLOCATED_BW_SHIFT;
2770
2771 return val * granularity;
2772}
2773
2774static int __usb4_dp_port_set_cm_ack(struct tb_port *port, bool ack)
2775{
2776 u32 val;
2777 int ret;
2778
2779 ret = tb_port_read(port, &val, TB_CFG_PORT,
2780 port->cap_adap + ADP_DP_CS_2, 1);
2781 if (ret)
2782 return ret;
2783
2784 if (ack)
2785 val |= ADP_DP_CS_2_CA;
2786 else
2787 val &= ~ADP_DP_CS_2_CA;
2788
2789 return tb_port_write(port, &val, TB_CFG_PORT,
2790 port->cap_adap + ADP_DP_CS_2, 1);
2791}
2792
2793static inline int usb4_dp_port_set_cm_ack(struct tb_port *port)
2794{
2795 return __usb4_dp_port_set_cm_ack(port, true);
2796}
2797
2798static int usb4_dp_port_wait_and_clear_cm_ack(struct tb_port *port,
2799 int timeout_msec)
2800{
2801 ktime_t end;
2802 u32 val;
2803 int ret;
2804
2805 ret = __usb4_dp_port_set_cm_ack(port, false);
2806 if (ret)
2807 return ret;
2808
2809 end = ktime_add_ms(ktime_get(), timeout_msec);
2810 do {
2811 ret = tb_port_read(port, &val, TB_CFG_PORT,
2812 port->cap_adap + ADP_DP_CS_8, 1);
2813 if (ret)
2814 return ret;
2815
2816 if (!(val & ADP_DP_CS_8_DR))
2817 break;
2818
2819 usleep_range(50, 100);
2820 } while (ktime_before(ktime_get(), end));
2821
2822 if (val & ADP_DP_CS_8_DR)
2823 return -ETIMEDOUT;
2824
2825 ret = tb_port_read(port, &val, TB_CFG_PORT,
2826 port->cap_adap + ADP_DP_CS_2, 1);
2827 if (ret)
2828 return ret;
2829
2830 val &= ~ADP_DP_CS_2_CA;
2831 return tb_port_write(port, &val, TB_CFG_PORT,
2832 port->cap_adap + ADP_DP_CS_2, 1);
2833}
2834
2835/**
2836 * usb4_dp_port_allocate_bandwidth() - Set allocated bandwidth
2837 * @port: DP IN adapter
2838 * @bw: New allocated bandwidth in Mb/s
2839 *
2840 * Communicates the new allocated bandwidth with the DPCD (graphics
2841 * driver). Takes into account the programmed granularity. Returns %0 in
2842 * success and negative errno in case of error.
2843 */
2844int usb4_dp_port_allocate_bandwidth(struct tb_port *port, int bw)
2845{
2846 u32 val, granularity;
2847 int ret;
2848
2849 if (!is_usb4_dpin(port))
2850 return -EOPNOTSUPP;
2851
2852 ret = usb4_dp_port_granularity(port);
2853 if (ret < 0)
2854 return ret;
2855 granularity = ret;
2856
2857 ret = tb_port_read(port, &val, TB_CFG_PORT,
2858 port->cap_adap + DP_STATUS, 1);
2859 if (ret)
2860 return ret;
2861
2862 val &= ~DP_STATUS_ALLOCATED_BW_MASK;
2863 val |= (bw / granularity) << DP_STATUS_ALLOCATED_BW_SHIFT;
2864
2865 ret = tb_port_write(port, &val, TB_CFG_PORT,
2866 port->cap_adap + DP_STATUS, 1);
2867 if (ret)
2868 return ret;
2869
2870 ret = usb4_dp_port_set_cm_ack(port);
2871 if (ret)
2872 return ret;
2873
2874 return usb4_dp_port_wait_and_clear_cm_ack(port, 500);
2875}
2876
2877/**
2878 * usb4_dp_port_requested_bandwidth() - Read requested bandwidth
2879 * @port: DP IN adapter
2880 *
2881 * Reads the DPCD (graphics driver) requested bandwidth and returns it
2882 * in Mb/s. Takes the programmed granularity into account. In case of
2883 * error returns negative errno. Specifically returns %-EOPNOTSUPP if
2884 * the adapter does not support bandwidth allocation mode, and %ENODATA
2885 * if there is no active bandwidth request from the graphics driver.
2886 */
2887int usb4_dp_port_requested_bandwidth(struct tb_port *port)
2888{
2889 u32 val, granularity;
2890 int ret;
2891
2892 if (!is_usb4_dpin(port))
2893 return -EOPNOTSUPP;
2894
2895 ret = usb4_dp_port_granularity(port);
2896 if (ret < 0)
2897 return ret;
2898 granularity = ret;
2899
2900 ret = tb_port_read(port, &val, TB_CFG_PORT,
2901 port->cap_adap + ADP_DP_CS_8, 1);
2902 if (ret)
2903 return ret;
2904
2905 if (!(val & ADP_DP_CS_8_DR))
2906 return -ENODATA;
2907
2908 return (val & ADP_DP_CS_8_REQUESTED_BW_MASK) * granularity;
2909}
2910
2911/**
2912 * usb4_pci_port_set_ext_encapsulation() - Enable/disable extended encapsulation
2913 * @port: PCIe adapter
2914 * @enable: Enable/disable extended encapsulation
2915 *
2916 * Enables or disables extended encapsulation used in PCIe tunneling. Caller
2917 * needs to make sure both adapters support this before enabling. Returns %0 on
2918 * success and negative errno otherwise.
2919 */
2920int usb4_pci_port_set_ext_encapsulation(struct tb_port *port, bool enable)
2921{
2922 u32 val;
2923 int ret;
2924
2925 if (!tb_port_is_pcie_up(port) && !tb_port_is_pcie_down(port))
2926 return -EINVAL;
2927
2928 ret = tb_port_read(port, &val, TB_CFG_PORT,
2929 port->cap_adap + ADP_PCIE_CS_1, 1);
2930 if (ret)
2931 return ret;
2932
2933 if (enable)
2934 val |= ADP_PCIE_CS_1_EE;
2935 else
2936 val &= ~ADP_PCIE_CS_1_EE;
2937
2938 return tb_port_write(port, &val, TB_CFG_PORT,
2939 port->cap_adap + ADP_PCIE_CS_1, 1);
2940}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * USB4 specific functionality
4 *
5 * Copyright (C) 2019, Intel Corporation
6 * Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
7 * Rajmohan Mani <rajmohan.mani@intel.com>
8 */
9
10#include <linux/delay.h>
11#include <linux/ktime.h>
12
13#include "sb_regs.h"
14#include "tb.h"
15
16#define USB4_DATA_RETRIES 3
17
18enum usb4_sb_target {
19 USB4_SB_TARGET_ROUTER,
20 USB4_SB_TARGET_PARTNER,
21 USB4_SB_TARGET_RETIMER,
22};
23
24#define USB4_NVM_READ_OFFSET_MASK GENMASK(23, 2)
25#define USB4_NVM_READ_OFFSET_SHIFT 2
26#define USB4_NVM_READ_LENGTH_MASK GENMASK(27, 24)
27#define USB4_NVM_READ_LENGTH_SHIFT 24
28
29#define USB4_NVM_SET_OFFSET_MASK USB4_NVM_READ_OFFSET_MASK
30#define USB4_NVM_SET_OFFSET_SHIFT USB4_NVM_READ_OFFSET_SHIFT
31
32#define USB4_DROM_ADDRESS_MASK GENMASK(14, 2)
33#define USB4_DROM_ADDRESS_SHIFT 2
34#define USB4_DROM_SIZE_MASK GENMASK(19, 15)
35#define USB4_DROM_SIZE_SHIFT 15
36
37#define USB4_NVM_SECTOR_SIZE_MASK GENMASK(23, 0)
38
39#define USB4_BA_LENGTH_MASK GENMASK(7, 0)
40#define USB4_BA_INDEX_MASK GENMASK(15, 0)
41
42enum usb4_ba_index {
43 USB4_BA_MAX_USB3 = 0x1,
44 USB4_BA_MIN_DP_AUX = 0x2,
45 USB4_BA_MIN_DP_MAIN = 0x3,
46 USB4_BA_MAX_PCIE = 0x4,
47 USB4_BA_MAX_HI = 0x5,
48};
49
50#define USB4_BA_VALUE_MASK GENMASK(31, 16)
51#define USB4_BA_VALUE_SHIFT 16
52
53static int usb4_native_switch_op(struct tb_switch *sw, u16 opcode,
54 u32 *metadata, u8 *status,
55 const void *tx_data, size_t tx_dwords,
56 void *rx_data, size_t rx_dwords)
57{
58 u32 val;
59 int ret;
60
61 if (metadata) {
62 ret = tb_sw_write(sw, metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1);
63 if (ret)
64 return ret;
65 }
66 if (tx_dwords) {
67 ret = tb_sw_write(sw, tx_data, TB_CFG_SWITCH, ROUTER_CS_9,
68 tx_dwords);
69 if (ret)
70 return ret;
71 }
72
73 val = opcode | ROUTER_CS_26_OV;
74 ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
75 if (ret)
76 return ret;
77
78 ret = tb_switch_wait_for_bit(sw, ROUTER_CS_26, ROUTER_CS_26_OV, 0, 500);
79 if (ret)
80 return ret;
81
82 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
83 if (ret)
84 return ret;
85
86 if (val & ROUTER_CS_26_ONS)
87 return -EOPNOTSUPP;
88
89 if (status)
90 *status = (val & ROUTER_CS_26_STATUS_MASK) >>
91 ROUTER_CS_26_STATUS_SHIFT;
92
93 if (metadata) {
94 ret = tb_sw_read(sw, metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1);
95 if (ret)
96 return ret;
97 }
98 if (rx_dwords) {
99 ret = tb_sw_read(sw, rx_data, TB_CFG_SWITCH, ROUTER_CS_9,
100 rx_dwords);
101 if (ret)
102 return ret;
103 }
104
105 return 0;
106}
107
108static int __usb4_switch_op(struct tb_switch *sw, u16 opcode, u32 *metadata,
109 u8 *status, const void *tx_data, size_t tx_dwords,
110 void *rx_data, size_t rx_dwords)
111{
112 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
113
114 if (tx_dwords > NVM_DATA_DWORDS || rx_dwords > NVM_DATA_DWORDS)
115 return -EINVAL;
116
117 /*
118 * If the connection manager implementation provides USB4 router
119 * operation proxy callback, call it here instead of running the
120 * operation natively.
121 */
122 if (cm_ops->usb4_switch_op) {
123 int ret;
124
125 ret = cm_ops->usb4_switch_op(sw, opcode, metadata, status,
126 tx_data, tx_dwords, rx_data,
127 rx_dwords);
128 if (ret != -EOPNOTSUPP)
129 return ret;
130
131 /*
132 * If the proxy was not supported then run the native
133 * router operation instead.
134 */
135 }
136
137 return usb4_native_switch_op(sw, opcode, metadata, status, tx_data,
138 tx_dwords, rx_data, rx_dwords);
139}
140
141static inline int usb4_switch_op(struct tb_switch *sw, u16 opcode,
142 u32 *metadata, u8 *status)
143{
144 return __usb4_switch_op(sw, opcode, metadata, status, NULL, 0, NULL, 0);
145}
146
147static inline int usb4_switch_op_data(struct tb_switch *sw, u16 opcode,
148 u32 *metadata, u8 *status,
149 const void *tx_data, size_t tx_dwords,
150 void *rx_data, size_t rx_dwords)
151{
152 return __usb4_switch_op(sw, opcode, metadata, status, tx_data,
153 tx_dwords, rx_data, rx_dwords);
154}
155
156static void usb4_switch_check_wakes(struct tb_switch *sw)
157{
158 bool wakeup_usb4 = false;
159 struct usb4_port *usb4;
160 struct tb_port *port;
161 bool wakeup = false;
162 u32 val;
163
164 if (!device_may_wakeup(&sw->dev))
165 return;
166
167 if (tb_route(sw)) {
168 if (tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_6, 1))
169 return;
170
171 tb_sw_dbg(sw, "PCIe wake: %s, USB3 wake: %s\n",
172 (val & ROUTER_CS_6_WOPS) ? "yes" : "no",
173 (val & ROUTER_CS_6_WOUS) ? "yes" : "no");
174
175 wakeup = val & (ROUTER_CS_6_WOPS | ROUTER_CS_6_WOUS);
176 }
177
178 /*
179 * Check for any downstream ports for USB4 wake,
180 * connection wake and disconnection wake.
181 */
182 tb_switch_for_each_port(sw, port) {
183 if (!port->cap_usb4)
184 continue;
185
186 if (tb_port_read(port, &val, TB_CFG_PORT,
187 port->cap_usb4 + PORT_CS_18, 1))
188 break;
189
190 tb_port_dbg(port, "USB4 wake: %s, connection wake: %s, disconnection wake: %s\n",
191 (val & PORT_CS_18_WOU4S) ? "yes" : "no",
192 (val & PORT_CS_18_WOCS) ? "yes" : "no",
193 (val & PORT_CS_18_WODS) ? "yes" : "no");
194
195 wakeup_usb4 = val & (PORT_CS_18_WOU4S | PORT_CS_18_WOCS |
196 PORT_CS_18_WODS);
197
198 usb4 = port->usb4;
199 if (device_may_wakeup(&usb4->dev) && wakeup_usb4)
200 pm_wakeup_event(&usb4->dev, 0);
201
202 wakeup |= wakeup_usb4;
203 }
204
205 if (wakeup)
206 pm_wakeup_event(&sw->dev, 0);
207}
208
209static bool link_is_usb4(struct tb_port *port)
210{
211 u32 val;
212
213 if (!port->cap_usb4)
214 return false;
215
216 if (tb_port_read(port, &val, TB_CFG_PORT,
217 port->cap_usb4 + PORT_CS_18, 1))
218 return false;
219
220 return !(val & PORT_CS_18_TCM);
221}
222
223/**
224 * usb4_switch_setup() - Additional setup for USB4 device
225 * @sw: USB4 router to setup
226 *
227 * USB4 routers need additional settings in order to enable all the
228 * tunneling. This function enables USB and PCIe tunneling if it can be
229 * enabled (e.g the parent switch also supports them). If USB tunneling
230 * is not available for some reason (like that there is Thunderbolt 3
231 * switch upstream) then the internal xHCI controller is enabled
232 * instead.
233 */
234int usb4_switch_setup(struct tb_switch *sw)
235{
236 struct tb_port *downstream_port;
237 struct tb_switch *parent;
238 bool tbt3, xhci;
239 u32 val = 0;
240 int ret;
241
242 usb4_switch_check_wakes(sw);
243
244 if (!tb_route(sw))
245 return 0;
246
247 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_6, 1);
248 if (ret)
249 return ret;
250
251 parent = tb_switch_parent(sw);
252 downstream_port = tb_port_at(tb_route(sw), parent);
253 sw->link_usb4 = link_is_usb4(downstream_port);
254 tb_sw_dbg(sw, "link: %s\n", sw->link_usb4 ? "USB4" : "TBT");
255
256 xhci = val & ROUTER_CS_6_HCI;
257 tbt3 = !(val & ROUTER_CS_6_TNS);
258
259 tb_sw_dbg(sw, "TBT3 support: %s, xHCI: %s\n",
260 tbt3 ? "yes" : "no", xhci ? "yes" : "no");
261
262 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
263 if (ret)
264 return ret;
265
266 if (tb_acpi_may_tunnel_usb3() && sw->link_usb4 &&
267 tb_switch_find_port(parent, TB_TYPE_USB3_DOWN)) {
268 val |= ROUTER_CS_5_UTO;
269 xhci = false;
270 }
271
272 /*
273 * Only enable PCIe tunneling if the parent router supports it
274 * and it is not disabled.
275 */
276 if (tb_acpi_may_tunnel_pcie() &&
277 tb_switch_find_port(parent, TB_TYPE_PCIE_DOWN)) {
278 val |= ROUTER_CS_5_PTO;
279 /*
280 * xHCI can be enabled if PCIe tunneling is supported
281 * and the parent does not have any USB3 dowstream
282 * adapters (so we cannot do USB 3.x tunneling).
283 */
284 if (xhci)
285 val |= ROUTER_CS_5_HCO;
286 }
287
288 /* TBT3 supported by the CM */
289 val |= ROUTER_CS_5_C3S;
290 /* Tunneling configuration is ready now */
291 val |= ROUTER_CS_5_CV;
292
293 ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
294 if (ret)
295 return ret;
296
297 return tb_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_CR,
298 ROUTER_CS_6_CR, 50);
299}
300
301/**
302 * usb4_switch_read_uid() - Read UID from USB4 router
303 * @sw: USB4 router
304 * @uid: UID is stored here
305 *
306 * Reads 64-bit UID from USB4 router config space.
307 */
308int usb4_switch_read_uid(struct tb_switch *sw, u64 *uid)
309{
310 return tb_sw_read(sw, uid, TB_CFG_SWITCH, ROUTER_CS_7, 2);
311}
312
313static int usb4_switch_drom_read_block(void *data,
314 unsigned int dwaddress, void *buf,
315 size_t dwords)
316{
317 struct tb_switch *sw = data;
318 u8 status = 0;
319 u32 metadata;
320 int ret;
321
322 metadata = (dwords << USB4_DROM_SIZE_SHIFT) & USB4_DROM_SIZE_MASK;
323 metadata |= (dwaddress << USB4_DROM_ADDRESS_SHIFT) &
324 USB4_DROM_ADDRESS_MASK;
325
326 ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_DROM_READ, &metadata,
327 &status, NULL, 0, buf, dwords);
328 if (ret)
329 return ret;
330
331 return status ? -EIO : 0;
332}
333
334/**
335 * usb4_switch_drom_read() - Read arbitrary bytes from USB4 router DROM
336 * @sw: USB4 router
337 * @address: Byte address inside DROM to start reading
338 * @buf: Buffer where the DROM content is stored
339 * @size: Number of bytes to read from DROM
340 *
341 * Uses USB4 router operations to read router DROM. For devices this
342 * should always work but for hosts it may return %-EOPNOTSUPP in which
343 * case the host router does not have DROM.
344 */
345int usb4_switch_drom_read(struct tb_switch *sw, unsigned int address, void *buf,
346 size_t size)
347{
348 return tb_nvm_read_data(address, buf, size, USB4_DATA_RETRIES,
349 usb4_switch_drom_read_block, sw);
350}
351
352/**
353 * usb4_switch_lane_bonding_possible() - Are conditions met for lane bonding
354 * @sw: USB4 router
355 *
356 * Checks whether conditions are met so that lane bonding can be
357 * established with the upstream router. Call only for device routers.
358 */
359bool usb4_switch_lane_bonding_possible(struct tb_switch *sw)
360{
361 struct tb_port *up;
362 int ret;
363 u32 val;
364
365 up = tb_upstream_port(sw);
366 ret = tb_port_read(up, &val, TB_CFG_PORT, up->cap_usb4 + PORT_CS_18, 1);
367 if (ret)
368 return false;
369
370 return !!(val & PORT_CS_18_BE);
371}
372
373/**
374 * usb4_switch_set_wake() - Enabled/disable wake
375 * @sw: USB4 router
376 * @flags: Wakeup flags (%0 to disable)
377 *
378 * Enables/disables router to wake up from sleep.
379 */
380int usb4_switch_set_wake(struct tb_switch *sw, unsigned int flags)
381{
382 struct usb4_port *usb4;
383 struct tb_port *port;
384 u64 route = tb_route(sw);
385 u32 val;
386 int ret;
387
388 /*
389 * Enable wakes coming from all USB4 downstream ports (from
390 * child routers). For device routers do this also for the
391 * upstream USB4 port.
392 */
393 tb_switch_for_each_port(sw, port) {
394 if (!tb_port_is_null(port))
395 continue;
396 if (!route && tb_is_upstream_port(port))
397 continue;
398 if (!port->cap_usb4)
399 continue;
400
401 ret = tb_port_read(port, &val, TB_CFG_PORT,
402 port->cap_usb4 + PORT_CS_19, 1);
403 if (ret)
404 return ret;
405
406 val &= ~(PORT_CS_19_WOC | PORT_CS_19_WOD | PORT_CS_19_WOU4);
407
408 if (tb_is_upstream_port(port)) {
409 val |= PORT_CS_19_WOU4;
410 } else {
411 bool configured = val & PORT_CS_19_PC;
412 usb4 = port->usb4;
413
414 if (((flags & TB_WAKE_ON_CONNECT) |
415 device_may_wakeup(&usb4->dev)) && !configured)
416 val |= PORT_CS_19_WOC;
417 if (((flags & TB_WAKE_ON_DISCONNECT) |
418 device_may_wakeup(&usb4->dev)) && configured)
419 val |= PORT_CS_19_WOD;
420 if ((flags & TB_WAKE_ON_USB4) && configured)
421 val |= PORT_CS_19_WOU4;
422 }
423
424 ret = tb_port_write(port, &val, TB_CFG_PORT,
425 port->cap_usb4 + PORT_CS_19, 1);
426 if (ret)
427 return ret;
428 }
429
430 /*
431 * Enable wakes from PCIe, USB 3.x and DP on this router. Only
432 * needed for device routers.
433 */
434 if (route) {
435 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
436 if (ret)
437 return ret;
438
439 val &= ~(ROUTER_CS_5_WOP | ROUTER_CS_5_WOU | ROUTER_CS_5_WOD);
440 if (flags & TB_WAKE_ON_USB3)
441 val |= ROUTER_CS_5_WOU;
442 if (flags & TB_WAKE_ON_PCIE)
443 val |= ROUTER_CS_5_WOP;
444 if (flags & TB_WAKE_ON_DP)
445 val |= ROUTER_CS_5_WOD;
446
447 ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
448 if (ret)
449 return ret;
450 }
451
452 return 0;
453}
454
455/**
456 * usb4_switch_set_sleep() - Prepare the router to enter sleep
457 * @sw: USB4 router
458 *
459 * Sets sleep bit for the router. Returns when the router sleep ready
460 * bit has been asserted.
461 */
462int usb4_switch_set_sleep(struct tb_switch *sw)
463{
464 int ret;
465 u32 val;
466
467 /* Set sleep bit and wait for sleep ready to be asserted */
468 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
469 if (ret)
470 return ret;
471
472 val |= ROUTER_CS_5_SLP;
473
474 ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
475 if (ret)
476 return ret;
477
478 return tb_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_SLPR,
479 ROUTER_CS_6_SLPR, 500);
480}
481
482/**
483 * usb4_switch_nvm_sector_size() - Return router NVM sector size
484 * @sw: USB4 router
485 *
486 * If the router supports NVM operations this function returns the NVM
487 * sector size in bytes. If NVM operations are not supported returns
488 * %-EOPNOTSUPP.
489 */
490int usb4_switch_nvm_sector_size(struct tb_switch *sw)
491{
492 u32 metadata;
493 u8 status;
494 int ret;
495
496 ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SECTOR_SIZE, &metadata,
497 &status);
498 if (ret)
499 return ret;
500
501 if (status)
502 return status == 0x2 ? -EOPNOTSUPP : -EIO;
503
504 return metadata & USB4_NVM_SECTOR_SIZE_MASK;
505}
506
507static int usb4_switch_nvm_read_block(void *data,
508 unsigned int dwaddress, void *buf, size_t dwords)
509{
510 struct tb_switch *sw = data;
511 u8 status = 0;
512 u32 metadata;
513 int ret;
514
515 metadata = (dwords << USB4_NVM_READ_LENGTH_SHIFT) &
516 USB4_NVM_READ_LENGTH_MASK;
517 metadata |= (dwaddress << USB4_NVM_READ_OFFSET_SHIFT) &
518 USB4_NVM_READ_OFFSET_MASK;
519
520 ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_NVM_READ, &metadata,
521 &status, NULL, 0, buf, dwords);
522 if (ret)
523 return ret;
524
525 return status ? -EIO : 0;
526}
527
528/**
529 * usb4_switch_nvm_read() - Read arbitrary bytes from router NVM
530 * @sw: USB4 router
531 * @address: Starting address in bytes
532 * @buf: Read data is placed here
533 * @size: How many bytes to read
534 *
535 * Reads NVM contents of the router. If NVM is not supported returns
536 * %-EOPNOTSUPP.
537 */
538int usb4_switch_nvm_read(struct tb_switch *sw, unsigned int address, void *buf,
539 size_t size)
540{
541 return tb_nvm_read_data(address, buf, size, USB4_DATA_RETRIES,
542 usb4_switch_nvm_read_block, sw);
543}
544
545/**
546 * usb4_switch_nvm_set_offset() - Set NVM write offset
547 * @sw: USB4 router
548 * @address: Start offset
549 *
550 * Explicitly sets NVM write offset. Normally when writing to NVM this
551 * is done automatically by usb4_switch_nvm_write().
552 *
553 * Returns %0 in success and negative errno if there was a failure.
554 */
555int usb4_switch_nvm_set_offset(struct tb_switch *sw, unsigned int address)
556{
557 u32 metadata, dwaddress;
558 u8 status = 0;
559 int ret;
560
561 dwaddress = address / 4;
562 metadata = (dwaddress << USB4_NVM_SET_OFFSET_SHIFT) &
563 USB4_NVM_SET_OFFSET_MASK;
564
565 ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SET_OFFSET, &metadata,
566 &status);
567 if (ret)
568 return ret;
569
570 return status ? -EIO : 0;
571}
572
573static int usb4_switch_nvm_write_next_block(void *data, unsigned int dwaddress,
574 const void *buf, size_t dwords)
575{
576 struct tb_switch *sw = data;
577 u8 status;
578 int ret;
579
580 ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_NVM_WRITE, NULL, &status,
581 buf, dwords, NULL, 0);
582 if (ret)
583 return ret;
584
585 return status ? -EIO : 0;
586}
587
588/**
589 * usb4_switch_nvm_write() - Write to the router NVM
590 * @sw: USB4 router
591 * @address: Start address where to write in bytes
592 * @buf: Pointer to the data to write
593 * @size: Size of @buf in bytes
594 *
595 * Writes @buf to the router NVM using USB4 router operations. If NVM
596 * write is not supported returns %-EOPNOTSUPP.
597 */
598int usb4_switch_nvm_write(struct tb_switch *sw, unsigned int address,
599 const void *buf, size_t size)
600{
601 int ret;
602
603 ret = usb4_switch_nvm_set_offset(sw, address);
604 if (ret)
605 return ret;
606
607 return tb_nvm_write_data(address, buf, size, USB4_DATA_RETRIES,
608 usb4_switch_nvm_write_next_block, sw);
609}
610
611/**
612 * usb4_switch_nvm_authenticate() - Authenticate new NVM
613 * @sw: USB4 router
614 *
615 * After the new NVM has been written via usb4_switch_nvm_write(), this
616 * function triggers NVM authentication process. The router gets power
617 * cycled and if the authentication is successful the new NVM starts
618 * running. In case of failure returns negative errno.
619 *
620 * The caller should call usb4_switch_nvm_authenticate_status() to read
621 * the status of the authentication after power cycle. It should be the
622 * first router operation to avoid the status being lost.
623 */
624int usb4_switch_nvm_authenticate(struct tb_switch *sw)
625{
626 int ret;
627
628 ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_AUTH, NULL, NULL);
629 switch (ret) {
630 /*
631 * The router is power cycled once NVM_AUTH is started so it is
632 * expected to get any of the following errors back.
633 */
634 case -EACCES:
635 case -ENOTCONN:
636 case -ETIMEDOUT:
637 return 0;
638
639 default:
640 return ret;
641 }
642}
643
644/**
645 * usb4_switch_nvm_authenticate_status() - Read status of last NVM authenticate
646 * @sw: USB4 router
647 * @status: Status code of the operation
648 *
649 * The function checks if there is status available from the last NVM
650 * authenticate router operation. If there is status then %0 is returned
651 * and the status code is placed in @status. Returns negative errno in case
652 * of failure.
653 *
654 * Must be called before any other router operation.
655 */
656int usb4_switch_nvm_authenticate_status(struct tb_switch *sw, u32 *status)
657{
658 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
659 u16 opcode;
660 u32 val;
661 int ret;
662
663 if (cm_ops->usb4_switch_nvm_authenticate_status) {
664 ret = cm_ops->usb4_switch_nvm_authenticate_status(sw, status);
665 if (ret != -EOPNOTSUPP)
666 return ret;
667 }
668
669 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
670 if (ret)
671 return ret;
672
673 /* Check that the opcode is correct */
674 opcode = val & ROUTER_CS_26_OPCODE_MASK;
675 if (opcode == USB4_SWITCH_OP_NVM_AUTH) {
676 if (val & ROUTER_CS_26_OV)
677 return -EBUSY;
678 if (val & ROUTER_CS_26_ONS)
679 return -EOPNOTSUPP;
680
681 *status = (val & ROUTER_CS_26_STATUS_MASK) >>
682 ROUTER_CS_26_STATUS_SHIFT;
683 } else {
684 *status = 0;
685 }
686
687 return 0;
688}
689
690/**
691 * usb4_switch_credits_init() - Read buffer allocation parameters
692 * @sw: USB4 router
693 *
694 * Reads @sw buffer allocation parameters and initializes @sw buffer
695 * allocation fields accordingly. Specifically @sw->credits_allocation
696 * is set to %true if these parameters can be used in tunneling.
697 *
698 * Returns %0 on success and negative errno otherwise.
699 */
700int usb4_switch_credits_init(struct tb_switch *sw)
701{
702 int max_usb3, min_dp_aux, min_dp_main, max_pcie, max_dma;
703 int ret, length, i, nports;
704 const struct tb_port *port;
705 u32 data[NVM_DATA_DWORDS];
706 u32 metadata = 0;
707 u8 status = 0;
708
709 memset(data, 0, sizeof(data));
710 ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_BUFFER_ALLOC, &metadata,
711 &status, NULL, 0, data, ARRAY_SIZE(data));
712 if (ret)
713 return ret;
714 if (status)
715 return -EIO;
716
717 length = metadata & USB4_BA_LENGTH_MASK;
718 if (WARN_ON(length > ARRAY_SIZE(data)))
719 return -EMSGSIZE;
720
721 max_usb3 = -1;
722 min_dp_aux = -1;
723 min_dp_main = -1;
724 max_pcie = -1;
725 max_dma = -1;
726
727 tb_sw_dbg(sw, "credit allocation parameters:\n");
728
729 for (i = 0; i < length; i++) {
730 u16 index, value;
731
732 index = data[i] & USB4_BA_INDEX_MASK;
733 value = (data[i] & USB4_BA_VALUE_MASK) >> USB4_BA_VALUE_SHIFT;
734
735 switch (index) {
736 case USB4_BA_MAX_USB3:
737 tb_sw_dbg(sw, " USB3: %u\n", value);
738 max_usb3 = value;
739 break;
740 case USB4_BA_MIN_DP_AUX:
741 tb_sw_dbg(sw, " DP AUX: %u\n", value);
742 min_dp_aux = value;
743 break;
744 case USB4_BA_MIN_DP_MAIN:
745 tb_sw_dbg(sw, " DP main: %u\n", value);
746 min_dp_main = value;
747 break;
748 case USB4_BA_MAX_PCIE:
749 tb_sw_dbg(sw, " PCIe: %u\n", value);
750 max_pcie = value;
751 break;
752 case USB4_BA_MAX_HI:
753 tb_sw_dbg(sw, " DMA: %u\n", value);
754 max_dma = value;
755 break;
756 default:
757 tb_sw_dbg(sw, " unknown credit allocation index %#x, skipping\n",
758 index);
759 break;
760 }
761 }
762
763 /*
764 * Validate the buffer allocation preferences. If we find
765 * issues, log a warning and fall back using the hard-coded
766 * values.
767 */
768
769 /* Host router must report baMaxHI */
770 if (!tb_route(sw) && max_dma < 0) {
771 tb_sw_warn(sw, "host router is missing baMaxHI\n");
772 goto err_invalid;
773 }
774
775 nports = 0;
776 tb_switch_for_each_port(sw, port) {
777 if (tb_port_is_null(port))
778 nports++;
779 }
780
781 /* Must have DP buffer allocation (multiple USB4 ports) */
782 if (nports > 2 && (min_dp_aux < 0 || min_dp_main < 0)) {
783 tb_sw_warn(sw, "multiple USB4 ports require baMinDPaux/baMinDPmain\n");
784 goto err_invalid;
785 }
786
787 tb_switch_for_each_port(sw, port) {
788 if (tb_port_is_dpout(port) && min_dp_main < 0) {
789 tb_sw_warn(sw, "missing baMinDPmain");
790 goto err_invalid;
791 }
792 if ((tb_port_is_dpin(port) || tb_port_is_dpout(port)) &&
793 min_dp_aux < 0) {
794 tb_sw_warn(sw, "missing baMinDPaux");
795 goto err_invalid;
796 }
797 if ((tb_port_is_usb3_down(port) || tb_port_is_usb3_up(port)) &&
798 max_usb3 < 0) {
799 tb_sw_warn(sw, "missing baMaxUSB3");
800 goto err_invalid;
801 }
802 if ((tb_port_is_pcie_down(port) || tb_port_is_pcie_up(port)) &&
803 max_pcie < 0) {
804 tb_sw_warn(sw, "missing baMaxPCIe");
805 goto err_invalid;
806 }
807 }
808
809 /*
810 * Buffer allocation passed the validation so we can use it in
811 * path creation.
812 */
813 sw->credit_allocation = true;
814 if (max_usb3 > 0)
815 sw->max_usb3_credits = max_usb3;
816 if (min_dp_aux > 0)
817 sw->min_dp_aux_credits = min_dp_aux;
818 if (min_dp_main > 0)
819 sw->min_dp_main_credits = min_dp_main;
820 if (max_pcie > 0)
821 sw->max_pcie_credits = max_pcie;
822 if (max_dma > 0)
823 sw->max_dma_credits = max_dma;
824
825 return 0;
826
827err_invalid:
828 return -EINVAL;
829}
830
831/**
832 * usb4_switch_query_dp_resource() - Query availability of DP IN resource
833 * @sw: USB4 router
834 * @in: DP IN adapter
835 *
836 * For DP tunneling this function can be used to query availability of
837 * DP IN resource. Returns true if the resource is available for DP
838 * tunneling, false otherwise.
839 */
840bool usb4_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
841{
842 u32 metadata = in->port;
843 u8 status;
844 int ret;
845
846 ret = usb4_switch_op(sw, USB4_SWITCH_OP_QUERY_DP_RESOURCE, &metadata,
847 &status);
848 /*
849 * If DP resource allocation is not supported assume it is
850 * always available.
851 */
852 if (ret == -EOPNOTSUPP)
853 return true;
854 else if (ret)
855 return false;
856
857 return !status;
858}
859
860/**
861 * usb4_switch_alloc_dp_resource() - Allocate DP IN resource
862 * @sw: USB4 router
863 * @in: DP IN adapter
864 *
865 * Allocates DP IN resource for DP tunneling using USB4 router
866 * operations. If the resource was allocated returns %0. Otherwise
867 * returns negative errno, in particular %-EBUSY if the resource is
868 * already allocated.
869 */
870int usb4_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
871{
872 u32 metadata = in->port;
873 u8 status;
874 int ret;
875
876 ret = usb4_switch_op(sw, USB4_SWITCH_OP_ALLOC_DP_RESOURCE, &metadata,
877 &status);
878 if (ret == -EOPNOTSUPP)
879 return 0;
880 else if (ret)
881 return ret;
882
883 return status ? -EBUSY : 0;
884}
885
886/**
887 * usb4_switch_dealloc_dp_resource() - Releases allocated DP IN resource
888 * @sw: USB4 router
889 * @in: DP IN adapter
890 *
891 * Releases the previously allocated DP IN resource.
892 */
893int usb4_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
894{
895 u32 metadata = in->port;
896 u8 status;
897 int ret;
898
899 ret = usb4_switch_op(sw, USB4_SWITCH_OP_DEALLOC_DP_RESOURCE, &metadata,
900 &status);
901 if (ret == -EOPNOTSUPP)
902 return 0;
903 else if (ret)
904 return ret;
905
906 return status ? -EIO : 0;
907}
908
909static int usb4_port_idx(const struct tb_switch *sw, const struct tb_port *port)
910{
911 struct tb_port *p;
912 int usb4_idx = 0;
913
914 /* Assume port is primary */
915 tb_switch_for_each_port(sw, p) {
916 if (!tb_port_is_null(p))
917 continue;
918 if (tb_is_upstream_port(p))
919 continue;
920 if (!p->link_nr) {
921 if (p == port)
922 break;
923 usb4_idx++;
924 }
925 }
926
927 return usb4_idx;
928}
929
930/**
931 * usb4_switch_map_pcie_down() - Map USB4 port to a PCIe downstream adapter
932 * @sw: USB4 router
933 * @port: USB4 port
934 *
935 * USB4 routers have direct mapping between USB4 ports and PCIe
936 * downstream adapters where the PCIe topology is extended. This
937 * function returns the corresponding downstream PCIe adapter or %NULL
938 * if no such mapping was possible.
939 */
940struct tb_port *usb4_switch_map_pcie_down(struct tb_switch *sw,
941 const struct tb_port *port)
942{
943 int usb4_idx = usb4_port_idx(sw, port);
944 struct tb_port *p;
945 int pcie_idx = 0;
946
947 /* Find PCIe down port matching usb4_port */
948 tb_switch_for_each_port(sw, p) {
949 if (!tb_port_is_pcie_down(p))
950 continue;
951
952 if (pcie_idx == usb4_idx)
953 return p;
954
955 pcie_idx++;
956 }
957
958 return NULL;
959}
960
961/**
962 * usb4_switch_map_usb3_down() - Map USB4 port to a USB3 downstream adapter
963 * @sw: USB4 router
964 * @port: USB4 port
965 *
966 * USB4 routers have direct mapping between USB4 ports and USB 3.x
967 * downstream adapters where the USB 3.x topology is extended. This
968 * function returns the corresponding downstream USB 3.x adapter or
969 * %NULL if no such mapping was possible.
970 */
971struct tb_port *usb4_switch_map_usb3_down(struct tb_switch *sw,
972 const struct tb_port *port)
973{
974 int usb4_idx = usb4_port_idx(sw, port);
975 struct tb_port *p;
976 int usb_idx = 0;
977
978 /* Find USB3 down port matching usb4_port */
979 tb_switch_for_each_port(sw, p) {
980 if (!tb_port_is_usb3_down(p))
981 continue;
982
983 if (usb_idx == usb4_idx)
984 return p;
985
986 usb_idx++;
987 }
988
989 return NULL;
990}
991
992/**
993 * usb4_switch_add_ports() - Add USB4 ports for this router
994 * @sw: USB4 router
995 *
996 * For USB4 router finds all USB4 ports and registers devices for each.
997 * Can be called to any router.
998 *
999 * Return %0 in case of success and negative errno in case of failure.
1000 */
1001int usb4_switch_add_ports(struct tb_switch *sw)
1002{
1003 struct tb_port *port;
1004
1005 if (tb_switch_is_icm(sw) || !tb_switch_is_usb4(sw))
1006 return 0;
1007
1008 tb_switch_for_each_port(sw, port) {
1009 struct usb4_port *usb4;
1010
1011 if (!tb_port_is_null(port))
1012 continue;
1013 if (!port->cap_usb4)
1014 continue;
1015
1016 usb4 = usb4_port_device_add(port);
1017 if (IS_ERR(usb4)) {
1018 usb4_switch_remove_ports(sw);
1019 return PTR_ERR(usb4);
1020 }
1021
1022 port->usb4 = usb4;
1023 }
1024
1025 return 0;
1026}
1027
1028/**
1029 * usb4_switch_remove_ports() - Removes USB4 ports from this router
1030 * @sw: USB4 router
1031 *
1032 * Unregisters previously registered USB4 ports.
1033 */
1034void usb4_switch_remove_ports(struct tb_switch *sw)
1035{
1036 struct tb_port *port;
1037
1038 tb_switch_for_each_port(sw, port) {
1039 if (port->usb4) {
1040 usb4_port_device_remove(port->usb4);
1041 port->usb4 = NULL;
1042 }
1043 }
1044}
1045
1046/**
1047 * usb4_port_unlock() - Unlock USB4 downstream port
1048 * @port: USB4 port to unlock
1049 *
1050 * Unlocks USB4 downstream port so that the connection manager can
1051 * access the router below this port.
1052 */
1053int usb4_port_unlock(struct tb_port *port)
1054{
1055 int ret;
1056 u32 val;
1057
1058 ret = tb_port_read(port, &val, TB_CFG_PORT, ADP_CS_4, 1);
1059 if (ret)
1060 return ret;
1061
1062 val &= ~ADP_CS_4_LCK;
1063 return tb_port_write(port, &val, TB_CFG_PORT, ADP_CS_4, 1);
1064}
1065
1066/**
1067 * usb4_port_hotplug_enable() - Enables hotplug for a port
1068 * @port: USB4 port to operate on
1069 *
1070 * Enables hot plug events on a given port. This is only intended
1071 * to be used on lane, DP-IN, and DP-OUT adapters.
1072 */
1073int usb4_port_hotplug_enable(struct tb_port *port)
1074{
1075 int ret;
1076 u32 val;
1077
1078 ret = tb_port_read(port, &val, TB_CFG_PORT, ADP_CS_5, 1);
1079 if (ret)
1080 return ret;
1081
1082 val &= ~ADP_CS_5_DHP;
1083 return tb_port_write(port, &val, TB_CFG_PORT, ADP_CS_5, 1);
1084}
1085
1086static int usb4_port_set_configured(struct tb_port *port, bool configured)
1087{
1088 int ret;
1089 u32 val;
1090
1091 if (!port->cap_usb4)
1092 return -EINVAL;
1093
1094 ret = tb_port_read(port, &val, TB_CFG_PORT,
1095 port->cap_usb4 + PORT_CS_19, 1);
1096 if (ret)
1097 return ret;
1098
1099 if (configured)
1100 val |= PORT_CS_19_PC;
1101 else
1102 val &= ~PORT_CS_19_PC;
1103
1104 return tb_port_write(port, &val, TB_CFG_PORT,
1105 port->cap_usb4 + PORT_CS_19, 1);
1106}
1107
1108/**
1109 * usb4_port_configure() - Set USB4 port configured
1110 * @port: USB4 router
1111 *
1112 * Sets the USB4 link to be configured for power management purposes.
1113 */
1114int usb4_port_configure(struct tb_port *port)
1115{
1116 return usb4_port_set_configured(port, true);
1117}
1118
1119/**
1120 * usb4_port_unconfigure() - Set USB4 port unconfigured
1121 * @port: USB4 router
1122 *
1123 * Sets the USB4 link to be unconfigured for power management purposes.
1124 */
1125void usb4_port_unconfigure(struct tb_port *port)
1126{
1127 usb4_port_set_configured(port, false);
1128}
1129
1130static int usb4_set_xdomain_configured(struct tb_port *port, bool configured)
1131{
1132 int ret;
1133 u32 val;
1134
1135 if (!port->cap_usb4)
1136 return -EINVAL;
1137
1138 ret = tb_port_read(port, &val, TB_CFG_PORT,
1139 port->cap_usb4 + PORT_CS_19, 1);
1140 if (ret)
1141 return ret;
1142
1143 if (configured)
1144 val |= PORT_CS_19_PID;
1145 else
1146 val &= ~PORT_CS_19_PID;
1147
1148 return tb_port_write(port, &val, TB_CFG_PORT,
1149 port->cap_usb4 + PORT_CS_19, 1);
1150}
1151
1152/**
1153 * usb4_port_configure_xdomain() - Configure port for XDomain
1154 * @port: USB4 port connected to another host
1155 * @xd: XDomain that is connected to the port
1156 *
1157 * Marks the USB4 port as being connected to another host and updates
1158 * the link type. Returns %0 in success and negative errno in failure.
1159 */
1160int usb4_port_configure_xdomain(struct tb_port *port, struct tb_xdomain *xd)
1161{
1162 xd->link_usb4 = link_is_usb4(port);
1163 return usb4_set_xdomain_configured(port, true);
1164}
1165
1166/**
1167 * usb4_port_unconfigure_xdomain() - Unconfigure port for XDomain
1168 * @port: USB4 port that was connected to another host
1169 *
1170 * Clears USB4 port from being marked as XDomain.
1171 */
1172void usb4_port_unconfigure_xdomain(struct tb_port *port)
1173{
1174 usb4_set_xdomain_configured(port, false);
1175}
1176
1177static int usb4_port_wait_for_bit(struct tb_port *port, u32 offset, u32 bit,
1178 u32 value, int timeout_msec)
1179{
1180 ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
1181
1182 do {
1183 u32 val;
1184 int ret;
1185
1186 ret = tb_port_read(port, &val, TB_CFG_PORT, offset, 1);
1187 if (ret)
1188 return ret;
1189
1190 if ((val & bit) == value)
1191 return 0;
1192
1193 usleep_range(50, 100);
1194 } while (ktime_before(ktime_get(), timeout));
1195
1196 return -ETIMEDOUT;
1197}
1198
1199static int usb4_port_read_data(struct tb_port *port, void *data, size_t dwords)
1200{
1201 if (dwords > NVM_DATA_DWORDS)
1202 return -EINVAL;
1203
1204 return tb_port_read(port, data, TB_CFG_PORT, port->cap_usb4 + PORT_CS_2,
1205 dwords);
1206}
1207
1208static int usb4_port_write_data(struct tb_port *port, const void *data,
1209 size_t dwords)
1210{
1211 if (dwords > NVM_DATA_DWORDS)
1212 return -EINVAL;
1213
1214 return tb_port_write(port, data, TB_CFG_PORT, port->cap_usb4 + PORT_CS_2,
1215 dwords);
1216}
1217
1218static int usb4_port_sb_read(struct tb_port *port, enum usb4_sb_target target,
1219 u8 index, u8 reg, void *buf, u8 size)
1220{
1221 size_t dwords = DIV_ROUND_UP(size, 4);
1222 int ret;
1223 u32 val;
1224
1225 if (!port->cap_usb4)
1226 return -EINVAL;
1227
1228 val = reg;
1229 val |= size << PORT_CS_1_LENGTH_SHIFT;
1230 val |= (target << PORT_CS_1_TARGET_SHIFT) & PORT_CS_1_TARGET_MASK;
1231 if (target == USB4_SB_TARGET_RETIMER)
1232 val |= (index << PORT_CS_1_RETIMER_INDEX_SHIFT);
1233 val |= PORT_CS_1_PND;
1234
1235 ret = tb_port_write(port, &val, TB_CFG_PORT,
1236 port->cap_usb4 + PORT_CS_1, 1);
1237 if (ret)
1238 return ret;
1239
1240 ret = usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_1,
1241 PORT_CS_1_PND, 0, 500);
1242 if (ret)
1243 return ret;
1244
1245 ret = tb_port_read(port, &val, TB_CFG_PORT,
1246 port->cap_usb4 + PORT_CS_1, 1);
1247 if (ret)
1248 return ret;
1249
1250 if (val & PORT_CS_1_NR)
1251 return -ENODEV;
1252 if (val & PORT_CS_1_RC)
1253 return -EIO;
1254
1255 return buf ? usb4_port_read_data(port, buf, dwords) : 0;
1256}
1257
1258static int usb4_port_sb_write(struct tb_port *port, enum usb4_sb_target target,
1259 u8 index, u8 reg, const void *buf, u8 size)
1260{
1261 size_t dwords = DIV_ROUND_UP(size, 4);
1262 int ret;
1263 u32 val;
1264
1265 if (!port->cap_usb4)
1266 return -EINVAL;
1267
1268 if (buf) {
1269 ret = usb4_port_write_data(port, buf, dwords);
1270 if (ret)
1271 return ret;
1272 }
1273
1274 val = reg;
1275 val |= size << PORT_CS_1_LENGTH_SHIFT;
1276 val |= PORT_CS_1_WNR_WRITE;
1277 val |= (target << PORT_CS_1_TARGET_SHIFT) & PORT_CS_1_TARGET_MASK;
1278 if (target == USB4_SB_TARGET_RETIMER)
1279 val |= (index << PORT_CS_1_RETIMER_INDEX_SHIFT);
1280 val |= PORT_CS_1_PND;
1281
1282 ret = tb_port_write(port, &val, TB_CFG_PORT,
1283 port->cap_usb4 + PORT_CS_1, 1);
1284 if (ret)
1285 return ret;
1286
1287 ret = usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_1,
1288 PORT_CS_1_PND, 0, 500);
1289 if (ret)
1290 return ret;
1291
1292 ret = tb_port_read(port, &val, TB_CFG_PORT,
1293 port->cap_usb4 + PORT_CS_1, 1);
1294 if (ret)
1295 return ret;
1296
1297 if (val & PORT_CS_1_NR)
1298 return -ENODEV;
1299 if (val & PORT_CS_1_RC)
1300 return -EIO;
1301
1302 return 0;
1303}
1304
1305static int usb4_port_sb_op(struct tb_port *port, enum usb4_sb_target target,
1306 u8 index, enum usb4_sb_opcode opcode, int timeout_msec)
1307{
1308 ktime_t timeout;
1309 u32 val;
1310 int ret;
1311
1312 val = opcode;
1313 ret = usb4_port_sb_write(port, target, index, USB4_SB_OPCODE, &val,
1314 sizeof(val));
1315 if (ret)
1316 return ret;
1317
1318 timeout = ktime_add_ms(ktime_get(), timeout_msec);
1319
1320 do {
1321 /* Check results */
1322 ret = usb4_port_sb_read(port, target, index, USB4_SB_OPCODE,
1323 &val, sizeof(val));
1324 if (ret)
1325 return ret;
1326
1327 switch (val) {
1328 case 0:
1329 return 0;
1330
1331 case USB4_SB_OPCODE_ERR:
1332 return -EAGAIN;
1333
1334 case USB4_SB_OPCODE_ONS:
1335 return -EOPNOTSUPP;
1336
1337 default:
1338 if (val != opcode)
1339 return -EIO;
1340 break;
1341 }
1342 } while (ktime_before(ktime_get(), timeout));
1343
1344 return -ETIMEDOUT;
1345}
1346
1347static int usb4_port_set_router_offline(struct tb_port *port, bool offline)
1348{
1349 u32 val = !offline;
1350 int ret;
1351
1352 ret = usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1353 USB4_SB_METADATA, &val, sizeof(val));
1354 if (ret)
1355 return ret;
1356
1357 val = USB4_SB_OPCODE_ROUTER_OFFLINE;
1358 return usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1359 USB4_SB_OPCODE, &val, sizeof(val));
1360}
1361
1362/**
1363 * usb4_port_router_offline() - Put the USB4 port to offline mode
1364 * @port: USB4 port
1365 *
1366 * This function puts the USB4 port into offline mode. In this mode the
1367 * port does not react on hotplug events anymore. This needs to be
1368 * called before retimer access is done when the USB4 links is not up.
1369 *
1370 * Returns %0 in case of success and negative errno if there was an
1371 * error.
1372 */
1373int usb4_port_router_offline(struct tb_port *port)
1374{
1375 return usb4_port_set_router_offline(port, true);
1376}
1377
1378/**
1379 * usb4_port_router_online() - Put the USB4 port back to online
1380 * @port: USB4 port
1381 *
1382 * Makes the USB4 port functional again.
1383 */
1384int usb4_port_router_online(struct tb_port *port)
1385{
1386 return usb4_port_set_router_offline(port, false);
1387}
1388
1389/**
1390 * usb4_port_enumerate_retimers() - Send RT broadcast transaction
1391 * @port: USB4 port
1392 *
1393 * This forces the USB4 port to send broadcast RT transaction which
1394 * makes the retimers on the link to assign index to themselves. Returns
1395 * %0 in case of success and negative errno if there was an error.
1396 */
1397int usb4_port_enumerate_retimers(struct tb_port *port)
1398{
1399 u32 val;
1400
1401 val = USB4_SB_OPCODE_ENUMERATE_RETIMERS;
1402 return usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1403 USB4_SB_OPCODE, &val, sizeof(val));
1404}
1405
1406/**
1407 * usb4_port_clx_supported() - Check if CLx is supported by the link
1408 * @port: Port to check for CLx support for
1409 *
1410 * PORT_CS_18_CPS bit reflects if the link supports CLx including
1411 * active cables (if connected on the link).
1412 */
1413bool usb4_port_clx_supported(struct tb_port *port)
1414{
1415 int ret;
1416 u32 val;
1417
1418 ret = tb_port_read(port, &val, TB_CFG_PORT,
1419 port->cap_usb4 + PORT_CS_18, 1);
1420 if (ret)
1421 return false;
1422
1423 return !!(val & PORT_CS_18_CPS);
1424}
1425
1426/**
1427 * usb4_port_margining_caps() - Read USB4 port marginig capabilities
1428 * @port: USB4 port
1429 * @caps: Array with at least two elements to hold the results
1430 *
1431 * Reads the USB4 port lane margining capabilities into @caps.
1432 */
1433int usb4_port_margining_caps(struct tb_port *port, u32 *caps)
1434{
1435 int ret;
1436
1437 ret = usb4_port_sb_op(port, USB4_SB_TARGET_ROUTER, 0,
1438 USB4_SB_OPCODE_READ_LANE_MARGINING_CAP, 500);
1439 if (ret)
1440 return ret;
1441
1442 return usb4_port_sb_read(port, USB4_SB_TARGET_ROUTER, 0,
1443 USB4_SB_DATA, caps, sizeof(*caps) * 2);
1444}
1445
1446/**
1447 * usb4_port_hw_margin() - Run hardware lane margining on port
1448 * @port: USB4 port
1449 * @lanes: Which lanes to run (must match the port capabilities). Can be
1450 * %0, %1 or %7.
1451 * @ber_level: BER level contour value
1452 * @timing: Perform timing margining instead of voltage
1453 * @right_high: Use Right/high margin instead of left/low
1454 * @results: Array with at least two elements to hold the results
1455 *
1456 * Runs hardware lane margining on USB4 port and returns the result in
1457 * @results.
1458 */
1459int usb4_port_hw_margin(struct tb_port *port, unsigned int lanes,
1460 unsigned int ber_level, bool timing, bool right_high,
1461 u32 *results)
1462{
1463 u32 val;
1464 int ret;
1465
1466 val = lanes;
1467 if (timing)
1468 val |= USB4_MARGIN_HW_TIME;
1469 if (right_high)
1470 val |= USB4_MARGIN_HW_RH;
1471 if (ber_level)
1472 val |= (ber_level << USB4_MARGIN_HW_BER_SHIFT) &
1473 USB4_MARGIN_HW_BER_MASK;
1474
1475 ret = usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1476 USB4_SB_METADATA, &val, sizeof(val));
1477 if (ret)
1478 return ret;
1479
1480 ret = usb4_port_sb_op(port, USB4_SB_TARGET_ROUTER, 0,
1481 USB4_SB_OPCODE_RUN_HW_LANE_MARGINING, 2500);
1482 if (ret)
1483 return ret;
1484
1485 return usb4_port_sb_read(port, USB4_SB_TARGET_ROUTER, 0,
1486 USB4_SB_DATA, results, sizeof(*results) * 2);
1487}
1488
1489/**
1490 * usb4_port_sw_margin() - Run software lane margining on port
1491 * @port: USB4 port
1492 * @lanes: Which lanes to run (must match the port capabilities). Can be
1493 * %0, %1 or %7.
1494 * @timing: Perform timing margining instead of voltage
1495 * @right_high: Use Right/high margin instead of left/low
1496 * @counter: What to do with the error counter
1497 *
1498 * Runs software lane margining on USB4 port. Read back the error
1499 * counters by calling usb4_port_sw_margin_errors(). Returns %0 in
1500 * success and negative errno otherwise.
1501 */
1502int usb4_port_sw_margin(struct tb_port *port, unsigned int lanes, bool timing,
1503 bool right_high, u32 counter)
1504{
1505 u32 val;
1506 int ret;
1507
1508 val = lanes;
1509 if (timing)
1510 val |= USB4_MARGIN_SW_TIME;
1511 if (right_high)
1512 val |= USB4_MARGIN_SW_RH;
1513 val |= (counter << USB4_MARGIN_SW_COUNTER_SHIFT) &
1514 USB4_MARGIN_SW_COUNTER_MASK;
1515
1516 ret = usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1517 USB4_SB_METADATA, &val, sizeof(val));
1518 if (ret)
1519 return ret;
1520
1521 return usb4_port_sb_op(port, USB4_SB_TARGET_ROUTER, 0,
1522 USB4_SB_OPCODE_RUN_SW_LANE_MARGINING, 2500);
1523}
1524
1525/**
1526 * usb4_port_sw_margin_errors() - Read the software margining error counters
1527 * @port: USB4 port
1528 * @errors: Error metadata is copied here.
1529 *
1530 * This reads back the software margining error counters from the port.
1531 * Returns %0 in success and negative errno otherwise.
1532 */
1533int usb4_port_sw_margin_errors(struct tb_port *port, u32 *errors)
1534{
1535 int ret;
1536
1537 ret = usb4_port_sb_op(port, USB4_SB_TARGET_ROUTER, 0,
1538 USB4_SB_OPCODE_READ_SW_MARGIN_ERR, 150);
1539 if (ret)
1540 return ret;
1541
1542 return usb4_port_sb_read(port, USB4_SB_TARGET_ROUTER, 0,
1543 USB4_SB_METADATA, errors, sizeof(*errors));
1544}
1545
1546static inline int usb4_port_retimer_op(struct tb_port *port, u8 index,
1547 enum usb4_sb_opcode opcode,
1548 int timeout_msec)
1549{
1550 return usb4_port_sb_op(port, USB4_SB_TARGET_RETIMER, index, opcode,
1551 timeout_msec);
1552}
1553
1554/**
1555 * usb4_port_retimer_set_inbound_sbtx() - Enable sideband channel transactions
1556 * @port: USB4 port
1557 * @index: Retimer index
1558 *
1559 * Enables sideband channel transations on SBTX. Can be used when USB4
1560 * link does not go up, for example if there is no device connected.
1561 */
1562int usb4_port_retimer_set_inbound_sbtx(struct tb_port *port, u8 index)
1563{
1564 int ret;
1565
1566 ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_SET_INBOUND_SBTX,
1567 500);
1568
1569 if (ret != -ENODEV)
1570 return ret;
1571
1572 /*
1573 * Per the USB4 retimer spec, the retimer is not required to
1574 * send an RT (Retimer Transaction) response for the first
1575 * SET_INBOUND_SBTX command
1576 */
1577 return usb4_port_retimer_op(port, index, USB4_SB_OPCODE_SET_INBOUND_SBTX,
1578 500);
1579}
1580
1581/**
1582 * usb4_port_retimer_read() - Read from retimer sideband registers
1583 * @port: USB4 port
1584 * @index: Retimer index
1585 * @reg: Sideband register to read
1586 * @buf: Data from @reg is stored here
1587 * @size: Number of bytes to read
1588 *
1589 * Function reads retimer sideband registers starting from @reg. The
1590 * retimer is connected to @port at @index. Returns %0 in case of
1591 * success, and read data is copied to @buf. If there is no retimer
1592 * present at given @index returns %-ENODEV. In any other failure
1593 * returns negative errno.
1594 */
1595int usb4_port_retimer_read(struct tb_port *port, u8 index, u8 reg, void *buf,
1596 u8 size)
1597{
1598 return usb4_port_sb_read(port, USB4_SB_TARGET_RETIMER, index, reg, buf,
1599 size);
1600}
1601
1602/**
1603 * usb4_port_retimer_write() - Write to retimer sideband registers
1604 * @port: USB4 port
1605 * @index: Retimer index
1606 * @reg: Sideband register to write
1607 * @buf: Data that is written starting from @reg
1608 * @size: Number of bytes to write
1609 *
1610 * Writes retimer sideband registers starting from @reg. The retimer is
1611 * connected to @port at @index. Returns %0 in case of success. If there
1612 * is no retimer present at given @index returns %-ENODEV. In any other
1613 * failure returns negative errno.
1614 */
1615int usb4_port_retimer_write(struct tb_port *port, u8 index, u8 reg,
1616 const void *buf, u8 size)
1617{
1618 return usb4_port_sb_write(port, USB4_SB_TARGET_RETIMER, index, reg, buf,
1619 size);
1620}
1621
1622/**
1623 * usb4_port_retimer_is_last() - Is the retimer last on-board retimer
1624 * @port: USB4 port
1625 * @index: Retimer index
1626 *
1627 * If the retimer at @index is last one (connected directly to the
1628 * Type-C port) this function returns %1. If it is not returns %0. If
1629 * the retimer is not present returns %-ENODEV. Otherwise returns
1630 * negative errno.
1631 */
1632int usb4_port_retimer_is_last(struct tb_port *port, u8 index)
1633{
1634 u32 metadata;
1635 int ret;
1636
1637 ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_QUERY_LAST_RETIMER,
1638 500);
1639 if (ret)
1640 return ret;
1641
1642 ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA, &metadata,
1643 sizeof(metadata));
1644 return ret ? ret : metadata & 1;
1645}
1646
1647/**
1648 * usb4_port_retimer_nvm_sector_size() - Read retimer NVM sector size
1649 * @port: USB4 port
1650 * @index: Retimer index
1651 *
1652 * Reads NVM sector size (in bytes) of a retimer at @index. This
1653 * operation can be used to determine whether the retimer supports NVM
1654 * upgrade for example. Returns sector size in bytes or negative errno
1655 * in case of error. Specifically returns %-ENODEV if there is no
1656 * retimer at @index.
1657 */
1658int usb4_port_retimer_nvm_sector_size(struct tb_port *port, u8 index)
1659{
1660 u32 metadata;
1661 int ret;
1662
1663 ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_GET_NVM_SECTOR_SIZE,
1664 500);
1665 if (ret)
1666 return ret;
1667
1668 ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA, &metadata,
1669 sizeof(metadata));
1670 return ret ? ret : metadata & USB4_NVM_SECTOR_SIZE_MASK;
1671}
1672
1673/**
1674 * usb4_port_retimer_nvm_set_offset() - Set NVM write offset
1675 * @port: USB4 port
1676 * @index: Retimer index
1677 * @address: Start offset
1678 *
1679 * Exlicitly sets NVM write offset. Normally when writing to NVM this is
1680 * done automatically by usb4_port_retimer_nvm_write().
1681 *
1682 * Returns %0 in success and negative errno if there was a failure.
1683 */
1684int usb4_port_retimer_nvm_set_offset(struct tb_port *port, u8 index,
1685 unsigned int address)
1686{
1687 u32 metadata, dwaddress;
1688 int ret;
1689
1690 dwaddress = address / 4;
1691 metadata = (dwaddress << USB4_NVM_SET_OFFSET_SHIFT) &
1692 USB4_NVM_SET_OFFSET_MASK;
1693
1694 ret = usb4_port_retimer_write(port, index, USB4_SB_METADATA, &metadata,
1695 sizeof(metadata));
1696 if (ret)
1697 return ret;
1698
1699 return usb4_port_retimer_op(port, index, USB4_SB_OPCODE_NVM_SET_OFFSET,
1700 500);
1701}
1702
1703struct retimer_info {
1704 struct tb_port *port;
1705 u8 index;
1706};
1707
1708static int usb4_port_retimer_nvm_write_next_block(void *data,
1709 unsigned int dwaddress, const void *buf, size_t dwords)
1710
1711{
1712 const struct retimer_info *info = data;
1713 struct tb_port *port = info->port;
1714 u8 index = info->index;
1715 int ret;
1716
1717 ret = usb4_port_retimer_write(port, index, USB4_SB_DATA,
1718 buf, dwords * 4);
1719 if (ret)
1720 return ret;
1721
1722 return usb4_port_retimer_op(port, index,
1723 USB4_SB_OPCODE_NVM_BLOCK_WRITE, 1000);
1724}
1725
1726/**
1727 * usb4_port_retimer_nvm_write() - Write to retimer NVM
1728 * @port: USB4 port
1729 * @index: Retimer index
1730 * @address: Byte address where to start the write
1731 * @buf: Data to write
1732 * @size: Size in bytes how much to write
1733 *
1734 * Writes @size bytes from @buf to the retimer NVM. Used for NVM
1735 * upgrade. Returns %0 if the data was written successfully and negative
1736 * errno in case of failure. Specifically returns %-ENODEV if there is
1737 * no retimer at @index.
1738 */
1739int usb4_port_retimer_nvm_write(struct tb_port *port, u8 index, unsigned int address,
1740 const void *buf, size_t size)
1741{
1742 struct retimer_info info = { .port = port, .index = index };
1743 int ret;
1744
1745 ret = usb4_port_retimer_nvm_set_offset(port, index, address);
1746 if (ret)
1747 return ret;
1748
1749 return tb_nvm_write_data(address, buf, size, USB4_DATA_RETRIES,
1750 usb4_port_retimer_nvm_write_next_block, &info);
1751}
1752
1753/**
1754 * usb4_port_retimer_nvm_authenticate() - Start retimer NVM upgrade
1755 * @port: USB4 port
1756 * @index: Retimer index
1757 *
1758 * After the new NVM image has been written via usb4_port_retimer_nvm_write()
1759 * this function can be used to trigger the NVM upgrade process. If
1760 * successful the retimer restarts with the new NVM and may not have the
1761 * index set so one needs to call usb4_port_enumerate_retimers() to
1762 * force index to be assigned.
1763 */
1764int usb4_port_retimer_nvm_authenticate(struct tb_port *port, u8 index)
1765{
1766 u32 val;
1767
1768 /*
1769 * We need to use the raw operation here because once the
1770 * authentication completes the retimer index is not set anymore
1771 * so we do not get back the status now.
1772 */
1773 val = USB4_SB_OPCODE_NVM_AUTH_WRITE;
1774 return usb4_port_sb_write(port, USB4_SB_TARGET_RETIMER, index,
1775 USB4_SB_OPCODE, &val, sizeof(val));
1776}
1777
1778/**
1779 * usb4_port_retimer_nvm_authenticate_status() - Read status of NVM upgrade
1780 * @port: USB4 port
1781 * @index: Retimer index
1782 * @status: Raw status code read from metadata
1783 *
1784 * This can be called after usb4_port_retimer_nvm_authenticate() and
1785 * usb4_port_enumerate_retimers() to fetch status of the NVM upgrade.
1786 *
1787 * Returns %0 if the authentication status was successfully read. The
1788 * completion metadata (the result) is then stored into @status. If
1789 * reading the status fails, returns negative errno.
1790 */
1791int usb4_port_retimer_nvm_authenticate_status(struct tb_port *port, u8 index,
1792 u32 *status)
1793{
1794 u32 metadata, val;
1795 int ret;
1796
1797 ret = usb4_port_retimer_read(port, index, USB4_SB_OPCODE, &val,
1798 sizeof(val));
1799 if (ret)
1800 return ret;
1801
1802 switch (val) {
1803 case 0:
1804 *status = 0;
1805 return 0;
1806
1807 case USB4_SB_OPCODE_ERR:
1808 ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA,
1809 &metadata, sizeof(metadata));
1810 if (ret)
1811 return ret;
1812
1813 *status = metadata & USB4_SB_METADATA_NVM_AUTH_WRITE_MASK;
1814 return 0;
1815
1816 case USB4_SB_OPCODE_ONS:
1817 return -EOPNOTSUPP;
1818
1819 default:
1820 return -EIO;
1821 }
1822}
1823
1824static int usb4_port_retimer_nvm_read_block(void *data, unsigned int dwaddress,
1825 void *buf, size_t dwords)
1826{
1827 const struct retimer_info *info = data;
1828 struct tb_port *port = info->port;
1829 u8 index = info->index;
1830 u32 metadata;
1831 int ret;
1832
1833 metadata = dwaddress << USB4_NVM_READ_OFFSET_SHIFT;
1834 if (dwords < NVM_DATA_DWORDS)
1835 metadata |= dwords << USB4_NVM_READ_LENGTH_SHIFT;
1836
1837 ret = usb4_port_retimer_write(port, index, USB4_SB_METADATA, &metadata,
1838 sizeof(metadata));
1839 if (ret)
1840 return ret;
1841
1842 ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_NVM_READ, 500);
1843 if (ret)
1844 return ret;
1845
1846 return usb4_port_retimer_read(port, index, USB4_SB_DATA, buf,
1847 dwords * 4);
1848}
1849
1850/**
1851 * usb4_port_retimer_nvm_read() - Read contents of retimer NVM
1852 * @port: USB4 port
1853 * @index: Retimer index
1854 * @address: NVM address (in bytes) to start reading
1855 * @buf: Data read from NVM is stored here
1856 * @size: Number of bytes to read
1857 *
1858 * Reads retimer NVM and copies the contents to @buf. Returns %0 if the
1859 * read was successful and negative errno in case of failure.
1860 * Specifically returns %-ENODEV if there is no retimer at @index.
1861 */
1862int usb4_port_retimer_nvm_read(struct tb_port *port, u8 index,
1863 unsigned int address, void *buf, size_t size)
1864{
1865 struct retimer_info info = { .port = port, .index = index };
1866
1867 return tb_nvm_read_data(address, buf, size, USB4_DATA_RETRIES,
1868 usb4_port_retimer_nvm_read_block, &info);
1869}
1870
1871/**
1872 * usb4_usb3_port_max_link_rate() - Maximum support USB3 link rate
1873 * @port: USB3 adapter port
1874 *
1875 * Return maximum supported link rate of a USB3 adapter in Mb/s.
1876 * Negative errno in case of error.
1877 */
1878int usb4_usb3_port_max_link_rate(struct tb_port *port)
1879{
1880 int ret, lr;
1881 u32 val;
1882
1883 if (!tb_port_is_usb3_down(port) && !tb_port_is_usb3_up(port))
1884 return -EINVAL;
1885
1886 ret = tb_port_read(port, &val, TB_CFG_PORT,
1887 port->cap_adap + ADP_USB3_CS_4, 1);
1888 if (ret)
1889 return ret;
1890
1891 lr = (val & ADP_USB3_CS_4_MSLR_MASK) >> ADP_USB3_CS_4_MSLR_SHIFT;
1892 return lr == ADP_USB3_CS_4_MSLR_20G ? 20000 : 10000;
1893}
1894
1895/**
1896 * usb4_usb3_port_actual_link_rate() - Established USB3 link rate
1897 * @port: USB3 adapter port
1898 *
1899 * Return actual established link rate of a USB3 adapter in Mb/s. If the
1900 * link is not up returns %0 and negative errno in case of failure.
1901 */
1902int usb4_usb3_port_actual_link_rate(struct tb_port *port)
1903{
1904 int ret, lr;
1905 u32 val;
1906
1907 if (!tb_port_is_usb3_down(port) && !tb_port_is_usb3_up(port))
1908 return -EINVAL;
1909
1910 ret = tb_port_read(port, &val, TB_CFG_PORT,
1911 port->cap_adap + ADP_USB3_CS_4, 1);
1912 if (ret)
1913 return ret;
1914
1915 if (!(val & ADP_USB3_CS_4_ULV))
1916 return 0;
1917
1918 lr = val & ADP_USB3_CS_4_ALR_MASK;
1919 return lr == ADP_USB3_CS_4_ALR_20G ? 20000 : 10000;
1920}
1921
1922static int usb4_usb3_port_cm_request(struct tb_port *port, bool request)
1923{
1924 int ret;
1925 u32 val;
1926
1927 if (!tb_port_is_usb3_down(port))
1928 return -EINVAL;
1929 if (tb_route(port->sw))
1930 return -EINVAL;
1931
1932 ret = tb_port_read(port, &val, TB_CFG_PORT,
1933 port->cap_adap + ADP_USB3_CS_2, 1);
1934 if (ret)
1935 return ret;
1936
1937 if (request)
1938 val |= ADP_USB3_CS_2_CMR;
1939 else
1940 val &= ~ADP_USB3_CS_2_CMR;
1941
1942 ret = tb_port_write(port, &val, TB_CFG_PORT,
1943 port->cap_adap + ADP_USB3_CS_2, 1);
1944 if (ret)
1945 return ret;
1946
1947 /*
1948 * We can use val here directly as the CMR bit is in the same place
1949 * as HCA. Just mask out others.
1950 */
1951 val &= ADP_USB3_CS_2_CMR;
1952 return usb4_port_wait_for_bit(port, port->cap_adap + ADP_USB3_CS_1,
1953 ADP_USB3_CS_1_HCA, val, 1500);
1954}
1955
1956static inline int usb4_usb3_port_set_cm_request(struct tb_port *port)
1957{
1958 return usb4_usb3_port_cm_request(port, true);
1959}
1960
1961static inline int usb4_usb3_port_clear_cm_request(struct tb_port *port)
1962{
1963 return usb4_usb3_port_cm_request(port, false);
1964}
1965
1966static unsigned int usb3_bw_to_mbps(u32 bw, u8 scale)
1967{
1968 unsigned long uframes;
1969
1970 uframes = bw * 512UL << scale;
1971 return DIV_ROUND_CLOSEST(uframes * 8000, 1000 * 1000);
1972}
1973
1974static u32 mbps_to_usb3_bw(unsigned int mbps, u8 scale)
1975{
1976 unsigned long uframes;
1977
1978 /* 1 uframe is 1/8 ms (125 us) -> 1 / 8000 s */
1979 uframes = ((unsigned long)mbps * 1000 * 1000) / 8000;
1980 return DIV_ROUND_UP(uframes, 512UL << scale);
1981}
1982
1983static int usb4_usb3_port_read_allocated_bandwidth(struct tb_port *port,
1984 int *upstream_bw,
1985 int *downstream_bw)
1986{
1987 u32 val, bw, scale;
1988 int ret;
1989
1990 ret = tb_port_read(port, &val, TB_CFG_PORT,
1991 port->cap_adap + ADP_USB3_CS_2, 1);
1992 if (ret)
1993 return ret;
1994
1995 ret = tb_port_read(port, &scale, TB_CFG_PORT,
1996 port->cap_adap + ADP_USB3_CS_3, 1);
1997 if (ret)
1998 return ret;
1999
2000 scale &= ADP_USB3_CS_3_SCALE_MASK;
2001
2002 bw = val & ADP_USB3_CS_2_AUBW_MASK;
2003 *upstream_bw = usb3_bw_to_mbps(bw, scale);
2004
2005 bw = (val & ADP_USB3_CS_2_ADBW_MASK) >> ADP_USB3_CS_2_ADBW_SHIFT;
2006 *downstream_bw = usb3_bw_to_mbps(bw, scale);
2007
2008 return 0;
2009}
2010
2011/**
2012 * usb4_usb3_port_allocated_bandwidth() - Bandwidth allocated for USB3
2013 * @port: USB3 adapter port
2014 * @upstream_bw: Allocated upstream bandwidth is stored here
2015 * @downstream_bw: Allocated downstream bandwidth is stored here
2016 *
2017 * Stores currently allocated USB3 bandwidth into @upstream_bw and
2018 * @downstream_bw in Mb/s. Returns %0 in case of success and negative
2019 * errno in failure.
2020 */
2021int usb4_usb3_port_allocated_bandwidth(struct tb_port *port, int *upstream_bw,
2022 int *downstream_bw)
2023{
2024 int ret;
2025
2026 ret = usb4_usb3_port_set_cm_request(port);
2027 if (ret)
2028 return ret;
2029
2030 ret = usb4_usb3_port_read_allocated_bandwidth(port, upstream_bw,
2031 downstream_bw);
2032 usb4_usb3_port_clear_cm_request(port);
2033
2034 return ret;
2035}
2036
2037static int usb4_usb3_port_read_consumed_bandwidth(struct tb_port *port,
2038 int *upstream_bw,
2039 int *downstream_bw)
2040{
2041 u32 val, bw, scale;
2042 int ret;
2043
2044 ret = tb_port_read(port, &val, TB_CFG_PORT,
2045 port->cap_adap + ADP_USB3_CS_1, 1);
2046 if (ret)
2047 return ret;
2048
2049 ret = tb_port_read(port, &scale, TB_CFG_PORT,
2050 port->cap_adap + ADP_USB3_CS_3, 1);
2051 if (ret)
2052 return ret;
2053
2054 scale &= ADP_USB3_CS_3_SCALE_MASK;
2055
2056 bw = val & ADP_USB3_CS_1_CUBW_MASK;
2057 *upstream_bw = usb3_bw_to_mbps(bw, scale);
2058
2059 bw = (val & ADP_USB3_CS_1_CDBW_MASK) >> ADP_USB3_CS_1_CDBW_SHIFT;
2060 *downstream_bw = usb3_bw_to_mbps(bw, scale);
2061
2062 return 0;
2063}
2064
2065static int usb4_usb3_port_write_allocated_bandwidth(struct tb_port *port,
2066 int upstream_bw,
2067 int downstream_bw)
2068{
2069 u32 val, ubw, dbw, scale;
2070 int ret;
2071
2072 /* Read the used scale, hardware default is 0 */
2073 ret = tb_port_read(port, &scale, TB_CFG_PORT,
2074 port->cap_adap + ADP_USB3_CS_3, 1);
2075 if (ret)
2076 return ret;
2077
2078 scale &= ADP_USB3_CS_3_SCALE_MASK;
2079 ubw = mbps_to_usb3_bw(upstream_bw, scale);
2080 dbw = mbps_to_usb3_bw(downstream_bw, scale);
2081
2082 ret = tb_port_read(port, &val, TB_CFG_PORT,
2083 port->cap_adap + ADP_USB3_CS_2, 1);
2084 if (ret)
2085 return ret;
2086
2087 val &= ~(ADP_USB3_CS_2_AUBW_MASK | ADP_USB3_CS_2_ADBW_MASK);
2088 val |= dbw << ADP_USB3_CS_2_ADBW_SHIFT;
2089 val |= ubw;
2090
2091 return tb_port_write(port, &val, TB_CFG_PORT,
2092 port->cap_adap + ADP_USB3_CS_2, 1);
2093}
2094
2095/**
2096 * usb4_usb3_port_allocate_bandwidth() - Allocate bandwidth for USB3
2097 * @port: USB3 adapter port
2098 * @upstream_bw: New upstream bandwidth
2099 * @downstream_bw: New downstream bandwidth
2100 *
2101 * This can be used to set how much bandwidth is allocated for the USB3
2102 * tunneled isochronous traffic. @upstream_bw and @downstream_bw are the
2103 * new values programmed to the USB3 adapter allocation registers. If
2104 * the values are lower than what is currently consumed the allocation
2105 * is set to what is currently consumed instead (consumed bandwidth
2106 * cannot be taken away by CM). The actual new values are returned in
2107 * @upstream_bw and @downstream_bw.
2108 *
2109 * Returns %0 in case of success and negative errno if there was a
2110 * failure.
2111 */
2112int usb4_usb3_port_allocate_bandwidth(struct tb_port *port, int *upstream_bw,
2113 int *downstream_bw)
2114{
2115 int ret, consumed_up, consumed_down, allocate_up, allocate_down;
2116
2117 ret = usb4_usb3_port_set_cm_request(port);
2118 if (ret)
2119 return ret;
2120
2121 ret = usb4_usb3_port_read_consumed_bandwidth(port, &consumed_up,
2122 &consumed_down);
2123 if (ret)
2124 goto err_request;
2125
2126 /* Don't allow it go lower than what is consumed */
2127 allocate_up = max(*upstream_bw, consumed_up);
2128 allocate_down = max(*downstream_bw, consumed_down);
2129
2130 ret = usb4_usb3_port_write_allocated_bandwidth(port, allocate_up,
2131 allocate_down);
2132 if (ret)
2133 goto err_request;
2134
2135 *upstream_bw = allocate_up;
2136 *downstream_bw = allocate_down;
2137
2138err_request:
2139 usb4_usb3_port_clear_cm_request(port);
2140 return ret;
2141}
2142
2143/**
2144 * usb4_usb3_port_release_bandwidth() - Release allocated USB3 bandwidth
2145 * @port: USB3 adapter port
2146 * @upstream_bw: New allocated upstream bandwidth
2147 * @downstream_bw: New allocated downstream bandwidth
2148 *
2149 * Releases USB3 allocated bandwidth down to what is actually consumed.
2150 * The new bandwidth is returned in @upstream_bw and @downstream_bw.
2151 *
2152 * Returns 0% in success and negative errno in case of failure.
2153 */
2154int usb4_usb3_port_release_bandwidth(struct tb_port *port, int *upstream_bw,
2155 int *downstream_bw)
2156{
2157 int ret, consumed_up, consumed_down;
2158
2159 ret = usb4_usb3_port_set_cm_request(port);
2160 if (ret)
2161 return ret;
2162
2163 ret = usb4_usb3_port_read_consumed_bandwidth(port, &consumed_up,
2164 &consumed_down);
2165 if (ret)
2166 goto err_request;
2167
2168 /*
2169 * Always keep 1000 Mb/s to make sure xHCI has at least some
2170 * bandwidth available for isochronous traffic.
2171 */
2172 if (consumed_up < 1000)
2173 consumed_up = 1000;
2174 if (consumed_down < 1000)
2175 consumed_down = 1000;
2176
2177 ret = usb4_usb3_port_write_allocated_bandwidth(port, consumed_up,
2178 consumed_down);
2179 if (ret)
2180 goto err_request;
2181
2182 *upstream_bw = consumed_up;
2183 *downstream_bw = consumed_down;
2184
2185err_request:
2186 usb4_usb3_port_clear_cm_request(port);
2187 return ret;
2188}