Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Mar 24-27, 2025, special US time zones
Register
Loading...
Note: File does not exist in v4.6.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * USB4 specific functionality
   4 *
   5 * Copyright (C) 2019, Intel Corporation
   6 * Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
   7 *	    Rajmohan Mani <rajmohan.mani@intel.com>
   8 */
   9
  10#include <linux/delay.h>
  11#include <linux/ktime.h>
  12#include <linux/units.h>
  13
  14#include "sb_regs.h"
  15#include "tb.h"
  16
  17#define USB4_DATA_RETRIES		3
  18#define USB4_DATA_DWORDS		16
  19
  20enum usb4_sb_target {
  21	USB4_SB_TARGET_ROUTER,
  22	USB4_SB_TARGET_PARTNER,
  23	USB4_SB_TARGET_RETIMER,
  24};
  25
  26#define USB4_NVM_READ_OFFSET_MASK	GENMASK(23, 2)
  27#define USB4_NVM_READ_OFFSET_SHIFT	2
  28#define USB4_NVM_READ_LENGTH_MASK	GENMASK(27, 24)
  29#define USB4_NVM_READ_LENGTH_SHIFT	24
  30
  31#define USB4_NVM_SET_OFFSET_MASK	USB4_NVM_READ_OFFSET_MASK
  32#define USB4_NVM_SET_OFFSET_SHIFT	USB4_NVM_READ_OFFSET_SHIFT
  33
  34#define USB4_DROM_ADDRESS_MASK		GENMASK(14, 2)
  35#define USB4_DROM_ADDRESS_SHIFT		2
  36#define USB4_DROM_SIZE_MASK		GENMASK(19, 15)
  37#define USB4_DROM_SIZE_SHIFT		15
  38
  39#define USB4_NVM_SECTOR_SIZE_MASK	GENMASK(23, 0)
  40
  41#define USB4_BA_LENGTH_MASK		GENMASK(7, 0)
  42#define USB4_BA_INDEX_MASK		GENMASK(15, 0)
  43
  44enum usb4_ba_index {
  45	USB4_BA_MAX_USB3 = 0x1,
  46	USB4_BA_MIN_DP_AUX = 0x2,
  47	USB4_BA_MIN_DP_MAIN = 0x3,
  48	USB4_BA_MAX_PCIE = 0x4,
  49	USB4_BA_MAX_HI = 0x5,
  50};
  51
  52#define USB4_BA_VALUE_MASK		GENMASK(31, 16)
  53#define USB4_BA_VALUE_SHIFT		16
  54
  55static int usb4_native_switch_op(struct tb_switch *sw, u16 opcode,
  56				 u32 *metadata, u8 *status,
  57				 const void *tx_data, size_t tx_dwords,
  58				 void *rx_data, size_t rx_dwords)
  59{
  60	u32 val;
  61	int ret;
  62
  63	if (metadata) {
  64		ret = tb_sw_write(sw, metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1);
  65		if (ret)
  66			return ret;
  67	}
  68	if (tx_dwords) {
  69		ret = tb_sw_write(sw, tx_data, TB_CFG_SWITCH, ROUTER_CS_9,
  70				  tx_dwords);
  71		if (ret)
  72			return ret;
  73	}
  74
  75	val = opcode | ROUTER_CS_26_OV;
  76	ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
  77	if (ret)
  78		return ret;
  79
  80	ret = tb_switch_wait_for_bit(sw, ROUTER_CS_26, ROUTER_CS_26_OV, 0, 500);
  81	if (ret)
  82		return ret;
  83
  84	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
  85	if (ret)
  86		return ret;
  87
  88	if (val & ROUTER_CS_26_ONS)
  89		return -EOPNOTSUPP;
  90
  91	if (status)
  92		*status = (val & ROUTER_CS_26_STATUS_MASK) >>
  93			ROUTER_CS_26_STATUS_SHIFT;
  94
  95	if (metadata) {
  96		ret = tb_sw_read(sw, metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1);
  97		if (ret)
  98			return ret;
  99	}
 100	if (rx_dwords) {
 101		ret = tb_sw_read(sw, rx_data, TB_CFG_SWITCH, ROUTER_CS_9,
 102				 rx_dwords);
 103		if (ret)
 104			return ret;
 105	}
 106
 107	return 0;
 108}
 109
 110static int __usb4_switch_op(struct tb_switch *sw, u16 opcode, u32 *metadata,
 111			    u8 *status, const void *tx_data, size_t tx_dwords,
 112			    void *rx_data, size_t rx_dwords)
 113{
 114	const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
 115
 116	if (tx_dwords > USB4_DATA_DWORDS || rx_dwords > USB4_DATA_DWORDS)
 117		return -EINVAL;
 118
 119	/*
 120	 * If the connection manager implementation provides USB4 router
 121	 * operation proxy callback, call it here instead of running the
 122	 * operation natively.
 123	 */
 124	if (cm_ops->usb4_switch_op) {
 125		int ret;
 126
 127		ret = cm_ops->usb4_switch_op(sw, opcode, metadata, status,
 128					     tx_data, tx_dwords, rx_data,
 129					     rx_dwords);
 130		if (ret != -EOPNOTSUPP)
 131			return ret;
 132
 133		/*
 134		 * If the proxy was not supported then run the native
 135		 * router operation instead.
 136		 */
 137	}
 138
 139	return usb4_native_switch_op(sw, opcode, metadata, status, tx_data,
 140				     tx_dwords, rx_data, rx_dwords);
 141}
 142
 143static inline int usb4_switch_op(struct tb_switch *sw, u16 opcode,
 144				 u32 *metadata, u8 *status)
 145{
 146	return __usb4_switch_op(sw, opcode, metadata, status, NULL, 0, NULL, 0);
 147}
 148
 149static inline int usb4_switch_op_data(struct tb_switch *sw, u16 opcode,
 150				      u32 *metadata, u8 *status,
 151				      const void *tx_data, size_t tx_dwords,
 152				      void *rx_data, size_t rx_dwords)
 153{
 154	return __usb4_switch_op(sw, opcode, metadata, status, tx_data,
 155				tx_dwords, rx_data, rx_dwords);
 156}
 157
 158static void usb4_switch_check_wakes(struct tb_switch *sw)
 159{
 160	bool wakeup_usb4 = false;
 161	struct usb4_port *usb4;
 162	struct tb_port *port;
 163	bool wakeup = false;
 164	u32 val;
 165
 166	if (!device_may_wakeup(&sw->dev))
 167		return;
 168
 169	if (tb_route(sw)) {
 170		if (tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_6, 1))
 171			return;
 172
 173		tb_sw_dbg(sw, "PCIe wake: %s, USB3 wake: %s\n",
 174			  (val & ROUTER_CS_6_WOPS) ? "yes" : "no",
 175			  (val & ROUTER_CS_6_WOUS) ? "yes" : "no");
 176
 177		wakeup = val & (ROUTER_CS_6_WOPS | ROUTER_CS_6_WOUS);
 178	}
 179
 180	/*
 181	 * Check for any downstream ports for USB4 wake,
 182	 * connection wake and disconnection wake.
 183	 */
 184	tb_switch_for_each_port(sw, port) {
 185		if (!port->cap_usb4)
 186			continue;
 187
 188		if (tb_port_read(port, &val, TB_CFG_PORT,
 189				 port->cap_usb4 + PORT_CS_18, 1))
 190			break;
 191
 192		tb_port_dbg(port, "USB4 wake: %s, connection wake: %s, disconnection wake: %s\n",
 193			    (val & PORT_CS_18_WOU4S) ? "yes" : "no",
 194			    (val & PORT_CS_18_WOCS) ? "yes" : "no",
 195			    (val & PORT_CS_18_WODS) ? "yes" : "no");
 196
 197		wakeup_usb4 = val & (PORT_CS_18_WOU4S | PORT_CS_18_WOCS |
 198				     PORT_CS_18_WODS);
 199
 200		usb4 = port->usb4;
 201		if (device_may_wakeup(&usb4->dev) && wakeup_usb4)
 202			pm_wakeup_event(&usb4->dev, 0);
 203
 204		wakeup |= wakeup_usb4;
 205	}
 206
 207	if (wakeup)
 208		pm_wakeup_event(&sw->dev, 0);
 209}
 210
 211static bool link_is_usb4(struct tb_port *port)
 212{
 213	u32 val;
 214
 215	if (!port->cap_usb4)
 216		return false;
 217
 218	if (tb_port_read(port, &val, TB_CFG_PORT,
 219			 port->cap_usb4 + PORT_CS_18, 1))
 220		return false;
 221
 222	return !(val & PORT_CS_18_TCM);
 223}
 224
 225/**
 226 * usb4_switch_setup() - Additional setup for USB4 device
 227 * @sw: USB4 router to setup
 228 *
 229 * USB4 routers need additional settings in order to enable all the
 230 * tunneling. This function enables USB and PCIe tunneling if it can be
 231 * enabled (e.g the parent switch also supports them). If USB tunneling
 232 * is not available for some reason (like that there is Thunderbolt 3
 233 * switch upstream) then the internal xHCI controller is enabled
 234 * instead.
 235 *
 236 * This does not set the configuration valid bit of the router. To do
 237 * that call usb4_switch_configuration_valid().
 238 */
 239int usb4_switch_setup(struct tb_switch *sw)
 240{
 241	struct tb_switch *parent = tb_switch_parent(sw);
 242	struct tb_port *down;
 243	bool tbt3, xhci;
 244	u32 val = 0;
 245	int ret;
 246
 247	usb4_switch_check_wakes(sw);
 248
 249	if (!tb_route(sw))
 250		return 0;
 251
 252	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_6, 1);
 253	if (ret)
 254		return ret;
 255
 256	down = tb_switch_downstream_port(sw);
 257	sw->link_usb4 = link_is_usb4(down);
 258	tb_sw_dbg(sw, "link: %s\n", sw->link_usb4 ? "USB4" : "TBT");
 259
 260	xhci = val & ROUTER_CS_6_HCI;
 261	tbt3 = !(val & ROUTER_CS_6_TNS);
 262
 263	tb_sw_dbg(sw, "TBT3 support: %s, xHCI: %s\n",
 264		  tbt3 ? "yes" : "no", xhci ? "yes" : "no");
 265
 266	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
 267	if (ret)
 268		return ret;
 269
 270	if (tb_acpi_may_tunnel_usb3() && sw->link_usb4 &&
 271	    tb_switch_find_port(parent, TB_TYPE_USB3_DOWN)) {
 272		val |= ROUTER_CS_5_UTO;
 273		xhci = false;
 274	}
 275
 276	/*
 277	 * Only enable PCIe tunneling if the parent router supports it
 278	 * and it is not disabled.
 279	 */
 280	if (tb_acpi_may_tunnel_pcie() &&
 281	    tb_switch_find_port(parent, TB_TYPE_PCIE_DOWN)) {
 282		val |= ROUTER_CS_5_PTO;
 283		/*
 284		 * xHCI can be enabled if PCIe tunneling is supported
 285		 * and the parent does not have any USB3 dowstream
 286		 * adapters (so we cannot do USB 3.x tunneling).
 287		 */
 288		if (xhci)
 289			val |= ROUTER_CS_5_HCO;
 290	}
 291
 292	/* TBT3 supported by the CM */
 293	val &= ~ROUTER_CS_5_CNS;
 294
 295	return tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
 296}
 297
 298/**
 299 * usb4_switch_configuration_valid() - Set tunneling configuration to be valid
 300 * @sw: USB4 router
 301 *
 302 * Sets configuration valid bit for the router. Must be called before
 303 * any tunnels can be set through the router and after
 304 * usb4_switch_setup() has been called. Can be called to host and device
 305 * routers (does nothing for the latter).
 306 *
 307 * Returns %0 in success and negative errno otherwise.
 308 */
 309int usb4_switch_configuration_valid(struct tb_switch *sw)
 310{
 311	u32 val;
 312	int ret;
 313
 314	if (!tb_route(sw))
 315		return 0;
 316
 317	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
 318	if (ret)
 319		return ret;
 320
 321	val |= ROUTER_CS_5_CV;
 322
 323	ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
 324	if (ret)
 325		return ret;
 326
 327	return tb_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_CR,
 328				      ROUTER_CS_6_CR, 50);
 329}
 330
 331/**
 332 * usb4_switch_read_uid() - Read UID from USB4 router
 333 * @sw: USB4 router
 334 * @uid: UID is stored here
 335 *
 336 * Reads 64-bit UID from USB4 router config space.
 337 */
 338int usb4_switch_read_uid(struct tb_switch *sw, u64 *uid)
 339{
 340	return tb_sw_read(sw, uid, TB_CFG_SWITCH, ROUTER_CS_7, 2);
 341}
 342
 343static int usb4_switch_drom_read_block(void *data,
 344				       unsigned int dwaddress, void *buf,
 345				       size_t dwords)
 346{
 347	struct tb_switch *sw = data;
 348	u8 status = 0;
 349	u32 metadata;
 350	int ret;
 351
 352	metadata = (dwords << USB4_DROM_SIZE_SHIFT) & USB4_DROM_SIZE_MASK;
 353	metadata |= (dwaddress << USB4_DROM_ADDRESS_SHIFT) &
 354		USB4_DROM_ADDRESS_MASK;
 355
 356	ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_DROM_READ, &metadata,
 357				  &status, NULL, 0, buf, dwords);
 358	if (ret)
 359		return ret;
 360
 361	return status ? -EIO : 0;
 362}
 363
 364/**
 365 * usb4_switch_drom_read() - Read arbitrary bytes from USB4 router DROM
 366 * @sw: USB4 router
 367 * @address: Byte address inside DROM to start reading
 368 * @buf: Buffer where the DROM content is stored
 369 * @size: Number of bytes to read from DROM
 370 *
 371 * Uses USB4 router operations to read router DROM. For devices this
 372 * should always work but for hosts it may return %-EOPNOTSUPP in which
 373 * case the host router does not have DROM.
 374 */
 375int usb4_switch_drom_read(struct tb_switch *sw, unsigned int address, void *buf,
 376			  size_t size)
 377{
 378	return tb_nvm_read_data(address, buf, size, USB4_DATA_RETRIES,
 379				usb4_switch_drom_read_block, sw);
 380}
 381
 382/**
 383 * usb4_switch_lane_bonding_possible() - Are conditions met for lane bonding
 384 * @sw: USB4 router
 385 *
 386 * Checks whether conditions are met so that lane bonding can be
 387 * established with the upstream router. Call only for device routers.
 388 */
 389bool usb4_switch_lane_bonding_possible(struct tb_switch *sw)
 390{
 391	struct tb_port *up;
 392	int ret;
 393	u32 val;
 394
 395	up = tb_upstream_port(sw);
 396	ret = tb_port_read(up, &val, TB_CFG_PORT, up->cap_usb4 + PORT_CS_18, 1);
 397	if (ret)
 398		return false;
 399
 400	return !!(val & PORT_CS_18_BE);
 401}
 402
 403/**
 404 * usb4_switch_set_wake() - Enabled/disable wake
 405 * @sw: USB4 router
 406 * @flags: Wakeup flags (%0 to disable)
 407 *
 408 * Enables/disables router to wake up from sleep.
 409 */
 410int usb4_switch_set_wake(struct tb_switch *sw, unsigned int flags)
 411{
 412	struct usb4_port *usb4;
 413	struct tb_port *port;
 414	u64 route = tb_route(sw);
 415	u32 val;
 416	int ret;
 417
 418	/*
 419	 * Enable wakes coming from all USB4 downstream ports (from
 420	 * child routers). For device routers do this also for the
 421	 * upstream USB4 port.
 422	 */
 423	tb_switch_for_each_port(sw, port) {
 424		if (!tb_port_is_null(port))
 425			continue;
 426		if (!route && tb_is_upstream_port(port))
 427			continue;
 428		if (!port->cap_usb4)
 429			continue;
 430
 431		ret = tb_port_read(port, &val, TB_CFG_PORT,
 432				   port->cap_usb4 + PORT_CS_19, 1);
 433		if (ret)
 434			return ret;
 435
 436		val &= ~(PORT_CS_19_WOC | PORT_CS_19_WOD | PORT_CS_19_WOU4);
 437
 438		if (tb_is_upstream_port(port)) {
 439			val |= PORT_CS_19_WOU4;
 440		} else {
 441			bool configured = val & PORT_CS_19_PC;
 442			usb4 = port->usb4;
 443
 444			if (((flags & TB_WAKE_ON_CONNECT) |
 445			      device_may_wakeup(&usb4->dev)) && !configured)
 446				val |= PORT_CS_19_WOC;
 447			if (((flags & TB_WAKE_ON_DISCONNECT) |
 448			      device_may_wakeup(&usb4->dev)) && configured)
 449				val |= PORT_CS_19_WOD;
 450			if ((flags & TB_WAKE_ON_USB4) && configured)
 451				val |= PORT_CS_19_WOU4;
 452		}
 453
 454		ret = tb_port_write(port, &val, TB_CFG_PORT,
 455				    port->cap_usb4 + PORT_CS_19, 1);
 456		if (ret)
 457			return ret;
 458	}
 459
 460	/*
 461	 * Enable wakes from PCIe, USB 3.x and DP on this router. Only
 462	 * needed for device routers.
 463	 */
 464	if (route) {
 465		ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
 466		if (ret)
 467			return ret;
 468
 469		val &= ~(ROUTER_CS_5_WOP | ROUTER_CS_5_WOU | ROUTER_CS_5_WOD);
 470		if (flags & TB_WAKE_ON_USB3)
 471			val |= ROUTER_CS_5_WOU;
 472		if (flags & TB_WAKE_ON_PCIE)
 473			val |= ROUTER_CS_5_WOP;
 474		if (flags & TB_WAKE_ON_DP)
 475			val |= ROUTER_CS_5_WOD;
 476
 477		ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
 478		if (ret)
 479			return ret;
 480	}
 481
 482	return 0;
 483}
 484
 485/**
 486 * usb4_switch_set_sleep() - Prepare the router to enter sleep
 487 * @sw: USB4 router
 488 *
 489 * Sets sleep bit for the router. Returns when the router sleep ready
 490 * bit has been asserted.
 491 */
 492int usb4_switch_set_sleep(struct tb_switch *sw)
 493{
 494	int ret;
 495	u32 val;
 496
 497	/* Set sleep bit and wait for sleep ready to be asserted */
 498	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
 499	if (ret)
 500		return ret;
 501
 502	val |= ROUTER_CS_5_SLP;
 503
 504	ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
 505	if (ret)
 506		return ret;
 507
 508	return tb_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_SLPR,
 509				      ROUTER_CS_6_SLPR, 500);
 510}
 511
 512/**
 513 * usb4_switch_nvm_sector_size() - Return router NVM sector size
 514 * @sw: USB4 router
 515 *
 516 * If the router supports NVM operations this function returns the NVM
 517 * sector size in bytes. If NVM operations are not supported returns
 518 * %-EOPNOTSUPP.
 519 */
 520int usb4_switch_nvm_sector_size(struct tb_switch *sw)
 521{
 522	u32 metadata;
 523	u8 status;
 524	int ret;
 525
 526	ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SECTOR_SIZE, &metadata,
 527			     &status);
 528	if (ret)
 529		return ret;
 530
 531	if (status)
 532		return status == 0x2 ? -EOPNOTSUPP : -EIO;
 533
 534	return metadata & USB4_NVM_SECTOR_SIZE_MASK;
 535}
 536
 537static int usb4_switch_nvm_read_block(void *data,
 538	unsigned int dwaddress, void *buf, size_t dwords)
 539{
 540	struct tb_switch *sw = data;
 541	u8 status = 0;
 542	u32 metadata;
 543	int ret;
 544
 545	metadata = (dwords << USB4_NVM_READ_LENGTH_SHIFT) &
 546		   USB4_NVM_READ_LENGTH_MASK;
 547	metadata |= (dwaddress << USB4_NVM_READ_OFFSET_SHIFT) &
 548		   USB4_NVM_READ_OFFSET_MASK;
 549
 550	ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_NVM_READ, &metadata,
 551				  &status, NULL, 0, buf, dwords);
 552	if (ret)
 553		return ret;
 554
 555	return status ? -EIO : 0;
 556}
 557
 558/**
 559 * usb4_switch_nvm_read() - Read arbitrary bytes from router NVM
 560 * @sw: USB4 router
 561 * @address: Starting address in bytes
 562 * @buf: Read data is placed here
 563 * @size: How many bytes to read
 564 *
 565 * Reads NVM contents of the router. If NVM is not supported returns
 566 * %-EOPNOTSUPP.
 567 */
 568int usb4_switch_nvm_read(struct tb_switch *sw, unsigned int address, void *buf,
 569			 size_t size)
 570{
 571	return tb_nvm_read_data(address, buf, size, USB4_DATA_RETRIES,
 572				usb4_switch_nvm_read_block, sw);
 573}
 574
 575/**
 576 * usb4_switch_nvm_set_offset() - Set NVM write offset
 577 * @sw: USB4 router
 578 * @address: Start offset
 579 *
 580 * Explicitly sets NVM write offset. Normally when writing to NVM this
 581 * is done automatically by usb4_switch_nvm_write().
 582 *
 583 * Returns %0 in success and negative errno if there was a failure.
 584 */
 585int usb4_switch_nvm_set_offset(struct tb_switch *sw, unsigned int address)
 586{
 587	u32 metadata, dwaddress;
 588	u8 status = 0;
 589	int ret;
 590
 591	dwaddress = address / 4;
 592	metadata = (dwaddress << USB4_NVM_SET_OFFSET_SHIFT) &
 593		   USB4_NVM_SET_OFFSET_MASK;
 594
 595	ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SET_OFFSET, &metadata,
 596			     &status);
 597	if (ret)
 598		return ret;
 599
 600	return status ? -EIO : 0;
 601}
 602
 603static int usb4_switch_nvm_write_next_block(void *data, unsigned int dwaddress,
 604					    const void *buf, size_t dwords)
 605{
 606	struct tb_switch *sw = data;
 607	u8 status;
 608	int ret;
 609
 610	ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_NVM_WRITE, NULL, &status,
 611				  buf, dwords, NULL, 0);
 612	if (ret)
 613		return ret;
 614
 615	return status ? -EIO : 0;
 616}
 617
 618/**
 619 * usb4_switch_nvm_write() - Write to the router NVM
 620 * @sw: USB4 router
 621 * @address: Start address where to write in bytes
 622 * @buf: Pointer to the data to write
 623 * @size: Size of @buf in bytes
 624 *
 625 * Writes @buf to the router NVM using USB4 router operations. If NVM
 626 * write is not supported returns %-EOPNOTSUPP.
 627 */
 628int usb4_switch_nvm_write(struct tb_switch *sw, unsigned int address,
 629			  const void *buf, size_t size)
 630{
 631	int ret;
 632
 633	ret = usb4_switch_nvm_set_offset(sw, address);
 634	if (ret)
 635		return ret;
 636
 637	return tb_nvm_write_data(address, buf, size, USB4_DATA_RETRIES,
 638				 usb4_switch_nvm_write_next_block, sw);
 639}
 640
 641/**
 642 * usb4_switch_nvm_authenticate() - Authenticate new NVM
 643 * @sw: USB4 router
 644 *
 645 * After the new NVM has been written via usb4_switch_nvm_write(), this
 646 * function triggers NVM authentication process. The router gets power
 647 * cycled and if the authentication is successful the new NVM starts
 648 * running. In case of failure returns negative errno.
 649 *
 650 * The caller should call usb4_switch_nvm_authenticate_status() to read
 651 * the status of the authentication after power cycle. It should be the
 652 * first router operation to avoid the status being lost.
 653 */
 654int usb4_switch_nvm_authenticate(struct tb_switch *sw)
 655{
 656	int ret;
 657
 658	ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_AUTH, NULL, NULL);
 659	switch (ret) {
 660	/*
 661	 * The router is power cycled once NVM_AUTH is started so it is
 662	 * expected to get any of the following errors back.
 663	 */
 664	case -EACCES:
 665	case -ENOTCONN:
 666	case -ETIMEDOUT:
 667		return 0;
 668
 669	default:
 670		return ret;
 671	}
 672}
 673
 674/**
 675 * usb4_switch_nvm_authenticate_status() - Read status of last NVM authenticate
 676 * @sw: USB4 router
 677 * @status: Status code of the operation
 678 *
 679 * The function checks if there is status available from the last NVM
 680 * authenticate router operation. If there is status then %0 is returned
 681 * and the status code is placed in @status. Returns negative errno in case
 682 * of failure.
 683 *
 684 * Must be called before any other router operation.
 685 */
 686int usb4_switch_nvm_authenticate_status(struct tb_switch *sw, u32 *status)
 687{
 688	const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
 689	u16 opcode;
 690	u32 val;
 691	int ret;
 692
 693	if (cm_ops->usb4_switch_nvm_authenticate_status) {
 694		ret = cm_ops->usb4_switch_nvm_authenticate_status(sw, status);
 695		if (ret != -EOPNOTSUPP)
 696			return ret;
 697	}
 698
 699	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
 700	if (ret)
 701		return ret;
 702
 703	/* Check that the opcode is correct */
 704	opcode = val & ROUTER_CS_26_OPCODE_MASK;
 705	if (opcode == USB4_SWITCH_OP_NVM_AUTH) {
 706		if (val & ROUTER_CS_26_OV)
 707			return -EBUSY;
 708		if (val & ROUTER_CS_26_ONS)
 709			return -EOPNOTSUPP;
 710
 711		*status = (val & ROUTER_CS_26_STATUS_MASK) >>
 712			ROUTER_CS_26_STATUS_SHIFT;
 713	} else {
 714		*status = 0;
 715	}
 716
 717	return 0;
 718}
 719
 720/**
 721 * usb4_switch_credits_init() - Read buffer allocation parameters
 722 * @sw: USB4 router
 723 *
 724 * Reads @sw buffer allocation parameters and initializes @sw buffer
 725 * allocation fields accordingly. Specifically @sw->credits_allocation
 726 * is set to %true if these parameters can be used in tunneling.
 727 *
 728 * Returns %0 on success and negative errno otherwise.
 729 */
 730int usb4_switch_credits_init(struct tb_switch *sw)
 731{
 732	int max_usb3, min_dp_aux, min_dp_main, max_pcie, max_dma;
 733	int ret, length, i, nports;
 734	const struct tb_port *port;
 735	u32 data[USB4_DATA_DWORDS];
 736	u32 metadata = 0;
 737	u8 status = 0;
 738
 739	memset(data, 0, sizeof(data));
 740	ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_BUFFER_ALLOC, &metadata,
 741				  &status, NULL, 0, data, ARRAY_SIZE(data));
 742	if (ret)
 743		return ret;
 744	if (status)
 745		return -EIO;
 746
 747	length = metadata & USB4_BA_LENGTH_MASK;
 748	if (WARN_ON(length > ARRAY_SIZE(data)))
 749		return -EMSGSIZE;
 750
 751	max_usb3 = -1;
 752	min_dp_aux = -1;
 753	min_dp_main = -1;
 754	max_pcie = -1;
 755	max_dma = -1;
 756
 757	tb_sw_dbg(sw, "credit allocation parameters:\n");
 758
 759	for (i = 0; i < length; i++) {
 760		u16 index, value;
 761
 762		index = data[i] & USB4_BA_INDEX_MASK;
 763		value = (data[i] & USB4_BA_VALUE_MASK) >> USB4_BA_VALUE_SHIFT;
 764
 765		switch (index) {
 766		case USB4_BA_MAX_USB3:
 767			tb_sw_dbg(sw, " USB3: %u\n", value);
 768			max_usb3 = value;
 769			break;
 770		case USB4_BA_MIN_DP_AUX:
 771			tb_sw_dbg(sw, " DP AUX: %u\n", value);
 772			min_dp_aux = value;
 773			break;
 774		case USB4_BA_MIN_DP_MAIN:
 775			tb_sw_dbg(sw, " DP main: %u\n", value);
 776			min_dp_main = value;
 777			break;
 778		case USB4_BA_MAX_PCIE:
 779			tb_sw_dbg(sw, " PCIe: %u\n", value);
 780			max_pcie = value;
 781			break;
 782		case USB4_BA_MAX_HI:
 783			tb_sw_dbg(sw, " DMA: %u\n", value);
 784			max_dma = value;
 785			break;
 786		default:
 787			tb_sw_dbg(sw, " unknown credit allocation index %#x, skipping\n",
 788				  index);
 789			break;
 790		}
 791	}
 792
 793	/*
 794	 * Validate the buffer allocation preferences. If we find
 795	 * issues, log a warning and fall back using the hard-coded
 796	 * values.
 797	 */
 798
 799	/* Host router must report baMaxHI */
 800	if (!tb_route(sw) && max_dma < 0) {
 801		tb_sw_warn(sw, "host router is missing baMaxHI\n");
 802		goto err_invalid;
 803	}
 804
 805	nports = 0;
 806	tb_switch_for_each_port(sw, port) {
 807		if (tb_port_is_null(port))
 808			nports++;
 809	}
 810
 811	/* Must have DP buffer allocation (multiple USB4 ports) */
 812	if (nports > 2 && (min_dp_aux < 0 || min_dp_main < 0)) {
 813		tb_sw_warn(sw, "multiple USB4 ports require baMinDPaux/baMinDPmain\n");
 814		goto err_invalid;
 815	}
 816
 817	tb_switch_for_each_port(sw, port) {
 818		if (tb_port_is_dpout(port) && min_dp_main < 0) {
 819			tb_sw_warn(sw, "missing baMinDPmain");
 820			goto err_invalid;
 821		}
 822		if ((tb_port_is_dpin(port) || tb_port_is_dpout(port)) &&
 823		    min_dp_aux < 0) {
 824			tb_sw_warn(sw, "missing baMinDPaux");
 825			goto err_invalid;
 826		}
 827		if ((tb_port_is_usb3_down(port) || tb_port_is_usb3_up(port)) &&
 828		    max_usb3 < 0) {
 829			tb_sw_warn(sw, "missing baMaxUSB3");
 830			goto err_invalid;
 831		}
 832		if ((tb_port_is_pcie_down(port) || tb_port_is_pcie_up(port)) &&
 833		    max_pcie < 0) {
 834			tb_sw_warn(sw, "missing baMaxPCIe");
 835			goto err_invalid;
 836		}
 837	}
 838
 839	/*
 840	 * Buffer allocation passed the validation so we can use it in
 841	 * path creation.
 842	 */
 843	sw->credit_allocation = true;
 844	if (max_usb3 > 0)
 845		sw->max_usb3_credits = max_usb3;
 846	if (min_dp_aux > 0)
 847		sw->min_dp_aux_credits = min_dp_aux;
 848	if (min_dp_main > 0)
 849		sw->min_dp_main_credits = min_dp_main;
 850	if (max_pcie > 0)
 851		sw->max_pcie_credits = max_pcie;
 852	if (max_dma > 0)
 853		sw->max_dma_credits = max_dma;
 854
 855	return 0;
 856
 857err_invalid:
 858	return -EINVAL;
 859}
 860
 861/**
 862 * usb4_switch_query_dp_resource() - Query availability of DP IN resource
 863 * @sw: USB4 router
 864 * @in: DP IN adapter
 865 *
 866 * For DP tunneling this function can be used to query availability of
 867 * DP IN resource. Returns true if the resource is available for DP
 868 * tunneling, false otherwise.
 869 */
 870bool usb4_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
 871{
 872	u32 metadata = in->port;
 873	u8 status;
 874	int ret;
 875
 876	ret = usb4_switch_op(sw, USB4_SWITCH_OP_QUERY_DP_RESOURCE, &metadata,
 877			     &status);
 878	/*
 879	 * If DP resource allocation is not supported assume it is
 880	 * always available.
 881	 */
 882	if (ret == -EOPNOTSUPP)
 883		return true;
 884	if (ret)
 885		return false;
 886
 887	return !status;
 888}
 889
 890/**
 891 * usb4_switch_alloc_dp_resource() - Allocate DP IN resource
 892 * @sw: USB4 router
 893 * @in: DP IN adapter
 894 *
 895 * Allocates DP IN resource for DP tunneling using USB4 router
 896 * operations. If the resource was allocated returns %0. Otherwise
 897 * returns negative errno, in particular %-EBUSY if the resource is
 898 * already allocated.
 899 */
 900int usb4_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
 901{
 902	u32 metadata = in->port;
 903	u8 status;
 904	int ret;
 905
 906	ret = usb4_switch_op(sw, USB4_SWITCH_OP_ALLOC_DP_RESOURCE, &metadata,
 907			     &status);
 908	if (ret == -EOPNOTSUPP)
 909		return 0;
 910	if (ret)
 911		return ret;
 912
 913	return status ? -EBUSY : 0;
 914}
 915
 916/**
 917 * usb4_switch_dealloc_dp_resource() - Releases allocated DP IN resource
 918 * @sw: USB4 router
 919 * @in: DP IN adapter
 920 *
 921 * Releases the previously allocated DP IN resource.
 922 */
 923int usb4_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
 924{
 925	u32 metadata = in->port;
 926	u8 status;
 927	int ret;
 928
 929	ret = usb4_switch_op(sw, USB4_SWITCH_OP_DEALLOC_DP_RESOURCE, &metadata,
 930			     &status);
 931	if (ret == -EOPNOTSUPP)
 932		return 0;
 933	if (ret)
 934		return ret;
 935
 936	return status ? -EIO : 0;
 937}
 938
 939static int usb4_port_idx(const struct tb_switch *sw, const struct tb_port *port)
 940{
 941	struct tb_port *p;
 942	int usb4_idx = 0;
 943
 944	/* Assume port is primary */
 945	tb_switch_for_each_port(sw, p) {
 946		if (!tb_port_is_null(p))
 947			continue;
 948		if (tb_is_upstream_port(p))
 949			continue;
 950		if (!p->link_nr) {
 951			if (p == port)
 952				break;
 953			usb4_idx++;
 954		}
 955	}
 956
 957	return usb4_idx;
 958}
 959
 960/**
 961 * usb4_switch_map_pcie_down() - Map USB4 port to a PCIe downstream adapter
 962 * @sw: USB4 router
 963 * @port: USB4 port
 964 *
 965 * USB4 routers have direct mapping between USB4 ports and PCIe
 966 * downstream adapters where the PCIe topology is extended. This
 967 * function returns the corresponding downstream PCIe adapter or %NULL
 968 * if no such mapping was possible.
 969 */
 970struct tb_port *usb4_switch_map_pcie_down(struct tb_switch *sw,
 971					  const struct tb_port *port)
 972{
 973	int usb4_idx = usb4_port_idx(sw, port);
 974	struct tb_port *p;
 975	int pcie_idx = 0;
 976
 977	/* Find PCIe down port matching usb4_port */
 978	tb_switch_for_each_port(sw, p) {
 979		if (!tb_port_is_pcie_down(p))
 980			continue;
 981
 982		if (pcie_idx == usb4_idx)
 983			return p;
 984
 985		pcie_idx++;
 986	}
 987
 988	return NULL;
 989}
 990
 991/**
 992 * usb4_switch_map_usb3_down() - Map USB4 port to a USB3 downstream adapter
 993 * @sw: USB4 router
 994 * @port: USB4 port
 995 *
 996 * USB4 routers have direct mapping between USB4 ports and USB 3.x
 997 * downstream adapters where the USB 3.x topology is extended. This
 998 * function returns the corresponding downstream USB 3.x adapter or
 999 * %NULL if no such mapping was possible.
1000 */
1001struct tb_port *usb4_switch_map_usb3_down(struct tb_switch *sw,
1002					  const struct tb_port *port)
1003{
1004	int usb4_idx = usb4_port_idx(sw, port);
1005	struct tb_port *p;
1006	int usb_idx = 0;
1007
1008	/* Find USB3 down port matching usb4_port */
1009	tb_switch_for_each_port(sw, p) {
1010		if (!tb_port_is_usb3_down(p))
1011			continue;
1012
1013		if (usb_idx == usb4_idx)
1014			return p;
1015
1016		usb_idx++;
1017	}
1018
1019	return NULL;
1020}
1021
1022/**
1023 * usb4_switch_add_ports() - Add USB4 ports for this router
1024 * @sw: USB4 router
1025 *
1026 * For USB4 router finds all USB4 ports and registers devices for each.
1027 * Can be called to any router.
1028 *
1029 * Return %0 in case of success and negative errno in case of failure.
1030 */
1031int usb4_switch_add_ports(struct tb_switch *sw)
1032{
1033	struct tb_port *port;
1034
1035	if (tb_switch_is_icm(sw) || !tb_switch_is_usb4(sw))
1036		return 0;
1037
1038	tb_switch_for_each_port(sw, port) {
1039		struct usb4_port *usb4;
1040
1041		if (!tb_port_is_null(port))
1042			continue;
1043		if (!port->cap_usb4)
1044			continue;
1045
1046		usb4 = usb4_port_device_add(port);
1047		if (IS_ERR(usb4)) {
1048			usb4_switch_remove_ports(sw);
1049			return PTR_ERR(usb4);
1050		}
1051
1052		port->usb4 = usb4;
1053	}
1054
1055	return 0;
1056}
1057
1058/**
1059 * usb4_switch_remove_ports() - Removes USB4 ports from this router
1060 * @sw: USB4 router
1061 *
1062 * Unregisters previously registered USB4 ports.
1063 */
1064void usb4_switch_remove_ports(struct tb_switch *sw)
1065{
1066	struct tb_port *port;
1067
1068	tb_switch_for_each_port(sw, port) {
1069		if (port->usb4) {
1070			usb4_port_device_remove(port->usb4);
1071			port->usb4 = NULL;
1072		}
1073	}
1074}
1075
1076/**
1077 * usb4_port_unlock() - Unlock USB4 downstream port
1078 * @port: USB4 port to unlock
1079 *
1080 * Unlocks USB4 downstream port so that the connection manager can
1081 * access the router below this port.
1082 */
1083int usb4_port_unlock(struct tb_port *port)
1084{
1085	int ret;
1086	u32 val;
1087
1088	ret = tb_port_read(port, &val, TB_CFG_PORT, ADP_CS_4, 1);
1089	if (ret)
1090		return ret;
1091
1092	val &= ~ADP_CS_4_LCK;
1093	return tb_port_write(port, &val, TB_CFG_PORT, ADP_CS_4, 1);
1094}
1095
1096/**
1097 * usb4_port_hotplug_enable() - Enables hotplug for a port
1098 * @port: USB4 port to operate on
1099 *
1100 * Enables hot plug events on a given port. This is only intended
1101 * to be used on lane, DP-IN, and DP-OUT adapters.
1102 */
1103int usb4_port_hotplug_enable(struct tb_port *port)
1104{
1105	int ret;
1106	u32 val;
1107
1108	ret = tb_port_read(port, &val, TB_CFG_PORT, ADP_CS_5, 1);
1109	if (ret)
1110		return ret;
1111
1112	val &= ~ADP_CS_5_DHP;
1113	return tb_port_write(port, &val, TB_CFG_PORT, ADP_CS_5, 1);
1114}
1115
1116static int usb4_port_set_configured(struct tb_port *port, bool configured)
1117{
1118	int ret;
1119	u32 val;
1120
1121	if (!port->cap_usb4)
1122		return -EINVAL;
1123
1124	ret = tb_port_read(port, &val, TB_CFG_PORT,
1125			   port->cap_usb4 + PORT_CS_19, 1);
1126	if (ret)
1127		return ret;
1128
1129	if (configured)
1130		val |= PORT_CS_19_PC;
1131	else
1132		val &= ~PORT_CS_19_PC;
1133
1134	return tb_port_write(port, &val, TB_CFG_PORT,
1135			     port->cap_usb4 + PORT_CS_19, 1);
1136}
1137
1138/**
1139 * usb4_port_configure() - Set USB4 port configured
1140 * @port: USB4 router
1141 *
1142 * Sets the USB4 link to be configured for power management purposes.
1143 */
1144int usb4_port_configure(struct tb_port *port)
1145{
1146	return usb4_port_set_configured(port, true);
1147}
1148
1149/**
1150 * usb4_port_unconfigure() - Set USB4 port unconfigured
1151 * @port: USB4 router
1152 *
1153 * Sets the USB4 link to be unconfigured for power management purposes.
1154 */
1155void usb4_port_unconfigure(struct tb_port *port)
1156{
1157	usb4_port_set_configured(port, false);
1158}
1159
1160static int usb4_set_xdomain_configured(struct tb_port *port, bool configured)
1161{
1162	int ret;
1163	u32 val;
1164
1165	if (!port->cap_usb4)
1166		return -EINVAL;
1167
1168	ret = tb_port_read(port, &val, TB_CFG_PORT,
1169			   port->cap_usb4 + PORT_CS_19, 1);
1170	if (ret)
1171		return ret;
1172
1173	if (configured)
1174		val |= PORT_CS_19_PID;
1175	else
1176		val &= ~PORT_CS_19_PID;
1177
1178	return tb_port_write(port, &val, TB_CFG_PORT,
1179			     port->cap_usb4 + PORT_CS_19, 1);
1180}
1181
1182/**
1183 * usb4_port_configure_xdomain() - Configure port for XDomain
1184 * @port: USB4 port connected to another host
1185 * @xd: XDomain that is connected to the port
1186 *
1187 * Marks the USB4 port as being connected to another host and updates
1188 * the link type. Returns %0 in success and negative errno in failure.
1189 */
1190int usb4_port_configure_xdomain(struct tb_port *port, struct tb_xdomain *xd)
1191{
1192	xd->link_usb4 = link_is_usb4(port);
1193	return usb4_set_xdomain_configured(port, true);
1194}
1195
1196/**
1197 * usb4_port_unconfigure_xdomain() - Unconfigure port for XDomain
1198 * @port: USB4 port that was connected to another host
1199 *
1200 * Clears USB4 port from being marked as XDomain.
1201 */
1202void usb4_port_unconfigure_xdomain(struct tb_port *port)
1203{
1204	usb4_set_xdomain_configured(port, false);
1205}
1206
1207static int usb4_port_wait_for_bit(struct tb_port *port, u32 offset, u32 bit,
1208				  u32 value, int timeout_msec)
1209{
1210	ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
1211
1212	do {
1213		u32 val;
1214		int ret;
1215
1216		ret = tb_port_read(port, &val, TB_CFG_PORT, offset, 1);
1217		if (ret)
1218			return ret;
1219
1220		if ((val & bit) == value)
1221			return 0;
1222
1223		usleep_range(50, 100);
1224	} while (ktime_before(ktime_get(), timeout));
1225
1226	return -ETIMEDOUT;
1227}
1228
1229static int usb4_port_read_data(struct tb_port *port, void *data, size_t dwords)
1230{
1231	if (dwords > USB4_DATA_DWORDS)
1232		return -EINVAL;
1233
1234	return tb_port_read(port, data, TB_CFG_PORT, port->cap_usb4 + PORT_CS_2,
1235			    dwords);
1236}
1237
1238static int usb4_port_write_data(struct tb_port *port, const void *data,
1239				size_t dwords)
1240{
1241	if (dwords > USB4_DATA_DWORDS)
1242		return -EINVAL;
1243
1244	return tb_port_write(port, data, TB_CFG_PORT, port->cap_usb4 + PORT_CS_2,
1245			     dwords);
1246}
1247
1248static int usb4_port_sb_read(struct tb_port *port, enum usb4_sb_target target,
1249			     u8 index, u8 reg, void *buf, u8 size)
1250{
1251	size_t dwords = DIV_ROUND_UP(size, 4);
1252	int ret;
1253	u32 val;
1254
1255	if (!port->cap_usb4)
1256		return -EINVAL;
1257
1258	val = reg;
1259	val |= size << PORT_CS_1_LENGTH_SHIFT;
1260	val |= (target << PORT_CS_1_TARGET_SHIFT) & PORT_CS_1_TARGET_MASK;
1261	if (target == USB4_SB_TARGET_RETIMER)
1262		val |= (index << PORT_CS_1_RETIMER_INDEX_SHIFT);
1263	val |= PORT_CS_1_PND;
1264
1265	ret = tb_port_write(port, &val, TB_CFG_PORT,
1266			    port->cap_usb4 + PORT_CS_1, 1);
1267	if (ret)
1268		return ret;
1269
1270	ret = usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_1,
1271				     PORT_CS_1_PND, 0, 500);
1272	if (ret)
1273		return ret;
1274
1275	ret = tb_port_read(port, &val, TB_CFG_PORT,
1276			    port->cap_usb4 + PORT_CS_1, 1);
1277	if (ret)
1278		return ret;
1279
1280	if (val & PORT_CS_1_NR)
1281		return -ENODEV;
1282	if (val & PORT_CS_1_RC)
1283		return -EIO;
1284
1285	return buf ? usb4_port_read_data(port, buf, dwords) : 0;
1286}
1287
1288static int usb4_port_sb_write(struct tb_port *port, enum usb4_sb_target target,
1289			      u8 index, u8 reg, const void *buf, u8 size)
1290{
1291	size_t dwords = DIV_ROUND_UP(size, 4);
1292	int ret;
1293	u32 val;
1294
1295	if (!port->cap_usb4)
1296		return -EINVAL;
1297
1298	if (buf) {
1299		ret = usb4_port_write_data(port, buf, dwords);
1300		if (ret)
1301			return ret;
1302	}
1303
1304	val = reg;
1305	val |= size << PORT_CS_1_LENGTH_SHIFT;
1306	val |= PORT_CS_1_WNR_WRITE;
1307	val |= (target << PORT_CS_1_TARGET_SHIFT) & PORT_CS_1_TARGET_MASK;
1308	if (target == USB4_SB_TARGET_RETIMER)
1309		val |= (index << PORT_CS_1_RETIMER_INDEX_SHIFT);
1310	val |= PORT_CS_1_PND;
1311
1312	ret = tb_port_write(port, &val, TB_CFG_PORT,
1313			    port->cap_usb4 + PORT_CS_1, 1);
1314	if (ret)
1315		return ret;
1316
1317	ret = usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_1,
1318				     PORT_CS_1_PND, 0, 500);
1319	if (ret)
1320		return ret;
1321
1322	ret = tb_port_read(port, &val, TB_CFG_PORT,
1323			    port->cap_usb4 + PORT_CS_1, 1);
1324	if (ret)
1325		return ret;
1326
1327	if (val & PORT_CS_1_NR)
1328		return -ENODEV;
1329	if (val & PORT_CS_1_RC)
1330		return -EIO;
1331
1332	return 0;
1333}
1334
1335static int usb4_port_sb_opcode_err_to_errno(u32 val)
1336{
1337	switch (val) {
1338	case 0:
1339		return 0;
1340	case USB4_SB_OPCODE_ERR:
1341		return -EAGAIN;
1342	case USB4_SB_OPCODE_ONS:
1343		return -EOPNOTSUPP;
1344	default:
1345		return -EIO;
1346	}
1347}
1348
1349static int usb4_port_sb_op(struct tb_port *port, enum usb4_sb_target target,
1350			   u8 index, enum usb4_sb_opcode opcode, int timeout_msec)
1351{
1352	ktime_t timeout;
1353	u32 val;
1354	int ret;
1355
1356	val = opcode;
1357	ret = usb4_port_sb_write(port, target, index, USB4_SB_OPCODE, &val,
1358				 sizeof(val));
1359	if (ret)
1360		return ret;
1361
1362	timeout = ktime_add_ms(ktime_get(), timeout_msec);
1363
1364	do {
1365		/* Check results */
1366		ret = usb4_port_sb_read(port, target, index, USB4_SB_OPCODE,
1367					&val, sizeof(val));
1368		if (ret)
1369			return ret;
1370
1371		if (val != opcode)
1372			return usb4_port_sb_opcode_err_to_errno(val);
1373	} while (ktime_before(ktime_get(), timeout));
1374
1375	return -ETIMEDOUT;
1376}
1377
1378static int usb4_port_set_router_offline(struct tb_port *port, bool offline)
1379{
1380	u32 val = !offline;
1381	int ret;
1382
1383	ret = usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1384				  USB4_SB_METADATA, &val, sizeof(val));
1385	if (ret)
1386		return ret;
1387
1388	val = USB4_SB_OPCODE_ROUTER_OFFLINE;
1389	return usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1390				  USB4_SB_OPCODE, &val, sizeof(val));
1391}
1392
1393/**
1394 * usb4_port_router_offline() - Put the USB4 port to offline mode
1395 * @port: USB4 port
1396 *
1397 * This function puts the USB4 port into offline mode. In this mode the
1398 * port does not react on hotplug events anymore. This needs to be
1399 * called before retimer access is done when the USB4 links is not up.
1400 *
1401 * Returns %0 in case of success and negative errno if there was an
1402 * error.
1403 */
1404int usb4_port_router_offline(struct tb_port *port)
1405{
1406	return usb4_port_set_router_offline(port, true);
1407}
1408
1409/**
1410 * usb4_port_router_online() - Put the USB4 port back to online
1411 * @port: USB4 port
1412 *
1413 * Makes the USB4 port functional again.
1414 */
1415int usb4_port_router_online(struct tb_port *port)
1416{
1417	return usb4_port_set_router_offline(port, false);
1418}
1419
1420/**
1421 * usb4_port_enumerate_retimers() - Send RT broadcast transaction
1422 * @port: USB4 port
1423 *
1424 * This forces the USB4 port to send broadcast RT transaction which
1425 * makes the retimers on the link to assign index to themselves. Returns
1426 * %0 in case of success and negative errno if there was an error.
1427 */
1428int usb4_port_enumerate_retimers(struct tb_port *port)
1429{
1430	u32 val;
1431
1432	val = USB4_SB_OPCODE_ENUMERATE_RETIMERS;
1433	return usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1434				  USB4_SB_OPCODE, &val, sizeof(val));
1435}
1436
1437/**
1438 * usb4_port_clx_supported() - Check if CLx is supported by the link
1439 * @port: Port to check for CLx support for
1440 *
1441 * PORT_CS_18_CPS bit reflects if the link supports CLx including
1442 * active cables (if connected on the link).
1443 */
1444bool usb4_port_clx_supported(struct tb_port *port)
1445{
1446	int ret;
1447	u32 val;
1448
1449	ret = tb_port_read(port, &val, TB_CFG_PORT,
1450			   port->cap_usb4 + PORT_CS_18, 1);
1451	if (ret)
1452		return false;
1453
1454	return !!(val & PORT_CS_18_CPS);
1455}
1456
1457/**
1458 * usb4_port_asym_supported() - If the port supports asymmetric link
1459 * @port: USB4 port
1460 *
1461 * Checks if the port and the cable supports asymmetric link and returns
1462 * %true in that case.
1463 */
1464bool usb4_port_asym_supported(struct tb_port *port)
1465{
1466	u32 val;
1467
1468	if (!port->cap_usb4)
1469		return false;
1470
1471	if (tb_port_read(port, &val, TB_CFG_PORT, port->cap_usb4 + PORT_CS_18, 1))
1472		return false;
1473
1474	return !!(val & PORT_CS_18_CSA);
1475}
1476
1477/**
1478 * usb4_port_asym_set_link_width() - Set link width to asymmetric or symmetric
1479 * @port: USB4 port
1480 * @width: Asymmetric width to configure
1481 *
1482 * Sets USB4 port link width to @width. Can be called for widths where
1483 * usb4_port_asym_width_supported() returned @true.
1484 */
1485int usb4_port_asym_set_link_width(struct tb_port *port, enum tb_link_width width)
1486{
1487	u32 val;
1488	int ret;
1489
1490	if (!port->cap_phy)
1491		return -EINVAL;
1492
1493	ret = tb_port_read(port, &val, TB_CFG_PORT,
1494			   port->cap_phy + LANE_ADP_CS_1, 1);
1495	if (ret)
1496		return ret;
1497
1498	val &= ~LANE_ADP_CS_1_TARGET_WIDTH_ASYM_MASK;
1499	switch (width) {
1500	case TB_LINK_WIDTH_DUAL:
1501		val |= FIELD_PREP(LANE_ADP_CS_1_TARGET_WIDTH_ASYM_MASK,
1502				  LANE_ADP_CS_1_TARGET_WIDTH_ASYM_DUAL);
1503		break;
1504	case TB_LINK_WIDTH_ASYM_TX:
1505		val |= FIELD_PREP(LANE_ADP_CS_1_TARGET_WIDTH_ASYM_MASK,
1506				  LANE_ADP_CS_1_TARGET_WIDTH_ASYM_TX);
1507		break;
1508	case TB_LINK_WIDTH_ASYM_RX:
1509		val |= FIELD_PREP(LANE_ADP_CS_1_TARGET_WIDTH_ASYM_MASK,
1510				  LANE_ADP_CS_1_TARGET_WIDTH_ASYM_RX);
1511		break;
1512	default:
1513		return -EINVAL;
1514	}
1515
1516	return tb_port_write(port, &val, TB_CFG_PORT,
1517			     port->cap_phy + LANE_ADP_CS_1, 1);
1518}
1519
1520/**
1521 * usb4_port_asym_start() - Start symmetry change and wait for completion
1522 * @port: USB4 port
1523 *
1524 * Start symmetry change of the link to asymmetric or symmetric
1525 * (according to what was previously set in tb_port_set_link_width().
1526 * Wait for completion of the change.
1527 *
1528 * Returns %0 in case of success, %-ETIMEDOUT if case of timeout or
1529 * a negative errno in case of a failure.
1530 */
1531int usb4_port_asym_start(struct tb_port *port)
1532{
1533	int ret;
1534	u32 val;
1535
1536	ret = tb_port_read(port, &val, TB_CFG_PORT,
1537			   port->cap_usb4 + PORT_CS_19, 1);
1538	if (ret)
1539		return ret;
1540
1541	val &= ~PORT_CS_19_START_ASYM;
1542	val |= FIELD_PREP(PORT_CS_19_START_ASYM, 1);
1543
1544	ret = tb_port_write(port, &val, TB_CFG_PORT,
1545			    port->cap_usb4 + PORT_CS_19, 1);
1546	if (ret)
1547		return ret;
1548
1549	/*
1550	 * Wait for PORT_CS_19_START_ASYM to be 0. This means the USB4
1551	 * port started the symmetry transition.
1552	 */
1553	ret = usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_19,
1554				     PORT_CS_19_START_ASYM, 0, 1000);
1555	if (ret)
1556		return ret;
1557
1558	/* Then wait for the transtion to be completed */
1559	return usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_18,
1560				      PORT_CS_18_TIP, 0, 5000);
1561}
1562
1563/**
1564 * usb4_port_margining_caps() - Read USB4 port marginig capabilities
1565 * @port: USB4 port
1566 * @caps: Array with at least two elements to hold the results
1567 *
1568 * Reads the USB4 port lane margining capabilities into @caps.
1569 */
1570int usb4_port_margining_caps(struct tb_port *port, u32 *caps)
1571{
1572	int ret;
1573
1574	ret = usb4_port_sb_op(port, USB4_SB_TARGET_ROUTER, 0,
1575			      USB4_SB_OPCODE_READ_LANE_MARGINING_CAP, 500);
1576	if (ret)
1577		return ret;
1578
1579	return usb4_port_sb_read(port, USB4_SB_TARGET_ROUTER, 0,
1580				 USB4_SB_DATA, caps, sizeof(*caps) * 2);
1581}
1582
1583/**
1584 * usb4_port_hw_margin() - Run hardware lane margining on port
1585 * @port: USB4 port
1586 * @lanes: Which lanes to run (must match the port capabilities). Can be
1587 *	   %0, %1 or %7.
1588 * @ber_level: BER level contour value
1589 * @timing: Perform timing margining instead of voltage
1590 * @right_high: Use Right/high margin instead of left/low
1591 * @results: Array with at least two elements to hold the results
1592 *
1593 * Runs hardware lane margining on USB4 port and returns the result in
1594 * @results.
1595 */
1596int usb4_port_hw_margin(struct tb_port *port, unsigned int lanes,
1597			unsigned int ber_level, bool timing, bool right_high,
1598			u32 *results)
1599{
1600	u32 val;
1601	int ret;
1602
1603	val = lanes;
1604	if (timing)
1605		val |= USB4_MARGIN_HW_TIME;
1606	if (right_high)
1607		val |= USB4_MARGIN_HW_RH;
1608	if (ber_level)
1609		val |= (ber_level << USB4_MARGIN_HW_BER_SHIFT) &
1610			USB4_MARGIN_HW_BER_MASK;
1611
1612	ret = usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1613				 USB4_SB_METADATA, &val, sizeof(val));
1614	if (ret)
1615		return ret;
1616
1617	ret = usb4_port_sb_op(port, USB4_SB_TARGET_ROUTER, 0,
1618			      USB4_SB_OPCODE_RUN_HW_LANE_MARGINING, 2500);
1619	if (ret)
1620		return ret;
1621
1622	return usb4_port_sb_read(port, USB4_SB_TARGET_ROUTER, 0,
1623				 USB4_SB_DATA, results, sizeof(*results) * 2);
1624}
1625
1626/**
1627 * usb4_port_sw_margin() - Run software lane margining on port
1628 * @port: USB4 port
1629 * @lanes: Which lanes to run (must match the port capabilities). Can be
1630 *	   %0, %1 or %7.
1631 * @timing: Perform timing margining instead of voltage
1632 * @right_high: Use Right/high margin instead of left/low
1633 * @counter: What to do with the error counter
1634 *
1635 * Runs software lane margining on USB4 port. Read back the error
1636 * counters by calling usb4_port_sw_margin_errors(). Returns %0 in
1637 * success and negative errno otherwise.
1638 */
1639int usb4_port_sw_margin(struct tb_port *port, unsigned int lanes, bool timing,
1640			bool right_high, u32 counter)
1641{
1642	u32 val;
1643	int ret;
1644
1645	val = lanes;
1646	if (timing)
1647		val |= USB4_MARGIN_SW_TIME;
1648	if (right_high)
1649		val |= USB4_MARGIN_SW_RH;
1650	val |= (counter << USB4_MARGIN_SW_COUNTER_SHIFT) &
1651		USB4_MARGIN_SW_COUNTER_MASK;
1652
1653	ret = usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1654				 USB4_SB_METADATA, &val, sizeof(val));
1655	if (ret)
1656		return ret;
1657
1658	return usb4_port_sb_op(port, USB4_SB_TARGET_ROUTER, 0,
1659			       USB4_SB_OPCODE_RUN_SW_LANE_MARGINING, 2500);
1660}
1661
1662/**
1663 * usb4_port_sw_margin_errors() - Read the software margining error counters
1664 * @port: USB4 port
1665 * @errors: Error metadata is copied here.
1666 *
1667 * This reads back the software margining error counters from the port.
1668 * Returns %0 in success and negative errno otherwise.
1669 */
1670int usb4_port_sw_margin_errors(struct tb_port *port, u32 *errors)
1671{
1672	int ret;
1673
1674	ret = usb4_port_sb_op(port, USB4_SB_TARGET_ROUTER, 0,
1675			      USB4_SB_OPCODE_READ_SW_MARGIN_ERR, 150);
1676	if (ret)
1677		return ret;
1678
1679	return usb4_port_sb_read(port, USB4_SB_TARGET_ROUTER, 0,
1680				 USB4_SB_METADATA, errors, sizeof(*errors));
1681}
1682
1683static inline int usb4_port_retimer_op(struct tb_port *port, u8 index,
1684				       enum usb4_sb_opcode opcode,
1685				       int timeout_msec)
1686{
1687	return usb4_port_sb_op(port, USB4_SB_TARGET_RETIMER, index, opcode,
1688			       timeout_msec);
1689}
1690
1691/**
1692 * usb4_port_retimer_set_inbound_sbtx() - Enable sideband channel transactions
1693 * @port: USB4 port
1694 * @index: Retimer index
1695 *
1696 * Enables sideband channel transations on SBTX. Can be used when USB4
1697 * link does not go up, for example if there is no device connected.
1698 */
1699int usb4_port_retimer_set_inbound_sbtx(struct tb_port *port, u8 index)
1700{
1701	int ret;
1702
1703	ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_SET_INBOUND_SBTX,
1704				   500);
1705
1706	if (ret != -ENODEV)
1707		return ret;
1708
1709	/*
1710	 * Per the USB4 retimer spec, the retimer is not required to
1711	 * send an RT (Retimer Transaction) response for the first
1712	 * SET_INBOUND_SBTX command
1713	 */
1714	return usb4_port_retimer_op(port, index, USB4_SB_OPCODE_SET_INBOUND_SBTX,
1715				    500);
1716}
1717
1718/**
1719 * usb4_port_retimer_unset_inbound_sbtx() - Disable sideband channel transactions
1720 * @port: USB4 port
1721 * @index: Retimer index
1722 *
1723 * Disables sideband channel transations on SBTX. The reverse of
1724 * usb4_port_retimer_set_inbound_sbtx().
1725 */
1726int usb4_port_retimer_unset_inbound_sbtx(struct tb_port *port, u8 index)
1727{
1728	return usb4_port_retimer_op(port, index,
1729				    USB4_SB_OPCODE_UNSET_INBOUND_SBTX, 500);
1730}
1731
1732/**
1733 * usb4_port_retimer_read() - Read from retimer sideband registers
1734 * @port: USB4 port
1735 * @index: Retimer index
1736 * @reg: Sideband register to read
1737 * @buf: Data from @reg is stored here
1738 * @size: Number of bytes to read
1739 *
1740 * Function reads retimer sideband registers starting from @reg. The
1741 * retimer is connected to @port at @index. Returns %0 in case of
1742 * success, and read data is copied to @buf. If there is no retimer
1743 * present at given @index returns %-ENODEV. In any other failure
1744 * returns negative errno.
1745 */
1746int usb4_port_retimer_read(struct tb_port *port, u8 index, u8 reg, void *buf,
1747			   u8 size)
1748{
1749	return usb4_port_sb_read(port, USB4_SB_TARGET_RETIMER, index, reg, buf,
1750				 size);
1751}
1752
1753/**
1754 * usb4_port_retimer_write() - Write to retimer sideband registers
1755 * @port: USB4 port
1756 * @index: Retimer index
1757 * @reg: Sideband register to write
1758 * @buf: Data that is written starting from @reg
1759 * @size: Number of bytes to write
1760 *
1761 * Writes retimer sideband registers starting from @reg. The retimer is
1762 * connected to @port at @index. Returns %0 in case of success. If there
1763 * is no retimer present at given @index returns %-ENODEV. In any other
1764 * failure returns negative errno.
1765 */
1766int usb4_port_retimer_write(struct tb_port *port, u8 index, u8 reg,
1767			    const void *buf, u8 size)
1768{
1769	return usb4_port_sb_write(port, USB4_SB_TARGET_RETIMER, index, reg, buf,
1770				  size);
1771}
1772
1773/**
1774 * usb4_port_retimer_is_last() - Is the retimer last on-board retimer
1775 * @port: USB4 port
1776 * @index: Retimer index
1777 *
1778 * If the retimer at @index is last one (connected directly to the
1779 * Type-C port) this function returns %1. If it is not returns %0. If
1780 * the retimer is not present returns %-ENODEV. Otherwise returns
1781 * negative errno.
1782 */
1783int usb4_port_retimer_is_last(struct tb_port *port, u8 index)
1784{
1785	u32 metadata;
1786	int ret;
1787
1788	ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_QUERY_LAST_RETIMER,
1789				   500);
1790	if (ret)
1791		return ret;
1792
1793	ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA, &metadata,
1794				     sizeof(metadata));
1795	return ret ? ret : metadata & 1;
1796}
1797
1798/**
1799 * usb4_port_retimer_nvm_sector_size() - Read retimer NVM sector size
1800 * @port: USB4 port
1801 * @index: Retimer index
1802 *
1803 * Reads NVM sector size (in bytes) of a retimer at @index. This
1804 * operation can be used to determine whether the retimer supports NVM
1805 * upgrade for example. Returns sector size in bytes or negative errno
1806 * in case of error. Specifically returns %-ENODEV if there is no
1807 * retimer at @index.
1808 */
1809int usb4_port_retimer_nvm_sector_size(struct tb_port *port, u8 index)
1810{
1811	u32 metadata;
1812	int ret;
1813
1814	ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_GET_NVM_SECTOR_SIZE,
1815				   500);
1816	if (ret)
1817		return ret;
1818
1819	ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA, &metadata,
1820				     sizeof(metadata));
1821	return ret ? ret : metadata & USB4_NVM_SECTOR_SIZE_MASK;
1822}
1823
1824/**
1825 * usb4_port_retimer_nvm_set_offset() - Set NVM write offset
1826 * @port: USB4 port
1827 * @index: Retimer index
1828 * @address: Start offset
1829 *
1830 * Exlicitly sets NVM write offset. Normally when writing to NVM this is
1831 * done automatically by usb4_port_retimer_nvm_write().
1832 *
1833 * Returns %0 in success and negative errno if there was a failure.
1834 */
1835int usb4_port_retimer_nvm_set_offset(struct tb_port *port, u8 index,
1836				     unsigned int address)
1837{
1838	u32 metadata, dwaddress;
1839	int ret;
1840
1841	dwaddress = address / 4;
1842	metadata = (dwaddress << USB4_NVM_SET_OFFSET_SHIFT) &
1843		  USB4_NVM_SET_OFFSET_MASK;
1844
1845	ret = usb4_port_retimer_write(port, index, USB4_SB_METADATA, &metadata,
1846				      sizeof(metadata));
1847	if (ret)
1848		return ret;
1849
1850	return usb4_port_retimer_op(port, index, USB4_SB_OPCODE_NVM_SET_OFFSET,
1851				    500);
1852}
1853
1854struct retimer_info {
1855	struct tb_port *port;
1856	u8 index;
1857};
1858
1859static int usb4_port_retimer_nvm_write_next_block(void *data,
1860	unsigned int dwaddress, const void *buf, size_t dwords)
1861
1862{
1863	const struct retimer_info *info = data;
1864	struct tb_port *port = info->port;
1865	u8 index = info->index;
1866	int ret;
1867
1868	ret = usb4_port_retimer_write(port, index, USB4_SB_DATA,
1869				      buf, dwords * 4);
1870	if (ret)
1871		return ret;
1872
1873	return usb4_port_retimer_op(port, index,
1874			USB4_SB_OPCODE_NVM_BLOCK_WRITE, 1000);
1875}
1876
1877/**
1878 * usb4_port_retimer_nvm_write() - Write to retimer NVM
1879 * @port: USB4 port
1880 * @index: Retimer index
1881 * @address: Byte address where to start the write
1882 * @buf: Data to write
1883 * @size: Size in bytes how much to write
1884 *
1885 * Writes @size bytes from @buf to the retimer NVM. Used for NVM
1886 * upgrade. Returns %0 if the data was written successfully and negative
1887 * errno in case of failure. Specifically returns %-ENODEV if there is
1888 * no retimer at @index.
1889 */
1890int usb4_port_retimer_nvm_write(struct tb_port *port, u8 index, unsigned int address,
1891				const void *buf, size_t size)
1892{
1893	struct retimer_info info = { .port = port, .index = index };
1894	int ret;
1895
1896	ret = usb4_port_retimer_nvm_set_offset(port, index, address);
1897	if (ret)
1898		return ret;
1899
1900	return tb_nvm_write_data(address, buf, size, USB4_DATA_RETRIES,
1901				 usb4_port_retimer_nvm_write_next_block, &info);
1902}
1903
1904/**
1905 * usb4_port_retimer_nvm_authenticate() - Start retimer NVM upgrade
1906 * @port: USB4 port
1907 * @index: Retimer index
1908 *
1909 * After the new NVM image has been written via usb4_port_retimer_nvm_write()
1910 * this function can be used to trigger the NVM upgrade process. If
1911 * successful the retimer restarts with the new NVM and may not have the
1912 * index set so one needs to call usb4_port_enumerate_retimers() to
1913 * force index to be assigned.
1914 */
1915int usb4_port_retimer_nvm_authenticate(struct tb_port *port, u8 index)
1916{
1917	u32 val;
1918
1919	/*
1920	 * We need to use the raw operation here because once the
1921	 * authentication completes the retimer index is not set anymore
1922	 * so we do not get back the status now.
1923	 */
1924	val = USB4_SB_OPCODE_NVM_AUTH_WRITE;
1925	return usb4_port_sb_write(port, USB4_SB_TARGET_RETIMER, index,
1926				  USB4_SB_OPCODE, &val, sizeof(val));
1927}
1928
1929/**
1930 * usb4_port_retimer_nvm_authenticate_status() - Read status of NVM upgrade
1931 * @port: USB4 port
1932 * @index: Retimer index
1933 * @status: Raw status code read from metadata
1934 *
1935 * This can be called after usb4_port_retimer_nvm_authenticate() and
1936 * usb4_port_enumerate_retimers() to fetch status of the NVM upgrade.
1937 *
1938 * Returns %0 if the authentication status was successfully read. The
1939 * completion metadata (the result) is then stored into @status. If
1940 * reading the status fails, returns negative errno.
1941 */
1942int usb4_port_retimer_nvm_authenticate_status(struct tb_port *port, u8 index,
1943					      u32 *status)
1944{
1945	u32 metadata, val;
1946	int ret;
1947
1948	ret = usb4_port_retimer_read(port, index, USB4_SB_OPCODE, &val,
1949				     sizeof(val));
1950	if (ret)
1951		return ret;
1952
1953	ret = usb4_port_sb_opcode_err_to_errno(val);
1954	switch (ret) {
1955	case 0:
1956		*status = 0;
1957		return 0;
1958
1959	case -EAGAIN:
1960		ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA,
1961					     &metadata, sizeof(metadata));
1962		if (ret)
1963			return ret;
1964
1965		*status = metadata & USB4_SB_METADATA_NVM_AUTH_WRITE_MASK;
1966		return 0;
1967
1968	default:
1969		return ret;
1970	}
1971}
1972
1973static int usb4_port_retimer_nvm_read_block(void *data, unsigned int dwaddress,
1974					    void *buf, size_t dwords)
1975{
1976	const struct retimer_info *info = data;
1977	struct tb_port *port = info->port;
1978	u8 index = info->index;
1979	u32 metadata;
1980	int ret;
1981
1982	metadata = dwaddress << USB4_NVM_READ_OFFSET_SHIFT;
1983	if (dwords < USB4_DATA_DWORDS)
1984		metadata |= dwords << USB4_NVM_READ_LENGTH_SHIFT;
1985
1986	ret = usb4_port_retimer_write(port, index, USB4_SB_METADATA, &metadata,
1987				      sizeof(metadata));
1988	if (ret)
1989		return ret;
1990
1991	ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_NVM_READ, 500);
1992	if (ret)
1993		return ret;
1994
1995	return usb4_port_retimer_read(port, index, USB4_SB_DATA, buf,
1996				      dwords * 4);
1997}
1998
1999/**
2000 * usb4_port_retimer_nvm_read() - Read contents of retimer NVM
2001 * @port: USB4 port
2002 * @index: Retimer index
2003 * @address: NVM address (in bytes) to start reading
2004 * @buf: Data read from NVM is stored here
2005 * @size: Number of bytes to read
2006 *
2007 * Reads retimer NVM and copies the contents to @buf. Returns %0 if the
2008 * read was successful and negative errno in case of failure.
2009 * Specifically returns %-ENODEV if there is no retimer at @index.
2010 */
2011int usb4_port_retimer_nvm_read(struct tb_port *port, u8 index,
2012			       unsigned int address, void *buf, size_t size)
2013{
2014	struct retimer_info info = { .port = port, .index = index };
2015
2016	return tb_nvm_read_data(address, buf, size, USB4_DATA_RETRIES,
2017				usb4_port_retimer_nvm_read_block, &info);
2018}
2019
2020static inline unsigned int
2021usb4_usb3_port_max_bandwidth(const struct tb_port *port, unsigned int bw)
2022{
2023	/* Take the possible bandwidth limitation into account */
2024	if (port->max_bw)
2025		return min(bw, port->max_bw);
2026	return bw;
2027}
2028
2029/**
2030 * usb4_usb3_port_max_link_rate() - Maximum support USB3 link rate
2031 * @port: USB3 adapter port
2032 *
2033 * Return maximum supported link rate of a USB3 adapter in Mb/s.
2034 * Negative errno in case of error.
2035 */
2036int usb4_usb3_port_max_link_rate(struct tb_port *port)
2037{
2038	int ret, lr;
2039	u32 val;
2040
2041	if (!tb_port_is_usb3_down(port) && !tb_port_is_usb3_up(port))
2042		return -EINVAL;
2043
2044	ret = tb_port_read(port, &val, TB_CFG_PORT,
2045			   port->cap_adap + ADP_USB3_CS_4, 1);
2046	if (ret)
2047		return ret;
2048
2049	lr = (val & ADP_USB3_CS_4_MSLR_MASK) >> ADP_USB3_CS_4_MSLR_SHIFT;
2050	ret = lr == ADP_USB3_CS_4_MSLR_20G ? 20000 : 10000;
2051
2052	return usb4_usb3_port_max_bandwidth(port, ret);
2053}
2054
2055static int usb4_usb3_port_cm_request(struct tb_port *port, bool request)
2056{
2057	int ret;
2058	u32 val;
2059
2060	if (!tb_port_is_usb3_down(port))
2061		return -EINVAL;
2062	if (tb_route(port->sw))
2063		return -EINVAL;
2064
2065	ret = tb_port_read(port, &val, TB_CFG_PORT,
2066			   port->cap_adap + ADP_USB3_CS_2, 1);
2067	if (ret)
2068		return ret;
2069
2070	if (request)
2071		val |= ADP_USB3_CS_2_CMR;
2072	else
2073		val &= ~ADP_USB3_CS_2_CMR;
2074
2075	ret = tb_port_write(port, &val, TB_CFG_PORT,
2076			    port->cap_adap + ADP_USB3_CS_2, 1);
2077	if (ret)
2078		return ret;
2079
2080	/*
2081	 * We can use val here directly as the CMR bit is in the same place
2082	 * as HCA. Just mask out others.
2083	 */
2084	val &= ADP_USB3_CS_2_CMR;
2085	return usb4_port_wait_for_bit(port, port->cap_adap + ADP_USB3_CS_1,
2086				      ADP_USB3_CS_1_HCA, val, 1500);
2087}
2088
2089static inline int usb4_usb3_port_set_cm_request(struct tb_port *port)
2090{
2091	return usb4_usb3_port_cm_request(port, true);
2092}
2093
2094static inline int usb4_usb3_port_clear_cm_request(struct tb_port *port)
2095{
2096	return usb4_usb3_port_cm_request(port, false);
2097}
2098
2099static unsigned int usb3_bw_to_mbps(u32 bw, u8 scale)
2100{
2101	unsigned long uframes;
2102
2103	uframes = bw * 512UL << scale;
2104	return DIV_ROUND_CLOSEST(uframes * 8000, MEGA);
2105}
2106
2107static u32 mbps_to_usb3_bw(unsigned int mbps, u8 scale)
2108{
2109	unsigned long uframes;
2110
2111	/* 1 uframe is 1/8 ms (125 us) -> 1 / 8000 s */
2112	uframes = ((unsigned long)mbps * MEGA) / 8000;
2113	return DIV_ROUND_UP(uframes, 512UL << scale);
2114}
2115
2116static int usb4_usb3_port_read_allocated_bandwidth(struct tb_port *port,
2117						   int *upstream_bw,
2118						   int *downstream_bw)
2119{
2120	u32 val, bw, scale;
2121	int ret;
2122
2123	ret = tb_port_read(port, &val, TB_CFG_PORT,
2124			   port->cap_adap + ADP_USB3_CS_2, 1);
2125	if (ret)
2126		return ret;
2127
2128	ret = tb_port_read(port, &scale, TB_CFG_PORT,
2129			   port->cap_adap + ADP_USB3_CS_3, 1);
2130	if (ret)
2131		return ret;
2132
2133	scale &= ADP_USB3_CS_3_SCALE_MASK;
2134
2135	bw = val & ADP_USB3_CS_2_AUBW_MASK;
2136	*upstream_bw = usb3_bw_to_mbps(bw, scale);
2137
2138	bw = (val & ADP_USB3_CS_2_ADBW_MASK) >> ADP_USB3_CS_2_ADBW_SHIFT;
2139	*downstream_bw = usb3_bw_to_mbps(bw, scale);
2140
2141	return 0;
2142}
2143
2144/**
2145 * usb4_usb3_port_allocated_bandwidth() - Bandwidth allocated for USB3
2146 * @port: USB3 adapter port
2147 * @upstream_bw: Allocated upstream bandwidth is stored here
2148 * @downstream_bw: Allocated downstream bandwidth is stored here
2149 *
2150 * Stores currently allocated USB3 bandwidth into @upstream_bw and
2151 * @downstream_bw in Mb/s. Returns %0 in case of success and negative
2152 * errno in failure.
2153 */
2154int usb4_usb3_port_allocated_bandwidth(struct tb_port *port, int *upstream_bw,
2155				       int *downstream_bw)
2156{
2157	int ret;
2158
2159	ret = usb4_usb3_port_set_cm_request(port);
2160	if (ret)
2161		return ret;
2162
2163	ret = usb4_usb3_port_read_allocated_bandwidth(port, upstream_bw,
2164						      downstream_bw);
2165	usb4_usb3_port_clear_cm_request(port);
2166
2167	return ret;
2168}
2169
2170static int usb4_usb3_port_read_consumed_bandwidth(struct tb_port *port,
2171						  int *upstream_bw,
2172						  int *downstream_bw)
2173{
2174	u32 val, bw, scale;
2175	int ret;
2176
2177	ret = tb_port_read(port, &val, TB_CFG_PORT,
2178			   port->cap_adap + ADP_USB3_CS_1, 1);
2179	if (ret)
2180		return ret;
2181
2182	ret = tb_port_read(port, &scale, TB_CFG_PORT,
2183			   port->cap_adap + ADP_USB3_CS_3, 1);
2184	if (ret)
2185		return ret;
2186
2187	scale &= ADP_USB3_CS_3_SCALE_MASK;
2188
2189	bw = val & ADP_USB3_CS_1_CUBW_MASK;
2190	*upstream_bw = usb3_bw_to_mbps(bw, scale);
2191
2192	bw = (val & ADP_USB3_CS_1_CDBW_MASK) >> ADP_USB3_CS_1_CDBW_SHIFT;
2193	*downstream_bw = usb3_bw_to_mbps(bw, scale);
2194
2195	return 0;
2196}
2197
2198static int usb4_usb3_port_write_allocated_bandwidth(struct tb_port *port,
2199						    int upstream_bw,
2200						    int downstream_bw)
2201{
2202	u32 val, ubw, dbw, scale;
2203	int ret, max_bw;
2204
2205	/* Figure out suitable scale */
2206	scale = 0;
2207	max_bw = max(upstream_bw, downstream_bw);
2208	while (scale < 64) {
2209		if (mbps_to_usb3_bw(max_bw, scale) < 4096)
2210			break;
2211		scale++;
2212	}
2213
2214	if (WARN_ON(scale >= 64))
2215		return -EINVAL;
2216
2217	ret = tb_port_write(port, &scale, TB_CFG_PORT,
2218			    port->cap_adap + ADP_USB3_CS_3, 1);
2219	if (ret)
2220		return ret;
2221
2222	ubw = mbps_to_usb3_bw(upstream_bw, scale);
2223	dbw = mbps_to_usb3_bw(downstream_bw, scale);
2224
2225	tb_port_dbg(port, "scaled bandwidth %u/%u, scale %u\n", ubw, dbw, scale);
2226
2227	ret = tb_port_read(port, &val, TB_CFG_PORT,
2228			   port->cap_adap + ADP_USB3_CS_2, 1);
2229	if (ret)
2230		return ret;
2231
2232	val &= ~(ADP_USB3_CS_2_AUBW_MASK | ADP_USB3_CS_2_ADBW_MASK);
2233	val |= dbw << ADP_USB3_CS_2_ADBW_SHIFT;
2234	val |= ubw;
2235
2236	return tb_port_write(port, &val, TB_CFG_PORT,
2237			     port->cap_adap + ADP_USB3_CS_2, 1);
2238}
2239
2240/**
2241 * usb4_usb3_port_allocate_bandwidth() - Allocate bandwidth for USB3
2242 * @port: USB3 adapter port
2243 * @upstream_bw: New upstream bandwidth
2244 * @downstream_bw: New downstream bandwidth
2245 *
2246 * This can be used to set how much bandwidth is allocated for the USB3
2247 * tunneled isochronous traffic. @upstream_bw and @downstream_bw are the
2248 * new values programmed to the USB3 adapter allocation registers. If
2249 * the values are lower than what is currently consumed the allocation
2250 * is set to what is currently consumed instead (consumed bandwidth
2251 * cannot be taken away by CM). The actual new values are returned in
2252 * @upstream_bw and @downstream_bw.
2253 *
2254 * Returns %0 in case of success and negative errno if there was a
2255 * failure.
2256 */
2257int usb4_usb3_port_allocate_bandwidth(struct tb_port *port, int *upstream_bw,
2258				      int *downstream_bw)
2259{
2260	int ret, consumed_up, consumed_down, allocate_up, allocate_down;
2261
2262	ret = usb4_usb3_port_set_cm_request(port);
2263	if (ret)
2264		return ret;
2265
2266	ret = usb4_usb3_port_read_consumed_bandwidth(port, &consumed_up,
2267						     &consumed_down);
2268	if (ret)
2269		goto err_request;
2270
2271	/* Don't allow it go lower than what is consumed */
2272	allocate_up = max(*upstream_bw, consumed_up);
2273	allocate_down = max(*downstream_bw, consumed_down);
2274
2275	ret = usb4_usb3_port_write_allocated_bandwidth(port, allocate_up,
2276						       allocate_down);
2277	if (ret)
2278		goto err_request;
2279
2280	*upstream_bw = allocate_up;
2281	*downstream_bw = allocate_down;
2282
2283err_request:
2284	usb4_usb3_port_clear_cm_request(port);
2285	return ret;
2286}
2287
2288/**
2289 * usb4_usb3_port_release_bandwidth() - Release allocated USB3 bandwidth
2290 * @port: USB3 adapter port
2291 * @upstream_bw: New allocated upstream bandwidth
2292 * @downstream_bw: New allocated downstream bandwidth
2293 *
2294 * Releases USB3 allocated bandwidth down to what is actually consumed.
2295 * The new bandwidth is returned in @upstream_bw and @downstream_bw.
2296 *
2297 * Returns 0% in success and negative errno in case of failure.
2298 */
2299int usb4_usb3_port_release_bandwidth(struct tb_port *port, int *upstream_bw,
2300				     int *downstream_bw)
2301{
2302	int ret, consumed_up, consumed_down;
2303
2304	ret = usb4_usb3_port_set_cm_request(port);
2305	if (ret)
2306		return ret;
2307
2308	ret = usb4_usb3_port_read_consumed_bandwidth(port, &consumed_up,
2309						     &consumed_down);
2310	if (ret)
2311		goto err_request;
2312
2313	/*
2314	 * Always keep 900 Mb/s to make sure xHCI has at least some
2315	 * bandwidth available for isochronous traffic.
2316	 */
2317	if (consumed_up < 900)
2318		consumed_up = 900;
2319	if (consumed_down < 900)
2320		consumed_down = 900;
2321
2322	ret = usb4_usb3_port_write_allocated_bandwidth(port, consumed_up,
2323						       consumed_down);
2324	if (ret)
2325		goto err_request;
2326
2327	*upstream_bw = consumed_up;
2328	*downstream_bw = consumed_down;
2329
2330err_request:
2331	usb4_usb3_port_clear_cm_request(port);
2332	return ret;
2333}
2334
2335static bool is_usb4_dpin(const struct tb_port *port)
2336{
2337	if (!tb_port_is_dpin(port))
2338		return false;
2339	if (!tb_switch_is_usb4(port->sw))
2340		return false;
2341	return true;
2342}
2343
2344/**
2345 * usb4_dp_port_set_cm_id() - Assign CM ID to the DP IN adapter
2346 * @port: DP IN adapter
2347 * @cm_id: CM ID to assign
2348 *
2349 * Sets CM ID for the @port. Returns %0 on success and negative errno
2350 * otherwise. Speficially returns %-EOPNOTSUPP if the @port does not
2351 * support this.
2352 */
2353int usb4_dp_port_set_cm_id(struct tb_port *port, int cm_id)
2354{
2355	u32 val;
2356	int ret;
2357
2358	if (!is_usb4_dpin(port))
2359		return -EOPNOTSUPP;
2360
2361	ret = tb_port_read(port, &val, TB_CFG_PORT,
2362			   port->cap_adap + ADP_DP_CS_2, 1);
2363	if (ret)
2364		return ret;
2365
2366	val &= ~ADP_DP_CS_2_CM_ID_MASK;
2367	val |= cm_id << ADP_DP_CS_2_CM_ID_SHIFT;
2368
2369	return tb_port_write(port, &val, TB_CFG_PORT,
2370			     port->cap_adap + ADP_DP_CS_2, 1);
2371}
2372
2373/**
2374 * usb4_dp_port_bandwidth_mode_supported() - Is the bandwidth allocation mode
2375 *					     supported
2376 * @port: DP IN adapter to check
2377 *
2378 * Can be called to any DP IN adapter. Returns true if the adapter
2379 * supports USB4 bandwidth allocation mode, false otherwise.
2380 */
2381bool usb4_dp_port_bandwidth_mode_supported(struct tb_port *port)
2382{
2383	int ret;
2384	u32 val;
2385
2386	if (!is_usb4_dpin(port))
2387		return false;
2388
2389	ret = tb_port_read(port, &val, TB_CFG_PORT,
2390			   port->cap_adap + DP_LOCAL_CAP, 1);
2391	if (ret)
2392		return false;
2393
2394	return !!(val & DP_COMMON_CAP_BW_MODE);
2395}
2396
2397/**
2398 * usb4_dp_port_bandwidth_mode_enabled() - Is the bandwidth allocation mode
2399 *					   enabled
2400 * @port: DP IN adapter to check
2401 *
2402 * Can be called to any DP IN adapter. Returns true if the bandwidth
2403 * allocation mode has been enabled, false otherwise.
2404 */
2405bool usb4_dp_port_bandwidth_mode_enabled(struct tb_port *port)
2406{
2407	int ret;
2408	u32 val;
2409
2410	if (!is_usb4_dpin(port))
2411		return false;
2412
2413	ret = tb_port_read(port, &val, TB_CFG_PORT,
2414			   port->cap_adap + ADP_DP_CS_8, 1);
2415	if (ret)
2416		return false;
2417
2418	return !!(val & ADP_DP_CS_8_DPME);
2419}
2420
2421/**
2422 * usb4_dp_port_set_cm_bandwidth_mode_supported() - Set/clear CM support for
2423 *						    bandwidth allocation mode
2424 * @port: DP IN adapter
2425 * @supported: Does the CM support bandwidth allocation mode
2426 *
2427 * Can be called to any DP IN adapter. Sets or clears the CM support bit
2428 * of the DP IN adapter. Returns %0 in success and negative errno
2429 * otherwise. Specifically returns %-OPNOTSUPP if the passed in adapter
2430 * does not support this.
2431 */
2432int usb4_dp_port_set_cm_bandwidth_mode_supported(struct tb_port *port,
2433						 bool supported)
2434{
2435	u32 val;
2436	int ret;
2437
2438	if (!is_usb4_dpin(port))
2439		return -EOPNOTSUPP;
2440
2441	ret = tb_port_read(port, &val, TB_CFG_PORT,
2442			   port->cap_adap + ADP_DP_CS_2, 1);
2443	if (ret)
2444		return ret;
2445
2446	if (supported)
2447		val |= ADP_DP_CS_2_CMMS;
2448	else
2449		val &= ~ADP_DP_CS_2_CMMS;
2450
2451	return tb_port_write(port, &val, TB_CFG_PORT,
2452			     port->cap_adap + ADP_DP_CS_2, 1);
2453}
2454
2455/**
2456 * usb4_dp_port_group_id() - Return Group ID assigned for the adapter
2457 * @port: DP IN adapter
2458 *
2459 * Reads bandwidth allocation Group ID from the DP IN adapter and
2460 * returns it. If the adapter does not support setting Group_ID
2461 * %-EOPNOTSUPP is returned.
2462 */
2463int usb4_dp_port_group_id(struct tb_port *port)
2464{
2465	u32 val;
2466	int ret;
2467
2468	if (!is_usb4_dpin(port))
2469		return -EOPNOTSUPP;
2470
2471	ret = tb_port_read(port, &val, TB_CFG_PORT,
2472			   port->cap_adap + ADP_DP_CS_2, 1);
2473	if (ret)
2474		return ret;
2475
2476	return (val & ADP_DP_CS_2_GROUP_ID_MASK) >> ADP_DP_CS_2_GROUP_ID_SHIFT;
2477}
2478
2479/**
2480 * usb4_dp_port_set_group_id() - Set adapter Group ID
2481 * @port: DP IN adapter
2482 * @group_id: Group ID for the adapter
2483 *
2484 * Sets bandwidth allocation mode Group ID for the DP IN adapter.
2485 * Returns %0 in case of success and negative errno otherwise.
2486 * Specifically returns %-EOPNOTSUPP if the adapter does not support
2487 * this.
2488 */
2489int usb4_dp_port_set_group_id(struct tb_port *port, int group_id)
2490{
2491	u32 val;
2492	int ret;
2493
2494	if (!is_usb4_dpin(port))
2495		return -EOPNOTSUPP;
2496
2497	ret = tb_port_read(port, &val, TB_CFG_PORT,
2498			   port->cap_adap + ADP_DP_CS_2, 1);
2499	if (ret)
2500		return ret;
2501
2502	val &= ~ADP_DP_CS_2_GROUP_ID_MASK;
2503	val |= group_id << ADP_DP_CS_2_GROUP_ID_SHIFT;
2504
2505	return tb_port_write(port, &val, TB_CFG_PORT,
2506			     port->cap_adap + ADP_DP_CS_2, 1);
2507}
2508
2509/**
2510 * usb4_dp_port_nrd() - Read non-reduced rate and lanes
2511 * @port: DP IN adapter
2512 * @rate: Non-reduced rate in Mb/s is placed here
2513 * @lanes: Non-reduced lanes are placed here
2514 *
2515 * Reads the non-reduced rate and lanes from the DP IN adapter. Returns
2516 * %0 in success and negative errno otherwise. Specifically returns
2517 * %-EOPNOTSUPP if the adapter does not support this.
2518 */
2519int usb4_dp_port_nrd(struct tb_port *port, int *rate, int *lanes)
2520{
2521	u32 val, tmp;
2522	int ret;
2523
2524	if (!is_usb4_dpin(port))
2525		return -EOPNOTSUPP;
2526
2527	ret = tb_port_read(port, &val, TB_CFG_PORT,
2528			   port->cap_adap + ADP_DP_CS_2, 1);
2529	if (ret)
2530		return ret;
2531
2532	tmp = (val & ADP_DP_CS_2_NRD_MLR_MASK) >> ADP_DP_CS_2_NRD_MLR_SHIFT;
2533	switch (tmp) {
2534	case DP_COMMON_CAP_RATE_RBR:
2535		*rate = 1620;
2536		break;
2537	case DP_COMMON_CAP_RATE_HBR:
2538		*rate = 2700;
2539		break;
2540	case DP_COMMON_CAP_RATE_HBR2:
2541		*rate = 5400;
2542		break;
2543	case DP_COMMON_CAP_RATE_HBR3:
2544		*rate = 8100;
2545		break;
2546	}
2547
2548	tmp = val & ADP_DP_CS_2_NRD_MLC_MASK;
2549	switch (tmp) {
2550	case DP_COMMON_CAP_1_LANE:
2551		*lanes = 1;
2552		break;
2553	case DP_COMMON_CAP_2_LANES:
2554		*lanes = 2;
2555		break;
2556	case DP_COMMON_CAP_4_LANES:
2557		*lanes = 4;
2558		break;
2559	}
2560
2561	return 0;
2562}
2563
2564/**
2565 * usb4_dp_port_set_nrd() - Set non-reduced rate and lanes
2566 * @port: DP IN adapter
2567 * @rate: Non-reduced rate in Mb/s
2568 * @lanes: Non-reduced lanes
2569 *
2570 * Before the capabilities reduction this function can be used to set
2571 * the non-reduced values for the DP IN adapter. Returns %0 in success
2572 * and negative errno otherwise. If the adapter does not support this
2573 * %-EOPNOTSUPP is returned.
2574 */
2575int usb4_dp_port_set_nrd(struct tb_port *port, int rate, int lanes)
2576{
2577	u32 val;
2578	int ret;
2579
2580	if (!is_usb4_dpin(port))
2581		return -EOPNOTSUPP;
2582
2583	ret = tb_port_read(port, &val, TB_CFG_PORT,
2584			   port->cap_adap + ADP_DP_CS_2, 1);
2585	if (ret)
2586		return ret;
2587
2588	val &= ~ADP_DP_CS_2_NRD_MLR_MASK;
2589
2590	switch (rate) {
2591	case 1620:
2592		break;
2593	case 2700:
2594		val |= (DP_COMMON_CAP_RATE_HBR << ADP_DP_CS_2_NRD_MLR_SHIFT)
2595			& ADP_DP_CS_2_NRD_MLR_MASK;
2596		break;
2597	case 5400:
2598		val |= (DP_COMMON_CAP_RATE_HBR2 << ADP_DP_CS_2_NRD_MLR_SHIFT)
2599			& ADP_DP_CS_2_NRD_MLR_MASK;
2600		break;
2601	case 8100:
2602		val |= (DP_COMMON_CAP_RATE_HBR3 << ADP_DP_CS_2_NRD_MLR_SHIFT)
2603			& ADP_DP_CS_2_NRD_MLR_MASK;
2604		break;
2605	default:
2606		return -EINVAL;
2607	}
2608
2609	val &= ~ADP_DP_CS_2_NRD_MLC_MASK;
2610
2611	switch (lanes) {
2612	case 1:
2613		break;
2614	case 2:
2615		val |= DP_COMMON_CAP_2_LANES;
2616		break;
2617	case 4:
2618		val |= DP_COMMON_CAP_4_LANES;
2619		break;
2620	default:
2621		return -EINVAL;
2622	}
2623
2624	return tb_port_write(port, &val, TB_CFG_PORT,
2625			     port->cap_adap + ADP_DP_CS_2, 1);
2626}
2627
2628/**
2629 * usb4_dp_port_granularity() - Return granularity for the bandwidth values
2630 * @port: DP IN adapter
2631 *
2632 * Reads the programmed granularity from @port. If the DP IN adapter does
2633 * not support bandwidth allocation mode returns %-EOPNOTSUPP and negative
2634 * errno in other error cases.
2635 */
2636int usb4_dp_port_granularity(struct tb_port *port)
2637{
2638	u32 val;
2639	int ret;
2640
2641	if (!is_usb4_dpin(port))
2642		return -EOPNOTSUPP;
2643
2644	ret = tb_port_read(port, &val, TB_CFG_PORT,
2645			   port->cap_adap + ADP_DP_CS_2, 1);
2646	if (ret)
2647		return ret;
2648
2649	val &= ADP_DP_CS_2_GR_MASK;
2650	val >>= ADP_DP_CS_2_GR_SHIFT;
2651
2652	switch (val) {
2653	case ADP_DP_CS_2_GR_0_25G:
2654		return 250;
2655	case ADP_DP_CS_2_GR_0_5G:
2656		return 500;
2657	case ADP_DP_CS_2_GR_1G:
2658		return 1000;
2659	}
2660
2661	return -EINVAL;
2662}
2663
2664/**
2665 * usb4_dp_port_set_granularity() - Set granularity for the bandwidth values
2666 * @port: DP IN adapter
2667 * @granularity: Granularity in Mb/s. Supported values: 1000, 500 and 250.
2668 *
2669 * Sets the granularity used with the estimated, allocated and requested
2670 * bandwidth. Returns %0 in success and negative errno otherwise. If the
2671 * adapter does not support this %-EOPNOTSUPP is returned.
2672 */
2673int usb4_dp_port_set_granularity(struct tb_port *port, int granularity)
2674{
2675	u32 val;
2676	int ret;
2677
2678	if (!is_usb4_dpin(port))
2679		return -EOPNOTSUPP;
2680
2681	ret = tb_port_read(port, &val, TB_CFG_PORT,
2682			   port->cap_adap + ADP_DP_CS_2, 1);
2683	if (ret)
2684		return ret;
2685
2686	val &= ~ADP_DP_CS_2_GR_MASK;
2687
2688	switch (granularity) {
2689	case 250:
2690		val |= ADP_DP_CS_2_GR_0_25G << ADP_DP_CS_2_GR_SHIFT;
2691		break;
2692	case 500:
2693		val |= ADP_DP_CS_2_GR_0_5G << ADP_DP_CS_2_GR_SHIFT;
2694		break;
2695	case 1000:
2696		val |= ADP_DP_CS_2_GR_1G << ADP_DP_CS_2_GR_SHIFT;
2697		break;
2698	default:
2699		return -EINVAL;
2700	}
2701
2702	return tb_port_write(port, &val, TB_CFG_PORT,
2703			     port->cap_adap + ADP_DP_CS_2, 1);
2704}
2705
2706/**
2707 * usb4_dp_port_set_estimated_bandwidth() - Set estimated bandwidth
2708 * @port: DP IN adapter
2709 * @bw: Estimated bandwidth in Mb/s.
2710 *
2711 * Sets the estimated bandwidth to @bw. Set the granularity by calling
2712 * usb4_dp_port_set_granularity() before calling this. The @bw is round
2713 * down to the closest granularity multiplier. Returns %0 in success
2714 * and negative errno otherwise. Specifically returns %-EOPNOTSUPP if
2715 * the adapter does not support this.
2716 */
2717int usb4_dp_port_set_estimated_bandwidth(struct tb_port *port, int bw)
2718{
2719	u32 val, granularity;
2720	int ret;
2721
2722	if (!is_usb4_dpin(port))
2723		return -EOPNOTSUPP;
2724
2725	ret = usb4_dp_port_granularity(port);
2726	if (ret < 0)
2727		return ret;
2728	granularity = ret;
2729
2730	ret = tb_port_read(port, &val, TB_CFG_PORT,
2731			   port->cap_adap + ADP_DP_CS_2, 1);
2732	if (ret)
2733		return ret;
2734
2735	val &= ~ADP_DP_CS_2_ESTIMATED_BW_MASK;
2736	val |= (bw / granularity) << ADP_DP_CS_2_ESTIMATED_BW_SHIFT;
2737
2738	return tb_port_write(port, &val, TB_CFG_PORT,
2739			     port->cap_adap + ADP_DP_CS_2, 1);
2740}
2741
2742/**
2743 * usb4_dp_port_allocated_bandwidth() - Return allocated bandwidth
2744 * @port: DP IN adapter
2745 *
2746 * Reads and returns allocated bandwidth for @port in Mb/s (taking into
2747 * account the programmed granularity). Returns negative errno in case
2748 * of error.
2749 */
2750int usb4_dp_port_allocated_bandwidth(struct tb_port *port)
2751{
2752	u32 val, granularity;
2753	int ret;
2754
2755	if (!is_usb4_dpin(port))
2756		return -EOPNOTSUPP;
2757
2758	ret = usb4_dp_port_granularity(port);
2759	if (ret < 0)
2760		return ret;
2761	granularity = ret;
2762
2763	ret = tb_port_read(port, &val, TB_CFG_PORT,
2764			   port->cap_adap + DP_STATUS, 1);
2765	if (ret)
2766		return ret;
2767
2768	val &= DP_STATUS_ALLOCATED_BW_MASK;
2769	val >>= DP_STATUS_ALLOCATED_BW_SHIFT;
2770
2771	return val * granularity;
2772}
2773
2774static int __usb4_dp_port_set_cm_ack(struct tb_port *port, bool ack)
2775{
2776	u32 val;
2777	int ret;
2778
2779	ret = tb_port_read(port, &val, TB_CFG_PORT,
2780			   port->cap_adap + ADP_DP_CS_2, 1);
2781	if (ret)
2782		return ret;
2783
2784	if (ack)
2785		val |= ADP_DP_CS_2_CA;
2786	else
2787		val &= ~ADP_DP_CS_2_CA;
2788
2789	return tb_port_write(port, &val, TB_CFG_PORT,
2790			     port->cap_adap + ADP_DP_CS_2, 1);
2791}
2792
2793static inline int usb4_dp_port_set_cm_ack(struct tb_port *port)
2794{
2795	return __usb4_dp_port_set_cm_ack(port, true);
2796}
2797
2798static int usb4_dp_port_wait_and_clear_cm_ack(struct tb_port *port,
2799					      int timeout_msec)
2800{
2801	ktime_t end;
2802	u32 val;
2803	int ret;
2804
2805	ret = __usb4_dp_port_set_cm_ack(port, false);
2806	if (ret)
2807		return ret;
2808
2809	end = ktime_add_ms(ktime_get(), timeout_msec);
2810	do {
2811		ret = tb_port_read(port, &val, TB_CFG_PORT,
2812				   port->cap_adap + ADP_DP_CS_8, 1);
2813		if (ret)
2814			return ret;
2815
2816		if (!(val & ADP_DP_CS_8_DR))
2817			break;
2818
2819		usleep_range(50, 100);
2820	} while (ktime_before(ktime_get(), end));
2821
2822	if (val & ADP_DP_CS_8_DR)
2823		return -ETIMEDOUT;
2824
2825	ret = tb_port_read(port, &val, TB_CFG_PORT,
2826			   port->cap_adap + ADP_DP_CS_2, 1);
2827	if (ret)
2828		return ret;
2829
2830	val &= ~ADP_DP_CS_2_CA;
2831	return tb_port_write(port, &val, TB_CFG_PORT,
2832			     port->cap_adap + ADP_DP_CS_2, 1);
2833}
2834
2835/**
2836 * usb4_dp_port_allocate_bandwidth() - Set allocated bandwidth
2837 * @port: DP IN adapter
2838 * @bw: New allocated bandwidth in Mb/s
2839 *
2840 * Communicates the new allocated bandwidth with the DPCD (graphics
2841 * driver). Takes into account the programmed granularity. Returns %0 in
2842 * success and negative errno in case of error.
2843 */
2844int usb4_dp_port_allocate_bandwidth(struct tb_port *port, int bw)
2845{
2846	u32 val, granularity;
2847	int ret;
2848
2849	if (!is_usb4_dpin(port))
2850		return -EOPNOTSUPP;
2851
2852	ret = usb4_dp_port_granularity(port);
2853	if (ret < 0)
2854		return ret;
2855	granularity = ret;
2856
2857	ret = tb_port_read(port, &val, TB_CFG_PORT,
2858			   port->cap_adap + DP_STATUS, 1);
2859	if (ret)
2860		return ret;
2861
2862	val &= ~DP_STATUS_ALLOCATED_BW_MASK;
2863	val |= (bw / granularity) << DP_STATUS_ALLOCATED_BW_SHIFT;
2864
2865	ret = tb_port_write(port, &val, TB_CFG_PORT,
2866			    port->cap_adap + DP_STATUS, 1);
2867	if (ret)
2868		return ret;
2869
2870	ret = usb4_dp_port_set_cm_ack(port);
2871	if (ret)
2872		return ret;
2873
2874	return usb4_dp_port_wait_and_clear_cm_ack(port, 500);
2875}
2876
2877/**
2878 * usb4_dp_port_requested_bandwidth() - Read requested bandwidth
2879 * @port: DP IN adapter
2880 *
2881 * Reads the DPCD (graphics driver) requested bandwidth and returns it
2882 * in Mb/s. Takes the programmed granularity into account. In case of
2883 * error returns negative errno. Specifically returns %-EOPNOTSUPP if
2884 * the adapter does not support bandwidth allocation mode, and %ENODATA
2885 * if there is no active bandwidth request from the graphics driver.
2886 */
2887int usb4_dp_port_requested_bandwidth(struct tb_port *port)
2888{
2889	u32 val, granularity;
2890	int ret;
2891
2892	if (!is_usb4_dpin(port))
2893		return -EOPNOTSUPP;
2894
2895	ret = usb4_dp_port_granularity(port);
2896	if (ret < 0)
2897		return ret;
2898	granularity = ret;
2899
2900	ret = tb_port_read(port, &val, TB_CFG_PORT,
2901			   port->cap_adap + ADP_DP_CS_8, 1);
2902	if (ret)
2903		return ret;
2904
2905	if (!(val & ADP_DP_CS_8_DR))
2906		return -ENODATA;
2907
2908	return (val & ADP_DP_CS_8_REQUESTED_BW_MASK) * granularity;
2909}
2910
2911/**
2912 * usb4_pci_port_set_ext_encapsulation() - Enable/disable extended encapsulation
2913 * @port: PCIe adapter
2914 * @enable: Enable/disable extended encapsulation
2915 *
2916 * Enables or disables extended encapsulation used in PCIe tunneling. Caller
2917 * needs to make sure both adapters support this before enabling. Returns %0 on
2918 * success and negative errno otherwise.
2919 */
2920int usb4_pci_port_set_ext_encapsulation(struct tb_port *port, bool enable)
2921{
2922	u32 val;
2923	int ret;
2924
2925	if (!tb_port_is_pcie_up(port) && !tb_port_is_pcie_down(port))
2926		return -EINVAL;
2927
2928	ret = tb_port_read(port, &val, TB_CFG_PORT,
2929			   port->cap_adap + ADP_PCIE_CS_1, 1);
2930	if (ret)
2931		return ret;
2932
2933	if (enable)
2934		val |= ADP_PCIE_CS_1_EE;
2935	else
2936		val &= ~ADP_PCIE_CS_1_EE;
2937
2938	return tb_port_write(port, &val, TB_CFG_PORT,
2939			     port->cap_adap + ADP_PCIE_CS_1, 1);
2940}