Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * PCI Endpoint *Function* (EPF) library
  4 *
  5 * Copyright (C) 2017 Texas Instruments
  6 * Author: Kishon Vijay Abraham I <kishon@ti.com>
  7 */
  8
  9#include <linux/device.h>
 10#include <linux/dma-mapping.h>
 11#include <linux/slab.h>
 12#include <linux/module.h>
 13
 14#include <linux/pci-epc.h>
 15#include <linux/pci-epf.h>
 16#include <linux/pci-ep-cfs.h>
 17
 18static DEFINE_MUTEX(pci_epf_mutex);
 19
 20static struct bus_type pci_epf_bus_type;
 21static const struct device_type pci_epf_type;
 22
 23/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 24 * pci_epf_unbind() - Notify the function driver that the binding between the
 25 *		      EPF device and EPC device has been lost
 26 * @epf: the EPF device which has lost the binding with the EPC device
 27 *
 28 * Invoke to notify the function driver that the binding between the EPF device
 29 * and EPC device has been lost.
 30 */
 31void pci_epf_unbind(struct pci_epf *epf)
 32{
 33	struct pci_epf *epf_vf;
 34
 35	if (!epf->driver) {
 36		dev_WARN(&epf->dev, "epf device not bound to driver\n");
 37		return;
 38	}
 39
 40	mutex_lock(&epf->lock);
 41	list_for_each_entry(epf_vf, &epf->pci_vepf, list) {
 42		if (epf_vf->is_bound)
 43			epf_vf->driver->ops->unbind(epf_vf);
 44	}
 45	if (epf->is_bound)
 46		epf->driver->ops->unbind(epf);
 47	mutex_unlock(&epf->lock);
 48	module_put(epf->driver->owner);
 49}
 50EXPORT_SYMBOL_GPL(pci_epf_unbind);
 51
 52/**
 53 * pci_epf_bind() - Notify the function driver that the EPF device has been
 54 *		    bound to a EPC device
 55 * @epf: the EPF device which has been bound to the EPC device
 56 *
 57 * Invoke to notify the function driver that it has been bound to a EPC device
 58 */
 59int pci_epf_bind(struct pci_epf *epf)
 60{
 61	struct device *dev = &epf->dev;
 62	struct pci_epf *epf_vf;
 63	u8 func_no, vfunc_no;
 64	struct pci_epc *epc;
 65	int ret;
 66
 67	if (!epf->driver) {
 68		dev_WARN(dev, "epf device not bound to driver\n");
 69		return -EINVAL;
 70	}
 71
 72	if (!try_module_get(epf->driver->owner))
 73		return -EAGAIN;
 74
 75	mutex_lock(&epf->lock);
 76	list_for_each_entry(epf_vf, &epf->pci_vepf, list) {
 77		vfunc_no = epf_vf->vfunc_no;
 78
 79		if (vfunc_no < 1) {
 80			dev_err(dev, "Invalid virtual function number\n");
 81			ret = -EINVAL;
 82			goto ret;
 83		}
 84
 85		epc = epf->epc;
 86		func_no = epf->func_no;
 87		if (!IS_ERR_OR_NULL(epc)) {
 88			if (!epc->max_vfs) {
 89				dev_err(dev, "No support for virt function\n");
 90				ret = -EINVAL;
 91				goto ret;
 92			}
 93
 94			if (vfunc_no > epc->max_vfs[func_no]) {
 95				dev_err(dev, "PF%d: Exceeds max vfunc number\n",
 96					func_no);
 97				ret = -EINVAL;
 98				goto ret;
 99			}
100		}
101
102		epc = epf->sec_epc;
103		func_no = epf->sec_epc_func_no;
104		if (!IS_ERR_OR_NULL(epc)) {
105			if (!epc->max_vfs) {
106				dev_err(dev, "No support for virt function\n");
107				ret = -EINVAL;
108				goto ret;
109			}
110
111			if (vfunc_no > epc->max_vfs[func_no]) {
112				dev_err(dev, "PF%d: Exceeds max vfunc number\n",
113					func_no);
114				ret = -EINVAL;
115				goto ret;
116			}
117		}
118
119		epf_vf->func_no = epf->func_no;
120		epf_vf->sec_epc_func_no = epf->sec_epc_func_no;
121		epf_vf->epc = epf->epc;
122		epf_vf->sec_epc = epf->sec_epc;
123		ret = epf_vf->driver->ops->bind(epf_vf);
124		if (ret)
125			goto ret;
126		epf_vf->is_bound = true;
127	}
128
129	ret = epf->driver->ops->bind(epf);
130	if (ret)
131		goto ret;
132	epf->is_bound = true;
133
134	mutex_unlock(&epf->lock);
135	return 0;
136
137ret:
138	mutex_unlock(&epf->lock);
139	pci_epf_unbind(epf);
140
141	return ret;
142}
143EXPORT_SYMBOL_GPL(pci_epf_bind);
144
145/**
146 * pci_epf_add_vepf() - associate virtual EP function to physical EP function
147 * @epf_pf: the physical EP function to which the virtual EP function should be
148 *   associated
149 * @epf_vf: the virtual EP function to be added
150 *
151 * A physical endpoint function can be associated with multiple virtual
152 * endpoint functions. Invoke pci_epf_add_epf() to add a virtual PCI endpoint
153 * function to a physical PCI endpoint function.
154 */
155int pci_epf_add_vepf(struct pci_epf *epf_pf, struct pci_epf *epf_vf)
156{
157	u32 vfunc_no;
158
159	if (IS_ERR_OR_NULL(epf_pf) || IS_ERR_OR_NULL(epf_vf))
160		return -EINVAL;
161
162	if (epf_pf->epc || epf_vf->epc || epf_vf->epf_pf)
163		return -EBUSY;
164
165	if (epf_pf->sec_epc || epf_vf->sec_epc)
166		return -EBUSY;
167
168	mutex_lock(&epf_pf->lock);
169	vfunc_no = find_first_zero_bit(&epf_pf->vfunction_num_map,
170				       BITS_PER_LONG);
171	if (vfunc_no >= BITS_PER_LONG) {
172		mutex_unlock(&epf_pf->lock);
173		return -EINVAL;
174	}
175
176	set_bit(vfunc_no, &epf_pf->vfunction_num_map);
177	epf_vf->vfunc_no = vfunc_no;
178
179	epf_vf->epf_pf = epf_pf;
180	epf_vf->is_vf = true;
181
182	list_add_tail(&epf_vf->list, &epf_pf->pci_vepf);
183	mutex_unlock(&epf_pf->lock);
184
185	return 0;
186}
187EXPORT_SYMBOL_GPL(pci_epf_add_vepf);
188
189/**
190 * pci_epf_remove_vepf() - remove virtual EP function from physical EP function
191 * @epf_pf: the physical EP function from which the virtual EP function should
192 *   be removed
193 * @epf_vf: the virtual EP function to be removed
194 *
195 * Invoke to remove a virtual endpoint function from the physical endpoint
196 * function.
197 */
198void pci_epf_remove_vepf(struct pci_epf *epf_pf, struct pci_epf *epf_vf)
199{
200	if (IS_ERR_OR_NULL(epf_pf) || IS_ERR_OR_NULL(epf_vf))
201		return;
202
203	mutex_lock(&epf_pf->lock);
204	clear_bit(epf_vf->vfunc_no, &epf_pf->vfunction_num_map);
205	list_del(&epf_vf->list);
206	mutex_unlock(&epf_pf->lock);
207}
208EXPORT_SYMBOL_GPL(pci_epf_remove_vepf);
209
210/**
211 * pci_epf_free_space() - free the allocated PCI EPF register space
212 * @epf: the EPF device from whom to free the memory
213 * @addr: the virtual address of the PCI EPF register space
214 * @bar: the BAR number corresponding to the register space
215 * @type: Identifies if the allocated space is for primary EPC or secondary EPC
216 *
217 * Invoke to free the allocated PCI EPF register space.
218 */
219void pci_epf_free_space(struct pci_epf *epf, void *addr, enum pci_barno bar,
220			enum pci_epc_interface_type type)
221{
222	struct device *dev;
223	struct pci_epf_bar *epf_bar;
224	struct pci_epc *epc;
225
226	if (!addr)
227		return;
228
229	if (type == PRIMARY_INTERFACE) {
230		epc = epf->epc;
231		epf_bar = epf->bar;
232	} else {
233		epc = epf->sec_epc;
234		epf_bar = epf->sec_epc_bar;
235	}
236
237	dev = epc->dev.parent;
238	dma_free_coherent(dev, epf_bar[bar].size, addr,
239			  epf_bar[bar].phys_addr);
240
241	epf_bar[bar].phys_addr = 0;
242	epf_bar[bar].addr = NULL;
243	epf_bar[bar].size = 0;
244	epf_bar[bar].barno = 0;
245	epf_bar[bar].flags = 0;
246}
247EXPORT_SYMBOL_GPL(pci_epf_free_space);
248
249/**
250 * pci_epf_alloc_space() - allocate memory for the PCI EPF register space
251 * @epf: the EPF device to whom allocate the memory
252 * @size: the size of the memory that has to be allocated
253 * @bar: the BAR number corresponding to the allocated register space
254 * @align: alignment size for the allocation region
255 * @type: Identifies if the allocation is for primary EPC or secondary EPC
256 *
257 * Invoke to allocate memory for the PCI EPF register space.
258 */
259void *pci_epf_alloc_space(struct pci_epf *epf, size_t size, enum pci_barno bar,
260			  size_t align, enum pci_epc_interface_type type)
261{
262	struct pci_epf_bar *epf_bar;
263	dma_addr_t phys_addr;
264	struct pci_epc *epc;
265	struct device *dev;
266	void *space;
267
268	if (size < 128)
269		size = 128;
270
271	if (align)
272		size = ALIGN(size, align);
273	else
274		size = roundup_pow_of_two(size);
275
276	if (type == PRIMARY_INTERFACE) {
277		epc = epf->epc;
278		epf_bar = epf->bar;
279	} else {
280		epc = epf->sec_epc;
281		epf_bar = epf->sec_epc_bar;
282	}
283
284	dev = epc->dev.parent;
285	space = dma_alloc_coherent(dev, size, &phys_addr, GFP_KERNEL);
286	if (!space) {
287		dev_err(dev, "failed to allocate mem space\n");
288		return NULL;
289	}
290
291	epf_bar[bar].phys_addr = phys_addr;
292	epf_bar[bar].addr = space;
293	epf_bar[bar].size = size;
294	epf_bar[bar].barno = bar;
295	epf_bar[bar].flags |= upper_32_bits(size) ?
296				PCI_BASE_ADDRESS_MEM_TYPE_64 :
297				PCI_BASE_ADDRESS_MEM_TYPE_32;
298
299	return space;
300}
301EXPORT_SYMBOL_GPL(pci_epf_alloc_space);
302
303static void pci_epf_remove_cfs(struct pci_epf_driver *driver)
304{
305	struct config_group *group, *tmp;
306
307	if (!IS_ENABLED(CONFIG_PCI_ENDPOINT_CONFIGFS))
308		return;
309
310	mutex_lock(&pci_epf_mutex);
311	list_for_each_entry_safe(group, tmp, &driver->epf_group, group_entry)
312		pci_ep_cfs_remove_epf_group(group);
313	list_del(&driver->epf_group);
314	mutex_unlock(&pci_epf_mutex);
315}
316
317/**
318 * pci_epf_unregister_driver() - unregister the PCI EPF driver
319 * @driver: the PCI EPF driver that has to be unregistered
320 *
321 * Invoke to unregister the PCI EPF driver.
322 */
323void pci_epf_unregister_driver(struct pci_epf_driver *driver)
324{
325	pci_epf_remove_cfs(driver);
326	driver_unregister(&driver->driver);
327}
328EXPORT_SYMBOL_GPL(pci_epf_unregister_driver);
329
330static int pci_epf_add_cfs(struct pci_epf_driver *driver)
331{
332	struct config_group *group;
333	const struct pci_epf_device_id *id;
334
335	if (!IS_ENABLED(CONFIG_PCI_ENDPOINT_CONFIGFS))
336		return 0;
337
338	INIT_LIST_HEAD(&driver->epf_group);
339
340	id = driver->id_table;
341	while (id->name[0]) {
342		group = pci_ep_cfs_add_epf_group(id->name);
343		if (IS_ERR(group)) {
344			pci_epf_remove_cfs(driver);
345			return PTR_ERR(group);
346		}
347
348		mutex_lock(&pci_epf_mutex);
349		list_add_tail(&group->group_entry, &driver->epf_group);
350		mutex_unlock(&pci_epf_mutex);
351		id++;
352	}
353
354	return 0;
355}
356
357/**
358 * __pci_epf_register_driver() - register a new PCI EPF driver
359 * @driver: structure representing PCI EPF driver
360 * @owner: the owner of the module that registers the PCI EPF driver
361 *
362 * Invoke to register a new PCI EPF driver.
363 */
364int __pci_epf_register_driver(struct pci_epf_driver *driver,
365			      struct module *owner)
366{
367	int ret;
368
369	if (!driver->ops)
370		return -EINVAL;
371
372	if (!driver->ops->bind || !driver->ops->unbind)
373		return -EINVAL;
374
375	driver->driver.bus = &pci_epf_bus_type;
376	driver->driver.owner = owner;
377
378	ret = driver_register(&driver->driver);
379	if (ret)
380		return ret;
381
382	pci_epf_add_cfs(driver);
383
384	return 0;
385}
386EXPORT_SYMBOL_GPL(__pci_epf_register_driver);
387
388/**
389 * pci_epf_destroy() - destroy the created PCI EPF device
390 * @epf: the PCI EPF device that has to be destroyed.
391 *
392 * Invoke to destroy the PCI EPF device created by invoking pci_epf_create().
393 */
394void pci_epf_destroy(struct pci_epf *epf)
395{
396	device_unregister(&epf->dev);
397}
398EXPORT_SYMBOL_GPL(pci_epf_destroy);
399
400/**
401 * pci_epf_create() - create a new PCI EPF device
402 * @name: the name of the PCI EPF device. This name will be used to bind the
403 *	  EPF device to a EPF driver
404 *
405 * Invoke to create a new PCI EPF device by providing the name of the function
406 * device.
407 */
408struct pci_epf *pci_epf_create(const char *name)
409{
410	int ret;
411	struct pci_epf *epf;
412	struct device *dev;
413	int len;
414
415	epf = kzalloc(sizeof(*epf), GFP_KERNEL);
416	if (!epf)
417		return ERR_PTR(-ENOMEM);
418
419	len = strchrnul(name, '.') - name;
420	epf->name = kstrndup(name, len, GFP_KERNEL);
421	if (!epf->name) {
422		kfree(epf);
423		return ERR_PTR(-ENOMEM);
424	}
425
426	/* VFs are numbered starting with 1. So set BIT(0) by default */
427	epf->vfunction_num_map = 1;
428	INIT_LIST_HEAD(&epf->pci_vepf);
429
430	dev = &epf->dev;
431	device_initialize(dev);
432	dev->bus = &pci_epf_bus_type;
433	dev->type = &pci_epf_type;
434	mutex_init(&epf->lock);
435
436	ret = dev_set_name(dev, "%s", name);
437	if (ret) {
438		put_device(dev);
439		return ERR_PTR(ret);
440	}
441
442	ret = device_add(dev);
443	if (ret) {
444		put_device(dev);
445		return ERR_PTR(ret);
446	}
447
448	return epf;
449}
450EXPORT_SYMBOL_GPL(pci_epf_create);
451
452static void pci_epf_dev_release(struct device *dev)
453{
454	struct pci_epf *epf = to_pci_epf(dev);
455
456	kfree(epf->name);
457	kfree(epf);
458}
459
460static const struct device_type pci_epf_type = {
461	.release	= pci_epf_dev_release,
462};
463
464static const struct pci_epf_device_id *
465pci_epf_match_id(const struct pci_epf_device_id *id, const struct pci_epf *epf)
466{
467	while (id->name[0]) {
468		if (strcmp(epf->name, id->name) == 0)
469			return id;
470		id++;
471	}
472
473	return NULL;
474}
475
476static int pci_epf_device_match(struct device *dev, struct device_driver *drv)
477{
478	struct pci_epf *epf = to_pci_epf(dev);
479	struct pci_epf_driver *driver = to_pci_epf_driver(drv);
480
481	if (driver->id_table)
482		return !!pci_epf_match_id(driver->id_table, epf);
483
484	return !strcmp(epf->name, drv->name);
485}
486
487static int pci_epf_device_probe(struct device *dev)
488{
489	struct pci_epf *epf = to_pci_epf(dev);
490	struct pci_epf_driver *driver = to_pci_epf_driver(dev->driver);
491
492	if (!driver->probe)
493		return -ENODEV;
494
495	epf->driver = driver;
496
497	return driver->probe(epf, pci_epf_match_id(driver->id_table, epf));
498}
499
500static void pci_epf_device_remove(struct device *dev)
501{
502	struct pci_epf *epf = to_pci_epf(dev);
503	struct pci_epf_driver *driver = to_pci_epf_driver(dev->driver);
504
505	if (driver->remove)
506		driver->remove(epf);
507	epf->driver = NULL;
508}
509
510static struct bus_type pci_epf_bus_type = {
511	.name		= "pci-epf",
512	.match		= pci_epf_device_match,
513	.probe		= pci_epf_device_probe,
514	.remove		= pci_epf_device_remove,
515};
516
517static int __init pci_epf_init(void)
518{
519	int ret;
520
521	ret = bus_register(&pci_epf_bus_type);
522	if (ret) {
523		pr_err("failed to register pci epf bus --> %d\n", ret);
524		return ret;
525	}
526
527	return 0;
528}
529module_init(pci_epf_init);
530
531static void __exit pci_epf_exit(void)
532{
533	bus_unregister(&pci_epf_bus_type);
534}
535module_exit(pci_epf_exit);
536
537MODULE_DESCRIPTION("PCI EPF Library");
538MODULE_AUTHOR("Kishon Vijay Abraham I <kishon@ti.com>");
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * PCI Endpoint *Function* (EPF) library
  4 *
  5 * Copyright (C) 2017 Texas Instruments
  6 * Author: Kishon Vijay Abraham I <kishon@ti.com>
  7 */
  8
  9#include <linux/device.h>
 10#include <linux/dma-mapping.h>
 11#include <linux/slab.h>
 12#include <linux/module.h>
 13
 14#include <linux/pci-epc.h>
 15#include <linux/pci-epf.h>
 16#include <linux/pci-ep-cfs.h>
 17
 18static DEFINE_MUTEX(pci_epf_mutex);
 19
 20static struct bus_type pci_epf_bus_type;
 21static const struct device_type pci_epf_type;
 22
 23/**
 24 * pci_epf_type_add_cfs() - Help function drivers to expose function specific
 25 *                          attributes in configfs
 26 * @epf: the EPF device that has to be configured using configfs
 27 * @group: the parent configfs group (corresponding to entries in
 28 *         pci_epf_device_id)
 29 *
 30 * Invoke to expose function specific attributes in configfs. If the function
 31 * driver does not have anything to expose (attributes configured by user),
 32 * return NULL.
 33 */
 34struct config_group *pci_epf_type_add_cfs(struct pci_epf *epf,
 35					  struct config_group *group)
 36{
 37	struct config_group *epf_type_group;
 38
 39	if (!epf->driver) {
 40		dev_err(&epf->dev, "epf device not bound to driver\n");
 41		return NULL;
 42	}
 43
 44	if (!epf->driver->ops->add_cfs)
 45		return NULL;
 46
 47	mutex_lock(&epf->lock);
 48	epf_type_group = epf->driver->ops->add_cfs(epf, group);
 49	mutex_unlock(&epf->lock);
 50
 51	return epf_type_group;
 52}
 53EXPORT_SYMBOL_GPL(pci_epf_type_add_cfs);
 54
 55/**
 56 * pci_epf_unbind() - Notify the function driver that the binding between the
 57 *		      EPF device and EPC device has been lost
 58 * @epf: the EPF device which has lost the binding with the EPC device
 59 *
 60 * Invoke to notify the function driver that the binding between the EPF device
 61 * and EPC device has been lost.
 62 */
 63void pci_epf_unbind(struct pci_epf *epf)
 64{
 65	struct pci_epf *epf_vf;
 66
 67	if (!epf->driver) {
 68		dev_WARN(&epf->dev, "epf device not bound to driver\n");
 69		return;
 70	}
 71
 72	mutex_lock(&epf->lock);
 73	list_for_each_entry(epf_vf, &epf->pci_vepf, list) {
 74		if (epf_vf->is_bound)
 75			epf_vf->driver->ops->unbind(epf_vf);
 76	}
 77	if (epf->is_bound)
 78		epf->driver->ops->unbind(epf);
 79	mutex_unlock(&epf->lock);
 80	module_put(epf->driver->owner);
 81}
 82EXPORT_SYMBOL_GPL(pci_epf_unbind);
 83
 84/**
 85 * pci_epf_bind() - Notify the function driver that the EPF device has been
 86 *		    bound to a EPC device
 87 * @epf: the EPF device which has been bound to the EPC device
 88 *
 89 * Invoke to notify the function driver that it has been bound to a EPC device
 90 */
 91int pci_epf_bind(struct pci_epf *epf)
 92{
 93	struct device *dev = &epf->dev;
 94	struct pci_epf *epf_vf;
 95	u8 func_no, vfunc_no;
 96	struct pci_epc *epc;
 97	int ret;
 98
 99	if (!epf->driver) {
100		dev_WARN(dev, "epf device not bound to driver\n");
101		return -EINVAL;
102	}
103
104	if (!try_module_get(epf->driver->owner))
105		return -EAGAIN;
106
107	mutex_lock(&epf->lock);
108	list_for_each_entry(epf_vf, &epf->pci_vepf, list) {
109		vfunc_no = epf_vf->vfunc_no;
110
111		if (vfunc_no < 1) {
112			dev_err(dev, "Invalid virtual function number\n");
113			ret = -EINVAL;
114			goto ret;
115		}
116
117		epc = epf->epc;
118		func_no = epf->func_no;
119		if (!IS_ERR_OR_NULL(epc)) {
120			if (!epc->max_vfs) {
121				dev_err(dev, "No support for virt function\n");
122				ret = -EINVAL;
123				goto ret;
124			}
125
126			if (vfunc_no > epc->max_vfs[func_no]) {
127				dev_err(dev, "PF%d: Exceeds max vfunc number\n",
128					func_no);
129				ret = -EINVAL;
130				goto ret;
131			}
132		}
133
134		epc = epf->sec_epc;
135		func_no = epf->sec_epc_func_no;
136		if (!IS_ERR_OR_NULL(epc)) {
137			if (!epc->max_vfs) {
138				dev_err(dev, "No support for virt function\n");
139				ret = -EINVAL;
140				goto ret;
141			}
142
143			if (vfunc_no > epc->max_vfs[func_no]) {
144				dev_err(dev, "PF%d: Exceeds max vfunc number\n",
145					func_no);
146				ret = -EINVAL;
147				goto ret;
148			}
149		}
150
151		epf_vf->func_no = epf->func_no;
152		epf_vf->sec_epc_func_no = epf->sec_epc_func_no;
153		epf_vf->epc = epf->epc;
154		epf_vf->sec_epc = epf->sec_epc;
155		ret = epf_vf->driver->ops->bind(epf_vf);
156		if (ret)
157			goto ret;
158		epf_vf->is_bound = true;
159	}
160
161	ret = epf->driver->ops->bind(epf);
162	if (ret)
163		goto ret;
164	epf->is_bound = true;
165
166	mutex_unlock(&epf->lock);
167	return 0;
168
169ret:
170	mutex_unlock(&epf->lock);
171	pci_epf_unbind(epf);
172
173	return ret;
174}
175EXPORT_SYMBOL_GPL(pci_epf_bind);
176
177/**
178 * pci_epf_add_vepf() - associate virtual EP function to physical EP function
179 * @epf_pf: the physical EP function to which the virtual EP function should be
180 *   associated
181 * @epf_vf: the virtual EP function to be added
182 *
183 * A physical endpoint function can be associated with multiple virtual
184 * endpoint functions. Invoke pci_epf_add_epf() to add a virtual PCI endpoint
185 * function to a physical PCI endpoint function.
186 */
187int pci_epf_add_vepf(struct pci_epf *epf_pf, struct pci_epf *epf_vf)
188{
189	u32 vfunc_no;
190
191	if (IS_ERR_OR_NULL(epf_pf) || IS_ERR_OR_NULL(epf_vf))
192		return -EINVAL;
193
194	if (epf_pf->epc || epf_vf->epc || epf_vf->epf_pf)
195		return -EBUSY;
196
197	if (epf_pf->sec_epc || epf_vf->sec_epc)
198		return -EBUSY;
199
200	mutex_lock(&epf_pf->lock);
201	vfunc_no = find_first_zero_bit(&epf_pf->vfunction_num_map,
202				       BITS_PER_LONG);
203	if (vfunc_no >= BITS_PER_LONG) {
204		mutex_unlock(&epf_pf->lock);
205		return -EINVAL;
206	}
207
208	set_bit(vfunc_no, &epf_pf->vfunction_num_map);
209	epf_vf->vfunc_no = vfunc_no;
210
211	epf_vf->epf_pf = epf_pf;
212	epf_vf->is_vf = true;
213
214	list_add_tail(&epf_vf->list, &epf_pf->pci_vepf);
215	mutex_unlock(&epf_pf->lock);
216
217	return 0;
218}
219EXPORT_SYMBOL_GPL(pci_epf_add_vepf);
220
221/**
222 * pci_epf_remove_vepf() - remove virtual EP function from physical EP function
223 * @epf_pf: the physical EP function from which the virtual EP function should
224 *   be removed
225 * @epf_vf: the virtual EP function to be removed
226 *
227 * Invoke to remove a virtual endpoint function from the physical endpoint
228 * function.
229 */
230void pci_epf_remove_vepf(struct pci_epf *epf_pf, struct pci_epf *epf_vf)
231{
232	if (IS_ERR_OR_NULL(epf_pf) || IS_ERR_OR_NULL(epf_vf))
233		return;
234
235	mutex_lock(&epf_pf->lock);
236	clear_bit(epf_vf->vfunc_no, &epf_pf->vfunction_num_map);
237	list_del(&epf_vf->list);
238	mutex_unlock(&epf_pf->lock);
239}
240EXPORT_SYMBOL_GPL(pci_epf_remove_vepf);
241
242/**
243 * pci_epf_free_space() - free the allocated PCI EPF register space
244 * @epf: the EPF device from whom to free the memory
245 * @addr: the virtual address of the PCI EPF register space
246 * @bar: the BAR number corresponding to the register space
247 * @type: Identifies if the allocated space is for primary EPC or secondary EPC
248 *
249 * Invoke to free the allocated PCI EPF register space.
250 */
251void pci_epf_free_space(struct pci_epf *epf, void *addr, enum pci_barno bar,
252			enum pci_epc_interface_type type)
253{
254	struct device *dev;
255	struct pci_epf_bar *epf_bar;
256	struct pci_epc *epc;
257
258	if (!addr)
259		return;
260
261	if (type == PRIMARY_INTERFACE) {
262		epc = epf->epc;
263		epf_bar = epf->bar;
264	} else {
265		epc = epf->sec_epc;
266		epf_bar = epf->sec_epc_bar;
267	}
268
269	dev = epc->dev.parent;
270	dma_free_coherent(dev, epf_bar[bar].size, addr,
271			  epf_bar[bar].phys_addr);
272
273	epf_bar[bar].phys_addr = 0;
274	epf_bar[bar].addr = NULL;
275	epf_bar[bar].size = 0;
276	epf_bar[bar].barno = 0;
277	epf_bar[bar].flags = 0;
278}
279EXPORT_SYMBOL_GPL(pci_epf_free_space);
280
281/**
282 * pci_epf_alloc_space() - allocate memory for the PCI EPF register space
283 * @epf: the EPF device to whom allocate the memory
284 * @size: the size of the memory that has to be allocated
285 * @bar: the BAR number corresponding to the allocated register space
286 * @align: alignment size for the allocation region
287 * @type: Identifies if the allocation is for primary EPC or secondary EPC
288 *
289 * Invoke to allocate memory for the PCI EPF register space.
290 */
291void *pci_epf_alloc_space(struct pci_epf *epf, size_t size, enum pci_barno bar,
292			  size_t align, enum pci_epc_interface_type type)
293{
294	struct pci_epf_bar *epf_bar;
295	dma_addr_t phys_addr;
296	struct pci_epc *epc;
297	struct device *dev;
298	void *space;
299
300	if (size < 128)
301		size = 128;
302
303	if (align)
304		size = ALIGN(size, align);
305	else
306		size = roundup_pow_of_two(size);
307
308	if (type == PRIMARY_INTERFACE) {
309		epc = epf->epc;
310		epf_bar = epf->bar;
311	} else {
312		epc = epf->sec_epc;
313		epf_bar = epf->sec_epc_bar;
314	}
315
316	dev = epc->dev.parent;
317	space = dma_alloc_coherent(dev, size, &phys_addr, GFP_KERNEL);
318	if (!space) {
319		dev_err(dev, "failed to allocate mem space\n");
320		return NULL;
321	}
322
323	epf_bar[bar].phys_addr = phys_addr;
324	epf_bar[bar].addr = space;
325	epf_bar[bar].size = size;
326	epf_bar[bar].barno = bar;
327	epf_bar[bar].flags |= upper_32_bits(size) ?
328				PCI_BASE_ADDRESS_MEM_TYPE_64 :
329				PCI_BASE_ADDRESS_MEM_TYPE_32;
330
331	return space;
332}
333EXPORT_SYMBOL_GPL(pci_epf_alloc_space);
334
335static void pci_epf_remove_cfs(struct pci_epf_driver *driver)
336{
337	struct config_group *group, *tmp;
338
339	if (!IS_ENABLED(CONFIG_PCI_ENDPOINT_CONFIGFS))
340		return;
341
342	mutex_lock(&pci_epf_mutex);
343	list_for_each_entry_safe(group, tmp, &driver->epf_group, group_entry)
344		pci_ep_cfs_remove_epf_group(group);
345	list_del(&driver->epf_group);
346	mutex_unlock(&pci_epf_mutex);
347}
348
349/**
350 * pci_epf_unregister_driver() - unregister the PCI EPF driver
351 * @driver: the PCI EPF driver that has to be unregistered
352 *
353 * Invoke to unregister the PCI EPF driver.
354 */
355void pci_epf_unregister_driver(struct pci_epf_driver *driver)
356{
357	pci_epf_remove_cfs(driver);
358	driver_unregister(&driver->driver);
359}
360EXPORT_SYMBOL_GPL(pci_epf_unregister_driver);
361
362static int pci_epf_add_cfs(struct pci_epf_driver *driver)
363{
364	struct config_group *group;
365	const struct pci_epf_device_id *id;
366
367	if (!IS_ENABLED(CONFIG_PCI_ENDPOINT_CONFIGFS))
368		return 0;
369
370	INIT_LIST_HEAD(&driver->epf_group);
371
372	id = driver->id_table;
373	while (id->name[0]) {
374		group = pci_ep_cfs_add_epf_group(id->name);
375		if (IS_ERR(group)) {
376			pci_epf_remove_cfs(driver);
377			return PTR_ERR(group);
378		}
379
380		mutex_lock(&pci_epf_mutex);
381		list_add_tail(&group->group_entry, &driver->epf_group);
382		mutex_unlock(&pci_epf_mutex);
383		id++;
384	}
385
386	return 0;
387}
388
389/**
390 * __pci_epf_register_driver() - register a new PCI EPF driver
391 * @driver: structure representing PCI EPF driver
392 * @owner: the owner of the module that registers the PCI EPF driver
393 *
394 * Invoke to register a new PCI EPF driver.
395 */
396int __pci_epf_register_driver(struct pci_epf_driver *driver,
397			      struct module *owner)
398{
399	int ret;
400
401	if (!driver->ops)
402		return -EINVAL;
403
404	if (!driver->ops->bind || !driver->ops->unbind)
405		return -EINVAL;
406
407	driver->driver.bus = &pci_epf_bus_type;
408	driver->driver.owner = owner;
409
410	ret = driver_register(&driver->driver);
411	if (ret)
412		return ret;
413
414	pci_epf_add_cfs(driver);
415
416	return 0;
417}
418EXPORT_SYMBOL_GPL(__pci_epf_register_driver);
419
420/**
421 * pci_epf_destroy() - destroy the created PCI EPF device
422 * @epf: the PCI EPF device that has to be destroyed.
423 *
424 * Invoke to destroy the PCI EPF device created by invoking pci_epf_create().
425 */
426void pci_epf_destroy(struct pci_epf *epf)
427{
428	device_unregister(&epf->dev);
429}
430EXPORT_SYMBOL_GPL(pci_epf_destroy);
431
432/**
433 * pci_epf_create() - create a new PCI EPF device
434 * @name: the name of the PCI EPF device. This name will be used to bind the
435 *	  EPF device to a EPF driver
436 *
437 * Invoke to create a new PCI EPF device by providing the name of the function
438 * device.
439 */
440struct pci_epf *pci_epf_create(const char *name)
441{
442	int ret;
443	struct pci_epf *epf;
444	struct device *dev;
445	int len;
446
447	epf = kzalloc(sizeof(*epf), GFP_KERNEL);
448	if (!epf)
449		return ERR_PTR(-ENOMEM);
450
451	len = strchrnul(name, '.') - name;
452	epf->name = kstrndup(name, len, GFP_KERNEL);
453	if (!epf->name) {
454		kfree(epf);
455		return ERR_PTR(-ENOMEM);
456	}
457
458	/* VFs are numbered starting with 1. So set BIT(0) by default */
459	epf->vfunction_num_map = 1;
460	INIT_LIST_HEAD(&epf->pci_vepf);
461
462	dev = &epf->dev;
463	device_initialize(dev);
464	dev->bus = &pci_epf_bus_type;
465	dev->type = &pci_epf_type;
466	mutex_init(&epf->lock);
467
468	ret = dev_set_name(dev, "%s", name);
469	if (ret) {
470		put_device(dev);
471		return ERR_PTR(ret);
472	}
473
474	ret = device_add(dev);
475	if (ret) {
476		put_device(dev);
477		return ERR_PTR(ret);
478	}
479
480	return epf;
481}
482EXPORT_SYMBOL_GPL(pci_epf_create);
483
484static void pci_epf_dev_release(struct device *dev)
485{
486	struct pci_epf *epf = to_pci_epf(dev);
487
488	kfree(epf->name);
489	kfree(epf);
490}
491
492static const struct device_type pci_epf_type = {
493	.release	= pci_epf_dev_release,
494};
495
496static int
497pci_epf_match_id(const struct pci_epf_device_id *id, const struct pci_epf *epf)
498{
499	while (id->name[0]) {
500		if (strcmp(epf->name, id->name) == 0)
501			return true;
502		id++;
503	}
504
505	return false;
506}
507
508static int pci_epf_device_match(struct device *dev, struct device_driver *drv)
509{
510	struct pci_epf *epf = to_pci_epf(dev);
511	struct pci_epf_driver *driver = to_pci_epf_driver(drv);
512
513	if (driver->id_table)
514		return pci_epf_match_id(driver->id_table, epf);
515
516	return !strcmp(epf->name, drv->name);
517}
518
519static int pci_epf_device_probe(struct device *dev)
520{
521	struct pci_epf *epf = to_pci_epf(dev);
522	struct pci_epf_driver *driver = to_pci_epf_driver(dev->driver);
523
524	if (!driver->probe)
525		return -ENODEV;
526
527	epf->driver = driver;
528
529	return driver->probe(epf);
530}
531
532static void pci_epf_device_remove(struct device *dev)
533{
534	struct pci_epf *epf = to_pci_epf(dev);
535	struct pci_epf_driver *driver = to_pci_epf_driver(dev->driver);
536
537	if (driver->remove)
538		driver->remove(epf);
539	epf->driver = NULL;
540}
541
542static struct bus_type pci_epf_bus_type = {
543	.name		= "pci-epf",
544	.match		= pci_epf_device_match,
545	.probe		= pci_epf_device_probe,
546	.remove		= pci_epf_device_remove,
547};
548
549static int __init pci_epf_init(void)
550{
551	int ret;
552
553	ret = bus_register(&pci_epf_bus_type);
554	if (ret) {
555		pr_err("failed to register pci epf bus --> %d\n", ret);
556		return ret;
557	}
558
559	return 0;
560}
561module_init(pci_epf_init);
562
563static void __exit pci_epf_exit(void)
564{
565	bus_unregister(&pci_epf_bus_type);
566}
567module_exit(pci_epf_exit);
568
569MODULE_DESCRIPTION("PCI EPF Library");
570MODULE_AUTHOR("Kishon Vijay Abraham I <kishon@ti.com>");
571MODULE_LICENSE("GPL v2");