Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * PCI Endpoint *Function* (EPF) library
  4 *
  5 * Copyright (C) 2017 Texas Instruments
  6 * Author: Kishon Vijay Abraham I <kishon@ti.com>
  7 */
  8
  9#include <linux/device.h>
 10#include <linux/dma-mapping.h>
 11#include <linux/slab.h>
 12#include <linux/module.h>
 13
 14#include <linux/pci-epc.h>
 15#include <linux/pci-epf.h>
 16#include <linux/pci-ep-cfs.h>
 17
 18static DEFINE_MUTEX(pci_epf_mutex);
 19
 20static struct bus_type pci_epf_bus_type;
 21static const struct device_type pci_epf_type;
 22
 23/**
 24 * pci_epf_unbind() - Notify the function driver that the binding between the
 25 *		      EPF device and EPC device has been lost
 26 * @epf: the EPF device which has lost the binding with the EPC device
 27 *
 28 * Invoke to notify the function driver that the binding between the EPF device
 29 * and EPC device has been lost.
 30 */
 31void pci_epf_unbind(struct pci_epf *epf)
 32{
 33	struct pci_epf *epf_vf;
 34
 35	if (!epf->driver) {
 36		dev_WARN(&epf->dev, "epf device not bound to driver\n");
 37		return;
 38	}
 39
 40	mutex_lock(&epf->lock);
 41	list_for_each_entry(epf_vf, &epf->pci_vepf, list) {
 42		if (epf_vf->is_bound)
 43			epf_vf->driver->ops->unbind(epf_vf);
 44	}
 45	if (epf->is_bound)
 46		epf->driver->ops->unbind(epf);
 47	mutex_unlock(&epf->lock);
 48	module_put(epf->driver->owner);
 49}
 50EXPORT_SYMBOL_GPL(pci_epf_unbind);
 51
 52/**
 53 * pci_epf_bind() - Notify the function driver that the EPF device has been
 54 *		    bound to a EPC device
 55 * @epf: the EPF device which has been bound to the EPC device
 56 *
 57 * Invoke to notify the function driver that it has been bound to a EPC device
 58 */
 59int pci_epf_bind(struct pci_epf *epf)
 60{
 61	struct device *dev = &epf->dev;
 62	struct pci_epf *epf_vf;
 63	u8 func_no, vfunc_no;
 64	struct pci_epc *epc;
 65	int ret;
 66
 67	if (!epf->driver) {
 68		dev_WARN(dev, "epf device not bound to driver\n");
 69		return -EINVAL;
 70	}
 71
 72	if (!try_module_get(epf->driver->owner))
 73		return -EAGAIN;
 74
 75	mutex_lock(&epf->lock);
 76	list_for_each_entry(epf_vf, &epf->pci_vepf, list) {
 77		vfunc_no = epf_vf->vfunc_no;
 78
 79		if (vfunc_no < 1) {
 80			dev_err(dev, "Invalid virtual function number\n");
 81			ret = -EINVAL;
 82			goto ret;
 83		}
 84
 85		epc = epf->epc;
 86		func_no = epf->func_no;
 87		if (!IS_ERR_OR_NULL(epc)) {
 88			if (!epc->max_vfs) {
 89				dev_err(dev, "No support for virt function\n");
 90				ret = -EINVAL;
 91				goto ret;
 92			}
 93
 94			if (vfunc_no > epc->max_vfs[func_no]) {
 95				dev_err(dev, "PF%d: Exceeds max vfunc number\n",
 96					func_no);
 97				ret = -EINVAL;
 98				goto ret;
 99			}
100		}
101
102		epc = epf->sec_epc;
103		func_no = epf->sec_epc_func_no;
104		if (!IS_ERR_OR_NULL(epc)) {
105			if (!epc->max_vfs) {
106				dev_err(dev, "No support for virt function\n");
107				ret = -EINVAL;
108				goto ret;
109			}
110
111			if (vfunc_no > epc->max_vfs[func_no]) {
112				dev_err(dev, "PF%d: Exceeds max vfunc number\n",
113					func_no);
114				ret = -EINVAL;
115				goto ret;
116			}
117		}
118
119		epf_vf->func_no = epf->func_no;
120		epf_vf->sec_epc_func_no = epf->sec_epc_func_no;
121		epf_vf->epc = epf->epc;
122		epf_vf->sec_epc = epf->sec_epc;
123		ret = epf_vf->driver->ops->bind(epf_vf);
124		if (ret)
125			goto ret;
126		epf_vf->is_bound = true;
127	}
128
129	ret = epf->driver->ops->bind(epf);
130	if (ret)
131		goto ret;
132	epf->is_bound = true;
133
134	mutex_unlock(&epf->lock);
135	return 0;
136
137ret:
138	mutex_unlock(&epf->lock);
139	pci_epf_unbind(epf);
140
141	return ret;
142}
143EXPORT_SYMBOL_GPL(pci_epf_bind);
144
145/**
146 * pci_epf_add_vepf() - associate virtual EP function to physical EP function
147 * @epf_pf: the physical EP function to which the virtual EP function should be
148 *   associated
149 * @epf_vf: the virtual EP function to be added
150 *
151 * A physical endpoint function can be associated with multiple virtual
152 * endpoint functions. Invoke pci_epf_add_epf() to add a virtual PCI endpoint
153 * function to a physical PCI endpoint function.
154 */
155int pci_epf_add_vepf(struct pci_epf *epf_pf, struct pci_epf *epf_vf)
156{
157	u32 vfunc_no;
158
159	if (IS_ERR_OR_NULL(epf_pf) || IS_ERR_OR_NULL(epf_vf))
160		return -EINVAL;
161
162	if (epf_pf->epc || epf_vf->epc || epf_vf->epf_pf)
163		return -EBUSY;
164
165	if (epf_pf->sec_epc || epf_vf->sec_epc)
166		return -EBUSY;
167
168	mutex_lock(&epf_pf->lock);
169	vfunc_no = find_first_zero_bit(&epf_pf->vfunction_num_map,
170				       BITS_PER_LONG);
171	if (vfunc_no >= BITS_PER_LONG) {
172		mutex_unlock(&epf_pf->lock);
173		return -EINVAL;
174	}
175
176	set_bit(vfunc_no, &epf_pf->vfunction_num_map);
177	epf_vf->vfunc_no = vfunc_no;
178
179	epf_vf->epf_pf = epf_pf;
180	epf_vf->is_vf = true;
181
182	list_add_tail(&epf_vf->list, &epf_pf->pci_vepf);
183	mutex_unlock(&epf_pf->lock);
184
185	return 0;
186}
187EXPORT_SYMBOL_GPL(pci_epf_add_vepf);
188
189/**
190 * pci_epf_remove_vepf() - remove virtual EP function from physical EP function
191 * @epf_pf: the physical EP function from which the virtual EP function should
192 *   be removed
193 * @epf_vf: the virtual EP function to be removed
194 *
195 * Invoke to remove a virtual endpoint function from the physical endpoint
196 * function.
197 */
198void pci_epf_remove_vepf(struct pci_epf *epf_pf, struct pci_epf *epf_vf)
199{
200	if (IS_ERR_OR_NULL(epf_pf) || IS_ERR_OR_NULL(epf_vf))
201		return;
202
203	mutex_lock(&epf_pf->lock);
204	clear_bit(epf_vf->vfunc_no, &epf_pf->vfunction_num_map);
 
205	list_del(&epf_vf->list);
206	mutex_unlock(&epf_pf->lock);
207}
208EXPORT_SYMBOL_GPL(pci_epf_remove_vepf);
209
210/**
211 * pci_epf_free_space() - free the allocated PCI EPF register space
212 * @epf: the EPF device from whom to free the memory
213 * @addr: the virtual address of the PCI EPF register space
214 * @bar: the BAR number corresponding to the register space
215 * @type: Identifies if the allocated space is for primary EPC or secondary EPC
216 *
217 * Invoke to free the allocated PCI EPF register space.
218 */
219void pci_epf_free_space(struct pci_epf *epf, void *addr, enum pci_barno bar,
220			enum pci_epc_interface_type type)
221{
222	struct device *dev;
223	struct pci_epf_bar *epf_bar;
224	struct pci_epc *epc;
225
226	if (!addr)
227		return;
228
229	if (type == PRIMARY_INTERFACE) {
230		epc = epf->epc;
231		epf_bar = epf->bar;
232	} else {
233		epc = epf->sec_epc;
234		epf_bar = epf->sec_epc_bar;
235	}
236
237	dev = epc->dev.parent;
238	dma_free_coherent(dev, epf_bar[bar].size, addr,
239			  epf_bar[bar].phys_addr);
240
241	epf_bar[bar].phys_addr = 0;
242	epf_bar[bar].addr = NULL;
243	epf_bar[bar].size = 0;
244	epf_bar[bar].barno = 0;
245	epf_bar[bar].flags = 0;
246}
247EXPORT_SYMBOL_GPL(pci_epf_free_space);
248
249/**
250 * pci_epf_alloc_space() - allocate memory for the PCI EPF register space
251 * @epf: the EPF device to whom allocate the memory
252 * @size: the size of the memory that has to be allocated
253 * @bar: the BAR number corresponding to the allocated register space
254 * @align: alignment size for the allocation region
255 * @type: Identifies if the allocation is for primary EPC or secondary EPC
256 *
257 * Invoke to allocate memory for the PCI EPF register space.
 
 
258 */
259void *pci_epf_alloc_space(struct pci_epf *epf, size_t size, enum pci_barno bar,
260			  size_t align, enum pci_epc_interface_type type)
 
261{
 
 
262	struct pci_epf_bar *epf_bar;
263	dma_addr_t phys_addr;
264	struct pci_epc *epc;
265	struct device *dev;
266	void *space;
267
268	if (size < 128)
269		size = 128;
270
 
 
 
 
 
 
 
 
 
271	if (align)
272		size = ALIGN(size, align);
273	else
274		size = roundup_pow_of_two(size);
275
276	if (type == PRIMARY_INTERFACE) {
277		epc = epf->epc;
278		epf_bar = epf->bar;
279	} else {
280		epc = epf->sec_epc;
281		epf_bar = epf->sec_epc_bar;
282	}
283
284	dev = epc->dev.parent;
285	space = dma_alloc_coherent(dev, size, &phys_addr, GFP_KERNEL);
286	if (!space) {
287		dev_err(dev, "failed to allocate mem space\n");
288		return NULL;
289	}
290
291	epf_bar[bar].phys_addr = phys_addr;
292	epf_bar[bar].addr = space;
293	epf_bar[bar].size = size;
294	epf_bar[bar].barno = bar;
295	epf_bar[bar].flags |= upper_32_bits(size) ?
296				PCI_BASE_ADDRESS_MEM_TYPE_64 :
297				PCI_BASE_ADDRESS_MEM_TYPE_32;
 
298
299	return space;
300}
301EXPORT_SYMBOL_GPL(pci_epf_alloc_space);
302
303static void pci_epf_remove_cfs(struct pci_epf_driver *driver)
304{
305	struct config_group *group, *tmp;
306
307	if (!IS_ENABLED(CONFIG_PCI_ENDPOINT_CONFIGFS))
308		return;
309
310	mutex_lock(&pci_epf_mutex);
311	list_for_each_entry_safe(group, tmp, &driver->epf_group, group_entry)
312		pci_ep_cfs_remove_epf_group(group);
313	list_del(&driver->epf_group);
314	mutex_unlock(&pci_epf_mutex);
315}
316
317/**
318 * pci_epf_unregister_driver() - unregister the PCI EPF driver
319 * @driver: the PCI EPF driver that has to be unregistered
320 *
321 * Invoke to unregister the PCI EPF driver.
322 */
323void pci_epf_unregister_driver(struct pci_epf_driver *driver)
324{
325	pci_epf_remove_cfs(driver);
326	driver_unregister(&driver->driver);
327}
328EXPORT_SYMBOL_GPL(pci_epf_unregister_driver);
329
330static int pci_epf_add_cfs(struct pci_epf_driver *driver)
331{
332	struct config_group *group;
333	const struct pci_epf_device_id *id;
334
335	if (!IS_ENABLED(CONFIG_PCI_ENDPOINT_CONFIGFS))
336		return 0;
337
338	INIT_LIST_HEAD(&driver->epf_group);
339
340	id = driver->id_table;
341	while (id->name[0]) {
342		group = pci_ep_cfs_add_epf_group(id->name);
343		if (IS_ERR(group)) {
344			pci_epf_remove_cfs(driver);
345			return PTR_ERR(group);
346		}
347
348		mutex_lock(&pci_epf_mutex);
349		list_add_tail(&group->group_entry, &driver->epf_group);
350		mutex_unlock(&pci_epf_mutex);
351		id++;
352	}
353
354	return 0;
355}
356
357/**
358 * __pci_epf_register_driver() - register a new PCI EPF driver
359 * @driver: structure representing PCI EPF driver
360 * @owner: the owner of the module that registers the PCI EPF driver
361 *
362 * Invoke to register a new PCI EPF driver.
363 */
364int __pci_epf_register_driver(struct pci_epf_driver *driver,
365			      struct module *owner)
366{
367	int ret;
368
369	if (!driver->ops)
370		return -EINVAL;
371
372	if (!driver->ops->bind || !driver->ops->unbind)
373		return -EINVAL;
374
375	driver->driver.bus = &pci_epf_bus_type;
376	driver->driver.owner = owner;
377
378	ret = driver_register(&driver->driver);
379	if (ret)
380		return ret;
381
382	pci_epf_add_cfs(driver);
383
384	return 0;
385}
386EXPORT_SYMBOL_GPL(__pci_epf_register_driver);
387
388/**
389 * pci_epf_destroy() - destroy the created PCI EPF device
390 * @epf: the PCI EPF device that has to be destroyed.
391 *
392 * Invoke to destroy the PCI EPF device created by invoking pci_epf_create().
393 */
394void pci_epf_destroy(struct pci_epf *epf)
395{
396	device_unregister(&epf->dev);
397}
398EXPORT_SYMBOL_GPL(pci_epf_destroy);
399
400/**
401 * pci_epf_create() - create a new PCI EPF device
402 * @name: the name of the PCI EPF device. This name will be used to bind the
403 *	  EPF device to a EPF driver
404 *
405 * Invoke to create a new PCI EPF device by providing the name of the function
406 * device.
407 */
408struct pci_epf *pci_epf_create(const char *name)
409{
410	int ret;
411	struct pci_epf *epf;
412	struct device *dev;
413	int len;
414
415	epf = kzalloc(sizeof(*epf), GFP_KERNEL);
416	if (!epf)
417		return ERR_PTR(-ENOMEM);
418
419	len = strchrnul(name, '.') - name;
420	epf->name = kstrndup(name, len, GFP_KERNEL);
421	if (!epf->name) {
422		kfree(epf);
423		return ERR_PTR(-ENOMEM);
424	}
425
426	/* VFs are numbered starting with 1. So set BIT(0) by default */
427	epf->vfunction_num_map = 1;
428	INIT_LIST_HEAD(&epf->pci_vepf);
429
430	dev = &epf->dev;
431	device_initialize(dev);
432	dev->bus = &pci_epf_bus_type;
433	dev->type = &pci_epf_type;
434	mutex_init(&epf->lock);
435
436	ret = dev_set_name(dev, "%s", name);
437	if (ret) {
438		put_device(dev);
439		return ERR_PTR(ret);
440	}
441
442	ret = device_add(dev);
443	if (ret) {
444		put_device(dev);
445		return ERR_PTR(ret);
446	}
447
448	return epf;
449}
450EXPORT_SYMBOL_GPL(pci_epf_create);
451
452static void pci_epf_dev_release(struct device *dev)
453{
454	struct pci_epf *epf = to_pci_epf(dev);
455
456	kfree(epf->name);
457	kfree(epf);
458}
459
460static const struct device_type pci_epf_type = {
461	.release	= pci_epf_dev_release,
462};
463
464static const struct pci_epf_device_id *
465pci_epf_match_id(const struct pci_epf_device_id *id, const struct pci_epf *epf)
466{
467	while (id->name[0]) {
468		if (strcmp(epf->name, id->name) == 0)
469			return id;
470		id++;
471	}
472
473	return NULL;
474}
475
476static int pci_epf_device_match(struct device *dev, struct device_driver *drv)
477{
478	struct pci_epf *epf = to_pci_epf(dev);
479	struct pci_epf_driver *driver = to_pci_epf_driver(drv);
480
481	if (driver->id_table)
482		return !!pci_epf_match_id(driver->id_table, epf);
483
484	return !strcmp(epf->name, drv->name);
485}
486
487static int pci_epf_device_probe(struct device *dev)
488{
489	struct pci_epf *epf = to_pci_epf(dev);
490	struct pci_epf_driver *driver = to_pci_epf_driver(dev->driver);
491
492	if (!driver->probe)
493		return -ENODEV;
494
495	epf->driver = driver;
496
497	return driver->probe(epf, pci_epf_match_id(driver->id_table, epf));
498}
499
500static void pci_epf_device_remove(struct device *dev)
501{
502	struct pci_epf *epf = to_pci_epf(dev);
503	struct pci_epf_driver *driver = to_pci_epf_driver(dev->driver);
504
505	if (driver->remove)
506		driver->remove(epf);
507	epf->driver = NULL;
508}
509
510static struct bus_type pci_epf_bus_type = {
511	.name		= "pci-epf",
512	.match		= pci_epf_device_match,
513	.probe		= pci_epf_device_probe,
514	.remove		= pci_epf_device_remove,
515};
516
517static int __init pci_epf_init(void)
518{
519	int ret;
520
521	ret = bus_register(&pci_epf_bus_type);
522	if (ret) {
523		pr_err("failed to register pci epf bus --> %d\n", ret);
524		return ret;
525	}
526
527	return 0;
528}
529module_init(pci_epf_init);
530
531static void __exit pci_epf_exit(void)
532{
533	bus_unregister(&pci_epf_bus_type);
534}
535module_exit(pci_epf_exit);
536
537MODULE_DESCRIPTION("PCI EPF Library");
538MODULE_AUTHOR("Kishon Vijay Abraham I <kishon@ti.com>");
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * PCI Endpoint *Function* (EPF) library
  4 *
  5 * Copyright (C) 2017 Texas Instruments
  6 * Author: Kishon Vijay Abraham I <kishon@ti.com>
  7 */
  8
  9#include <linux/device.h>
 10#include <linux/dma-mapping.h>
 11#include <linux/slab.h>
 12#include <linux/module.h>
 13
 14#include <linux/pci-epc.h>
 15#include <linux/pci-epf.h>
 16#include <linux/pci-ep-cfs.h>
 17
 18static DEFINE_MUTEX(pci_epf_mutex);
 19
 20static const struct bus_type pci_epf_bus_type;
 21static const struct device_type pci_epf_type;
 22
 23/**
 24 * pci_epf_unbind() - Notify the function driver that the binding between the
 25 *		      EPF device and EPC device has been lost
 26 * @epf: the EPF device which has lost the binding with the EPC device
 27 *
 28 * Invoke to notify the function driver that the binding between the EPF device
 29 * and EPC device has been lost.
 30 */
 31void pci_epf_unbind(struct pci_epf *epf)
 32{
 33	struct pci_epf *epf_vf;
 34
 35	if (!epf->driver) {
 36		dev_WARN(&epf->dev, "epf device not bound to driver\n");
 37		return;
 38	}
 39
 40	mutex_lock(&epf->lock);
 41	list_for_each_entry(epf_vf, &epf->pci_vepf, list) {
 42		if (epf_vf->is_bound)
 43			epf_vf->driver->ops->unbind(epf_vf);
 44	}
 45	if (epf->is_bound)
 46		epf->driver->ops->unbind(epf);
 47	mutex_unlock(&epf->lock);
 48	module_put(epf->driver->owner);
 49}
 50EXPORT_SYMBOL_GPL(pci_epf_unbind);
 51
 52/**
 53 * pci_epf_bind() - Notify the function driver that the EPF device has been
 54 *		    bound to a EPC device
 55 * @epf: the EPF device which has been bound to the EPC device
 56 *
 57 * Invoke to notify the function driver that it has been bound to a EPC device
 58 */
 59int pci_epf_bind(struct pci_epf *epf)
 60{
 61	struct device *dev = &epf->dev;
 62	struct pci_epf *epf_vf;
 63	u8 func_no, vfunc_no;
 64	struct pci_epc *epc;
 65	int ret;
 66
 67	if (!epf->driver) {
 68		dev_WARN(dev, "epf device not bound to driver\n");
 69		return -EINVAL;
 70	}
 71
 72	if (!try_module_get(epf->driver->owner))
 73		return -EAGAIN;
 74
 75	mutex_lock(&epf->lock);
 76	list_for_each_entry(epf_vf, &epf->pci_vepf, list) {
 77		vfunc_no = epf_vf->vfunc_no;
 78
 79		if (vfunc_no < 1) {
 80			dev_err(dev, "Invalid virtual function number\n");
 81			ret = -EINVAL;
 82			goto ret;
 83		}
 84
 85		epc = epf->epc;
 86		func_no = epf->func_no;
 87		if (!IS_ERR_OR_NULL(epc)) {
 88			if (!epc->max_vfs) {
 89				dev_err(dev, "No support for virt function\n");
 90				ret = -EINVAL;
 91				goto ret;
 92			}
 93
 94			if (vfunc_no > epc->max_vfs[func_no]) {
 95				dev_err(dev, "PF%d: Exceeds max vfunc number\n",
 96					func_no);
 97				ret = -EINVAL;
 98				goto ret;
 99			}
100		}
101
102		epc = epf->sec_epc;
103		func_no = epf->sec_epc_func_no;
104		if (!IS_ERR_OR_NULL(epc)) {
105			if (!epc->max_vfs) {
106				dev_err(dev, "No support for virt function\n");
107				ret = -EINVAL;
108				goto ret;
109			}
110
111			if (vfunc_no > epc->max_vfs[func_no]) {
112				dev_err(dev, "PF%d: Exceeds max vfunc number\n",
113					func_no);
114				ret = -EINVAL;
115				goto ret;
116			}
117		}
118
119		epf_vf->func_no = epf->func_no;
120		epf_vf->sec_epc_func_no = epf->sec_epc_func_no;
121		epf_vf->epc = epf->epc;
122		epf_vf->sec_epc = epf->sec_epc;
123		ret = epf_vf->driver->ops->bind(epf_vf);
124		if (ret)
125			goto ret;
126		epf_vf->is_bound = true;
127	}
128
129	ret = epf->driver->ops->bind(epf);
130	if (ret)
131		goto ret;
132	epf->is_bound = true;
133
134	mutex_unlock(&epf->lock);
135	return 0;
136
137ret:
138	mutex_unlock(&epf->lock);
139	pci_epf_unbind(epf);
140
141	return ret;
142}
143EXPORT_SYMBOL_GPL(pci_epf_bind);
144
145/**
146 * pci_epf_add_vepf() - associate virtual EP function to physical EP function
147 * @epf_pf: the physical EP function to which the virtual EP function should be
148 *   associated
149 * @epf_vf: the virtual EP function to be added
150 *
151 * A physical endpoint function can be associated with multiple virtual
152 * endpoint functions. Invoke pci_epf_add_epf() to add a virtual PCI endpoint
153 * function to a physical PCI endpoint function.
154 */
155int pci_epf_add_vepf(struct pci_epf *epf_pf, struct pci_epf *epf_vf)
156{
157	u32 vfunc_no;
158
159	if (IS_ERR_OR_NULL(epf_pf) || IS_ERR_OR_NULL(epf_vf))
160		return -EINVAL;
161
162	if (epf_pf->epc || epf_vf->epc || epf_vf->epf_pf)
163		return -EBUSY;
164
165	if (epf_pf->sec_epc || epf_vf->sec_epc)
166		return -EBUSY;
167
168	mutex_lock(&epf_pf->lock);
169	vfunc_no = find_first_zero_bit(&epf_pf->vfunction_num_map,
170				       BITS_PER_LONG);
171	if (vfunc_no >= BITS_PER_LONG) {
172		mutex_unlock(&epf_pf->lock);
173		return -EINVAL;
174	}
175
176	set_bit(vfunc_no, &epf_pf->vfunction_num_map);
177	epf_vf->vfunc_no = vfunc_no;
178
179	epf_vf->epf_pf = epf_pf;
180	epf_vf->is_vf = true;
181
182	list_add_tail(&epf_vf->list, &epf_pf->pci_vepf);
183	mutex_unlock(&epf_pf->lock);
184
185	return 0;
186}
187EXPORT_SYMBOL_GPL(pci_epf_add_vepf);
188
189/**
190 * pci_epf_remove_vepf() - remove virtual EP function from physical EP function
191 * @epf_pf: the physical EP function from which the virtual EP function should
192 *   be removed
193 * @epf_vf: the virtual EP function to be removed
194 *
195 * Invoke to remove a virtual endpoint function from the physical endpoint
196 * function.
197 */
198void pci_epf_remove_vepf(struct pci_epf *epf_pf, struct pci_epf *epf_vf)
199{
200	if (IS_ERR_OR_NULL(epf_pf) || IS_ERR_OR_NULL(epf_vf))
201		return;
202
203	mutex_lock(&epf_pf->lock);
204	clear_bit(epf_vf->vfunc_no, &epf_pf->vfunction_num_map);
205	epf_vf->epf_pf = NULL;
206	list_del(&epf_vf->list);
207	mutex_unlock(&epf_pf->lock);
208}
209EXPORT_SYMBOL_GPL(pci_epf_remove_vepf);
210
211/**
212 * pci_epf_free_space() - free the allocated PCI EPF register space
213 * @epf: the EPF device from whom to free the memory
214 * @addr: the virtual address of the PCI EPF register space
215 * @bar: the BAR number corresponding to the register space
216 * @type: Identifies if the allocated space is for primary EPC or secondary EPC
217 *
218 * Invoke to free the allocated PCI EPF register space.
219 */
220void pci_epf_free_space(struct pci_epf *epf, void *addr, enum pci_barno bar,
221			enum pci_epc_interface_type type)
222{
223	struct device *dev;
224	struct pci_epf_bar *epf_bar;
225	struct pci_epc *epc;
226
227	if (!addr)
228		return;
229
230	if (type == PRIMARY_INTERFACE) {
231		epc = epf->epc;
232		epf_bar = epf->bar;
233	} else {
234		epc = epf->sec_epc;
235		epf_bar = epf->sec_epc_bar;
236	}
237
238	dev = epc->dev.parent;
239	dma_free_coherent(dev, epf_bar[bar].size, addr,
240			  epf_bar[bar].phys_addr);
241
242	epf_bar[bar].phys_addr = 0;
243	epf_bar[bar].addr = NULL;
244	epf_bar[bar].size = 0;
245	epf_bar[bar].barno = 0;
246	epf_bar[bar].flags = 0;
247}
248EXPORT_SYMBOL_GPL(pci_epf_free_space);
249
250/**
251 * pci_epf_alloc_space() - allocate memory for the PCI EPF register space
252 * @epf: the EPF device to whom allocate the memory
253 * @size: the size of the memory that has to be allocated
254 * @bar: the BAR number corresponding to the allocated register space
255 * @epc_features: the features provided by the EPC specific to this EPF
256 * @type: Identifies if the allocation is for primary EPC or secondary EPC
257 *
258 * Invoke to allocate memory for the PCI EPF register space.
259 * Flag PCI_BASE_ADDRESS_MEM_TYPE_64 will automatically get set if the BAR
260 * can only be a 64-bit BAR, or if the requested size is larger than 2 GB.
261 */
262void *pci_epf_alloc_space(struct pci_epf *epf, size_t size, enum pci_barno bar,
263			  const struct pci_epc_features *epc_features,
264			  enum pci_epc_interface_type type)
265{
266	u64 bar_fixed_size = epc_features->bar[bar].fixed_size;
267	size_t align = epc_features->align;
268	struct pci_epf_bar *epf_bar;
269	dma_addr_t phys_addr;
270	struct pci_epc *epc;
271	struct device *dev;
272	void *space;
273
274	if (size < 128)
275		size = 128;
276
277	if (epc_features->bar[bar].type == BAR_FIXED && bar_fixed_size) {
278		if (size > bar_fixed_size) {
279			dev_err(&epf->dev,
280				"requested BAR size is larger than fixed size\n");
281			return NULL;
282		}
283		size = bar_fixed_size;
284	}
285
286	if (align)
287		size = ALIGN(size, align);
288	else
289		size = roundup_pow_of_two(size);
290
291	if (type == PRIMARY_INTERFACE) {
292		epc = epf->epc;
293		epf_bar = epf->bar;
294	} else {
295		epc = epf->sec_epc;
296		epf_bar = epf->sec_epc_bar;
297	}
298
299	dev = epc->dev.parent;
300	space = dma_alloc_coherent(dev, size, &phys_addr, GFP_KERNEL);
301	if (!space) {
302		dev_err(dev, "failed to allocate mem space\n");
303		return NULL;
304	}
305
306	epf_bar[bar].phys_addr = phys_addr;
307	epf_bar[bar].addr = space;
308	epf_bar[bar].size = size;
309	epf_bar[bar].barno = bar;
310	if (upper_32_bits(size) || epc_features->bar[bar].only_64bit)
311		epf_bar[bar].flags |= PCI_BASE_ADDRESS_MEM_TYPE_64;
312	else
313		epf_bar[bar].flags |= PCI_BASE_ADDRESS_MEM_TYPE_32;
314
315	return space;
316}
317EXPORT_SYMBOL_GPL(pci_epf_alloc_space);
318
319static void pci_epf_remove_cfs(struct pci_epf_driver *driver)
320{
321	struct config_group *group, *tmp;
322
323	if (!IS_ENABLED(CONFIG_PCI_ENDPOINT_CONFIGFS))
324		return;
325
326	mutex_lock(&pci_epf_mutex);
327	list_for_each_entry_safe(group, tmp, &driver->epf_group, group_entry)
328		pci_ep_cfs_remove_epf_group(group);
329	list_del(&driver->epf_group);
330	mutex_unlock(&pci_epf_mutex);
331}
332
333/**
334 * pci_epf_unregister_driver() - unregister the PCI EPF driver
335 * @driver: the PCI EPF driver that has to be unregistered
336 *
337 * Invoke to unregister the PCI EPF driver.
338 */
339void pci_epf_unregister_driver(struct pci_epf_driver *driver)
340{
341	pci_epf_remove_cfs(driver);
342	driver_unregister(&driver->driver);
343}
344EXPORT_SYMBOL_GPL(pci_epf_unregister_driver);
345
346static int pci_epf_add_cfs(struct pci_epf_driver *driver)
347{
348	struct config_group *group;
349	const struct pci_epf_device_id *id;
350
351	if (!IS_ENABLED(CONFIG_PCI_ENDPOINT_CONFIGFS))
352		return 0;
353
354	INIT_LIST_HEAD(&driver->epf_group);
355
356	id = driver->id_table;
357	while (id->name[0]) {
358		group = pci_ep_cfs_add_epf_group(id->name);
359		if (IS_ERR(group)) {
360			pci_epf_remove_cfs(driver);
361			return PTR_ERR(group);
362		}
363
364		mutex_lock(&pci_epf_mutex);
365		list_add_tail(&group->group_entry, &driver->epf_group);
366		mutex_unlock(&pci_epf_mutex);
367		id++;
368	}
369
370	return 0;
371}
372
373/**
374 * __pci_epf_register_driver() - register a new PCI EPF driver
375 * @driver: structure representing PCI EPF driver
376 * @owner: the owner of the module that registers the PCI EPF driver
377 *
378 * Invoke to register a new PCI EPF driver.
379 */
380int __pci_epf_register_driver(struct pci_epf_driver *driver,
381			      struct module *owner)
382{
383	int ret;
384
385	if (!driver->ops)
386		return -EINVAL;
387
388	if (!driver->ops->bind || !driver->ops->unbind)
389		return -EINVAL;
390
391	driver->driver.bus = &pci_epf_bus_type;
392	driver->driver.owner = owner;
393
394	ret = driver_register(&driver->driver);
395	if (ret)
396		return ret;
397
398	pci_epf_add_cfs(driver);
399
400	return 0;
401}
402EXPORT_SYMBOL_GPL(__pci_epf_register_driver);
403
404/**
405 * pci_epf_destroy() - destroy the created PCI EPF device
406 * @epf: the PCI EPF device that has to be destroyed.
407 *
408 * Invoke to destroy the PCI EPF device created by invoking pci_epf_create().
409 */
410void pci_epf_destroy(struct pci_epf *epf)
411{
412	device_unregister(&epf->dev);
413}
414EXPORT_SYMBOL_GPL(pci_epf_destroy);
415
416/**
417 * pci_epf_create() - create a new PCI EPF device
418 * @name: the name of the PCI EPF device. This name will be used to bind the
419 *	  EPF device to a EPF driver
420 *
421 * Invoke to create a new PCI EPF device by providing the name of the function
422 * device.
423 */
424struct pci_epf *pci_epf_create(const char *name)
425{
426	int ret;
427	struct pci_epf *epf;
428	struct device *dev;
429	int len;
430
431	epf = kzalloc(sizeof(*epf), GFP_KERNEL);
432	if (!epf)
433		return ERR_PTR(-ENOMEM);
434
435	len = strchrnul(name, '.') - name;
436	epf->name = kstrndup(name, len, GFP_KERNEL);
437	if (!epf->name) {
438		kfree(epf);
439		return ERR_PTR(-ENOMEM);
440	}
441
442	/* VFs are numbered starting with 1. So set BIT(0) by default */
443	epf->vfunction_num_map = 1;
444	INIT_LIST_HEAD(&epf->pci_vepf);
445
446	dev = &epf->dev;
447	device_initialize(dev);
448	dev->bus = &pci_epf_bus_type;
449	dev->type = &pci_epf_type;
450	mutex_init(&epf->lock);
451
452	ret = dev_set_name(dev, "%s", name);
453	if (ret) {
454		put_device(dev);
455		return ERR_PTR(ret);
456	}
457
458	ret = device_add(dev);
459	if (ret) {
460		put_device(dev);
461		return ERR_PTR(ret);
462	}
463
464	return epf;
465}
466EXPORT_SYMBOL_GPL(pci_epf_create);
467
468static void pci_epf_dev_release(struct device *dev)
469{
470	struct pci_epf *epf = to_pci_epf(dev);
471
472	kfree(epf->name);
473	kfree(epf);
474}
475
476static const struct device_type pci_epf_type = {
477	.release	= pci_epf_dev_release,
478};
479
480static const struct pci_epf_device_id *
481pci_epf_match_id(const struct pci_epf_device_id *id, const struct pci_epf *epf)
482{
483	while (id->name[0]) {
484		if (strcmp(epf->name, id->name) == 0)
485			return id;
486		id++;
487	}
488
489	return NULL;
490}
491
492static int pci_epf_device_match(struct device *dev, const struct device_driver *drv)
493{
494	struct pci_epf *epf = to_pci_epf(dev);
495	const struct pci_epf_driver *driver = to_pci_epf_driver(drv);
496
497	if (driver->id_table)
498		return !!pci_epf_match_id(driver->id_table, epf);
499
500	return !strcmp(epf->name, drv->name);
501}
502
503static int pci_epf_device_probe(struct device *dev)
504{
505	struct pci_epf *epf = to_pci_epf(dev);
506	struct pci_epf_driver *driver = to_pci_epf_driver(dev->driver);
507
508	if (!driver->probe)
509		return -ENODEV;
510
511	epf->driver = driver;
512
513	return driver->probe(epf, pci_epf_match_id(driver->id_table, epf));
514}
515
516static void pci_epf_device_remove(struct device *dev)
517{
518	struct pci_epf *epf = to_pci_epf(dev);
519	struct pci_epf_driver *driver = to_pci_epf_driver(dev->driver);
520
521	if (driver->remove)
522		driver->remove(epf);
523	epf->driver = NULL;
524}
525
526static const struct bus_type pci_epf_bus_type = {
527	.name		= "pci-epf",
528	.match		= pci_epf_device_match,
529	.probe		= pci_epf_device_probe,
530	.remove		= pci_epf_device_remove,
531};
532
533static int __init pci_epf_init(void)
534{
535	int ret;
536
537	ret = bus_register(&pci_epf_bus_type);
538	if (ret) {
539		pr_err("failed to register pci epf bus --> %d\n", ret);
540		return ret;
541	}
542
543	return 0;
544}
545module_init(pci_epf_init);
546
547static void __exit pci_epf_exit(void)
548{
549	bus_unregister(&pci_epf_bus_type);
550}
551module_exit(pci_epf_exit);
552
553MODULE_DESCRIPTION("PCI EPF Library");
554MODULE_AUTHOR("Kishon Vijay Abraham I <kishon@ti.com>");