Linux Audio

Check our new training course

Loading...
v6.8
   1/* winbond-840.c: A Linux PCI network adapter device driver. */
   2/*
   3	Written 1998-2001 by Donald Becker.
   4
   5	This software may be used and distributed according to the terms of
   6	the GNU General Public License (GPL), incorporated herein by reference.
   7	Drivers based on or derived from this code fall under the GPL and must
   8	retain the authorship, copyright and license notice.  This file is not
   9	a complete program and may only be used when the entire operating
  10	system is licensed under the GPL.
  11
  12	The author may be reached as becker@scyld.com, or C/O
  13	Scyld Computing Corporation
  14	410 Severn Ave., Suite 210
  15	Annapolis MD 21403
  16
  17	Support and updates available at
  18	http://www.scyld.com/network/drivers.html
  19
  20	Do not remove the copyright information.
  21	Do not change the version information unless an improvement has been made.
  22	Merely removing my name, as Compex has done in the past, does not count
  23	as an improvement.
  24
  25	Changelog:
  26	* ported to 2.4
  27		???
  28	* spin lock update, memory barriers, new style dma mappings
  29		limit each tx buffer to < 1024 bytes
  30		remove DescIntr from Rx descriptors (that's an Tx flag)
  31		remove next pointer from Tx descriptors
  32		synchronize tx_q_bytes
  33		software reset in tx_timeout
  34			Copyright (C) 2000 Manfred Spraul
  35	* further cleanups
  36		power management.
  37		support for big endian descriptors
  38			Copyright (C) 2001 Manfred Spraul
  39	* ethtool support (jgarzik)
  40	* Replace some MII-related magic numbers with constants (jgarzik)
  41
  42	TODO:
  43	* enable pci_power_off
  44	* Wake-On-LAN
  45*/
  46
  47#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  48
  49#define DRV_NAME	"winbond-840"
  50
  51/* Automatically extracted configuration info:
  52probe-func: winbond840_probe
  53config-in: tristate 'Winbond W89c840 Ethernet support' CONFIG_WINBOND_840
  54
  55c-help-name: Winbond W89c840 PCI Ethernet support
  56c-help-symbol: CONFIG_WINBOND_840
  57c-help: This driver is for the Winbond W89c840 chip.  It also works with
  58c-help: the TX9882 chip on the Compex RL100-ATX board.
  59c-help: More specific information and updates are available from
  60c-help: http://www.scyld.com/network/drivers.html
  61*/
  62
  63/* The user-configurable values.
  64   These may be modified when a driver module is loaded.*/
  65
  66static int debug = 1;			/* 1 normal messages, 0 quiet .. 7 verbose. */
  67static int max_interrupt_work = 20;
  68/* Maximum number of multicast addresses to filter (vs. Rx-all-multicast).
  69   The '840 uses a 64 element hash table based on the Ethernet CRC.  */
  70static int multicast_filter_limit = 32;
  71
  72/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
  73   Setting to > 1518 effectively disables this feature. */
  74static int rx_copybreak;
  75
  76/* Used to pass the media type, etc.
  77   Both 'options[]' and 'full_duplex[]' should exist for driver
  78   interoperability.
  79   The media type is usually passed in 'options[]'.
  80*/
  81#define MAX_UNITS 8		/* More are supported, limit only on options */
  82static int options[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
  83static int full_duplex[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
  84
  85/* Operational parameters that are set at compile time. */
  86
  87/* Keep the ring sizes a power of two for compile efficiency.
  88   The compiler will convert <unsigned>'%'<2^N> into a bit mask.
  89   Making the Tx ring too large decreases the effectiveness of channel
  90   bonding and packet priority.
  91   There are no ill effects from too-large receive rings. */
  92#define TX_QUEUE_LEN	10		/* Limit ring entries actually used.  */
  93#define TX_QUEUE_LEN_RESTART	5
  94
  95#define TX_BUFLIMIT	(1024-128)
  96
  97/* The presumed FIFO size for working around the Tx-FIFO-overflow bug.
  98   To avoid overflowing we don't queue again until we have room for a
  99   full-size packet.
 100 */
 101#define TX_FIFO_SIZE (2048)
 102#define TX_BUG_FIFO_LIMIT (TX_FIFO_SIZE-1514-16)
 103
 104
 105/* Operational parameters that usually are not changed. */
 106/* Time in jiffies before concluding the transmitter is hung. */
 107#define TX_TIMEOUT  (2*HZ)
 108
 109/* Include files, designed to support most kernel versions 2.0.0 and later. */
 110#include <linux/module.h>
 111#include <linux/kernel.h>
 112#include <linux/string.h>
 113#include <linux/timer.h>
 114#include <linux/errno.h>
 115#include <linux/ioport.h>
 116#include <linux/interrupt.h>
 117#include <linux/pci.h>
 118#include <linux/dma-mapping.h>
 119#include <linux/netdevice.h>
 120#include <linux/etherdevice.h>
 121#include <linux/skbuff.h>
 122#include <linux/init.h>
 123#include <linux/delay.h>
 124#include <linux/ethtool.h>
 125#include <linux/mii.h>
 126#include <linux/rtnetlink.h>
 127#include <linux/crc32.h>
 128#include <linux/bitops.h>
 129#include <linux/uaccess.h>
 130#include <asm/processor.h>		/* Processor type for cache alignment. */
 131#include <asm/io.h>
 132#include <asm/irq.h>
 133
 134#include "tulip.h"
 135
 136#undef PKT_BUF_SZ			/* tulip.h also defines this */
 137#define PKT_BUF_SZ		1536	/* Size of each temporary Rx buffer.*/
 138
 139MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
 140MODULE_DESCRIPTION("Winbond W89c840 Ethernet driver");
 141MODULE_LICENSE("GPL");
 142
 143module_param(max_interrupt_work, int, 0);
 144module_param(debug, int, 0);
 145module_param(rx_copybreak, int, 0);
 146module_param(multicast_filter_limit, int, 0);
 147module_param_array(options, int, NULL, 0);
 148module_param_array(full_duplex, int, NULL, 0);
 149MODULE_PARM_DESC(max_interrupt_work, "winbond-840 maximum events handled per interrupt");
 150MODULE_PARM_DESC(debug, "winbond-840 debug level (0-6)");
 151MODULE_PARM_DESC(rx_copybreak, "winbond-840 copy breakpoint for copy-only-tiny-frames");
 152MODULE_PARM_DESC(multicast_filter_limit, "winbond-840 maximum number of filtered multicast addresses");
 153MODULE_PARM_DESC(options, "winbond-840: Bits 0-3: media type, bit 17: full duplex");
 154MODULE_PARM_DESC(full_duplex, "winbond-840 full duplex setting(s) (1)");
 155
 156/*
 157				Theory of Operation
 158
 159I. Board Compatibility
 160
 161This driver is for the Winbond w89c840 chip.
 162
 163II. Board-specific settings
 164
 165None.
 166
 167III. Driver operation
 168
 169This chip is very similar to the Digital 21*4* "Tulip" family.  The first
 170twelve registers and the descriptor format are nearly identical.  Read a
 171Tulip manual for operational details.
 172
 173A significant difference is that the multicast filter and station address are
 174stored in registers rather than loaded through a pseudo-transmit packet.
 175
 176Unlike the Tulip, transmit buffers are limited to 1KB.  To transmit a
 177full-sized packet we must use both data buffers in a descriptor.  Thus the
 178driver uses ring mode where descriptors are implicitly sequential in memory,
 179rather than using the second descriptor address as a chain pointer to
 180subsequent descriptors.
 181
 182IV. Notes
 183
 184If you are going to almost clone a Tulip, why not go all the way and avoid
 185the need for a new driver?
 186
 187IVb. References
 188
 189http://www.scyld.com/expert/100mbps.html
 190http://www.scyld.com/expert/NWay.html
 191http://www.winbond.com.tw/
 192
 193IVc. Errata
 194
 195A horrible bug exists in the transmit FIFO.  Apparently the chip doesn't
 196correctly detect a full FIFO, and queuing more than 2048 bytes may result in
 197silent data corruption.
 198
 199Test with 'ping -s 10000' on a fast computer.
 200
 201*/
 202
 203
 204
 205/*
 206  PCI probe table.
 207*/
 208enum chip_capability_flags {
 209	CanHaveMII=1, HasBrokenTx=2, AlwaysFDX=4, FDXOnNoMII=8,
 210};
 211
 212static const struct pci_device_id w840_pci_tbl[] = {
 213	{ 0x1050, 0x0840, PCI_ANY_ID, 0x8153,     0, 0, 0 },
 214	{ 0x1050, 0x0840, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
 215	{ 0x11f6, 0x2011, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 2 },
 216	{ }
 217};
 218MODULE_DEVICE_TABLE(pci, w840_pci_tbl);
 219
 220enum {
 221	netdev_res_size		= 128,	/* size of PCI BAR resource */
 222};
 223
 224struct pci_id_info {
 225        const char *name;
 226        int drv_flags;		/* Driver use, intended as capability flags. */
 227};
 228
 229static const struct pci_id_info pci_id_tbl[] = {
 230	{ 				/* Sometime a Level-One switch card. */
 231	  "Winbond W89c840",	CanHaveMII | HasBrokenTx | FDXOnNoMII},
 232	{ "Winbond W89c840",	CanHaveMII | HasBrokenTx},
 233	{ "Compex RL100-ATX",	CanHaveMII | HasBrokenTx},
 234	{ }	/* terminate list. */
 235};
 236
 237/* This driver was written to use PCI memory space, however some x86 systems
 238   work only with I/O space accesses. See CONFIG_TULIP_MMIO in .config
 239*/
 240
 241/* Offsets to the Command and Status Registers, "CSRs".
 242   While similar to the Tulip, these registers are longword aligned.
 243   Note: It's not useful to define symbolic names for every register bit in
 244   the device.  The name can only partially document the semantics and make
 245   the driver longer and more difficult to read.
 246*/
 247enum w840_offsets {
 248	PCIBusCfg=0x00, TxStartDemand=0x04, RxStartDemand=0x08,
 249	RxRingPtr=0x0C, TxRingPtr=0x10,
 250	IntrStatus=0x14, NetworkConfig=0x18, IntrEnable=0x1C,
 251	RxMissed=0x20, EECtrl=0x24, MIICtrl=0x24, BootRom=0x28, GPTimer=0x2C,
 252	CurRxDescAddr=0x30, CurRxBufAddr=0x34,			/* Debug use */
 253	MulticastFilter0=0x38, MulticastFilter1=0x3C, StationAddr=0x40,
 254	CurTxDescAddr=0x4C, CurTxBufAddr=0x50,
 255};
 256
 257/* Bits in the NetworkConfig register. */
 258enum rx_mode_bits {
 259	AcceptErr=0x80,
 260	RxAcceptBroadcast=0x20, AcceptMulticast=0x10,
 261	RxAcceptAllPhys=0x08, AcceptMyPhys=0x02,
 262};
 263
 264enum mii_reg_bits {
 265	MDIO_ShiftClk=0x10000, MDIO_DataIn=0x80000, MDIO_DataOut=0x20000,
 266	MDIO_EnbOutput=0x40000, MDIO_EnbIn = 0x00000,
 267};
 268
 269/* The Tulip Rx and Tx buffer descriptors. */
 270struct w840_rx_desc {
 271	s32 status;
 272	s32 length;
 273	u32 buffer1;
 274	u32 buffer2;
 275};
 276
 277struct w840_tx_desc {
 278	s32 status;
 279	s32 length;
 280	u32 buffer1, buffer2;
 281};
 282
 283#define MII_CNT		1 /* winbond only supports one MII */
 284struct netdev_private {
 285	struct w840_rx_desc *rx_ring;
 286	dma_addr_t	rx_addr[RX_RING_SIZE];
 287	struct w840_tx_desc *tx_ring;
 288	dma_addr_t	tx_addr[TX_RING_SIZE];
 289	dma_addr_t ring_dma_addr;
 290	/* The addresses of receive-in-place skbuffs. */
 291	struct sk_buff* rx_skbuff[RX_RING_SIZE];
 292	/* The saved address of a sent-in-place packet/buffer, for later free(). */
 293	struct sk_buff* tx_skbuff[TX_RING_SIZE];
 294	struct net_device_stats stats;
 295	struct timer_list timer;	/* Media monitoring timer. */
 296	/* Frequently used values: keep some adjacent for cache effect. */
 297	spinlock_t lock;
 298	int chip_id, drv_flags;
 299	struct pci_dev *pci_dev;
 300	int csr6;
 301	struct w840_rx_desc *rx_head_desc;
 302	unsigned int cur_rx, dirty_rx;		/* Producer/consumer ring indices */
 303	unsigned int rx_buf_sz;				/* Based on MTU+slack. */
 304	unsigned int cur_tx, dirty_tx;
 305	unsigned int tx_q_bytes;
 306	unsigned int tx_full;				/* The Tx queue is full. */
 307	/* MII transceiver section. */
 308	int mii_cnt;						/* MII device addresses. */
 309	unsigned char phys[MII_CNT];		/* MII device addresses, but only the first is used */
 310	u32 mii;
 311	struct mii_if_info mii_if;
 312	void __iomem *base_addr;
 313};
 314
 315static int  eeprom_read(void __iomem *ioaddr, int location);
 316static int  mdio_read(struct net_device *dev, int phy_id, int location);
 317static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
 318static int  netdev_open(struct net_device *dev);
 319static int  update_link(struct net_device *dev);
 320static void netdev_timer(struct timer_list *t);
 321static void init_rxtx_rings(struct net_device *dev);
 322static void free_rxtx_rings(struct netdev_private *np);
 323static void init_registers(struct net_device *dev);
 324static void tx_timeout(struct net_device *dev, unsigned int txqueue);
 325static int alloc_ringdesc(struct net_device *dev);
 326static void free_ringdesc(struct netdev_private *np);
 327static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
 328static irqreturn_t intr_handler(int irq, void *dev_instance);
 329static void netdev_error(struct net_device *dev, int intr_status);
 330static int  netdev_rx(struct net_device *dev);
 331static u32 __set_rx_mode(struct net_device *dev);
 332static void set_rx_mode(struct net_device *dev);
 333static struct net_device_stats *get_stats(struct net_device *dev);
 334static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 335static const struct ethtool_ops netdev_ethtool_ops;
 336static int  netdev_close(struct net_device *dev);
 337
 338static const struct net_device_ops netdev_ops = {
 339	.ndo_open		= netdev_open,
 340	.ndo_stop		= netdev_close,
 341	.ndo_start_xmit		= start_tx,
 342	.ndo_get_stats		= get_stats,
 343	.ndo_set_rx_mode	= set_rx_mode,
 344	.ndo_eth_ioctl		= netdev_ioctl,
 345	.ndo_tx_timeout		= tx_timeout,
 346	.ndo_set_mac_address	= eth_mac_addr,
 347	.ndo_validate_addr	= eth_validate_addr,
 348};
 349
 350static int w840_probe1(struct pci_dev *pdev, const struct pci_device_id *ent)
 351{
 352	struct net_device *dev;
 353	struct netdev_private *np;
 354	static int find_cnt;
 355	int chip_idx = ent->driver_data;
 356	int irq;
 357	int i, option = find_cnt < MAX_UNITS ? options[find_cnt] : 0;
 358	__le16 addr[ETH_ALEN / 2];
 359	void __iomem *ioaddr;
 360
 361	i = pcim_enable_device(pdev);
 362	if (i) return i;
 363
 364	pci_set_master(pdev);
 365
 366	irq = pdev->irq;
 367
 368	if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(32))) {
 369		pr_warn("Device %s disabled due to DMA limitations\n",
 370			pci_name(pdev));
 371		return -EIO;
 372	}
 373	dev = alloc_etherdev(sizeof(*np));
 374	if (!dev)
 375		return -ENOMEM;
 376	SET_NETDEV_DEV(dev, &pdev->dev);
 377
 378	if (pci_request_regions(pdev, DRV_NAME))
 379		goto err_out_netdev;
 380
 381	ioaddr = pci_iomap(pdev, TULIP_BAR, netdev_res_size);
 382	if (!ioaddr)
 383		goto err_out_netdev;
 384
 385	for (i = 0; i < 3; i++)
 386		addr[i] = cpu_to_le16(eeprom_read(ioaddr, i));
 387	eth_hw_addr_set(dev, (u8 *)addr);
 388
 389	/* Reset the chip to erase previous misconfiguration.
 390	   No hold time required! */
 391	iowrite32(0x00000001, ioaddr + PCIBusCfg);
 392
 393	np = netdev_priv(dev);
 394	np->pci_dev = pdev;
 395	np->chip_id = chip_idx;
 396	np->drv_flags = pci_id_tbl[chip_idx].drv_flags;
 397	spin_lock_init(&np->lock);
 398	np->mii_if.dev = dev;
 399	np->mii_if.mdio_read = mdio_read;
 400	np->mii_if.mdio_write = mdio_write;
 401	np->base_addr = ioaddr;
 402
 403	pci_set_drvdata(pdev, dev);
 404
 405	if (dev->mem_start)
 406		option = dev->mem_start;
 407
 408	/* The lower four bits are the media type. */
 409	if (option > 0) {
 410		if (option & 0x200)
 411			np->mii_if.full_duplex = 1;
 412		if (option & 15)
 413			dev_info(&dev->dev,
 414				 "ignoring user supplied media type %d",
 415				 option & 15);
 416	}
 417	if (find_cnt < MAX_UNITS  &&  full_duplex[find_cnt] > 0)
 418		np->mii_if.full_duplex = 1;
 419
 420	if (np->mii_if.full_duplex)
 421		np->mii_if.force_media = 1;
 422
 423	/* The chip-specific entries in the device structure. */
 424	dev->netdev_ops = &netdev_ops;
 425	dev->ethtool_ops = &netdev_ethtool_ops;
 426	dev->watchdog_timeo = TX_TIMEOUT;
 427
 428	i = register_netdev(dev);
 429	if (i)
 430		goto err_out_cleardev;
 431
 432	dev_info(&dev->dev, "%s at %p, %pM, IRQ %d\n",
 433		 pci_id_tbl[chip_idx].name, ioaddr, dev->dev_addr, irq);
 434
 435	if (np->drv_flags & CanHaveMII) {
 436		int phy, phy_idx = 0;
 437		for (phy = 1; phy < 32 && phy_idx < MII_CNT; phy++) {
 438			int mii_status = mdio_read(dev, phy, MII_BMSR);
 439			if (mii_status != 0xffff  &&  mii_status != 0x0000) {
 440				np->phys[phy_idx++] = phy;
 441				np->mii_if.advertising = mdio_read(dev, phy, MII_ADVERTISE);
 442				np->mii = (mdio_read(dev, phy, MII_PHYSID1) << 16)+
 443						mdio_read(dev, phy, MII_PHYSID2);
 444				dev_info(&dev->dev,
 445					 "MII PHY %08xh found at address %d, status 0x%04x advertising %04x\n",
 446					 np->mii, phy, mii_status,
 447					 np->mii_if.advertising);
 448			}
 449		}
 450		np->mii_cnt = phy_idx;
 451		np->mii_if.phy_id = np->phys[0];
 452		if (phy_idx == 0) {
 453			dev_warn(&dev->dev,
 454				 "MII PHY not found -- this device may not operate correctly\n");
 455		}
 456	}
 457
 458	find_cnt++;
 459	return 0;
 460
 461err_out_cleardev:
 462	pci_iounmap(pdev, ioaddr);
 463err_out_netdev:
 464	free_netdev (dev);
 465	return -ENODEV;
 466}
 467
 468
 469/* Read the EEPROM and MII Management Data I/O (MDIO) interfaces.  These are
 470   often serial bit streams generated by the host processor.
 471   The example below is for the common 93c46 EEPROM, 64 16 bit words. */
 472
 473/* Delay between EEPROM clock transitions.
 474   No extra delay is needed with 33Mhz PCI, but future 66Mhz access may need
 475   a delay.  Note that pre-2.0.34 kernels had a cache-alignment bug that
 476   made udelay() unreliable.
 477*/
 478#define eeprom_delay(ee_addr)	ioread32(ee_addr)
 479
 480enum EEPROM_Ctrl_Bits {
 481	EE_ShiftClk=0x02, EE_Write0=0x801, EE_Write1=0x805,
 482	EE_ChipSelect=0x801, EE_DataIn=0x08,
 483};
 484
 485/* The EEPROM commands include the alway-set leading bit. */
 486enum EEPROM_Cmds {
 487	EE_WriteCmd=(5 << 6), EE_ReadCmd=(6 << 6), EE_EraseCmd=(7 << 6),
 488};
 489
 490static int eeprom_read(void __iomem *addr, int location)
 491{
 492	int i;
 493	int retval = 0;
 494	void __iomem *ee_addr = addr + EECtrl;
 495	int read_cmd = location | EE_ReadCmd;
 496	iowrite32(EE_ChipSelect, ee_addr);
 497
 498	/* Shift the read command bits out. */
 499	for (i = 10; i >= 0; i--) {
 500		short dataval = (read_cmd & (1 << i)) ? EE_Write1 : EE_Write0;
 501		iowrite32(dataval, ee_addr);
 502		eeprom_delay(ee_addr);
 503		iowrite32(dataval | EE_ShiftClk, ee_addr);
 504		eeprom_delay(ee_addr);
 505	}
 506	iowrite32(EE_ChipSelect, ee_addr);
 507	eeprom_delay(ee_addr);
 508
 509	for (i = 16; i > 0; i--) {
 510		iowrite32(EE_ChipSelect | EE_ShiftClk, ee_addr);
 511		eeprom_delay(ee_addr);
 512		retval = (retval << 1) | ((ioread32(ee_addr) & EE_DataIn) ? 1 : 0);
 513		iowrite32(EE_ChipSelect, ee_addr);
 514		eeprom_delay(ee_addr);
 515	}
 516
 517	/* Terminate the EEPROM access. */
 518	iowrite32(0, ee_addr);
 519	return retval;
 520}
 521
 522/*  MII transceiver control section.
 523	Read and write the MII registers using software-generated serial
 524	MDIO protocol.  See the MII specifications or DP83840A data sheet
 525	for details.
 526
 527	The maximum data clock rate is 2.5 Mhz.  The minimum timing is usually
 528	met by back-to-back 33Mhz PCI cycles. */
 529#define mdio_delay(mdio_addr) ioread32(mdio_addr)
 530
 531/* Set iff a MII transceiver on any interface requires mdio preamble.
 532   This only set with older transceivers, so the extra
 533   code size of a per-interface flag is not worthwhile. */
 534static char mii_preamble_required = 1;
 535
 536#define MDIO_WRITE0 (MDIO_EnbOutput)
 537#define MDIO_WRITE1 (MDIO_DataOut | MDIO_EnbOutput)
 538
 539/* Generate the preamble required for initial synchronization and
 540   a few older transceivers. */
 541static void mdio_sync(void __iomem *mdio_addr)
 542{
 543	int bits = 32;
 544
 545	/* Establish sync by sending at least 32 logic ones. */
 546	while (--bits >= 0) {
 547		iowrite32(MDIO_WRITE1, mdio_addr);
 548		mdio_delay(mdio_addr);
 549		iowrite32(MDIO_WRITE1 | MDIO_ShiftClk, mdio_addr);
 550		mdio_delay(mdio_addr);
 551	}
 552}
 553
 554static int mdio_read(struct net_device *dev, int phy_id, int location)
 555{
 556	struct netdev_private *np = netdev_priv(dev);
 557	void __iomem *mdio_addr = np->base_addr + MIICtrl;
 558	int mii_cmd = (0xf6 << 10) | (phy_id << 5) | location;
 559	int i, retval = 0;
 560
 561	if (mii_preamble_required)
 562		mdio_sync(mdio_addr);
 563
 564	/* Shift the read command bits out. */
 565	for (i = 15; i >= 0; i--) {
 566		int dataval = (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0;
 567
 568		iowrite32(dataval, mdio_addr);
 569		mdio_delay(mdio_addr);
 570		iowrite32(dataval | MDIO_ShiftClk, mdio_addr);
 571		mdio_delay(mdio_addr);
 572	}
 573	/* Read the two transition, 16 data, and wire-idle bits. */
 574	for (i = 20; i > 0; i--) {
 575		iowrite32(MDIO_EnbIn, mdio_addr);
 576		mdio_delay(mdio_addr);
 577		retval = (retval << 1) | ((ioread32(mdio_addr) & MDIO_DataIn) ? 1 : 0);
 578		iowrite32(MDIO_EnbIn | MDIO_ShiftClk, mdio_addr);
 579		mdio_delay(mdio_addr);
 580	}
 581	return (retval>>1) & 0xffff;
 582}
 583
 584static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
 585{
 586	struct netdev_private *np = netdev_priv(dev);
 587	void __iomem *mdio_addr = np->base_addr + MIICtrl;
 588	int mii_cmd = (0x5002 << 16) | (phy_id << 23) | (location<<18) | value;
 589	int i;
 590
 591	if (location == 4  &&  phy_id == np->phys[0])
 592		np->mii_if.advertising = value;
 593
 594	if (mii_preamble_required)
 595		mdio_sync(mdio_addr);
 596
 597	/* Shift the command bits out. */
 598	for (i = 31; i >= 0; i--) {
 599		int dataval = (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0;
 600
 601		iowrite32(dataval, mdio_addr);
 602		mdio_delay(mdio_addr);
 603		iowrite32(dataval | MDIO_ShiftClk, mdio_addr);
 604		mdio_delay(mdio_addr);
 605	}
 606	/* Clear out extra bits. */
 607	for (i = 2; i > 0; i--) {
 608		iowrite32(MDIO_EnbIn, mdio_addr);
 609		mdio_delay(mdio_addr);
 610		iowrite32(MDIO_EnbIn | MDIO_ShiftClk, mdio_addr);
 611		mdio_delay(mdio_addr);
 612	}
 613}
 614
 615
 616static int netdev_open(struct net_device *dev)
 617{
 618	struct netdev_private *np = netdev_priv(dev);
 619	void __iomem *ioaddr = np->base_addr;
 620	const int irq = np->pci_dev->irq;
 621	int i;
 622
 623	iowrite32(0x00000001, ioaddr + PCIBusCfg);		/* Reset */
 624
 625	netif_device_detach(dev);
 626	i = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev);
 627	if (i)
 628		goto out_err;
 629
 630	if (debug > 1)
 631		netdev_dbg(dev, "%s() irq %d\n", __func__, irq);
 632
 633	i = alloc_ringdesc(dev);
 634	if (i)
 635		goto out_err;
 636
 637	spin_lock_irq(&np->lock);
 638	netif_device_attach(dev);
 639	init_registers(dev);
 640	spin_unlock_irq(&np->lock);
 641
 642	netif_start_queue(dev);
 643	if (debug > 2)
 644		netdev_dbg(dev, "Done %s()\n", __func__);
 645
 646	/* Set the timer to check for link beat. */
 647	timer_setup(&np->timer, netdev_timer, 0);
 648	np->timer.expires = jiffies + 1*HZ;
 649	add_timer(&np->timer);
 650	return 0;
 651out_err:
 652	netif_device_attach(dev);
 653	return i;
 654}
 655
 656#define MII_DAVICOM_DM9101	0x0181b800
 657
 658static int update_link(struct net_device *dev)
 659{
 660	struct netdev_private *np = netdev_priv(dev);
 661	int duplex, fasteth, result, mii_reg;
 662
 663	/* BSMR */
 664	mii_reg = mdio_read(dev, np->phys[0], MII_BMSR);
 665
 666	if (mii_reg == 0xffff)
 667		return np->csr6;
 668	/* reread: the link status bit is sticky */
 669	mii_reg = mdio_read(dev, np->phys[0], MII_BMSR);
 670	if (!(mii_reg & 0x4)) {
 671		if (netif_carrier_ok(dev)) {
 672			if (debug)
 673				dev_info(&dev->dev,
 674					 "MII #%d reports no link. Disabling watchdog\n",
 675					 np->phys[0]);
 676			netif_carrier_off(dev);
 677		}
 678		return np->csr6;
 679	}
 680	if (!netif_carrier_ok(dev)) {
 681		if (debug)
 682			dev_info(&dev->dev,
 683				 "MII #%d link is back. Enabling watchdog\n",
 684				 np->phys[0]);
 685		netif_carrier_on(dev);
 686	}
 687
 688	if ((np->mii & ~0xf) == MII_DAVICOM_DM9101) {
 689		/* If the link partner doesn't support autonegotiation
 690		 * the MII detects it's abilities with the "parallel detection".
 691		 * Some MIIs update the LPA register to the result of the parallel
 692		 * detection, some don't.
 693		 * The Davicom PHY [at least 0181b800] doesn't.
 694		 * Instead bit 9 and 13 of the BMCR are updated to the result
 695		 * of the negotiation..
 696		 */
 697		mii_reg = mdio_read(dev, np->phys[0], MII_BMCR);
 698		duplex = mii_reg & BMCR_FULLDPLX;
 699		fasteth = mii_reg & BMCR_SPEED100;
 700	} else {
 701		int negotiated;
 702		mii_reg	= mdio_read(dev, np->phys[0], MII_LPA);
 703		negotiated = mii_reg & np->mii_if.advertising;
 704
 705		duplex = (negotiated & LPA_100FULL) || ((negotiated & 0x02C0) == LPA_10FULL);
 706		fasteth = negotiated & 0x380;
 707	}
 708	duplex |= np->mii_if.force_media;
 709	/* remove fastether and fullduplex */
 710	result = np->csr6 & ~0x20000200;
 711	if (duplex)
 712		result |= 0x200;
 713	if (fasteth)
 714		result |= 0x20000000;
 715	if (result != np->csr6 && debug)
 716		dev_info(&dev->dev,
 717			 "Setting %dMBit-%s-duplex based on MII#%d\n",
 718			 fasteth ? 100 : 10, duplex ? "full" : "half",
 719			 np->phys[0]);
 720	return result;
 721}
 722
 723#define RXTX_TIMEOUT	2000
 724static inline void update_csr6(struct net_device *dev, int new)
 725{
 726	struct netdev_private *np = netdev_priv(dev);
 727	void __iomem *ioaddr = np->base_addr;
 728	int limit = RXTX_TIMEOUT;
 729
 730	if (!netif_device_present(dev))
 731		new = 0;
 732	if (new==np->csr6)
 733		return;
 734	/* stop both Tx and Rx processes */
 735	iowrite32(np->csr6 & ~0x2002, ioaddr + NetworkConfig);
 736	/* wait until they have really stopped */
 737	for (;;) {
 738		int csr5 = ioread32(ioaddr + IntrStatus);
 739		int t;
 740
 741		t = (csr5 >> 17) & 0x07;
 742		if (t==0||t==1) {
 743			/* rx stopped */
 744			t = (csr5 >> 20) & 0x07;
 745			if (t==0||t==1)
 746				break;
 747		}
 748
 749		limit--;
 750		if(!limit) {
 751			dev_info(&dev->dev,
 752				 "couldn't stop rxtx, IntrStatus %xh\n", csr5);
 753			break;
 754		}
 755		udelay(1);
 756	}
 757	np->csr6 = new;
 758	/* and restart them with the new configuration */
 759	iowrite32(np->csr6, ioaddr + NetworkConfig);
 760	if (new & 0x200)
 761		np->mii_if.full_duplex = 1;
 762}
 763
 764static void netdev_timer(struct timer_list *t)
 765{
 766	struct netdev_private *np = from_timer(np, t, timer);
 767	struct net_device *dev = pci_get_drvdata(np->pci_dev);
 768	void __iomem *ioaddr = np->base_addr;
 769
 770	if (debug > 2)
 771		netdev_dbg(dev, "Media selection timer tick, status %08x config %08x\n",
 772			   ioread32(ioaddr + IntrStatus),
 773			   ioread32(ioaddr + NetworkConfig));
 774	spin_lock_irq(&np->lock);
 775	update_csr6(dev, update_link(dev));
 776	spin_unlock_irq(&np->lock);
 777	np->timer.expires = jiffies + 10*HZ;
 778	add_timer(&np->timer);
 779}
 780
 781static void init_rxtx_rings(struct net_device *dev)
 782{
 783	struct netdev_private *np = netdev_priv(dev);
 784	int i;
 785
 786	np->rx_head_desc = &np->rx_ring[0];
 787	np->tx_ring = (struct w840_tx_desc*)&np->rx_ring[RX_RING_SIZE];
 788
 789	/* Initial all Rx descriptors. */
 790	for (i = 0; i < RX_RING_SIZE; i++) {
 791		np->rx_ring[i].length = np->rx_buf_sz;
 792		np->rx_ring[i].status = 0;
 793		np->rx_skbuff[i] = NULL;
 794	}
 795	/* Mark the last entry as wrapping the ring. */
 796	np->rx_ring[i-1].length |= DescEndRing;
 797
 798	/* Fill in the Rx buffers.  Handle allocation failure gracefully. */
 799	for (i = 0; i < RX_RING_SIZE; i++) {
 800		struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz);
 801		np->rx_skbuff[i] = skb;
 802		if (skb == NULL)
 803			break;
 804		np->rx_addr[i] = dma_map_single(&np->pci_dev->dev, skb->data,
 805						np->rx_buf_sz,
 806						DMA_FROM_DEVICE);
 807
 808		np->rx_ring[i].buffer1 = np->rx_addr[i];
 809		np->rx_ring[i].status = DescOwned;
 810	}
 811
 812	np->cur_rx = 0;
 813	np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
 814
 815	/* Initialize the Tx descriptors */
 816	for (i = 0; i < TX_RING_SIZE; i++) {
 817		np->tx_skbuff[i] = NULL;
 818		np->tx_ring[i].status = 0;
 819	}
 820	np->tx_full = 0;
 821	np->tx_q_bytes = np->dirty_tx = np->cur_tx = 0;
 822
 823	iowrite32(np->ring_dma_addr, np->base_addr + RxRingPtr);
 824	iowrite32(np->ring_dma_addr+sizeof(struct w840_rx_desc)*RX_RING_SIZE,
 825		np->base_addr + TxRingPtr);
 826
 827}
 828
 829static void free_rxtx_rings(struct netdev_private* np)
 830{
 831	int i;
 832	/* Free all the skbuffs in the Rx queue. */
 833	for (i = 0; i < RX_RING_SIZE; i++) {
 834		np->rx_ring[i].status = 0;
 835		if (np->rx_skbuff[i]) {
 836			dma_unmap_single(&np->pci_dev->dev, np->rx_addr[i],
 837					 np->rx_skbuff[i]->len,
 838					 DMA_FROM_DEVICE);
 839			dev_kfree_skb(np->rx_skbuff[i]);
 840		}
 841		np->rx_skbuff[i] = NULL;
 842	}
 843	for (i = 0; i < TX_RING_SIZE; i++) {
 844		if (np->tx_skbuff[i]) {
 845			dma_unmap_single(&np->pci_dev->dev, np->tx_addr[i],
 846					 np->tx_skbuff[i]->len, DMA_TO_DEVICE);
 847			dev_kfree_skb(np->tx_skbuff[i]);
 848		}
 849		np->tx_skbuff[i] = NULL;
 850	}
 851}
 852
 853static void init_registers(struct net_device *dev)
 854{
 855	struct netdev_private *np = netdev_priv(dev);
 856	void __iomem *ioaddr = np->base_addr;
 857	int i;
 858
 859	for (i = 0; i < 6; i++)
 860		iowrite8(dev->dev_addr[i], ioaddr + StationAddr + i);
 861
 862	/* Initialize other registers. */
 863#ifdef __BIG_ENDIAN
 864	i = (1<<20);	/* Big-endian descriptors */
 865#else
 866	i = 0;
 867#endif
 868	i |= (0x04<<2);		/* skip length 4 u32 */
 869	i |= 0x02;		/* give Rx priority */
 870
 871	/* Configure the PCI bus bursts and FIFO thresholds.
 872	   486: Set 8 longword cache alignment, 8 longword burst.
 873	   586: Set 16 longword cache alignment, no burst limit.
 874	   Cache alignment bits 15:14	     Burst length 13:8
 875		0000	<not allowed> 		0000 align to cache	0800 8 longwords
 876		4000	8  longwords		0100 1 longword		1000 16 longwords
 877		8000	16 longwords		0200 2 longwords	2000 32 longwords
 878		C000	32  longwords		0400 4 longwords */
 879
 880#if defined (__i386__) && !defined(MODULE) && !defined(CONFIG_UML)
 881	/* When not a module we can work around broken '486 PCI boards. */
 882	if (boot_cpu_data.x86 <= 4) {
 883		i |= 0x4800;
 884		dev_info(&dev->dev,
 885			 "This is a 386/486 PCI system, setting cache alignment to 8 longwords\n");
 886	} else {
 887		i |= 0xE000;
 888	}
 889#elif defined(__powerpc__) || defined(__i386__) || defined(__alpha__) || defined(__ia64__) || defined(__x86_64__)
 890	i |= 0xE000;
 891#elif defined(CONFIG_SPARC) || defined (CONFIG_PARISC) || defined(CONFIG_ARM)
 892	i |= 0x4800;
 893#else
 894	dev_warn(&dev->dev, "unknown CPU architecture, using default csr0 setting\n");
 895	i |= 0x4800;
 896#endif
 897	iowrite32(i, ioaddr + PCIBusCfg);
 898
 899	np->csr6 = 0;
 900	/* 128 byte Tx threshold;
 901		Transmit on; Receive on; */
 902	update_csr6(dev, 0x00022002 | update_link(dev) | __set_rx_mode(dev));
 903
 904	/* Clear and Enable interrupts by setting the interrupt mask. */
 905	iowrite32(0x1A0F5, ioaddr + IntrStatus);
 906	iowrite32(0x1A0F5, ioaddr + IntrEnable);
 907
 908	iowrite32(0, ioaddr + RxStartDemand);
 909}
 910
 911static void tx_timeout(struct net_device *dev, unsigned int txqueue)
 912{
 913	struct netdev_private *np = netdev_priv(dev);
 914	void __iomem *ioaddr = np->base_addr;
 915	const int irq = np->pci_dev->irq;
 916
 917	dev_warn(&dev->dev, "Transmit timed out, status %08x, resetting...\n",
 918		 ioread32(ioaddr + IntrStatus));
 919
 920	{
 921		int i;
 922		printk(KERN_DEBUG "  Rx ring %p: ", np->rx_ring);
 923		for (i = 0; i < RX_RING_SIZE; i++)
 924			printk(KERN_CONT " %08x", (unsigned int)np->rx_ring[i].status);
 925		printk(KERN_CONT "\n");
 926		printk(KERN_DEBUG "  Tx ring %p: ", np->tx_ring);
 927		for (i = 0; i < TX_RING_SIZE; i++)
 928			printk(KERN_CONT " %08x", np->tx_ring[i].status);
 929		printk(KERN_CONT "\n");
 930	}
 931	printk(KERN_DEBUG "Tx cur %d Tx dirty %d Tx Full %d, q bytes %d\n",
 932	       np->cur_tx, np->dirty_tx, np->tx_full, np->tx_q_bytes);
 933	printk(KERN_DEBUG "Tx Descriptor addr %xh\n", ioread32(ioaddr+0x4C));
 934
 935	disable_irq(irq);
 936	spin_lock_irq(&np->lock);
 937	/*
 938	 * Under high load dirty_tx and the internal tx descriptor pointer
 939	 * come out of sync, thus perform a software reset and reinitialize
 940	 * everything.
 941	 */
 942
 943	iowrite32(1, np->base_addr+PCIBusCfg);
 944	udelay(1);
 945
 946	free_rxtx_rings(np);
 947	init_rxtx_rings(dev);
 948	init_registers(dev);
 949	spin_unlock_irq(&np->lock);
 950	enable_irq(irq);
 951
 952	netif_wake_queue(dev);
 953	netif_trans_update(dev); /* prevent tx timeout */
 954	np->stats.tx_errors++;
 955}
 956
 957/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
 958static int alloc_ringdesc(struct net_device *dev)
 959{
 960	struct netdev_private *np = netdev_priv(dev);
 961
 962	np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
 963
 964	np->rx_ring = dma_alloc_coherent(&np->pci_dev->dev,
 965					 sizeof(struct w840_rx_desc) * RX_RING_SIZE +
 966					 sizeof(struct w840_tx_desc) * TX_RING_SIZE,
 967					 &np->ring_dma_addr, GFP_KERNEL);
 968	if(!np->rx_ring)
 969		return -ENOMEM;
 970	init_rxtx_rings(dev);
 971	return 0;
 972}
 973
 974static void free_ringdesc(struct netdev_private *np)
 975{
 976	dma_free_coherent(&np->pci_dev->dev,
 977			  sizeof(struct w840_rx_desc) * RX_RING_SIZE +
 978			  sizeof(struct w840_tx_desc) * TX_RING_SIZE,
 979			  np->rx_ring, np->ring_dma_addr);
 980
 981}
 982
 983static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
 984{
 985	struct netdev_private *np = netdev_priv(dev);
 986	unsigned entry;
 987
 988	/* Caution: the write order is important here, set the field
 989	   with the "ownership" bits last. */
 990
 991	/* Calculate the next Tx descriptor entry. */
 992	entry = np->cur_tx % TX_RING_SIZE;
 993
 994	np->tx_addr[entry] = dma_map_single(&np->pci_dev->dev, skb->data,
 995					    skb->len, DMA_TO_DEVICE);
 996	np->tx_skbuff[entry] = skb;
 997
 998	np->tx_ring[entry].buffer1 = np->tx_addr[entry];
 999	if (skb->len < TX_BUFLIMIT) {
1000		np->tx_ring[entry].length = DescWholePkt | skb->len;
1001	} else {
1002		int len = skb->len - TX_BUFLIMIT;
1003
1004		np->tx_ring[entry].buffer2 = np->tx_addr[entry]+TX_BUFLIMIT;
1005		np->tx_ring[entry].length = DescWholePkt | (len << 11) | TX_BUFLIMIT;
1006	}
1007	if(entry == TX_RING_SIZE-1)
1008		np->tx_ring[entry].length |= DescEndRing;
1009
1010	/* Now acquire the irq spinlock.
1011	 * The difficult race is the ordering between
1012	 * increasing np->cur_tx and setting DescOwned:
1013	 * - if np->cur_tx is increased first the interrupt
1014	 *   handler could consider the packet as transmitted
1015	 *   since DescOwned is cleared.
1016	 * - If DescOwned is set first the NIC could report the
1017	 *   packet as sent, but the interrupt handler would ignore it
1018	 *   since the np->cur_tx was not yet increased.
1019	 */
1020	spin_lock_irq(&np->lock);
1021	np->cur_tx++;
1022
1023	wmb(); /* flush length, buffer1, buffer2 */
1024	np->tx_ring[entry].status = DescOwned;
1025	wmb(); /* flush status and kick the hardware */
1026	iowrite32(0, np->base_addr + TxStartDemand);
1027	np->tx_q_bytes += skb->len;
1028	/* Work around horrible bug in the chip by marking the queue as full
1029	   when we do not have FIFO room for a maximum sized packet. */
1030	if (np->cur_tx - np->dirty_tx > TX_QUEUE_LEN ||
1031		((np->drv_flags & HasBrokenTx) && np->tx_q_bytes > TX_BUG_FIFO_LIMIT)) {
1032		netif_stop_queue(dev);
1033		wmb();
1034		np->tx_full = 1;
1035	}
1036	spin_unlock_irq(&np->lock);
1037
1038	if (debug > 4) {
1039		netdev_dbg(dev, "Transmit frame #%d queued in slot %d\n",
1040			   np->cur_tx, entry);
1041	}
1042	return NETDEV_TX_OK;
1043}
1044
1045static void netdev_tx_done(struct net_device *dev)
1046{
1047	struct netdev_private *np = netdev_priv(dev);
1048	for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
1049		int entry = np->dirty_tx % TX_RING_SIZE;
1050		int tx_status = np->tx_ring[entry].status;
1051
1052		if (tx_status < 0)
1053			break;
1054		if (tx_status & 0x8000) { 	/* There was an error, log it. */
1055#ifndef final_version
1056			if (debug > 1)
1057				netdev_dbg(dev, "Transmit error, Tx status %08x\n",
1058					   tx_status);
1059#endif
1060			np->stats.tx_errors++;
1061			if (tx_status & 0x0104) np->stats.tx_aborted_errors++;
1062			if (tx_status & 0x0C80) np->stats.tx_carrier_errors++;
1063			if (tx_status & 0x0200) np->stats.tx_window_errors++;
1064			if (tx_status & 0x0002) np->stats.tx_fifo_errors++;
1065			if ((tx_status & 0x0080) && np->mii_if.full_duplex == 0)
1066				np->stats.tx_heartbeat_errors++;
1067		} else {
1068#ifndef final_version
1069			if (debug > 3)
1070				netdev_dbg(dev, "Transmit slot %d ok, Tx status %08x\n",
1071					   entry, tx_status);
1072#endif
1073			np->stats.tx_bytes += np->tx_skbuff[entry]->len;
1074			np->stats.collisions += (tx_status >> 3) & 15;
1075			np->stats.tx_packets++;
1076		}
1077		/* Free the original skb. */
1078		dma_unmap_single(&np->pci_dev->dev, np->tx_addr[entry],
1079				 np->tx_skbuff[entry]->len, DMA_TO_DEVICE);
1080		np->tx_q_bytes -= np->tx_skbuff[entry]->len;
1081		dev_kfree_skb_irq(np->tx_skbuff[entry]);
1082		np->tx_skbuff[entry] = NULL;
1083	}
1084	if (np->tx_full &&
1085		np->cur_tx - np->dirty_tx < TX_QUEUE_LEN_RESTART &&
1086		np->tx_q_bytes < TX_BUG_FIFO_LIMIT) {
1087		/* The ring is no longer full, clear tbusy. */
1088		np->tx_full = 0;
1089		wmb();
1090		netif_wake_queue(dev);
1091	}
1092}
1093
1094/* The interrupt handler does all of the Rx thread work and cleans up
1095   after the Tx thread. */
1096static irqreturn_t intr_handler(int irq, void *dev_instance)
1097{
1098	struct net_device *dev = (struct net_device *)dev_instance;
1099	struct netdev_private *np = netdev_priv(dev);
1100	void __iomem *ioaddr = np->base_addr;
1101	int work_limit = max_interrupt_work;
1102	int handled = 0;
1103
1104	if (!netif_device_present(dev))
1105		return IRQ_NONE;
1106	do {
1107		u32 intr_status = ioread32(ioaddr + IntrStatus);
1108
1109		/* Acknowledge all of the current interrupt sources ASAP. */
1110		iowrite32(intr_status & 0x001ffff, ioaddr + IntrStatus);
1111
1112		if (debug > 4)
1113			netdev_dbg(dev, "Interrupt, status %04x\n", intr_status);
1114
1115		if ((intr_status & (NormalIntr|AbnormalIntr)) == 0)
1116			break;
1117
1118		handled = 1;
1119
1120		if (intr_status & (RxIntr | RxNoBuf))
1121			netdev_rx(dev);
1122		if (intr_status & RxNoBuf)
1123			iowrite32(0, ioaddr + RxStartDemand);
1124
1125		if (intr_status & (TxNoBuf | TxIntr) &&
1126			np->cur_tx != np->dirty_tx) {
1127			spin_lock(&np->lock);
1128			netdev_tx_done(dev);
1129			spin_unlock(&np->lock);
1130		}
1131
1132		/* Abnormal error summary/uncommon events handlers. */
1133		if (intr_status & (AbnormalIntr | TxFIFOUnderflow | SystemError |
1134						   TimerInt | TxDied))
1135			netdev_error(dev, intr_status);
1136
1137		if (--work_limit < 0) {
1138			dev_warn(&dev->dev,
1139				 "Too much work at interrupt, status=0x%04x\n",
1140				 intr_status);
1141			/* Set the timer to re-enable the other interrupts after
1142			   10*82usec ticks. */
1143			spin_lock(&np->lock);
1144			if (netif_device_present(dev)) {
1145				iowrite32(AbnormalIntr | TimerInt, ioaddr + IntrEnable);
1146				iowrite32(10, ioaddr + GPTimer);
1147			}
1148			spin_unlock(&np->lock);
1149			break;
1150		}
1151	} while (1);
1152
1153	if (debug > 3)
1154		netdev_dbg(dev, "exiting interrupt, status=%#4.4x\n",
1155			   ioread32(ioaddr + IntrStatus));
1156	return IRQ_RETVAL(handled);
1157}
1158
1159/* This routine is logically part of the interrupt handler, but separated
1160   for clarity and better register allocation. */
1161static int netdev_rx(struct net_device *dev)
1162{
1163	struct netdev_private *np = netdev_priv(dev);
1164	int entry = np->cur_rx % RX_RING_SIZE;
1165	int work_limit = np->dirty_rx + RX_RING_SIZE - np->cur_rx;
1166
1167	if (debug > 4) {
1168		netdev_dbg(dev, " In netdev_rx(), entry %d status %04x\n",
1169			   entry, np->rx_ring[entry].status);
1170	}
1171
1172	/* If EOP is set on the next entry, it's a new packet. Send it up. */
1173	while (--work_limit >= 0) {
1174		struct w840_rx_desc *desc = np->rx_head_desc;
1175		s32 status = desc->status;
1176
1177		if (debug > 4)
1178			netdev_dbg(dev, "  netdev_rx() status was %08x\n",
1179				   status);
1180		if (status < 0)
1181			break;
1182		if ((status & 0x38008300) != 0x0300) {
1183			if ((status & 0x38000300) != 0x0300) {
1184				/* Ingore earlier buffers. */
1185				if ((status & 0xffff) != 0x7fff) {
1186					dev_warn(&dev->dev,
1187						 "Oversized Ethernet frame spanned multiple buffers, entry %#x status %04x!\n",
1188						 np->cur_rx, status);
1189					np->stats.rx_length_errors++;
1190				}
1191			} else if (status & 0x8000) {
1192				/* There was a fatal error. */
1193				if (debug > 2)
1194					netdev_dbg(dev, "Receive error, Rx status %08x\n",
1195						   status);
1196				np->stats.rx_errors++; /* end of a packet.*/
1197				if (status & 0x0890) np->stats.rx_length_errors++;
1198				if (status & 0x004C) np->stats.rx_frame_errors++;
1199				if (status & 0x0002) np->stats.rx_crc_errors++;
1200			}
1201		} else {
1202			struct sk_buff *skb;
1203			/* Omit the four octet CRC from the length. */
1204			int pkt_len = ((status >> 16) & 0x7ff) - 4;
1205
1206#ifndef final_version
1207			if (debug > 4)
1208				netdev_dbg(dev, "  netdev_rx() normal Rx pkt length %d status %x\n",
1209					   pkt_len, status);
1210#endif
1211			/* Check if the packet is long enough to accept without copying
1212			   to a minimally-sized skbuff. */
1213			if (pkt_len < rx_copybreak &&
1214			    (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
1215				skb_reserve(skb, 2);	/* 16 byte align the IP header */
1216				dma_sync_single_for_cpu(&np->pci_dev->dev,
1217							np->rx_addr[entry],
1218							np->rx_skbuff[entry]->len,
1219							DMA_FROM_DEVICE);
1220				skb_copy_to_linear_data(skb, np->rx_skbuff[entry]->data, pkt_len);
1221				skb_put(skb, pkt_len);
1222				dma_sync_single_for_device(&np->pci_dev->dev,
1223							   np->rx_addr[entry],
1224							   np->rx_skbuff[entry]->len,
1225							   DMA_FROM_DEVICE);
1226			} else {
1227				dma_unmap_single(&np->pci_dev->dev,
1228						 np->rx_addr[entry],
1229						 np->rx_skbuff[entry]->len,
1230						 DMA_FROM_DEVICE);
1231				skb_put(skb = np->rx_skbuff[entry], pkt_len);
1232				np->rx_skbuff[entry] = NULL;
1233			}
1234#ifndef final_version				/* Remove after testing. */
1235			/* You will want this info for the initial debug. */
1236			if (debug > 5)
1237				netdev_dbg(dev, "  Rx data %pM %pM %02x%02x %pI4\n",
1238					   &skb->data[0], &skb->data[6],
1239					   skb->data[12], skb->data[13],
1240					   &skb->data[14]);
1241#endif
1242			skb->protocol = eth_type_trans(skb, dev);
1243			netif_rx(skb);
1244			np->stats.rx_packets++;
1245			np->stats.rx_bytes += pkt_len;
1246		}
1247		entry = (++np->cur_rx) % RX_RING_SIZE;
1248		np->rx_head_desc = &np->rx_ring[entry];
1249	}
1250
1251	/* Refill the Rx ring buffers. */
1252	for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1253		struct sk_buff *skb;
1254		entry = np->dirty_rx % RX_RING_SIZE;
1255		if (np->rx_skbuff[entry] == NULL) {
1256			skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1257			np->rx_skbuff[entry] = skb;
1258			if (skb == NULL)
1259				break;			/* Better luck next round. */
1260			np->rx_addr[entry] = dma_map_single(&np->pci_dev->dev,
1261							    skb->data,
1262							    np->rx_buf_sz,
1263							    DMA_FROM_DEVICE);
1264			np->rx_ring[entry].buffer1 = np->rx_addr[entry];
1265		}
1266		wmb();
1267		np->rx_ring[entry].status = DescOwned;
1268	}
1269
1270	return 0;
1271}
1272
1273static void netdev_error(struct net_device *dev, int intr_status)
1274{
1275	struct netdev_private *np = netdev_priv(dev);
1276	void __iomem *ioaddr = np->base_addr;
1277
1278	if (debug > 2)
1279		netdev_dbg(dev, "Abnormal event, %08x\n", intr_status);
1280	if (intr_status == 0xffffffff)
1281		return;
1282	spin_lock(&np->lock);
1283	if (intr_status & TxFIFOUnderflow) {
1284		int new;
1285		/* Bump up the Tx threshold */
1286#if 0
1287		/* This causes lots of dropped packets,
1288		 * and under high load even tx_timeouts
1289		 */
1290		new = np->csr6 + 0x4000;
1291#else
1292		new = (np->csr6 >> 14)&0x7f;
1293		if (new < 64)
1294			new *= 2;
1295		 else
1296		 	new = 127; /* load full packet before starting */
1297		new = (np->csr6 & ~(0x7F << 14)) | (new<<14);
1298#endif
1299		netdev_dbg(dev, "Tx underflow, new csr6 %08x\n", new);
1300		update_csr6(dev, new);
1301	}
1302	if (intr_status & RxDied) {		/* Missed a Rx frame. */
1303		np->stats.rx_errors++;
1304	}
1305	if (intr_status & TimerInt) {
1306		/* Re-enable other interrupts. */
1307		if (netif_device_present(dev))
1308			iowrite32(0x1A0F5, ioaddr + IntrEnable);
1309	}
1310	np->stats.rx_missed_errors += ioread32(ioaddr + RxMissed) & 0xffff;
1311	iowrite32(0, ioaddr + RxStartDemand);
1312	spin_unlock(&np->lock);
1313}
1314
1315static struct net_device_stats *get_stats(struct net_device *dev)
1316{
1317	struct netdev_private *np = netdev_priv(dev);
1318	void __iomem *ioaddr = np->base_addr;
1319
1320	/* The chip only need report frame silently dropped. */
1321	spin_lock_irq(&np->lock);
1322	if (netif_running(dev) && netif_device_present(dev))
1323		np->stats.rx_missed_errors += ioread32(ioaddr + RxMissed) & 0xffff;
1324	spin_unlock_irq(&np->lock);
1325
1326	return &np->stats;
1327}
1328
1329
1330static u32 __set_rx_mode(struct net_device *dev)
1331{
1332	struct netdev_private *np = netdev_priv(dev);
1333	void __iomem *ioaddr = np->base_addr;
1334	u32 mc_filter[2];			/* Multicast hash filter */
1335	u32 rx_mode;
1336
1337	if (dev->flags & IFF_PROMISC) {			/* Set promiscuous. */
1338		memset(mc_filter, 0xff, sizeof(mc_filter));
1339		rx_mode = RxAcceptBroadcast | AcceptMulticast | RxAcceptAllPhys
1340			| AcceptMyPhys;
1341	} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
1342		   (dev->flags & IFF_ALLMULTI)) {
1343		/* Too many to match, or accept all multicasts. */
1344		memset(mc_filter, 0xff, sizeof(mc_filter));
1345		rx_mode = RxAcceptBroadcast | AcceptMulticast | AcceptMyPhys;
1346	} else {
1347		struct netdev_hw_addr *ha;
1348
1349		memset(mc_filter, 0, sizeof(mc_filter));
1350		netdev_for_each_mc_addr(ha, dev) {
1351			int filbit;
1352
1353			filbit = (ether_crc(ETH_ALEN, ha->addr) >> 26) ^ 0x3F;
1354			filbit &= 0x3f;
1355			mc_filter[filbit >> 5] |= 1 << (filbit & 31);
1356		}
1357		rx_mode = RxAcceptBroadcast | AcceptMulticast | AcceptMyPhys;
1358	}
1359	iowrite32(mc_filter[0], ioaddr + MulticastFilter0);
1360	iowrite32(mc_filter[1], ioaddr + MulticastFilter1);
1361	return rx_mode;
1362}
1363
1364static void set_rx_mode(struct net_device *dev)
1365{
1366	struct netdev_private *np = netdev_priv(dev);
1367	u32 rx_mode = __set_rx_mode(dev);
1368	spin_lock_irq(&np->lock);
1369	update_csr6(dev, (np->csr6 & ~0x00F8) | rx_mode);
1370	spin_unlock_irq(&np->lock);
1371}
1372
1373static void netdev_get_drvinfo (struct net_device *dev, struct ethtool_drvinfo *info)
1374{
1375	struct netdev_private *np = netdev_priv(dev);
1376
1377	strscpy(info->driver, DRV_NAME, sizeof(info->driver));
1378	strscpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
1379}
1380
1381static int netdev_get_link_ksettings(struct net_device *dev,
1382				     struct ethtool_link_ksettings *cmd)
1383{
1384	struct netdev_private *np = netdev_priv(dev);
1385
1386	spin_lock_irq(&np->lock);
1387	mii_ethtool_get_link_ksettings(&np->mii_if, cmd);
1388	spin_unlock_irq(&np->lock);
1389
1390	return 0;
1391}
1392
1393static int netdev_set_link_ksettings(struct net_device *dev,
1394				     const struct ethtool_link_ksettings *cmd)
1395{
1396	struct netdev_private *np = netdev_priv(dev);
1397	int rc;
1398
1399	spin_lock_irq(&np->lock);
1400	rc = mii_ethtool_set_link_ksettings(&np->mii_if, cmd);
1401	spin_unlock_irq(&np->lock);
1402
1403	return rc;
1404}
1405
1406static int netdev_nway_reset(struct net_device *dev)
1407{
1408	struct netdev_private *np = netdev_priv(dev);
1409	return mii_nway_restart(&np->mii_if);
1410}
1411
1412static u32 netdev_get_link(struct net_device *dev)
1413{
1414	struct netdev_private *np = netdev_priv(dev);
1415	return mii_link_ok(&np->mii_if);
1416}
1417
1418static u32 netdev_get_msglevel(struct net_device *dev)
1419{
1420	return debug;
1421}
1422
1423static void netdev_set_msglevel(struct net_device *dev, u32 value)
1424{
1425	debug = value;
1426}
1427
1428static const struct ethtool_ops netdev_ethtool_ops = {
1429	.get_drvinfo		= netdev_get_drvinfo,
1430	.nway_reset		= netdev_nway_reset,
1431	.get_link		= netdev_get_link,
1432	.get_msglevel		= netdev_get_msglevel,
1433	.set_msglevel		= netdev_set_msglevel,
1434	.get_link_ksettings	= netdev_get_link_ksettings,
1435	.set_link_ksettings	= netdev_set_link_ksettings,
1436};
1437
1438static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1439{
1440	struct mii_ioctl_data *data = if_mii(rq);
1441	struct netdev_private *np = netdev_priv(dev);
1442
1443	switch(cmd) {
1444	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
1445		data->phy_id = ((struct netdev_private *)netdev_priv(dev))->phys[0] & 0x1f;
1446		fallthrough;
1447
1448	case SIOCGMIIREG:		/* Read MII PHY register. */
1449		spin_lock_irq(&np->lock);
1450		data->val_out = mdio_read(dev, data->phy_id & 0x1f, data->reg_num & 0x1f);
1451		spin_unlock_irq(&np->lock);
1452		return 0;
1453
1454	case SIOCSMIIREG:		/* Write MII PHY register. */
1455		spin_lock_irq(&np->lock);
1456		mdio_write(dev, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in);
1457		spin_unlock_irq(&np->lock);
1458		return 0;
1459	default:
1460		return -EOPNOTSUPP;
1461	}
1462}
1463
1464static int netdev_close(struct net_device *dev)
1465{
1466	struct netdev_private *np = netdev_priv(dev);
1467	void __iomem *ioaddr = np->base_addr;
1468
1469	netif_stop_queue(dev);
1470
1471	if (debug > 1) {
1472		netdev_dbg(dev, "Shutting down ethercard, status was %08x Config %08x\n",
1473			   ioread32(ioaddr + IntrStatus),
1474			   ioread32(ioaddr + NetworkConfig));
1475		netdev_dbg(dev, "Queue pointers were Tx %d / %d,  Rx %d / %d\n",
1476			   np->cur_tx, np->dirty_tx,
1477			   np->cur_rx, np->dirty_rx);
1478	}
1479
1480	/* Stop the chip's Tx and Rx processes. */
1481	spin_lock_irq(&np->lock);
1482	netif_device_detach(dev);
1483	update_csr6(dev, 0);
1484	iowrite32(0x0000, ioaddr + IntrEnable);
1485	spin_unlock_irq(&np->lock);
1486
1487	free_irq(np->pci_dev->irq, dev);
1488	wmb();
1489	netif_device_attach(dev);
1490
1491	if (ioread32(ioaddr + NetworkConfig) != 0xffffffff)
1492		np->stats.rx_missed_errors += ioread32(ioaddr + RxMissed) & 0xffff;
1493
1494#ifdef __i386__
1495	if (debug > 2) {
1496		int i;
1497
1498		printk(KERN_DEBUG"  Tx ring at %p:\n", np->tx_ring);
1499		for (i = 0; i < TX_RING_SIZE; i++)
1500			printk(KERN_DEBUG " #%d desc. %04x %04x %08x\n",
1501			       i, np->tx_ring[i].length,
1502			       np->tx_ring[i].status, np->tx_ring[i].buffer1);
1503		printk(KERN_DEBUG "  Rx ring %p:\n", np->rx_ring);
1504		for (i = 0; i < RX_RING_SIZE; i++) {
1505			printk(KERN_DEBUG " #%d desc. %04x %04x %08x\n",
1506			       i, np->rx_ring[i].length,
1507			       np->rx_ring[i].status, np->rx_ring[i].buffer1);
1508		}
1509	}
1510#endif /* __i386__ debugging only */
1511
1512	del_timer_sync(&np->timer);
1513
1514	free_rxtx_rings(np);
1515	free_ringdesc(np);
1516
1517	return 0;
1518}
1519
1520static void w840_remove1(struct pci_dev *pdev)
1521{
1522	struct net_device *dev = pci_get_drvdata(pdev);
1523
1524	if (dev) {
1525		struct netdev_private *np = netdev_priv(dev);
1526		unregister_netdev(dev);
1527		pci_iounmap(pdev, np->base_addr);
1528		free_netdev(dev);
1529	}
1530}
1531
1532/*
1533 * suspend/resume synchronization:
1534 * - open, close, do_ioctl:
1535 * 	rtnl_lock, & netif_device_detach after the rtnl_unlock.
1536 * - get_stats:
1537 * 	spin_lock_irq(np->lock), doesn't touch hw if not present
1538 * - start_xmit:
1539 * 	synchronize_irq + netif_tx_disable;
1540 * - tx_timeout:
1541 * 	netif_device_detach + netif_tx_disable;
1542 * - set_multicast_list
1543 * 	netif_device_detach + netif_tx_disable;
1544 * - interrupt handler
1545 * 	doesn't touch hw if not present, synchronize_irq waits for
1546 * 	running instances of the interrupt handler.
1547 *
1548 * Disabling hw requires clearing csr6 & IntrEnable.
1549 * update_csr6 & all function that write IntrEnable check netif_device_present
1550 * before settings any bits.
1551 *
1552 * Detach must occur under spin_unlock_irq(), interrupts from a detached
1553 * device would cause an irq storm.
1554 */
1555static int __maybe_unused w840_suspend(struct device *dev_d)
1556{
1557	struct net_device *dev = dev_get_drvdata(dev_d);
1558	struct netdev_private *np = netdev_priv(dev);
1559	void __iomem *ioaddr = np->base_addr;
1560
1561	rtnl_lock();
1562	if (netif_running (dev)) {
1563		del_timer_sync(&np->timer);
1564
1565		spin_lock_irq(&np->lock);
1566		netif_device_detach(dev);
1567		update_csr6(dev, 0);
1568		iowrite32(0, ioaddr + IntrEnable);
1569		spin_unlock_irq(&np->lock);
1570
1571		synchronize_irq(np->pci_dev->irq);
1572		netif_tx_disable(dev);
1573
1574		np->stats.rx_missed_errors += ioread32(ioaddr + RxMissed) & 0xffff;
1575
1576		/* no more hardware accesses behind this line. */
1577
1578		BUG_ON(np->csr6 || ioread32(ioaddr + IntrEnable));
1579
1580		/* pci_power_off(pdev, -1); */
1581
1582		free_rxtx_rings(np);
1583	} else {
1584		netif_device_detach(dev);
1585	}
1586	rtnl_unlock();
1587	return 0;
1588}
1589
1590static int __maybe_unused w840_resume(struct device *dev_d)
1591{
1592	struct net_device *dev = dev_get_drvdata(dev_d);
1593	struct netdev_private *np = netdev_priv(dev);
1594
1595	rtnl_lock();
1596	if (netif_device_present(dev))
1597		goto out; /* device not suspended */
1598	if (netif_running(dev)) {
1599		spin_lock_irq(&np->lock);
1600		iowrite32(1, np->base_addr+PCIBusCfg);
1601		ioread32(np->base_addr+PCIBusCfg);
1602		udelay(1);
1603		netif_device_attach(dev);
1604		init_rxtx_rings(dev);
1605		init_registers(dev);
1606		spin_unlock_irq(&np->lock);
1607
1608		netif_wake_queue(dev);
1609
1610		mod_timer(&np->timer, jiffies + 1*HZ);
1611	} else {
1612		netif_device_attach(dev);
1613	}
1614out:
1615	rtnl_unlock();
1616	return 0;
1617}
1618
1619static SIMPLE_DEV_PM_OPS(w840_pm_ops, w840_suspend, w840_resume);
1620
1621static struct pci_driver w840_driver = {
1622	.name		= DRV_NAME,
1623	.id_table	= w840_pci_tbl,
1624	.probe		= w840_probe1,
1625	.remove		= w840_remove1,
1626	.driver.pm	= &w840_pm_ops,
1627};
1628
1629module_pci_driver(w840_driver);
v6.2
   1/* winbond-840.c: A Linux PCI network adapter device driver. */
   2/*
   3	Written 1998-2001 by Donald Becker.
   4
   5	This software may be used and distributed according to the terms of
   6	the GNU General Public License (GPL), incorporated herein by reference.
   7	Drivers based on or derived from this code fall under the GPL and must
   8	retain the authorship, copyright and license notice.  This file is not
   9	a complete program and may only be used when the entire operating
  10	system is licensed under the GPL.
  11
  12	The author may be reached as becker@scyld.com, or C/O
  13	Scyld Computing Corporation
  14	410 Severn Ave., Suite 210
  15	Annapolis MD 21403
  16
  17	Support and updates available at
  18	http://www.scyld.com/network/drivers.html
  19
  20	Do not remove the copyright information.
  21	Do not change the version information unless an improvement has been made.
  22	Merely removing my name, as Compex has done in the past, does not count
  23	as an improvement.
  24
  25	Changelog:
  26	* ported to 2.4
  27		???
  28	* spin lock update, memory barriers, new style dma mappings
  29		limit each tx buffer to < 1024 bytes
  30		remove DescIntr from Rx descriptors (that's an Tx flag)
  31		remove next pointer from Tx descriptors
  32		synchronize tx_q_bytes
  33		software reset in tx_timeout
  34			Copyright (C) 2000 Manfred Spraul
  35	* further cleanups
  36		power management.
  37		support for big endian descriptors
  38			Copyright (C) 2001 Manfred Spraul
  39	* ethtool support (jgarzik)
  40	* Replace some MII-related magic numbers with constants (jgarzik)
  41
  42	TODO:
  43	* enable pci_power_off
  44	* Wake-On-LAN
  45*/
  46
  47#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  48
  49#define DRV_NAME	"winbond-840"
  50
  51/* Automatically extracted configuration info:
  52probe-func: winbond840_probe
  53config-in: tristate 'Winbond W89c840 Ethernet support' CONFIG_WINBOND_840
  54
  55c-help-name: Winbond W89c840 PCI Ethernet support
  56c-help-symbol: CONFIG_WINBOND_840
  57c-help: This driver is for the Winbond W89c840 chip.  It also works with
  58c-help: the TX9882 chip on the Compex RL100-ATX board.
  59c-help: More specific information and updates are available from
  60c-help: http://www.scyld.com/network/drivers.html
  61*/
  62
  63/* The user-configurable values.
  64   These may be modified when a driver module is loaded.*/
  65
  66static int debug = 1;			/* 1 normal messages, 0 quiet .. 7 verbose. */
  67static int max_interrupt_work = 20;
  68/* Maximum number of multicast addresses to filter (vs. Rx-all-multicast).
  69   The '840 uses a 64 element hash table based on the Ethernet CRC.  */
  70static int multicast_filter_limit = 32;
  71
  72/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
  73   Setting to > 1518 effectively disables this feature. */
  74static int rx_copybreak;
  75
  76/* Used to pass the media type, etc.
  77   Both 'options[]' and 'full_duplex[]' should exist for driver
  78   interoperability.
  79   The media type is usually passed in 'options[]'.
  80*/
  81#define MAX_UNITS 8		/* More are supported, limit only on options */
  82static int options[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
  83static int full_duplex[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
  84
  85/* Operational parameters that are set at compile time. */
  86
  87/* Keep the ring sizes a power of two for compile efficiency.
  88   The compiler will convert <unsigned>'%'<2^N> into a bit mask.
  89   Making the Tx ring too large decreases the effectiveness of channel
  90   bonding and packet priority.
  91   There are no ill effects from too-large receive rings. */
  92#define TX_QUEUE_LEN	10		/* Limit ring entries actually used.  */
  93#define TX_QUEUE_LEN_RESTART	5
  94
  95#define TX_BUFLIMIT	(1024-128)
  96
  97/* The presumed FIFO size for working around the Tx-FIFO-overflow bug.
  98   To avoid overflowing we don't queue again until we have room for a
  99   full-size packet.
 100 */
 101#define TX_FIFO_SIZE (2048)
 102#define TX_BUG_FIFO_LIMIT (TX_FIFO_SIZE-1514-16)
 103
 104
 105/* Operational parameters that usually are not changed. */
 106/* Time in jiffies before concluding the transmitter is hung. */
 107#define TX_TIMEOUT  (2*HZ)
 108
 109/* Include files, designed to support most kernel versions 2.0.0 and later. */
 110#include <linux/module.h>
 111#include <linux/kernel.h>
 112#include <linux/string.h>
 113#include <linux/timer.h>
 114#include <linux/errno.h>
 115#include <linux/ioport.h>
 116#include <linux/interrupt.h>
 117#include <linux/pci.h>
 118#include <linux/dma-mapping.h>
 119#include <linux/netdevice.h>
 120#include <linux/etherdevice.h>
 121#include <linux/skbuff.h>
 122#include <linux/init.h>
 123#include <linux/delay.h>
 124#include <linux/ethtool.h>
 125#include <linux/mii.h>
 126#include <linux/rtnetlink.h>
 127#include <linux/crc32.h>
 128#include <linux/bitops.h>
 129#include <linux/uaccess.h>
 130#include <asm/processor.h>		/* Processor type for cache alignment. */
 131#include <asm/io.h>
 132#include <asm/irq.h>
 133
 134#include "tulip.h"
 135
 136#undef PKT_BUF_SZ			/* tulip.h also defines this */
 137#define PKT_BUF_SZ		1536	/* Size of each temporary Rx buffer.*/
 138
 139MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
 140MODULE_DESCRIPTION("Winbond W89c840 Ethernet driver");
 141MODULE_LICENSE("GPL");
 142
 143module_param(max_interrupt_work, int, 0);
 144module_param(debug, int, 0);
 145module_param(rx_copybreak, int, 0);
 146module_param(multicast_filter_limit, int, 0);
 147module_param_array(options, int, NULL, 0);
 148module_param_array(full_duplex, int, NULL, 0);
 149MODULE_PARM_DESC(max_interrupt_work, "winbond-840 maximum events handled per interrupt");
 150MODULE_PARM_DESC(debug, "winbond-840 debug level (0-6)");
 151MODULE_PARM_DESC(rx_copybreak, "winbond-840 copy breakpoint for copy-only-tiny-frames");
 152MODULE_PARM_DESC(multicast_filter_limit, "winbond-840 maximum number of filtered multicast addresses");
 153MODULE_PARM_DESC(options, "winbond-840: Bits 0-3: media type, bit 17: full duplex");
 154MODULE_PARM_DESC(full_duplex, "winbond-840 full duplex setting(s) (1)");
 155
 156/*
 157				Theory of Operation
 158
 159I. Board Compatibility
 160
 161This driver is for the Winbond w89c840 chip.
 162
 163II. Board-specific settings
 164
 165None.
 166
 167III. Driver operation
 168
 169This chip is very similar to the Digital 21*4* "Tulip" family.  The first
 170twelve registers and the descriptor format are nearly identical.  Read a
 171Tulip manual for operational details.
 172
 173A significant difference is that the multicast filter and station address are
 174stored in registers rather than loaded through a pseudo-transmit packet.
 175
 176Unlike the Tulip, transmit buffers are limited to 1KB.  To transmit a
 177full-sized packet we must use both data buffers in a descriptor.  Thus the
 178driver uses ring mode where descriptors are implicitly sequential in memory,
 179rather than using the second descriptor address as a chain pointer to
 180subsequent descriptors.
 181
 182IV. Notes
 183
 184If you are going to almost clone a Tulip, why not go all the way and avoid
 185the need for a new driver?
 186
 187IVb. References
 188
 189http://www.scyld.com/expert/100mbps.html
 190http://www.scyld.com/expert/NWay.html
 191http://www.winbond.com.tw/
 192
 193IVc. Errata
 194
 195A horrible bug exists in the transmit FIFO.  Apparently the chip doesn't
 196correctly detect a full FIFO, and queuing more than 2048 bytes may result in
 197silent data corruption.
 198
 199Test with 'ping -s 10000' on a fast computer.
 200
 201*/
 202
 203
 204
 205/*
 206  PCI probe table.
 207*/
 208enum chip_capability_flags {
 209	CanHaveMII=1, HasBrokenTx=2, AlwaysFDX=4, FDXOnNoMII=8,
 210};
 211
 212static const struct pci_device_id w840_pci_tbl[] = {
 213	{ 0x1050, 0x0840, PCI_ANY_ID, 0x8153,     0, 0, 0 },
 214	{ 0x1050, 0x0840, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
 215	{ 0x11f6, 0x2011, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 2 },
 216	{ }
 217};
 218MODULE_DEVICE_TABLE(pci, w840_pci_tbl);
 219
 220enum {
 221	netdev_res_size		= 128,	/* size of PCI BAR resource */
 222};
 223
 224struct pci_id_info {
 225        const char *name;
 226        int drv_flags;		/* Driver use, intended as capability flags. */
 227};
 228
 229static const struct pci_id_info pci_id_tbl[] = {
 230	{ 				/* Sometime a Level-One switch card. */
 231	  "Winbond W89c840",	CanHaveMII | HasBrokenTx | FDXOnNoMII},
 232	{ "Winbond W89c840",	CanHaveMII | HasBrokenTx},
 233	{ "Compex RL100-ATX",	CanHaveMII | HasBrokenTx},
 234	{ }	/* terminate list. */
 235};
 236
 237/* This driver was written to use PCI memory space, however some x86 systems
 238   work only with I/O space accesses. See CONFIG_TULIP_MMIO in .config
 239*/
 240
 241/* Offsets to the Command and Status Registers, "CSRs".
 242   While similar to the Tulip, these registers are longword aligned.
 243   Note: It's not useful to define symbolic names for every register bit in
 244   the device.  The name can only partially document the semantics and make
 245   the driver longer and more difficult to read.
 246*/
 247enum w840_offsets {
 248	PCIBusCfg=0x00, TxStartDemand=0x04, RxStartDemand=0x08,
 249	RxRingPtr=0x0C, TxRingPtr=0x10,
 250	IntrStatus=0x14, NetworkConfig=0x18, IntrEnable=0x1C,
 251	RxMissed=0x20, EECtrl=0x24, MIICtrl=0x24, BootRom=0x28, GPTimer=0x2C,
 252	CurRxDescAddr=0x30, CurRxBufAddr=0x34,			/* Debug use */
 253	MulticastFilter0=0x38, MulticastFilter1=0x3C, StationAddr=0x40,
 254	CurTxDescAddr=0x4C, CurTxBufAddr=0x50,
 255};
 256
 257/* Bits in the NetworkConfig register. */
 258enum rx_mode_bits {
 259	AcceptErr=0x80,
 260	RxAcceptBroadcast=0x20, AcceptMulticast=0x10,
 261	RxAcceptAllPhys=0x08, AcceptMyPhys=0x02,
 262};
 263
 264enum mii_reg_bits {
 265	MDIO_ShiftClk=0x10000, MDIO_DataIn=0x80000, MDIO_DataOut=0x20000,
 266	MDIO_EnbOutput=0x40000, MDIO_EnbIn = 0x00000,
 267};
 268
 269/* The Tulip Rx and Tx buffer descriptors. */
 270struct w840_rx_desc {
 271	s32 status;
 272	s32 length;
 273	u32 buffer1;
 274	u32 buffer2;
 275};
 276
 277struct w840_tx_desc {
 278	s32 status;
 279	s32 length;
 280	u32 buffer1, buffer2;
 281};
 282
 283#define MII_CNT		1 /* winbond only supports one MII */
 284struct netdev_private {
 285	struct w840_rx_desc *rx_ring;
 286	dma_addr_t	rx_addr[RX_RING_SIZE];
 287	struct w840_tx_desc *tx_ring;
 288	dma_addr_t	tx_addr[TX_RING_SIZE];
 289	dma_addr_t ring_dma_addr;
 290	/* The addresses of receive-in-place skbuffs. */
 291	struct sk_buff* rx_skbuff[RX_RING_SIZE];
 292	/* The saved address of a sent-in-place packet/buffer, for later free(). */
 293	struct sk_buff* tx_skbuff[TX_RING_SIZE];
 294	struct net_device_stats stats;
 295	struct timer_list timer;	/* Media monitoring timer. */
 296	/* Frequently used values: keep some adjacent for cache effect. */
 297	spinlock_t lock;
 298	int chip_id, drv_flags;
 299	struct pci_dev *pci_dev;
 300	int csr6;
 301	struct w840_rx_desc *rx_head_desc;
 302	unsigned int cur_rx, dirty_rx;		/* Producer/consumer ring indices */
 303	unsigned int rx_buf_sz;				/* Based on MTU+slack. */
 304	unsigned int cur_tx, dirty_tx;
 305	unsigned int tx_q_bytes;
 306	unsigned int tx_full;				/* The Tx queue is full. */
 307	/* MII transceiver section. */
 308	int mii_cnt;						/* MII device addresses. */
 309	unsigned char phys[MII_CNT];		/* MII device addresses, but only the first is used */
 310	u32 mii;
 311	struct mii_if_info mii_if;
 312	void __iomem *base_addr;
 313};
 314
 315static int  eeprom_read(void __iomem *ioaddr, int location);
 316static int  mdio_read(struct net_device *dev, int phy_id, int location);
 317static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
 318static int  netdev_open(struct net_device *dev);
 319static int  update_link(struct net_device *dev);
 320static void netdev_timer(struct timer_list *t);
 321static void init_rxtx_rings(struct net_device *dev);
 322static void free_rxtx_rings(struct netdev_private *np);
 323static void init_registers(struct net_device *dev);
 324static void tx_timeout(struct net_device *dev, unsigned int txqueue);
 325static int alloc_ringdesc(struct net_device *dev);
 326static void free_ringdesc(struct netdev_private *np);
 327static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
 328static irqreturn_t intr_handler(int irq, void *dev_instance);
 329static void netdev_error(struct net_device *dev, int intr_status);
 330static int  netdev_rx(struct net_device *dev);
 331static u32 __set_rx_mode(struct net_device *dev);
 332static void set_rx_mode(struct net_device *dev);
 333static struct net_device_stats *get_stats(struct net_device *dev);
 334static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 335static const struct ethtool_ops netdev_ethtool_ops;
 336static int  netdev_close(struct net_device *dev);
 337
 338static const struct net_device_ops netdev_ops = {
 339	.ndo_open		= netdev_open,
 340	.ndo_stop		= netdev_close,
 341	.ndo_start_xmit		= start_tx,
 342	.ndo_get_stats		= get_stats,
 343	.ndo_set_rx_mode	= set_rx_mode,
 344	.ndo_eth_ioctl		= netdev_ioctl,
 345	.ndo_tx_timeout		= tx_timeout,
 346	.ndo_set_mac_address	= eth_mac_addr,
 347	.ndo_validate_addr	= eth_validate_addr,
 348};
 349
 350static int w840_probe1(struct pci_dev *pdev, const struct pci_device_id *ent)
 351{
 352	struct net_device *dev;
 353	struct netdev_private *np;
 354	static int find_cnt;
 355	int chip_idx = ent->driver_data;
 356	int irq;
 357	int i, option = find_cnt < MAX_UNITS ? options[find_cnt] : 0;
 358	__le16 addr[ETH_ALEN / 2];
 359	void __iomem *ioaddr;
 360
 361	i = pcim_enable_device(pdev);
 362	if (i) return i;
 363
 364	pci_set_master(pdev);
 365
 366	irq = pdev->irq;
 367
 368	if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(32))) {
 369		pr_warn("Device %s disabled due to DMA limitations\n",
 370			pci_name(pdev));
 371		return -EIO;
 372	}
 373	dev = alloc_etherdev(sizeof(*np));
 374	if (!dev)
 375		return -ENOMEM;
 376	SET_NETDEV_DEV(dev, &pdev->dev);
 377
 378	if (pci_request_regions(pdev, DRV_NAME))
 379		goto err_out_netdev;
 380
 381	ioaddr = pci_iomap(pdev, TULIP_BAR, netdev_res_size);
 382	if (!ioaddr)
 383		goto err_out_netdev;
 384
 385	for (i = 0; i < 3; i++)
 386		addr[i] = cpu_to_le16(eeprom_read(ioaddr, i));
 387	eth_hw_addr_set(dev, (u8 *)addr);
 388
 389	/* Reset the chip to erase previous misconfiguration.
 390	   No hold time required! */
 391	iowrite32(0x00000001, ioaddr + PCIBusCfg);
 392
 393	np = netdev_priv(dev);
 394	np->pci_dev = pdev;
 395	np->chip_id = chip_idx;
 396	np->drv_flags = pci_id_tbl[chip_idx].drv_flags;
 397	spin_lock_init(&np->lock);
 398	np->mii_if.dev = dev;
 399	np->mii_if.mdio_read = mdio_read;
 400	np->mii_if.mdio_write = mdio_write;
 401	np->base_addr = ioaddr;
 402
 403	pci_set_drvdata(pdev, dev);
 404
 405	if (dev->mem_start)
 406		option = dev->mem_start;
 407
 408	/* The lower four bits are the media type. */
 409	if (option > 0) {
 410		if (option & 0x200)
 411			np->mii_if.full_duplex = 1;
 412		if (option & 15)
 413			dev_info(&dev->dev,
 414				 "ignoring user supplied media type %d",
 415				 option & 15);
 416	}
 417	if (find_cnt < MAX_UNITS  &&  full_duplex[find_cnt] > 0)
 418		np->mii_if.full_duplex = 1;
 419
 420	if (np->mii_if.full_duplex)
 421		np->mii_if.force_media = 1;
 422
 423	/* The chip-specific entries in the device structure. */
 424	dev->netdev_ops = &netdev_ops;
 425	dev->ethtool_ops = &netdev_ethtool_ops;
 426	dev->watchdog_timeo = TX_TIMEOUT;
 427
 428	i = register_netdev(dev);
 429	if (i)
 430		goto err_out_cleardev;
 431
 432	dev_info(&dev->dev, "%s at %p, %pM, IRQ %d\n",
 433		 pci_id_tbl[chip_idx].name, ioaddr, dev->dev_addr, irq);
 434
 435	if (np->drv_flags & CanHaveMII) {
 436		int phy, phy_idx = 0;
 437		for (phy = 1; phy < 32 && phy_idx < MII_CNT; phy++) {
 438			int mii_status = mdio_read(dev, phy, MII_BMSR);
 439			if (mii_status != 0xffff  &&  mii_status != 0x0000) {
 440				np->phys[phy_idx++] = phy;
 441				np->mii_if.advertising = mdio_read(dev, phy, MII_ADVERTISE);
 442				np->mii = (mdio_read(dev, phy, MII_PHYSID1) << 16)+
 443						mdio_read(dev, phy, MII_PHYSID2);
 444				dev_info(&dev->dev,
 445					 "MII PHY %08xh found at address %d, status 0x%04x advertising %04x\n",
 446					 np->mii, phy, mii_status,
 447					 np->mii_if.advertising);
 448			}
 449		}
 450		np->mii_cnt = phy_idx;
 451		np->mii_if.phy_id = np->phys[0];
 452		if (phy_idx == 0) {
 453			dev_warn(&dev->dev,
 454				 "MII PHY not found -- this device may not operate correctly\n");
 455		}
 456	}
 457
 458	find_cnt++;
 459	return 0;
 460
 461err_out_cleardev:
 462	pci_iounmap(pdev, ioaddr);
 463err_out_netdev:
 464	free_netdev (dev);
 465	return -ENODEV;
 466}
 467
 468
 469/* Read the EEPROM and MII Management Data I/O (MDIO) interfaces.  These are
 470   often serial bit streams generated by the host processor.
 471   The example below is for the common 93c46 EEPROM, 64 16 bit words. */
 472
 473/* Delay between EEPROM clock transitions.
 474   No extra delay is needed with 33Mhz PCI, but future 66Mhz access may need
 475   a delay.  Note that pre-2.0.34 kernels had a cache-alignment bug that
 476   made udelay() unreliable.
 477*/
 478#define eeprom_delay(ee_addr)	ioread32(ee_addr)
 479
 480enum EEPROM_Ctrl_Bits {
 481	EE_ShiftClk=0x02, EE_Write0=0x801, EE_Write1=0x805,
 482	EE_ChipSelect=0x801, EE_DataIn=0x08,
 483};
 484
 485/* The EEPROM commands include the alway-set leading bit. */
 486enum EEPROM_Cmds {
 487	EE_WriteCmd=(5 << 6), EE_ReadCmd=(6 << 6), EE_EraseCmd=(7 << 6),
 488};
 489
 490static int eeprom_read(void __iomem *addr, int location)
 491{
 492	int i;
 493	int retval = 0;
 494	void __iomem *ee_addr = addr + EECtrl;
 495	int read_cmd = location | EE_ReadCmd;
 496	iowrite32(EE_ChipSelect, ee_addr);
 497
 498	/* Shift the read command bits out. */
 499	for (i = 10; i >= 0; i--) {
 500		short dataval = (read_cmd & (1 << i)) ? EE_Write1 : EE_Write0;
 501		iowrite32(dataval, ee_addr);
 502		eeprom_delay(ee_addr);
 503		iowrite32(dataval | EE_ShiftClk, ee_addr);
 504		eeprom_delay(ee_addr);
 505	}
 506	iowrite32(EE_ChipSelect, ee_addr);
 507	eeprom_delay(ee_addr);
 508
 509	for (i = 16; i > 0; i--) {
 510		iowrite32(EE_ChipSelect | EE_ShiftClk, ee_addr);
 511		eeprom_delay(ee_addr);
 512		retval = (retval << 1) | ((ioread32(ee_addr) & EE_DataIn) ? 1 : 0);
 513		iowrite32(EE_ChipSelect, ee_addr);
 514		eeprom_delay(ee_addr);
 515	}
 516
 517	/* Terminate the EEPROM access. */
 518	iowrite32(0, ee_addr);
 519	return retval;
 520}
 521
 522/*  MII transceiver control section.
 523	Read and write the MII registers using software-generated serial
 524	MDIO protocol.  See the MII specifications or DP83840A data sheet
 525	for details.
 526
 527	The maximum data clock rate is 2.5 Mhz.  The minimum timing is usually
 528	met by back-to-back 33Mhz PCI cycles. */
 529#define mdio_delay(mdio_addr) ioread32(mdio_addr)
 530
 531/* Set iff a MII transceiver on any interface requires mdio preamble.
 532   This only set with older transceivers, so the extra
 533   code size of a per-interface flag is not worthwhile. */
 534static char mii_preamble_required = 1;
 535
 536#define MDIO_WRITE0 (MDIO_EnbOutput)
 537#define MDIO_WRITE1 (MDIO_DataOut | MDIO_EnbOutput)
 538
 539/* Generate the preamble required for initial synchronization and
 540   a few older transceivers. */
 541static void mdio_sync(void __iomem *mdio_addr)
 542{
 543	int bits = 32;
 544
 545	/* Establish sync by sending at least 32 logic ones. */
 546	while (--bits >= 0) {
 547		iowrite32(MDIO_WRITE1, mdio_addr);
 548		mdio_delay(mdio_addr);
 549		iowrite32(MDIO_WRITE1 | MDIO_ShiftClk, mdio_addr);
 550		mdio_delay(mdio_addr);
 551	}
 552}
 553
 554static int mdio_read(struct net_device *dev, int phy_id, int location)
 555{
 556	struct netdev_private *np = netdev_priv(dev);
 557	void __iomem *mdio_addr = np->base_addr + MIICtrl;
 558	int mii_cmd = (0xf6 << 10) | (phy_id << 5) | location;
 559	int i, retval = 0;
 560
 561	if (mii_preamble_required)
 562		mdio_sync(mdio_addr);
 563
 564	/* Shift the read command bits out. */
 565	for (i = 15; i >= 0; i--) {
 566		int dataval = (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0;
 567
 568		iowrite32(dataval, mdio_addr);
 569		mdio_delay(mdio_addr);
 570		iowrite32(dataval | MDIO_ShiftClk, mdio_addr);
 571		mdio_delay(mdio_addr);
 572	}
 573	/* Read the two transition, 16 data, and wire-idle bits. */
 574	for (i = 20; i > 0; i--) {
 575		iowrite32(MDIO_EnbIn, mdio_addr);
 576		mdio_delay(mdio_addr);
 577		retval = (retval << 1) | ((ioread32(mdio_addr) & MDIO_DataIn) ? 1 : 0);
 578		iowrite32(MDIO_EnbIn | MDIO_ShiftClk, mdio_addr);
 579		mdio_delay(mdio_addr);
 580	}
 581	return (retval>>1) & 0xffff;
 582}
 583
 584static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
 585{
 586	struct netdev_private *np = netdev_priv(dev);
 587	void __iomem *mdio_addr = np->base_addr + MIICtrl;
 588	int mii_cmd = (0x5002 << 16) | (phy_id << 23) | (location<<18) | value;
 589	int i;
 590
 591	if (location == 4  &&  phy_id == np->phys[0])
 592		np->mii_if.advertising = value;
 593
 594	if (mii_preamble_required)
 595		mdio_sync(mdio_addr);
 596
 597	/* Shift the command bits out. */
 598	for (i = 31; i >= 0; i--) {
 599		int dataval = (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0;
 600
 601		iowrite32(dataval, mdio_addr);
 602		mdio_delay(mdio_addr);
 603		iowrite32(dataval | MDIO_ShiftClk, mdio_addr);
 604		mdio_delay(mdio_addr);
 605	}
 606	/* Clear out extra bits. */
 607	for (i = 2; i > 0; i--) {
 608		iowrite32(MDIO_EnbIn, mdio_addr);
 609		mdio_delay(mdio_addr);
 610		iowrite32(MDIO_EnbIn | MDIO_ShiftClk, mdio_addr);
 611		mdio_delay(mdio_addr);
 612	}
 613}
 614
 615
 616static int netdev_open(struct net_device *dev)
 617{
 618	struct netdev_private *np = netdev_priv(dev);
 619	void __iomem *ioaddr = np->base_addr;
 620	const int irq = np->pci_dev->irq;
 621	int i;
 622
 623	iowrite32(0x00000001, ioaddr + PCIBusCfg);		/* Reset */
 624
 625	netif_device_detach(dev);
 626	i = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev);
 627	if (i)
 628		goto out_err;
 629
 630	if (debug > 1)
 631		netdev_dbg(dev, "%s() irq %d\n", __func__, irq);
 632
 633	i = alloc_ringdesc(dev);
 634	if (i)
 635		goto out_err;
 636
 637	spin_lock_irq(&np->lock);
 638	netif_device_attach(dev);
 639	init_registers(dev);
 640	spin_unlock_irq(&np->lock);
 641
 642	netif_start_queue(dev);
 643	if (debug > 2)
 644		netdev_dbg(dev, "Done %s()\n", __func__);
 645
 646	/* Set the timer to check for link beat. */
 647	timer_setup(&np->timer, netdev_timer, 0);
 648	np->timer.expires = jiffies + 1*HZ;
 649	add_timer(&np->timer);
 650	return 0;
 651out_err:
 652	netif_device_attach(dev);
 653	return i;
 654}
 655
 656#define MII_DAVICOM_DM9101	0x0181b800
 657
 658static int update_link(struct net_device *dev)
 659{
 660	struct netdev_private *np = netdev_priv(dev);
 661	int duplex, fasteth, result, mii_reg;
 662
 663	/* BSMR */
 664	mii_reg = mdio_read(dev, np->phys[0], MII_BMSR);
 665
 666	if (mii_reg == 0xffff)
 667		return np->csr6;
 668	/* reread: the link status bit is sticky */
 669	mii_reg = mdio_read(dev, np->phys[0], MII_BMSR);
 670	if (!(mii_reg & 0x4)) {
 671		if (netif_carrier_ok(dev)) {
 672			if (debug)
 673				dev_info(&dev->dev,
 674					 "MII #%d reports no link. Disabling watchdog\n",
 675					 np->phys[0]);
 676			netif_carrier_off(dev);
 677		}
 678		return np->csr6;
 679	}
 680	if (!netif_carrier_ok(dev)) {
 681		if (debug)
 682			dev_info(&dev->dev,
 683				 "MII #%d link is back. Enabling watchdog\n",
 684				 np->phys[0]);
 685		netif_carrier_on(dev);
 686	}
 687
 688	if ((np->mii & ~0xf) == MII_DAVICOM_DM9101) {
 689		/* If the link partner doesn't support autonegotiation
 690		 * the MII detects it's abilities with the "parallel detection".
 691		 * Some MIIs update the LPA register to the result of the parallel
 692		 * detection, some don't.
 693		 * The Davicom PHY [at least 0181b800] doesn't.
 694		 * Instead bit 9 and 13 of the BMCR are updated to the result
 695		 * of the negotiation..
 696		 */
 697		mii_reg = mdio_read(dev, np->phys[0], MII_BMCR);
 698		duplex = mii_reg & BMCR_FULLDPLX;
 699		fasteth = mii_reg & BMCR_SPEED100;
 700	} else {
 701		int negotiated;
 702		mii_reg	= mdio_read(dev, np->phys[0], MII_LPA);
 703		negotiated = mii_reg & np->mii_if.advertising;
 704
 705		duplex = (negotiated & LPA_100FULL) || ((negotiated & 0x02C0) == LPA_10FULL);
 706		fasteth = negotiated & 0x380;
 707	}
 708	duplex |= np->mii_if.force_media;
 709	/* remove fastether and fullduplex */
 710	result = np->csr6 & ~0x20000200;
 711	if (duplex)
 712		result |= 0x200;
 713	if (fasteth)
 714		result |= 0x20000000;
 715	if (result != np->csr6 && debug)
 716		dev_info(&dev->dev,
 717			 "Setting %dMBit-%s-duplex based on MII#%d\n",
 718			 fasteth ? 100 : 10, duplex ? "full" : "half",
 719			 np->phys[0]);
 720	return result;
 721}
 722
 723#define RXTX_TIMEOUT	2000
 724static inline void update_csr6(struct net_device *dev, int new)
 725{
 726	struct netdev_private *np = netdev_priv(dev);
 727	void __iomem *ioaddr = np->base_addr;
 728	int limit = RXTX_TIMEOUT;
 729
 730	if (!netif_device_present(dev))
 731		new = 0;
 732	if (new==np->csr6)
 733		return;
 734	/* stop both Tx and Rx processes */
 735	iowrite32(np->csr6 & ~0x2002, ioaddr + NetworkConfig);
 736	/* wait until they have really stopped */
 737	for (;;) {
 738		int csr5 = ioread32(ioaddr + IntrStatus);
 739		int t;
 740
 741		t = (csr5 >> 17) & 0x07;
 742		if (t==0||t==1) {
 743			/* rx stopped */
 744			t = (csr5 >> 20) & 0x07;
 745			if (t==0||t==1)
 746				break;
 747		}
 748
 749		limit--;
 750		if(!limit) {
 751			dev_info(&dev->dev,
 752				 "couldn't stop rxtx, IntrStatus %xh\n", csr5);
 753			break;
 754		}
 755		udelay(1);
 756	}
 757	np->csr6 = new;
 758	/* and restart them with the new configuration */
 759	iowrite32(np->csr6, ioaddr + NetworkConfig);
 760	if (new & 0x200)
 761		np->mii_if.full_duplex = 1;
 762}
 763
 764static void netdev_timer(struct timer_list *t)
 765{
 766	struct netdev_private *np = from_timer(np, t, timer);
 767	struct net_device *dev = pci_get_drvdata(np->pci_dev);
 768	void __iomem *ioaddr = np->base_addr;
 769
 770	if (debug > 2)
 771		netdev_dbg(dev, "Media selection timer tick, status %08x config %08x\n",
 772			   ioread32(ioaddr + IntrStatus),
 773			   ioread32(ioaddr + NetworkConfig));
 774	spin_lock_irq(&np->lock);
 775	update_csr6(dev, update_link(dev));
 776	spin_unlock_irq(&np->lock);
 777	np->timer.expires = jiffies + 10*HZ;
 778	add_timer(&np->timer);
 779}
 780
 781static void init_rxtx_rings(struct net_device *dev)
 782{
 783	struct netdev_private *np = netdev_priv(dev);
 784	int i;
 785
 786	np->rx_head_desc = &np->rx_ring[0];
 787	np->tx_ring = (struct w840_tx_desc*)&np->rx_ring[RX_RING_SIZE];
 788
 789	/* Initial all Rx descriptors. */
 790	for (i = 0; i < RX_RING_SIZE; i++) {
 791		np->rx_ring[i].length = np->rx_buf_sz;
 792		np->rx_ring[i].status = 0;
 793		np->rx_skbuff[i] = NULL;
 794	}
 795	/* Mark the last entry as wrapping the ring. */
 796	np->rx_ring[i-1].length |= DescEndRing;
 797
 798	/* Fill in the Rx buffers.  Handle allocation failure gracefully. */
 799	for (i = 0; i < RX_RING_SIZE; i++) {
 800		struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz);
 801		np->rx_skbuff[i] = skb;
 802		if (skb == NULL)
 803			break;
 804		np->rx_addr[i] = dma_map_single(&np->pci_dev->dev, skb->data,
 805						np->rx_buf_sz,
 806						DMA_FROM_DEVICE);
 807
 808		np->rx_ring[i].buffer1 = np->rx_addr[i];
 809		np->rx_ring[i].status = DescOwned;
 810	}
 811
 812	np->cur_rx = 0;
 813	np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
 814
 815	/* Initialize the Tx descriptors */
 816	for (i = 0; i < TX_RING_SIZE; i++) {
 817		np->tx_skbuff[i] = NULL;
 818		np->tx_ring[i].status = 0;
 819	}
 820	np->tx_full = 0;
 821	np->tx_q_bytes = np->dirty_tx = np->cur_tx = 0;
 822
 823	iowrite32(np->ring_dma_addr, np->base_addr + RxRingPtr);
 824	iowrite32(np->ring_dma_addr+sizeof(struct w840_rx_desc)*RX_RING_SIZE,
 825		np->base_addr + TxRingPtr);
 826
 827}
 828
 829static void free_rxtx_rings(struct netdev_private* np)
 830{
 831	int i;
 832	/* Free all the skbuffs in the Rx queue. */
 833	for (i = 0; i < RX_RING_SIZE; i++) {
 834		np->rx_ring[i].status = 0;
 835		if (np->rx_skbuff[i]) {
 836			dma_unmap_single(&np->pci_dev->dev, np->rx_addr[i],
 837					 np->rx_skbuff[i]->len,
 838					 DMA_FROM_DEVICE);
 839			dev_kfree_skb(np->rx_skbuff[i]);
 840		}
 841		np->rx_skbuff[i] = NULL;
 842	}
 843	for (i = 0; i < TX_RING_SIZE; i++) {
 844		if (np->tx_skbuff[i]) {
 845			dma_unmap_single(&np->pci_dev->dev, np->tx_addr[i],
 846					 np->tx_skbuff[i]->len, DMA_TO_DEVICE);
 847			dev_kfree_skb(np->tx_skbuff[i]);
 848		}
 849		np->tx_skbuff[i] = NULL;
 850	}
 851}
 852
 853static void init_registers(struct net_device *dev)
 854{
 855	struct netdev_private *np = netdev_priv(dev);
 856	void __iomem *ioaddr = np->base_addr;
 857	int i;
 858
 859	for (i = 0; i < 6; i++)
 860		iowrite8(dev->dev_addr[i], ioaddr + StationAddr + i);
 861
 862	/* Initialize other registers. */
 863#ifdef __BIG_ENDIAN
 864	i = (1<<20);	/* Big-endian descriptors */
 865#else
 866	i = 0;
 867#endif
 868	i |= (0x04<<2);		/* skip length 4 u32 */
 869	i |= 0x02;		/* give Rx priority */
 870
 871	/* Configure the PCI bus bursts and FIFO thresholds.
 872	   486: Set 8 longword cache alignment, 8 longword burst.
 873	   586: Set 16 longword cache alignment, no burst limit.
 874	   Cache alignment bits 15:14	     Burst length 13:8
 875		0000	<not allowed> 		0000 align to cache	0800 8 longwords
 876		4000	8  longwords		0100 1 longword		1000 16 longwords
 877		8000	16 longwords		0200 2 longwords	2000 32 longwords
 878		C000	32  longwords		0400 4 longwords */
 879
 880#if defined (__i386__) && !defined(MODULE) && !defined(CONFIG_UML)
 881	/* When not a module we can work around broken '486 PCI boards. */
 882	if (boot_cpu_data.x86 <= 4) {
 883		i |= 0x4800;
 884		dev_info(&dev->dev,
 885			 "This is a 386/486 PCI system, setting cache alignment to 8 longwords\n");
 886	} else {
 887		i |= 0xE000;
 888	}
 889#elif defined(__powerpc__) || defined(__i386__) || defined(__alpha__) || defined(__ia64__) || defined(__x86_64__)
 890	i |= 0xE000;
 891#elif defined(CONFIG_SPARC) || defined (CONFIG_PARISC) || defined(CONFIG_ARM)
 892	i |= 0x4800;
 893#else
 894	dev_warn(&dev->dev, "unknown CPU architecture, using default csr0 setting\n");
 895	i |= 0x4800;
 896#endif
 897	iowrite32(i, ioaddr + PCIBusCfg);
 898
 899	np->csr6 = 0;
 900	/* 128 byte Tx threshold;
 901		Transmit on; Receive on; */
 902	update_csr6(dev, 0x00022002 | update_link(dev) | __set_rx_mode(dev));
 903
 904	/* Clear and Enable interrupts by setting the interrupt mask. */
 905	iowrite32(0x1A0F5, ioaddr + IntrStatus);
 906	iowrite32(0x1A0F5, ioaddr + IntrEnable);
 907
 908	iowrite32(0, ioaddr + RxStartDemand);
 909}
 910
 911static void tx_timeout(struct net_device *dev, unsigned int txqueue)
 912{
 913	struct netdev_private *np = netdev_priv(dev);
 914	void __iomem *ioaddr = np->base_addr;
 915	const int irq = np->pci_dev->irq;
 916
 917	dev_warn(&dev->dev, "Transmit timed out, status %08x, resetting...\n",
 918		 ioread32(ioaddr + IntrStatus));
 919
 920	{
 921		int i;
 922		printk(KERN_DEBUG "  Rx ring %p: ", np->rx_ring);
 923		for (i = 0; i < RX_RING_SIZE; i++)
 924			printk(KERN_CONT " %08x", (unsigned int)np->rx_ring[i].status);
 925		printk(KERN_CONT "\n");
 926		printk(KERN_DEBUG "  Tx ring %p: ", np->tx_ring);
 927		for (i = 0; i < TX_RING_SIZE; i++)
 928			printk(KERN_CONT " %08x", np->tx_ring[i].status);
 929		printk(KERN_CONT "\n");
 930	}
 931	printk(KERN_DEBUG "Tx cur %d Tx dirty %d Tx Full %d, q bytes %d\n",
 932	       np->cur_tx, np->dirty_tx, np->tx_full, np->tx_q_bytes);
 933	printk(KERN_DEBUG "Tx Descriptor addr %xh\n", ioread32(ioaddr+0x4C));
 934
 935	disable_irq(irq);
 936	spin_lock_irq(&np->lock);
 937	/*
 938	 * Under high load dirty_tx and the internal tx descriptor pointer
 939	 * come out of sync, thus perform a software reset and reinitialize
 940	 * everything.
 941	 */
 942
 943	iowrite32(1, np->base_addr+PCIBusCfg);
 944	udelay(1);
 945
 946	free_rxtx_rings(np);
 947	init_rxtx_rings(dev);
 948	init_registers(dev);
 949	spin_unlock_irq(&np->lock);
 950	enable_irq(irq);
 951
 952	netif_wake_queue(dev);
 953	netif_trans_update(dev); /* prevent tx timeout */
 954	np->stats.tx_errors++;
 955}
 956
 957/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
 958static int alloc_ringdesc(struct net_device *dev)
 959{
 960	struct netdev_private *np = netdev_priv(dev);
 961
 962	np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
 963
 964	np->rx_ring = dma_alloc_coherent(&np->pci_dev->dev,
 965					 sizeof(struct w840_rx_desc) * RX_RING_SIZE +
 966					 sizeof(struct w840_tx_desc) * TX_RING_SIZE,
 967					 &np->ring_dma_addr, GFP_KERNEL);
 968	if(!np->rx_ring)
 969		return -ENOMEM;
 970	init_rxtx_rings(dev);
 971	return 0;
 972}
 973
 974static void free_ringdesc(struct netdev_private *np)
 975{
 976	dma_free_coherent(&np->pci_dev->dev,
 977			  sizeof(struct w840_rx_desc) * RX_RING_SIZE +
 978			  sizeof(struct w840_tx_desc) * TX_RING_SIZE,
 979			  np->rx_ring, np->ring_dma_addr);
 980
 981}
 982
 983static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
 984{
 985	struct netdev_private *np = netdev_priv(dev);
 986	unsigned entry;
 987
 988	/* Caution: the write order is important here, set the field
 989	   with the "ownership" bits last. */
 990
 991	/* Calculate the next Tx descriptor entry. */
 992	entry = np->cur_tx % TX_RING_SIZE;
 993
 994	np->tx_addr[entry] = dma_map_single(&np->pci_dev->dev, skb->data,
 995					    skb->len, DMA_TO_DEVICE);
 996	np->tx_skbuff[entry] = skb;
 997
 998	np->tx_ring[entry].buffer1 = np->tx_addr[entry];
 999	if (skb->len < TX_BUFLIMIT) {
1000		np->tx_ring[entry].length = DescWholePkt | skb->len;
1001	} else {
1002		int len = skb->len - TX_BUFLIMIT;
1003
1004		np->tx_ring[entry].buffer2 = np->tx_addr[entry]+TX_BUFLIMIT;
1005		np->tx_ring[entry].length = DescWholePkt | (len << 11) | TX_BUFLIMIT;
1006	}
1007	if(entry == TX_RING_SIZE-1)
1008		np->tx_ring[entry].length |= DescEndRing;
1009
1010	/* Now acquire the irq spinlock.
1011	 * The difficult race is the ordering between
1012	 * increasing np->cur_tx and setting DescOwned:
1013	 * - if np->cur_tx is increased first the interrupt
1014	 *   handler could consider the packet as transmitted
1015	 *   since DescOwned is cleared.
1016	 * - If DescOwned is set first the NIC could report the
1017	 *   packet as sent, but the interrupt handler would ignore it
1018	 *   since the np->cur_tx was not yet increased.
1019	 */
1020	spin_lock_irq(&np->lock);
1021	np->cur_tx++;
1022
1023	wmb(); /* flush length, buffer1, buffer2 */
1024	np->tx_ring[entry].status = DescOwned;
1025	wmb(); /* flush status and kick the hardware */
1026	iowrite32(0, np->base_addr + TxStartDemand);
1027	np->tx_q_bytes += skb->len;
1028	/* Work around horrible bug in the chip by marking the queue as full
1029	   when we do not have FIFO room for a maximum sized packet. */
1030	if (np->cur_tx - np->dirty_tx > TX_QUEUE_LEN ||
1031		((np->drv_flags & HasBrokenTx) && np->tx_q_bytes > TX_BUG_FIFO_LIMIT)) {
1032		netif_stop_queue(dev);
1033		wmb();
1034		np->tx_full = 1;
1035	}
1036	spin_unlock_irq(&np->lock);
1037
1038	if (debug > 4) {
1039		netdev_dbg(dev, "Transmit frame #%d queued in slot %d\n",
1040			   np->cur_tx, entry);
1041	}
1042	return NETDEV_TX_OK;
1043}
1044
1045static void netdev_tx_done(struct net_device *dev)
1046{
1047	struct netdev_private *np = netdev_priv(dev);
1048	for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
1049		int entry = np->dirty_tx % TX_RING_SIZE;
1050		int tx_status = np->tx_ring[entry].status;
1051
1052		if (tx_status < 0)
1053			break;
1054		if (tx_status & 0x8000) { 	/* There was an error, log it. */
1055#ifndef final_version
1056			if (debug > 1)
1057				netdev_dbg(dev, "Transmit error, Tx status %08x\n",
1058					   tx_status);
1059#endif
1060			np->stats.tx_errors++;
1061			if (tx_status & 0x0104) np->stats.tx_aborted_errors++;
1062			if (tx_status & 0x0C80) np->stats.tx_carrier_errors++;
1063			if (tx_status & 0x0200) np->stats.tx_window_errors++;
1064			if (tx_status & 0x0002) np->stats.tx_fifo_errors++;
1065			if ((tx_status & 0x0080) && np->mii_if.full_duplex == 0)
1066				np->stats.tx_heartbeat_errors++;
1067		} else {
1068#ifndef final_version
1069			if (debug > 3)
1070				netdev_dbg(dev, "Transmit slot %d ok, Tx status %08x\n",
1071					   entry, tx_status);
1072#endif
1073			np->stats.tx_bytes += np->tx_skbuff[entry]->len;
1074			np->stats.collisions += (tx_status >> 3) & 15;
1075			np->stats.tx_packets++;
1076		}
1077		/* Free the original skb. */
1078		dma_unmap_single(&np->pci_dev->dev, np->tx_addr[entry],
1079				 np->tx_skbuff[entry]->len, DMA_TO_DEVICE);
1080		np->tx_q_bytes -= np->tx_skbuff[entry]->len;
1081		dev_kfree_skb_irq(np->tx_skbuff[entry]);
1082		np->tx_skbuff[entry] = NULL;
1083	}
1084	if (np->tx_full &&
1085		np->cur_tx - np->dirty_tx < TX_QUEUE_LEN_RESTART &&
1086		np->tx_q_bytes < TX_BUG_FIFO_LIMIT) {
1087		/* The ring is no longer full, clear tbusy. */
1088		np->tx_full = 0;
1089		wmb();
1090		netif_wake_queue(dev);
1091	}
1092}
1093
1094/* The interrupt handler does all of the Rx thread work and cleans up
1095   after the Tx thread. */
1096static irqreturn_t intr_handler(int irq, void *dev_instance)
1097{
1098	struct net_device *dev = (struct net_device *)dev_instance;
1099	struct netdev_private *np = netdev_priv(dev);
1100	void __iomem *ioaddr = np->base_addr;
1101	int work_limit = max_interrupt_work;
1102	int handled = 0;
1103
1104	if (!netif_device_present(dev))
1105		return IRQ_NONE;
1106	do {
1107		u32 intr_status = ioread32(ioaddr + IntrStatus);
1108
1109		/* Acknowledge all of the current interrupt sources ASAP. */
1110		iowrite32(intr_status & 0x001ffff, ioaddr + IntrStatus);
1111
1112		if (debug > 4)
1113			netdev_dbg(dev, "Interrupt, status %04x\n", intr_status);
1114
1115		if ((intr_status & (NormalIntr|AbnormalIntr)) == 0)
1116			break;
1117
1118		handled = 1;
1119
1120		if (intr_status & (RxIntr | RxNoBuf))
1121			netdev_rx(dev);
1122		if (intr_status & RxNoBuf)
1123			iowrite32(0, ioaddr + RxStartDemand);
1124
1125		if (intr_status & (TxNoBuf | TxIntr) &&
1126			np->cur_tx != np->dirty_tx) {
1127			spin_lock(&np->lock);
1128			netdev_tx_done(dev);
1129			spin_unlock(&np->lock);
1130		}
1131
1132		/* Abnormal error summary/uncommon events handlers. */
1133		if (intr_status & (AbnormalIntr | TxFIFOUnderflow | SystemError |
1134						   TimerInt | TxDied))
1135			netdev_error(dev, intr_status);
1136
1137		if (--work_limit < 0) {
1138			dev_warn(&dev->dev,
1139				 "Too much work at interrupt, status=0x%04x\n",
1140				 intr_status);
1141			/* Set the timer to re-enable the other interrupts after
1142			   10*82usec ticks. */
1143			spin_lock(&np->lock);
1144			if (netif_device_present(dev)) {
1145				iowrite32(AbnormalIntr | TimerInt, ioaddr + IntrEnable);
1146				iowrite32(10, ioaddr + GPTimer);
1147			}
1148			spin_unlock(&np->lock);
1149			break;
1150		}
1151	} while (1);
1152
1153	if (debug > 3)
1154		netdev_dbg(dev, "exiting interrupt, status=%#4.4x\n",
1155			   ioread32(ioaddr + IntrStatus));
1156	return IRQ_RETVAL(handled);
1157}
1158
1159/* This routine is logically part of the interrupt handler, but separated
1160   for clarity and better register allocation. */
1161static int netdev_rx(struct net_device *dev)
1162{
1163	struct netdev_private *np = netdev_priv(dev);
1164	int entry = np->cur_rx % RX_RING_SIZE;
1165	int work_limit = np->dirty_rx + RX_RING_SIZE - np->cur_rx;
1166
1167	if (debug > 4) {
1168		netdev_dbg(dev, " In netdev_rx(), entry %d status %04x\n",
1169			   entry, np->rx_ring[entry].status);
1170	}
1171
1172	/* If EOP is set on the next entry, it's a new packet. Send it up. */
1173	while (--work_limit >= 0) {
1174		struct w840_rx_desc *desc = np->rx_head_desc;
1175		s32 status = desc->status;
1176
1177		if (debug > 4)
1178			netdev_dbg(dev, "  netdev_rx() status was %08x\n",
1179				   status);
1180		if (status < 0)
1181			break;
1182		if ((status & 0x38008300) != 0x0300) {
1183			if ((status & 0x38000300) != 0x0300) {
1184				/* Ingore earlier buffers. */
1185				if ((status & 0xffff) != 0x7fff) {
1186					dev_warn(&dev->dev,
1187						 "Oversized Ethernet frame spanned multiple buffers, entry %#x status %04x!\n",
1188						 np->cur_rx, status);
1189					np->stats.rx_length_errors++;
1190				}
1191			} else if (status & 0x8000) {
1192				/* There was a fatal error. */
1193				if (debug > 2)
1194					netdev_dbg(dev, "Receive error, Rx status %08x\n",
1195						   status);
1196				np->stats.rx_errors++; /* end of a packet.*/
1197				if (status & 0x0890) np->stats.rx_length_errors++;
1198				if (status & 0x004C) np->stats.rx_frame_errors++;
1199				if (status & 0x0002) np->stats.rx_crc_errors++;
1200			}
1201		} else {
1202			struct sk_buff *skb;
1203			/* Omit the four octet CRC from the length. */
1204			int pkt_len = ((status >> 16) & 0x7ff) - 4;
1205
1206#ifndef final_version
1207			if (debug > 4)
1208				netdev_dbg(dev, "  netdev_rx() normal Rx pkt length %d status %x\n",
1209					   pkt_len, status);
1210#endif
1211			/* Check if the packet is long enough to accept without copying
1212			   to a minimally-sized skbuff. */
1213			if (pkt_len < rx_copybreak &&
1214			    (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
1215				skb_reserve(skb, 2);	/* 16 byte align the IP header */
1216				dma_sync_single_for_cpu(&np->pci_dev->dev,
1217							np->rx_addr[entry],
1218							np->rx_skbuff[entry]->len,
1219							DMA_FROM_DEVICE);
1220				skb_copy_to_linear_data(skb, np->rx_skbuff[entry]->data, pkt_len);
1221				skb_put(skb, pkt_len);
1222				dma_sync_single_for_device(&np->pci_dev->dev,
1223							   np->rx_addr[entry],
1224							   np->rx_skbuff[entry]->len,
1225							   DMA_FROM_DEVICE);
1226			} else {
1227				dma_unmap_single(&np->pci_dev->dev,
1228						 np->rx_addr[entry],
1229						 np->rx_skbuff[entry]->len,
1230						 DMA_FROM_DEVICE);
1231				skb_put(skb = np->rx_skbuff[entry], pkt_len);
1232				np->rx_skbuff[entry] = NULL;
1233			}
1234#ifndef final_version				/* Remove after testing. */
1235			/* You will want this info for the initial debug. */
1236			if (debug > 5)
1237				netdev_dbg(dev, "  Rx data %pM %pM %02x%02x %pI4\n",
1238					   &skb->data[0], &skb->data[6],
1239					   skb->data[12], skb->data[13],
1240					   &skb->data[14]);
1241#endif
1242			skb->protocol = eth_type_trans(skb, dev);
1243			netif_rx(skb);
1244			np->stats.rx_packets++;
1245			np->stats.rx_bytes += pkt_len;
1246		}
1247		entry = (++np->cur_rx) % RX_RING_SIZE;
1248		np->rx_head_desc = &np->rx_ring[entry];
1249	}
1250
1251	/* Refill the Rx ring buffers. */
1252	for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1253		struct sk_buff *skb;
1254		entry = np->dirty_rx % RX_RING_SIZE;
1255		if (np->rx_skbuff[entry] == NULL) {
1256			skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1257			np->rx_skbuff[entry] = skb;
1258			if (skb == NULL)
1259				break;			/* Better luck next round. */
1260			np->rx_addr[entry] = dma_map_single(&np->pci_dev->dev,
1261							    skb->data,
1262							    np->rx_buf_sz,
1263							    DMA_FROM_DEVICE);
1264			np->rx_ring[entry].buffer1 = np->rx_addr[entry];
1265		}
1266		wmb();
1267		np->rx_ring[entry].status = DescOwned;
1268	}
1269
1270	return 0;
1271}
1272
1273static void netdev_error(struct net_device *dev, int intr_status)
1274{
1275	struct netdev_private *np = netdev_priv(dev);
1276	void __iomem *ioaddr = np->base_addr;
1277
1278	if (debug > 2)
1279		netdev_dbg(dev, "Abnormal event, %08x\n", intr_status);
1280	if (intr_status == 0xffffffff)
1281		return;
1282	spin_lock(&np->lock);
1283	if (intr_status & TxFIFOUnderflow) {
1284		int new;
1285		/* Bump up the Tx threshold */
1286#if 0
1287		/* This causes lots of dropped packets,
1288		 * and under high load even tx_timeouts
1289		 */
1290		new = np->csr6 + 0x4000;
1291#else
1292		new = (np->csr6 >> 14)&0x7f;
1293		if (new < 64)
1294			new *= 2;
1295		 else
1296		 	new = 127; /* load full packet before starting */
1297		new = (np->csr6 & ~(0x7F << 14)) | (new<<14);
1298#endif
1299		netdev_dbg(dev, "Tx underflow, new csr6 %08x\n", new);
1300		update_csr6(dev, new);
1301	}
1302	if (intr_status & RxDied) {		/* Missed a Rx frame. */
1303		np->stats.rx_errors++;
1304	}
1305	if (intr_status & TimerInt) {
1306		/* Re-enable other interrupts. */
1307		if (netif_device_present(dev))
1308			iowrite32(0x1A0F5, ioaddr + IntrEnable);
1309	}
1310	np->stats.rx_missed_errors += ioread32(ioaddr + RxMissed) & 0xffff;
1311	iowrite32(0, ioaddr + RxStartDemand);
1312	spin_unlock(&np->lock);
1313}
1314
1315static struct net_device_stats *get_stats(struct net_device *dev)
1316{
1317	struct netdev_private *np = netdev_priv(dev);
1318	void __iomem *ioaddr = np->base_addr;
1319
1320	/* The chip only need report frame silently dropped. */
1321	spin_lock_irq(&np->lock);
1322	if (netif_running(dev) && netif_device_present(dev))
1323		np->stats.rx_missed_errors += ioread32(ioaddr + RxMissed) & 0xffff;
1324	spin_unlock_irq(&np->lock);
1325
1326	return &np->stats;
1327}
1328
1329
1330static u32 __set_rx_mode(struct net_device *dev)
1331{
1332	struct netdev_private *np = netdev_priv(dev);
1333	void __iomem *ioaddr = np->base_addr;
1334	u32 mc_filter[2];			/* Multicast hash filter */
1335	u32 rx_mode;
1336
1337	if (dev->flags & IFF_PROMISC) {			/* Set promiscuous. */
1338		memset(mc_filter, 0xff, sizeof(mc_filter));
1339		rx_mode = RxAcceptBroadcast | AcceptMulticast | RxAcceptAllPhys
1340			| AcceptMyPhys;
1341	} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
1342		   (dev->flags & IFF_ALLMULTI)) {
1343		/* Too many to match, or accept all multicasts. */
1344		memset(mc_filter, 0xff, sizeof(mc_filter));
1345		rx_mode = RxAcceptBroadcast | AcceptMulticast | AcceptMyPhys;
1346	} else {
1347		struct netdev_hw_addr *ha;
1348
1349		memset(mc_filter, 0, sizeof(mc_filter));
1350		netdev_for_each_mc_addr(ha, dev) {
1351			int filbit;
1352
1353			filbit = (ether_crc(ETH_ALEN, ha->addr) >> 26) ^ 0x3F;
1354			filbit &= 0x3f;
1355			mc_filter[filbit >> 5] |= 1 << (filbit & 31);
1356		}
1357		rx_mode = RxAcceptBroadcast | AcceptMulticast | AcceptMyPhys;
1358	}
1359	iowrite32(mc_filter[0], ioaddr + MulticastFilter0);
1360	iowrite32(mc_filter[1], ioaddr + MulticastFilter1);
1361	return rx_mode;
1362}
1363
1364static void set_rx_mode(struct net_device *dev)
1365{
1366	struct netdev_private *np = netdev_priv(dev);
1367	u32 rx_mode = __set_rx_mode(dev);
1368	spin_lock_irq(&np->lock);
1369	update_csr6(dev, (np->csr6 & ~0x00F8) | rx_mode);
1370	spin_unlock_irq(&np->lock);
1371}
1372
1373static void netdev_get_drvinfo (struct net_device *dev, struct ethtool_drvinfo *info)
1374{
1375	struct netdev_private *np = netdev_priv(dev);
1376
1377	strscpy(info->driver, DRV_NAME, sizeof(info->driver));
1378	strscpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
1379}
1380
1381static int netdev_get_link_ksettings(struct net_device *dev,
1382				     struct ethtool_link_ksettings *cmd)
1383{
1384	struct netdev_private *np = netdev_priv(dev);
1385
1386	spin_lock_irq(&np->lock);
1387	mii_ethtool_get_link_ksettings(&np->mii_if, cmd);
1388	spin_unlock_irq(&np->lock);
1389
1390	return 0;
1391}
1392
1393static int netdev_set_link_ksettings(struct net_device *dev,
1394				     const struct ethtool_link_ksettings *cmd)
1395{
1396	struct netdev_private *np = netdev_priv(dev);
1397	int rc;
1398
1399	spin_lock_irq(&np->lock);
1400	rc = mii_ethtool_set_link_ksettings(&np->mii_if, cmd);
1401	spin_unlock_irq(&np->lock);
1402
1403	return rc;
1404}
1405
1406static int netdev_nway_reset(struct net_device *dev)
1407{
1408	struct netdev_private *np = netdev_priv(dev);
1409	return mii_nway_restart(&np->mii_if);
1410}
1411
1412static u32 netdev_get_link(struct net_device *dev)
1413{
1414	struct netdev_private *np = netdev_priv(dev);
1415	return mii_link_ok(&np->mii_if);
1416}
1417
1418static u32 netdev_get_msglevel(struct net_device *dev)
1419{
1420	return debug;
1421}
1422
1423static void netdev_set_msglevel(struct net_device *dev, u32 value)
1424{
1425	debug = value;
1426}
1427
1428static const struct ethtool_ops netdev_ethtool_ops = {
1429	.get_drvinfo		= netdev_get_drvinfo,
1430	.nway_reset		= netdev_nway_reset,
1431	.get_link		= netdev_get_link,
1432	.get_msglevel		= netdev_get_msglevel,
1433	.set_msglevel		= netdev_set_msglevel,
1434	.get_link_ksettings	= netdev_get_link_ksettings,
1435	.set_link_ksettings	= netdev_set_link_ksettings,
1436};
1437
1438static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1439{
1440	struct mii_ioctl_data *data = if_mii(rq);
1441	struct netdev_private *np = netdev_priv(dev);
1442
1443	switch(cmd) {
1444	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
1445		data->phy_id = ((struct netdev_private *)netdev_priv(dev))->phys[0] & 0x1f;
1446		fallthrough;
1447
1448	case SIOCGMIIREG:		/* Read MII PHY register. */
1449		spin_lock_irq(&np->lock);
1450		data->val_out = mdio_read(dev, data->phy_id & 0x1f, data->reg_num & 0x1f);
1451		spin_unlock_irq(&np->lock);
1452		return 0;
1453
1454	case SIOCSMIIREG:		/* Write MII PHY register. */
1455		spin_lock_irq(&np->lock);
1456		mdio_write(dev, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in);
1457		spin_unlock_irq(&np->lock);
1458		return 0;
1459	default:
1460		return -EOPNOTSUPP;
1461	}
1462}
1463
1464static int netdev_close(struct net_device *dev)
1465{
1466	struct netdev_private *np = netdev_priv(dev);
1467	void __iomem *ioaddr = np->base_addr;
1468
1469	netif_stop_queue(dev);
1470
1471	if (debug > 1) {
1472		netdev_dbg(dev, "Shutting down ethercard, status was %08x Config %08x\n",
1473			   ioread32(ioaddr + IntrStatus),
1474			   ioread32(ioaddr + NetworkConfig));
1475		netdev_dbg(dev, "Queue pointers were Tx %d / %d,  Rx %d / %d\n",
1476			   np->cur_tx, np->dirty_tx,
1477			   np->cur_rx, np->dirty_rx);
1478	}
1479
1480	/* Stop the chip's Tx and Rx processes. */
1481	spin_lock_irq(&np->lock);
1482	netif_device_detach(dev);
1483	update_csr6(dev, 0);
1484	iowrite32(0x0000, ioaddr + IntrEnable);
1485	spin_unlock_irq(&np->lock);
1486
1487	free_irq(np->pci_dev->irq, dev);
1488	wmb();
1489	netif_device_attach(dev);
1490
1491	if (ioread32(ioaddr + NetworkConfig) != 0xffffffff)
1492		np->stats.rx_missed_errors += ioread32(ioaddr + RxMissed) & 0xffff;
1493
1494#ifdef __i386__
1495	if (debug > 2) {
1496		int i;
1497
1498		printk(KERN_DEBUG"  Tx ring at %p:\n", np->tx_ring);
1499		for (i = 0; i < TX_RING_SIZE; i++)
1500			printk(KERN_DEBUG " #%d desc. %04x %04x %08x\n",
1501			       i, np->tx_ring[i].length,
1502			       np->tx_ring[i].status, np->tx_ring[i].buffer1);
1503		printk(KERN_DEBUG "  Rx ring %p:\n", np->rx_ring);
1504		for (i = 0; i < RX_RING_SIZE; i++) {
1505			printk(KERN_DEBUG " #%d desc. %04x %04x %08x\n",
1506			       i, np->rx_ring[i].length,
1507			       np->rx_ring[i].status, np->rx_ring[i].buffer1);
1508		}
1509	}
1510#endif /* __i386__ debugging only */
1511
1512	del_timer_sync(&np->timer);
1513
1514	free_rxtx_rings(np);
1515	free_ringdesc(np);
1516
1517	return 0;
1518}
1519
1520static void w840_remove1(struct pci_dev *pdev)
1521{
1522	struct net_device *dev = pci_get_drvdata(pdev);
1523
1524	if (dev) {
1525		struct netdev_private *np = netdev_priv(dev);
1526		unregister_netdev(dev);
1527		pci_iounmap(pdev, np->base_addr);
1528		free_netdev(dev);
1529	}
1530}
1531
1532/*
1533 * suspend/resume synchronization:
1534 * - open, close, do_ioctl:
1535 * 	rtnl_lock, & netif_device_detach after the rtnl_unlock.
1536 * - get_stats:
1537 * 	spin_lock_irq(np->lock), doesn't touch hw if not present
1538 * - start_xmit:
1539 * 	synchronize_irq + netif_tx_disable;
1540 * - tx_timeout:
1541 * 	netif_device_detach + netif_tx_disable;
1542 * - set_multicast_list
1543 * 	netif_device_detach + netif_tx_disable;
1544 * - interrupt handler
1545 * 	doesn't touch hw if not present, synchronize_irq waits for
1546 * 	running instances of the interrupt handler.
1547 *
1548 * Disabling hw requires clearing csr6 & IntrEnable.
1549 * update_csr6 & all function that write IntrEnable check netif_device_present
1550 * before settings any bits.
1551 *
1552 * Detach must occur under spin_unlock_irq(), interrupts from a detached
1553 * device would cause an irq storm.
1554 */
1555static int __maybe_unused w840_suspend(struct device *dev_d)
1556{
1557	struct net_device *dev = dev_get_drvdata(dev_d);
1558	struct netdev_private *np = netdev_priv(dev);
1559	void __iomem *ioaddr = np->base_addr;
1560
1561	rtnl_lock();
1562	if (netif_running (dev)) {
1563		del_timer_sync(&np->timer);
1564
1565		spin_lock_irq(&np->lock);
1566		netif_device_detach(dev);
1567		update_csr6(dev, 0);
1568		iowrite32(0, ioaddr + IntrEnable);
1569		spin_unlock_irq(&np->lock);
1570
1571		synchronize_irq(np->pci_dev->irq);
1572		netif_tx_disable(dev);
1573
1574		np->stats.rx_missed_errors += ioread32(ioaddr + RxMissed) & 0xffff;
1575
1576		/* no more hardware accesses behind this line. */
1577
1578		BUG_ON(np->csr6 || ioread32(ioaddr + IntrEnable));
1579
1580		/* pci_power_off(pdev, -1); */
1581
1582		free_rxtx_rings(np);
1583	} else {
1584		netif_device_detach(dev);
1585	}
1586	rtnl_unlock();
1587	return 0;
1588}
1589
1590static int __maybe_unused w840_resume(struct device *dev_d)
1591{
1592	struct net_device *dev = dev_get_drvdata(dev_d);
1593	struct netdev_private *np = netdev_priv(dev);
1594
1595	rtnl_lock();
1596	if (netif_device_present(dev))
1597		goto out; /* device not suspended */
1598	if (netif_running(dev)) {
1599		spin_lock_irq(&np->lock);
1600		iowrite32(1, np->base_addr+PCIBusCfg);
1601		ioread32(np->base_addr+PCIBusCfg);
1602		udelay(1);
1603		netif_device_attach(dev);
1604		init_rxtx_rings(dev);
1605		init_registers(dev);
1606		spin_unlock_irq(&np->lock);
1607
1608		netif_wake_queue(dev);
1609
1610		mod_timer(&np->timer, jiffies + 1*HZ);
1611	} else {
1612		netif_device_attach(dev);
1613	}
1614out:
1615	rtnl_unlock();
1616	return 0;
1617}
1618
1619static SIMPLE_DEV_PM_OPS(w840_pm_ops, w840_suspend, w840_resume);
1620
1621static struct pci_driver w840_driver = {
1622	.name		= DRV_NAME,
1623	.id_table	= w840_pci_tbl,
1624	.probe		= w840_probe1,
1625	.remove		= w840_remove1,
1626	.driver.pm	= &w840_pm_ops,
1627};
1628
1629module_pci_driver(w840_driver);