Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Apr 14-17, 2025
Register
Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Microchip KSZ9477 switch driver main logic
   4 *
   5 * Copyright (C) 2017-2019 Microchip Technology Inc.
   6 */
   7
   8#include <linux/kernel.h>
   9#include <linux/module.h>
  10#include <linux/iopoll.h>
  11#include <linux/platform_data/microchip-ksz.h>
  12#include <linux/phy.h>
  13#include <linux/if_bridge.h>
  14#include <linux/if_vlan.h>
  15#include <net/dsa.h>
  16#include <net/switchdev.h>
  17
  18#include "ksz9477_reg.h"
  19#include "ksz_common.h"
  20#include "ksz9477.h"
  21
  22static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
  23{
  24	regmap_update_bits(ksz_regmap_8(dev), addr, bits, set ? bits : 0);
  25}
  26
  27static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
  28			 bool set)
  29{
  30	regmap_update_bits(ksz_regmap_8(dev), PORT_CTRL_ADDR(port, offset),
  31			   bits, set ? bits : 0);
  32}
  33
  34static void ksz9477_cfg32(struct ksz_device *dev, u32 addr, u32 bits, bool set)
  35{
  36	regmap_update_bits(ksz_regmap_32(dev), addr, bits, set ? bits : 0);
  37}
  38
  39static void ksz9477_port_cfg32(struct ksz_device *dev, int port, int offset,
  40			       u32 bits, bool set)
  41{
  42	regmap_update_bits(ksz_regmap_32(dev), PORT_CTRL_ADDR(port, offset),
  43			   bits, set ? bits : 0);
  44}
  45
  46int ksz9477_change_mtu(struct ksz_device *dev, int port, int mtu)
  47{
  48	u16 frame_size;
  49
  50	if (!dsa_is_cpu_port(dev->ds, port))
  51		return 0;
  52
  53	frame_size = mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
  54
  55	return regmap_update_bits(ksz_regmap_16(dev), REG_SW_MTU__2,
  56				  REG_SW_MTU_MASK, frame_size);
  57}
  58
  59/**
  60 * ksz9477_handle_wake_reason - Handle wake reason on a specified port.
  61 * @dev: The device structure.
  62 * @port: The port number.
  63 *
  64 * This function reads the PME (Power Management Event) status register of a
  65 * specified port to determine the wake reason. If there is no wake event, it
  66 * returns early. Otherwise, it logs the wake reason which could be due to a
  67 * "Magic Packet", "Link Up", or "Energy Detect" event. The PME status register
  68 * is then cleared to acknowledge the handling of the wake event.
  69 *
  70 * Return: 0 on success, or an error code on failure.
  71 */
  72static int ksz9477_handle_wake_reason(struct ksz_device *dev, int port)
  73{
  74	u8 pme_status;
  75	int ret;
  76
  77	ret = ksz_pread8(dev, port, REG_PORT_PME_STATUS, &pme_status);
  78	if (ret)
  79		return ret;
  80
  81	if (!pme_status)
  82		return 0;
  83
  84	dev_dbg(dev->dev, "Wake event on port %d due to:%s%s%s\n", port,
  85		pme_status & PME_WOL_MAGICPKT ? " \"Magic Packet\"" : "",
  86		pme_status & PME_WOL_LINKUP ? " \"Link Up\"" : "",
  87		pme_status & PME_WOL_ENERGY ? " \"Energy detect\"" : "");
  88
  89	return ksz_pwrite8(dev, port, REG_PORT_PME_STATUS, pme_status);
  90}
  91
  92/**
  93 * ksz9477_get_wol - Get Wake-on-LAN settings for a specified port.
  94 * @dev: The device structure.
  95 * @port: The port number.
  96 * @wol: Pointer to ethtool Wake-on-LAN settings structure.
  97 *
  98 * This function checks the PME Pin Control Register to see if  PME Pin Output
  99 * Enable is set, indicating PME is enabled. If enabled, it sets the supported
 100 * and active WoL flags.
 101 */
 102void ksz9477_get_wol(struct ksz_device *dev, int port,
 103		     struct ethtool_wolinfo *wol)
 104{
 105	u8 pme_ctrl;
 106	int ret;
 107
 108	if (!dev->wakeup_source)
 109		return;
 110
 111	wol->supported = WAKE_PHY;
 112
 113	/* Check if the current MAC address on this port can be set
 114	 * as global for WAKE_MAGIC support. The result may vary
 115	 * dynamically based on other ports configurations.
 116	 */
 117	if (ksz_is_port_mac_global_usable(dev->ds, port))
 118		wol->supported |= WAKE_MAGIC;
 119
 120	ret = ksz_pread8(dev, port, REG_PORT_PME_CTRL, &pme_ctrl);
 121	if (ret)
 122		return;
 123
 124	if (pme_ctrl & PME_WOL_MAGICPKT)
 125		wol->wolopts |= WAKE_MAGIC;
 126	if (pme_ctrl & (PME_WOL_LINKUP | PME_WOL_ENERGY))
 127		wol->wolopts |= WAKE_PHY;
 128}
 129
 130/**
 131 * ksz9477_set_wol - Set Wake-on-LAN settings for a specified port.
 132 * @dev: The device structure.
 133 * @port: The port number.
 134 * @wol: Pointer to ethtool Wake-on-LAN settings structure.
 135 *
 136 * This function configures Wake-on-LAN (WoL) settings for a specified port.
 137 * It validates the provided WoL options, checks if PME is enabled via the
 138 * switch's PME Pin Control Register, clears any previous wake reasons,
 139 * and sets the Magic Packet flag in the port's PME control register if
 140 * specified.
 141 *
 142 * Return: 0 on success, or other error codes on failure.
 143 */
 144int ksz9477_set_wol(struct ksz_device *dev, int port,
 145		    struct ethtool_wolinfo *wol)
 146{
 147	u8 pme_ctrl = 0, pme_ctrl_old = 0;
 148	bool magic_switched_off;
 149	bool magic_switched_on;
 150	int ret;
 151
 152	if (wol->wolopts & ~(WAKE_PHY | WAKE_MAGIC))
 153		return -EINVAL;
 154
 155	if (!dev->wakeup_source)
 156		return -EOPNOTSUPP;
 157
 158	ret = ksz9477_handle_wake_reason(dev, port);
 159	if (ret)
 160		return ret;
 161
 162	if (wol->wolopts & WAKE_MAGIC)
 163		pme_ctrl |= PME_WOL_MAGICPKT;
 164	if (wol->wolopts & WAKE_PHY)
 165		pme_ctrl |= PME_WOL_LINKUP | PME_WOL_ENERGY;
 166
 167	ret = ksz_pread8(dev, port, REG_PORT_PME_CTRL, &pme_ctrl_old);
 168	if (ret)
 169		return ret;
 170
 171	if (pme_ctrl_old == pme_ctrl)
 172		return 0;
 173
 174	magic_switched_off = (pme_ctrl_old & PME_WOL_MAGICPKT) &&
 175			    !(pme_ctrl & PME_WOL_MAGICPKT);
 176	magic_switched_on = !(pme_ctrl_old & PME_WOL_MAGICPKT) &&
 177			    (pme_ctrl & PME_WOL_MAGICPKT);
 178
 179	/* To keep reference count of MAC address, we should do this
 180	 * operation only on change of WOL settings.
 181	 */
 182	if (magic_switched_on) {
 183		ret = ksz_switch_macaddr_get(dev->ds, port, NULL);
 184		if (ret)
 185			return ret;
 186	} else if (magic_switched_off) {
 187		ksz_switch_macaddr_put(dev->ds);
 188	}
 189
 190	ret = ksz_pwrite8(dev, port, REG_PORT_PME_CTRL, pme_ctrl);
 191	if (ret) {
 192		if (magic_switched_on)
 193			ksz_switch_macaddr_put(dev->ds);
 194		return ret;
 195	}
 196
 197	return 0;
 198}
 199
 200/**
 201 * ksz9477_wol_pre_shutdown - Prepares the switch device for shutdown while
 202 *                            considering Wake-on-LAN (WoL) settings.
 203 * @dev: The switch device structure.
 204 * @wol_enabled: Pointer to a boolean which will be set to true if WoL is
 205 *               enabled on any port.
 206 *
 207 * This function prepares the switch device for a safe shutdown while taking
 208 * into account the Wake-on-LAN (WoL) settings on the user ports. It updates
 209 * the wol_enabled flag accordingly to reflect whether WoL is active on any
 210 * port.
 211 */
 212void ksz9477_wol_pre_shutdown(struct ksz_device *dev, bool *wol_enabled)
 213{
 214	struct dsa_port *dp;
 215	int ret;
 216
 217	*wol_enabled = false;
 218
 219	if (!dev->wakeup_source)
 220		return;
 221
 222	dsa_switch_for_each_user_port(dp, dev->ds) {
 223		u8 pme_ctrl = 0;
 224
 225		ret = ksz_pread8(dev, dp->index, REG_PORT_PME_CTRL, &pme_ctrl);
 226		if (!ret && pme_ctrl)
 227			*wol_enabled = true;
 228
 229		/* make sure there are no pending wake events which would
 230		 * prevent the device from going to sleep/shutdown.
 231		 */
 232		ksz9477_handle_wake_reason(dev, dp->index);
 233	}
 234
 235	/* Now we are save to enable PME pin. */
 236	if (*wol_enabled)
 237		ksz_write8(dev, REG_SW_PME_CTRL, PME_ENABLE);
 238}
 239
 240static int ksz9477_wait_vlan_ctrl_ready(struct ksz_device *dev)
 241{
 242	unsigned int val;
 243
 244	return regmap_read_poll_timeout(ksz_regmap_8(dev), REG_SW_VLAN_CTRL,
 245					val, !(val & VLAN_START), 10, 1000);
 246}
 247
 248static int ksz9477_get_vlan_table(struct ksz_device *dev, u16 vid,
 249				  u32 *vlan_table)
 250{
 251	int ret;
 252
 253	mutex_lock(&dev->vlan_mutex);
 254
 255	ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
 256	ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_READ | VLAN_START);
 257
 258	/* wait to be cleared */
 259	ret = ksz9477_wait_vlan_ctrl_ready(dev);
 260	if (ret) {
 261		dev_dbg(dev->dev, "Failed to read vlan table\n");
 262		goto exit;
 263	}
 264
 265	ksz_read32(dev, REG_SW_VLAN_ENTRY__4, &vlan_table[0]);
 266	ksz_read32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, &vlan_table[1]);
 267	ksz_read32(dev, REG_SW_VLAN_ENTRY_PORTS__4, &vlan_table[2]);
 268
 269	ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
 270
 271exit:
 272	mutex_unlock(&dev->vlan_mutex);
 273
 274	return ret;
 275}
 276
 277static int ksz9477_set_vlan_table(struct ksz_device *dev, u16 vid,
 278				  u32 *vlan_table)
 279{
 280	int ret;
 281
 282	mutex_lock(&dev->vlan_mutex);
 283
 284	ksz_write32(dev, REG_SW_VLAN_ENTRY__4, vlan_table[0]);
 285	ksz_write32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, vlan_table[1]);
 286	ksz_write32(dev, REG_SW_VLAN_ENTRY_PORTS__4, vlan_table[2]);
 287
 288	ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
 289	ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_START | VLAN_WRITE);
 290
 291	/* wait to be cleared */
 292	ret = ksz9477_wait_vlan_ctrl_ready(dev);
 293	if (ret) {
 294		dev_dbg(dev->dev, "Failed to write vlan table\n");
 295		goto exit;
 296	}
 297
 298	ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
 299
 300	/* update vlan cache table */
 301	dev->vlan_cache[vid].table[0] = vlan_table[0];
 302	dev->vlan_cache[vid].table[1] = vlan_table[1];
 303	dev->vlan_cache[vid].table[2] = vlan_table[2];
 304
 305exit:
 306	mutex_unlock(&dev->vlan_mutex);
 307
 308	return ret;
 309}
 310
 311static void ksz9477_read_table(struct ksz_device *dev, u32 *table)
 312{
 313	ksz_read32(dev, REG_SW_ALU_VAL_A, &table[0]);
 314	ksz_read32(dev, REG_SW_ALU_VAL_B, &table[1]);
 315	ksz_read32(dev, REG_SW_ALU_VAL_C, &table[2]);
 316	ksz_read32(dev, REG_SW_ALU_VAL_D, &table[3]);
 317}
 318
 319static void ksz9477_write_table(struct ksz_device *dev, u32 *table)
 320{
 321	ksz_write32(dev, REG_SW_ALU_VAL_A, table[0]);
 322	ksz_write32(dev, REG_SW_ALU_VAL_B, table[1]);
 323	ksz_write32(dev, REG_SW_ALU_VAL_C, table[2]);
 324	ksz_write32(dev, REG_SW_ALU_VAL_D, table[3]);
 325}
 326
 327static int ksz9477_wait_alu_ready(struct ksz_device *dev)
 328{
 329	unsigned int val;
 330
 331	return regmap_read_poll_timeout(ksz_regmap_32(dev), REG_SW_ALU_CTRL__4,
 332					val, !(val & ALU_START), 10, 1000);
 333}
 334
 335static int ksz9477_wait_alu_sta_ready(struct ksz_device *dev)
 336{
 337	unsigned int val;
 338
 339	return regmap_read_poll_timeout(ksz_regmap_32(dev),
 340					REG_SW_ALU_STAT_CTRL__4,
 341					val, !(val & ALU_STAT_START),
 342					10, 1000);
 343}
 344
 345int ksz9477_reset_switch(struct ksz_device *dev)
 346{
 347	u8 data8;
 348	u32 data32;
 349
 350	/* reset switch */
 351	ksz_cfg(dev, REG_SW_OPERATION, SW_RESET, true);
 352
 353	/* turn off SPI DO Edge select */
 354	regmap_update_bits(ksz_regmap_8(dev), REG_SW_GLOBAL_SERIAL_CTRL_0,
 355			   SPI_AUTO_EDGE_DETECTION, 0);
 356
 357	/* default configuration */
 358	ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8);
 359	data8 = SW_AGING_ENABLE | SW_LINK_AUTO_AGING |
 360	      SW_SRC_ADDR_FILTER | SW_FLUSH_STP_TABLE | SW_FLUSH_MSTP_TABLE;
 361	ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
 362
 363	/* disable interrupts */
 364	ksz_write32(dev, REG_SW_INT_MASK__4, SWITCH_INT_MASK);
 365	ksz_write32(dev, REG_SW_PORT_INT_MASK__4, 0x7F);
 366	ksz_read32(dev, REG_SW_PORT_INT_STATUS__4, &data32);
 367
 368	/* KSZ9893 compatible chips do not support refclk configuration */
 369	if (dev->chip_id == KSZ9893_CHIP_ID ||
 370	    dev->chip_id == KSZ8563_CHIP_ID ||
 371	    dev->chip_id == KSZ9563_CHIP_ID)
 372		return 0;
 373
 374	data8 = SW_ENABLE_REFCLKO;
 375	if (dev->synclko_disable)
 376		data8 = 0;
 377	else if (dev->synclko_125)
 378		data8 = SW_ENABLE_REFCLKO | SW_REFCLKO_IS_125MHZ;
 379	ksz_write8(dev, REG_SW_GLOBAL_OUTPUT_CTRL__1, data8);
 380
 381	return 0;
 382}
 383
 384void ksz9477_r_mib_cnt(struct ksz_device *dev, int port, u16 addr, u64 *cnt)
 385{
 386	struct ksz_port *p = &dev->ports[port];
 387	unsigned int val;
 388	u32 data;
 389	int ret;
 390
 391	/* retain the flush/freeze bit */
 392	data = p->freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
 393	data |= MIB_COUNTER_READ;
 394	data |= (addr << MIB_COUNTER_INDEX_S);
 395	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, data);
 396
 397	ret = regmap_read_poll_timeout(ksz_regmap_32(dev),
 398			PORT_CTRL_ADDR(port, REG_PORT_MIB_CTRL_STAT__4),
 399			val, !(val & MIB_COUNTER_READ), 10, 1000);
 400	/* failed to read MIB. get out of loop */
 401	if (ret) {
 402		dev_dbg(dev->dev, "Failed to get MIB\n");
 403		return;
 404	}
 405
 406	/* count resets upon read */
 407	ksz_pread32(dev, port, REG_PORT_MIB_DATA, &data);
 408	*cnt += data;
 409}
 410
 411void ksz9477_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
 412		       u64 *dropped, u64 *cnt)
 413{
 414	addr = dev->info->mib_names[addr].index;
 415	ksz9477_r_mib_cnt(dev, port, addr, cnt);
 416}
 417
 418void ksz9477_freeze_mib(struct ksz_device *dev, int port, bool freeze)
 419{
 420	u32 val = freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
 421	struct ksz_port *p = &dev->ports[port];
 422
 423	/* enable/disable the port for flush/freeze function */
 424	mutex_lock(&p->mib.cnt_mutex);
 425	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, val);
 426
 427	/* used by MIB counter reading code to know freeze is enabled */
 428	p->freeze = freeze;
 429	mutex_unlock(&p->mib.cnt_mutex);
 430}
 431
 432void ksz9477_port_init_cnt(struct ksz_device *dev, int port)
 433{
 434	struct ksz_port_mib *mib = &dev->ports[port].mib;
 435
 436	/* flush all enabled port MIB counters */
 437	mutex_lock(&mib->cnt_mutex);
 438	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4,
 439		     MIB_COUNTER_FLUSH_FREEZE);
 440	ksz_write8(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FLUSH);
 441	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, 0);
 442	mutex_unlock(&mib->cnt_mutex);
 443}
 444
 445static void ksz9477_r_phy_quirks(struct ksz_device *dev, u16 addr, u16 reg,
 446				 u16 *data)
 447{
 448	/* KSZ8563R do not have extended registers but BMSR_ESTATEN and
 449	 * BMSR_ERCAP bits are set.
 450	 */
 451	if (dev->chip_id == KSZ8563_CHIP_ID && reg == MII_BMSR)
 452		*data &= ~(BMSR_ESTATEN | BMSR_ERCAP);
 453}
 454
 455int ksz9477_r_phy(struct ksz_device *dev, u16 addr, u16 reg, u16 *data)
 456{
 457	u16 val = 0xffff;
 458	int ret;
 459
 460	/* No real PHY after this. Simulate the PHY.
 461	 * A fixed PHY can be setup in the device tree, but this function is
 462	 * still called for that port during initialization.
 463	 * For RGMII PHY there is no way to access it so the fixed PHY should
 464	 * be used.  For SGMII PHY the supporting code will be added later.
 465	 */
 466	if (!dev->info->internal_phy[addr]) {
 467		struct ksz_port *p = &dev->ports[addr];
 468
 469		switch (reg) {
 470		case MII_BMCR:
 471			val = 0x1140;
 472			break;
 473		case MII_BMSR:
 474			val = 0x796d;
 475			break;
 476		case MII_PHYSID1:
 477			val = 0x0022;
 478			break;
 479		case MII_PHYSID2:
 480			val = 0x1631;
 481			break;
 482		case MII_ADVERTISE:
 483			val = 0x05e1;
 484			break;
 485		case MII_LPA:
 486			val = 0xc5e1;
 487			break;
 488		case MII_CTRL1000:
 489			val = 0x0700;
 490			break;
 491		case MII_STAT1000:
 492			if (p->phydev.speed == SPEED_1000)
 493				val = 0x3800;
 494			else
 495				val = 0;
 496			break;
 497		}
 498	} else {
 499		ret = ksz_pread16(dev, addr, 0x100 + (reg << 1), &val);
 500		if (ret)
 501			return ret;
 502
 503		ksz9477_r_phy_quirks(dev, addr, reg, &val);
 504	}
 505
 506	*data = val;
 507
 508	return 0;
 509}
 510
 511int ksz9477_w_phy(struct ksz_device *dev, u16 addr, u16 reg, u16 val)
 512{
 513	u32 mask, val32;
 514
 515	/* No real PHY after this. */
 516	if (!dev->info->internal_phy[addr])
 517		return 0;
 518
 519	if (reg < 0x10)
 520		return ksz_pwrite16(dev, addr, 0x100 + (reg << 1), val);
 521
 522	/* Errata: When using SPI, I2C, or in-band register access,
 523	 * writes to certain PHY registers should be performed as
 524	 * 32-bit writes instead of 16-bit writes.
 525	 */
 526	val32 = val;
 527	mask = 0xffff;
 528	if ((reg & 1) == 0) {
 529		val32 <<= 16;
 530		mask <<= 16;
 531	}
 532	reg &= ~1;
 533	return ksz_prmw32(dev, addr, 0x100 + (reg << 1), mask, val32);
 534}
 535
 536void ksz9477_cfg_port_member(struct ksz_device *dev, int port, u8 member)
 537{
 538	ksz_pwrite32(dev, port, REG_PORT_VLAN_MEMBERSHIP__4, member);
 539}
 540
 541void ksz9477_flush_dyn_mac_table(struct ksz_device *dev, int port)
 542{
 543	const u16 *regs = dev->info->regs;
 544	u8 data;
 545
 546	regmap_update_bits(ksz_regmap_8(dev), REG_SW_LUE_CTRL_2,
 547			   SW_FLUSH_OPTION_M << SW_FLUSH_OPTION_S,
 548			   SW_FLUSH_OPTION_DYN_MAC << SW_FLUSH_OPTION_S);
 549
 550	if (port < dev->info->port_cnt) {
 551		/* flush individual port */
 552		ksz_pread8(dev, port, regs[P_STP_CTRL], &data);
 553		if (!(data & PORT_LEARN_DISABLE))
 554			ksz_pwrite8(dev, port, regs[P_STP_CTRL],
 555				    data | PORT_LEARN_DISABLE);
 556		ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true);
 557		ksz_pwrite8(dev, port, regs[P_STP_CTRL], data);
 558	} else {
 559		/* flush all */
 560		ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_STP_TABLE, true);
 561	}
 562}
 563
 564int ksz9477_port_vlan_filtering(struct ksz_device *dev, int port,
 565				bool flag, struct netlink_ext_ack *extack)
 566{
 567	if (flag) {
 568		ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
 569			     PORT_VLAN_LOOKUP_VID_0, true);
 570		ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, true);
 571	} else {
 572		ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, false);
 573		ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
 574			     PORT_VLAN_LOOKUP_VID_0, false);
 575	}
 576
 577	return 0;
 578}
 579
 580int ksz9477_port_vlan_add(struct ksz_device *dev, int port,
 581			  const struct switchdev_obj_port_vlan *vlan,
 582			  struct netlink_ext_ack *extack)
 583{
 584	u32 vlan_table[3];
 585	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
 586	int err;
 587
 588	err = ksz9477_get_vlan_table(dev, vlan->vid, vlan_table);
 589	if (err) {
 590		NL_SET_ERR_MSG_MOD(extack, "Failed to get vlan table");
 591		return err;
 592	}
 593
 594	vlan_table[0] = VLAN_VALID | (vlan->vid & VLAN_FID_M);
 595	if (untagged)
 596		vlan_table[1] |= BIT(port);
 597	else
 598		vlan_table[1] &= ~BIT(port);
 599	vlan_table[1] &= ~(BIT(dev->cpu_port));
 600
 601	vlan_table[2] |= BIT(port) | BIT(dev->cpu_port);
 602
 603	err = ksz9477_set_vlan_table(dev, vlan->vid, vlan_table);
 604	if (err) {
 605		NL_SET_ERR_MSG_MOD(extack, "Failed to set vlan table");
 606		return err;
 607	}
 608
 609	/* change PVID */
 610	if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
 611		ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, vlan->vid);
 612
 613	return 0;
 614}
 615
 616int ksz9477_port_vlan_del(struct ksz_device *dev, int port,
 617			  const struct switchdev_obj_port_vlan *vlan)
 618{
 619	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
 620	u32 vlan_table[3];
 621	u16 pvid;
 622
 623	ksz_pread16(dev, port, REG_PORT_DEFAULT_VID, &pvid);
 624	pvid = pvid & 0xFFF;
 625
 626	if (ksz9477_get_vlan_table(dev, vlan->vid, vlan_table)) {
 627		dev_dbg(dev->dev, "Failed to get vlan table\n");
 628		return -ETIMEDOUT;
 629	}
 630
 631	vlan_table[2] &= ~BIT(port);
 632
 633	if (pvid == vlan->vid)
 634		pvid = 1;
 635
 636	if (untagged)
 637		vlan_table[1] &= ~BIT(port);
 638
 639	if (ksz9477_set_vlan_table(dev, vlan->vid, vlan_table)) {
 640		dev_dbg(dev->dev, "Failed to set vlan table\n");
 641		return -ETIMEDOUT;
 642	}
 643
 644	ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, pvid);
 645
 646	return 0;
 647}
 648
 649int ksz9477_fdb_add(struct ksz_device *dev, int port,
 650		    const unsigned char *addr, u16 vid, struct dsa_db db)
 651{
 652	u32 alu_table[4];
 653	u32 data;
 654	int ret = 0;
 655
 656	mutex_lock(&dev->alu_mutex);
 657
 658	/* find any entry with mac & vid */
 659	data = vid << ALU_FID_INDEX_S;
 660	data |= ((addr[0] << 8) | addr[1]);
 661	ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
 662
 663	data = ((addr[2] << 24) | (addr[3] << 16));
 664	data |= ((addr[4] << 8) | addr[5]);
 665	ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
 666
 667	/* start read operation */
 668	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
 669
 670	/* wait to be finished */
 671	ret = ksz9477_wait_alu_ready(dev);
 672	if (ret) {
 673		dev_dbg(dev->dev, "Failed to read ALU\n");
 674		goto exit;
 675	}
 676
 677	/* read ALU entry */
 678	ksz9477_read_table(dev, alu_table);
 679
 680	/* update ALU entry */
 681	alu_table[0] = ALU_V_STATIC_VALID;
 682	alu_table[1] |= BIT(port);
 683	if (vid)
 684		alu_table[1] |= ALU_V_USE_FID;
 685	alu_table[2] = (vid << ALU_V_FID_S);
 686	alu_table[2] |= ((addr[0] << 8) | addr[1]);
 687	alu_table[3] = ((addr[2] << 24) | (addr[3] << 16));
 688	alu_table[3] |= ((addr[4] << 8) | addr[5]);
 689
 690	ksz9477_write_table(dev, alu_table);
 691
 692	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
 693
 694	/* wait to be finished */
 695	ret = ksz9477_wait_alu_ready(dev);
 696	if (ret)
 697		dev_dbg(dev->dev, "Failed to write ALU\n");
 698
 699exit:
 700	mutex_unlock(&dev->alu_mutex);
 701
 702	return ret;
 703}
 704
 705int ksz9477_fdb_del(struct ksz_device *dev, int port,
 706		    const unsigned char *addr, u16 vid, struct dsa_db db)
 707{
 708	u32 alu_table[4];
 709	u32 data;
 710	int ret = 0;
 711
 712	mutex_lock(&dev->alu_mutex);
 713
 714	/* read any entry with mac & vid */
 715	data = vid << ALU_FID_INDEX_S;
 716	data |= ((addr[0] << 8) | addr[1]);
 717	ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
 718
 719	data = ((addr[2] << 24) | (addr[3] << 16));
 720	data |= ((addr[4] << 8) | addr[5]);
 721	ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
 722
 723	/* start read operation */
 724	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
 725
 726	/* wait to be finished */
 727	ret = ksz9477_wait_alu_ready(dev);
 728	if (ret) {
 729		dev_dbg(dev->dev, "Failed to read ALU\n");
 730		goto exit;
 731	}
 732
 733	ksz_read32(dev, REG_SW_ALU_VAL_A, &alu_table[0]);
 734	if (alu_table[0] & ALU_V_STATIC_VALID) {
 735		ksz_read32(dev, REG_SW_ALU_VAL_B, &alu_table[1]);
 736		ksz_read32(dev, REG_SW_ALU_VAL_C, &alu_table[2]);
 737		ksz_read32(dev, REG_SW_ALU_VAL_D, &alu_table[3]);
 738
 739		/* clear forwarding port */
 740		alu_table[1] &= ~BIT(port);
 741
 742		/* if there is no port to forward, clear table */
 743		if ((alu_table[1] & ALU_V_PORT_MAP) == 0) {
 744			alu_table[0] = 0;
 745			alu_table[1] = 0;
 746			alu_table[2] = 0;
 747			alu_table[3] = 0;
 748		}
 749	} else {
 750		alu_table[0] = 0;
 751		alu_table[1] = 0;
 752		alu_table[2] = 0;
 753		alu_table[3] = 0;
 754	}
 755
 756	ksz9477_write_table(dev, alu_table);
 757
 758	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
 759
 760	/* wait to be finished */
 761	ret = ksz9477_wait_alu_ready(dev);
 762	if (ret)
 763		dev_dbg(dev->dev, "Failed to write ALU\n");
 764
 765exit:
 766	mutex_unlock(&dev->alu_mutex);
 767
 768	return ret;
 769}
 770
 771static void ksz9477_convert_alu(struct alu_struct *alu, u32 *alu_table)
 772{
 773	alu->is_static = !!(alu_table[0] & ALU_V_STATIC_VALID);
 774	alu->is_src_filter = !!(alu_table[0] & ALU_V_SRC_FILTER);
 775	alu->is_dst_filter = !!(alu_table[0] & ALU_V_DST_FILTER);
 776	alu->prio_age = (alu_table[0] >> ALU_V_PRIO_AGE_CNT_S) &
 777			ALU_V_PRIO_AGE_CNT_M;
 778	alu->mstp = alu_table[0] & ALU_V_MSTP_M;
 779
 780	alu->is_override = !!(alu_table[1] & ALU_V_OVERRIDE);
 781	alu->is_use_fid = !!(alu_table[1] & ALU_V_USE_FID);
 782	alu->port_forward = alu_table[1] & ALU_V_PORT_MAP;
 783
 784	alu->fid = (alu_table[2] >> ALU_V_FID_S) & ALU_V_FID_M;
 785
 786	alu->mac[0] = (alu_table[2] >> 8) & 0xFF;
 787	alu->mac[1] = alu_table[2] & 0xFF;
 788	alu->mac[2] = (alu_table[3] >> 24) & 0xFF;
 789	alu->mac[3] = (alu_table[3] >> 16) & 0xFF;
 790	alu->mac[4] = (alu_table[3] >> 8) & 0xFF;
 791	alu->mac[5] = alu_table[3] & 0xFF;
 792}
 793
 794int ksz9477_fdb_dump(struct ksz_device *dev, int port,
 795		     dsa_fdb_dump_cb_t *cb, void *data)
 796{
 797	int ret = 0;
 798	u32 ksz_data;
 799	u32 alu_table[4];
 800	struct alu_struct alu;
 801	int timeout;
 802
 803	mutex_lock(&dev->alu_mutex);
 804
 805	/* start ALU search */
 806	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_START | ALU_SEARCH);
 807
 808	do {
 809		timeout = 1000;
 810		do {
 811			ksz_read32(dev, REG_SW_ALU_CTRL__4, &ksz_data);
 812			if ((ksz_data & ALU_VALID) || !(ksz_data & ALU_START))
 813				break;
 814			usleep_range(1, 10);
 815		} while (timeout-- > 0);
 816
 817		if (!timeout) {
 818			dev_dbg(dev->dev, "Failed to search ALU\n");
 819			ret = -ETIMEDOUT;
 820			goto exit;
 821		}
 822
 823		if (!(ksz_data & ALU_VALID))
 824			continue;
 825
 826		/* read ALU table */
 827		ksz9477_read_table(dev, alu_table);
 828
 829		ksz9477_convert_alu(&alu, alu_table);
 830
 831		if (alu.port_forward & BIT(port)) {
 832			ret = cb(alu.mac, alu.fid, alu.is_static, data);
 833			if (ret)
 834				goto exit;
 835		}
 836	} while (ksz_data & ALU_START);
 837
 838exit:
 839
 840	/* stop ALU search */
 841	ksz_write32(dev, REG_SW_ALU_CTRL__4, 0);
 842
 843	mutex_unlock(&dev->alu_mutex);
 844
 845	return ret;
 846}
 847
 848int ksz9477_mdb_add(struct ksz_device *dev, int port,
 849		    const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
 850{
 851	u32 static_table[4];
 852	const u8 *shifts;
 853	const u32 *masks;
 854	u32 data;
 855	int index;
 856	u32 mac_hi, mac_lo;
 857	int err = 0;
 858
 859	shifts = dev->info->shifts;
 860	masks = dev->info->masks;
 861
 862	mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
 863	mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
 864	mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
 865
 866	mutex_lock(&dev->alu_mutex);
 867
 868	for (index = 0; index < dev->info->num_statics; index++) {
 869		/* find empty slot first */
 870		data = (index << shifts[ALU_STAT_INDEX]) |
 871			masks[ALU_STAT_READ] | ALU_STAT_START;
 872		ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
 873
 874		/* wait to be finished */
 875		err = ksz9477_wait_alu_sta_ready(dev);
 876		if (err) {
 877			dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
 878			goto exit;
 879		}
 880
 881		/* read ALU static table */
 882		ksz9477_read_table(dev, static_table);
 883
 884		if (static_table[0] & ALU_V_STATIC_VALID) {
 885			/* check this has same vid & mac address */
 886			if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
 887			    ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
 888			    static_table[3] == mac_lo) {
 889				/* found matching one */
 890				break;
 891			}
 892		} else {
 893			/* found empty one */
 894			break;
 895		}
 896	}
 897
 898	/* no available entry */
 899	if (index == dev->info->num_statics) {
 900		err = -ENOSPC;
 901		goto exit;
 902	}
 903
 904	/* add entry */
 905	static_table[0] = ALU_V_STATIC_VALID;
 906	static_table[1] |= BIT(port);
 907	if (mdb->vid)
 908		static_table[1] |= ALU_V_USE_FID;
 909	static_table[2] = (mdb->vid << ALU_V_FID_S);
 910	static_table[2] |= mac_hi;
 911	static_table[3] = mac_lo;
 912
 913	ksz9477_write_table(dev, static_table);
 914
 915	data = (index << shifts[ALU_STAT_INDEX]) | ALU_STAT_START;
 916	ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
 917
 918	/* wait to be finished */
 919	if (ksz9477_wait_alu_sta_ready(dev))
 920		dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
 921
 922exit:
 923	mutex_unlock(&dev->alu_mutex);
 924	return err;
 925}
 926
 927int ksz9477_mdb_del(struct ksz_device *dev, int port,
 928		    const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
 929{
 930	u32 static_table[4];
 931	const u8 *shifts;
 932	const u32 *masks;
 933	u32 data;
 934	int index;
 935	int ret = 0;
 936	u32 mac_hi, mac_lo;
 937
 938	shifts = dev->info->shifts;
 939	masks = dev->info->masks;
 940
 941	mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
 942	mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
 943	mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
 944
 945	mutex_lock(&dev->alu_mutex);
 946
 947	for (index = 0; index < dev->info->num_statics; index++) {
 948		/* find empty slot first */
 949		data = (index << shifts[ALU_STAT_INDEX]) |
 950			masks[ALU_STAT_READ] | ALU_STAT_START;
 951		ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
 952
 953		/* wait to be finished */
 954		ret = ksz9477_wait_alu_sta_ready(dev);
 955		if (ret) {
 956			dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
 957			goto exit;
 958		}
 959
 960		/* read ALU static table */
 961		ksz9477_read_table(dev, static_table);
 962
 963		if (static_table[0] & ALU_V_STATIC_VALID) {
 964			/* check this has same vid & mac address */
 965
 966			if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
 967			    ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
 968			    static_table[3] == mac_lo) {
 969				/* found matching one */
 970				break;
 971			}
 972		}
 973	}
 974
 975	/* no available entry */
 976	if (index == dev->info->num_statics)
 977		goto exit;
 978
 979	/* clear port */
 980	static_table[1] &= ~BIT(port);
 981
 982	if ((static_table[1] & ALU_V_PORT_MAP) == 0) {
 983		/* delete entry */
 984		static_table[0] = 0;
 985		static_table[1] = 0;
 986		static_table[2] = 0;
 987		static_table[3] = 0;
 988	}
 989
 990	ksz9477_write_table(dev, static_table);
 991
 992	data = (index << shifts[ALU_STAT_INDEX]) | ALU_STAT_START;
 993	ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
 994
 995	/* wait to be finished */
 996	ret = ksz9477_wait_alu_sta_ready(dev);
 997	if (ret)
 998		dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
 999
1000exit:
1001	mutex_unlock(&dev->alu_mutex);
1002
1003	return ret;
1004}
1005
1006int ksz9477_port_mirror_add(struct ksz_device *dev, int port,
1007			    struct dsa_mall_mirror_tc_entry *mirror,
1008			    bool ingress, struct netlink_ext_ack *extack)
1009{
1010	u8 data;
1011	int p;
1012
1013	/* Limit to one sniffer port
1014	 * Check if any of the port is already set for sniffing
1015	 * If yes, instruct the user to remove the previous entry & exit
1016	 */
1017	for (p = 0; p < dev->info->port_cnt; p++) {
1018		/* Skip the current sniffing port */
1019		if (p == mirror->to_local_port)
1020			continue;
1021
1022		ksz_pread8(dev, p, P_MIRROR_CTRL, &data);
1023
1024		if (data & PORT_MIRROR_SNIFFER) {
1025			NL_SET_ERR_MSG_MOD(extack,
1026					   "Sniffer port is already configured, delete existing rules & retry");
1027			return -EBUSY;
1028		}
1029	}
1030
1031	if (ingress)
1032		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
1033	else
1034		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
1035
1036	/* configure mirror port */
1037	ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1038		     PORT_MIRROR_SNIFFER, true);
1039
1040	ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
1041
1042	return 0;
1043}
1044
1045void ksz9477_port_mirror_del(struct ksz_device *dev, int port,
1046			     struct dsa_mall_mirror_tc_entry *mirror)
1047{
1048	bool in_use = false;
1049	u8 data;
1050	int p;
1051
1052	if (mirror->ingress)
1053		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
1054	else
1055		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
1056
1057
1058	/* Check if any of the port is still referring to sniffer port */
1059	for (p = 0; p < dev->info->port_cnt; p++) {
1060		ksz_pread8(dev, p, P_MIRROR_CTRL, &data);
1061
1062		if ((data & (PORT_MIRROR_RX | PORT_MIRROR_TX))) {
1063			in_use = true;
1064			break;
1065		}
1066	}
1067
1068	/* delete sniffing if there are no other mirroring rules */
1069	if (!in_use)
1070		ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1071			     PORT_MIRROR_SNIFFER, false);
1072}
1073
1074static phy_interface_t ksz9477_get_interface(struct ksz_device *dev, int port)
1075{
1076	phy_interface_t interface;
1077	bool gbit;
1078
1079	if (dev->info->internal_phy[port])
1080		return PHY_INTERFACE_MODE_NA;
1081
1082	gbit = ksz_get_gbit(dev, port);
1083
1084	interface = ksz_get_xmii(dev, port, gbit);
1085
1086	return interface;
1087}
1088
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1089void ksz9477_get_caps(struct ksz_device *dev, int port,
1090		      struct phylink_config *config)
1091{
1092	config->mac_capabilities = MAC_10 | MAC_100 | MAC_ASYM_PAUSE |
1093				   MAC_SYM_PAUSE;
1094
1095	if (dev->info->gbit_capable[port])
1096		config->mac_capabilities |= MAC_1000FD;
1097}
1098
1099int ksz9477_set_ageing_time(struct ksz_device *dev, unsigned int msecs)
1100{
1101	u32 secs = msecs / 1000;
1102	u8 value;
1103	u8 data;
1104	int ret;
1105
1106	value = FIELD_GET(SW_AGE_PERIOD_7_0_M, secs);
1107
1108	ret = ksz_write8(dev, REG_SW_LUE_CTRL_3, value);
1109	if (ret < 0)
1110		return ret;
1111
1112	data = FIELD_GET(SW_AGE_PERIOD_10_8_M, secs);
1113
1114	ret = ksz_read8(dev, REG_SW_LUE_CTRL_0, &value);
1115	if (ret < 0)
1116		return ret;
1117
1118	value &= ~SW_AGE_CNT_M;
1119	value |= FIELD_PREP(SW_AGE_CNT_M, data);
1120
1121	return ksz_write8(dev, REG_SW_LUE_CTRL_0, value);
1122}
1123
1124void ksz9477_port_queue_split(struct ksz_device *dev, int port)
1125{
1126	u8 data;
1127
1128	if (dev->info->num_tx_queues == 8)
1129		data = PORT_EIGHT_QUEUE;
1130	else if (dev->info->num_tx_queues == 4)
1131		data = PORT_FOUR_QUEUE;
1132	else if (dev->info->num_tx_queues == 2)
1133		data = PORT_TWO_QUEUE;
1134	else
1135		data = PORT_SINGLE_QUEUE;
1136
1137	ksz_prmw8(dev, port, REG_PORT_CTRL_0, PORT_QUEUE_SPLIT_MASK, data);
1138}
1139
1140void ksz9477_port_setup(struct ksz_device *dev, int port, bool cpu_port)
1141{
1142	struct dsa_switch *ds = dev->ds;
1143	u16 data16;
1144	u8 member;
1145
1146	/* enable tag tail for host port */
1147	if (cpu_port)
1148		ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_TAIL_TAG_ENABLE,
1149			     true);
1150
1151	ksz9477_port_queue_split(dev, port);
1152
1153	ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, false);
1154
1155	/* set back pressure */
1156	ksz_port_cfg(dev, port, REG_PORT_MAC_CTRL_1, PORT_BACK_PRESSURE, true);
1157
1158	/* enable broadcast storm limit */
1159	ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
1160
1161	/* disable DiffServ priority */
1162	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_PRIO_ENABLE, false);
1163
1164	/* replace priority */
1165	ksz_port_cfg(dev, port, REG_PORT_MRI_MAC_CTRL, PORT_USER_PRIO_CEILING,
1166		     false);
1167	ksz9477_port_cfg32(dev, port, REG_PORT_MTI_QUEUE_CTRL_0__4,
1168			   MTI_PVID_REPLACE, false);
1169
1170	/* enable 802.1p priority */
1171	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_PRIO_ENABLE, true);
1172
1173	/* force flow control for non-PHY ports only */
1174	ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
1175		     PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
1176		     !dev->info->internal_phy[port]);
 
 
 
 
 
 
 
 
 
 
1177
1178	if (cpu_port)
1179		member = dsa_user_ports(ds);
1180	else
1181		member = BIT(dsa_upstream_port(ds, port));
1182
1183	ksz9477_cfg_port_member(dev, port, member);
1184
1185	/* clear pending interrupts */
1186	if (dev->info->internal_phy[port])
1187		ksz_pread16(dev, port, REG_PORT_PHY_INT_ENABLE, &data16);
1188
1189	ksz9477_port_acl_init(dev, port);
1190
1191	/* clear pending wake flags */
1192	ksz9477_handle_wake_reason(dev, port);
1193
1194	/* Disable all WoL options by default. Otherwise
1195	 * ksz_switch_macaddr_get/put logic will not work properly.
1196	 */
1197	ksz_pwrite8(dev, port, REG_PORT_PME_CTRL, 0);
1198}
1199
1200void ksz9477_config_cpu_port(struct dsa_switch *ds)
1201{
1202	struct ksz_device *dev = ds->priv;
1203	struct ksz_port *p;
1204	int i;
1205
1206	for (i = 0; i < dev->info->port_cnt; i++) {
1207		if (dsa_is_cpu_port(ds, i) &&
1208		    (dev->info->cpu_ports & (1 << i))) {
1209			phy_interface_t interface;
1210			const char *prev_msg;
1211			const char *prev_mode;
1212
1213			dev->cpu_port = i;
1214			p = &dev->ports[i];
1215
1216			/* Read from XMII register to determine host port
1217			 * interface.  If set specifically in device tree
1218			 * note the difference to help debugging.
1219			 */
1220			interface = ksz9477_get_interface(dev, i);
1221			if (!p->interface) {
1222				if (dev->compat_interface) {
1223					dev_warn(dev->dev,
1224						 "Using legacy switch \"phy-mode\" property, because it is missing on port %d node. "
1225						 "Please update your device tree.\n",
1226						 i);
1227					p->interface = dev->compat_interface;
1228				} else {
1229					p->interface = interface;
1230				}
1231			}
1232			if (interface && interface != p->interface) {
1233				prev_msg = " instead of ";
1234				prev_mode = phy_modes(interface);
1235			} else {
1236				prev_msg = "";
1237				prev_mode = "";
1238			}
1239			dev_info(dev->dev,
1240				 "Port%d: using phy mode %s%s%s\n",
1241				 i,
1242				 phy_modes(p->interface),
1243				 prev_msg,
1244				 prev_mode);
1245
1246			/* enable cpu port */
1247			ksz9477_port_setup(dev, i, true);
1248		}
1249	}
1250
1251	for (i = 0; i < dev->info->port_cnt; i++) {
1252		if (i == dev->cpu_port)
1253			continue;
1254		ksz_port_stp_state_set(ds, i, BR_STATE_DISABLED);
1255	}
1256}
1257
1258int ksz9477_enable_stp_addr(struct ksz_device *dev)
1259{
1260	const u32 *masks;
1261	u32 data;
1262	int ret;
1263
1264	masks = dev->info->masks;
1265
1266	/* Enable Reserved multicast table */
1267	ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_RESV_MCAST_ENABLE, true);
1268
1269	/* Set the Override bit for forwarding BPDU packet to CPU */
1270	ret = ksz_write32(dev, REG_SW_ALU_VAL_B,
1271			  ALU_V_OVERRIDE | BIT(dev->cpu_port));
1272	if (ret < 0)
1273		return ret;
1274
1275	data = ALU_STAT_START | ALU_RESV_MCAST_ADDR | masks[ALU_STAT_WRITE];
1276
1277	ret = ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
1278	if (ret < 0)
1279		return ret;
1280
1281	/* wait to be finished */
1282	ret = ksz9477_wait_alu_sta_ready(dev);
1283	if (ret < 0) {
1284		dev_err(dev->dev, "Failed to update Reserved Multicast table\n");
1285		return ret;
1286	}
1287
1288	return 0;
1289}
1290
1291int ksz9477_setup(struct dsa_switch *ds)
1292{
1293	struct ksz_device *dev = ds->priv;
1294	int ret = 0;
1295
1296	ds->mtu_enforcement_ingress = true;
1297
1298	/* Required for port partitioning. */
1299	ksz9477_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY,
1300		      true);
1301
1302	/* Do not work correctly with tail tagging. */
1303	ksz_cfg(dev, REG_SW_MAC_CTRL_0, SW_CHECK_LENGTH, false);
1304
1305	/* Enable REG_SW_MTU__2 reg by setting SW_JUMBO_PACKET */
1306	ksz_cfg(dev, REG_SW_MAC_CTRL_1, SW_JUMBO_PACKET, true);
1307
1308	/* Now we can configure default MTU value */
1309	ret = regmap_update_bits(ksz_regmap_16(dev), REG_SW_MTU__2, REG_SW_MTU_MASK,
1310				 VLAN_ETH_FRAME_LEN + ETH_FCS_LEN);
1311	if (ret)
1312		return ret;
1313
1314	/* queue based egress rate limit */
1315	ksz_cfg(dev, REG_SW_MAC_CTRL_5, SW_OUT_RATE_LIMIT_QUEUE_BASED, true);
1316
1317	/* enable global MIB counter freeze function */
1318	ksz_cfg(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FREEZE, true);
1319
1320	/* Make sure PME (WoL) is not enabled. If requested, it will be
1321	 * enabled by ksz9477_wol_pre_shutdown(). Otherwise, some PMICs do not
1322	 * like PME events changes before shutdown.
1323	 */
1324	ksz_write8(dev, REG_SW_PME_CTRL, 0);
1325
1326	return 0;
1327}
1328
1329u32 ksz9477_get_port_addr(int port, int offset)
1330{
1331	return PORT_CTRL_ADDR(port, offset);
1332}
1333
1334int ksz9477_tc_cbs_set_cinc(struct ksz_device *dev, int port, u32 val)
1335{
1336	val = val >> 8;
1337
1338	return ksz_pwrite16(dev, port, REG_PORT_MTI_CREDIT_INCREMENT, val);
1339}
1340
1341/* The KSZ9477 provides following HW features to accelerate
1342 * HSR frames handling:
1343 *
1344 * 1. TX PACKET DUPLICATION FROM HOST TO SWITCH
1345 * 2. RX PACKET DUPLICATION DISCARDING
1346 * 3. PREVENTING PACKET LOOP IN THE RING BY SELF-ADDRESS FILTERING
1347 *
1348 * Only one from point 1. has the NETIF_F* flag available.
1349 *
1350 * Ones from point 2 and 3 are "best effort" - i.e. those will
1351 * work correctly most of the time, but it may happen that some
1352 * frames will not be caught - to be more specific; there is a race
1353 * condition in hardware such that, when duplicate packets are received
1354 * on member ports very close in time to each other, the hardware fails
1355 * to detect that they are duplicates.
1356 *
1357 * Hence, the SW needs to handle those special cases. However, the speed
1358 * up gain is considerable when above features are used.
1359 *
1360 * Moreover, the NETIF_F_HW_HSR_FWD feature is also enabled, as HSR frames
1361 * can be forwarded in the switch fabric between HSR ports.
1362 */
1363#define KSZ9477_SUPPORTED_HSR_FEATURES (NETIF_F_HW_HSR_DUP | NETIF_F_HW_HSR_FWD)
1364
1365void ksz9477_hsr_join(struct dsa_switch *ds, int port, struct net_device *hsr)
1366{
1367	struct ksz_device *dev = ds->priv;
1368	struct net_device *user;
1369	struct dsa_port *hsr_dp;
1370	u8 data, hsr_ports = 0;
1371
1372	/* Program which port(s) shall support HSR */
1373	ksz_rmw32(dev, REG_HSR_PORT_MAP__4, BIT(port), BIT(port));
1374
1375	/* Forward frames between HSR ports (i.e. bridge together HSR ports) */
1376	if (dev->hsr_ports) {
1377		dsa_hsr_foreach_port(hsr_dp, ds, hsr)
1378			hsr_ports |= BIT(hsr_dp->index);
1379
1380		hsr_ports |= BIT(dsa_upstream_port(ds, port));
1381		dsa_hsr_foreach_port(hsr_dp, ds, hsr)
1382			ksz9477_cfg_port_member(dev, hsr_dp->index, hsr_ports);
1383	}
1384
1385	if (!dev->hsr_ports) {
1386		/* Enable discarding of received HSR frames */
1387		ksz_read8(dev, REG_HSR_ALU_CTRL_0__1, &data);
1388		data |= HSR_DUPLICATE_DISCARD;
1389		data &= ~HSR_NODE_UNICAST;
1390		ksz_write8(dev, REG_HSR_ALU_CTRL_0__1, data);
1391	}
1392
1393	/* Enable per port self-address filtering.
1394	 * The global self-address filtering has already been enabled in the
1395	 * ksz9477_reset_switch() function.
1396	 */
1397	ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL, PORT_SRC_ADDR_FILTER, true);
1398
1399	/* Setup HW supported features for lan HSR ports */
1400	user = dsa_to_port(ds, port)->user;
1401	user->features |= KSZ9477_SUPPORTED_HSR_FEATURES;
1402}
1403
1404void ksz9477_hsr_leave(struct dsa_switch *ds, int port, struct net_device *hsr)
1405{
1406	struct ksz_device *dev = ds->priv;
1407
1408	/* Clear port HSR support */
1409	ksz_rmw32(dev, REG_HSR_PORT_MAP__4, BIT(port), 0);
1410
1411	/* Disable forwarding frames between HSR ports */
1412	ksz9477_cfg_port_member(dev, port, BIT(dsa_upstream_port(ds, port)));
1413
1414	/* Disable per port self-address filtering */
1415	ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL, PORT_SRC_ADDR_FILTER, false);
1416}
1417
1418int ksz9477_switch_init(struct ksz_device *dev)
1419{
1420	u8 data8;
1421	int ret;
1422
1423	dev->port_mask = (1 << dev->info->port_cnt) - 1;
1424
1425	/* turn off SPI DO Edge select */
1426	ret = ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
1427	if (ret)
1428		return ret;
1429
1430	data8 &= ~SPI_AUTO_EDGE_DETECTION;
1431	ret = ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
1432	if (ret)
1433		return ret;
1434
1435	return 0;
1436}
1437
1438void ksz9477_switch_exit(struct ksz_device *dev)
1439{
1440	ksz9477_reset_switch(dev);
1441}
1442
1443MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
1444MODULE_DESCRIPTION("Microchip KSZ9477 Series Switch DSA Driver");
1445MODULE_LICENSE("GPL");
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Microchip KSZ9477 switch driver main logic
   4 *
   5 * Copyright (C) 2017-2019 Microchip Technology Inc.
   6 */
   7
   8#include <linux/kernel.h>
   9#include <linux/module.h>
  10#include <linux/iopoll.h>
  11#include <linux/platform_data/microchip-ksz.h>
  12#include <linux/phy.h>
  13#include <linux/if_bridge.h>
  14#include <linux/if_vlan.h>
  15#include <net/dsa.h>
  16#include <net/switchdev.h>
  17
  18#include "ksz9477_reg.h"
  19#include "ksz_common.h"
  20#include "ksz9477.h"
  21
  22static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
  23{
  24	regmap_update_bits(dev->regmap[0], addr, bits, set ? bits : 0);
  25}
  26
  27static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
  28			 bool set)
  29{
  30	regmap_update_bits(dev->regmap[0], PORT_CTRL_ADDR(port, offset),
  31			   bits, set ? bits : 0);
  32}
  33
  34static void ksz9477_cfg32(struct ksz_device *dev, u32 addr, u32 bits, bool set)
  35{
  36	regmap_update_bits(dev->regmap[2], addr, bits, set ? bits : 0);
  37}
  38
  39static void ksz9477_port_cfg32(struct ksz_device *dev, int port, int offset,
  40			       u32 bits, bool set)
  41{
  42	regmap_update_bits(dev->regmap[2], PORT_CTRL_ADDR(port, offset),
  43			   bits, set ? bits : 0);
  44}
  45
  46int ksz9477_change_mtu(struct ksz_device *dev, int port, int mtu)
  47{
  48	u16 frame_size;
  49
  50	if (!dsa_is_cpu_port(dev->ds, port))
  51		return 0;
  52
  53	frame_size = mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
  54
  55	return regmap_update_bits(dev->regmap[1], REG_SW_MTU__2,
  56				  REG_SW_MTU_MASK, frame_size);
  57}
  58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  59static int ksz9477_wait_vlan_ctrl_ready(struct ksz_device *dev)
  60{
  61	unsigned int val;
  62
  63	return regmap_read_poll_timeout(dev->regmap[0], REG_SW_VLAN_CTRL,
  64					val, !(val & VLAN_START), 10, 1000);
  65}
  66
  67static int ksz9477_get_vlan_table(struct ksz_device *dev, u16 vid,
  68				  u32 *vlan_table)
  69{
  70	int ret;
  71
  72	mutex_lock(&dev->vlan_mutex);
  73
  74	ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
  75	ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_READ | VLAN_START);
  76
  77	/* wait to be cleared */
  78	ret = ksz9477_wait_vlan_ctrl_ready(dev);
  79	if (ret) {
  80		dev_dbg(dev->dev, "Failed to read vlan table\n");
  81		goto exit;
  82	}
  83
  84	ksz_read32(dev, REG_SW_VLAN_ENTRY__4, &vlan_table[0]);
  85	ksz_read32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, &vlan_table[1]);
  86	ksz_read32(dev, REG_SW_VLAN_ENTRY_PORTS__4, &vlan_table[2]);
  87
  88	ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
  89
  90exit:
  91	mutex_unlock(&dev->vlan_mutex);
  92
  93	return ret;
  94}
  95
  96static int ksz9477_set_vlan_table(struct ksz_device *dev, u16 vid,
  97				  u32 *vlan_table)
  98{
  99	int ret;
 100
 101	mutex_lock(&dev->vlan_mutex);
 102
 103	ksz_write32(dev, REG_SW_VLAN_ENTRY__4, vlan_table[0]);
 104	ksz_write32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, vlan_table[1]);
 105	ksz_write32(dev, REG_SW_VLAN_ENTRY_PORTS__4, vlan_table[2]);
 106
 107	ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
 108	ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_START | VLAN_WRITE);
 109
 110	/* wait to be cleared */
 111	ret = ksz9477_wait_vlan_ctrl_ready(dev);
 112	if (ret) {
 113		dev_dbg(dev->dev, "Failed to write vlan table\n");
 114		goto exit;
 115	}
 116
 117	ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
 118
 119	/* update vlan cache table */
 120	dev->vlan_cache[vid].table[0] = vlan_table[0];
 121	dev->vlan_cache[vid].table[1] = vlan_table[1];
 122	dev->vlan_cache[vid].table[2] = vlan_table[2];
 123
 124exit:
 125	mutex_unlock(&dev->vlan_mutex);
 126
 127	return ret;
 128}
 129
 130static void ksz9477_read_table(struct ksz_device *dev, u32 *table)
 131{
 132	ksz_read32(dev, REG_SW_ALU_VAL_A, &table[0]);
 133	ksz_read32(dev, REG_SW_ALU_VAL_B, &table[1]);
 134	ksz_read32(dev, REG_SW_ALU_VAL_C, &table[2]);
 135	ksz_read32(dev, REG_SW_ALU_VAL_D, &table[3]);
 136}
 137
 138static void ksz9477_write_table(struct ksz_device *dev, u32 *table)
 139{
 140	ksz_write32(dev, REG_SW_ALU_VAL_A, table[0]);
 141	ksz_write32(dev, REG_SW_ALU_VAL_B, table[1]);
 142	ksz_write32(dev, REG_SW_ALU_VAL_C, table[2]);
 143	ksz_write32(dev, REG_SW_ALU_VAL_D, table[3]);
 144}
 145
 146static int ksz9477_wait_alu_ready(struct ksz_device *dev)
 147{
 148	unsigned int val;
 149
 150	return regmap_read_poll_timeout(dev->regmap[2], REG_SW_ALU_CTRL__4,
 151					val, !(val & ALU_START), 10, 1000);
 152}
 153
 154static int ksz9477_wait_alu_sta_ready(struct ksz_device *dev)
 155{
 156	unsigned int val;
 157
 158	return regmap_read_poll_timeout(dev->regmap[2],
 159					REG_SW_ALU_STAT_CTRL__4,
 160					val, !(val & ALU_STAT_START),
 161					10, 1000);
 162}
 163
 164int ksz9477_reset_switch(struct ksz_device *dev)
 165{
 166	u8 data8;
 167	u32 data32;
 168
 169	/* reset switch */
 170	ksz_cfg(dev, REG_SW_OPERATION, SW_RESET, true);
 171
 172	/* turn off SPI DO Edge select */
 173	regmap_update_bits(dev->regmap[0], REG_SW_GLOBAL_SERIAL_CTRL_0,
 174			   SPI_AUTO_EDGE_DETECTION, 0);
 175
 176	/* default configuration */
 177	ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8);
 178	data8 = SW_AGING_ENABLE | SW_LINK_AUTO_AGING |
 179	      SW_SRC_ADDR_FILTER | SW_FLUSH_STP_TABLE | SW_FLUSH_MSTP_TABLE;
 180	ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
 181
 182	/* disable interrupts */
 183	ksz_write32(dev, REG_SW_INT_MASK__4, SWITCH_INT_MASK);
 184	ksz_write32(dev, REG_SW_PORT_INT_MASK__4, 0x7F);
 185	ksz_read32(dev, REG_SW_PORT_INT_STATUS__4, &data32);
 186
 187	/* KSZ9893 compatible chips do not support refclk configuration */
 188	if (dev->chip_id == KSZ9893_CHIP_ID ||
 189	    dev->chip_id == KSZ8563_CHIP_ID ||
 190	    dev->chip_id == KSZ9563_CHIP_ID)
 191		return 0;
 192
 193	data8 = SW_ENABLE_REFCLKO;
 194	if (dev->synclko_disable)
 195		data8 = 0;
 196	else if (dev->synclko_125)
 197		data8 = SW_ENABLE_REFCLKO | SW_REFCLKO_IS_125MHZ;
 198	ksz_write8(dev, REG_SW_GLOBAL_OUTPUT_CTRL__1, data8);
 199
 200	return 0;
 201}
 202
 203void ksz9477_r_mib_cnt(struct ksz_device *dev, int port, u16 addr, u64 *cnt)
 204{
 205	struct ksz_port *p = &dev->ports[port];
 206	unsigned int val;
 207	u32 data;
 208	int ret;
 209
 210	/* retain the flush/freeze bit */
 211	data = p->freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
 212	data |= MIB_COUNTER_READ;
 213	data |= (addr << MIB_COUNTER_INDEX_S);
 214	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, data);
 215
 216	ret = regmap_read_poll_timeout(dev->regmap[2],
 217			PORT_CTRL_ADDR(port, REG_PORT_MIB_CTRL_STAT__4),
 218			val, !(val & MIB_COUNTER_READ), 10, 1000);
 219	/* failed to read MIB. get out of loop */
 220	if (ret) {
 221		dev_dbg(dev->dev, "Failed to get MIB\n");
 222		return;
 223	}
 224
 225	/* count resets upon read */
 226	ksz_pread32(dev, port, REG_PORT_MIB_DATA, &data);
 227	*cnt += data;
 228}
 229
 230void ksz9477_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
 231		       u64 *dropped, u64 *cnt)
 232{
 233	addr = dev->info->mib_names[addr].index;
 234	ksz9477_r_mib_cnt(dev, port, addr, cnt);
 235}
 236
 237void ksz9477_freeze_mib(struct ksz_device *dev, int port, bool freeze)
 238{
 239	u32 val = freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
 240	struct ksz_port *p = &dev->ports[port];
 241
 242	/* enable/disable the port for flush/freeze function */
 243	mutex_lock(&p->mib.cnt_mutex);
 244	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, val);
 245
 246	/* used by MIB counter reading code to know freeze is enabled */
 247	p->freeze = freeze;
 248	mutex_unlock(&p->mib.cnt_mutex);
 249}
 250
 251void ksz9477_port_init_cnt(struct ksz_device *dev, int port)
 252{
 253	struct ksz_port_mib *mib = &dev->ports[port].mib;
 254
 255	/* flush all enabled port MIB counters */
 256	mutex_lock(&mib->cnt_mutex);
 257	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4,
 258		     MIB_COUNTER_FLUSH_FREEZE);
 259	ksz_write8(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FLUSH);
 260	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, 0);
 261	mutex_unlock(&mib->cnt_mutex);
 262}
 263
 264static void ksz9477_r_phy_quirks(struct ksz_device *dev, u16 addr, u16 reg,
 265				 u16 *data)
 266{
 267	/* KSZ8563R do not have extended registers but BMSR_ESTATEN and
 268	 * BMSR_ERCAP bits are set.
 269	 */
 270	if (dev->chip_id == KSZ8563_CHIP_ID && reg == MII_BMSR)
 271		*data &= ~(BMSR_ESTATEN | BMSR_ERCAP);
 272}
 273
 274int ksz9477_r_phy(struct ksz_device *dev, u16 addr, u16 reg, u16 *data)
 275{
 276	u16 val = 0xffff;
 277	int ret;
 278
 279	/* No real PHY after this. Simulate the PHY.
 280	 * A fixed PHY can be setup in the device tree, but this function is
 281	 * still called for that port during initialization.
 282	 * For RGMII PHY there is no way to access it so the fixed PHY should
 283	 * be used.  For SGMII PHY the supporting code will be added later.
 284	 */
 285	if (!dev->info->internal_phy[addr]) {
 286		struct ksz_port *p = &dev->ports[addr];
 287
 288		switch (reg) {
 289		case MII_BMCR:
 290			val = 0x1140;
 291			break;
 292		case MII_BMSR:
 293			val = 0x796d;
 294			break;
 295		case MII_PHYSID1:
 296			val = 0x0022;
 297			break;
 298		case MII_PHYSID2:
 299			val = 0x1631;
 300			break;
 301		case MII_ADVERTISE:
 302			val = 0x05e1;
 303			break;
 304		case MII_LPA:
 305			val = 0xc5e1;
 306			break;
 307		case MII_CTRL1000:
 308			val = 0x0700;
 309			break;
 310		case MII_STAT1000:
 311			if (p->phydev.speed == SPEED_1000)
 312				val = 0x3800;
 313			else
 314				val = 0;
 315			break;
 316		}
 317	} else {
 318		ret = ksz_pread16(dev, addr, 0x100 + (reg << 1), &val);
 319		if (ret)
 320			return ret;
 321
 322		ksz9477_r_phy_quirks(dev, addr, reg, &val);
 323	}
 324
 325	*data = val;
 326
 327	return 0;
 328}
 329
 330int ksz9477_w_phy(struct ksz_device *dev, u16 addr, u16 reg, u16 val)
 331{
 
 
 332	/* No real PHY after this. */
 333	if (!dev->info->internal_phy[addr])
 334		return 0;
 335
 336	return ksz_pwrite16(dev, addr, 0x100 + (reg << 1), val);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 337}
 338
 339void ksz9477_cfg_port_member(struct ksz_device *dev, int port, u8 member)
 340{
 341	ksz_pwrite32(dev, port, REG_PORT_VLAN_MEMBERSHIP__4, member);
 342}
 343
 344void ksz9477_flush_dyn_mac_table(struct ksz_device *dev, int port)
 345{
 346	const u16 *regs = dev->info->regs;
 347	u8 data;
 348
 349	regmap_update_bits(dev->regmap[0], REG_SW_LUE_CTRL_2,
 350			   SW_FLUSH_OPTION_M << SW_FLUSH_OPTION_S,
 351			   SW_FLUSH_OPTION_DYN_MAC << SW_FLUSH_OPTION_S);
 352
 353	if (port < dev->info->port_cnt) {
 354		/* flush individual port */
 355		ksz_pread8(dev, port, regs[P_STP_CTRL], &data);
 356		if (!(data & PORT_LEARN_DISABLE))
 357			ksz_pwrite8(dev, port, regs[P_STP_CTRL],
 358				    data | PORT_LEARN_DISABLE);
 359		ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true);
 360		ksz_pwrite8(dev, port, regs[P_STP_CTRL], data);
 361	} else {
 362		/* flush all */
 363		ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_STP_TABLE, true);
 364	}
 365}
 366
 367int ksz9477_port_vlan_filtering(struct ksz_device *dev, int port,
 368				bool flag, struct netlink_ext_ack *extack)
 369{
 370	if (flag) {
 371		ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
 372			     PORT_VLAN_LOOKUP_VID_0, true);
 373		ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, true);
 374	} else {
 375		ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, false);
 376		ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
 377			     PORT_VLAN_LOOKUP_VID_0, false);
 378	}
 379
 380	return 0;
 381}
 382
 383int ksz9477_port_vlan_add(struct ksz_device *dev, int port,
 384			  const struct switchdev_obj_port_vlan *vlan,
 385			  struct netlink_ext_ack *extack)
 386{
 387	u32 vlan_table[3];
 388	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
 389	int err;
 390
 391	err = ksz9477_get_vlan_table(dev, vlan->vid, vlan_table);
 392	if (err) {
 393		NL_SET_ERR_MSG_MOD(extack, "Failed to get vlan table");
 394		return err;
 395	}
 396
 397	vlan_table[0] = VLAN_VALID | (vlan->vid & VLAN_FID_M);
 398	if (untagged)
 399		vlan_table[1] |= BIT(port);
 400	else
 401		vlan_table[1] &= ~BIT(port);
 402	vlan_table[1] &= ~(BIT(dev->cpu_port));
 403
 404	vlan_table[2] |= BIT(port) | BIT(dev->cpu_port);
 405
 406	err = ksz9477_set_vlan_table(dev, vlan->vid, vlan_table);
 407	if (err) {
 408		NL_SET_ERR_MSG_MOD(extack, "Failed to set vlan table");
 409		return err;
 410	}
 411
 412	/* change PVID */
 413	if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
 414		ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, vlan->vid);
 415
 416	return 0;
 417}
 418
 419int ksz9477_port_vlan_del(struct ksz_device *dev, int port,
 420			  const struct switchdev_obj_port_vlan *vlan)
 421{
 422	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
 423	u32 vlan_table[3];
 424	u16 pvid;
 425
 426	ksz_pread16(dev, port, REG_PORT_DEFAULT_VID, &pvid);
 427	pvid = pvid & 0xFFF;
 428
 429	if (ksz9477_get_vlan_table(dev, vlan->vid, vlan_table)) {
 430		dev_dbg(dev->dev, "Failed to get vlan table\n");
 431		return -ETIMEDOUT;
 432	}
 433
 434	vlan_table[2] &= ~BIT(port);
 435
 436	if (pvid == vlan->vid)
 437		pvid = 1;
 438
 439	if (untagged)
 440		vlan_table[1] &= ~BIT(port);
 441
 442	if (ksz9477_set_vlan_table(dev, vlan->vid, vlan_table)) {
 443		dev_dbg(dev->dev, "Failed to set vlan table\n");
 444		return -ETIMEDOUT;
 445	}
 446
 447	ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, pvid);
 448
 449	return 0;
 450}
 451
 452int ksz9477_fdb_add(struct ksz_device *dev, int port,
 453		    const unsigned char *addr, u16 vid, struct dsa_db db)
 454{
 455	u32 alu_table[4];
 456	u32 data;
 457	int ret = 0;
 458
 459	mutex_lock(&dev->alu_mutex);
 460
 461	/* find any entry with mac & vid */
 462	data = vid << ALU_FID_INDEX_S;
 463	data |= ((addr[0] << 8) | addr[1]);
 464	ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
 465
 466	data = ((addr[2] << 24) | (addr[3] << 16));
 467	data |= ((addr[4] << 8) | addr[5]);
 468	ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
 469
 470	/* start read operation */
 471	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
 472
 473	/* wait to be finished */
 474	ret = ksz9477_wait_alu_ready(dev);
 475	if (ret) {
 476		dev_dbg(dev->dev, "Failed to read ALU\n");
 477		goto exit;
 478	}
 479
 480	/* read ALU entry */
 481	ksz9477_read_table(dev, alu_table);
 482
 483	/* update ALU entry */
 484	alu_table[0] = ALU_V_STATIC_VALID;
 485	alu_table[1] |= BIT(port);
 486	if (vid)
 487		alu_table[1] |= ALU_V_USE_FID;
 488	alu_table[2] = (vid << ALU_V_FID_S);
 489	alu_table[2] |= ((addr[0] << 8) | addr[1]);
 490	alu_table[3] = ((addr[2] << 24) | (addr[3] << 16));
 491	alu_table[3] |= ((addr[4] << 8) | addr[5]);
 492
 493	ksz9477_write_table(dev, alu_table);
 494
 495	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
 496
 497	/* wait to be finished */
 498	ret = ksz9477_wait_alu_ready(dev);
 499	if (ret)
 500		dev_dbg(dev->dev, "Failed to write ALU\n");
 501
 502exit:
 503	mutex_unlock(&dev->alu_mutex);
 504
 505	return ret;
 506}
 507
 508int ksz9477_fdb_del(struct ksz_device *dev, int port,
 509		    const unsigned char *addr, u16 vid, struct dsa_db db)
 510{
 511	u32 alu_table[4];
 512	u32 data;
 513	int ret = 0;
 514
 515	mutex_lock(&dev->alu_mutex);
 516
 517	/* read any entry with mac & vid */
 518	data = vid << ALU_FID_INDEX_S;
 519	data |= ((addr[0] << 8) | addr[1]);
 520	ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
 521
 522	data = ((addr[2] << 24) | (addr[3] << 16));
 523	data |= ((addr[4] << 8) | addr[5]);
 524	ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
 525
 526	/* start read operation */
 527	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
 528
 529	/* wait to be finished */
 530	ret = ksz9477_wait_alu_ready(dev);
 531	if (ret) {
 532		dev_dbg(dev->dev, "Failed to read ALU\n");
 533		goto exit;
 534	}
 535
 536	ksz_read32(dev, REG_SW_ALU_VAL_A, &alu_table[0]);
 537	if (alu_table[0] & ALU_V_STATIC_VALID) {
 538		ksz_read32(dev, REG_SW_ALU_VAL_B, &alu_table[1]);
 539		ksz_read32(dev, REG_SW_ALU_VAL_C, &alu_table[2]);
 540		ksz_read32(dev, REG_SW_ALU_VAL_D, &alu_table[3]);
 541
 542		/* clear forwarding port */
 543		alu_table[1] &= ~BIT(port);
 544
 545		/* if there is no port to forward, clear table */
 546		if ((alu_table[1] & ALU_V_PORT_MAP) == 0) {
 547			alu_table[0] = 0;
 548			alu_table[1] = 0;
 549			alu_table[2] = 0;
 550			alu_table[3] = 0;
 551		}
 552	} else {
 553		alu_table[0] = 0;
 554		alu_table[1] = 0;
 555		alu_table[2] = 0;
 556		alu_table[3] = 0;
 557	}
 558
 559	ksz9477_write_table(dev, alu_table);
 560
 561	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
 562
 563	/* wait to be finished */
 564	ret = ksz9477_wait_alu_ready(dev);
 565	if (ret)
 566		dev_dbg(dev->dev, "Failed to write ALU\n");
 567
 568exit:
 569	mutex_unlock(&dev->alu_mutex);
 570
 571	return ret;
 572}
 573
 574static void ksz9477_convert_alu(struct alu_struct *alu, u32 *alu_table)
 575{
 576	alu->is_static = !!(alu_table[0] & ALU_V_STATIC_VALID);
 577	alu->is_src_filter = !!(alu_table[0] & ALU_V_SRC_FILTER);
 578	alu->is_dst_filter = !!(alu_table[0] & ALU_V_DST_FILTER);
 579	alu->prio_age = (alu_table[0] >> ALU_V_PRIO_AGE_CNT_S) &
 580			ALU_V_PRIO_AGE_CNT_M;
 581	alu->mstp = alu_table[0] & ALU_V_MSTP_M;
 582
 583	alu->is_override = !!(alu_table[1] & ALU_V_OVERRIDE);
 584	alu->is_use_fid = !!(alu_table[1] & ALU_V_USE_FID);
 585	alu->port_forward = alu_table[1] & ALU_V_PORT_MAP;
 586
 587	alu->fid = (alu_table[2] >> ALU_V_FID_S) & ALU_V_FID_M;
 588
 589	alu->mac[0] = (alu_table[2] >> 8) & 0xFF;
 590	alu->mac[1] = alu_table[2] & 0xFF;
 591	alu->mac[2] = (alu_table[3] >> 24) & 0xFF;
 592	alu->mac[3] = (alu_table[3] >> 16) & 0xFF;
 593	alu->mac[4] = (alu_table[3] >> 8) & 0xFF;
 594	alu->mac[5] = alu_table[3] & 0xFF;
 595}
 596
 597int ksz9477_fdb_dump(struct ksz_device *dev, int port,
 598		     dsa_fdb_dump_cb_t *cb, void *data)
 599{
 600	int ret = 0;
 601	u32 ksz_data;
 602	u32 alu_table[4];
 603	struct alu_struct alu;
 604	int timeout;
 605
 606	mutex_lock(&dev->alu_mutex);
 607
 608	/* start ALU search */
 609	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_START | ALU_SEARCH);
 610
 611	do {
 612		timeout = 1000;
 613		do {
 614			ksz_read32(dev, REG_SW_ALU_CTRL__4, &ksz_data);
 615			if ((ksz_data & ALU_VALID) || !(ksz_data & ALU_START))
 616				break;
 617			usleep_range(1, 10);
 618		} while (timeout-- > 0);
 619
 620		if (!timeout) {
 621			dev_dbg(dev->dev, "Failed to search ALU\n");
 622			ret = -ETIMEDOUT;
 623			goto exit;
 624		}
 625
 626		if (!(ksz_data & ALU_VALID))
 627			continue;
 628
 629		/* read ALU table */
 630		ksz9477_read_table(dev, alu_table);
 631
 632		ksz9477_convert_alu(&alu, alu_table);
 633
 634		if (alu.port_forward & BIT(port)) {
 635			ret = cb(alu.mac, alu.fid, alu.is_static, data);
 636			if (ret)
 637				goto exit;
 638		}
 639	} while (ksz_data & ALU_START);
 640
 641exit:
 642
 643	/* stop ALU search */
 644	ksz_write32(dev, REG_SW_ALU_CTRL__4, 0);
 645
 646	mutex_unlock(&dev->alu_mutex);
 647
 648	return ret;
 649}
 650
 651int ksz9477_mdb_add(struct ksz_device *dev, int port,
 652		    const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
 653{
 654	u32 static_table[4];
 655	const u8 *shifts;
 656	const u32 *masks;
 657	u32 data;
 658	int index;
 659	u32 mac_hi, mac_lo;
 660	int err = 0;
 661
 662	shifts = dev->info->shifts;
 663	masks = dev->info->masks;
 664
 665	mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
 666	mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
 667	mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
 668
 669	mutex_lock(&dev->alu_mutex);
 670
 671	for (index = 0; index < dev->info->num_statics; index++) {
 672		/* find empty slot first */
 673		data = (index << shifts[ALU_STAT_INDEX]) |
 674			masks[ALU_STAT_READ] | ALU_STAT_START;
 675		ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
 676
 677		/* wait to be finished */
 678		err = ksz9477_wait_alu_sta_ready(dev);
 679		if (err) {
 680			dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
 681			goto exit;
 682		}
 683
 684		/* read ALU static table */
 685		ksz9477_read_table(dev, static_table);
 686
 687		if (static_table[0] & ALU_V_STATIC_VALID) {
 688			/* check this has same vid & mac address */
 689			if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
 690			    ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
 691			    static_table[3] == mac_lo) {
 692				/* found matching one */
 693				break;
 694			}
 695		} else {
 696			/* found empty one */
 697			break;
 698		}
 699	}
 700
 701	/* no available entry */
 702	if (index == dev->info->num_statics) {
 703		err = -ENOSPC;
 704		goto exit;
 705	}
 706
 707	/* add entry */
 708	static_table[0] = ALU_V_STATIC_VALID;
 709	static_table[1] |= BIT(port);
 710	if (mdb->vid)
 711		static_table[1] |= ALU_V_USE_FID;
 712	static_table[2] = (mdb->vid << ALU_V_FID_S);
 713	static_table[2] |= mac_hi;
 714	static_table[3] = mac_lo;
 715
 716	ksz9477_write_table(dev, static_table);
 717
 718	data = (index << shifts[ALU_STAT_INDEX]) | ALU_STAT_START;
 719	ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
 720
 721	/* wait to be finished */
 722	if (ksz9477_wait_alu_sta_ready(dev))
 723		dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
 724
 725exit:
 726	mutex_unlock(&dev->alu_mutex);
 727	return err;
 728}
 729
 730int ksz9477_mdb_del(struct ksz_device *dev, int port,
 731		    const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
 732{
 733	u32 static_table[4];
 734	const u8 *shifts;
 735	const u32 *masks;
 736	u32 data;
 737	int index;
 738	int ret = 0;
 739	u32 mac_hi, mac_lo;
 740
 741	shifts = dev->info->shifts;
 742	masks = dev->info->masks;
 743
 744	mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
 745	mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
 746	mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
 747
 748	mutex_lock(&dev->alu_mutex);
 749
 750	for (index = 0; index < dev->info->num_statics; index++) {
 751		/* find empty slot first */
 752		data = (index << shifts[ALU_STAT_INDEX]) |
 753			masks[ALU_STAT_READ] | ALU_STAT_START;
 754		ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
 755
 756		/* wait to be finished */
 757		ret = ksz9477_wait_alu_sta_ready(dev);
 758		if (ret) {
 759			dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
 760			goto exit;
 761		}
 762
 763		/* read ALU static table */
 764		ksz9477_read_table(dev, static_table);
 765
 766		if (static_table[0] & ALU_V_STATIC_VALID) {
 767			/* check this has same vid & mac address */
 768
 769			if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
 770			    ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
 771			    static_table[3] == mac_lo) {
 772				/* found matching one */
 773				break;
 774			}
 775		}
 776	}
 777
 778	/* no available entry */
 779	if (index == dev->info->num_statics)
 780		goto exit;
 781
 782	/* clear port */
 783	static_table[1] &= ~BIT(port);
 784
 785	if ((static_table[1] & ALU_V_PORT_MAP) == 0) {
 786		/* delete entry */
 787		static_table[0] = 0;
 788		static_table[1] = 0;
 789		static_table[2] = 0;
 790		static_table[3] = 0;
 791	}
 792
 793	ksz9477_write_table(dev, static_table);
 794
 795	data = (index << shifts[ALU_STAT_INDEX]) | ALU_STAT_START;
 796	ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
 797
 798	/* wait to be finished */
 799	ret = ksz9477_wait_alu_sta_ready(dev);
 800	if (ret)
 801		dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
 802
 803exit:
 804	mutex_unlock(&dev->alu_mutex);
 805
 806	return ret;
 807}
 808
 809int ksz9477_port_mirror_add(struct ksz_device *dev, int port,
 810			    struct dsa_mall_mirror_tc_entry *mirror,
 811			    bool ingress, struct netlink_ext_ack *extack)
 812{
 813	u8 data;
 814	int p;
 815
 816	/* Limit to one sniffer port
 817	 * Check if any of the port is already set for sniffing
 818	 * If yes, instruct the user to remove the previous entry & exit
 819	 */
 820	for (p = 0; p < dev->info->port_cnt; p++) {
 821		/* Skip the current sniffing port */
 822		if (p == mirror->to_local_port)
 823			continue;
 824
 825		ksz_pread8(dev, p, P_MIRROR_CTRL, &data);
 826
 827		if (data & PORT_MIRROR_SNIFFER) {
 828			NL_SET_ERR_MSG_MOD(extack,
 829					   "Sniffer port is already configured, delete existing rules & retry");
 830			return -EBUSY;
 831		}
 832	}
 833
 834	if (ingress)
 835		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
 836	else
 837		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
 838
 839	/* configure mirror port */
 840	ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
 841		     PORT_MIRROR_SNIFFER, true);
 842
 843	ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
 844
 845	return 0;
 846}
 847
 848void ksz9477_port_mirror_del(struct ksz_device *dev, int port,
 849			     struct dsa_mall_mirror_tc_entry *mirror)
 850{
 851	bool in_use = false;
 852	u8 data;
 853	int p;
 854
 855	if (mirror->ingress)
 856		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
 857	else
 858		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
 859
 860
 861	/* Check if any of the port is still referring to sniffer port */
 862	for (p = 0; p < dev->info->port_cnt; p++) {
 863		ksz_pread8(dev, p, P_MIRROR_CTRL, &data);
 864
 865		if ((data & (PORT_MIRROR_RX | PORT_MIRROR_TX))) {
 866			in_use = true;
 867			break;
 868		}
 869	}
 870
 871	/* delete sniffing if there are no other mirroring rules */
 872	if (!in_use)
 873		ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
 874			     PORT_MIRROR_SNIFFER, false);
 875}
 876
 877static phy_interface_t ksz9477_get_interface(struct ksz_device *dev, int port)
 878{
 879	phy_interface_t interface;
 880	bool gbit;
 881
 882	if (dev->info->internal_phy[port])
 883		return PHY_INTERFACE_MODE_NA;
 884
 885	gbit = ksz_get_gbit(dev, port);
 886
 887	interface = ksz_get_xmii(dev, port, gbit);
 888
 889	return interface;
 890}
 891
 892static void ksz9477_port_mmd_write(struct ksz_device *dev, int port,
 893				   u8 dev_addr, u16 reg_addr, u16 val)
 894{
 895	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP,
 896		     MMD_SETUP(PORT_MMD_OP_INDEX, dev_addr));
 897	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, reg_addr);
 898	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP,
 899		     MMD_SETUP(PORT_MMD_OP_DATA_NO_INCR, dev_addr));
 900	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, val);
 901}
 902
 903static void ksz9477_phy_errata_setup(struct ksz_device *dev, int port)
 904{
 905	/* Apply PHY settings to address errata listed in
 906	 * KSZ9477, KSZ9897, KSZ9896, KSZ9567, KSZ8565
 907	 * Silicon Errata and Data Sheet Clarification documents:
 908	 *
 909	 * Register settings are needed to improve PHY receive performance
 910	 */
 911	ksz9477_port_mmd_write(dev, port, 0x01, 0x6f, 0xdd0b);
 912	ksz9477_port_mmd_write(dev, port, 0x01, 0x8f, 0x6032);
 913	ksz9477_port_mmd_write(dev, port, 0x01, 0x9d, 0x248c);
 914	ksz9477_port_mmd_write(dev, port, 0x01, 0x75, 0x0060);
 915	ksz9477_port_mmd_write(dev, port, 0x01, 0xd3, 0x7777);
 916	ksz9477_port_mmd_write(dev, port, 0x1c, 0x06, 0x3008);
 917	ksz9477_port_mmd_write(dev, port, 0x1c, 0x08, 0x2001);
 918
 919	/* Transmit waveform amplitude can be improved
 920	 * (1000BASE-T, 100BASE-TX, 10BASE-Te)
 921	 */
 922	ksz9477_port_mmd_write(dev, port, 0x1c, 0x04, 0x00d0);
 923
 924	/* Energy Efficient Ethernet (EEE) feature select must
 925	 * be manually disabled (except on KSZ8565 which is 100Mbit)
 926	 */
 927	if (dev->info->gbit_capable[port])
 928		ksz9477_port_mmd_write(dev, port, 0x07, 0x3c, 0x0000);
 929
 930	/* Register settings are required to meet data sheet
 931	 * supply current specifications
 932	 */
 933	ksz9477_port_mmd_write(dev, port, 0x1c, 0x13, 0x6eff);
 934	ksz9477_port_mmd_write(dev, port, 0x1c, 0x14, 0xe6ff);
 935	ksz9477_port_mmd_write(dev, port, 0x1c, 0x15, 0x6eff);
 936	ksz9477_port_mmd_write(dev, port, 0x1c, 0x16, 0xe6ff);
 937	ksz9477_port_mmd_write(dev, port, 0x1c, 0x17, 0x00ff);
 938	ksz9477_port_mmd_write(dev, port, 0x1c, 0x18, 0x43ff);
 939	ksz9477_port_mmd_write(dev, port, 0x1c, 0x19, 0xc3ff);
 940	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1a, 0x6fff);
 941	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1b, 0x07ff);
 942	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1c, 0x0fff);
 943	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1d, 0xe7ff);
 944	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1e, 0xefff);
 945	ksz9477_port_mmd_write(dev, port, 0x1c, 0x20, 0xeeee);
 946}
 947
 948void ksz9477_get_caps(struct ksz_device *dev, int port,
 949		      struct phylink_config *config)
 950{
 951	config->mac_capabilities = MAC_10 | MAC_100 | MAC_ASYM_PAUSE |
 952				   MAC_SYM_PAUSE;
 953
 954	if (dev->info->gbit_capable[port])
 955		config->mac_capabilities |= MAC_1000FD;
 956}
 957
 958int ksz9477_set_ageing_time(struct ksz_device *dev, unsigned int msecs)
 959{
 960	u32 secs = msecs / 1000;
 961	u8 value;
 962	u8 data;
 963	int ret;
 964
 965	value = FIELD_GET(SW_AGE_PERIOD_7_0_M, secs);
 966
 967	ret = ksz_write8(dev, REG_SW_LUE_CTRL_3, value);
 968	if (ret < 0)
 969		return ret;
 970
 971	data = FIELD_GET(SW_AGE_PERIOD_10_8_M, secs);
 972
 973	ret = ksz_read8(dev, REG_SW_LUE_CTRL_0, &value);
 974	if (ret < 0)
 975		return ret;
 976
 977	value &= ~SW_AGE_CNT_M;
 978	value |= FIELD_PREP(SW_AGE_CNT_M, data);
 979
 980	return ksz_write8(dev, REG_SW_LUE_CTRL_0, value);
 981}
 982
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 983void ksz9477_port_setup(struct ksz_device *dev, int port, bool cpu_port)
 984{
 985	struct dsa_switch *ds = dev->ds;
 986	u16 data16;
 987	u8 member;
 988
 989	/* enable tag tail for host port */
 990	if (cpu_port)
 991		ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_TAIL_TAG_ENABLE,
 992			     true);
 993
 
 
 994	ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, false);
 995
 996	/* set back pressure */
 997	ksz_port_cfg(dev, port, REG_PORT_MAC_CTRL_1, PORT_BACK_PRESSURE, true);
 998
 999	/* enable broadcast storm limit */
1000	ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
1001
1002	/* disable DiffServ priority */
1003	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_PRIO_ENABLE, false);
1004
1005	/* replace priority */
1006	ksz_port_cfg(dev, port, REG_PORT_MRI_MAC_CTRL, PORT_USER_PRIO_CEILING,
1007		     false);
1008	ksz9477_port_cfg32(dev, port, REG_PORT_MTI_QUEUE_CTRL_0__4,
1009			   MTI_PVID_REPLACE, false);
1010
1011	/* enable 802.1p priority */
1012	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_PRIO_ENABLE, true);
1013
1014	if (dev->info->internal_phy[port]) {
1015		/* do not force flow control */
1016		ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
1017			     PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
1018			     false);
1019
1020		if (dev->info->phy_errata_9477)
1021			ksz9477_phy_errata_setup(dev, port);
1022	} else {
1023		/* force flow control */
1024		ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
1025			     PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
1026			     true);
1027	}
1028
1029	if (cpu_port)
1030		member = dsa_user_ports(ds);
1031	else
1032		member = BIT(dsa_upstream_port(ds, port));
1033
1034	ksz9477_cfg_port_member(dev, port, member);
1035
1036	/* clear pending interrupts */
1037	if (dev->info->internal_phy[port])
1038		ksz_pread16(dev, port, REG_PORT_PHY_INT_ENABLE, &data16);
 
 
 
 
 
 
 
 
 
 
1039}
1040
1041void ksz9477_config_cpu_port(struct dsa_switch *ds)
1042{
1043	struct ksz_device *dev = ds->priv;
1044	struct ksz_port *p;
1045	int i;
1046
1047	for (i = 0; i < dev->info->port_cnt; i++) {
1048		if (dsa_is_cpu_port(ds, i) &&
1049		    (dev->info->cpu_ports & (1 << i))) {
1050			phy_interface_t interface;
1051			const char *prev_msg;
1052			const char *prev_mode;
1053
1054			dev->cpu_port = i;
1055			p = &dev->ports[i];
1056
1057			/* Read from XMII register to determine host port
1058			 * interface.  If set specifically in device tree
1059			 * note the difference to help debugging.
1060			 */
1061			interface = ksz9477_get_interface(dev, i);
1062			if (!p->interface) {
1063				if (dev->compat_interface) {
1064					dev_warn(dev->dev,
1065						 "Using legacy switch \"phy-mode\" property, because it is missing on port %d node. "
1066						 "Please update your device tree.\n",
1067						 i);
1068					p->interface = dev->compat_interface;
1069				} else {
1070					p->interface = interface;
1071				}
1072			}
1073			if (interface && interface != p->interface) {
1074				prev_msg = " instead of ";
1075				prev_mode = phy_modes(interface);
1076			} else {
1077				prev_msg = "";
1078				prev_mode = "";
1079			}
1080			dev_info(dev->dev,
1081				 "Port%d: using phy mode %s%s%s\n",
1082				 i,
1083				 phy_modes(p->interface),
1084				 prev_msg,
1085				 prev_mode);
1086
1087			/* enable cpu port */
1088			ksz9477_port_setup(dev, i, true);
1089		}
1090	}
1091
1092	for (i = 0; i < dev->info->port_cnt; i++) {
1093		if (i == dev->cpu_port)
1094			continue;
1095		ksz_port_stp_state_set(ds, i, BR_STATE_DISABLED);
1096	}
1097}
1098
1099int ksz9477_enable_stp_addr(struct ksz_device *dev)
1100{
1101	const u32 *masks;
1102	u32 data;
1103	int ret;
1104
1105	masks = dev->info->masks;
1106
1107	/* Enable Reserved multicast table */
1108	ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_RESV_MCAST_ENABLE, true);
1109
1110	/* Set the Override bit for forwarding BPDU packet to CPU */
1111	ret = ksz_write32(dev, REG_SW_ALU_VAL_B,
1112			  ALU_V_OVERRIDE | BIT(dev->cpu_port));
1113	if (ret < 0)
1114		return ret;
1115
1116	data = ALU_STAT_START | ALU_RESV_MCAST_ADDR | masks[ALU_STAT_WRITE];
1117
1118	ret = ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
1119	if (ret < 0)
1120		return ret;
1121
1122	/* wait to be finished */
1123	ret = ksz9477_wait_alu_sta_ready(dev);
1124	if (ret < 0) {
1125		dev_err(dev->dev, "Failed to update Reserved Multicast table\n");
1126		return ret;
1127	}
1128
1129	return 0;
1130}
1131
1132int ksz9477_setup(struct dsa_switch *ds)
1133{
1134	struct ksz_device *dev = ds->priv;
1135	int ret = 0;
1136
1137	ds->mtu_enforcement_ingress = true;
1138
1139	/* Required for port partitioning. */
1140	ksz9477_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY,
1141		      true);
1142
1143	/* Do not work correctly with tail tagging. */
1144	ksz_cfg(dev, REG_SW_MAC_CTRL_0, SW_CHECK_LENGTH, false);
1145
1146	/* Enable REG_SW_MTU__2 reg by setting SW_JUMBO_PACKET */
1147	ksz_cfg(dev, REG_SW_MAC_CTRL_1, SW_JUMBO_PACKET, true);
1148
1149	/* Now we can configure default MTU value */
1150	ret = regmap_update_bits(dev->regmap[1], REG_SW_MTU__2, REG_SW_MTU_MASK,
1151				 VLAN_ETH_FRAME_LEN + ETH_FCS_LEN);
1152	if (ret)
1153		return ret;
1154
1155	/* queue based egress rate limit */
1156	ksz_cfg(dev, REG_SW_MAC_CTRL_5, SW_OUT_RATE_LIMIT_QUEUE_BASED, true);
1157
1158	/* enable global MIB counter freeze function */
1159	ksz_cfg(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FREEZE, true);
1160
 
 
 
 
 
 
1161	return 0;
1162}
1163
1164u32 ksz9477_get_port_addr(int port, int offset)
1165{
1166	return PORT_CTRL_ADDR(port, offset);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1167}
1168
1169int ksz9477_switch_init(struct ksz_device *dev)
1170{
1171	u8 data8;
1172	int ret;
1173
1174	dev->port_mask = (1 << dev->info->port_cnt) - 1;
1175
1176	/* turn off SPI DO Edge select */
1177	ret = ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
1178	if (ret)
1179		return ret;
1180
1181	data8 &= ~SPI_AUTO_EDGE_DETECTION;
1182	ret = ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
1183	if (ret)
1184		return ret;
1185
1186	return 0;
1187}
1188
1189void ksz9477_switch_exit(struct ksz_device *dev)
1190{
1191	ksz9477_reset_switch(dev);
1192}
1193
1194MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
1195MODULE_DESCRIPTION("Microchip KSZ9477 Series Switch DSA Driver");
1196MODULE_LICENSE("GPL");