Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Microchip KSZ9477 switch driver main logic
4 *
5 * Copyright (C) 2017-2019 Microchip Technology Inc.
6 */
7
8#include <linux/kernel.h>
9#include <linux/module.h>
10#include <linux/iopoll.h>
11#include <linux/platform_data/microchip-ksz.h>
12#include <linux/phy.h>
13#include <linux/if_bridge.h>
14#include <linux/if_vlan.h>
15#include <net/dsa.h>
16#include <net/switchdev.h>
17
18#include "ksz9477_reg.h"
19#include "ksz_common.h"
20#include "ksz9477.h"
21
22static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
23{
24 regmap_update_bits(ksz_regmap_8(dev), addr, bits, set ? bits : 0);
25}
26
27static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
28 bool set)
29{
30 regmap_update_bits(ksz_regmap_8(dev), PORT_CTRL_ADDR(port, offset),
31 bits, set ? bits : 0);
32}
33
34static void ksz9477_cfg32(struct ksz_device *dev, u32 addr, u32 bits, bool set)
35{
36 regmap_update_bits(ksz_regmap_32(dev), addr, bits, set ? bits : 0);
37}
38
39static void ksz9477_port_cfg32(struct ksz_device *dev, int port, int offset,
40 u32 bits, bool set)
41{
42 regmap_update_bits(ksz_regmap_32(dev), PORT_CTRL_ADDR(port, offset),
43 bits, set ? bits : 0);
44}
45
46int ksz9477_change_mtu(struct ksz_device *dev, int port, int mtu)
47{
48 u16 frame_size;
49
50 if (!dsa_is_cpu_port(dev->ds, port))
51 return 0;
52
53 frame_size = mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
54
55 return regmap_update_bits(ksz_regmap_16(dev), REG_SW_MTU__2,
56 REG_SW_MTU_MASK, frame_size);
57}
58
59/**
60 * ksz9477_handle_wake_reason - Handle wake reason on a specified port.
61 * @dev: The device structure.
62 * @port: The port number.
63 *
64 * This function reads the PME (Power Management Event) status register of a
65 * specified port to determine the wake reason. If there is no wake event, it
66 * returns early. Otherwise, it logs the wake reason which could be due to a
67 * "Magic Packet", "Link Up", or "Energy Detect" event. The PME status register
68 * is then cleared to acknowledge the handling of the wake event.
69 *
70 * Return: 0 on success, or an error code on failure.
71 */
72static int ksz9477_handle_wake_reason(struct ksz_device *dev, int port)
73{
74 u8 pme_status;
75 int ret;
76
77 ret = ksz_pread8(dev, port, REG_PORT_PME_STATUS, &pme_status);
78 if (ret)
79 return ret;
80
81 if (!pme_status)
82 return 0;
83
84 dev_dbg(dev->dev, "Wake event on port %d due to:%s%s%s\n", port,
85 pme_status & PME_WOL_MAGICPKT ? " \"Magic Packet\"" : "",
86 pme_status & PME_WOL_LINKUP ? " \"Link Up\"" : "",
87 pme_status & PME_WOL_ENERGY ? " \"Energy detect\"" : "");
88
89 return ksz_pwrite8(dev, port, REG_PORT_PME_STATUS, pme_status);
90}
91
92/**
93 * ksz9477_get_wol - Get Wake-on-LAN settings for a specified port.
94 * @dev: The device structure.
95 * @port: The port number.
96 * @wol: Pointer to ethtool Wake-on-LAN settings structure.
97 *
98 * This function checks the PME Pin Control Register to see if PME Pin Output
99 * Enable is set, indicating PME is enabled. If enabled, it sets the supported
100 * and active WoL flags.
101 */
102void ksz9477_get_wol(struct ksz_device *dev, int port,
103 struct ethtool_wolinfo *wol)
104{
105 u8 pme_ctrl;
106 int ret;
107
108 if (!dev->wakeup_source)
109 return;
110
111 wol->supported = WAKE_PHY;
112
113 /* Check if the current MAC address on this port can be set
114 * as global for WAKE_MAGIC support. The result may vary
115 * dynamically based on other ports configurations.
116 */
117 if (ksz_is_port_mac_global_usable(dev->ds, port))
118 wol->supported |= WAKE_MAGIC;
119
120 ret = ksz_pread8(dev, port, REG_PORT_PME_CTRL, &pme_ctrl);
121 if (ret)
122 return;
123
124 if (pme_ctrl & PME_WOL_MAGICPKT)
125 wol->wolopts |= WAKE_MAGIC;
126 if (pme_ctrl & (PME_WOL_LINKUP | PME_WOL_ENERGY))
127 wol->wolopts |= WAKE_PHY;
128}
129
130/**
131 * ksz9477_set_wol - Set Wake-on-LAN settings for a specified port.
132 * @dev: The device structure.
133 * @port: The port number.
134 * @wol: Pointer to ethtool Wake-on-LAN settings structure.
135 *
136 * This function configures Wake-on-LAN (WoL) settings for a specified port.
137 * It validates the provided WoL options, checks if PME is enabled via the
138 * switch's PME Pin Control Register, clears any previous wake reasons,
139 * and sets the Magic Packet flag in the port's PME control register if
140 * specified.
141 *
142 * Return: 0 on success, or other error codes on failure.
143 */
144int ksz9477_set_wol(struct ksz_device *dev, int port,
145 struct ethtool_wolinfo *wol)
146{
147 u8 pme_ctrl = 0, pme_ctrl_old = 0;
148 bool magic_switched_off;
149 bool magic_switched_on;
150 int ret;
151
152 if (wol->wolopts & ~(WAKE_PHY | WAKE_MAGIC))
153 return -EINVAL;
154
155 if (!dev->wakeup_source)
156 return -EOPNOTSUPP;
157
158 ret = ksz9477_handle_wake_reason(dev, port);
159 if (ret)
160 return ret;
161
162 if (wol->wolopts & WAKE_MAGIC)
163 pme_ctrl |= PME_WOL_MAGICPKT;
164 if (wol->wolopts & WAKE_PHY)
165 pme_ctrl |= PME_WOL_LINKUP | PME_WOL_ENERGY;
166
167 ret = ksz_pread8(dev, port, REG_PORT_PME_CTRL, &pme_ctrl_old);
168 if (ret)
169 return ret;
170
171 if (pme_ctrl_old == pme_ctrl)
172 return 0;
173
174 magic_switched_off = (pme_ctrl_old & PME_WOL_MAGICPKT) &&
175 !(pme_ctrl & PME_WOL_MAGICPKT);
176 magic_switched_on = !(pme_ctrl_old & PME_WOL_MAGICPKT) &&
177 (pme_ctrl & PME_WOL_MAGICPKT);
178
179 /* To keep reference count of MAC address, we should do this
180 * operation only on change of WOL settings.
181 */
182 if (magic_switched_on) {
183 ret = ksz_switch_macaddr_get(dev->ds, port, NULL);
184 if (ret)
185 return ret;
186 } else if (magic_switched_off) {
187 ksz_switch_macaddr_put(dev->ds);
188 }
189
190 ret = ksz_pwrite8(dev, port, REG_PORT_PME_CTRL, pme_ctrl);
191 if (ret) {
192 if (magic_switched_on)
193 ksz_switch_macaddr_put(dev->ds);
194 return ret;
195 }
196
197 return 0;
198}
199
200/**
201 * ksz9477_wol_pre_shutdown - Prepares the switch device for shutdown while
202 * considering Wake-on-LAN (WoL) settings.
203 * @dev: The switch device structure.
204 * @wol_enabled: Pointer to a boolean which will be set to true if WoL is
205 * enabled on any port.
206 *
207 * This function prepares the switch device for a safe shutdown while taking
208 * into account the Wake-on-LAN (WoL) settings on the user ports. It updates
209 * the wol_enabled flag accordingly to reflect whether WoL is active on any
210 * port.
211 */
212void ksz9477_wol_pre_shutdown(struct ksz_device *dev, bool *wol_enabled)
213{
214 struct dsa_port *dp;
215 int ret;
216
217 *wol_enabled = false;
218
219 if (!dev->wakeup_source)
220 return;
221
222 dsa_switch_for_each_user_port(dp, dev->ds) {
223 u8 pme_ctrl = 0;
224
225 ret = ksz_pread8(dev, dp->index, REG_PORT_PME_CTRL, &pme_ctrl);
226 if (!ret && pme_ctrl)
227 *wol_enabled = true;
228
229 /* make sure there are no pending wake events which would
230 * prevent the device from going to sleep/shutdown.
231 */
232 ksz9477_handle_wake_reason(dev, dp->index);
233 }
234
235 /* Now we are save to enable PME pin. */
236 if (*wol_enabled)
237 ksz_write8(dev, REG_SW_PME_CTRL, PME_ENABLE);
238}
239
240static int ksz9477_wait_vlan_ctrl_ready(struct ksz_device *dev)
241{
242 unsigned int val;
243
244 return regmap_read_poll_timeout(ksz_regmap_8(dev), REG_SW_VLAN_CTRL,
245 val, !(val & VLAN_START), 10, 1000);
246}
247
248static int ksz9477_get_vlan_table(struct ksz_device *dev, u16 vid,
249 u32 *vlan_table)
250{
251 int ret;
252
253 mutex_lock(&dev->vlan_mutex);
254
255 ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
256 ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_READ | VLAN_START);
257
258 /* wait to be cleared */
259 ret = ksz9477_wait_vlan_ctrl_ready(dev);
260 if (ret) {
261 dev_dbg(dev->dev, "Failed to read vlan table\n");
262 goto exit;
263 }
264
265 ksz_read32(dev, REG_SW_VLAN_ENTRY__4, &vlan_table[0]);
266 ksz_read32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, &vlan_table[1]);
267 ksz_read32(dev, REG_SW_VLAN_ENTRY_PORTS__4, &vlan_table[2]);
268
269 ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
270
271exit:
272 mutex_unlock(&dev->vlan_mutex);
273
274 return ret;
275}
276
277static int ksz9477_set_vlan_table(struct ksz_device *dev, u16 vid,
278 u32 *vlan_table)
279{
280 int ret;
281
282 mutex_lock(&dev->vlan_mutex);
283
284 ksz_write32(dev, REG_SW_VLAN_ENTRY__4, vlan_table[0]);
285 ksz_write32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, vlan_table[1]);
286 ksz_write32(dev, REG_SW_VLAN_ENTRY_PORTS__4, vlan_table[2]);
287
288 ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
289 ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_START | VLAN_WRITE);
290
291 /* wait to be cleared */
292 ret = ksz9477_wait_vlan_ctrl_ready(dev);
293 if (ret) {
294 dev_dbg(dev->dev, "Failed to write vlan table\n");
295 goto exit;
296 }
297
298 ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
299
300 /* update vlan cache table */
301 dev->vlan_cache[vid].table[0] = vlan_table[0];
302 dev->vlan_cache[vid].table[1] = vlan_table[1];
303 dev->vlan_cache[vid].table[2] = vlan_table[2];
304
305exit:
306 mutex_unlock(&dev->vlan_mutex);
307
308 return ret;
309}
310
311static void ksz9477_read_table(struct ksz_device *dev, u32 *table)
312{
313 ksz_read32(dev, REG_SW_ALU_VAL_A, &table[0]);
314 ksz_read32(dev, REG_SW_ALU_VAL_B, &table[1]);
315 ksz_read32(dev, REG_SW_ALU_VAL_C, &table[2]);
316 ksz_read32(dev, REG_SW_ALU_VAL_D, &table[3]);
317}
318
319static void ksz9477_write_table(struct ksz_device *dev, u32 *table)
320{
321 ksz_write32(dev, REG_SW_ALU_VAL_A, table[0]);
322 ksz_write32(dev, REG_SW_ALU_VAL_B, table[1]);
323 ksz_write32(dev, REG_SW_ALU_VAL_C, table[2]);
324 ksz_write32(dev, REG_SW_ALU_VAL_D, table[3]);
325}
326
327static int ksz9477_wait_alu_ready(struct ksz_device *dev)
328{
329 unsigned int val;
330
331 return regmap_read_poll_timeout(ksz_regmap_32(dev), REG_SW_ALU_CTRL__4,
332 val, !(val & ALU_START), 10, 1000);
333}
334
335static int ksz9477_wait_alu_sta_ready(struct ksz_device *dev)
336{
337 unsigned int val;
338
339 return regmap_read_poll_timeout(ksz_regmap_32(dev),
340 REG_SW_ALU_STAT_CTRL__4,
341 val, !(val & ALU_STAT_START),
342 10, 1000);
343}
344
345int ksz9477_reset_switch(struct ksz_device *dev)
346{
347 u8 data8;
348 u32 data32;
349
350 /* reset switch */
351 ksz_cfg(dev, REG_SW_OPERATION, SW_RESET, true);
352
353 /* turn off SPI DO Edge select */
354 regmap_update_bits(ksz_regmap_8(dev), REG_SW_GLOBAL_SERIAL_CTRL_0,
355 SPI_AUTO_EDGE_DETECTION, 0);
356
357 /* default configuration */
358 ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8);
359 data8 = SW_AGING_ENABLE | SW_LINK_AUTO_AGING |
360 SW_SRC_ADDR_FILTER | SW_FLUSH_STP_TABLE | SW_FLUSH_MSTP_TABLE;
361 ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
362
363 /* disable interrupts */
364 ksz_write32(dev, REG_SW_INT_MASK__4, SWITCH_INT_MASK);
365 ksz_write32(dev, REG_SW_PORT_INT_MASK__4, 0x7F);
366 ksz_read32(dev, REG_SW_PORT_INT_STATUS__4, &data32);
367
368 /* KSZ9893 compatible chips do not support refclk configuration */
369 if (dev->chip_id == KSZ9893_CHIP_ID ||
370 dev->chip_id == KSZ8563_CHIP_ID ||
371 dev->chip_id == KSZ9563_CHIP_ID)
372 return 0;
373
374 data8 = SW_ENABLE_REFCLKO;
375 if (dev->synclko_disable)
376 data8 = 0;
377 else if (dev->synclko_125)
378 data8 = SW_ENABLE_REFCLKO | SW_REFCLKO_IS_125MHZ;
379 ksz_write8(dev, REG_SW_GLOBAL_OUTPUT_CTRL__1, data8);
380
381 return 0;
382}
383
384void ksz9477_r_mib_cnt(struct ksz_device *dev, int port, u16 addr, u64 *cnt)
385{
386 struct ksz_port *p = &dev->ports[port];
387 unsigned int val;
388 u32 data;
389 int ret;
390
391 /* retain the flush/freeze bit */
392 data = p->freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
393 data |= MIB_COUNTER_READ;
394 data |= (addr << MIB_COUNTER_INDEX_S);
395 ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, data);
396
397 ret = regmap_read_poll_timeout(ksz_regmap_32(dev),
398 PORT_CTRL_ADDR(port, REG_PORT_MIB_CTRL_STAT__4),
399 val, !(val & MIB_COUNTER_READ), 10, 1000);
400 /* failed to read MIB. get out of loop */
401 if (ret) {
402 dev_dbg(dev->dev, "Failed to get MIB\n");
403 return;
404 }
405
406 /* count resets upon read */
407 ksz_pread32(dev, port, REG_PORT_MIB_DATA, &data);
408 *cnt += data;
409}
410
411void ksz9477_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
412 u64 *dropped, u64 *cnt)
413{
414 addr = dev->info->mib_names[addr].index;
415 ksz9477_r_mib_cnt(dev, port, addr, cnt);
416}
417
418void ksz9477_freeze_mib(struct ksz_device *dev, int port, bool freeze)
419{
420 u32 val = freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
421 struct ksz_port *p = &dev->ports[port];
422
423 /* enable/disable the port for flush/freeze function */
424 mutex_lock(&p->mib.cnt_mutex);
425 ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, val);
426
427 /* used by MIB counter reading code to know freeze is enabled */
428 p->freeze = freeze;
429 mutex_unlock(&p->mib.cnt_mutex);
430}
431
432void ksz9477_port_init_cnt(struct ksz_device *dev, int port)
433{
434 struct ksz_port_mib *mib = &dev->ports[port].mib;
435
436 /* flush all enabled port MIB counters */
437 mutex_lock(&mib->cnt_mutex);
438 ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4,
439 MIB_COUNTER_FLUSH_FREEZE);
440 ksz_write8(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FLUSH);
441 ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, 0);
442 mutex_unlock(&mib->cnt_mutex);
443}
444
445static void ksz9477_r_phy_quirks(struct ksz_device *dev, u16 addr, u16 reg,
446 u16 *data)
447{
448 /* KSZ8563R do not have extended registers but BMSR_ESTATEN and
449 * BMSR_ERCAP bits are set.
450 */
451 if (dev->chip_id == KSZ8563_CHIP_ID && reg == MII_BMSR)
452 *data &= ~(BMSR_ESTATEN | BMSR_ERCAP);
453}
454
455int ksz9477_r_phy(struct ksz_device *dev, u16 addr, u16 reg, u16 *data)
456{
457 u16 val = 0xffff;
458 int ret;
459
460 /* No real PHY after this. Simulate the PHY.
461 * A fixed PHY can be setup in the device tree, but this function is
462 * still called for that port during initialization.
463 * For RGMII PHY there is no way to access it so the fixed PHY should
464 * be used. For SGMII PHY the supporting code will be added later.
465 */
466 if (!dev->info->internal_phy[addr]) {
467 struct ksz_port *p = &dev->ports[addr];
468
469 switch (reg) {
470 case MII_BMCR:
471 val = 0x1140;
472 break;
473 case MII_BMSR:
474 val = 0x796d;
475 break;
476 case MII_PHYSID1:
477 val = 0x0022;
478 break;
479 case MII_PHYSID2:
480 val = 0x1631;
481 break;
482 case MII_ADVERTISE:
483 val = 0x05e1;
484 break;
485 case MII_LPA:
486 val = 0xc5e1;
487 break;
488 case MII_CTRL1000:
489 val = 0x0700;
490 break;
491 case MII_STAT1000:
492 if (p->phydev.speed == SPEED_1000)
493 val = 0x3800;
494 else
495 val = 0;
496 break;
497 }
498 } else {
499 ret = ksz_pread16(dev, addr, 0x100 + (reg << 1), &val);
500 if (ret)
501 return ret;
502
503 ksz9477_r_phy_quirks(dev, addr, reg, &val);
504 }
505
506 *data = val;
507
508 return 0;
509}
510
511int ksz9477_w_phy(struct ksz_device *dev, u16 addr, u16 reg, u16 val)
512{
513 u32 mask, val32;
514
515 /* No real PHY after this. */
516 if (!dev->info->internal_phy[addr])
517 return 0;
518
519 if (reg < 0x10)
520 return ksz_pwrite16(dev, addr, 0x100 + (reg << 1), val);
521
522 /* Errata: When using SPI, I2C, or in-band register access,
523 * writes to certain PHY registers should be performed as
524 * 32-bit writes instead of 16-bit writes.
525 */
526 val32 = val;
527 mask = 0xffff;
528 if ((reg & 1) == 0) {
529 val32 <<= 16;
530 mask <<= 16;
531 }
532 reg &= ~1;
533 return ksz_prmw32(dev, addr, 0x100 + (reg << 1), mask, val32);
534}
535
536void ksz9477_cfg_port_member(struct ksz_device *dev, int port, u8 member)
537{
538 ksz_pwrite32(dev, port, REG_PORT_VLAN_MEMBERSHIP__4, member);
539}
540
541void ksz9477_flush_dyn_mac_table(struct ksz_device *dev, int port)
542{
543 const u16 *regs = dev->info->regs;
544 u8 data;
545
546 regmap_update_bits(ksz_regmap_8(dev), REG_SW_LUE_CTRL_2,
547 SW_FLUSH_OPTION_M << SW_FLUSH_OPTION_S,
548 SW_FLUSH_OPTION_DYN_MAC << SW_FLUSH_OPTION_S);
549
550 if (port < dev->info->port_cnt) {
551 /* flush individual port */
552 ksz_pread8(dev, port, regs[P_STP_CTRL], &data);
553 if (!(data & PORT_LEARN_DISABLE))
554 ksz_pwrite8(dev, port, regs[P_STP_CTRL],
555 data | PORT_LEARN_DISABLE);
556 ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true);
557 ksz_pwrite8(dev, port, regs[P_STP_CTRL], data);
558 } else {
559 /* flush all */
560 ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_STP_TABLE, true);
561 }
562}
563
564int ksz9477_port_vlan_filtering(struct ksz_device *dev, int port,
565 bool flag, struct netlink_ext_ack *extack)
566{
567 if (flag) {
568 ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
569 PORT_VLAN_LOOKUP_VID_0, true);
570 ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, true);
571 } else {
572 ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, false);
573 ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
574 PORT_VLAN_LOOKUP_VID_0, false);
575 }
576
577 return 0;
578}
579
580int ksz9477_port_vlan_add(struct ksz_device *dev, int port,
581 const struct switchdev_obj_port_vlan *vlan,
582 struct netlink_ext_ack *extack)
583{
584 u32 vlan_table[3];
585 bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
586 int err;
587
588 err = ksz9477_get_vlan_table(dev, vlan->vid, vlan_table);
589 if (err) {
590 NL_SET_ERR_MSG_MOD(extack, "Failed to get vlan table");
591 return err;
592 }
593
594 vlan_table[0] = VLAN_VALID | (vlan->vid & VLAN_FID_M);
595 if (untagged)
596 vlan_table[1] |= BIT(port);
597 else
598 vlan_table[1] &= ~BIT(port);
599 vlan_table[1] &= ~(BIT(dev->cpu_port));
600
601 vlan_table[2] |= BIT(port) | BIT(dev->cpu_port);
602
603 err = ksz9477_set_vlan_table(dev, vlan->vid, vlan_table);
604 if (err) {
605 NL_SET_ERR_MSG_MOD(extack, "Failed to set vlan table");
606 return err;
607 }
608
609 /* change PVID */
610 if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
611 ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, vlan->vid);
612
613 return 0;
614}
615
616int ksz9477_port_vlan_del(struct ksz_device *dev, int port,
617 const struct switchdev_obj_port_vlan *vlan)
618{
619 bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
620 u32 vlan_table[3];
621 u16 pvid;
622
623 ksz_pread16(dev, port, REG_PORT_DEFAULT_VID, &pvid);
624 pvid = pvid & 0xFFF;
625
626 if (ksz9477_get_vlan_table(dev, vlan->vid, vlan_table)) {
627 dev_dbg(dev->dev, "Failed to get vlan table\n");
628 return -ETIMEDOUT;
629 }
630
631 vlan_table[2] &= ~BIT(port);
632
633 if (pvid == vlan->vid)
634 pvid = 1;
635
636 if (untagged)
637 vlan_table[1] &= ~BIT(port);
638
639 if (ksz9477_set_vlan_table(dev, vlan->vid, vlan_table)) {
640 dev_dbg(dev->dev, "Failed to set vlan table\n");
641 return -ETIMEDOUT;
642 }
643
644 ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, pvid);
645
646 return 0;
647}
648
649int ksz9477_fdb_add(struct ksz_device *dev, int port,
650 const unsigned char *addr, u16 vid, struct dsa_db db)
651{
652 u32 alu_table[4];
653 u32 data;
654 int ret = 0;
655
656 mutex_lock(&dev->alu_mutex);
657
658 /* find any entry with mac & vid */
659 data = vid << ALU_FID_INDEX_S;
660 data |= ((addr[0] << 8) | addr[1]);
661 ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
662
663 data = ((addr[2] << 24) | (addr[3] << 16));
664 data |= ((addr[4] << 8) | addr[5]);
665 ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
666
667 /* start read operation */
668 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
669
670 /* wait to be finished */
671 ret = ksz9477_wait_alu_ready(dev);
672 if (ret) {
673 dev_dbg(dev->dev, "Failed to read ALU\n");
674 goto exit;
675 }
676
677 /* read ALU entry */
678 ksz9477_read_table(dev, alu_table);
679
680 /* update ALU entry */
681 alu_table[0] = ALU_V_STATIC_VALID;
682 alu_table[1] |= BIT(port);
683 if (vid)
684 alu_table[1] |= ALU_V_USE_FID;
685 alu_table[2] = (vid << ALU_V_FID_S);
686 alu_table[2] |= ((addr[0] << 8) | addr[1]);
687 alu_table[3] = ((addr[2] << 24) | (addr[3] << 16));
688 alu_table[3] |= ((addr[4] << 8) | addr[5]);
689
690 ksz9477_write_table(dev, alu_table);
691
692 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
693
694 /* wait to be finished */
695 ret = ksz9477_wait_alu_ready(dev);
696 if (ret)
697 dev_dbg(dev->dev, "Failed to write ALU\n");
698
699exit:
700 mutex_unlock(&dev->alu_mutex);
701
702 return ret;
703}
704
705int ksz9477_fdb_del(struct ksz_device *dev, int port,
706 const unsigned char *addr, u16 vid, struct dsa_db db)
707{
708 u32 alu_table[4];
709 u32 data;
710 int ret = 0;
711
712 mutex_lock(&dev->alu_mutex);
713
714 /* read any entry with mac & vid */
715 data = vid << ALU_FID_INDEX_S;
716 data |= ((addr[0] << 8) | addr[1]);
717 ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
718
719 data = ((addr[2] << 24) | (addr[3] << 16));
720 data |= ((addr[4] << 8) | addr[5]);
721 ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
722
723 /* start read operation */
724 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
725
726 /* wait to be finished */
727 ret = ksz9477_wait_alu_ready(dev);
728 if (ret) {
729 dev_dbg(dev->dev, "Failed to read ALU\n");
730 goto exit;
731 }
732
733 ksz_read32(dev, REG_SW_ALU_VAL_A, &alu_table[0]);
734 if (alu_table[0] & ALU_V_STATIC_VALID) {
735 ksz_read32(dev, REG_SW_ALU_VAL_B, &alu_table[1]);
736 ksz_read32(dev, REG_SW_ALU_VAL_C, &alu_table[2]);
737 ksz_read32(dev, REG_SW_ALU_VAL_D, &alu_table[3]);
738
739 /* clear forwarding port */
740 alu_table[1] &= ~BIT(port);
741
742 /* if there is no port to forward, clear table */
743 if ((alu_table[1] & ALU_V_PORT_MAP) == 0) {
744 alu_table[0] = 0;
745 alu_table[1] = 0;
746 alu_table[2] = 0;
747 alu_table[3] = 0;
748 }
749 } else {
750 alu_table[0] = 0;
751 alu_table[1] = 0;
752 alu_table[2] = 0;
753 alu_table[3] = 0;
754 }
755
756 ksz9477_write_table(dev, alu_table);
757
758 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
759
760 /* wait to be finished */
761 ret = ksz9477_wait_alu_ready(dev);
762 if (ret)
763 dev_dbg(dev->dev, "Failed to write ALU\n");
764
765exit:
766 mutex_unlock(&dev->alu_mutex);
767
768 return ret;
769}
770
771static void ksz9477_convert_alu(struct alu_struct *alu, u32 *alu_table)
772{
773 alu->is_static = !!(alu_table[0] & ALU_V_STATIC_VALID);
774 alu->is_src_filter = !!(alu_table[0] & ALU_V_SRC_FILTER);
775 alu->is_dst_filter = !!(alu_table[0] & ALU_V_DST_FILTER);
776 alu->prio_age = (alu_table[0] >> ALU_V_PRIO_AGE_CNT_S) &
777 ALU_V_PRIO_AGE_CNT_M;
778 alu->mstp = alu_table[0] & ALU_V_MSTP_M;
779
780 alu->is_override = !!(alu_table[1] & ALU_V_OVERRIDE);
781 alu->is_use_fid = !!(alu_table[1] & ALU_V_USE_FID);
782 alu->port_forward = alu_table[1] & ALU_V_PORT_MAP;
783
784 alu->fid = (alu_table[2] >> ALU_V_FID_S) & ALU_V_FID_M;
785
786 alu->mac[0] = (alu_table[2] >> 8) & 0xFF;
787 alu->mac[1] = alu_table[2] & 0xFF;
788 alu->mac[2] = (alu_table[3] >> 24) & 0xFF;
789 alu->mac[3] = (alu_table[3] >> 16) & 0xFF;
790 alu->mac[4] = (alu_table[3] >> 8) & 0xFF;
791 alu->mac[5] = alu_table[3] & 0xFF;
792}
793
794int ksz9477_fdb_dump(struct ksz_device *dev, int port,
795 dsa_fdb_dump_cb_t *cb, void *data)
796{
797 int ret = 0;
798 u32 ksz_data;
799 u32 alu_table[4];
800 struct alu_struct alu;
801 int timeout;
802
803 mutex_lock(&dev->alu_mutex);
804
805 /* start ALU search */
806 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_START | ALU_SEARCH);
807
808 do {
809 timeout = 1000;
810 do {
811 ksz_read32(dev, REG_SW_ALU_CTRL__4, &ksz_data);
812 if ((ksz_data & ALU_VALID) || !(ksz_data & ALU_START))
813 break;
814 usleep_range(1, 10);
815 } while (timeout-- > 0);
816
817 if (!timeout) {
818 dev_dbg(dev->dev, "Failed to search ALU\n");
819 ret = -ETIMEDOUT;
820 goto exit;
821 }
822
823 if (!(ksz_data & ALU_VALID))
824 continue;
825
826 /* read ALU table */
827 ksz9477_read_table(dev, alu_table);
828
829 ksz9477_convert_alu(&alu, alu_table);
830
831 if (alu.port_forward & BIT(port)) {
832 ret = cb(alu.mac, alu.fid, alu.is_static, data);
833 if (ret)
834 goto exit;
835 }
836 } while (ksz_data & ALU_START);
837
838exit:
839
840 /* stop ALU search */
841 ksz_write32(dev, REG_SW_ALU_CTRL__4, 0);
842
843 mutex_unlock(&dev->alu_mutex);
844
845 return ret;
846}
847
848int ksz9477_mdb_add(struct ksz_device *dev, int port,
849 const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
850{
851 u32 static_table[4];
852 const u8 *shifts;
853 const u32 *masks;
854 u32 data;
855 int index;
856 u32 mac_hi, mac_lo;
857 int err = 0;
858
859 shifts = dev->info->shifts;
860 masks = dev->info->masks;
861
862 mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
863 mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
864 mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
865
866 mutex_lock(&dev->alu_mutex);
867
868 for (index = 0; index < dev->info->num_statics; index++) {
869 /* find empty slot first */
870 data = (index << shifts[ALU_STAT_INDEX]) |
871 masks[ALU_STAT_READ] | ALU_STAT_START;
872 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
873
874 /* wait to be finished */
875 err = ksz9477_wait_alu_sta_ready(dev);
876 if (err) {
877 dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
878 goto exit;
879 }
880
881 /* read ALU static table */
882 ksz9477_read_table(dev, static_table);
883
884 if (static_table[0] & ALU_V_STATIC_VALID) {
885 /* check this has same vid & mac address */
886 if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
887 ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
888 static_table[3] == mac_lo) {
889 /* found matching one */
890 break;
891 }
892 } else {
893 /* found empty one */
894 break;
895 }
896 }
897
898 /* no available entry */
899 if (index == dev->info->num_statics) {
900 err = -ENOSPC;
901 goto exit;
902 }
903
904 /* add entry */
905 static_table[0] = ALU_V_STATIC_VALID;
906 static_table[1] |= BIT(port);
907 if (mdb->vid)
908 static_table[1] |= ALU_V_USE_FID;
909 static_table[2] = (mdb->vid << ALU_V_FID_S);
910 static_table[2] |= mac_hi;
911 static_table[3] = mac_lo;
912
913 ksz9477_write_table(dev, static_table);
914
915 data = (index << shifts[ALU_STAT_INDEX]) | ALU_STAT_START;
916 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
917
918 /* wait to be finished */
919 if (ksz9477_wait_alu_sta_ready(dev))
920 dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
921
922exit:
923 mutex_unlock(&dev->alu_mutex);
924 return err;
925}
926
927int ksz9477_mdb_del(struct ksz_device *dev, int port,
928 const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
929{
930 u32 static_table[4];
931 const u8 *shifts;
932 const u32 *masks;
933 u32 data;
934 int index;
935 int ret = 0;
936 u32 mac_hi, mac_lo;
937
938 shifts = dev->info->shifts;
939 masks = dev->info->masks;
940
941 mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
942 mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
943 mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
944
945 mutex_lock(&dev->alu_mutex);
946
947 for (index = 0; index < dev->info->num_statics; index++) {
948 /* find empty slot first */
949 data = (index << shifts[ALU_STAT_INDEX]) |
950 masks[ALU_STAT_READ] | ALU_STAT_START;
951 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
952
953 /* wait to be finished */
954 ret = ksz9477_wait_alu_sta_ready(dev);
955 if (ret) {
956 dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
957 goto exit;
958 }
959
960 /* read ALU static table */
961 ksz9477_read_table(dev, static_table);
962
963 if (static_table[0] & ALU_V_STATIC_VALID) {
964 /* check this has same vid & mac address */
965
966 if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
967 ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
968 static_table[3] == mac_lo) {
969 /* found matching one */
970 break;
971 }
972 }
973 }
974
975 /* no available entry */
976 if (index == dev->info->num_statics)
977 goto exit;
978
979 /* clear port */
980 static_table[1] &= ~BIT(port);
981
982 if ((static_table[1] & ALU_V_PORT_MAP) == 0) {
983 /* delete entry */
984 static_table[0] = 0;
985 static_table[1] = 0;
986 static_table[2] = 0;
987 static_table[3] = 0;
988 }
989
990 ksz9477_write_table(dev, static_table);
991
992 data = (index << shifts[ALU_STAT_INDEX]) | ALU_STAT_START;
993 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
994
995 /* wait to be finished */
996 ret = ksz9477_wait_alu_sta_ready(dev);
997 if (ret)
998 dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
999
1000exit:
1001 mutex_unlock(&dev->alu_mutex);
1002
1003 return ret;
1004}
1005
1006int ksz9477_port_mirror_add(struct ksz_device *dev, int port,
1007 struct dsa_mall_mirror_tc_entry *mirror,
1008 bool ingress, struct netlink_ext_ack *extack)
1009{
1010 u8 data;
1011 int p;
1012
1013 /* Limit to one sniffer port
1014 * Check if any of the port is already set for sniffing
1015 * If yes, instruct the user to remove the previous entry & exit
1016 */
1017 for (p = 0; p < dev->info->port_cnt; p++) {
1018 /* Skip the current sniffing port */
1019 if (p == mirror->to_local_port)
1020 continue;
1021
1022 ksz_pread8(dev, p, P_MIRROR_CTRL, &data);
1023
1024 if (data & PORT_MIRROR_SNIFFER) {
1025 NL_SET_ERR_MSG_MOD(extack,
1026 "Sniffer port is already configured, delete existing rules & retry");
1027 return -EBUSY;
1028 }
1029 }
1030
1031 if (ingress)
1032 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
1033 else
1034 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
1035
1036 /* configure mirror port */
1037 ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1038 PORT_MIRROR_SNIFFER, true);
1039
1040 ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
1041
1042 return 0;
1043}
1044
1045void ksz9477_port_mirror_del(struct ksz_device *dev, int port,
1046 struct dsa_mall_mirror_tc_entry *mirror)
1047{
1048 bool in_use = false;
1049 u8 data;
1050 int p;
1051
1052 if (mirror->ingress)
1053 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
1054 else
1055 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
1056
1057
1058 /* Check if any of the port is still referring to sniffer port */
1059 for (p = 0; p < dev->info->port_cnt; p++) {
1060 ksz_pread8(dev, p, P_MIRROR_CTRL, &data);
1061
1062 if ((data & (PORT_MIRROR_RX | PORT_MIRROR_TX))) {
1063 in_use = true;
1064 break;
1065 }
1066 }
1067
1068 /* delete sniffing if there are no other mirroring rules */
1069 if (!in_use)
1070 ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1071 PORT_MIRROR_SNIFFER, false);
1072}
1073
1074static phy_interface_t ksz9477_get_interface(struct ksz_device *dev, int port)
1075{
1076 phy_interface_t interface;
1077 bool gbit;
1078
1079 if (dev->info->internal_phy[port])
1080 return PHY_INTERFACE_MODE_NA;
1081
1082 gbit = ksz_get_gbit(dev, port);
1083
1084 interface = ksz_get_xmii(dev, port, gbit);
1085
1086 return interface;
1087}
1088
1089void ksz9477_get_caps(struct ksz_device *dev, int port,
1090 struct phylink_config *config)
1091{
1092 config->mac_capabilities = MAC_10 | MAC_100 | MAC_ASYM_PAUSE |
1093 MAC_SYM_PAUSE;
1094
1095 if (dev->info->gbit_capable[port])
1096 config->mac_capabilities |= MAC_1000FD;
1097}
1098
1099int ksz9477_set_ageing_time(struct ksz_device *dev, unsigned int msecs)
1100{
1101 u32 secs = msecs / 1000;
1102 u8 value;
1103 u8 data;
1104 int ret;
1105
1106 value = FIELD_GET(SW_AGE_PERIOD_7_0_M, secs);
1107
1108 ret = ksz_write8(dev, REG_SW_LUE_CTRL_3, value);
1109 if (ret < 0)
1110 return ret;
1111
1112 data = FIELD_GET(SW_AGE_PERIOD_10_8_M, secs);
1113
1114 ret = ksz_read8(dev, REG_SW_LUE_CTRL_0, &value);
1115 if (ret < 0)
1116 return ret;
1117
1118 value &= ~SW_AGE_CNT_M;
1119 value |= FIELD_PREP(SW_AGE_CNT_M, data);
1120
1121 return ksz_write8(dev, REG_SW_LUE_CTRL_0, value);
1122}
1123
1124void ksz9477_port_queue_split(struct ksz_device *dev, int port)
1125{
1126 u8 data;
1127
1128 if (dev->info->num_tx_queues == 8)
1129 data = PORT_EIGHT_QUEUE;
1130 else if (dev->info->num_tx_queues == 4)
1131 data = PORT_FOUR_QUEUE;
1132 else if (dev->info->num_tx_queues == 2)
1133 data = PORT_TWO_QUEUE;
1134 else
1135 data = PORT_SINGLE_QUEUE;
1136
1137 ksz_prmw8(dev, port, REG_PORT_CTRL_0, PORT_QUEUE_SPLIT_MASK, data);
1138}
1139
1140void ksz9477_port_setup(struct ksz_device *dev, int port, bool cpu_port)
1141{
1142 struct dsa_switch *ds = dev->ds;
1143 u16 data16;
1144 u8 member;
1145
1146 /* enable tag tail for host port */
1147 if (cpu_port)
1148 ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_TAIL_TAG_ENABLE,
1149 true);
1150
1151 ksz9477_port_queue_split(dev, port);
1152
1153 ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, false);
1154
1155 /* set back pressure */
1156 ksz_port_cfg(dev, port, REG_PORT_MAC_CTRL_1, PORT_BACK_PRESSURE, true);
1157
1158 /* enable broadcast storm limit */
1159 ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
1160
1161 /* disable DiffServ priority */
1162 ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_PRIO_ENABLE, false);
1163
1164 /* replace priority */
1165 ksz_port_cfg(dev, port, REG_PORT_MRI_MAC_CTRL, PORT_USER_PRIO_CEILING,
1166 false);
1167 ksz9477_port_cfg32(dev, port, REG_PORT_MTI_QUEUE_CTRL_0__4,
1168 MTI_PVID_REPLACE, false);
1169
1170 /* enable 802.1p priority */
1171 ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_PRIO_ENABLE, true);
1172
1173 /* force flow control for non-PHY ports only */
1174 ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
1175 PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
1176 !dev->info->internal_phy[port]);
1177
1178 if (cpu_port)
1179 member = dsa_user_ports(ds);
1180 else
1181 member = BIT(dsa_upstream_port(ds, port));
1182
1183 ksz9477_cfg_port_member(dev, port, member);
1184
1185 /* clear pending interrupts */
1186 if (dev->info->internal_phy[port])
1187 ksz_pread16(dev, port, REG_PORT_PHY_INT_ENABLE, &data16);
1188
1189 ksz9477_port_acl_init(dev, port);
1190
1191 /* clear pending wake flags */
1192 ksz9477_handle_wake_reason(dev, port);
1193
1194 /* Disable all WoL options by default. Otherwise
1195 * ksz_switch_macaddr_get/put logic will not work properly.
1196 */
1197 ksz_pwrite8(dev, port, REG_PORT_PME_CTRL, 0);
1198}
1199
1200void ksz9477_config_cpu_port(struct dsa_switch *ds)
1201{
1202 struct ksz_device *dev = ds->priv;
1203 struct ksz_port *p;
1204 int i;
1205
1206 for (i = 0; i < dev->info->port_cnt; i++) {
1207 if (dsa_is_cpu_port(ds, i) &&
1208 (dev->info->cpu_ports & (1 << i))) {
1209 phy_interface_t interface;
1210 const char *prev_msg;
1211 const char *prev_mode;
1212
1213 dev->cpu_port = i;
1214 p = &dev->ports[i];
1215
1216 /* Read from XMII register to determine host port
1217 * interface. If set specifically in device tree
1218 * note the difference to help debugging.
1219 */
1220 interface = ksz9477_get_interface(dev, i);
1221 if (!p->interface) {
1222 if (dev->compat_interface) {
1223 dev_warn(dev->dev,
1224 "Using legacy switch \"phy-mode\" property, because it is missing on port %d node. "
1225 "Please update your device tree.\n",
1226 i);
1227 p->interface = dev->compat_interface;
1228 } else {
1229 p->interface = interface;
1230 }
1231 }
1232 if (interface && interface != p->interface) {
1233 prev_msg = " instead of ";
1234 prev_mode = phy_modes(interface);
1235 } else {
1236 prev_msg = "";
1237 prev_mode = "";
1238 }
1239 dev_info(dev->dev,
1240 "Port%d: using phy mode %s%s%s\n",
1241 i,
1242 phy_modes(p->interface),
1243 prev_msg,
1244 prev_mode);
1245
1246 /* enable cpu port */
1247 ksz9477_port_setup(dev, i, true);
1248 }
1249 }
1250
1251 for (i = 0; i < dev->info->port_cnt; i++) {
1252 if (i == dev->cpu_port)
1253 continue;
1254 ksz_port_stp_state_set(ds, i, BR_STATE_DISABLED);
1255 }
1256}
1257
1258int ksz9477_enable_stp_addr(struct ksz_device *dev)
1259{
1260 const u32 *masks;
1261 u32 data;
1262 int ret;
1263
1264 masks = dev->info->masks;
1265
1266 /* Enable Reserved multicast table */
1267 ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_RESV_MCAST_ENABLE, true);
1268
1269 /* Set the Override bit for forwarding BPDU packet to CPU */
1270 ret = ksz_write32(dev, REG_SW_ALU_VAL_B,
1271 ALU_V_OVERRIDE | BIT(dev->cpu_port));
1272 if (ret < 0)
1273 return ret;
1274
1275 data = ALU_STAT_START | ALU_RESV_MCAST_ADDR | masks[ALU_STAT_WRITE];
1276
1277 ret = ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
1278 if (ret < 0)
1279 return ret;
1280
1281 /* wait to be finished */
1282 ret = ksz9477_wait_alu_sta_ready(dev);
1283 if (ret < 0) {
1284 dev_err(dev->dev, "Failed to update Reserved Multicast table\n");
1285 return ret;
1286 }
1287
1288 return 0;
1289}
1290
1291int ksz9477_setup(struct dsa_switch *ds)
1292{
1293 struct ksz_device *dev = ds->priv;
1294 int ret = 0;
1295
1296 ds->mtu_enforcement_ingress = true;
1297
1298 /* Required for port partitioning. */
1299 ksz9477_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY,
1300 true);
1301
1302 /* Do not work correctly with tail tagging. */
1303 ksz_cfg(dev, REG_SW_MAC_CTRL_0, SW_CHECK_LENGTH, false);
1304
1305 /* Enable REG_SW_MTU__2 reg by setting SW_JUMBO_PACKET */
1306 ksz_cfg(dev, REG_SW_MAC_CTRL_1, SW_JUMBO_PACKET, true);
1307
1308 /* Now we can configure default MTU value */
1309 ret = regmap_update_bits(ksz_regmap_16(dev), REG_SW_MTU__2, REG_SW_MTU_MASK,
1310 VLAN_ETH_FRAME_LEN + ETH_FCS_LEN);
1311 if (ret)
1312 return ret;
1313
1314 /* queue based egress rate limit */
1315 ksz_cfg(dev, REG_SW_MAC_CTRL_5, SW_OUT_RATE_LIMIT_QUEUE_BASED, true);
1316
1317 /* enable global MIB counter freeze function */
1318 ksz_cfg(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FREEZE, true);
1319
1320 /* Make sure PME (WoL) is not enabled. If requested, it will be
1321 * enabled by ksz9477_wol_pre_shutdown(). Otherwise, some PMICs do not
1322 * like PME events changes before shutdown.
1323 */
1324 ksz_write8(dev, REG_SW_PME_CTRL, 0);
1325
1326 return 0;
1327}
1328
1329u32 ksz9477_get_port_addr(int port, int offset)
1330{
1331 return PORT_CTRL_ADDR(port, offset);
1332}
1333
1334int ksz9477_tc_cbs_set_cinc(struct ksz_device *dev, int port, u32 val)
1335{
1336 val = val >> 8;
1337
1338 return ksz_pwrite16(dev, port, REG_PORT_MTI_CREDIT_INCREMENT, val);
1339}
1340
1341/* The KSZ9477 provides following HW features to accelerate
1342 * HSR frames handling:
1343 *
1344 * 1. TX PACKET DUPLICATION FROM HOST TO SWITCH
1345 * 2. RX PACKET DUPLICATION DISCARDING
1346 * 3. PREVENTING PACKET LOOP IN THE RING BY SELF-ADDRESS FILTERING
1347 *
1348 * Only one from point 1. has the NETIF_F* flag available.
1349 *
1350 * Ones from point 2 and 3 are "best effort" - i.e. those will
1351 * work correctly most of the time, but it may happen that some
1352 * frames will not be caught - to be more specific; there is a race
1353 * condition in hardware such that, when duplicate packets are received
1354 * on member ports very close in time to each other, the hardware fails
1355 * to detect that they are duplicates.
1356 *
1357 * Hence, the SW needs to handle those special cases. However, the speed
1358 * up gain is considerable when above features are used.
1359 *
1360 * Moreover, the NETIF_F_HW_HSR_FWD feature is also enabled, as HSR frames
1361 * can be forwarded in the switch fabric between HSR ports.
1362 */
1363#define KSZ9477_SUPPORTED_HSR_FEATURES (NETIF_F_HW_HSR_DUP | NETIF_F_HW_HSR_FWD)
1364
1365void ksz9477_hsr_join(struct dsa_switch *ds, int port, struct net_device *hsr)
1366{
1367 struct ksz_device *dev = ds->priv;
1368 struct net_device *user;
1369 struct dsa_port *hsr_dp;
1370 u8 data, hsr_ports = 0;
1371
1372 /* Program which port(s) shall support HSR */
1373 ksz_rmw32(dev, REG_HSR_PORT_MAP__4, BIT(port), BIT(port));
1374
1375 /* Forward frames between HSR ports (i.e. bridge together HSR ports) */
1376 if (dev->hsr_ports) {
1377 dsa_hsr_foreach_port(hsr_dp, ds, hsr)
1378 hsr_ports |= BIT(hsr_dp->index);
1379
1380 hsr_ports |= BIT(dsa_upstream_port(ds, port));
1381 dsa_hsr_foreach_port(hsr_dp, ds, hsr)
1382 ksz9477_cfg_port_member(dev, hsr_dp->index, hsr_ports);
1383 }
1384
1385 if (!dev->hsr_ports) {
1386 /* Enable discarding of received HSR frames */
1387 ksz_read8(dev, REG_HSR_ALU_CTRL_0__1, &data);
1388 data |= HSR_DUPLICATE_DISCARD;
1389 data &= ~HSR_NODE_UNICAST;
1390 ksz_write8(dev, REG_HSR_ALU_CTRL_0__1, data);
1391 }
1392
1393 /* Enable per port self-address filtering.
1394 * The global self-address filtering has already been enabled in the
1395 * ksz9477_reset_switch() function.
1396 */
1397 ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL, PORT_SRC_ADDR_FILTER, true);
1398
1399 /* Setup HW supported features for lan HSR ports */
1400 user = dsa_to_port(ds, port)->user;
1401 user->features |= KSZ9477_SUPPORTED_HSR_FEATURES;
1402}
1403
1404void ksz9477_hsr_leave(struct dsa_switch *ds, int port, struct net_device *hsr)
1405{
1406 struct ksz_device *dev = ds->priv;
1407
1408 /* Clear port HSR support */
1409 ksz_rmw32(dev, REG_HSR_PORT_MAP__4, BIT(port), 0);
1410
1411 /* Disable forwarding frames between HSR ports */
1412 ksz9477_cfg_port_member(dev, port, BIT(dsa_upstream_port(ds, port)));
1413
1414 /* Disable per port self-address filtering */
1415 ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL, PORT_SRC_ADDR_FILTER, false);
1416}
1417
1418int ksz9477_switch_init(struct ksz_device *dev)
1419{
1420 u8 data8;
1421 int ret;
1422
1423 dev->port_mask = (1 << dev->info->port_cnt) - 1;
1424
1425 /* turn off SPI DO Edge select */
1426 ret = ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
1427 if (ret)
1428 return ret;
1429
1430 data8 &= ~SPI_AUTO_EDGE_DETECTION;
1431 ret = ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
1432 if (ret)
1433 return ret;
1434
1435 return 0;
1436}
1437
1438void ksz9477_switch_exit(struct ksz_device *dev)
1439{
1440 ksz9477_reset_switch(dev);
1441}
1442
1443MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
1444MODULE_DESCRIPTION("Microchip KSZ9477 Series Switch DSA Driver");
1445MODULE_LICENSE("GPL");
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Microchip KSZ9477 switch driver main logic
4 *
5 * Copyright (C) 2017-2019 Microchip Technology Inc.
6 */
7
8#include <linux/kernel.h>
9#include <linux/module.h>
10#include <linux/iopoll.h>
11#include <linux/platform_data/microchip-ksz.h>
12#include <linux/phy.h>
13#include <linux/if_bridge.h>
14#include <linux/if_vlan.h>
15#include <net/dsa.h>
16#include <net/switchdev.h>
17
18#include "ksz9477_reg.h"
19#include "ksz_common.h"
20#include "ksz9477.h"
21
22static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
23{
24 regmap_update_bits(dev->regmap[0], addr, bits, set ? bits : 0);
25}
26
27static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
28 bool set)
29{
30 regmap_update_bits(dev->regmap[0], PORT_CTRL_ADDR(port, offset),
31 bits, set ? bits : 0);
32}
33
34static void ksz9477_cfg32(struct ksz_device *dev, u32 addr, u32 bits, bool set)
35{
36 regmap_update_bits(dev->regmap[2], addr, bits, set ? bits : 0);
37}
38
39static void ksz9477_port_cfg32(struct ksz_device *dev, int port, int offset,
40 u32 bits, bool set)
41{
42 regmap_update_bits(dev->regmap[2], PORT_CTRL_ADDR(port, offset),
43 bits, set ? bits : 0);
44}
45
46int ksz9477_change_mtu(struct ksz_device *dev, int port, int mtu)
47{
48 u16 frame_size;
49
50 if (!dsa_is_cpu_port(dev->ds, port))
51 return 0;
52
53 frame_size = mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
54
55 return regmap_update_bits(dev->regmap[1], REG_SW_MTU__2,
56 REG_SW_MTU_MASK, frame_size);
57}
58
59static int ksz9477_wait_vlan_ctrl_ready(struct ksz_device *dev)
60{
61 unsigned int val;
62
63 return regmap_read_poll_timeout(dev->regmap[0], REG_SW_VLAN_CTRL,
64 val, !(val & VLAN_START), 10, 1000);
65}
66
67static int ksz9477_get_vlan_table(struct ksz_device *dev, u16 vid,
68 u32 *vlan_table)
69{
70 int ret;
71
72 mutex_lock(&dev->vlan_mutex);
73
74 ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
75 ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_READ | VLAN_START);
76
77 /* wait to be cleared */
78 ret = ksz9477_wait_vlan_ctrl_ready(dev);
79 if (ret) {
80 dev_dbg(dev->dev, "Failed to read vlan table\n");
81 goto exit;
82 }
83
84 ksz_read32(dev, REG_SW_VLAN_ENTRY__4, &vlan_table[0]);
85 ksz_read32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, &vlan_table[1]);
86 ksz_read32(dev, REG_SW_VLAN_ENTRY_PORTS__4, &vlan_table[2]);
87
88 ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
89
90exit:
91 mutex_unlock(&dev->vlan_mutex);
92
93 return ret;
94}
95
96static int ksz9477_set_vlan_table(struct ksz_device *dev, u16 vid,
97 u32 *vlan_table)
98{
99 int ret;
100
101 mutex_lock(&dev->vlan_mutex);
102
103 ksz_write32(dev, REG_SW_VLAN_ENTRY__4, vlan_table[0]);
104 ksz_write32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, vlan_table[1]);
105 ksz_write32(dev, REG_SW_VLAN_ENTRY_PORTS__4, vlan_table[2]);
106
107 ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
108 ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_START | VLAN_WRITE);
109
110 /* wait to be cleared */
111 ret = ksz9477_wait_vlan_ctrl_ready(dev);
112 if (ret) {
113 dev_dbg(dev->dev, "Failed to write vlan table\n");
114 goto exit;
115 }
116
117 ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
118
119 /* update vlan cache table */
120 dev->vlan_cache[vid].table[0] = vlan_table[0];
121 dev->vlan_cache[vid].table[1] = vlan_table[1];
122 dev->vlan_cache[vid].table[2] = vlan_table[2];
123
124exit:
125 mutex_unlock(&dev->vlan_mutex);
126
127 return ret;
128}
129
130static void ksz9477_read_table(struct ksz_device *dev, u32 *table)
131{
132 ksz_read32(dev, REG_SW_ALU_VAL_A, &table[0]);
133 ksz_read32(dev, REG_SW_ALU_VAL_B, &table[1]);
134 ksz_read32(dev, REG_SW_ALU_VAL_C, &table[2]);
135 ksz_read32(dev, REG_SW_ALU_VAL_D, &table[3]);
136}
137
138static void ksz9477_write_table(struct ksz_device *dev, u32 *table)
139{
140 ksz_write32(dev, REG_SW_ALU_VAL_A, table[0]);
141 ksz_write32(dev, REG_SW_ALU_VAL_B, table[1]);
142 ksz_write32(dev, REG_SW_ALU_VAL_C, table[2]);
143 ksz_write32(dev, REG_SW_ALU_VAL_D, table[3]);
144}
145
146static int ksz9477_wait_alu_ready(struct ksz_device *dev)
147{
148 unsigned int val;
149
150 return regmap_read_poll_timeout(dev->regmap[2], REG_SW_ALU_CTRL__4,
151 val, !(val & ALU_START), 10, 1000);
152}
153
154static int ksz9477_wait_alu_sta_ready(struct ksz_device *dev)
155{
156 unsigned int val;
157
158 return regmap_read_poll_timeout(dev->regmap[2],
159 REG_SW_ALU_STAT_CTRL__4,
160 val, !(val & ALU_STAT_START),
161 10, 1000);
162}
163
164int ksz9477_reset_switch(struct ksz_device *dev)
165{
166 u8 data8;
167 u32 data32;
168
169 /* reset switch */
170 ksz_cfg(dev, REG_SW_OPERATION, SW_RESET, true);
171
172 /* turn off SPI DO Edge select */
173 regmap_update_bits(dev->regmap[0], REG_SW_GLOBAL_SERIAL_CTRL_0,
174 SPI_AUTO_EDGE_DETECTION, 0);
175
176 /* default configuration */
177 ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8);
178 data8 = SW_AGING_ENABLE | SW_LINK_AUTO_AGING |
179 SW_SRC_ADDR_FILTER | SW_FLUSH_STP_TABLE | SW_FLUSH_MSTP_TABLE;
180 ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
181
182 /* disable interrupts */
183 ksz_write32(dev, REG_SW_INT_MASK__4, SWITCH_INT_MASK);
184 ksz_write32(dev, REG_SW_PORT_INT_MASK__4, 0x7F);
185 ksz_read32(dev, REG_SW_PORT_INT_STATUS__4, &data32);
186
187 /* KSZ9893 compatible chips do not support refclk configuration */
188 if (dev->chip_id == KSZ9893_CHIP_ID ||
189 dev->chip_id == KSZ8563_CHIP_ID ||
190 dev->chip_id == KSZ9563_CHIP_ID)
191 return 0;
192
193 data8 = SW_ENABLE_REFCLKO;
194 if (dev->synclko_disable)
195 data8 = 0;
196 else if (dev->synclko_125)
197 data8 = SW_ENABLE_REFCLKO | SW_REFCLKO_IS_125MHZ;
198 ksz_write8(dev, REG_SW_GLOBAL_OUTPUT_CTRL__1, data8);
199
200 return 0;
201}
202
203void ksz9477_r_mib_cnt(struct ksz_device *dev, int port, u16 addr, u64 *cnt)
204{
205 struct ksz_port *p = &dev->ports[port];
206 unsigned int val;
207 u32 data;
208 int ret;
209
210 /* retain the flush/freeze bit */
211 data = p->freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
212 data |= MIB_COUNTER_READ;
213 data |= (addr << MIB_COUNTER_INDEX_S);
214 ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, data);
215
216 ret = regmap_read_poll_timeout(dev->regmap[2],
217 PORT_CTRL_ADDR(port, REG_PORT_MIB_CTRL_STAT__4),
218 val, !(val & MIB_COUNTER_READ), 10, 1000);
219 /* failed to read MIB. get out of loop */
220 if (ret) {
221 dev_dbg(dev->dev, "Failed to get MIB\n");
222 return;
223 }
224
225 /* count resets upon read */
226 ksz_pread32(dev, port, REG_PORT_MIB_DATA, &data);
227 *cnt += data;
228}
229
230void ksz9477_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
231 u64 *dropped, u64 *cnt)
232{
233 addr = dev->info->mib_names[addr].index;
234 ksz9477_r_mib_cnt(dev, port, addr, cnt);
235}
236
237void ksz9477_freeze_mib(struct ksz_device *dev, int port, bool freeze)
238{
239 u32 val = freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
240 struct ksz_port *p = &dev->ports[port];
241
242 /* enable/disable the port for flush/freeze function */
243 mutex_lock(&p->mib.cnt_mutex);
244 ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, val);
245
246 /* used by MIB counter reading code to know freeze is enabled */
247 p->freeze = freeze;
248 mutex_unlock(&p->mib.cnt_mutex);
249}
250
251void ksz9477_port_init_cnt(struct ksz_device *dev, int port)
252{
253 struct ksz_port_mib *mib = &dev->ports[port].mib;
254
255 /* flush all enabled port MIB counters */
256 mutex_lock(&mib->cnt_mutex);
257 ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4,
258 MIB_COUNTER_FLUSH_FREEZE);
259 ksz_write8(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FLUSH);
260 ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, 0);
261 mutex_unlock(&mib->cnt_mutex);
262}
263
264static void ksz9477_r_phy_quirks(struct ksz_device *dev, u16 addr, u16 reg,
265 u16 *data)
266{
267 /* KSZ8563R do not have extended registers but BMSR_ESTATEN and
268 * BMSR_ERCAP bits are set.
269 */
270 if (dev->chip_id == KSZ8563_CHIP_ID && reg == MII_BMSR)
271 *data &= ~(BMSR_ESTATEN | BMSR_ERCAP);
272}
273
274int ksz9477_r_phy(struct ksz_device *dev, u16 addr, u16 reg, u16 *data)
275{
276 u16 val = 0xffff;
277 int ret;
278
279 /* No real PHY after this. Simulate the PHY.
280 * A fixed PHY can be setup in the device tree, but this function is
281 * still called for that port during initialization.
282 * For RGMII PHY there is no way to access it so the fixed PHY should
283 * be used. For SGMII PHY the supporting code will be added later.
284 */
285 if (!dev->info->internal_phy[addr]) {
286 struct ksz_port *p = &dev->ports[addr];
287
288 switch (reg) {
289 case MII_BMCR:
290 val = 0x1140;
291 break;
292 case MII_BMSR:
293 val = 0x796d;
294 break;
295 case MII_PHYSID1:
296 val = 0x0022;
297 break;
298 case MII_PHYSID2:
299 val = 0x1631;
300 break;
301 case MII_ADVERTISE:
302 val = 0x05e1;
303 break;
304 case MII_LPA:
305 val = 0xc5e1;
306 break;
307 case MII_CTRL1000:
308 val = 0x0700;
309 break;
310 case MII_STAT1000:
311 if (p->phydev.speed == SPEED_1000)
312 val = 0x3800;
313 else
314 val = 0;
315 break;
316 }
317 } else {
318 ret = ksz_pread16(dev, addr, 0x100 + (reg << 1), &val);
319 if (ret)
320 return ret;
321
322 ksz9477_r_phy_quirks(dev, addr, reg, &val);
323 }
324
325 *data = val;
326
327 return 0;
328}
329
330int ksz9477_w_phy(struct ksz_device *dev, u16 addr, u16 reg, u16 val)
331{
332 /* No real PHY after this. */
333 if (!dev->info->internal_phy[addr])
334 return 0;
335
336 return ksz_pwrite16(dev, addr, 0x100 + (reg << 1), val);
337}
338
339void ksz9477_cfg_port_member(struct ksz_device *dev, int port, u8 member)
340{
341 ksz_pwrite32(dev, port, REG_PORT_VLAN_MEMBERSHIP__4, member);
342}
343
344void ksz9477_flush_dyn_mac_table(struct ksz_device *dev, int port)
345{
346 const u16 *regs = dev->info->regs;
347 u8 data;
348
349 regmap_update_bits(dev->regmap[0], REG_SW_LUE_CTRL_2,
350 SW_FLUSH_OPTION_M << SW_FLUSH_OPTION_S,
351 SW_FLUSH_OPTION_DYN_MAC << SW_FLUSH_OPTION_S);
352
353 if (port < dev->info->port_cnt) {
354 /* flush individual port */
355 ksz_pread8(dev, port, regs[P_STP_CTRL], &data);
356 if (!(data & PORT_LEARN_DISABLE))
357 ksz_pwrite8(dev, port, regs[P_STP_CTRL],
358 data | PORT_LEARN_DISABLE);
359 ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true);
360 ksz_pwrite8(dev, port, regs[P_STP_CTRL], data);
361 } else {
362 /* flush all */
363 ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_STP_TABLE, true);
364 }
365}
366
367int ksz9477_port_vlan_filtering(struct ksz_device *dev, int port,
368 bool flag, struct netlink_ext_ack *extack)
369{
370 if (flag) {
371 ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
372 PORT_VLAN_LOOKUP_VID_0, true);
373 ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, true);
374 } else {
375 ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, false);
376 ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
377 PORT_VLAN_LOOKUP_VID_0, false);
378 }
379
380 return 0;
381}
382
383int ksz9477_port_vlan_add(struct ksz_device *dev, int port,
384 const struct switchdev_obj_port_vlan *vlan,
385 struct netlink_ext_ack *extack)
386{
387 u32 vlan_table[3];
388 bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
389 int err;
390
391 err = ksz9477_get_vlan_table(dev, vlan->vid, vlan_table);
392 if (err) {
393 NL_SET_ERR_MSG_MOD(extack, "Failed to get vlan table");
394 return err;
395 }
396
397 vlan_table[0] = VLAN_VALID | (vlan->vid & VLAN_FID_M);
398 if (untagged)
399 vlan_table[1] |= BIT(port);
400 else
401 vlan_table[1] &= ~BIT(port);
402 vlan_table[1] &= ~(BIT(dev->cpu_port));
403
404 vlan_table[2] |= BIT(port) | BIT(dev->cpu_port);
405
406 err = ksz9477_set_vlan_table(dev, vlan->vid, vlan_table);
407 if (err) {
408 NL_SET_ERR_MSG_MOD(extack, "Failed to set vlan table");
409 return err;
410 }
411
412 /* change PVID */
413 if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
414 ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, vlan->vid);
415
416 return 0;
417}
418
419int ksz9477_port_vlan_del(struct ksz_device *dev, int port,
420 const struct switchdev_obj_port_vlan *vlan)
421{
422 bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
423 u32 vlan_table[3];
424 u16 pvid;
425
426 ksz_pread16(dev, port, REG_PORT_DEFAULT_VID, &pvid);
427 pvid = pvid & 0xFFF;
428
429 if (ksz9477_get_vlan_table(dev, vlan->vid, vlan_table)) {
430 dev_dbg(dev->dev, "Failed to get vlan table\n");
431 return -ETIMEDOUT;
432 }
433
434 vlan_table[2] &= ~BIT(port);
435
436 if (pvid == vlan->vid)
437 pvid = 1;
438
439 if (untagged)
440 vlan_table[1] &= ~BIT(port);
441
442 if (ksz9477_set_vlan_table(dev, vlan->vid, vlan_table)) {
443 dev_dbg(dev->dev, "Failed to set vlan table\n");
444 return -ETIMEDOUT;
445 }
446
447 ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, pvid);
448
449 return 0;
450}
451
452int ksz9477_fdb_add(struct ksz_device *dev, int port,
453 const unsigned char *addr, u16 vid, struct dsa_db db)
454{
455 u32 alu_table[4];
456 u32 data;
457 int ret = 0;
458
459 mutex_lock(&dev->alu_mutex);
460
461 /* find any entry with mac & vid */
462 data = vid << ALU_FID_INDEX_S;
463 data |= ((addr[0] << 8) | addr[1]);
464 ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
465
466 data = ((addr[2] << 24) | (addr[3] << 16));
467 data |= ((addr[4] << 8) | addr[5]);
468 ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
469
470 /* start read operation */
471 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
472
473 /* wait to be finished */
474 ret = ksz9477_wait_alu_ready(dev);
475 if (ret) {
476 dev_dbg(dev->dev, "Failed to read ALU\n");
477 goto exit;
478 }
479
480 /* read ALU entry */
481 ksz9477_read_table(dev, alu_table);
482
483 /* update ALU entry */
484 alu_table[0] = ALU_V_STATIC_VALID;
485 alu_table[1] |= BIT(port);
486 if (vid)
487 alu_table[1] |= ALU_V_USE_FID;
488 alu_table[2] = (vid << ALU_V_FID_S);
489 alu_table[2] |= ((addr[0] << 8) | addr[1]);
490 alu_table[3] = ((addr[2] << 24) | (addr[3] << 16));
491 alu_table[3] |= ((addr[4] << 8) | addr[5]);
492
493 ksz9477_write_table(dev, alu_table);
494
495 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
496
497 /* wait to be finished */
498 ret = ksz9477_wait_alu_ready(dev);
499 if (ret)
500 dev_dbg(dev->dev, "Failed to write ALU\n");
501
502exit:
503 mutex_unlock(&dev->alu_mutex);
504
505 return ret;
506}
507
508int ksz9477_fdb_del(struct ksz_device *dev, int port,
509 const unsigned char *addr, u16 vid, struct dsa_db db)
510{
511 u32 alu_table[4];
512 u32 data;
513 int ret = 0;
514
515 mutex_lock(&dev->alu_mutex);
516
517 /* read any entry with mac & vid */
518 data = vid << ALU_FID_INDEX_S;
519 data |= ((addr[0] << 8) | addr[1]);
520 ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
521
522 data = ((addr[2] << 24) | (addr[3] << 16));
523 data |= ((addr[4] << 8) | addr[5]);
524 ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
525
526 /* start read operation */
527 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
528
529 /* wait to be finished */
530 ret = ksz9477_wait_alu_ready(dev);
531 if (ret) {
532 dev_dbg(dev->dev, "Failed to read ALU\n");
533 goto exit;
534 }
535
536 ksz_read32(dev, REG_SW_ALU_VAL_A, &alu_table[0]);
537 if (alu_table[0] & ALU_V_STATIC_VALID) {
538 ksz_read32(dev, REG_SW_ALU_VAL_B, &alu_table[1]);
539 ksz_read32(dev, REG_SW_ALU_VAL_C, &alu_table[2]);
540 ksz_read32(dev, REG_SW_ALU_VAL_D, &alu_table[3]);
541
542 /* clear forwarding port */
543 alu_table[1] &= ~BIT(port);
544
545 /* if there is no port to forward, clear table */
546 if ((alu_table[1] & ALU_V_PORT_MAP) == 0) {
547 alu_table[0] = 0;
548 alu_table[1] = 0;
549 alu_table[2] = 0;
550 alu_table[3] = 0;
551 }
552 } else {
553 alu_table[0] = 0;
554 alu_table[1] = 0;
555 alu_table[2] = 0;
556 alu_table[3] = 0;
557 }
558
559 ksz9477_write_table(dev, alu_table);
560
561 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
562
563 /* wait to be finished */
564 ret = ksz9477_wait_alu_ready(dev);
565 if (ret)
566 dev_dbg(dev->dev, "Failed to write ALU\n");
567
568exit:
569 mutex_unlock(&dev->alu_mutex);
570
571 return ret;
572}
573
574static void ksz9477_convert_alu(struct alu_struct *alu, u32 *alu_table)
575{
576 alu->is_static = !!(alu_table[0] & ALU_V_STATIC_VALID);
577 alu->is_src_filter = !!(alu_table[0] & ALU_V_SRC_FILTER);
578 alu->is_dst_filter = !!(alu_table[0] & ALU_V_DST_FILTER);
579 alu->prio_age = (alu_table[0] >> ALU_V_PRIO_AGE_CNT_S) &
580 ALU_V_PRIO_AGE_CNT_M;
581 alu->mstp = alu_table[0] & ALU_V_MSTP_M;
582
583 alu->is_override = !!(alu_table[1] & ALU_V_OVERRIDE);
584 alu->is_use_fid = !!(alu_table[1] & ALU_V_USE_FID);
585 alu->port_forward = alu_table[1] & ALU_V_PORT_MAP;
586
587 alu->fid = (alu_table[2] >> ALU_V_FID_S) & ALU_V_FID_M;
588
589 alu->mac[0] = (alu_table[2] >> 8) & 0xFF;
590 alu->mac[1] = alu_table[2] & 0xFF;
591 alu->mac[2] = (alu_table[3] >> 24) & 0xFF;
592 alu->mac[3] = (alu_table[3] >> 16) & 0xFF;
593 alu->mac[4] = (alu_table[3] >> 8) & 0xFF;
594 alu->mac[5] = alu_table[3] & 0xFF;
595}
596
597int ksz9477_fdb_dump(struct ksz_device *dev, int port,
598 dsa_fdb_dump_cb_t *cb, void *data)
599{
600 int ret = 0;
601 u32 ksz_data;
602 u32 alu_table[4];
603 struct alu_struct alu;
604 int timeout;
605
606 mutex_lock(&dev->alu_mutex);
607
608 /* start ALU search */
609 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_START | ALU_SEARCH);
610
611 do {
612 timeout = 1000;
613 do {
614 ksz_read32(dev, REG_SW_ALU_CTRL__4, &ksz_data);
615 if ((ksz_data & ALU_VALID) || !(ksz_data & ALU_START))
616 break;
617 usleep_range(1, 10);
618 } while (timeout-- > 0);
619
620 if (!timeout) {
621 dev_dbg(dev->dev, "Failed to search ALU\n");
622 ret = -ETIMEDOUT;
623 goto exit;
624 }
625
626 if (!(ksz_data & ALU_VALID))
627 continue;
628
629 /* read ALU table */
630 ksz9477_read_table(dev, alu_table);
631
632 ksz9477_convert_alu(&alu, alu_table);
633
634 if (alu.port_forward & BIT(port)) {
635 ret = cb(alu.mac, alu.fid, alu.is_static, data);
636 if (ret)
637 goto exit;
638 }
639 } while (ksz_data & ALU_START);
640
641exit:
642
643 /* stop ALU search */
644 ksz_write32(dev, REG_SW_ALU_CTRL__4, 0);
645
646 mutex_unlock(&dev->alu_mutex);
647
648 return ret;
649}
650
651int ksz9477_mdb_add(struct ksz_device *dev, int port,
652 const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
653{
654 u32 static_table[4];
655 const u8 *shifts;
656 const u32 *masks;
657 u32 data;
658 int index;
659 u32 mac_hi, mac_lo;
660 int err = 0;
661
662 shifts = dev->info->shifts;
663 masks = dev->info->masks;
664
665 mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
666 mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
667 mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
668
669 mutex_lock(&dev->alu_mutex);
670
671 for (index = 0; index < dev->info->num_statics; index++) {
672 /* find empty slot first */
673 data = (index << shifts[ALU_STAT_INDEX]) |
674 masks[ALU_STAT_READ] | ALU_STAT_START;
675 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
676
677 /* wait to be finished */
678 err = ksz9477_wait_alu_sta_ready(dev);
679 if (err) {
680 dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
681 goto exit;
682 }
683
684 /* read ALU static table */
685 ksz9477_read_table(dev, static_table);
686
687 if (static_table[0] & ALU_V_STATIC_VALID) {
688 /* check this has same vid & mac address */
689 if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
690 ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
691 static_table[3] == mac_lo) {
692 /* found matching one */
693 break;
694 }
695 } else {
696 /* found empty one */
697 break;
698 }
699 }
700
701 /* no available entry */
702 if (index == dev->info->num_statics) {
703 err = -ENOSPC;
704 goto exit;
705 }
706
707 /* add entry */
708 static_table[0] = ALU_V_STATIC_VALID;
709 static_table[1] |= BIT(port);
710 if (mdb->vid)
711 static_table[1] |= ALU_V_USE_FID;
712 static_table[2] = (mdb->vid << ALU_V_FID_S);
713 static_table[2] |= mac_hi;
714 static_table[3] = mac_lo;
715
716 ksz9477_write_table(dev, static_table);
717
718 data = (index << shifts[ALU_STAT_INDEX]) | ALU_STAT_START;
719 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
720
721 /* wait to be finished */
722 if (ksz9477_wait_alu_sta_ready(dev))
723 dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
724
725exit:
726 mutex_unlock(&dev->alu_mutex);
727 return err;
728}
729
730int ksz9477_mdb_del(struct ksz_device *dev, int port,
731 const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
732{
733 u32 static_table[4];
734 const u8 *shifts;
735 const u32 *masks;
736 u32 data;
737 int index;
738 int ret = 0;
739 u32 mac_hi, mac_lo;
740
741 shifts = dev->info->shifts;
742 masks = dev->info->masks;
743
744 mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
745 mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
746 mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
747
748 mutex_lock(&dev->alu_mutex);
749
750 for (index = 0; index < dev->info->num_statics; index++) {
751 /* find empty slot first */
752 data = (index << shifts[ALU_STAT_INDEX]) |
753 masks[ALU_STAT_READ] | ALU_STAT_START;
754 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
755
756 /* wait to be finished */
757 ret = ksz9477_wait_alu_sta_ready(dev);
758 if (ret) {
759 dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
760 goto exit;
761 }
762
763 /* read ALU static table */
764 ksz9477_read_table(dev, static_table);
765
766 if (static_table[0] & ALU_V_STATIC_VALID) {
767 /* check this has same vid & mac address */
768
769 if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
770 ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
771 static_table[3] == mac_lo) {
772 /* found matching one */
773 break;
774 }
775 }
776 }
777
778 /* no available entry */
779 if (index == dev->info->num_statics)
780 goto exit;
781
782 /* clear port */
783 static_table[1] &= ~BIT(port);
784
785 if ((static_table[1] & ALU_V_PORT_MAP) == 0) {
786 /* delete entry */
787 static_table[0] = 0;
788 static_table[1] = 0;
789 static_table[2] = 0;
790 static_table[3] = 0;
791 }
792
793 ksz9477_write_table(dev, static_table);
794
795 data = (index << shifts[ALU_STAT_INDEX]) | ALU_STAT_START;
796 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
797
798 /* wait to be finished */
799 ret = ksz9477_wait_alu_sta_ready(dev);
800 if (ret)
801 dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
802
803exit:
804 mutex_unlock(&dev->alu_mutex);
805
806 return ret;
807}
808
809int ksz9477_port_mirror_add(struct ksz_device *dev, int port,
810 struct dsa_mall_mirror_tc_entry *mirror,
811 bool ingress, struct netlink_ext_ack *extack)
812{
813 u8 data;
814 int p;
815
816 /* Limit to one sniffer port
817 * Check if any of the port is already set for sniffing
818 * If yes, instruct the user to remove the previous entry & exit
819 */
820 for (p = 0; p < dev->info->port_cnt; p++) {
821 /* Skip the current sniffing port */
822 if (p == mirror->to_local_port)
823 continue;
824
825 ksz_pread8(dev, p, P_MIRROR_CTRL, &data);
826
827 if (data & PORT_MIRROR_SNIFFER) {
828 NL_SET_ERR_MSG_MOD(extack,
829 "Sniffer port is already configured, delete existing rules & retry");
830 return -EBUSY;
831 }
832 }
833
834 if (ingress)
835 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
836 else
837 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
838
839 /* configure mirror port */
840 ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
841 PORT_MIRROR_SNIFFER, true);
842
843 ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
844
845 return 0;
846}
847
848void ksz9477_port_mirror_del(struct ksz_device *dev, int port,
849 struct dsa_mall_mirror_tc_entry *mirror)
850{
851 bool in_use = false;
852 u8 data;
853 int p;
854
855 if (mirror->ingress)
856 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
857 else
858 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
859
860
861 /* Check if any of the port is still referring to sniffer port */
862 for (p = 0; p < dev->info->port_cnt; p++) {
863 ksz_pread8(dev, p, P_MIRROR_CTRL, &data);
864
865 if ((data & (PORT_MIRROR_RX | PORT_MIRROR_TX))) {
866 in_use = true;
867 break;
868 }
869 }
870
871 /* delete sniffing if there are no other mirroring rules */
872 if (!in_use)
873 ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
874 PORT_MIRROR_SNIFFER, false);
875}
876
877static phy_interface_t ksz9477_get_interface(struct ksz_device *dev, int port)
878{
879 phy_interface_t interface;
880 bool gbit;
881
882 if (dev->info->internal_phy[port])
883 return PHY_INTERFACE_MODE_NA;
884
885 gbit = ksz_get_gbit(dev, port);
886
887 interface = ksz_get_xmii(dev, port, gbit);
888
889 return interface;
890}
891
892static void ksz9477_port_mmd_write(struct ksz_device *dev, int port,
893 u8 dev_addr, u16 reg_addr, u16 val)
894{
895 ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP,
896 MMD_SETUP(PORT_MMD_OP_INDEX, dev_addr));
897 ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, reg_addr);
898 ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP,
899 MMD_SETUP(PORT_MMD_OP_DATA_NO_INCR, dev_addr));
900 ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, val);
901}
902
903static void ksz9477_phy_errata_setup(struct ksz_device *dev, int port)
904{
905 /* Apply PHY settings to address errata listed in
906 * KSZ9477, KSZ9897, KSZ9896, KSZ9567, KSZ8565
907 * Silicon Errata and Data Sheet Clarification documents:
908 *
909 * Register settings are needed to improve PHY receive performance
910 */
911 ksz9477_port_mmd_write(dev, port, 0x01, 0x6f, 0xdd0b);
912 ksz9477_port_mmd_write(dev, port, 0x01, 0x8f, 0x6032);
913 ksz9477_port_mmd_write(dev, port, 0x01, 0x9d, 0x248c);
914 ksz9477_port_mmd_write(dev, port, 0x01, 0x75, 0x0060);
915 ksz9477_port_mmd_write(dev, port, 0x01, 0xd3, 0x7777);
916 ksz9477_port_mmd_write(dev, port, 0x1c, 0x06, 0x3008);
917 ksz9477_port_mmd_write(dev, port, 0x1c, 0x08, 0x2001);
918
919 /* Transmit waveform amplitude can be improved
920 * (1000BASE-T, 100BASE-TX, 10BASE-Te)
921 */
922 ksz9477_port_mmd_write(dev, port, 0x1c, 0x04, 0x00d0);
923
924 /* Energy Efficient Ethernet (EEE) feature select must
925 * be manually disabled (except on KSZ8565 which is 100Mbit)
926 */
927 if (dev->info->gbit_capable[port])
928 ksz9477_port_mmd_write(dev, port, 0x07, 0x3c, 0x0000);
929
930 /* Register settings are required to meet data sheet
931 * supply current specifications
932 */
933 ksz9477_port_mmd_write(dev, port, 0x1c, 0x13, 0x6eff);
934 ksz9477_port_mmd_write(dev, port, 0x1c, 0x14, 0xe6ff);
935 ksz9477_port_mmd_write(dev, port, 0x1c, 0x15, 0x6eff);
936 ksz9477_port_mmd_write(dev, port, 0x1c, 0x16, 0xe6ff);
937 ksz9477_port_mmd_write(dev, port, 0x1c, 0x17, 0x00ff);
938 ksz9477_port_mmd_write(dev, port, 0x1c, 0x18, 0x43ff);
939 ksz9477_port_mmd_write(dev, port, 0x1c, 0x19, 0xc3ff);
940 ksz9477_port_mmd_write(dev, port, 0x1c, 0x1a, 0x6fff);
941 ksz9477_port_mmd_write(dev, port, 0x1c, 0x1b, 0x07ff);
942 ksz9477_port_mmd_write(dev, port, 0x1c, 0x1c, 0x0fff);
943 ksz9477_port_mmd_write(dev, port, 0x1c, 0x1d, 0xe7ff);
944 ksz9477_port_mmd_write(dev, port, 0x1c, 0x1e, 0xefff);
945 ksz9477_port_mmd_write(dev, port, 0x1c, 0x20, 0xeeee);
946}
947
948void ksz9477_get_caps(struct ksz_device *dev, int port,
949 struct phylink_config *config)
950{
951 config->mac_capabilities = MAC_10 | MAC_100 | MAC_ASYM_PAUSE |
952 MAC_SYM_PAUSE;
953
954 if (dev->info->gbit_capable[port])
955 config->mac_capabilities |= MAC_1000FD;
956}
957
958int ksz9477_set_ageing_time(struct ksz_device *dev, unsigned int msecs)
959{
960 u32 secs = msecs / 1000;
961 u8 value;
962 u8 data;
963 int ret;
964
965 value = FIELD_GET(SW_AGE_PERIOD_7_0_M, secs);
966
967 ret = ksz_write8(dev, REG_SW_LUE_CTRL_3, value);
968 if (ret < 0)
969 return ret;
970
971 data = FIELD_GET(SW_AGE_PERIOD_10_8_M, secs);
972
973 ret = ksz_read8(dev, REG_SW_LUE_CTRL_0, &value);
974 if (ret < 0)
975 return ret;
976
977 value &= ~SW_AGE_CNT_M;
978 value |= FIELD_PREP(SW_AGE_CNT_M, data);
979
980 return ksz_write8(dev, REG_SW_LUE_CTRL_0, value);
981}
982
983void ksz9477_port_setup(struct ksz_device *dev, int port, bool cpu_port)
984{
985 struct dsa_switch *ds = dev->ds;
986 u16 data16;
987 u8 member;
988
989 /* enable tag tail for host port */
990 if (cpu_port)
991 ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_TAIL_TAG_ENABLE,
992 true);
993
994 ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, false);
995
996 /* set back pressure */
997 ksz_port_cfg(dev, port, REG_PORT_MAC_CTRL_1, PORT_BACK_PRESSURE, true);
998
999 /* enable broadcast storm limit */
1000 ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
1001
1002 /* disable DiffServ priority */
1003 ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_PRIO_ENABLE, false);
1004
1005 /* replace priority */
1006 ksz_port_cfg(dev, port, REG_PORT_MRI_MAC_CTRL, PORT_USER_PRIO_CEILING,
1007 false);
1008 ksz9477_port_cfg32(dev, port, REG_PORT_MTI_QUEUE_CTRL_0__4,
1009 MTI_PVID_REPLACE, false);
1010
1011 /* enable 802.1p priority */
1012 ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_PRIO_ENABLE, true);
1013
1014 if (dev->info->internal_phy[port]) {
1015 /* do not force flow control */
1016 ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
1017 PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
1018 false);
1019
1020 if (dev->info->phy_errata_9477)
1021 ksz9477_phy_errata_setup(dev, port);
1022 } else {
1023 /* force flow control */
1024 ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
1025 PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
1026 true);
1027 }
1028
1029 if (cpu_port)
1030 member = dsa_user_ports(ds);
1031 else
1032 member = BIT(dsa_upstream_port(ds, port));
1033
1034 ksz9477_cfg_port_member(dev, port, member);
1035
1036 /* clear pending interrupts */
1037 if (dev->info->internal_phy[port])
1038 ksz_pread16(dev, port, REG_PORT_PHY_INT_ENABLE, &data16);
1039}
1040
1041void ksz9477_config_cpu_port(struct dsa_switch *ds)
1042{
1043 struct ksz_device *dev = ds->priv;
1044 struct ksz_port *p;
1045 int i;
1046
1047 for (i = 0; i < dev->info->port_cnt; i++) {
1048 if (dsa_is_cpu_port(ds, i) &&
1049 (dev->info->cpu_ports & (1 << i))) {
1050 phy_interface_t interface;
1051 const char *prev_msg;
1052 const char *prev_mode;
1053
1054 dev->cpu_port = i;
1055 p = &dev->ports[i];
1056
1057 /* Read from XMII register to determine host port
1058 * interface. If set specifically in device tree
1059 * note the difference to help debugging.
1060 */
1061 interface = ksz9477_get_interface(dev, i);
1062 if (!p->interface) {
1063 if (dev->compat_interface) {
1064 dev_warn(dev->dev,
1065 "Using legacy switch \"phy-mode\" property, because it is missing on port %d node. "
1066 "Please update your device tree.\n",
1067 i);
1068 p->interface = dev->compat_interface;
1069 } else {
1070 p->interface = interface;
1071 }
1072 }
1073 if (interface && interface != p->interface) {
1074 prev_msg = " instead of ";
1075 prev_mode = phy_modes(interface);
1076 } else {
1077 prev_msg = "";
1078 prev_mode = "";
1079 }
1080 dev_info(dev->dev,
1081 "Port%d: using phy mode %s%s%s\n",
1082 i,
1083 phy_modes(p->interface),
1084 prev_msg,
1085 prev_mode);
1086
1087 /* enable cpu port */
1088 ksz9477_port_setup(dev, i, true);
1089 }
1090 }
1091
1092 for (i = 0; i < dev->info->port_cnt; i++) {
1093 if (i == dev->cpu_port)
1094 continue;
1095 ksz_port_stp_state_set(ds, i, BR_STATE_DISABLED);
1096 }
1097}
1098
1099int ksz9477_enable_stp_addr(struct ksz_device *dev)
1100{
1101 const u32 *masks;
1102 u32 data;
1103 int ret;
1104
1105 masks = dev->info->masks;
1106
1107 /* Enable Reserved multicast table */
1108 ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_RESV_MCAST_ENABLE, true);
1109
1110 /* Set the Override bit for forwarding BPDU packet to CPU */
1111 ret = ksz_write32(dev, REG_SW_ALU_VAL_B,
1112 ALU_V_OVERRIDE | BIT(dev->cpu_port));
1113 if (ret < 0)
1114 return ret;
1115
1116 data = ALU_STAT_START | ALU_RESV_MCAST_ADDR | masks[ALU_STAT_WRITE];
1117
1118 ret = ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
1119 if (ret < 0)
1120 return ret;
1121
1122 /* wait to be finished */
1123 ret = ksz9477_wait_alu_sta_ready(dev);
1124 if (ret < 0) {
1125 dev_err(dev->dev, "Failed to update Reserved Multicast table\n");
1126 return ret;
1127 }
1128
1129 return 0;
1130}
1131
1132int ksz9477_setup(struct dsa_switch *ds)
1133{
1134 struct ksz_device *dev = ds->priv;
1135 int ret = 0;
1136
1137 ds->mtu_enforcement_ingress = true;
1138
1139 /* Required for port partitioning. */
1140 ksz9477_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY,
1141 true);
1142
1143 /* Do not work correctly with tail tagging. */
1144 ksz_cfg(dev, REG_SW_MAC_CTRL_0, SW_CHECK_LENGTH, false);
1145
1146 /* Enable REG_SW_MTU__2 reg by setting SW_JUMBO_PACKET */
1147 ksz_cfg(dev, REG_SW_MAC_CTRL_1, SW_JUMBO_PACKET, true);
1148
1149 /* Now we can configure default MTU value */
1150 ret = regmap_update_bits(dev->regmap[1], REG_SW_MTU__2, REG_SW_MTU_MASK,
1151 VLAN_ETH_FRAME_LEN + ETH_FCS_LEN);
1152 if (ret)
1153 return ret;
1154
1155 /* queue based egress rate limit */
1156 ksz_cfg(dev, REG_SW_MAC_CTRL_5, SW_OUT_RATE_LIMIT_QUEUE_BASED, true);
1157
1158 /* enable global MIB counter freeze function */
1159 ksz_cfg(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FREEZE, true);
1160
1161 return 0;
1162}
1163
1164u32 ksz9477_get_port_addr(int port, int offset)
1165{
1166 return PORT_CTRL_ADDR(port, offset);
1167}
1168
1169int ksz9477_switch_init(struct ksz_device *dev)
1170{
1171 u8 data8;
1172 int ret;
1173
1174 dev->port_mask = (1 << dev->info->port_cnt) - 1;
1175
1176 /* turn off SPI DO Edge select */
1177 ret = ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
1178 if (ret)
1179 return ret;
1180
1181 data8 &= ~SPI_AUTO_EDGE_DETECTION;
1182 ret = ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
1183 if (ret)
1184 return ret;
1185
1186 return 0;
1187}
1188
1189void ksz9477_switch_exit(struct ksz_device *dev)
1190{
1191 ksz9477_reset_switch(dev);
1192}
1193
1194MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
1195MODULE_DESCRIPTION("Microchip KSZ9477 Series Switch DSA Driver");
1196MODULE_LICENSE("GPL");