Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Microchip KSZ9477 switch driver main logic
4 *
5 * Copyright (C) 2017-2019 Microchip Technology Inc.
6 */
7
8#include <linux/kernel.h>
9#include <linux/module.h>
10#include <linux/iopoll.h>
11#include <linux/platform_data/microchip-ksz.h>
12#include <linux/phy.h>
13#include <linux/if_bridge.h>
14#include <linux/if_vlan.h>
15#include <net/dsa.h>
16#include <net/switchdev.h>
17
18#include "ksz9477_reg.h"
19#include "ksz_common.h"
20#include "ksz9477.h"
21
22static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
23{
24 regmap_update_bits(ksz_regmap_8(dev), addr, bits, set ? bits : 0);
25}
26
27static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
28 bool set)
29{
30 regmap_update_bits(ksz_regmap_8(dev), PORT_CTRL_ADDR(port, offset),
31 bits, set ? bits : 0);
32}
33
34static void ksz9477_cfg32(struct ksz_device *dev, u32 addr, u32 bits, bool set)
35{
36 regmap_update_bits(ksz_regmap_32(dev), addr, bits, set ? bits : 0);
37}
38
39static void ksz9477_port_cfg32(struct ksz_device *dev, int port, int offset,
40 u32 bits, bool set)
41{
42 regmap_update_bits(ksz_regmap_32(dev), PORT_CTRL_ADDR(port, offset),
43 bits, set ? bits : 0);
44}
45
46int ksz9477_change_mtu(struct ksz_device *dev, int port, int mtu)
47{
48 u16 frame_size;
49
50 if (!dsa_is_cpu_port(dev->ds, port))
51 return 0;
52
53 frame_size = mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
54
55 return regmap_update_bits(ksz_regmap_16(dev), REG_SW_MTU__2,
56 REG_SW_MTU_MASK, frame_size);
57}
58
59/**
60 * ksz9477_handle_wake_reason - Handle wake reason on a specified port.
61 * @dev: The device structure.
62 * @port: The port number.
63 *
64 * This function reads the PME (Power Management Event) status register of a
65 * specified port to determine the wake reason. If there is no wake event, it
66 * returns early. Otherwise, it logs the wake reason which could be due to a
67 * "Magic Packet", "Link Up", or "Energy Detect" event. The PME status register
68 * is then cleared to acknowledge the handling of the wake event.
69 *
70 * Return: 0 on success, or an error code on failure.
71 */
72static int ksz9477_handle_wake_reason(struct ksz_device *dev, int port)
73{
74 u8 pme_status;
75 int ret;
76
77 ret = ksz_pread8(dev, port, REG_PORT_PME_STATUS, &pme_status);
78 if (ret)
79 return ret;
80
81 if (!pme_status)
82 return 0;
83
84 dev_dbg(dev->dev, "Wake event on port %d due to:%s%s%s\n", port,
85 pme_status & PME_WOL_MAGICPKT ? " \"Magic Packet\"" : "",
86 pme_status & PME_WOL_LINKUP ? " \"Link Up\"" : "",
87 pme_status & PME_WOL_ENERGY ? " \"Energy detect\"" : "");
88
89 return ksz_pwrite8(dev, port, REG_PORT_PME_STATUS, pme_status);
90}
91
92/**
93 * ksz9477_get_wol - Get Wake-on-LAN settings for a specified port.
94 * @dev: The device structure.
95 * @port: The port number.
96 * @wol: Pointer to ethtool Wake-on-LAN settings structure.
97 *
98 * This function checks the PME Pin Control Register to see if PME Pin Output
99 * Enable is set, indicating PME is enabled. If enabled, it sets the supported
100 * and active WoL flags.
101 */
102void ksz9477_get_wol(struct ksz_device *dev, int port,
103 struct ethtool_wolinfo *wol)
104{
105 u8 pme_ctrl;
106 int ret;
107
108 if (!dev->wakeup_source)
109 return;
110
111 wol->supported = WAKE_PHY;
112
113 /* Check if the current MAC address on this port can be set
114 * as global for WAKE_MAGIC support. The result may vary
115 * dynamically based on other ports configurations.
116 */
117 if (ksz_is_port_mac_global_usable(dev->ds, port))
118 wol->supported |= WAKE_MAGIC;
119
120 ret = ksz_pread8(dev, port, REG_PORT_PME_CTRL, &pme_ctrl);
121 if (ret)
122 return;
123
124 if (pme_ctrl & PME_WOL_MAGICPKT)
125 wol->wolopts |= WAKE_MAGIC;
126 if (pme_ctrl & (PME_WOL_LINKUP | PME_WOL_ENERGY))
127 wol->wolopts |= WAKE_PHY;
128}
129
130/**
131 * ksz9477_set_wol - Set Wake-on-LAN settings for a specified port.
132 * @dev: The device structure.
133 * @port: The port number.
134 * @wol: Pointer to ethtool Wake-on-LAN settings structure.
135 *
136 * This function configures Wake-on-LAN (WoL) settings for a specified port.
137 * It validates the provided WoL options, checks if PME is enabled via the
138 * switch's PME Pin Control Register, clears any previous wake reasons,
139 * and sets the Magic Packet flag in the port's PME control register if
140 * specified.
141 *
142 * Return: 0 on success, or other error codes on failure.
143 */
144int ksz9477_set_wol(struct ksz_device *dev, int port,
145 struct ethtool_wolinfo *wol)
146{
147 u8 pme_ctrl = 0, pme_ctrl_old = 0;
148 bool magic_switched_off;
149 bool magic_switched_on;
150 int ret;
151
152 if (wol->wolopts & ~(WAKE_PHY | WAKE_MAGIC))
153 return -EINVAL;
154
155 if (!dev->wakeup_source)
156 return -EOPNOTSUPP;
157
158 ret = ksz9477_handle_wake_reason(dev, port);
159 if (ret)
160 return ret;
161
162 if (wol->wolopts & WAKE_MAGIC)
163 pme_ctrl |= PME_WOL_MAGICPKT;
164 if (wol->wolopts & WAKE_PHY)
165 pme_ctrl |= PME_WOL_LINKUP | PME_WOL_ENERGY;
166
167 ret = ksz_pread8(dev, port, REG_PORT_PME_CTRL, &pme_ctrl_old);
168 if (ret)
169 return ret;
170
171 if (pme_ctrl_old == pme_ctrl)
172 return 0;
173
174 magic_switched_off = (pme_ctrl_old & PME_WOL_MAGICPKT) &&
175 !(pme_ctrl & PME_WOL_MAGICPKT);
176 magic_switched_on = !(pme_ctrl_old & PME_WOL_MAGICPKT) &&
177 (pme_ctrl & PME_WOL_MAGICPKT);
178
179 /* To keep reference count of MAC address, we should do this
180 * operation only on change of WOL settings.
181 */
182 if (magic_switched_on) {
183 ret = ksz_switch_macaddr_get(dev->ds, port, NULL);
184 if (ret)
185 return ret;
186 } else if (magic_switched_off) {
187 ksz_switch_macaddr_put(dev->ds);
188 }
189
190 ret = ksz_pwrite8(dev, port, REG_PORT_PME_CTRL, pme_ctrl);
191 if (ret) {
192 if (magic_switched_on)
193 ksz_switch_macaddr_put(dev->ds);
194 return ret;
195 }
196
197 return 0;
198}
199
200/**
201 * ksz9477_wol_pre_shutdown - Prepares the switch device for shutdown while
202 * considering Wake-on-LAN (WoL) settings.
203 * @dev: The switch device structure.
204 * @wol_enabled: Pointer to a boolean which will be set to true if WoL is
205 * enabled on any port.
206 *
207 * This function prepares the switch device for a safe shutdown while taking
208 * into account the Wake-on-LAN (WoL) settings on the user ports. It updates
209 * the wol_enabled flag accordingly to reflect whether WoL is active on any
210 * port.
211 */
212void ksz9477_wol_pre_shutdown(struct ksz_device *dev, bool *wol_enabled)
213{
214 struct dsa_port *dp;
215 int ret;
216
217 *wol_enabled = false;
218
219 if (!dev->wakeup_source)
220 return;
221
222 dsa_switch_for_each_user_port(dp, dev->ds) {
223 u8 pme_ctrl = 0;
224
225 ret = ksz_pread8(dev, dp->index, REG_PORT_PME_CTRL, &pme_ctrl);
226 if (!ret && pme_ctrl)
227 *wol_enabled = true;
228
229 /* make sure there are no pending wake events which would
230 * prevent the device from going to sleep/shutdown.
231 */
232 ksz9477_handle_wake_reason(dev, dp->index);
233 }
234
235 /* Now we are save to enable PME pin. */
236 if (*wol_enabled)
237 ksz_write8(dev, REG_SW_PME_CTRL, PME_ENABLE);
238}
239
240static int ksz9477_wait_vlan_ctrl_ready(struct ksz_device *dev)
241{
242 unsigned int val;
243
244 return regmap_read_poll_timeout(ksz_regmap_8(dev), REG_SW_VLAN_CTRL,
245 val, !(val & VLAN_START), 10, 1000);
246}
247
248static int ksz9477_get_vlan_table(struct ksz_device *dev, u16 vid,
249 u32 *vlan_table)
250{
251 int ret;
252
253 mutex_lock(&dev->vlan_mutex);
254
255 ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
256 ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_READ | VLAN_START);
257
258 /* wait to be cleared */
259 ret = ksz9477_wait_vlan_ctrl_ready(dev);
260 if (ret) {
261 dev_dbg(dev->dev, "Failed to read vlan table\n");
262 goto exit;
263 }
264
265 ksz_read32(dev, REG_SW_VLAN_ENTRY__4, &vlan_table[0]);
266 ksz_read32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, &vlan_table[1]);
267 ksz_read32(dev, REG_SW_VLAN_ENTRY_PORTS__4, &vlan_table[2]);
268
269 ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
270
271exit:
272 mutex_unlock(&dev->vlan_mutex);
273
274 return ret;
275}
276
277static int ksz9477_set_vlan_table(struct ksz_device *dev, u16 vid,
278 u32 *vlan_table)
279{
280 int ret;
281
282 mutex_lock(&dev->vlan_mutex);
283
284 ksz_write32(dev, REG_SW_VLAN_ENTRY__4, vlan_table[0]);
285 ksz_write32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, vlan_table[1]);
286 ksz_write32(dev, REG_SW_VLAN_ENTRY_PORTS__4, vlan_table[2]);
287
288 ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
289 ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_START | VLAN_WRITE);
290
291 /* wait to be cleared */
292 ret = ksz9477_wait_vlan_ctrl_ready(dev);
293 if (ret) {
294 dev_dbg(dev->dev, "Failed to write vlan table\n");
295 goto exit;
296 }
297
298 ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
299
300 /* update vlan cache table */
301 dev->vlan_cache[vid].table[0] = vlan_table[0];
302 dev->vlan_cache[vid].table[1] = vlan_table[1];
303 dev->vlan_cache[vid].table[2] = vlan_table[2];
304
305exit:
306 mutex_unlock(&dev->vlan_mutex);
307
308 return ret;
309}
310
311static void ksz9477_read_table(struct ksz_device *dev, u32 *table)
312{
313 ksz_read32(dev, REG_SW_ALU_VAL_A, &table[0]);
314 ksz_read32(dev, REG_SW_ALU_VAL_B, &table[1]);
315 ksz_read32(dev, REG_SW_ALU_VAL_C, &table[2]);
316 ksz_read32(dev, REG_SW_ALU_VAL_D, &table[3]);
317}
318
319static void ksz9477_write_table(struct ksz_device *dev, u32 *table)
320{
321 ksz_write32(dev, REG_SW_ALU_VAL_A, table[0]);
322 ksz_write32(dev, REG_SW_ALU_VAL_B, table[1]);
323 ksz_write32(dev, REG_SW_ALU_VAL_C, table[2]);
324 ksz_write32(dev, REG_SW_ALU_VAL_D, table[3]);
325}
326
327static int ksz9477_wait_alu_ready(struct ksz_device *dev)
328{
329 unsigned int val;
330
331 return regmap_read_poll_timeout(ksz_regmap_32(dev), REG_SW_ALU_CTRL__4,
332 val, !(val & ALU_START), 10, 1000);
333}
334
335static int ksz9477_wait_alu_sta_ready(struct ksz_device *dev)
336{
337 unsigned int val;
338
339 return regmap_read_poll_timeout(ksz_regmap_32(dev),
340 REG_SW_ALU_STAT_CTRL__4,
341 val, !(val & ALU_STAT_START),
342 10, 1000);
343}
344
345int ksz9477_reset_switch(struct ksz_device *dev)
346{
347 u8 data8;
348 u32 data32;
349
350 /* reset switch */
351 ksz_cfg(dev, REG_SW_OPERATION, SW_RESET, true);
352
353 /* turn off SPI DO Edge select */
354 regmap_update_bits(ksz_regmap_8(dev), REG_SW_GLOBAL_SERIAL_CTRL_0,
355 SPI_AUTO_EDGE_DETECTION, 0);
356
357 /* default configuration */
358 ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8);
359 data8 = SW_AGING_ENABLE | SW_LINK_AUTO_AGING |
360 SW_SRC_ADDR_FILTER | SW_FLUSH_STP_TABLE | SW_FLUSH_MSTP_TABLE;
361 ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
362
363 /* disable interrupts */
364 ksz_write32(dev, REG_SW_INT_MASK__4, SWITCH_INT_MASK);
365 ksz_write32(dev, REG_SW_PORT_INT_MASK__4, 0x7F);
366 ksz_read32(dev, REG_SW_PORT_INT_STATUS__4, &data32);
367
368 /* KSZ9893 compatible chips do not support refclk configuration */
369 if (dev->chip_id == KSZ9893_CHIP_ID ||
370 dev->chip_id == KSZ8563_CHIP_ID ||
371 dev->chip_id == KSZ9563_CHIP_ID)
372 return 0;
373
374 data8 = SW_ENABLE_REFCLKO;
375 if (dev->synclko_disable)
376 data8 = 0;
377 else if (dev->synclko_125)
378 data8 = SW_ENABLE_REFCLKO | SW_REFCLKO_IS_125MHZ;
379 ksz_write8(dev, REG_SW_GLOBAL_OUTPUT_CTRL__1, data8);
380
381 return 0;
382}
383
384void ksz9477_r_mib_cnt(struct ksz_device *dev, int port, u16 addr, u64 *cnt)
385{
386 struct ksz_port *p = &dev->ports[port];
387 unsigned int val;
388 u32 data;
389 int ret;
390
391 /* retain the flush/freeze bit */
392 data = p->freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
393 data |= MIB_COUNTER_READ;
394 data |= (addr << MIB_COUNTER_INDEX_S);
395 ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, data);
396
397 ret = regmap_read_poll_timeout(ksz_regmap_32(dev),
398 PORT_CTRL_ADDR(port, REG_PORT_MIB_CTRL_STAT__4),
399 val, !(val & MIB_COUNTER_READ), 10, 1000);
400 /* failed to read MIB. get out of loop */
401 if (ret) {
402 dev_dbg(dev->dev, "Failed to get MIB\n");
403 return;
404 }
405
406 /* count resets upon read */
407 ksz_pread32(dev, port, REG_PORT_MIB_DATA, &data);
408 *cnt += data;
409}
410
411void ksz9477_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
412 u64 *dropped, u64 *cnt)
413{
414 addr = dev->info->mib_names[addr].index;
415 ksz9477_r_mib_cnt(dev, port, addr, cnt);
416}
417
418void ksz9477_freeze_mib(struct ksz_device *dev, int port, bool freeze)
419{
420 u32 val = freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
421 struct ksz_port *p = &dev->ports[port];
422
423 /* enable/disable the port for flush/freeze function */
424 mutex_lock(&p->mib.cnt_mutex);
425 ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, val);
426
427 /* used by MIB counter reading code to know freeze is enabled */
428 p->freeze = freeze;
429 mutex_unlock(&p->mib.cnt_mutex);
430}
431
432void ksz9477_port_init_cnt(struct ksz_device *dev, int port)
433{
434 struct ksz_port_mib *mib = &dev->ports[port].mib;
435
436 /* flush all enabled port MIB counters */
437 mutex_lock(&mib->cnt_mutex);
438 ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4,
439 MIB_COUNTER_FLUSH_FREEZE);
440 ksz_write8(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FLUSH);
441 ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, 0);
442 mutex_unlock(&mib->cnt_mutex);
443}
444
445static void ksz9477_r_phy_quirks(struct ksz_device *dev, u16 addr, u16 reg,
446 u16 *data)
447{
448 /* KSZ8563R do not have extended registers but BMSR_ESTATEN and
449 * BMSR_ERCAP bits are set.
450 */
451 if (dev->chip_id == KSZ8563_CHIP_ID && reg == MII_BMSR)
452 *data &= ~(BMSR_ESTATEN | BMSR_ERCAP);
453}
454
455int ksz9477_r_phy(struct ksz_device *dev, u16 addr, u16 reg, u16 *data)
456{
457 u16 val = 0xffff;
458 int ret;
459
460 /* No real PHY after this. Simulate the PHY.
461 * A fixed PHY can be setup in the device tree, but this function is
462 * still called for that port during initialization.
463 * For RGMII PHY there is no way to access it so the fixed PHY should
464 * be used. For SGMII PHY the supporting code will be added later.
465 */
466 if (!dev->info->internal_phy[addr]) {
467 struct ksz_port *p = &dev->ports[addr];
468
469 switch (reg) {
470 case MII_BMCR:
471 val = 0x1140;
472 break;
473 case MII_BMSR:
474 val = 0x796d;
475 break;
476 case MII_PHYSID1:
477 val = 0x0022;
478 break;
479 case MII_PHYSID2:
480 val = 0x1631;
481 break;
482 case MII_ADVERTISE:
483 val = 0x05e1;
484 break;
485 case MII_LPA:
486 val = 0xc5e1;
487 break;
488 case MII_CTRL1000:
489 val = 0x0700;
490 break;
491 case MII_STAT1000:
492 if (p->phydev.speed == SPEED_1000)
493 val = 0x3800;
494 else
495 val = 0;
496 break;
497 }
498 } else {
499 ret = ksz_pread16(dev, addr, 0x100 + (reg << 1), &val);
500 if (ret)
501 return ret;
502
503 ksz9477_r_phy_quirks(dev, addr, reg, &val);
504 }
505
506 *data = val;
507
508 return 0;
509}
510
511int ksz9477_w_phy(struct ksz_device *dev, u16 addr, u16 reg, u16 val)
512{
513 u32 mask, val32;
514
515 /* No real PHY after this. */
516 if (!dev->info->internal_phy[addr])
517 return 0;
518
519 if (reg < 0x10)
520 return ksz_pwrite16(dev, addr, 0x100 + (reg << 1), val);
521
522 /* Errata: When using SPI, I2C, or in-band register access,
523 * writes to certain PHY registers should be performed as
524 * 32-bit writes instead of 16-bit writes.
525 */
526 val32 = val;
527 mask = 0xffff;
528 if ((reg & 1) == 0) {
529 val32 <<= 16;
530 mask <<= 16;
531 }
532 reg &= ~1;
533 return ksz_prmw32(dev, addr, 0x100 + (reg << 1), mask, val32);
534}
535
536void ksz9477_cfg_port_member(struct ksz_device *dev, int port, u8 member)
537{
538 ksz_pwrite32(dev, port, REG_PORT_VLAN_MEMBERSHIP__4, member);
539}
540
541void ksz9477_flush_dyn_mac_table(struct ksz_device *dev, int port)
542{
543 const u16 *regs = dev->info->regs;
544 u8 data;
545
546 regmap_update_bits(ksz_regmap_8(dev), REG_SW_LUE_CTRL_2,
547 SW_FLUSH_OPTION_M << SW_FLUSH_OPTION_S,
548 SW_FLUSH_OPTION_DYN_MAC << SW_FLUSH_OPTION_S);
549
550 if (port < dev->info->port_cnt) {
551 /* flush individual port */
552 ksz_pread8(dev, port, regs[P_STP_CTRL], &data);
553 if (!(data & PORT_LEARN_DISABLE))
554 ksz_pwrite8(dev, port, regs[P_STP_CTRL],
555 data | PORT_LEARN_DISABLE);
556 ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true);
557 ksz_pwrite8(dev, port, regs[P_STP_CTRL], data);
558 } else {
559 /* flush all */
560 ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_STP_TABLE, true);
561 }
562}
563
564int ksz9477_port_vlan_filtering(struct ksz_device *dev, int port,
565 bool flag, struct netlink_ext_ack *extack)
566{
567 if (flag) {
568 ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
569 PORT_VLAN_LOOKUP_VID_0, true);
570 ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, true);
571 } else {
572 ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, false);
573 ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
574 PORT_VLAN_LOOKUP_VID_0, false);
575 }
576
577 return 0;
578}
579
580int ksz9477_port_vlan_add(struct ksz_device *dev, int port,
581 const struct switchdev_obj_port_vlan *vlan,
582 struct netlink_ext_ack *extack)
583{
584 u32 vlan_table[3];
585 bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
586 int err;
587
588 err = ksz9477_get_vlan_table(dev, vlan->vid, vlan_table);
589 if (err) {
590 NL_SET_ERR_MSG_MOD(extack, "Failed to get vlan table");
591 return err;
592 }
593
594 vlan_table[0] = VLAN_VALID | (vlan->vid & VLAN_FID_M);
595 if (untagged)
596 vlan_table[1] |= BIT(port);
597 else
598 vlan_table[1] &= ~BIT(port);
599 vlan_table[1] &= ~(BIT(dev->cpu_port));
600
601 vlan_table[2] |= BIT(port) | BIT(dev->cpu_port);
602
603 err = ksz9477_set_vlan_table(dev, vlan->vid, vlan_table);
604 if (err) {
605 NL_SET_ERR_MSG_MOD(extack, "Failed to set vlan table");
606 return err;
607 }
608
609 /* change PVID */
610 if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
611 ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, vlan->vid);
612
613 return 0;
614}
615
616int ksz9477_port_vlan_del(struct ksz_device *dev, int port,
617 const struct switchdev_obj_port_vlan *vlan)
618{
619 bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
620 u32 vlan_table[3];
621 u16 pvid;
622
623 ksz_pread16(dev, port, REG_PORT_DEFAULT_VID, &pvid);
624 pvid = pvid & 0xFFF;
625
626 if (ksz9477_get_vlan_table(dev, vlan->vid, vlan_table)) {
627 dev_dbg(dev->dev, "Failed to get vlan table\n");
628 return -ETIMEDOUT;
629 }
630
631 vlan_table[2] &= ~BIT(port);
632
633 if (pvid == vlan->vid)
634 pvid = 1;
635
636 if (untagged)
637 vlan_table[1] &= ~BIT(port);
638
639 if (ksz9477_set_vlan_table(dev, vlan->vid, vlan_table)) {
640 dev_dbg(dev->dev, "Failed to set vlan table\n");
641 return -ETIMEDOUT;
642 }
643
644 ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, pvid);
645
646 return 0;
647}
648
649int ksz9477_fdb_add(struct ksz_device *dev, int port,
650 const unsigned char *addr, u16 vid, struct dsa_db db)
651{
652 u32 alu_table[4];
653 u32 data;
654 int ret = 0;
655
656 mutex_lock(&dev->alu_mutex);
657
658 /* find any entry with mac & vid */
659 data = vid << ALU_FID_INDEX_S;
660 data |= ((addr[0] << 8) | addr[1]);
661 ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
662
663 data = ((addr[2] << 24) | (addr[3] << 16));
664 data |= ((addr[4] << 8) | addr[5]);
665 ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
666
667 /* start read operation */
668 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
669
670 /* wait to be finished */
671 ret = ksz9477_wait_alu_ready(dev);
672 if (ret) {
673 dev_dbg(dev->dev, "Failed to read ALU\n");
674 goto exit;
675 }
676
677 /* read ALU entry */
678 ksz9477_read_table(dev, alu_table);
679
680 /* update ALU entry */
681 alu_table[0] = ALU_V_STATIC_VALID;
682 alu_table[1] |= BIT(port);
683 if (vid)
684 alu_table[1] |= ALU_V_USE_FID;
685 alu_table[2] = (vid << ALU_V_FID_S);
686 alu_table[2] |= ((addr[0] << 8) | addr[1]);
687 alu_table[3] = ((addr[2] << 24) | (addr[3] << 16));
688 alu_table[3] |= ((addr[4] << 8) | addr[5]);
689
690 ksz9477_write_table(dev, alu_table);
691
692 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
693
694 /* wait to be finished */
695 ret = ksz9477_wait_alu_ready(dev);
696 if (ret)
697 dev_dbg(dev->dev, "Failed to write ALU\n");
698
699exit:
700 mutex_unlock(&dev->alu_mutex);
701
702 return ret;
703}
704
705int ksz9477_fdb_del(struct ksz_device *dev, int port,
706 const unsigned char *addr, u16 vid, struct dsa_db db)
707{
708 u32 alu_table[4];
709 u32 data;
710 int ret = 0;
711
712 mutex_lock(&dev->alu_mutex);
713
714 /* read any entry with mac & vid */
715 data = vid << ALU_FID_INDEX_S;
716 data |= ((addr[0] << 8) | addr[1]);
717 ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
718
719 data = ((addr[2] << 24) | (addr[3] << 16));
720 data |= ((addr[4] << 8) | addr[5]);
721 ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
722
723 /* start read operation */
724 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
725
726 /* wait to be finished */
727 ret = ksz9477_wait_alu_ready(dev);
728 if (ret) {
729 dev_dbg(dev->dev, "Failed to read ALU\n");
730 goto exit;
731 }
732
733 ksz_read32(dev, REG_SW_ALU_VAL_A, &alu_table[0]);
734 if (alu_table[0] & ALU_V_STATIC_VALID) {
735 ksz_read32(dev, REG_SW_ALU_VAL_B, &alu_table[1]);
736 ksz_read32(dev, REG_SW_ALU_VAL_C, &alu_table[2]);
737 ksz_read32(dev, REG_SW_ALU_VAL_D, &alu_table[3]);
738
739 /* clear forwarding port */
740 alu_table[1] &= ~BIT(port);
741
742 /* if there is no port to forward, clear table */
743 if ((alu_table[1] & ALU_V_PORT_MAP) == 0) {
744 alu_table[0] = 0;
745 alu_table[1] = 0;
746 alu_table[2] = 0;
747 alu_table[3] = 0;
748 }
749 } else {
750 alu_table[0] = 0;
751 alu_table[1] = 0;
752 alu_table[2] = 0;
753 alu_table[3] = 0;
754 }
755
756 ksz9477_write_table(dev, alu_table);
757
758 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
759
760 /* wait to be finished */
761 ret = ksz9477_wait_alu_ready(dev);
762 if (ret)
763 dev_dbg(dev->dev, "Failed to write ALU\n");
764
765exit:
766 mutex_unlock(&dev->alu_mutex);
767
768 return ret;
769}
770
771static void ksz9477_convert_alu(struct alu_struct *alu, u32 *alu_table)
772{
773 alu->is_static = !!(alu_table[0] & ALU_V_STATIC_VALID);
774 alu->is_src_filter = !!(alu_table[0] & ALU_V_SRC_FILTER);
775 alu->is_dst_filter = !!(alu_table[0] & ALU_V_DST_FILTER);
776 alu->prio_age = (alu_table[0] >> ALU_V_PRIO_AGE_CNT_S) &
777 ALU_V_PRIO_AGE_CNT_M;
778 alu->mstp = alu_table[0] & ALU_V_MSTP_M;
779
780 alu->is_override = !!(alu_table[1] & ALU_V_OVERRIDE);
781 alu->is_use_fid = !!(alu_table[1] & ALU_V_USE_FID);
782 alu->port_forward = alu_table[1] & ALU_V_PORT_MAP;
783
784 alu->fid = (alu_table[2] >> ALU_V_FID_S) & ALU_V_FID_M;
785
786 alu->mac[0] = (alu_table[2] >> 8) & 0xFF;
787 alu->mac[1] = alu_table[2] & 0xFF;
788 alu->mac[2] = (alu_table[3] >> 24) & 0xFF;
789 alu->mac[3] = (alu_table[3] >> 16) & 0xFF;
790 alu->mac[4] = (alu_table[3] >> 8) & 0xFF;
791 alu->mac[5] = alu_table[3] & 0xFF;
792}
793
794int ksz9477_fdb_dump(struct ksz_device *dev, int port,
795 dsa_fdb_dump_cb_t *cb, void *data)
796{
797 int ret = 0;
798 u32 ksz_data;
799 u32 alu_table[4];
800 struct alu_struct alu;
801 int timeout;
802
803 mutex_lock(&dev->alu_mutex);
804
805 /* start ALU search */
806 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_START | ALU_SEARCH);
807
808 do {
809 timeout = 1000;
810 do {
811 ksz_read32(dev, REG_SW_ALU_CTRL__4, &ksz_data);
812 if ((ksz_data & ALU_VALID) || !(ksz_data & ALU_START))
813 break;
814 usleep_range(1, 10);
815 } while (timeout-- > 0);
816
817 if (!timeout) {
818 dev_dbg(dev->dev, "Failed to search ALU\n");
819 ret = -ETIMEDOUT;
820 goto exit;
821 }
822
823 if (!(ksz_data & ALU_VALID))
824 continue;
825
826 /* read ALU table */
827 ksz9477_read_table(dev, alu_table);
828
829 ksz9477_convert_alu(&alu, alu_table);
830
831 if (alu.port_forward & BIT(port)) {
832 ret = cb(alu.mac, alu.fid, alu.is_static, data);
833 if (ret)
834 goto exit;
835 }
836 } while (ksz_data & ALU_START);
837
838exit:
839
840 /* stop ALU search */
841 ksz_write32(dev, REG_SW_ALU_CTRL__4, 0);
842
843 mutex_unlock(&dev->alu_mutex);
844
845 return ret;
846}
847
848int ksz9477_mdb_add(struct ksz_device *dev, int port,
849 const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
850{
851 u32 static_table[4];
852 const u8 *shifts;
853 const u32 *masks;
854 u32 data;
855 int index;
856 u32 mac_hi, mac_lo;
857 int err = 0;
858
859 shifts = dev->info->shifts;
860 masks = dev->info->masks;
861
862 mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
863 mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
864 mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
865
866 mutex_lock(&dev->alu_mutex);
867
868 for (index = 0; index < dev->info->num_statics; index++) {
869 /* find empty slot first */
870 data = (index << shifts[ALU_STAT_INDEX]) |
871 masks[ALU_STAT_READ] | ALU_STAT_START;
872 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
873
874 /* wait to be finished */
875 err = ksz9477_wait_alu_sta_ready(dev);
876 if (err) {
877 dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
878 goto exit;
879 }
880
881 /* read ALU static table */
882 ksz9477_read_table(dev, static_table);
883
884 if (static_table[0] & ALU_V_STATIC_VALID) {
885 /* check this has same vid & mac address */
886 if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
887 ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
888 static_table[3] == mac_lo) {
889 /* found matching one */
890 break;
891 }
892 } else {
893 /* found empty one */
894 break;
895 }
896 }
897
898 /* no available entry */
899 if (index == dev->info->num_statics) {
900 err = -ENOSPC;
901 goto exit;
902 }
903
904 /* add entry */
905 static_table[0] = ALU_V_STATIC_VALID;
906 static_table[1] |= BIT(port);
907 if (mdb->vid)
908 static_table[1] |= ALU_V_USE_FID;
909 static_table[2] = (mdb->vid << ALU_V_FID_S);
910 static_table[2] |= mac_hi;
911 static_table[3] = mac_lo;
912
913 ksz9477_write_table(dev, static_table);
914
915 data = (index << shifts[ALU_STAT_INDEX]) | ALU_STAT_START;
916 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
917
918 /* wait to be finished */
919 if (ksz9477_wait_alu_sta_ready(dev))
920 dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
921
922exit:
923 mutex_unlock(&dev->alu_mutex);
924 return err;
925}
926
927int ksz9477_mdb_del(struct ksz_device *dev, int port,
928 const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
929{
930 u32 static_table[4];
931 const u8 *shifts;
932 const u32 *masks;
933 u32 data;
934 int index;
935 int ret = 0;
936 u32 mac_hi, mac_lo;
937
938 shifts = dev->info->shifts;
939 masks = dev->info->masks;
940
941 mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
942 mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
943 mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
944
945 mutex_lock(&dev->alu_mutex);
946
947 for (index = 0; index < dev->info->num_statics; index++) {
948 /* find empty slot first */
949 data = (index << shifts[ALU_STAT_INDEX]) |
950 masks[ALU_STAT_READ] | ALU_STAT_START;
951 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
952
953 /* wait to be finished */
954 ret = ksz9477_wait_alu_sta_ready(dev);
955 if (ret) {
956 dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
957 goto exit;
958 }
959
960 /* read ALU static table */
961 ksz9477_read_table(dev, static_table);
962
963 if (static_table[0] & ALU_V_STATIC_VALID) {
964 /* check this has same vid & mac address */
965
966 if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
967 ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
968 static_table[3] == mac_lo) {
969 /* found matching one */
970 break;
971 }
972 }
973 }
974
975 /* no available entry */
976 if (index == dev->info->num_statics)
977 goto exit;
978
979 /* clear port */
980 static_table[1] &= ~BIT(port);
981
982 if ((static_table[1] & ALU_V_PORT_MAP) == 0) {
983 /* delete entry */
984 static_table[0] = 0;
985 static_table[1] = 0;
986 static_table[2] = 0;
987 static_table[3] = 0;
988 }
989
990 ksz9477_write_table(dev, static_table);
991
992 data = (index << shifts[ALU_STAT_INDEX]) | ALU_STAT_START;
993 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
994
995 /* wait to be finished */
996 ret = ksz9477_wait_alu_sta_ready(dev);
997 if (ret)
998 dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
999
1000exit:
1001 mutex_unlock(&dev->alu_mutex);
1002
1003 return ret;
1004}
1005
1006int ksz9477_port_mirror_add(struct ksz_device *dev, int port,
1007 struct dsa_mall_mirror_tc_entry *mirror,
1008 bool ingress, struct netlink_ext_ack *extack)
1009{
1010 u8 data;
1011 int p;
1012
1013 /* Limit to one sniffer port
1014 * Check if any of the port is already set for sniffing
1015 * If yes, instruct the user to remove the previous entry & exit
1016 */
1017 for (p = 0; p < dev->info->port_cnt; p++) {
1018 /* Skip the current sniffing port */
1019 if (p == mirror->to_local_port)
1020 continue;
1021
1022 ksz_pread8(dev, p, P_MIRROR_CTRL, &data);
1023
1024 if (data & PORT_MIRROR_SNIFFER) {
1025 NL_SET_ERR_MSG_MOD(extack,
1026 "Sniffer port is already configured, delete existing rules & retry");
1027 return -EBUSY;
1028 }
1029 }
1030
1031 if (ingress)
1032 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
1033 else
1034 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
1035
1036 /* configure mirror port */
1037 ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1038 PORT_MIRROR_SNIFFER, true);
1039
1040 ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
1041
1042 return 0;
1043}
1044
1045void ksz9477_port_mirror_del(struct ksz_device *dev, int port,
1046 struct dsa_mall_mirror_tc_entry *mirror)
1047{
1048 bool in_use = false;
1049 u8 data;
1050 int p;
1051
1052 if (mirror->ingress)
1053 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
1054 else
1055 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
1056
1057
1058 /* Check if any of the port is still referring to sniffer port */
1059 for (p = 0; p < dev->info->port_cnt; p++) {
1060 ksz_pread8(dev, p, P_MIRROR_CTRL, &data);
1061
1062 if ((data & (PORT_MIRROR_RX | PORT_MIRROR_TX))) {
1063 in_use = true;
1064 break;
1065 }
1066 }
1067
1068 /* delete sniffing if there are no other mirroring rules */
1069 if (!in_use)
1070 ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1071 PORT_MIRROR_SNIFFER, false);
1072}
1073
1074static phy_interface_t ksz9477_get_interface(struct ksz_device *dev, int port)
1075{
1076 phy_interface_t interface;
1077 bool gbit;
1078
1079 if (dev->info->internal_phy[port])
1080 return PHY_INTERFACE_MODE_NA;
1081
1082 gbit = ksz_get_gbit(dev, port);
1083
1084 interface = ksz_get_xmii(dev, port, gbit);
1085
1086 return interface;
1087}
1088
1089void ksz9477_get_caps(struct ksz_device *dev, int port,
1090 struct phylink_config *config)
1091{
1092 config->mac_capabilities = MAC_10 | MAC_100 | MAC_ASYM_PAUSE |
1093 MAC_SYM_PAUSE;
1094
1095 if (dev->info->gbit_capable[port])
1096 config->mac_capabilities |= MAC_1000FD;
1097}
1098
1099int ksz9477_set_ageing_time(struct ksz_device *dev, unsigned int msecs)
1100{
1101 u32 secs = msecs / 1000;
1102 u8 value;
1103 u8 data;
1104 int ret;
1105
1106 value = FIELD_GET(SW_AGE_PERIOD_7_0_M, secs);
1107
1108 ret = ksz_write8(dev, REG_SW_LUE_CTRL_3, value);
1109 if (ret < 0)
1110 return ret;
1111
1112 data = FIELD_GET(SW_AGE_PERIOD_10_8_M, secs);
1113
1114 ret = ksz_read8(dev, REG_SW_LUE_CTRL_0, &value);
1115 if (ret < 0)
1116 return ret;
1117
1118 value &= ~SW_AGE_CNT_M;
1119 value |= FIELD_PREP(SW_AGE_CNT_M, data);
1120
1121 return ksz_write8(dev, REG_SW_LUE_CTRL_0, value);
1122}
1123
1124void ksz9477_port_queue_split(struct ksz_device *dev, int port)
1125{
1126 u8 data;
1127
1128 if (dev->info->num_tx_queues == 8)
1129 data = PORT_EIGHT_QUEUE;
1130 else if (dev->info->num_tx_queues == 4)
1131 data = PORT_FOUR_QUEUE;
1132 else if (dev->info->num_tx_queues == 2)
1133 data = PORT_TWO_QUEUE;
1134 else
1135 data = PORT_SINGLE_QUEUE;
1136
1137 ksz_prmw8(dev, port, REG_PORT_CTRL_0, PORT_QUEUE_SPLIT_MASK, data);
1138}
1139
1140void ksz9477_port_setup(struct ksz_device *dev, int port, bool cpu_port)
1141{
1142 struct dsa_switch *ds = dev->ds;
1143 u16 data16;
1144 u8 member;
1145
1146 /* enable tag tail for host port */
1147 if (cpu_port)
1148 ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_TAIL_TAG_ENABLE,
1149 true);
1150
1151 ksz9477_port_queue_split(dev, port);
1152
1153 ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, false);
1154
1155 /* set back pressure */
1156 ksz_port_cfg(dev, port, REG_PORT_MAC_CTRL_1, PORT_BACK_PRESSURE, true);
1157
1158 /* enable broadcast storm limit */
1159 ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
1160
1161 /* disable DiffServ priority */
1162 ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_PRIO_ENABLE, false);
1163
1164 /* replace priority */
1165 ksz_port_cfg(dev, port, REG_PORT_MRI_MAC_CTRL, PORT_USER_PRIO_CEILING,
1166 false);
1167 ksz9477_port_cfg32(dev, port, REG_PORT_MTI_QUEUE_CTRL_0__4,
1168 MTI_PVID_REPLACE, false);
1169
1170 /* enable 802.1p priority */
1171 ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_PRIO_ENABLE, true);
1172
1173 /* force flow control for non-PHY ports only */
1174 ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
1175 PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
1176 !dev->info->internal_phy[port]);
1177
1178 if (cpu_port)
1179 member = dsa_user_ports(ds);
1180 else
1181 member = BIT(dsa_upstream_port(ds, port));
1182
1183 ksz9477_cfg_port_member(dev, port, member);
1184
1185 /* clear pending interrupts */
1186 if (dev->info->internal_phy[port])
1187 ksz_pread16(dev, port, REG_PORT_PHY_INT_ENABLE, &data16);
1188
1189 ksz9477_port_acl_init(dev, port);
1190
1191 /* clear pending wake flags */
1192 ksz9477_handle_wake_reason(dev, port);
1193
1194 /* Disable all WoL options by default. Otherwise
1195 * ksz_switch_macaddr_get/put logic will not work properly.
1196 */
1197 ksz_pwrite8(dev, port, REG_PORT_PME_CTRL, 0);
1198}
1199
1200void ksz9477_config_cpu_port(struct dsa_switch *ds)
1201{
1202 struct ksz_device *dev = ds->priv;
1203 struct ksz_port *p;
1204 int i;
1205
1206 for (i = 0; i < dev->info->port_cnt; i++) {
1207 if (dsa_is_cpu_port(ds, i) &&
1208 (dev->info->cpu_ports & (1 << i))) {
1209 phy_interface_t interface;
1210 const char *prev_msg;
1211 const char *prev_mode;
1212
1213 dev->cpu_port = i;
1214 p = &dev->ports[i];
1215
1216 /* Read from XMII register to determine host port
1217 * interface. If set specifically in device tree
1218 * note the difference to help debugging.
1219 */
1220 interface = ksz9477_get_interface(dev, i);
1221 if (!p->interface) {
1222 if (dev->compat_interface) {
1223 dev_warn(dev->dev,
1224 "Using legacy switch \"phy-mode\" property, because it is missing on port %d node. "
1225 "Please update your device tree.\n",
1226 i);
1227 p->interface = dev->compat_interface;
1228 } else {
1229 p->interface = interface;
1230 }
1231 }
1232 if (interface && interface != p->interface) {
1233 prev_msg = " instead of ";
1234 prev_mode = phy_modes(interface);
1235 } else {
1236 prev_msg = "";
1237 prev_mode = "";
1238 }
1239 dev_info(dev->dev,
1240 "Port%d: using phy mode %s%s%s\n",
1241 i,
1242 phy_modes(p->interface),
1243 prev_msg,
1244 prev_mode);
1245
1246 /* enable cpu port */
1247 ksz9477_port_setup(dev, i, true);
1248 }
1249 }
1250
1251 for (i = 0; i < dev->info->port_cnt; i++) {
1252 if (i == dev->cpu_port)
1253 continue;
1254 ksz_port_stp_state_set(ds, i, BR_STATE_DISABLED);
1255 }
1256}
1257
1258int ksz9477_enable_stp_addr(struct ksz_device *dev)
1259{
1260 const u32 *masks;
1261 u32 data;
1262 int ret;
1263
1264 masks = dev->info->masks;
1265
1266 /* Enable Reserved multicast table */
1267 ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_RESV_MCAST_ENABLE, true);
1268
1269 /* Set the Override bit for forwarding BPDU packet to CPU */
1270 ret = ksz_write32(dev, REG_SW_ALU_VAL_B,
1271 ALU_V_OVERRIDE | BIT(dev->cpu_port));
1272 if (ret < 0)
1273 return ret;
1274
1275 data = ALU_STAT_START | ALU_RESV_MCAST_ADDR | masks[ALU_STAT_WRITE];
1276
1277 ret = ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
1278 if (ret < 0)
1279 return ret;
1280
1281 /* wait to be finished */
1282 ret = ksz9477_wait_alu_sta_ready(dev);
1283 if (ret < 0) {
1284 dev_err(dev->dev, "Failed to update Reserved Multicast table\n");
1285 return ret;
1286 }
1287
1288 return 0;
1289}
1290
1291int ksz9477_setup(struct dsa_switch *ds)
1292{
1293 struct ksz_device *dev = ds->priv;
1294 int ret = 0;
1295
1296 ds->mtu_enforcement_ingress = true;
1297
1298 /* Required for port partitioning. */
1299 ksz9477_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY,
1300 true);
1301
1302 /* Do not work correctly with tail tagging. */
1303 ksz_cfg(dev, REG_SW_MAC_CTRL_0, SW_CHECK_LENGTH, false);
1304
1305 /* Enable REG_SW_MTU__2 reg by setting SW_JUMBO_PACKET */
1306 ksz_cfg(dev, REG_SW_MAC_CTRL_1, SW_JUMBO_PACKET, true);
1307
1308 /* Now we can configure default MTU value */
1309 ret = regmap_update_bits(ksz_regmap_16(dev), REG_SW_MTU__2, REG_SW_MTU_MASK,
1310 VLAN_ETH_FRAME_LEN + ETH_FCS_LEN);
1311 if (ret)
1312 return ret;
1313
1314 /* queue based egress rate limit */
1315 ksz_cfg(dev, REG_SW_MAC_CTRL_5, SW_OUT_RATE_LIMIT_QUEUE_BASED, true);
1316
1317 /* enable global MIB counter freeze function */
1318 ksz_cfg(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FREEZE, true);
1319
1320 /* Make sure PME (WoL) is not enabled. If requested, it will be
1321 * enabled by ksz9477_wol_pre_shutdown(). Otherwise, some PMICs do not
1322 * like PME events changes before shutdown.
1323 */
1324 ksz_write8(dev, REG_SW_PME_CTRL, 0);
1325
1326 return 0;
1327}
1328
1329u32 ksz9477_get_port_addr(int port, int offset)
1330{
1331 return PORT_CTRL_ADDR(port, offset);
1332}
1333
1334int ksz9477_tc_cbs_set_cinc(struct ksz_device *dev, int port, u32 val)
1335{
1336 val = val >> 8;
1337
1338 return ksz_pwrite16(dev, port, REG_PORT_MTI_CREDIT_INCREMENT, val);
1339}
1340
1341/* The KSZ9477 provides following HW features to accelerate
1342 * HSR frames handling:
1343 *
1344 * 1. TX PACKET DUPLICATION FROM HOST TO SWITCH
1345 * 2. RX PACKET DUPLICATION DISCARDING
1346 * 3. PREVENTING PACKET LOOP IN THE RING BY SELF-ADDRESS FILTERING
1347 *
1348 * Only one from point 1. has the NETIF_F* flag available.
1349 *
1350 * Ones from point 2 and 3 are "best effort" - i.e. those will
1351 * work correctly most of the time, but it may happen that some
1352 * frames will not be caught - to be more specific; there is a race
1353 * condition in hardware such that, when duplicate packets are received
1354 * on member ports very close in time to each other, the hardware fails
1355 * to detect that they are duplicates.
1356 *
1357 * Hence, the SW needs to handle those special cases. However, the speed
1358 * up gain is considerable when above features are used.
1359 *
1360 * Moreover, the NETIF_F_HW_HSR_FWD feature is also enabled, as HSR frames
1361 * can be forwarded in the switch fabric between HSR ports.
1362 */
1363#define KSZ9477_SUPPORTED_HSR_FEATURES (NETIF_F_HW_HSR_DUP | NETIF_F_HW_HSR_FWD)
1364
1365void ksz9477_hsr_join(struct dsa_switch *ds, int port, struct net_device *hsr)
1366{
1367 struct ksz_device *dev = ds->priv;
1368 struct net_device *user;
1369 struct dsa_port *hsr_dp;
1370 u8 data, hsr_ports = 0;
1371
1372 /* Program which port(s) shall support HSR */
1373 ksz_rmw32(dev, REG_HSR_PORT_MAP__4, BIT(port), BIT(port));
1374
1375 /* Forward frames between HSR ports (i.e. bridge together HSR ports) */
1376 if (dev->hsr_ports) {
1377 dsa_hsr_foreach_port(hsr_dp, ds, hsr)
1378 hsr_ports |= BIT(hsr_dp->index);
1379
1380 hsr_ports |= BIT(dsa_upstream_port(ds, port));
1381 dsa_hsr_foreach_port(hsr_dp, ds, hsr)
1382 ksz9477_cfg_port_member(dev, hsr_dp->index, hsr_ports);
1383 }
1384
1385 if (!dev->hsr_ports) {
1386 /* Enable discarding of received HSR frames */
1387 ksz_read8(dev, REG_HSR_ALU_CTRL_0__1, &data);
1388 data |= HSR_DUPLICATE_DISCARD;
1389 data &= ~HSR_NODE_UNICAST;
1390 ksz_write8(dev, REG_HSR_ALU_CTRL_0__1, data);
1391 }
1392
1393 /* Enable per port self-address filtering.
1394 * The global self-address filtering has already been enabled in the
1395 * ksz9477_reset_switch() function.
1396 */
1397 ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL, PORT_SRC_ADDR_FILTER, true);
1398
1399 /* Setup HW supported features for lan HSR ports */
1400 user = dsa_to_port(ds, port)->user;
1401 user->features |= KSZ9477_SUPPORTED_HSR_FEATURES;
1402}
1403
1404void ksz9477_hsr_leave(struct dsa_switch *ds, int port, struct net_device *hsr)
1405{
1406 struct ksz_device *dev = ds->priv;
1407
1408 /* Clear port HSR support */
1409 ksz_rmw32(dev, REG_HSR_PORT_MAP__4, BIT(port), 0);
1410
1411 /* Disable forwarding frames between HSR ports */
1412 ksz9477_cfg_port_member(dev, port, BIT(dsa_upstream_port(ds, port)));
1413
1414 /* Disable per port self-address filtering */
1415 ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL, PORT_SRC_ADDR_FILTER, false);
1416}
1417
1418int ksz9477_switch_init(struct ksz_device *dev)
1419{
1420 u8 data8;
1421 int ret;
1422
1423 dev->port_mask = (1 << dev->info->port_cnt) - 1;
1424
1425 /* turn off SPI DO Edge select */
1426 ret = ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
1427 if (ret)
1428 return ret;
1429
1430 data8 &= ~SPI_AUTO_EDGE_DETECTION;
1431 ret = ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
1432 if (ret)
1433 return ret;
1434
1435 return 0;
1436}
1437
1438void ksz9477_switch_exit(struct ksz_device *dev)
1439{
1440 ksz9477_reset_switch(dev);
1441}
1442
1443MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
1444MODULE_DESCRIPTION("Microchip KSZ9477 Series Switch DSA Driver");
1445MODULE_LICENSE("GPL");
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Microchip KSZ9477 switch driver main logic
4 *
5 * Copyright (C) 2017-2019 Microchip Technology Inc.
6 */
7
8#include <linux/kernel.h>
9#include <linux/module.h>
10#include <linux/iopoll.h>
11#include <linux/platform_data/microchip-ksz.h>
12#include <linux/phy.h>
13#include <linux/if_bridge.h>
14#include <net/dsa.h>
15#include <net/switchdev.h>
16
17#include "ksz9477_reg.h"
18#include "ksz_common.h"
19
20/* Used with variable features to indicate capabilities. */
21#define GBIT_SUPPORT BIT(0)
22#define NEW_XMII BIT(1)
23#define IS_9893 BIT(2)
24
25static const struct {
26 int index;
27 char string[ETH_GSTRING_LEN];
28} ksz9477_mib_names[TOTAL_SWITCH_COUNTER_NUM] = {
29 { 0x00, "rx_hi" },
30 { 0x01, "rx_undersize" },
31 { 0x02, "rx_fragments" },
32 { 0x03, "rx_oversize" },
33 { 0x04, "rx_jabbers" },
34 { 0x05, "rx_symbol_err" },
35 { 0x06, "rx_crc_err" },
36 { 0x07, "rx_align_err" },
37 { 0x08, "rx_mac_ctrl" },
38 { 0x09, "rx_pause" },
39 { 0x0A, "rx_bcast" },
40 { 0x0B, "rx_mcast" },
41 { 0x0C, "rx_ucast" },
42 { 0x0D, "rx_64_or_less" },
43 { 0x0E, "rx_65_127" },
44 { 0x0F, "rx_128_255" },
45 { 0x10, "rx_256_511" },
46 { 0x11, "rx_512_1023" },
47 { 0x12, "rx_1024_1522" },
48 { 0x13, "rx_1523_2000" },
49 { 0x14, "rx_2001" },
50 { 0x15, "tx_hi" },
51 { 0x16, "tx_late_col" },
52 { 0x17, "tx_pause" },
53 { 0x18, "tx_bcast" },
54 { 0x19, "tx_mcast" },
55 { 0x1A, "tx_ucast" },
56 { 0x1B, "tx_deferred" },
57 { 0x1C, "tx_total_col" },
58 { 0x1D, "tx_exc_col" },
59 { 0x1E, "tx_single_col" },
60 { 0x1F, "tx_mult_col" },
61 { 0x80, "rx_total" },
62 { 0x81, "tx_total" },
63 { 0x82, "rx_discards" },
64 { 0x83, "tx_discards" },
65};
66
67static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
68{
69 regmap_update_bits(dev->regmap[0], addr, bits, set ? bits : 0);
70}
71
72static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
73 bool set)
74{
75 regmap_update_bits(dev->regmap[0], PORT_CTRL_ADDR(port, offset),
76 bits, set ? bits : 0);
77}
78
79static void ksz9477_cfg32(struct ksz_device *dev, u32 addr, u32 bits, bool set)
80{
81 regmap_update_bits(dev->regmap[2], addr, bits, set ? bits : 0);
82}
83
84static void ksz9477_port_cfg32(struct ksz_device *dev, int port, int offset,
85 u32 bits, bool set)
86{
87 regmap_update_bits(dev->regmap[2], PORT_CTRL_ADDR(port, offset),
88 bits, set ? bits : 0);
89}
90
91static int ksz9477_wait_vlan_ctrl_ready(struct ksz_device *dev)
92{
93 unsigned int val;
94
95 return regmap_read_poll_timeout(dev->regmap[0], REG_SW_VLAN_CTRL,
96 val, !(val & VLAN_START), 10, 1000);
97}
98
99static int ksz9477_get_vlan_table(struct ksz_device *dev, u16 vid,
100 u32 *vlan_table)
101{
102 int ret;
103
104 mutex_lock(&dev->vlan_mutex);
105
106 ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
107 ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_READ | VLAN_START);
108
109 /* wait to be cleared */
110 ret = ksz9477_wait_vlan_ctrl_ready(dev);
111 if (ret) {
112 dev_dbg(dev->dev, "Failed to read vlan table\n");
113 goto exit;
114 }
115
116 ksz_read32(dev, REG_SW_VLAN_ENTRY__4, &vlan_table[0]);
117 ksz_read32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, &vlan_table[1]);
118 ksz_read32(dev, REG_SW_VLAN_ENTRY_PORTS__4, &vlan_table[2]);
119
120 ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
121
122exit:
123 mutex_unlock(&dev->vlan_mutex);
124
125 return ret;
126}
127
128static int ksz9477_set_vlan_table(struct ksz_device *dev, u16 vid,
129 u32 *vlan_table)
130{
131 int ret;
132
133 mutex_lock(&dev->vlan_mutex);
134
135 ksz_write32(dev, REG_SW_VLAN_ENTRY__4, vlan_table[0]);
136 ksz_write32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, vlan_table[1]);
137 ksz_write32(dev, REG_SW_VLAN_ENTRY_PORTS__4, vlan_table[2]);
138
139 ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
140 ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_START | VLAN_WRITE);
141
142 /* wait to be cleared */
143 ret = ksz9477_wait_vlan_ctrl_ready(dev);
144 if (ret) {
145 dev_dbg(dev->dev, "Failed to write vlan table\n");
146 goto exit;
147 }
148
149 ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
150
151 /* update vlan cache table */
152 dev->vlan_cache[vid].table[0] = vlan_table[0];
153 dev->vlan_cache[vid].table[1] = vlan_table[1];
154 dev->vlan_cache[vid].table[2] = vlan_table[2];
155
156exit:
157 mutex_unlock(&dev->vlan_mutex);
158
159 return ret;
160}
161
162static void ksz9477_read_table(struct ksz_device *dev, u32 *table)
163{
164 ksz_read32(dev, REG_SW_ALU_VAL_A, &table[0]);
165 ksz_read32(dev, REG_SW_ALU_VAL_B, &table[1]);
166 ksz_read32(dev, REG_SW_ALU_VAL_C, &table[2]);
167 ksz_read32(dev, REG_SW_ALU_VAL_D, &table[3]);
168}
169
170static void ksz9477_write_table(struct ksz_device *dev, u32 *table)
171{
172 ksz_write32(dev, REG_SW_ALU_VAL_A, table[0]);
173 ksz_write32(dev, REG_SW_ALU_VAL_B, table[1]);
174 ksz_write32(dev, REG_SW_ALU_VAL_C, table[2]);
175 ksz_write32(dev, REG_SW_ALU_VAL_D, table[3]);
176}
177
178static int ksz9477_wait_alu_ready(struct ksz_device *dev)
179{
180 unsigned int val;
181
182 return regmap_read_poll_timeout(dev->regmap[2], REG_SW_ALU_CTRL__4,
183 val, !(val & ALU_START), 10, 1000);
184}
185
186static int ksz9477_wait_alu_sta_ready(struct ksz_device *dev)
187{
188 unsigned int val;
189
190 return regmap_read_poll_timeout(dev->regmap[2],
191 REG_SW_ALU_STAT_CTRL__4,
192 val, !(val & ALU_STAT_START),
193 10, 1000);
194}
195
196static int ksz9477_reset_switch(struct ksz_device *dev)
197{
198 u8 data8;
199 u32 data32;
200
201 /* reset switch */
202 ksz_cfg(dev, REG_SW_OPERATION, SW_RESET, true);
203
204 /* turn off SPI DO Edge select */
205 regmap_update_bits(dev->regmap[0], REG_SW_GLOBAL_SERIAL_CTRL_0,
206 SPI_AUTO_EDGE_DETECTION, 0);
207
208 /* default configuration */
209 ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8);
210 data8 = SW_AGING_ENABLE | SW_LINK_AUTO_AGING |
211 SW_SRC_ADDR_FILTER | SW_FLUSH_STP_TABLE | SW_FLUSH_MSTP_TABLE;
212 ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
213
214 /* disable interrupts */
215 ksz_write32(dev, REG_SW_INT_MASK__4, SWITCH_INT_MASK);
216 ksz_write32(dev, REG_SW_PORT_INT_MASK__4, 0x7F);
217 ksz_read32(dev, REG_SW_PORT_INT_STATUS__4, &data32);
218
219 /* set broadcast storm protection 10% rate */
220 regmap_update_bits(dev->regmap[1], REG_SW_MAC_CTRL_2,
221 BROADCAST_STORM_RATE,
222 (BROADCAST_STORM_VALUE *
223 BROADCAST_STORM_PROT_RATE) / 100);
224
225 if (dev->synclko_125)
226 ksz_write8(dev, REG_SW_GLOBAL_OUTPUT_CTRL__1,
227 SW_ENABLE_REFCLKO | SW_REFCLKO_IS_125MHZ);
228
229 return 0;
230}
231
232static void ksz9477_r_mib_cnt(struct ksz_device *dev, int port, u16 addr,
233 u64 *cnt)
234{
235 struct ksz_port *p = &dev->ports[port];
236 unsigned int val;
237 u32 data;
238 int ret;
239
240 /* retain the flush/freeze bit */
241 data = p->freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
242 data |= MIB_COUNTER_READ;
243 data |= (addr << MIB_COUNTER_INDEX_S);
244 ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, data);
245
246 ret = regmap_read_poll_timeout(dev->regmap[2],
247 PORT_CTRL_ADDR(port, REG_PORT_MIB_CTRL_STAT__4),
248 val, !(val & MIB_COUNTER_READ), 10, 1000);
249 /* failed to read MIB. get out of loop */
250 if (ret) {
251 dev_dbg(dev->dev, "Failed to get MIB\n");
252 return;
253 }
254
255 /* count resets upon read */
256 ksz_pread32(dev, port, REG_PORT_MIB_DATA, &data);
257 *cnt += data;
258}
259
260static void ksz9477_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
261 u64 *dropped, u64 *cnt)
262{
263 addr = ksz9477_mib_names[addr].index;
264 ksz9477_r_mib_cnt(dev, port, addr, cnt);
265}
266
267static void ksz9477_freeze_mib(struct ksz_device *dev, int port, bool freeze)
268{
269 u32 val = freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
270 struct ksz_port *p = &dev->ports[port];
271
272 /* enable/disable the port for flush/freeze function */
273 mutex_lock(&p->mib.cnt_mutex);
274 ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, val);
275
276 /* used by MIB counter reading code to know freeze is enabled */
277 p->freeze = freeze;
278 mutex_unlock(&p->mib.cnt_mutex);
279}
280
281static void ksz9477_port_init_cnt(struct ksz_device *dev, int port)
282{
283 struct ksz_port_mib *mib = &dev->ports[port].mib;
284
285 /* flush all enabled port MIB counters */
286 mutex_lock(&mib->cnt_mutex);
287 ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4,
288 MIB_COUNTER_FLUSH_FREEZE);
289 ksz_write8(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FLUSH);
290 ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, 0);
291 mutex_unlock(&mib->cnt_mutex);
292
293 mib->cnt_ptr = 0;
294 memset(mib->counters, 0, dev->mib_cnt * sizeof(u64));
295}
296
297static enum dsa_tag_protocol ksz9477_get_tag_protocol(struct dsa_switch *ds,
298 int port)
299{
300 enum dsa_tag_protocol proto = DSA_TAG_PROTO_KSZ9477;
301 struct ksz_device *dev = ds->priv;
302
303 if (dev->features & IS_9893)
304 proto = DSA_TAG_PROTO_KSZ9893;
305 return proto;
306}
307
308static int ksz9477_phy_read16(struct dsa_switch *ds, int addr, int reg)
309{
310 struct ksz_device *dev = ds->priv;
311 u16 val = 0xffff;
312
313 /* No real PHY after this. Simulate the PHY.
314 * A fixed PHY can be setup in the device tree, but this function is
315 * still called for that port during initialization.
316 * For RGMII PHY there is no way to access it so the fixed PHY should
317 * be used. For SGMII PHY the supporting code will be added later.
318 */
319 if (addr >= dev->phy_port_cnt) {
320 struct ksz_port *p = &dev->ports[addr];
321
322 switch (reg) {
323 case MII_BMCR:
324 val = 0x1140;
325 break;
326 case MII_BMSR:
327 val = 0x796d;
328 break;
329 case MII_PHYSID1:
330 val = 0x0022;
331 break;
332 case MII_PHYSID2:
333 val = 0x1631;
334 break;
335 case MII_ADVERTISE:
336 val = 0x05e1;
337 break;
338 case MII_LPA:
339 val = 0xc5e1;
340 break;
341 case MII_CTRL1000:
342 val = 0x0700;
343 break;
344 case MII_STAT1000:
345 if (p->phydev.speed == SPEED_1000)
346 val = 0x3800;
347 else
348 val = 0;
349 break;
350 }
351 } else {
352 ksz_pread16(dev, addr, 0x100 + (reg << 1), &val);
353 }
354
355 return val;
356}
357
358static int ksz9477_phy_write16(struct dsa_switch *ds, int addr, int reg,
359 u16 val)
360{
361 struct ksz_device *dev = ds->priv;
362
363 /* No real PHY after this. */
364 if (addr >= dev->phy_port_cnt)
365 return 0;
366
367 /* No gigabit support. Do not write to this register. */
368 if (!(dev->features & GBIT_SUPPORT) && reg == MII_CTRL1000)
369 return 0;
370 ksz_pwrite16(dev, addr, 0x100 + (reg << 1), val);
371
372 return 0;
373}
374
375static void ksz9477_get_strings(struct dsa_switch *ds, int port,
376 u32 stringset, uint8_t *buf)
377{
378 int i;
379
380 if (stringset != ETH_SS_STATS)
381 return;
382
383 for (i = 0; i < TOTAL_SWITCH_COUNTER_NUM; i++) {
384 memcpy(buf + i * ETH_GSTRING_LEN, ksz9477_mib_names[i].string,
385 ETH_GSTRING_LEN);
386 }
387}
388
389static void ksz9477_cfg_port_member(struct ksz_device *dev, int port,
390 u8 member)
391{
392 ksz_pwrite32(dev, port, REG_PORT_VLAN_MEMBERSHIP__4, member);
393 dev->ports[port].member = member;
394}
395
396static void ksz9477_port_stp_state_set(struct dsa_switch *ds, int port,
397 u8 state)
398{
399 struct ksz_device *dev = ds->priv;
400 struct ksz_port *p = &dev->ports[port];
401 u8 data;
402 int member = -1;
403 int forward = dev->member;
404
405 ksz_pread8(dev, port, P_STP_CTRL, &data);
406 data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE);
407
408 switch (state) {
409 case BR_STATE_DISABLED:
410 data |= PORT_LEARN_DISABLE;
411 if (port != dev->cpu_port)
412 member = 0;
413 break;
414 case BR_STATE_LISTENING:
415 data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE);
416 if (port != dev->cpu_port &&
417 p->stp_state == BR_STATE_DISABLED)
418 member = dev->host_mask | p->vid_member;
419 break;
420 case BR_STATE_LEARNING:
421 data |= PORT_RX_ENABLE;
422 break;
423 case BR_STATE_FORWARDING:
424 data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
425
426 /* This function is also used internally. */
427 if (port == dev->cpu_port)
428 break;
429
430 member = dev->host_mask | p->vid_member;
431 mutex_lock(&dev->dev_mutex);
432
433 /* Port is a member of a bridge. */
434 if (dev->br_member & (1 << port)) {
435 dev->member |= (1 << port);
436 member = dev->member;
437 }
438 mutex_unlock(&dev->dev_mutex);
439 break;
440 case BR_STATE_BLOCKING:
441 data |= PORT_LEARN_DISABLE;
442 if (port != dev->cpu_port &&
443 p->stp_state == BR_STATE_DISABLED)
444 member = dev->host_mask | p->vid_member;
445 break;
446 default:
447 dev_err(ds->dev, "invalid STP state: %d\n", state);
448 return;
449 }
450
451 ksz_pwrite8(dev, port, P_STP_CTRL, data);
452 p->stp_state = state;
453 mutex_lock(&dev->dev_mutex);
454 if (data & PORT_RX_ENABLE)
455 dev->rx_ports |= (1 << port);
456 else
457 dev->rx_ports &= ~(1 << port);
458 if (data & PORT_TX_ENABLE)
459 dev->tx_ports |= (1 << port);
460 else
461 dev->tx_ports &= ~(1 << port);
462
463 /* Port membership may share register with STP state. */
464 if (member >= 0 && member != p->member)
465 ksz9477_cfg_port_member(dev, port, (u8)member);
466
467 /* Check if forwarding needs to be updated. */
468 if (state != BR_STATE_FORWARDING) {
469 if (dev->br_member & (1 << port))
470 dev->member &= ~(1 << port);
471 }
472
473 /* When topology has changed the function ksz_update_port_member
474 * should be called to modify port forwarding behavior.
475 */
476 if (forward != dev->member)
477 ksz_update_port_member(dev, port);
478 mutex_unlock(&dev->dev_mutex);
479}
480
481static void ksz9477_flush_dyn_mac_table(struct ksz_device *dev, int port)
482{
483 u8 data;
484
485 regmap_update_bits(dev->regmap[0], REG_SW_LUE_CTRL_2,
486 SW_FLUSH_OPTION_M << SW_FLUSH_OPTION_S,
487 SW_FLUSH_OPTION_DYN_MAC << SW_FLUSH_OPTION_S);
488
489 if (port < dev->mib_port_cnt) {
490 /* flush individual port */
491 ksz_pread8(dev, port, P_STP_CTRL, &data);
492 if (!(data & PORT_LEARN_DISABLE))
493 ksz_pwrite8(dev, port, P_STP_CTRL,
494 data | PORT_LEARN_DISABLE);
495 ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true);
496 ksz_pwrite8(dev, port, P_STP_CTRL, data);
497 } else {
498 /* flush all */
499 ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_STP_TABLE, true);
500 }
501}
502
503static int ksz9477_port_vlan_filtering(struct dsa_switch *ds, int port,
504 bool flag)
505{
506 struct ksz_device *dev = ds->priv;
507
508 if (flag) {
509 ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
510 PORT_VLAN_LOOKUP_VID_0, true);
511 ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, true);
512 } else {
513 ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, false);
514 ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
515 PORT_VLAN_LOOKUP_VID_0, false);
516 }
517
518 return 0;
519}
520
521static void ksz9477_port_vlan_add(struct dsa_switch *ds, int port,
522 const struct switchdev_obj_port_vlan *vlan)
523{
524 struct ksz_device *dev = ds->priv;
525 u32 vlan_table[3];
526 u16 vid;
527 bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
528
529 for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
530 if (ksz9477_get_vlan_table(dev, vid, vlan_table)) {
531 dev_dbg(dev->dev, "Failed to get vlan table\n");
532 return;
533 }
534
535 vlan_table[0] = VLAN_VALID | (vid & VLAN_FID_M);
536 if (untagged)
537 vlan_table[1] |= BIT(port);
538 else
539 vlan_table[1] &= ~BIT(port);
540 vlan_table[1] &= ~(BIT(dev->cpu_port));
541
542 vlan_table[2] |= BIT(port) | BIT(dev->cpu_port);
543
544 if (ksz9477_set_vlan_table(dev, vid, vlan_table)) {
545 dev_dbg(dev->dev, "Failed to set vlan table\n");
546 return;
547 }
548
549 /* change PVID */
550 if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
551 ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, vid);
552 }
553}
554
555static int ksz9477_port_vlan_del(struct dsa_switch *ds, int port,
556 const struct switchdev_obj_port_vlan *vlan)
557{
558 struct ksz_device *dev = ds->priv;
559 bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
560 u32 vlan_table[3];
561 u16 vid;
562 u16 pvid;
563
564 ksz_pread16(dev, port, REG_PORT_DEFAULT_VID, &pvid);
565 pvid = pvid & 0xFFF;
566
567 for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
568 if (ksz9477_get_vlan_table(dev, vid, vlan_table)) {
569 dev_dbg(dev->dev, "Failed to get vlan table\n");
570 return -ETIMEDOUT;
571 }
572
573 vlan_table[2] &= ~BIT(port);
574
575 if (pvid == vid)
576 pvid = 1;
577
578 if (untagged)
579 vlan_table[1] &= ~BIT(port);
580
581 if (ksz9477_set_vlan_table(dev, vid, vlan_table)) {
582 dev_dbg(dev->dev, "Failed to set vlan table\n");
583 return -ETIMEDOUT;
584 }
585 }
586
587 ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, pvid);
588
589 return 0;
590}
591
592static int ksz9477_port_fdb_add(struct dsa_switch *ds, int port,
593 const unsigned char *addr, u16 vid)
594{
595 struct ksz_device *dev = ds->priv;
596 u32 alu_table[4];
597 u32 data;
598 int ret = 0;
599
600 mutex_lock(&dev->alu_mutex);
601
602 /* find any entry with mac & vid */
603 data = vid << ALU_FID_INDEX_S;
604 data |= ((addr[0] << 8) | addr[1]);
605 ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
606
607 data = ((addr[2] << 24) | (addr[3] << 16));
608 data |= ((addr[4] << 8) | addr[5]);
609 ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
610
611 /* start read operation */
612 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
613
614 /* wait to be finished */
615 ret = ksz9477_wait_alu_ready(dev);
616 if (ret) {
617 dev_dbg(dev->dev, "Failed to read ALU\n");
618 goto exit;
619 }
620
621 /* read ALU entry */
622 ksz9477_read_table(dev, alu_table);
623
624 /* update ALU entry */
625 alu_table[0] = ALU_V_STATIC_VALID;
626 alu_table[1] |= BIT(port);
627 if (vid)
628 alu_table[1] |= ALU_V_USE_FID;
629 alu_table[2] = (vid << ALU_V_FID_S);
630 alu_table[2] |= ((addr[0] << 8) | addr[1]);
631 alu_table[3] = ((addr[2] << 24) | (addr[3] << 16));
632 alu_table[3] |= ((addr[4] << 8) | addr[5]);
633
634 ksz9477_write_table(dev, alu_table);
635
636 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
637
638 /* wait to be finished */
639 ret = ksz9477_wait_alu_ready(dev);
640 if (ret)
641 dev_dbg(dev->dev, "Failed to write ALU\n");
642
643exit:
644 mutex_unlock(&dev->alu_mutex);
645
646 return ret;
647}
648
649static int ksz9477_port_fdb_del(struct dsa_switch *ds, int port,
650 const unsigned char *addr, u16 vid)
651{
652 struct ksz_device *dev = ds->priv;
653 u32 alu_table[4];
654 u32 data;
655 int ret = 0;
656
657 mutex_lock(&dev->alu_mutex);
658
659 /* read any entry with mac & vid */
660 data = vid << ALU_FID_INDEX_S;
661 data |= ((addr[0] << 8) | addr[1]);
662 ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
663
664 data = ((addr[2] << 24) | (addr[3] << 16));
665 data |= ((addr[4] << 8) | addr[5]);
666 ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
667
668 /* start read operation */
669 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
670
671 /* wait to be finished */
672 ret = ksz9477_wait_alu_ready(dev);
673 if (ret) {
674 dev_dbg(dev->dev, "Failed to read ALU\n");
675 goto exit;
676 }
677
678 ksz_read32(dev, REG_SW_ALU_VAL_A, &alu_table[0]);
679 if (alu_table[0] & ALU_V_STATIC_VALID) {
680 ksz_read32(dev, REG_SW_ALU_VAL_B, &alu_table[1]);
681 ksz_read32(dev, REG_SW_ALU_VAL_C, &alu_table[2]);
682 ksz_read32(dev, REG_SW_ALU_VAL_D, &alu_table[3]);
683
684 /* clear forwarding port */
685 alu_table[2] &= ~BIT(port);
686
687 /* if there is no port to forward, clear table */
688 if ((alu_table[2] & ALU_V_PORT_MAP) == 0) {
689 alu_table[0] = 0;
690 alu_table[1] = 0;
691 alu_table[2] = 0;
692 alu_table[3] = 0;
693 }
694 } else {
695 alu_table[0] = 0;
696 alu_table[1] = 0;
697 alu_table[2] = 0;
698 alu_table[3] = 0;
699 }
700
701 ksz9477_write_table(dev, alu_table);
702
703 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
704
705 /* wait to be finished */
706 ret = ksz9477_wait_alu_ready(dev);
707 if (ret)
708 dev_dbg(dev->dev, "Failed to write ALU\n");
709
710exit:
711 mutex_unlock(&dev->alu_mutex);
712
713 return ret;
714}
715
716static void ksz9477_convert_alu(struct alu_struct *alu, u32 *alu_table)
717{
718 alu->is_static = !!(alu_table[0] & ALU_V_STATIC_VALID);
719 alu->is_src_filter = !!(alu_table[0] & ALU_V_SRC_FILTER);
720 alu->is_dst_filter = !!(alu_table[0] & ALU_V_DST_FILTER);
721 alu->prio_age = (alu_table[0] >> ALU_V_PRIO_AGE_CNT_S) &
722 ALU_V_PRIO_AGE_CNT_M;
723 alu->mstp = alu_table[0] & ALU_V_MSTP_M;
724
725 alu->is_override = !!(alu_table[1] & ALU_V_OVERRIDE);
726 alu->is_use_fid = !!(alu_table[1] & ALU_V_USE_FID);
727 alu->port_forward = alu_table[1] & ALU_V_PORT_MAP;
728
729 alu->fid = (alu_table[2] >> ALU_V_FID_S) & ALU_V_FID_M;
730
731 alu->mac[0] = (alu_table[2] >> 8) & 0xFF;
732 alu->mac[1] = alu_table[2] & 0xFF;
733 alu->mac[2] = (alu_table[3] >> 24) & 0xFF;
734 alu->mac[3] = (alu_table[3] >> 16) & 0xFF;
735 alu->mac[4] = (alu_table[3] >> 8) & 0xFF;
736 alu->mac[5] = alu_table[3] & 0xFF;
737}
738
739static int ksz9477_port_fdb_dump(struct dsa_switch *ds, int port,
740 dsa_fdb_dump_cb_t *cb, void *data)
741{
742 struct ksz_device *dev = ds->priv;
743 int ret = 0;
744 u32 ksz_data;
745 u32 alu_table[4];
746 struct alu_struct alu;
747 int timeout;
748
749 mutex_lock(&dev->alu_mutex);
750
751 /* start ALU search */
752 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_START | ALU_SEARCH);
753
754 do {
755 timeout = 1000;
756 do {
757 ksz_read32(dev, REG_SW_ALU_CTRL__4, &ksz_data);
758 if ((ksz_data & ALU_VALID) || !(ksz_data & ALU_START))
759 break;
760 usleep_range(1, 10);
761 } while (timeout-- > 0);
762
763 if (!timeout) {
764 dev_dbg(dev->dev, "Failed to search ALU\n");
765 ret = -ETIMEDOUT;
766 goto exit;
767 }
768
769 /* read ALU table */
770 ksz9477_read_table(dev, alu_table);
771
772 ksz9477_convert_alu(&alu, alu_table);
773
774 if (alu.port_forward & BIT(port)) {
775 ret = cb(alu.mac, alu.fid, alu.is_static, data);
776 if (ret)
777 goto exit;
778 }
779 } while (ksz_data & ALU_START);
780
781exit:
782
783 /* stop ALU search */
784 ksz_write32(dev, REG_SW_ALU_CTRL__4, 0);
785
786 mutex_unlock(&dev->alu_mutex);
787
788 return ret;
789}
790
791static void ksz9477_port_mdb_add(struct dsa_switch *ds, int port,
792 const struct switchdev_obj_port_mdb *mdb)
793{
794 struct ksz_device *dev = ds->priv;
795 u32 static_table[4];
796 u32 data;
797 int index;
798 u32 mac_hi, mac_lo;
799
800 mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
801 mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
802 mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
803
804 mutex_lock(&dev->alu_mutex);
805
806 for (index = 0; index < dev->num_statics; index++) {
807 /* find empty slot first */
808 data = (index << ALU_STAT_INDEX_S) |
809 ALU_STAT_READ | ALU_STAT_START;
810 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
811
812 /* wait to be finished */
813 if (ksz9477_wait_alu_sta_ready(dev)) {
814 dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
815 goto exit;
816 }
817
818 /* read ALU static table */
819 ksz9477_read_table(dev, static_table);
820
821 if (static_table[0] & ALU_V_STATIC_VALID) {
822 /* check this has same vid & mac address */
823 if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
824 ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
825 static_table[3] == mac_lo) {
826 /* found matching one */
827 break;
828 }
829 } else {
830 /* found empty one */
831 break;
832 }
833 }
834
835 /* no available entry */
836 if (index == dev->num_statics)
837 goto exit;
838
839 /* add entry */
840 static_table[0] = ALU_V_STATIC_VALID;
841 static_table[1] |= BIT(port);
842 if (mdb->vid)
843 static_table[1] |= ALU_V_USE_FID;
844 static_table[2] = (mdb->vid << ALU_V_FID_S);
845 static_table[2] |= mac_hi;
846 static_table[3] = mac_lo;
847
848 ksz9477_write_table(dev, static_table);
849
850 data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
851 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
852
853 /* wait to be finished */
854 if (ksz9477_wait_alu_sta_ready(dev))
855 dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
856
857exit:
858 mutex_unlock(&dev->alu_mutex);
859}
860
861static int ksz9477_port_mdb_del(struct dsa_switch *ds, int port,
862 const struct switchdev_obj_port_mdb *mdb)
863{
864 struct ksz_device *dev = ds->priv;
865 u32 static_table[4];
866 u32 data;
867 int index;
868 int ret = 0;
869 u32 mac_hi, mac_lo;
870
871 mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
872 mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
873 mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
874
875 mutex_lock(&dev->alu_mutex);
876
877 for (index = 0; index < dev->num_statics; index++) {
878 /* find empty slot first */
879 data = (index << ALU_STAT_INDEX_S) |
880 ALU_STAT_READ | ALU_STAT_START;
881 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
882
883 /* wait to be finished */
884 ret = ksz9477_wait_alu_sta_ready(dev);
885 if (ret) {
886 dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
887 goto exit;
888 }
889
890 /* read ALU static table */
891 ksz9477_read_table(dev, static_table);
892
893 if (static_table[0] & ALU_V_STATIC_VALID) {
894 /* check this has same vid & mac address */
895
896 if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
897 ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
898 static_table[3] == mac_lo) {
899 /* found matching one */
900 break;
901 }
902 }
903 }
904
905 /* no available entry */
906 if (index == dev->num_statics)
907 goto exit;
908
909 /* clear port */
910 static_table[1] &= ~BIT(port);
911
912 if ((static_table[1] & ALU_V_PORT_MAP) == 0) {
913 /* delete entry */
914 static_table[0] = 0;
915 static_table[1] = 0;
916 static_table[2] = 0;
917 static_table[3] = 0;
918 }
919
920 ksz9477_write_table(dev, static_table);
921
922 data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
923 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
924
925 /* wait to be finished */
926 ret = ksz9477_wait_alu_sta_ready(dev);
927 if (ret)
928 dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
929
930exit:
931 mutex_unlock(&dev->alu_mutex);
932
933 return ret;
934}
935
936static int ksz9477_port_mirror_add(struct dsa_switch *ds, int port,
937 struct dsa_mall_mirror_tc_entry *mirror,
938 bool ingress)
939{
940 struct ksz_device *dev = ds->priv;
941
942 if (ingress)
943 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
944 else
945 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
946
947 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false);
948
949 /* configure mirror port */
950 ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
951 PORT_MIRROR_SNIFFER, true);
952
953 ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
954
955 return 0;
956}
957
958static void ksz9477_port_mirror_del(struct dsa_switch *ds, int port,
959 struct dsa_mall_mirror_tc_entry *mirror)
960{
961 struct ksz_device *dev = ds->priv;
962 u8 data;
963
964 if (mirror->ingress)
965 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
966 else
967 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
968
969 ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
970
971 if (!(data & (PORT_MIRROR_RX | PORT_MIRROR_TX)))
972 ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
973 PORT_MIRROR_SNIFFER, false);
974}
975
976static void ksz9477_phy_setup(struct ksz_device *dev, int port,
977 struct phy_device *phy)
978{
979 /* Only apply to port with PHY. */
980 if (port >= dev->phy_port_cnt)
981 return;
982
983 /* The MAC actually cannot run in 1000 half-duplex mode. */
984 phy_remove_link_mode(phy,
985 ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
986
987 /* PHY does not support gigabit. */
988 if (!(dev->features & GBIT_SUPPORT))
989 phy_remove_link_mode(phy,
990 ETHTOOL_LINK_MODE_1000baseT_Full_BIT);
991}
992
993static bool ksz9477_get_gbit(struct ksz_device *dev, u8 data)
994{
995 bool gbit;
996
997 if (dev->features & NEW_XMII)
998 gbit = !(data & PORT_MII_NOT_1GBIT);
999 else
1000 gbit = !!(data & PORT_MII_1000MBIT_S1);
1001 return gbit;
1002}
1003
1004static void ksz9477_set_gbit(struct ksz_device *dev, bool gbit, u8 *data)
1005{
1006 if (dev->features & NEW_XMII) {
1007 if (gbit)
1008 *data &= ~PORT_MII_NOT_1GBIT;
1009 else
1010 *data |= PORT_MII_NOT_1GBIT;
1011 } else {
1012 if (gbit)
1013 *data |= PORT_MII_1000MBIT_S1;
1014 else
1015 *data &= ~PORT_MII_1000MBIT_S1;
1016 }
1017}
1018
1019static int ksz9477_get_xmii(struct ksz_device *dev, u8 data)
1020{
1021 int mode;
1022
1023 if (dev->features & NEW_XMII) {
1024 switch (data & PORT_MII_SEL_M) {
1025 case PORT_MII_SEL:
1026 mode = 0;
1027 break;
1028 case PORT_RMII_SEL:
1029 mode = 1;
1030 break;
1031 case PORT_GMII_SEL:
1032 mode = 2;
1033 break;
1034 default:
1035 mode = 3;
1036 }
1037 } else {
1038 switch (data & PORT_MII_SEL_M) {
1039 case PORT_MII_SEL_S1:
1040 mode = 0;
1041 break;
1042 case PORT_RMII_SEL_S1:
1043 mode = 1;
1044 break;
1045 case PORT_GMII_SEL_S1:
1046 mode = 2;
1047 break;
1048 default:
1049 mode = 3;
1050 }
1051 }
1052 return mode;
1053}
1054
1055static void ksz9477_set_xmii(struct ksz_device *dev, int mode, u8 *data)
1056{
1057 u8 xmii;
1058
1059 if (dev->features & NEW_XMII) {
1060 switch (mode) {
1061 case 0:
1062 xmii = PORT_MII_SEL;
1063 break;
1064 case 1:
1065 xmii = PORT_RMII_SEL;
1066 break;
1067 case 2:
1068 xmii = PORT_GMII_SEL;
1069 break;
1070 default:
1071 xmii = PORT_RGMII_SEL;
1072 break;
1073 }
1074 } else {
1075 switch (mode) {
1076 case 0:
1077 xmii = PORT_MII_SEL_S1;
1078 break;
1079 case 1:
1080 xmii = PORT_RMII_SEL_S1;
1081 break;
1082 case 2:
1083 xmii = PORT_GMII_SEL_S1;
1084 break;
1085 default:
1086 xmii = PORT_RGMII_SEL_S1;
1087 break;
1088 }
1089 }
1090 *data &= ~PORT_MII_SEL_M;
1091 *data |= xmii;
1092}
1093
1094static phy_interface_t ksz9477_get_interface(struct ksz_device *dev, int port)
1095{
1096 phy_interface_t interface;
1097 bool gbit;
1098 int mode;
1099 u8 data8;
1100
1101 if (port < dev->phy_port_cnt)
1102 return PHY_INTERFACE_MODE_NA;
1103 ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
1104 gbit = ksz9477_get_gbit(dev, data8);
1105 mode = ksz9477_get_xmii(dev, data8);
1106 switch (mode) {
1107 case 2:
1108 interface = PHY_INTERFACE_MODE_GMII;
1109 if (gbit)
1110 break;
1111 /* fall through */
1112 case 0:
1113 interface = PHY_INTERFACE_MODE_MII;
1114 break;
1115 case 1:
1116 interface = PHY_INTERFACE_MODE_RMII;
1117 break;
1118 default:
1119 interface = PHY_INTERFACE_MODE_RGMII;
1120 if (data8 & PORT_RGMII_ID_EG_ENABLE)
1121 interface = PHY_INTERFACE_MODE_RGMII_TXID;
1122 if (data8 & PORT_RGMII_ID_IG_ENABLE) {
1123 interface = PHY_INTERFACE_MODE_RGMII_RXID;
1124 if (data8 & PORT_RGMII_ID_EG_ENABLE)
1125 interface = PHY_INTERFACE_MODE_RGMII_ID;
1126 }
1127 break;
1128 }
1129 return interface;
1130}
1131
1132static void ksz9477_port_mmd_write(struct ksz_device *dev, int port,
1133 u8 dev_addr, u16 reg_addr, u16 val)
1134{
1135 ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP,
1136 MMD_SETUP(PORT_MMD_OP_INDEX, dev_addr));
1137 ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, reg_addr);
1138 ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP,
1139 MMD_SETUP(PORT_MMD_OP_DATA_NO_INCR, dev_addr));
1140 ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, val);
1141}
1142
1143static void ksz9477_phy_errata_setup(struct ksz_device *dev, int port)
1144{
1145 /* Apply PHY settings to address errata listed in
1146 * KSZ9477, KSZ9897, KSZ9896, KSZ9567, KSZ8565
1147 * Silicon Errata and Data Sheet Clarification documents:
1148 *
1149 * Register settings are needed to improve PHY receive performance
1150 */
1151 ksz9477_port_mmd_write(dev, port, 0x01, 0x6f, 0xdd0b);
1152 ksz9477_port_mmd_write(dev, port, 0x01, 0x8f, 0x6032);
1153 ksz9477_port_mmd_write(dev, port, 0x01, 0x9d, 0x248c);
1154 ksz9477_port_mmd_write(dev, port, 0x01, 0x75, 0x0060);
1155 ksz9477_port_mmd_write(dev, port, 0x01, 0xd3, 0x7777);
1156 ksz9477_port_mmd_write(dev, port, 0x1c, 0x06, 0x3008);
1157 ksz9477_port_mmd_write(dev, port, 0x1c, 0x08, 0x2001);
1158
1159 /* Transmit waveform amplitude can be improved
1160 * (1000BASE-T, 100BASE-TX, 10BASE-Te)
1161 */
1162 ksz9477_port_mmd_write(dev, port, 0x1c, 0x04, 0x00d0);
1163
1164 /* Energy Efficient Ethernet (EEE) feature select must
1165 * be manually disabled (except on KSZ8565 which is 100Mbit)
1166 */
1167 if (dev->features & GBIT_SUPPORT)
1168 ksz9477_port_mmd_write(dev, port, 0x07, 0x3c, 0x0000);
1169
1170 /* Register settings are required to meet data sheet
1171 * supply current specifications
1172 */
1173 ksz9477_port_mmd_write(dev, port, 0x1c, 0x13, 0x6eff);
1174 ksz9477_port_mmd_write(dev, port, 0x1c, 0x14, 0xe6ff);
1175 ksz9477_port_mmd_write(dev, port, 0x1c, 0x15, 0x6eff);
1176 ksz9477_port_mmd_write(dev, port, 0x1c, 0x16, 0xe6ff);
1177 ksz9477_port_mmd_write(dev, port, 0x1c, 0x17, 0x00ff);
1178 ksz9477_port_mmd_write(dev, port, 0x1c, 0x18, 0x43ff);
1179 ksz9477_port_mmd_write(dev, port, 0x1c, 0x19, 0xc3ff);
1180 ksz9477_port_mmd_write(dev, port, 0x1c, 0x1a, 0x6fff);
1181 ksz9477_port_mmd_write(dev, port, 0x1c, 0x1b, 0x07ff);
1182 ksz9477_port_mmd_write(dev, port, 0x1c, 0x1c, 0x0fff);
1183 ksz9477_port_mmd_write(dev, port, 0x1c, 0x1d, 0xe7ff);
1184 ksz9477_port_mmd_write(dev, port, 0x1c, 0x1e, 0xefff);
1185 ksz9477_port_mmd_write(dev, port, 0x1c, 0x20, 0xeeee);
1186}
1187
1188static void ksz9477_port_setup(struct ksz_device *dev, int port, bool cpu_port)
1189{
1190 u8 data8;
1191 u8 member;
1192 u16 data16;
1193 struct ksz_port *p = &dev->ports[port];
1194
1195 /* enable tag tail for host port */
1196 if (cpu_port)
1197 ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_TAIL_TAG_ENABLE,
1198 true);
1199
1200 ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, false);
1201
1202 /* set back pressure */
1203 ksz_port_cfg(dev, port, REG_PORT_MAC_CTRL_1, PORT_BACK_PRESSURE, true);
1204
1205 /* enable broadcast storm limit */
1206 ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
1207
1208 /* disable DiffServ priority */
1209 ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_PRIO_ENABLE, false);
1210
1211 /* replace priority */
1212 ksz_port_cfg(dev, port, REG_PORT_MRI_MAC_CTRL, PORT_USER_PRIO_CEILING,
1213 false);
1214 ksz9477_port_cfg32(dev, port, REG_PORT_MTI_QUEUE_CTRL_0__4,
1215 MTI_PVID_REPLACE, false);
1216
1217 /* enable 802.1p priority */
1218 ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_PRIO_ENABLE, true);
1219
1220 if (port < dev->phy_port_cnt) {
1221 /* do not force flow control */
1222 ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
1223 PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
1224 false);
1225
1226 if (dev->phy_errata_9477)
1227 ksz9477_phy_errata_setup(dev, port);
1228 } else {
1229 /* force flow control */
1230 ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
1231 PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
1232 true);
1233
1234 /* configure MAC to 1G & RGMII mode */
1235 ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
1236 switch (dev->interface) {
1237 case PHY_INTERFACE_MODE_MII:
1238 ksz9477_set_xmii(dev, 0, &data8);
1239 ksz9477_set_gbit(dev, false, &data8);
1240 p->phydev.speed = SPEED_100;
1241 break;
1242 case PHY_INTERFACE_MODE_RMII:
1243 ksz9477_set_xmii(dev, 1, &data8);
1244 ksz9477_set_gbit(dev, false, &data8);
1245 p->phydev.speed = SPEED_100;
1246 break;
1247 case PHY_INTERFACE_MODE_GMII:
1248 ksz9477_set_xmii(dev, 2, &data8);
1249 ksz9477_set_gbit(dev, true, &data8);
1250 p->phydev.speed = SPEED_1000;
1251 break;
1252 default:
1253 ksz9477_set_xmii(dev, 3, &data8);
1254 ksz9477_set_gbit(dev, true, &data8);
1255 data8 &= ~PORT_RGMII_ID_IG_ENABLE;
1256 data8 &= ~PORT_RGMII_ID_EG_ENABLE;
1257 if (dev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
1258 dev->interface == PHY_INTERFACE_MODE_RGMII_RXID)
1259 data8 |= PORT_RGMII_ID_IG_ENABLE;
1260 if (dev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
1261 dev->interface == PHY_INTERFACE_MODE_RGMII_TXID)
1262 data8 |= PORT_RGMII_ID_EG_ENABLE;
1263 p->phydev.speed = SPEED_1000;
1264 break;
1265 }
1266 ksz_pwrite8(dev, port, REG_PORT_XMII_CTRL_1, data8);
1267 p->phydev.duplex = 1;
1268 }
1269 mutex_lock(&dev->dev_mutex);
1270 if (cpu_port) {
1271 member = dev->port_mask;
1272 dev->on_ports = dev->host_mask;
1273 dev->live_ports = dev->host_mask;
1274 } else {
1275 member = dev->host_mask | p->vid_member;
1276 dev->on_ports |= (1 << port);
1277
1278 /* Link was detected before port is enabled. */
1279 if (p->phydev.link)
1280 dev->live_ports |= (1 << port);
1281 }
1282 mutex_unlock(&dev->dev_mutex);
1283 ksz9477_cfg_port_member(dev, port, member);
1284
1285 /* clear pending interrupts */
1286 if (port < dev->phy_port_cnt)
1287 ksz_pread16(dev, port, REG_PORT_PHY_INT_ENABLE, &data16);
1288}
1289
1290static void ksz9477_config_cpu_port(struct dsa_switch *ds)
1291{
1292 struct ksz_device *dev = ds->priv;
1293 struct ksz_port *p;
1294 int i;
1295
1296 ds->num_ports = dev->port_cnt;
1297
1298 for (i = 0; i < dev->port_cnt; i++) {
1299 if (dsa_is_cpu_port(ds, i) && (dev->cpu_ports & (1 << i))) {
1300 phy_interface_t interface;
1301
1302 dev->cpu_port = i;
1303 dev->host_mask = (1 << dev->cpu_port);
1304 dev->port_mask |= dev->host_mask;
1305
1306 /* Read from XMII register to determine host port
1307 * interface. If set specifically in device tree
1308 * note the difference to help debugging.
1309 */
1310 interface = ksz9477_get_interface(dev, i);
1311 if (!dev->interface)
1312 dev->interface = interface;
1313 if (interface && interface != dev->interface)
1314 dev_info(dev->dev,
1315 "use %s instead of %s\n",
1316 phy_modes(dev->interface),
1317 phy_modes(interface));
1318
1319 /* enable cpu port */
1320 ksz9477_port_setup(dev, i, true);
1321 p = &dev->ports[dev->cpu_port];
1322 p->vid_member = dev->port_mask;
1323 p->on = 1;
1324 }
1325 }
1326
1327 dev->member = dev->host_mask;
1328
1329 for (i = 0; i < dev->mib_port_cnt; i++) {
1330 if (i == dev->cpu_port)
1331 continue;
1332 p = &dev->ports[i];
1333
1334 /* Initialize to non-zero so that ksz_cfg_port_member() will
1335 * be called.
1336 */
1337 p->vid_member = (1 << i);
1338 p->member = dev->port_mask;
1339 ksz9477_port_stp_state_set(ds, i, BR_STATE_DISABLED);
1340 p->on = 1;
1341 if (i < dev->phy_port_cnt)
1342 p->phy = 1;
1343 if (dev->chip_id == 0x00947700 && i == 6) {
1344 p->sgmii = 1;
1345
1346 /* SGMII PHY detection code is not implemented yet. */
1347 p->phy = 0;
1348 }
1349 }
1350}
1351
1352static int ksz9477_setup(struct dsa_switch *ds)
1353{
1354 struct ksz_device *dev = ds->priv;
1355 int ret = 0;
1356
1357 dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table),
1358 dev->num_vlans, GFP_KERNEL);
1359 if (!dev->vlan_cache)
1360 return -ENOMEM;
1361
1362 ret = ksz9477_reset_switch(dev);
1363 if (ret) {
1364 dev_err(ds->dev, "failed to reset switch\n");
1365 return ret;
1366 }
1367
1368 /* Required for port partitioning. */
1369 ksz9477_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY,
1370 true);
1371
1372 /* Do not work correctly with tail tagging. */
1373 ksz_cfg(dev, REG_SW_MAC_CTRL_0, SW_CHECK_LENGTH, false);
1374
1375 /* accept packet up to 2000bytes */
1376 ksz_cfg(dev, REG_SW_MAC_CTRL_1, SW_LEGAL_PACKET_DISABLE, true);
1377
1378 ksz9477_config_cpu_port(ds);
1379
1380 ksz_cfg(dev, REG_SW_MAC_CTRL_1, MULTICAST_STORM_DISABLE, true);
1381
1382 /* queue based egress rate limit */
1383 ksz_cfg(dev, REG_SW_MAC_CTRL_5, SW_OUT_RATE_LIMIT_QUEUE_BASED, true);
1384
1385 /* enable global MIB counter freeze function */
1386 ksz_cfg(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FREEZE, true);
1387
1388 /* start switch */
1389 ksz_cfg(dev, REG_SW_OPERATION, SW_START, true);
1390
1391 ksz_init_mib_timer(dev);
1392
1393 return 0;
1394}
1395
1396static const struct dsa_switch_ops ksz9477_switch_ops = {
1397 .get_tag_protocol = ksz9477_get_tag_protocol,
1398 .setup = ksz9477_setup,
1399 .phy_read = ksz9477_phy_read16,
1400 .phy_write = ksz9477_phy_write16,
1401 .adjust_link = ksz_adjust_link,
1402 .port_enable = ksz_enable_port,
1403 .port_disable = ksz_disable_port,
1404 .get_strings = ksz9477_get_strings,
1405 .get_ethtool_stats = ksz_get_ethtool_stats,
1406 .get_sset_count = ksz_sset_count,
1407 .port_bridge_join = ksz_port_bridge_join,
1408 .port_bridge_leave = ksz_port_bridge_leave,
1409 .port_stp_state_set = ksz9477_port_stp_state_set,
1410 .port_fast_age = ksz_port_fast_age,
1411 .port_vlan_filtering = ksz9477_port_vlan_filtering,
1412 .port_vlan_prepare = ksz_port_vlan_prepare,
1413 .port_vlan_add = ksz9477_port_vlan_add,
1414 .port_vlan_del = ksz9477_port_vlan_del,
1415 .port_fdb_dump = ksz9477_port_fdb_dump,
1416 .port_fdb_add = ksz9477_port_fdb_add,
1417 .port_fdb_del = ksz9477_port_fdb_del,
1418 .port_mdb_prepare = ksz_port_mdb_prepare,
1419 .port_mdb_add = ksz9477_port_mdb_add,
1420 .port_mdb_del = ksz9477_port_mdb_del,
1421 .port_mirror_add = ksz9477_port_mirror_add,
1422 .port_mirror_del = ksz9477_port_mirror_del,
1423};
1424
1425static u32 ksz9477_get_port_addr(int port, int offset)
1426{
1427 return PORT_CTRL_ADDR(port, offset);
1428}
1429
1430static int ksz9477_switch_detect(struct ksz_device *dev)
1431{
1432 u8 data8;
1433 u8 id_hi;
1434 u8 id_lo;
1435 u32 id32;
1436 int ret;
1437
1438 /* turn off SPI DO Edge select */
1439 ret = ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
1440 if (ret)
1441 return ret;
1442
1443 data8 &= ~SPI_AUTO_EDGE_DETECTION;
1444 ret = ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
1445 if (ret)
1446 return ret;
1447
1448 /* read chip id */
1449 ret = ksz_read32(dev, REG_CHIP_ID0__1, &id32);
1450 if (ret)
1451 return ret;
1452 ret = ksz_read8(dev, REG_GLOBAL_OPTIONS, &data8);
1453 if (ret)
1454 return ret;
1455
1456 /* Number of ports can be reduced depending on chip. */
1457 dev->mib_port_cnt = TOTAL_PORT_NUM;
1458 dev->phy_port_cnt = 5;
1459
1460 /* Default capability is gigabit capable. */
1461 dev->features = GBIT_SUPPORT;
1462
1463 id_hi = (u8)(id32 >> 16);
1464 id_lo = (u8)(id32 >> 8);
1465 if ((id_lo & 0xf) == 3) {
1466 /* Chip is from KSZ9893 design. */
1467 dev->features |= IS_9893;
1468
1469 /* Chip does not support gigabit. */
1470 if (data8 & SW_QW_ABLE)
1471 dev->features &= ~GBIT_SUPPORT;
1472 dev->mib_port_cnt = 3;
1473 dev->phy_port_cnt = 2;
1474 } else {
1475 /* Chip uses new XMII register definitions. */
1476 dev->features |= NEW_XMII;
1477
1478 /* Chip does not support gigabit. */
1479 if (!(data8 & SW_GIGABIT_ABLE))
1480 dev->features &= ~GBIT_SUPPORT;
1481 }
1482
1483 /* Change chip id to known ones so it can be matched against them. */
1484 id32 = (id_hi << 16) | (id_lo << 8);
1485
1486 dev->chip_id = id32;
1487
1488 return 0;
1489}
1490
1491struct ksz_chip_data {
1492 u32 chip_id;
1493 const char *dev_name;
1494 int num_vlans;
1495 int num_alus;
1496 int num_statics;
1497 int cpu_ports;
1498 int port_cnt;
1499 bool phy_errata_9477;
1500};
1501
1502static const struct ksz_chip_data ksz9477_switch_chips[] = {
1503 {
1504 .chip_id = 0x00947700,
1505 .dev_name = "KSZ9477",
1506 .num_vlans = 4096,
1507 .num_alus = 4096,
1508 .num_statics = 16,
1509 .cpu_ports = 0x7F, /* can be configured as cpu port */
1510 .port_cnt = 7, /* total physical port count */
1511 .phy_errata_9477 = true,
1512 },
1513 {
1514 .chip_id = 0x00989700,
1515 .dev_name = "KSZ9897",
1516 .num_vlans = 4096,
1517 .num_alus = 4096,
1518 .num_statics = 16,
1519 .cpu_ports = 0x7F, /* can be configured as cpu port */
1520 .port_cnt = 7, /* total physical port count */
1521 .phy_errata_9477 = true,
1522 },
1523 {
1524 .chip_id = 0x00989300,
1525 .dev_name = "KSZ9893",
1526 .num_vlans = 4096,
1527 .num_alus = 4096,
1528 .num_statics = 16,
1529 .cpu_ports = 0x07, /* can be configured as cpu port */
1530 .port_cnt = 3, /* total port count */
1531 },
1532 {
1533 .chip_id = 0x00956700,
1534 .dev_name = "KSZ9567",
1535 .num_vlans = 4096,
1536 .num_alus = 4096,
1537 .num_statics = 16,
1538 .cpu_ports = 0x7F, /* can be configured as cpu port */
1539 .port_cnt = 7, /* total physical port count */
1540 },
1541};
1542
1543static int ksz9477_switch_init(struct ksz_device *dev)
1544{
1545 int i;
1546
1547 dev->ds->ops = &ksz9477_switch_ops;
1548
1549 for (i = 0; i < ARRAY_SIZE(ksz9477_switch_chips); i++) {
1550 const struct ksz_chip_data *chip = &ksz9477_switch_chips[i];
1551
1552 if (dev->chip_id == chip->chip_id) {
1553 dev->name = chip->dev_name;
1554 dev->num_vlans = chip->num_vlans;
1555 dev->num_alus = chip->num_alus;
1556 dev->num_statics = chip->num_statics;
1557 dev->port_cnt = chip->port_cnt;
1558 dev->cpu_ports = chip->cpu_ports;
1559 dev->phy_errata_9477 = chip->phy_errata_9477;
1560
1561 break;
1562 }
1563 }
1564
1565 /* no switch found */
1566 if (!dev->port_cnt)
1567 return -ENODEV;
1568
1569 dev->port_mask = (1 << dev->port_cnt) - 1;
1570
1571 dev->reg_mib_cnt = SWITCH_COUNTER_NUM;
1572 dev->mib_cnt = TOTAL_SWITCH_COUNTER_NUM;
1573
1574 i = dev->mib_port_cnt;
1575 dev->ports = devm_kzalloc(dev->dev, sizeof(struct ksz_port) * i,
1576 GFP_KERNEL);
1577 if (!dev->ports)
1578 return -ENOMEM;
1579 for (i = 0; i < dev->mib_port_cnt; i++) {
1580 mutex_init(&dev->ports[i].mib.cnt_mutex);
1581 dev->ports[i].mib.counters =
1582 devm_kzalloc(dev->dev,
1583 sizeof(u64) *
1584 (TOTAL_SWITCH_COUNTER_NUM + 1),
1585 GFP_KERNEL);
1586 if (!dev->ports[i].mib.counters)
1587 return -ENOMEM;
1588 }
1589
1590 return 0;
1591}
1592
1593static void ksz9477_switch_exit(struct ksz_device *dev)
1594{
1595 ksz9477_reset_switch(dev);
1596}
1597
1598static const struct ksz_dev_ops ksz9477_dev_ops = {
1599 .get_port_addr = ksz9477_get_port_addr,
1600 .cfg_port_member = ksz9477_cfg_port_member,
1601 .flush_dyn_mac_table = ksz9477_flush_dyn_mac_table,
1602 .phy_setup = ksz9477_phy_setup,
1603 .port_setup = ksz9477_port_setup,
1604 .r_mib_cnt = ksz9477_r_mib_cnt,
1605 .r_mib_pkt = ksz9477_r_mib_pkt,
1606 .freeze_mib = ksz9477_freeze_mib,
1607 .port_init_cnt = ksz9477_port_init_cnt,
1608 .shutdown = ksz9477_reset_switch,
1609 .detect = ksz9477_switch_detect,
1610 .init = ksz9477_switch_init,
1611 .exit = ksz9477_switch_exit,
1612};
1613
1614int ksz9477_switch_register(struct ksz_device *dev)
1615{
1616 return ksz_switch_register(dev, &ksz9477_dev_ops);
1617}
1618EXPORT_SYMBOL(ksz9477_switch_register);
1619
1620MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
1621MODULE_DESCRIPTION("Microchip KSZ9477 Series Switch DSA Driver");
1622MODULE_LICENSE("GPL");