Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2013 NVIDIA Corporation
   4 */
   5
   6#include <linux/clk.h>
   7#include <linux/clk-provider.h>
   8#include <linux/debugfs.h>
   9#include <linux/io.h>
  10#include <linux/module.h>
  11#include <linux/of.h>
  12#include <linux/platform_device.h>
  13#include <linux/pm_runtime.h>
  14#include <linux/regulator/consumer.h>
  15#include <linux/reset.h>
  16
  17#include <soc/tegra/pmc.h>
  18
  19#include <drm/display/drm_dp_helper.h>
  20#include <drm/display/drm_scdc_helper.h>
  21#include <drm/drm_atomic_helper.h>
  22#include <drm/drm_debugfs.h>
  23#include <drm/drm_eld.h>
  24#include <drm/drm_file.h>
  25#include <drm/drm_panel.h>
  26#include <drm/drm_simple_kms_helper.h>
  27
  28#include "dc.h"
  29#include "dp.h"
  30#include "drm.h"
  31#include "hda.h"
  32#include "sor.h"
  33#include "trace.h"
  34
  35#define SOR_REKEY 0x38
  36
  37struct tegra_sor_hdmi_settings {
  38	unsigned long frequency;
  39
  40	u8 vcocap;
  41	u8 filter;
  42	u8 ichpmp;
  43	u8 loadadj;
  44	u8 tmds_termadj;
  45	u8 tx_pu_value;
  46	u8 bg_temp_coef;
  47	u8 bg_vref_level;
  48	u8 avdd10_level;
  49	u8 avdd14_level;
  50	u8 sparepll;
  51
  52	u8 drive_current[4];
  53	u8 preemphasis[4];
  54};
  55
  56#if 1
  57static const struct tegra_sor_hdmi_settings tegra210_sor_hdmi_defaults[] = {
  58	{
  59		.frequency = 54000000,
  60		.vcocap = 0x0,
  61		.filter = 0x0,
  62		.ichpmp = 0x1,
  63		.loadadj = 0x3,
  64		.tmds_termadj = 0x9,
  65		.tx_pu_value = 0x10,
  66		.bg_temp_coef = 0x3,
  67		.bg_vref_level = 0x8,
  68		.avdd10_level = 0x4,
  69		.avdd14_level = 0x4,
  70		.sparepll = 0x0,
  71		.drive_current = { 0x33, 0x3a, 0x3a, 0x3a },
  72		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
  73	}, {
  74		.frequency = 75000000,
  75		.vcocap = 0x3,
  76		.filter = 0x0,
  77		.ichpmp = 0x1,
  78		.loadadj = 0x3,
  79		.tmds_termadj = 0x9,
  80		.tx_pu_value = 0x40,
  81		.bg_temp_coef = 0x3,
  82		.bg_vref_level = 0x8,
  83		.avdd10_level = 0x4,
  84		.avdd14_level = 0x4,
  85		.sparepll = 0x0,
  86		.drive_current = { 0x33, 0x3a, 0x3a, 0x3a },
  87		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
  88	}, {
  89		.frequency = 150000000,
  90		.vcocap = 0x3,
  91		.filter = 0x0,
  92		.ichpmp = 0x1,
  93		.loadadj = 0x3,
  94		.tmds_termadj = 0x9,
  95		.tx_pu_value = 0x66,
  96		.bg_temp_coef = 0x3,
  97		.bg_vref_level = 0x8,
  98		.avdd10_level = 0x4,
  99		.avdd14_level = 0x4,
 100		.sparepll = 0x0,
 101		.drive_current = { 0x33, 0x3a, 0x3a, 0x3a },
 102		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
 103	}, {
 104		.frequency = 300000000,
 105		.vcocap = 0x3,
 106		.filter = 0x0,
 107		.ichpmp = 0x1,
 108		.loadadj = 0x3,
 109		.tmds_termadj = 0x9,
 110		.tx_pu_value = 0x66,
 111		.bg_temp_coef = 0x3,
 112		.bg_vref_level = 0xa,
 113		.avdd10_level = 0x4,
 114		.avdd14_level = 0x4,
 115		.sparepll = 0x0,
 116		.drive_current = { 0x33, 0x3f, 0x3f, 0x3f },
 117		.preemphasis = { 0x00, 0x17, 0x17, 0x17 },
 118	}, {
 119		.frequency = 600000000,
 120		.vcocap = 0x3,
 121		.filter = 0x0,
 122		.ichpmp = 0x1,
 123		.loadadj = 0x3,
 124		.tmds_termadj = 0x9,
 125		.tx_pu_value = 0x66,
 126		.bg_temp_coef = 0x3,
 127		.bg_vref_level = 0x8,
 128		.avdd10_level = 0x4,
 129		.avdd14_level = 0x4,
 130		.sparepll = 0x0,
 131		.drive_current = { 0x33, 0x3f, 0x3f, 0x3f },
 132		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
 133	},
 134};
 135#else
 136static const struct tegra_sor_hdmi_settings tegra210_sor_hdmi_defaults[] = {
 137	{
 138		.frequency = 75000000,
 139		.vcocap = 0x3,
 140		.filter = 0x0,
 141		.ichpmp = 0x1,
 142		.loadadj = 0x3,
 143		.tmds_termadj = 0x9,
 144		.tx_pu_value = 0x40,
 145		.bg_temp_coef = 0x3,
 146		.bg_vref_level = 0x8,
 147		.avdd10_level = 0x4,
 148		.avdd14_level = 0x4,
 149		.sparepll = 0x0,
 150		.drive_current = { 0x29, 0x29, 0x29, 0x29 },
 151		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
 152	}, {
 153		.frequency = 150000000,
 154		.vcocap = 0x3,
 155		.filter = 0x0,
 156		.ichpmp = 0x1,
 157		.loadadj = 0x3,
 158		.tmds_termadj = 0x9,
 159		.tx_pu_value = 0x66,
 160		.bg_temp_coef = 0x3,
 161		.bg_vref_level = 0x8,
 162		.avdd10_level = 0x4,
 163		.avdd14_level = 0x4,
 164		.sparepll = 0x0,
 165		.drive_current = { 0x30, 0x37, 0x37, 0x37 },
 166		.preemphasis = { 0x01, 0x02, 0x02, 0x02 },
 167	}, {
 168		.frequency = 300000000,
 169		.vcocap = 0x3,
 170		.filter = 0x0,
 171		.ichpmp = 0x6,
 172		.loadadj = 0x3,
 173		.tmds_termadj = 0x9,
 174		.tx_pu_value = 0x66,
 175		.bg_temp_coef = 0x3,
 176		.bg_vref_level = 0xf,
 177		.avdd10_level = 0x4,
 178		.avdd14_level = 0x4,
 179		.sparepll = 0x0,
 180		.drive_current = { 0x30, 0x37, 0x37, 0x37 },
 181		.preemphasis = { 0x10, 0x3e, 0x3e, 0x3e },
 182	}, {
 183		.frequency = 600000000,
 184		.vcocap = 0x3,
 185		.filter = 0x0,
 186		.ichpmp = 0xa,
 187		.loadadj = 0x3,
 188		.tmds_termadj = 0xb,
 189		.tx_pu_value = 0x66,
 190		.bg_temp_coef = 0x3,
 191		.bg_vref_level = 0xe,
 192		.avdd10_level = 0x4,
 193		.avdd14_level = 0x4,
 194		.sparepll = 0x0,
 195		.drive_current = { 0x35, 0x3e, 0x3e, 0x3e },
 196		.preemphasis = { 0x02, 0x3f, 0x3f, 0x3f },
 197	},
 198};
 199#endif
 200
 201static const struct tegra_sor_hdmi_settings tegra186_sor_hdmi_defaults[] = {
 202	{
 203		.frequency = 54000000,
 204		.vcocap = 0,
 205		.filter = 5,
 206		.ichpmp = 5,
 207		.loadadj = 3,
 208		.tmds_termadj = 0xf,
 209		.tx_pu_value = 0,
 210		.bg_temp_coef = 3,
 211		.bg_vref_level = 8,
 212		.avdd10_level = 4,
 213		.avdd14_level = 4,
 214		.sparepll = 0x54,
 215		.drive_current = { 0x3a, 0x3a, 0x3a, 0x33 },
 216		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
 217	}, {
 218		.frequency = 75000000,
 219		.vcocap = 1,
 220		.filter = 5,
 221		.ichpmp = 5,
 222		.loadadj = 3,
 223		.tmds_termadj = 0xf,
 224		.tx_pu_value = 0,
 225		.bg_temp_coef = 3,
 226		.bg_vref_level = 8,
 227		.avdd10_level = 4,
 228		.avdd14_level = 4,
 229		.sparepll = 0x44,
 230		.drive_current = { 0x3a, 0x3a, 0x3a, 0x33 },
 231		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
 232	}, {
 233		.frequency = 150000000,
 234		.vcocap = 3,
 235		.filter = 5,
 236		.ichpmp = 5,
 237		.loadadj = 3,
 238		.tmds_termadj = 15,
 239		.tx_pu_value = 0x66 /* 0 */,
 240		.bg_temp_coef = 3,
 241		.bg_vref_level = 8,
 242		.avdd10_level = 4,
 243		.avdd14_level = 4,
 244		.sparepll = 0x00, /* 0x34 */
 245		.drive_current = { 0x3a, 0x3a, 0x3a, 0x37 },
 246		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
 247	}, {
 248		.frequency = 300000000,
 249		.vcocap = 3,
 250		.filter = 5,
 251		.ichpmp = 5,
 252		.loadadj = 3,
 253		.tmds_termadj = 15,
 254		.tx_pu_value = 64,
 255		.bg_temp_coef = 3,
 256		.bg_vref_level = 8,
 257		.avdd10_level = 4,
 258		.avdd14_level = 4,
 259		.sparepll = 0x34,
 260		.drive_current = { 0x3d, 0x3d, 0x3d, 0x33 },
 261		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
 262	}, {
 263		.frequency = 600000000,
 264		.vcocap = 3,
 265		.filter = 5,
 266		.ichpmp = 5,
 267		.loadadj = 3,
 268		.tmds_termadj = 12,
 269		.tx_pu_value = 96,
 270		.bg_temp_coef = 3,
 271		.bg_vref_level = 8,
 272		.avdd10_level = 4,
 273		.avdd14_level = 4,
 274		.sparepll = 0x34,
 275		.drive_current = { 0x3d, 0x3d, 0x3d, 0x33 },
 276		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
 277	}
 278};
 279
 280static const struct tegra_sor_hdmi_settings tegra194_sor_hdmi_defaults[] = {
 281	{
 282		.frequency = 54000000,
 283		.vcocap = 0,
 284		.filter = 5,
 285		.ichpmp = 5,
 286		.loadadj = 3,
 287		.tmds_termadj = 0xf,
 288		.tx_pu_value = 0,
 289		.bg_temp_coef = 3,
 290		.bg_vref_level = 8,
 291		.avdd10_level = 4,
 292		.avdd14_level = 4,
 293		.sparepll = 0x54,
 294		.drive_current = { 0x3a, 0x3a, 0x3a, 0x33 },
 295		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
 296	}, {
 297		.frequency = 75000000,
 298		.vcocap = 1,
 299		.filter = 5,
 300		.ichpmp = 5,
 301		.loadadj = 3,
 302		.tmds_termadj = 0xf,
 303		.tx_pu_value = 0,
 304		.bg_temp_coef = 3,
 305		.bg_vref_level = 8,
 306		.avdd10_level = 4,
 307		.avdd14_level = 4,
 308		.sparepll = 0x44,
 309		.drive_current = { 0x3a, 0x3a, 0x3a, 0x33 },
 310		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
 311	}, {
 312		.frequency = 150000000,
 313		.vcocap = 3,
 314		.filter = 5,
 315		.ichpmp = 5,
 316		.loadadj = 3,
 317		.tmds_termadj = 15,
 318		.tx_pu_value = 0x66 /* 0 */,
 319		.bg_temp_coef = 3,
 320		.bg_vref_level = 8,
 321		.avdd10_level = 4,
 322		.avdd14_level = 4,
 323		.sparepll = 0x00, /* 0x34 */
 324		.drive_current = { 0x3a, 0x3a, 0x3a, 0x37 },
 325		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
 326	}, {
 327		.frequency = 300000000,
 328		.vcocap = 3,
 329		.filter = 5,
 330		.ichpmp = 5,
 331		.loadadj = 3,
 332		.tmds_termadj = 15,
 333		.tx_pu_value = 64,
 334		.bg_temp_coef = 3,
 335		.bg_vref_level = 8,
 336		.avdd10_level = 4,
 337		.avdd14_level = 4,
 338		.sparepll = 0x34,
 339		.drive_current = { 0x3d, 0x3d, 0x3d, 0x33 },
 340		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
 341	}, {
 342		.frequency = 600000000,
 343		.vcocap = 3,
 344		.filter = 5,
 345		.ichpmp = 5,
 346		.loadadj = 3,
 347		.tmds_termadj = 12,
 348		.tx_pu_value = 96,
 349		.bg_temp_coef = 3,
 350		.bg_vref_level = 8,
 351		.avdd10_level = 4,
 352		.avdd14_level = 4,
 353		.sparepll = 0x34,
 354		.drive_current = { 0x3d, 0x3d, 0x3d, 0x33 },
 355		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
 356	}
 357};
 358
 359struct tegra_sor_regs {
 360	unsigned int head_state0;
 361	unsigned int head_state1;
 362	unsigned int head_state2;
 363	unsigned int head_state3;
 364	unsigned int head_state4;
 365	unsigned int head_state5;
 366	unsigned int pll0;
 367	unsigned int pll1;
 368	unsigned int pll2;
 369	unsigned int pll3;
 370	unsigned int dp_padctl0;
 371	unsigned int dp_padctl2;
 372};
 373
 374struct tegra_sor_soc {
 375	bool supports_lvds;
 376	bool supports_hdmi;
 377	bool supports_dp;
 378	bool supports_audio;
 379	bool supports_hdcp;
 380
 381	const struct tegra_sor_regs *regs;
 382	bool has_nvdisplay;
 383
 384	const struct tegra_sor_hdmi_settings *settings;
 385	unsigned int num_settings;
 386
 387	const u8 *xbar_cfg;
 388	const u8 *lane_map;
 389
 390	const u8 (*voltage_swing)[4][4];
 391	const u8 (*pre_emphasis)[4][4];
 392	const u8 (*post_cursor)[4][4];
 393	const u8 (*tx_pu)[4][4];
 394};
 395
 396struct tegra_sor;
 397
 398struct tegra_sor_ops {
 399	const char *name;
 400	int (*probe)(struct tegra_sor *sor);
 401	void (*audio_enable)(struct tegra_sor *sor);
 402	void (*audio_disable)(struct tegra_sor *sor);
 403};
 404
 405struct tegra_sor {
 406	struct host1x_client client;
 407	struct tegra_output output;
 408	struct device *dev;
 409
 410	const struct tegra_sor_soc *soc;
 411	void __iomem *regs;
 412	unsigned int index;
 413	unsigned int irq;
 414
 415	struct reset_control *rst;
 416	struct clk *clk_parent;
 417	struct clk *clk_safe;
 418	struct clk *clk_out;
 419	struct clk *clk_pad;
 420	struct clk *clk_dp;
 421	struct clk *clk;
 422
 423	u8 xbar_cfg[5];
 424
 425	struct drm_dp_link link;
 426	struct drm_dp_aux *aux;
 427
 428	struct drm_info_list *debugfs_files;
 429
 430	const struct tegra_sor_ops *ops;
 431	enum tegra_io_pad pad;
 432
 433	/* for HDMI 2.0 */
 434	struct tegra_sor_hdmi_settings *settings;
 435	unsigned int num_settings;
 436
 437	struct regulator *avdd_io_supply;
 438	struct regulator *vdd_pll_supply;
 439	struct regulator *hdmi_supply;
 440
 441	struct delayed_work scdc;
 442	bool scdc_enabled;
 443
 444	struct tegra_hda_format format;
 445};
 446
 447struct tegra_sor_state {
 448	struct drm_connector_state base;
 449
 450	unsigned int link_speed;
 451	unsigned long pclk;
 452	unsigned int bpc;
 453};
 454
 455static inline struct tegra_sor_state *
 456to_sor_state(struct drm_connector_state *state)
 457{
 458	return container_of(state, struct tegra_sor_state, base);
 459}
 460
 461struct tegra_sor_config {
 462	u32 bits_per_pixel;
 463
 464	u32 active_polarity;
 465	u32 active_count;
 466	u32 tu_size;
 467	u32 active_frac;
 468	u32 watermark;
 469
 470	u32 hblank_symbols;
 471	u32 vblank_symbols;
 472};
 473
 474static inline struct tegra_sor *
 475host1x_client_to_sor(struct host1x_client *client)
 476{
 477	return container_of(client, struct tegra_sor, client);
 478}
 479
 480static inline struct tegra_sor *to_sor(struct tegra_output *output)
 481{
 482	return container_of(output, struct tegra_sor, output);
 483}
 484
 485static inline u32 tegra_sor_readl(struct tegra_sor *sor, unsigned int offset)
 486{
 487	u32 value = readl(sor->regs + (offset << 2));
 488
 489	trace_sor_readl(sor->dev, offset, value);
 490
 491	return value;
 492}
 493
 494static inline void tegra_sor_writel(struct tegra_sor *sor, u32 value,
 495				    unsigned int offset)
 496{
 497	trace_sor_writel(sor->dev, offset, value);
 498	writel(value, sor->regs + (offset << 2));
 499}
 500
 501static int tegra_sor_set_parent_clock(struct tegra_sor *sor, struct clk *parent)
 502{
 503	int err;
 504
 505	clk_disable_unprepare(sor->clk);
 506
 507	err = clk_set_parent(sor->clk_out, parent);
 508	if (err < 0)
 509		return err;
 510
 511	err = clk_prepare_enable(sor->clk);
 512	if (err < 0)
 513		return err;
 514
 515	return 0;
 516}
 517
 518struct tegra_clk_sor_pad {
 519	struct clk_hw hw;
 520	struct tegra_sor *sor;
 521};
 522
 523static inline struct tegra_clk_sor_pad *to_pad(struct clk_hw *hw)
 524{
 525	return container_of(hw, struct tegra_clk_sor_pad, hw);
 526}
 527
 528static const char * const tegra_clk_sor_pad_parents[2][2] = {
 529	{ "pll_d_out0", "pll_dp" },
 530	{ "pll_d2_out0", "pll_dp" },
 531};
 532
 533/*
 534 * Implementing ->set_parent() here isn't really required because the parent
 535 * will be explicitly selected in the driver code via the DP_CLK_SEL mux in
 536 * the SOR_CLK_CNTRL register. This is primarily for compatibility with the
 537 * Tegra186 and later SoC generations where the BPMP implements this clock
 538 * and doesn't expose the mux via the common clock framework.
 539 */
 540
 541static int tegra_clk_sor_pad_set_parent(struct clk_hw *hw, u8 index)
 542{
 543	struct tegra_clk_sor_pad *pad = to_pad(hw);
 544	struct tegra_sor *sor = pad->sor;
 545	u32 value;
 546
 547	value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
 548	value &= ~SOR_CLK_CNTRL_DP_CLK_SEL_MASK;
 549
 550	switch (index) {
 551	case 0:
 552		value |= SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_PCLK;
 553		break;
 554
 555	case 1:
 556		value |= SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_DPCLK;
 557		break;
 558	}
 559
 560	tegra_sor_writel(sor, value, SOR_CLK_CNTRL);
 561
 562	return 0;
 563}
 564
 565static u8 tegra_clk_sor_pad_get_parent(struct clk_hw *hw)
 566{
 567	struct tegra_clk_sor_pad *pad = to_pad(hw);
 568	struct tegra_sor *sor = pad->sor;
 569	u8 parent = U8_MAX;
 570	u32 value;
 571
 572	value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
 573
 574	switch (value & SOR_CLK_CNTRL_DP_CLK_SEL_MASK) {
 575	case SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_PCLK:
 576	case SOR_CLK_CNTRL_DP_CLK_SEL_DIFF_PCLK:
 577		parent = 0;
 578		break;
 579
 580	case SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_DPCLK:
 581	case SOR_CLK_CNTRL_DP_CLK_SEL_DIFF_DPCLK:
 582		parent = 1;
 583		break;
 584	}
 585
 586	return parent;
 587}
 588
 589static const struct clk_ops tegra_clk_sor_pad_ops = {
 590	.determine_rate = clk_hw_determine_rate_no_reparent,
 591	.set_parent = tegra_clk_sor_pad_set_parent,
 592	.get_parent = tegra_clk_sor_pad_get_parent,
 593};
 594
 595static struct clk *tegra_clk_sor_pad_register(struct tegra_sor *sor,
 596					      const char *name)
 597{
 598	struct tegra_clk_sor_pad *pad;
 599	struct clk_init_data init;
 600	struct clk *clk;
 601
 602	pad = devm_kzalloc(sor->dev, sizeof(*pad), GFP_KERNEL);
 603	if (!pad)
 604		return ERR_PTR(-ENOMEM);
 605
 606	pad->sor = sor;
 607
 608	init.name = name;
 609	init.flags = 0;
 610	init.parent_names = tegra_clk_sor_pad_parents[sor->index];
 611	init.num_parents = ARRAY_SIZE(tegra_clk_sor_pad_parents[sor->index]);
 612	init.ops = &tegra_clk_sor_pad_ops;
 613
 614	pad->hw.init = &init;
 615
 616	clk = devm_clk_register(sor->dev, &pad->hw);
 617
 618	return clk;
 619}
 620
 621static void tegra_sor_filter_rates(struct tegra_sor *sor)
 622{
 623	struct drm_dp_link *link = &sor->link;
 624	unsigned int i;
 625
 626	/* Tegra only supports RBR, HBR and HBR2 */
 627	for (i = 0; i < link->num_rates; i++) {
 628		switch (link->rates[i]) {
 629		case 1620000:
 630		case 2700000:
 631		case 5400000:
 632			break;
 633
 634		default:
 635			DRM_DEBUG_KMS("link rate %lu kHz not supported\n",
 636				      link->rates[i]);
 637			link->rates[i] = 0;
 638			break;
 639		}
 640	}
 641
 642	drm_dp_link_update_rates(link);
 643}
 644
 645static int tegra_sor_power_up_lanes(struct tegra_sor *sor, unsigned int lanes)
 646{
 647	unsigned long timeout;
 648	u32 value;
 649
 650	/*
 651	 * Clear or set the PD_TXD bit corresponding to each lane, depending
 652	 * on whether it is used or not.
 653	 */
 654	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
 655
 656	if (lanes <= 2)
 657		value &= ~(SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[3]) |
 658			   SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[2]));
 659	else
 660		value |= SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[3]) |
 661			 SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[2]);
 662
 663	if (lanes <= 1)
 664		value &= ~SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[1]);
 665	else
 666		value |= SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[1]);
 667
 668	if (lanes == 0)
 669		value &= ~SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[0]);
 670	else
 671		value |= SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[0]);
 672
 673	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
 674
 675	/* start lane sequencer */
 676	value = SOR_LANE_SEQ_CTL_TRIGGER | SOR_LANE_SEQ_CTL_SEQUENCE_DOWN |
 677		SOR_LANE_SEQ_CTL_POWER_STATE_UP;
 678	tegra_sor_writel(sor, value, SOR_LANE_SEQ_CTL);
 679
 680	timeout = jiffies + msecs_to_jiffies(250);
 681
 682	while (time_before(jiffies, timeout)) {
 683		value = tegra_sor_readl(sor, SOR_LANE_SEQ_CTL);
 684		if ((value & SOR_LANE_SEQ_CTL_TRIGGER) == 0)
 685			break;
 686
 687		usleep_range(250, 1000);
 688	}
 689
 690	if ((value & SOR_LANE_SEQ_CTL_TRIGGER) != 0)
 691		return -ETIMEDOUT;
 692
 693	return 0;
 694}
 695
 696static int tegra_sor_power_down_lanes(struct tegra_sor *sor)
 697{
 698	unsigned long timeout;
 699	u32 value;
 700
 701	/* power down all lanes */
 702	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
 703	value &= ~(SOR_DP_PADCTL_PD_TXD_3 | SOR_DP_PADCTL_PD_TXD_0 |
 704		   SOR_DP_PADCTL_PD_TXD_1 | SOR_DP_PADCTL_PD_TXD_2);
 705	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
 706
 707	/* start lane sequencer */
 708	value = SOR_LANE_SEQ_CTL_TRIGGER | SOR_LANE_SEQ_CTL_SEQUENCE_UP |
 709		SOR_LANE_SEQ_CTL_POWER_STATE_DOWN;
 710	tegra_sor_writel(sor, value, SOR_LANE_SEQ_CTL);
 711
 712	timeout = jiffies + msecs_to_jiffies(250);
 713
 714	while (time_before(jiffies, timeout)) {
 715		value = tegra_sor_readl(sor, SOR_LANE_SEQ_CTL);
 716		if ((value & SOR_LANE_SEQ_CTL_TRIGGER) == 0)
 717			break;
 718
 719		usleep_range(25, 100);
 720	}
 721
 722	if ((value & SOR_LANE_SEQ_CTL_TRIGGER) != 0)
 723		return -ETIMEDOUT;
 724
 725	return 0;
 726}
 727
 728static void tegra_sor_dp_precharge(struct tegra_sor *sor, unsigned int lanes)
 729{
 730	u32 value;
 731
 732	/* pre-charge all used lanes */
 733	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
 734
 735	if (lanes <= 2)
 736		value &= ~(SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[3]) |
 737			   SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[2]));
 738	else
 739		value |= SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[3]) |
 740			 SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[2]);
 741
 742	if (lanes <= 1)
 743		value &= ~SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[1]);
 744	else
 745		value |= SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[1]);
 746
 747	if (lanes == 0)
 748		value &= ~SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[0]);
 749	else
 750		value |= SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[0]);
 751
 752	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
 753
 754	usleep_range(15, 100);
 755
 756	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
 757	value &= ~(SOR_DP_PADCTL_CM_TXD_3 | SOR_DP_PADCTL_CM_TXD_2 |
 758		   SOR_DP_PADCTL_CM_TXD_1 | SOR_DP_PADCTL_CM_TXD_0);
 759	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
 760}
 761
 762static void tegra_sor_dp_term_calibrate(struct tegra_sor *sor)
 763{
 764	u32 mask = 0x08, adj = 0, value;
 765
 766	/* enable pad calibration logic */
 767	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
 768	value &= ~SOR_DP_PADCTL_PAD_CAL_PD;
 769	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
 770
 771	value = tegra_sor_readl(sor, sor->soc->regs->pll1);
 772	value |= SOR_PLL1_TMDS_TERM;
 773	tegra_sor_writel(sor, value, sor->soc->regs->pll1);
 774
 775	while (mask) {
 776		adj |= mask;
 777
 778		value = tegra_sor_readl(sor, sor->soc->regs->pll1);
 779		value &= ~SOR_PLL1_TMDS_TERMADJ_MASK;
 780		value |= SOR_PLL1_TMDS_TERMADJ(adj);
 781		tegra_sor_writel(sor, value, sor->soc->regs->pll1);
 782
 783		usleep_range(100, 200);
 784
 785		value = tegra_sor_readl(sor, sor->soc->regs->pll1);
 786		if (value & SOR_PLL1_TERM_COMPOUT)
 787			adj &= ~mask;
 788
 789		mask >>= 1;
 790	}
 791
 792	value = tegra_sor_readl(sor, sor->soc->regs->pll1);
 793	value &= ~SOR_PLL1_TMDS_TERMADJ_MASK;
 794	value |= SOR_PLL1_TMDS_TERMADJ(adj);
 795	tegra_sor_writel(sor, value, sor->soc->regs->pll1);
 796
 797	/* disable pad calibration logic */
 798	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
 799	value |= SOR_DP_PADCTL_PAD_CAL_PD;
 800	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
 801}
 802
 803static int tegra_sor_dp_link_apply_training(struct drm_dp_link *link)
 804{
 805	struct tegra_sor *sor = container_of(link, struct tegra_sor, link);
 806	u32 voltage_swing = 0, pre_emphasis = 0, post_cursor = 0;
 807	const struct tegra_sor_soc *soc = sor->soc;
 808	u32 pattern = 0, tx_pu = 0, value;
 809	unsigned int i;
 810
 811	for (value = 0, i = 0; i < link->lanes; i++) {
 812		u8 vs = link->train.request.voltage_swing[i];
 813		u8 pe = link->train.request.pre_emphasis[i];
 814		u8 pc = link->train.request.post_cursor[i];
 815		u8 shift = sor->soc->lane_map[i] << 3;
 816
 817		voltage_swing |= soc->voltage_swing[pc][vs][pe] << shift;
 818		pre_emphasis |= soc->pre_emphasis[pc][vs][pe] << shift;
 819		post_cursor |= soc->post_cursor[pc][vs][pe] << shift;
 820
 821		if (sor->soc->tx_pu[pc][vs][pe] > tx_pu)
 822			tx_pu = sor->soc->tx_pu[pc][vs][pe];
 823
 824		switch (link->train.pattern) {
 825		case DP_TRAINING_PATTERN_DISABLE:
 826			value = SOR_DP_TPG_SCRAMBLER_GALIOS |
 827				SOR_DP_TPG_PATTERN_NONE;
 828			break;
 829
 830		case DP_TRAINING_PATTERN_1:
 831			value = SOR_DP_TPG_SCRAMBLER_NONE |
 832				SOR_DP_TPG_PATTERN_TRAIN1;
 833			break;
 834
 835		case DP_TRAINING_PATTERN_2:
 836			value = SOR_DP_TPG_SCRAMBLER_NONE |
 837				SOR_DP_TPG_PATTERN_TRAIN2;
 838			break;
 839
 840		case DP_TRAINING_PATTERN_3:
 841			value = SOR_DP_TPG_SCRAMBLER_NONE |
 842				SOR_DP_TPG_PATTERN_TRAIN3;
 843			break;
 844
 845		default:
 846			return -EINVAL;
 847		}
 848
 849		if (link->caps.channel_coding)
 850			value |= SOR_DP_TPG_CHANNEL_CODING;
 851
 852		pattern = pattern << 8 | value;
 853	}
 854
 855	tegra_sor_writel(sor, voltage_swing, SOR_LANE_DRIVE_CURRENT0);
 856	tegra_sor_writel(sor, pre_emphasis, SOR_LANE_PREEMPHASIS0);
 857
 858	if (link->caps.tps3_supported)
 859		tegra_sor_writel(sor, post_cursor, SOR_LANE_POSTCURSOR0);
 860
 861	tegra_sor_writel(sor, pattern, SOR_DP_TPG);
 862
 863	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
 864	value &= ~SOR_DP_PADCTL_TX_PU_MASK;
 865	value |= SOR_DP_PADCTL_TX_PU_ENABLE;
 866	value |= SOR_DP_PADCTL_TX_PU(tx_pu);
 867	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
 868
 869	usleep_range(20, 100);
 870
 871	return 0;
 872}
 873
 874static int tegra_sor_dp_link_configure(struct drm_dp_link *link)
 875{
 876	struct tegra_sor *sor = container_of(link, struct tegra_sor, link);
 877	unsigned int rate, lanes;
 878	u32 value;
 879	int err;
 880
 881	rate = drm_dp_link_rate_to_bw_code(link->rate);
 882	lanes = link->lanes;
 883
 884	/* configure link speed and lane count */
 885	value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
 886	value &= ~SOR_CLK_CNTRL_DP_LINK_SPEED_MASK;
 887	value |= SOR_CLK_CNTRL_DP_LINK_SPEED(rate);
 888	tegra_sor_writel(sor, value, SOR_CLK_CNTRL);
 889
 890	value = tegra_sor_readl(sor, SOR_DP_LINKCTL0);
 891	value &= ~SOR_DP_LINKCTL_LANE_COUNT_MASK;
 892	value |= SOR_DP_LINKCTL_LANE_COUNT(lanes);
 893
 894	if (link->caps.enhanced_framing)
 895		value |= SOR_DP_LINKCTL_ENHANCED_FRAME;
 896
 897	tegra_sor_writel(sor, value, SOR_DP_LINKCTL0);
 898
 899	usleep_range(400, 1000);
 900
 901	/* configure load pulse position adjustment */
 902	value = tegra_sor_readl(sor, sor->soc->regs->pll1);
 903	value &= ~SOR_PLL1_LOADADJ_MASK;
 904
 905	switch (rate) {
 906	case DP_LINK_BW_1_62:
 907		value |= SOR_PLL1_LOADADJ(0x3);
 908		break;
 909
 910	case DP_LINK_BW_2_7:
 911		value |= SOR_PLL1_LOADADJ(0x4);
 912		break;
 913
 914	case DP_LINK_BW_5_4:
 915		value |= SOR_PLL1_LOADADJ(0x6);
 916		break;
 917	}
 918
 919	tegra_sor_writel(sor, value, sor->soc->regs->pll1);
 920
 921	/* use alternate scrambler reset for eDP */
 922	value = tegra_sor_readl(sor, SOR_DP_SPARE0);
 923
 924	if (link->edp == 0)
 925		value &= ~SOR_DP_SPARE_PANEL_INTERNAL;
 926	else
 927		value |= SOR_DP_SPARE_PANEL_INTERNAL;
 928
 929	tegra_sor_writel(sor, value, SOR_DP_SPARE0);
 930
 931	err = tegra_sor_power_down_lanes(sor);
 932	if (err < 0) {
 933		dev_err(sor->dev, "failed to power down lanes: %d\n", err);
 934		return err;
 935	}
 936
 937	/* power up and pre-charge lanes */
 938	err = tegra_sor_power_up_lanes(sor, lanes);
 939	if (err < 0) {
 940		dev_err(sor->dev, "failed to power up %u lane%s: %d\n",
 941			lanes, (lanes != 1) ? "s" : "", err);
 942		return err;
 943	}
 944
 945	tegra_sor_dp_precharge(sor, lanes);
 946
 947	return 0;
 948}
 949
 950static const struct drm_dp_link_ops tegra_sor_dp_link_ops = {
 951	.apply_training = tegra_sor_dp_link_apply_training,
 952	.configure = tegra_sor_dp_link_configure,
 953};
 954
 955static void tegra_sor_super_update(struct tegra_sor *sor)
 956{
 957	tegra_sor_writel(sor, 0, SOR_SUPER_STATE0);
 958	tegra_sor_writel(sor, 1, SOR_SUPER_STATE0);
 959	tegra_sor_writel(sor, 0, SOR_SUPER_STATE0);
 960}
 961
 962static void tegra_sor_update(struct tegra_sor *sor)
 963{
 964	tegra_sor_writel(sor, 0, SOR_STATE0);
 965	tegra_sor_writel(sor, 1, SOR_STATE0);
 966	tegra_sor_writel(sor, 0, SOR_STATE0);
 967}
 968
 969static int tegra_sor_setup_pwm(struct tegra_sor *sor, unsigned long timeout)
 970{
 971	u32 value;
 972
 973	value = tegra_sor_readl(sor, SOR_PWM_DIV);
 974	value &= ~SOR_PWM_DIV_MASK;
 975	value |= 0x400; /* period */
 976	tegra_sor_writel(sor, value, SOR_PWM_DIV);
 977
 978	value = tegra_sor_readl(sor, SOR_PWM_CTL);
 979	value &= ~SOR_PWM_CTL_DUTY_CYCLE_MASK;
 980	value |= 0x400; /* duty cycle */
 981	value &= ~SOR_PWM_CTL_CLK_SEL; /* clock source: PCLK */
 982	value |= SOR_PWM_CTL_TRIGGER;
 983	tegra_sor_writel(sor, value, SOR_PWM_CTL);
 984
 985	timeout = jiffies + msecs_to_jiffies(timeout);
 986
 987	while (time_before(jiffies, timeout)) {
 988		value = tegra_sor_readl(sor, SOR_PWM_CTL);
 989		if ((value & SOR_PWM_CTL_TRIGGER) == 0)
 990			return 0;
 991
 992		usleep_range(25, 100);
 993	}
 994
 995	return -ETIMEDOUT;
 996}
 997
 998static int tegra_sor_attach(struct tegra_sor *sor)
 999{
1000	unsigned long value, timeout;
1001
1002	/* wake up in normal mode */
1003	value = tegra_sor_readl(sor, SOR_SUPER_STATE1);
1004	value |= SOR_SUPER_STATE_HEAD_MODE_AWAKE;
1005	value |= SOR_SUPER_STATE_MODE_NORMAL;
1006	tegra_sor_writel(sor, value, SOR_SUPER_STATE1);
1007	tegra_sor_super_update(sor);
1008
1009	/* attach */
1010	value = tegra_sor_readl(sor, SOR_SUPER_STATE1);
1011	value |= SOR_SUPER_STATE_ATTACHED;
1012	tegra_sor_writel(sor, value, SOR_SUPER_STATE1);
1013	tegra_sor_super_update(sor);
1014
1015	timeout = jiffies + msecs_to_jiffies(250);
1016
1017	while (time_before(jiffies, timeout)) {
1018		value = tegra_sor_readl(sor, SOR_TEST);
1019		if ((value & SOR_TEST_ATTACHED) != 0)
1020			return 0;
1021
1022		usleep_range(25, 100);
1023	}
1024
1025	return -ETIMEDOUT;
1026}
1027
1028static int tegra_sor_wakeup(struct tegra_sor *sor)
1029{
1030	unsigned long value, timeout;
1031
1032	timeout = jiffies + msecs_to_jiffies(250);
1033
1034	/* wait for head to wake up */
1035	while (time_before(jiffies, timeout)) {
1036		value = tegra_sor_readl(sor, SOR_TEST);
1037		value &= SOR_TEST_HEAD_MODE_MASK;
1038
1039		if (value == SOR_TEST_HEAD_MODE_AWAKE)
1040			return 0;
1041
1042		usleep_range(25, 100);
1043	}
1044
1045	return -ETIMEDOUT;
1046}
1047
1048static int tegra_sor_power_up(struct tegra_sor *sor, unsigned long timeout)
1049{
1050	u32 value;
1051
1052	value = tegra_sor_readl(sor, SOR_PWR);
1053	value |= SOR_PWR_TRIGGER | SOR_PWR_NORMAL_STATE_PU;
1054	tegra_sor_writel(sor, value, SOR_PWR);
1055
1056	timeout = jiffies + msecs_to_jiffies(timeout);
1057
1058	while (time_before(jiffies, timeout)) {
1059		value = tegra_sor_readl(sor, SOR_PWR);
1060		if ((value & SOR_PWR_TRIGGER) == 0)
1061			return 0;
1062
1063		usleep_range(25, 100);
1064	}
1065
1066	return -ETIMEDOUT;
1067}
1068
1069struct tegra_sor_params {
1070	/* number of link clocks per line */
1071	unsigned int num_clocks;
1072	/* ratio between input and output */
1073	u64 ratio;
1074	/* precision factor */
1075	u64 precision;
1076
1077	unsigned int active_polarity;
1078	unsigned int active_count;
1079	unsigned int active_frac;
1080	unsigned int tu_size;
1081	unsigned int error;
1082};
1083
1084static int tegra_sor_compute_params(struct tegra_sor *sor,
1085				    struct tegra_sor_params *params,
1086				    unsigned int tu_size)
1087{
1088	u64 active_sym, active_count, frac, approx;
1089	u32 active_polarity, active_frac = 0;
1090	const u64 f = params->precision;
1091	s64 error;
1092
1093	active_sym = params->ratio * tu_size;
1094	active_count = div_u64(active_sym, f) * f;
1095	frac = active_sym - active_count;
1096
1097	/* fraction < 0.5 */
1098	if (frac >= (f / 2)) {
1099		active_polarity = 1;
1100		frac = f - frac;
1101	} else {
1102		active_polarity = 0;
1103	}
1104
1105	if (frac != 0) {
1106		frac = div_u64(f * f,  frac); /* 1/fraction */
1107		if (frac <= (15 * f)) {
1108			active_frac = div_u64(frac, f);
1109
1110			/* round up */
1111			if (active_polarity)
1112				active_frac++;
1113		} else {
1114			active_frac = active_polarity ? 1 : 15;
1115		}
1116	}
1117
1118	if (active_frac == 1)
1119		active_polarity = 0;
1120
1121	if (active_polarity == 1) {
1122		if (active_frac) {
1123			approx = active_count + (active_frac * (f - 1)) * f;
1124			approx = div_u64(approx, active_frac * f);
1125		} else {
1126			approx = active_count + f;
1127		}
1128	} else {
1129		if (active_frac)
1130			approx = active_count + div_u64(f, active_frac);
1131		else
1132			approx = active_count;
1133	}
1134
1135	error = div_s64(active_sym - approx, tu_size);
1136	error *= params->num_clocks;
1137
1138	if (error <= 0 && abs(error) < params->error) {
1139		params->active_count = div_u64(active_count, f);
1140		params->active_polarity = active_polarity;
1141		params->active_frac = active_frac;
1142		params->error = abs(error);
1143		params->tu_size = tu_size;
1144
1145		if (error == 0)
1146			return true;
1147	}
1148
1149	return false;
1150}
1151
1152static int tegra_sor_compute_config(struct tegra_sor *sor,
1153				    const struct drm_display_mode *mode,
1154				    struct tegra_sor_config *config,
1155				    struct drm_dp_link *link)
1156{
1157	const u64 f = 100000, link_rate = link->rate * 1000;
1158	const u64 pclk = (u64)mode->clock * 1000;
1159	u64 input, output, watermark, num;
1160	struct tegra_sor_params params;
1161	u32 num_syms_per_line;
1162	unsigned int i;
1163
1164	if (!link_rate || !link->lanes || !pclk || !config->bits_per_pixel)
1165		return -EINVAL;
1166
1167	input = pclk * config->bits_per_pixel;
1168	output = link_rate * 8 * link->lanes;
1169
1170	if (input >= output)
1171		return -ERANGE;
1172
1173	memset(&params, 0, sizeof(params));
1174	params.ratio = div64_u64(input * f, output);
1175	params.num_clocks = div_u64(link_rate * mode->hdisplay, pclk);
1176	params.precision = f;
1177	params.error = 64 * f;
1178	params.tu_size = 64;
1179
1180	for (i = params.tu_size; i >= 32; i--)
1181		if (tegra_sor_compute_params(sor, &params, i))
1182			break;
1183
1184	if (params.active_frac == 0) {
1185		config->active_polarity = 0;
1186		config->active_count = params.active_count;
1187
1188		if (!params.active_polarity)
1189			config->active_count--;
1190
1191		config->tu_size = params.tu_size;
1192		config->active_frac = 1;
1193	} else {
1194		config->active_polarity = params.active_polarity;
1195		config->active_count = params.active_count;
1196		config->active_frac = params.active_frac;
1197		config->tu_size = params.tu_size;
1198	}
1199
1200	dev_dbg(sor->dev,
1201		"polarity: %d active count: %d tu size: %d active frac: %d\n",
1202		config->active_polarity, config->active_count,
1203		config->tu_size, config->active_frac);
1204
1205	watermark = params.ratio * config->tu_size * (f - params.ratio);
1206	watermark = div_u64(watermark, f);
1207
1208	watermark = div_u64(watermark + params.error, f);
1209	config->watermark = watermark + (config->bits_per_pixel / 8) + 2;
1210	num_syms_per_line = (mode->hdisplay * config->bits_per_pixel) *
1211			    (link->lanes * 8);
1212
1213	if (config->watermark > 30) {
1214		config->watermark = 30;
1215		dev_err(sor->dev,
1216			"unable to compute TU size, forcing watermark to %u\n",
1217			config->watermark);
1218	} else if (config->watermark > num_syms_per_line) {
1219		config->watermark = num_syms_per_line;
1220		dev_err(sor->dev, "watermark too high, forcing to %u\n",
1221			config->watermark);
1222	}
1223
1224	/* compute the number of symbols per horizontal blanking interval */
1225	num = ((mode->htotal - mode->hdisplay) - 7) * link_rate;
1226	config->hblank_symbols = div_u64(num, pclk);
1227
1228	if (link->caps.enhanced_framing)
1229		config->hblank_symbols -= 3;
1230
1231	config->hblank_symbols -= 12 / link->lanes;
1232
1233	/* compute the number of symbols per vertical blanking interval */
1234	num = (mode->hdisplay - 25) * link_rate;
1235	config->vblank_symbols = div_u64(num, pclk);
1236	config->vblank_symbols -= 36 / link->lanes + 4;
1237
1238	dev_dbg(sor->dev, "blank symbols: H:%u V:%u\n", config->hblank_symbols,
1239		config->vblank_symbols);
1240
1241	return 0;
1242}
1243
1244static void tegra_sor_apply_config(struct tegra_sor *sor,
1245				   const struct tegra_sor_config *config)
1246{
1247	u32 value;
1248
1249	value = tegra_sor_readl(sor, SOR_DP_LINKCTL0);
1250	value &= ~SOR_DP_LINKCTL_TU_SIZE_MASK;
1251	value |= SOR_DP_LINKCTL_TU_SIZE(config->tu_size);
1252	tegra_sor_writel(sor, value, SOR_DP_LINKCTL0);
1253
1254	value = tegra_sor_readl(sor, SOR_DP_CONFIG0);
1255	value &= ~SOR_DP_CONFIG_WATERMARK_MASK;
1256	value |= SOR_DP_CONFIG_WATERMARK(config->watermark);
1257
1258	value &= ~SOR_DP_CONFIG_ACTIVE_SYM_COUNT_MASK;
1259	value |= SOR_DP_CONFIG_ACTIVE_SYM_COUNT(config->active_count);
1260
1261	value &= ~SOR_DP_CONFIG_ACTIVE_SYM_FRAC_MASK;
1262	value |= SOR_DP_CONFIG_ACTIVE_SYM_FRAC(config->active_frac);
1263
1264	if (config->active_polarity)
1265		value |= SOR_DP_CONFIG_ACTIVE_SYM_POLARITY;
1266	else
1267		value &= ~SOR_DP_CONFIG_ACTIVE_SYM_POLARITY;
1268
1269	value |= SOR_DP_CONFIG_ACTIVE_SYM_ENABLE;
1270	value |= SOR_DP_CONFIG_DISPARITY_NEGATIVE;
1271	tegra_sor_writel(sor, value, SOR_DP_CONFIG0);
1272
1273	value = tegra_sor_readl(sor, SOR_DP_AUDIO_HBLANK_SYMBOLS);
1274	value &= ~SOR_DP_AUDIO_HBLANK_SYMBOLS_MASK;
1275	value |= config->hblank_symbols & 0xffff;
1276	tegra_sor_writel(sor, value, SOR_DP_AUDIO_HBLANK_SYMBOLS);
1277
1278	value = tegra_sor_readl(sor, SOR_DP_AUDIO_VBLANK_SYMBOLS);
1279	value &= ~SOR_DP_AUDIO_VBLANK_SYMBOLS_MASK;
1280	value |= config->vblank_symbols & 0xffff;
1281	tegra_sor_writel(sor, value, SOR_DP_AUDIO_VBLANK_SYMBOLS);
1282}
1283
1284static void tegra_sor_mode_set(struct tegra_sor *sor,
1285			       const struct drm_display_mode *mode,
1286			       struct tegra_sor_state *state)
1287{
1288	struct tegra_dc *dc = to_tegra_dc(sor->output.encoder.crtc);
1289	unsigned int vbe, vse, hbe, hse, vbs, hbs;
1290	u32 value;
1291
1292	value = tegra_sor_readl(sor, SOR_STATE1);
1293	value &= ~SOR_STATE_ASY_PIXELDEPTH_MASK;
1294	value &= ~SOR_STATE_ASY_CRC_MODE_MASK;
1295	value &= ~SOR_STATE_ASY_OWNER_MASK;
1296
1297	value |= SOR_STATE_ASY_CRC_MODE_COMPLETE |
1298		 SOR_STATE_ASY_OWNER(dc->pipe + 1);
1299
1300	if (mode->flags & DRM_MODE_FLAG_PHSYNC)
1301		value &= ~SOR_STATE_ASY_HSYNCPOL;
1302
1303	if (mode->flags & DRM_MODE_FLAG_NHSYNC)
1304		value |= SOR_STATE_ASY_HSYNCPOL;
1305
1306	if (mode->flags & DRM_MODE_FLAG_PVSYNC)
1307		value &= ~SOR_STATE_ASY_VSYNCPOL;
1308
1309	if (mode->flags & DRM_MODE_FLAG_NVSYNC)
1310		value |= SOR_STATE_ASY_VSYNCPOL;
1311
1312	switch (state->bpc) {
1313	case 16:
1314		value |= SOR_STATE_ASY_PIXELDEPTH_BPP_48_444;
1315		break;
1316
1317	case 12:
1318		value |= SOR_STATE_ASY_PIXELDEPTH_BPP_36_444;
1319		break;
1320
1321	case 10:
1322		value |= SOR_STATE_ASY_PIXELDEPTH_BPP_30_444;
1323		break;
1324
1325	case 8:
1326		value |= SOR_STATE_ASY_PIXELDEPTH_BPP_24_444;
1327		break;
1328
1329	case 6:
1330		value |= SOR_STATE_ASY_PIXELDEPTH_BPP_18_444;
1331		break;
1332
1333	default:
1334		value |= SOR_STATE_ASY_PIXELDEPTH_BPP_24_444;
1335		break;
1336	}
1337
1338	tegra_sor_writel(sor, value, SOR_STATE1);
1339
1340	/*
1341	 * TODO: The video timing programming below doesn't seem to match the
1342	 * register definitions.
1343	 */
1344
1345	value = ((mode->vtotal & 0x7fff) << 16) | (mode->htotal & 0x7fff);
1346	tegra_sor_writel(sor, value, sor->soc->regs->head_state1 + dc->pipe);
1347
1348	/* sync end = sync width - 1 */
1349	vse = mode->vsync_end - mode->vsync_start - 1;
1350	hse = mode->hsync_end - mode->hsync_start - 1;
1351
1352	value = ((vse & 0x7fff) << 16) | (hse & 0x7fff);
1353	tegra_sor_writel(sor, value, sor->soc->regs->head_state2 + dc->pipe);
1354
1355	/* blank end = sync end + back porch */
1356	vbe = vse + (mode->vtotal - mode->vsync_end);
1357	hbe = hse + (mode->htotal - mode->hsync_end);
1358
1359	value = ((vbe & 0x7fff) << 16) | (hbe & 0x7fff);
1360	tegra_sor_writel(sor, value, sor->soc->regs->head_state3 + dc->pipe);
1361
1362	/* blank start = blank end + active */
1363	vbs = vbe + mode->vdisplay;
1364	hbs = hbe + mode->hdisplay;
1365
1366	value = ((vbs & 0x7fff) << 16) | (hbs & 0x7fff);
1367	tegra_sor_writel(sor, value, sor->soc->regs->head_state4 + dc->pipe);
1368
1369	/* XXX interlacing support */
1370	tegra_sor_writel(sor, 0x001, sor->soc->regs->head_state5 + dc->pipe);
1371}
1372
1373static int tegra_sor_detach(struct tegra_sor *sor)
1374{
1375	unsigned long value, timeout;
1376
1377	/* switch to safe mode */
1378	value = tegra_sor_readl(sor, SOR_SUPER_STATE1);
1379	value &= ~SOR_SUPER_STATE_MODE_NORMAL;
1380	tegra_sor_writel(sor, value, SOR_SUPER_STATE1);
1381	tegra_sor_super_update(sor);
1382
1383	timeout = jiffies + msecs_to_jiffies(250);
1384
1385	while (time_before(jiffies, timeout)) {
1386		value = tegra_sor_readl(sor, SOR_PWR);
1387		if (value & SOR_PWR_MODE_SAFE)
1388			break;
1389	}
1390
1391	if ((value & SOR_PWR_MODE_SAFE) == 0)
1392		return -ETIMEDOUT;
1393
1394	/* go to sleep */
1395	value = tegra_sor_readl(sor, SOR_SUPER_STATE1);
1396	value &= ~SOR_SUPER_STATE_HEAD_MODE_MASK;
1397	tegra_sor_writel(sor, value, SOR_SUPER_STATE1);
1398	tegra_sor_super_update(sor);
1399
1400	/* detach */
1401	value = tegra_sor_readl(sor, SOR_SUPER_STATE1);
1402	value &= ~SOR_SUPER_STATE_ATTACHED;
1403	tegra_sor_writel(sor, value, SOR_SUPER_STATE1);
1404	tegra_sor_super_update(sor);
1405
1406	timeout = jiffies + msecs_to_jiffies(250);
1407
1408	while (time_before(jiffies, timeout)) {
1409		value = tegra_sor_readl(sor, SOR_TEST);
1410		if ((value & SOR_TEST_ATTACHED) == 0)
1411			break;
1412
1413		usleep_range(25, 100);
1414	}
1415
1416	if ((value & SOR_TEST_ATTACHED) != 0)
1417		return -ETIMEDOUT;
1418
1419	return 0;
1420}
1421
1422static int tegra_sor_power_down(struct tegra_sor *sor)
1423{
1424	unsigned long value, timeout;
1425	int err;
1426
1427	value = tegra_sor_readl(sor, SOR_PWR);
1428	value &= ~SOR_PWR_NORMAL_STATE_PU;
1429	value |= SOR_PWR_TRIGGER;
1430	tegra_sor_writel(sor, value, SOR_PWR);
1431
1432	timeout = jiffies + msecs_to_jiffies(250);
1433
1434	while (time_before(jiffies, timeout)) {
1435		value = tegra_sor_readl(sor, SOR_PWR);
1436		if ((value & SOR_PWR_TRIGGER) == 0)
1437			return 0;
1438
1439		usleep_range(25, 100);
1440	}
1441
1442	if ((value & SOR_PWR_TRIGGER) != 0)
1443		return -ETIMEDOUT;
1444
1445	/* switch to safe parent clock */
1446	err = tegra_sor_set_parent_clock(sor, sor->clk_safe);
1447	if (err < 0) {
1448		dev_err(sor->dev, "failed to set safe parent clock: %d\n", err);
1449		return err;
1450	}
1451
1452	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
1453	value |= SOR_PLL2_PORT_POWERDOWN;
1454	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
1455
1456	usleep_range(20, 100);
1457
1458	value = tegra_sor_readl(sor, sor->soc->regs->pll0);
1459	value |= SOR_PLL0_VCOPD | SOR_PLL0_PWR;
1460	tegra_sor_writel(sor, value, sor->soc->regs->pll0);
1461
1462	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
1463	value |= SOR_PLL2_SEQ_PLLCAPPD;
1464	value |= SOR_PLL2_SEQ_PLLCAPPD_ENFORCE;
1465	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
1466
1467	usleep_range(20, 100);
1468
1469	return 0;
1470}
1471
1472static int tegra_sor_crc_wait(struct tegra_sor *sor, unsigned long timeout)
1473{
1474	u32 value;
1475
1476	timeout = jiffies + msecs_to_jiffies(timeout);
1477
1478	while (time_before(jiffies, timeout)) {
1479		value = tegra_sor_readl(sor, SOR_CRCA);
1480		if (value & SOR_CRCA_VALID)
1481			return 0;
1482
1483		usleep_range(100, 200);
1484	}
1485
1486	return -ETIMEDOUT;
1487}
1488
1489static int tegra_sor_show_crc(struct seq_file *s, void *data)
1490{
1491	struct drm_info_node *node = s->private;
1492	struct tegra_sor *sor = node->info_ent->data;
1493	struct drm_crtc *crtc = sor->output.encoder.crtc;
1494	struct drm_device *drm = node->minor->dev;
1495	int err = 0;
1496	u32 value;
1497
1498	drm_modeset_lock_all(drm);
1499
1500	if (!crtc || !crtc->state->active) {
1501		err = -EBUSY;
1502		goto unlock;
1503	}
1504
1505	value = tegra_sor_readl(sor, SOR_STATE1);
1506	value &= ~SOR_STATE_ASY_CRC_MODE_MASK;
1507	tegra_sor_writel(sor, value, SOR_STATE1);
1508
1509	value = tegra_sor_readl(sor, SOR_CRC_CNTRL);
1510	value |= SOR_CRC_CNTRL_ENABLE;
1511	tegra_sor_writel(sor, value, SOR_CRC_CNTRL);
1512
1513	value = tegra_sor_readl(sor, SOR_TEST);
1514	value &= ~SOR_TEST_CRC_POST_SERIALIZE;
1515	tegra_sor_writel(sor, value, SOR_TEST);
1516
1517	err = tegra_sor_crc_wait(sor, 100);
1518	if (err < 0)
1519		goto unlock;
1520
1521	tegra_sor_writel(sor, SOR_CRCA_RESET, SOR_CRCA);
1522	value = tegra_sor_readl(sor, SOR_CRCB);
1523
1524	seq_printf(s, "%08x\n", value);
1525
1526unlock:
1527	drm_modeset_unlock_all(drm);
1528	return err;
1529}
1530
1531#define DEBUGFS_REG32(_name) { .name = #_name, .offset = _name }
1532
1533static const struct debugfs_reg32 tegra_sor_regs[] = {
1534	DEBUGFS_REG32(SOR_CTXSW),
1535	DEBUGFS_REG32(SOR_SUPER_STATE0),
1536	DEBUGFS_REG32(SOR_SUPER_STATE1),
1537	DEBUGFS_REG32(SOR_STATE0),
1538	DEBUGFS_REG32(SOR_STATE1),
1539	DEBUGFS_REG32(SOR_HEAD_STATE0(0)),
1540	DEBUGFS_REG32(SOR_HEAD_STATE0(1)),
1541	DEBUGFS_REG32(SOR_HEAD_STATE1(0)),
1542	DEBUGFS_REG32(SOR_HEAD_STATE1(1)),
1543	DEBUGFS_REG32(SOR_HEAD_STATE2(0)),
1544	DEBUGFS_REG32(SOR_HEAD_STATE2(1)),
1545	DEBUGFS_REG32(SOR_HEAD_STATE3(0)),
1546	DEBUGFS_REG32(SOR_HEAD_STATE3(1)),
1547	DEBUGFS_REG32(SOR_HEAD_STATE4(0)),
1548	DEBUGFS_REG32(SOR_HEAD_STATE4(1)),
1549	DEBUGFS_REG32(SOR_HEAD_STATE5(0)),
1550	DEBUGFS_REG32(SOR_HEAD_STATE5(1)),
1551	DEBUGFS_REG32(SOR_CRC_CNTRL),
1552	DEBUGFS_REG32(SOR_DP_DEBUG_MVID),
1553	DEBUGFS_REG32(SOR_CLK_CNTRL),
1554	DEBUGFS_REG32(SOR_CAP),
1555	DEBUGFS_REG32(SOR_PWR),
1556	DEBUGFS_REG32(SOR_TEST),
1557	DEBUGFS_REG32(SOR_PLL0),
1558	DEBUGFS_REG32(SOR_PLL1),
1559	DEBUGFS_REG32(SOR_PLL2),
1560	DEBUGFS_REG32(SOR_PLL3),
1561	DEBUGFS_REG32(SOR_CSTM),
1562	DEBUGFS_REG32(SOR_LVDS),
1563	DEBUGFS_REG32(SOR_CRCA),
1564	DEBUGFS_REG32(SOR_CRCB),
1565	DEBUGFS_REG32(SOR_BLANK),
1566	DEBUGFS_REG32(SOR_SEQ_CTL),
1567	DEBUGFS_REG32(SOR_LANE_SEQ_CTL),
1568	DEBUGFS_REG32(SOR_SEQ_INST(0)),
1569	DEBUGFS_REG32(SOR_SEQ_INST(1)),
1570	DEBUGFS_REG32(SOR_SEQ_INST(2)),
1571	DEBUGFS_REG32(SOR_SEQ_INST(3)),
1572	DEBUGFS_REG32(SOR_SEQ_INST(4)),
1573	DEBUGFS_REG32(SOR_SEQ_INST(5)),
1574	DEBUGFS_REG32(SOR_SEQ_INST(6)),
1575	DEBUGFS_REG32(SOR_SEQ_INST(7)),
1576	DEBUGFS_REG32(SOR_SEQ_INST(8)),
1577	DEBUGFS_REG32(SOR_SEQ_INST(9)),
1578	DEBUGFS_REG32(SOR_SEQ_INST(10)),
1579	DEBUGFS_REG32(SOR_SEQ_INST(11)),
1580	DEBUGFS_REG32(SOR_SEQ_INST(12)),
1581	DEBUGFS_REG32(SOR_SEQ_INST(13)),
1582	DEBUGFS_REG32(SOR_SEQ_INST(14)),
1583	DEBUGFS_REG32(SOR_SEQ_INST(15)),
1584	DEBUGFS_REG32(SOR_PWM_DIV),
1585	DEBUGFS_REG32(SOR_PWM_CTL),
1586	DEBUGFS_REG32(SOR_VCRC_A0),
1587	DEBUGFS_REG32(SOR_VCRC_A1),
1588	DEBUGFS_REG32(SOR_VCRC_B0),
1589	DEBUGFS_REG32(SOR_VCRC_B1),
1590	DEBUGFS_REG32(SOR_CCRC_A0),
1591	DEBUGFS_REG32(SOR_CCRC_A1),
1592	DEBUGFS_REG32(SOR_CCRC_B0),
1593	DEBUGFS_REG32(SOR_CCRC_B1),
1594	DEBUGFS_REG32(SOR_EDATA_A0),
1595	DEBUGFS_REG32(SOR_EDATA_A1),
1596	DEBUGFS_REG32(SOR_EDATA_B0),
1597	DEBUGFS_REG32(SOR_EDATA_B1),
1598	DEBUGFS_REG32(SOR_COUNT_A0),
1599	DEBUGFS_REG32(SOR_COUNT_A1),
1600	DEBUGFS_REG32(SOR_COUNT_B0),
1601	DEBUGFS_REG32(SOR_COUNT_B1),
1602	DEBUGFS_REG32(SOR_DEBUG_A0),
1603	DEBUGFS_REG32(SOR_DEBUG_A1),
1604	DEBUGFS_REG32(SOR_DEBUG_B0),
1605	DEBUGFS_REG32(SOR_DEBUG_B1),
1606	DEBUGFS_REG32(SOR_TRIG),
1607	DEBUGFS_REG32(SOR_MSCHECK),
1608	DEBUGFS_REG32(SOR_XBAR_CTRL),
1609	DEBUGFS_REG32(SOR_XBAR_POL),
1610	DEBUGFS_REG32(SOR_DP_LINKCTL0),
1611	DEBUGFS_REG32(SOR_DP_LINKCTL1),
1612	DEBUGFS_REG32(SOR_LANE_DRIVE_CURRENT0),
1613	DEBUGFS_REG32(SOR_LANE_DRIVE_CURRENT1),
1614	DEBUGFS_REG32(SOR_LANE4_DRIVE_CURRENT0),
1615	DEBUGFS_REG32(SOR_LANE4_DRIVE_CURRENT1),
1616	DEBUGFS_REG32(SOR_LANE_PREEMPHASIS0),
1617	DEBUGFS_REG32(SOR_LANE_PREEMPHASIS1),
1618	DEBUGFS_REG32(SOR_LANE4_PREEMPHASIS0),
1619	DEBUGFS_REG32(SOR_LANE4_PREEMPHASIS1),
1620	DEBUGFS_REG32(SOR_LANE_POSTCURSOR0),
1621	DEBUGFS_REG32(SOR_LANE_POSTCURSOR1),
1622	DEBUGFS_REG32(SOR_DP_CONFIG0),
1623	DEBUGFS_REG32(SOR_DP_CONFIG1),
1624	DEBUGFS_REG32(SOR_DP_MN0),
1625	DEBUGFS_REG32(SOR_DP_MN1),
1626	DEBUGFS_REG32(SOR_DP_PADCTL0),
1627	DEBUGFS_REG32(SOR_DP_PADCTL1),
1628	DEBUGFS_REG32(SOR_DP_PADCTL2),
1629	DEBUGFS_REG32(SOR_DP_DEBUG0),
1630	DEBUGFS_REG32(SOR_DP_DEBUG1),
1631	DEBUGFS_REG32(SOR_DP_SPARE0),
1632	DEBUGFS_REG32(SOR_DP_SPARE1),
1633	DEBUGFS_REG32(SOR_DP_AUDIO_CTRL),
1634	DEBUGFS_REG32(SOR_DP_AUDIO_HBLANK_SYMBOLS),
1635	DEBUGFS_REG32(SOR_DP_AUDIO_VBLANK_SYMBOLS),
1636	DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_HEADER),
1637	DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK0),
1638	DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK1),
1639	DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK2),
1640	DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK3),
1641	DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK4),
1642	DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK5),
1643	DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK6),
1644	DEBUGFS_REG32(SOR_DP_TPG),
1645	DEBUGFS_REG32(SOR_DP_TPG_CONFIG),
1646	DEBUGFS_REG32(SOR_DP_LQ_CSTM0),
1647	DEBUGFS_REG32(SOR_DP_LQ_CSTM1),
1648	DEBUGFS_REG32(SOR_DP_LQ_CSTM2),
1649};
1650
1651static int tegra_sor_show_regs(struct seq_file *s, void *data)
1652{
1653	struct drm_info_node *node = s->private;
1654	struct tegra_sor *sor = node->info_ent->data;
1655	struct drm_crtc *crtc = sor->output.encoder.crtc;
1656	struct drm_device *drm = node->minor->dev;
1657	unsigned int i;
1658	int err = 0;
1659
1660	drm_modeset_lock_all(drm);
1661
1662	if (!crtc || !crtc->state->active) {
1663		err = -EBUSY;
1664		goto unlock;
1665	}
1666
1667	for (i = 0; i < ARRAY_SIZE(tegra_sor_regs); i++) {
1668		unsigned int offset = tegra_sor_regs[i].offset;
1669
1670		seq_printf(s, "%-38s %#05x %08x\n", tegra_sor_regs[i].name,
1671			   offset, tegra_sor_readl(sor, offset));
1672	}
1673
1674unlock:
1675	drm_modeset_unlock_all(drm);
1676	return err;
1677}
1678
1679static const struct drm_info_list debugfs_files[] = {
1680	{ "crc", tegra_sor_show_crc, 0, NULL },
1681	{ "regs", tegra_sor_show_regs, 0, NULL },
1682};
1683
1684static int tegra_sor_late_register(struct drm_connector *connector)
1685{
1686	struct tegra_output *output = connector_to_output(connector);
1687	unsigned int i, count = ARRAY_SIZE(debugfs_files);
1688	struct drm_minor *minor = connector->dev->primary;
1689	struct dentry *root = connector->debugfs_entry;
1690	struct tegra_sor *sor = to_sor(output);
1691
1692	sor->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1693				     GFP_KERNEL);
1694	if (!sor->debugfs_files)
1695		return -ENOMEM;
1696
1697	for (i = 0; i < count; i++)
1698		sor->debugfs_files[i].data = sor;
1699
1700	drm_debugfs_create_files(sor->debugfs_files, count, root, minor);
1701
1702	return 0;
1703}
1704
1705static void tegra_sor_early_unregister(struct drm_connector *connector)
1706{
1707	struct tegra_output *output = connector_to_output(connector);
1708	unsigned int count = ARRAY_SIZE(debugfs_files);
1709	struct tegra_sor *sor = to_sor(output);
1710
1711	drm_debugfs_remove_files(sor->debugfs_files, count,
1712				 connector->debugfs_entry,
1713				 connector->dev->primary);
1714	kfree(sor->debugfs_files);
1715	sor->debugfs_files = NULL;
1716}
1717
1718static void tegra_sor_connector_reset(struct drm_connector *connector)
1719{
1720	struct tegra_sor_state *state;
1721
1722	state = kzalloc(sizeof(*state), GFP_KERNEL);
1723	if (!state)
1724		return;
1725
1726	if (connector->state) {
1727		__drm_atomic_helper_connector_destroy_state(connector->state);
1728		kfree(connector->state);
1729	}
1730
1731	__drm_atomic_helper_connector_reset(connector, &state->base);
1732}
1733
1734static enum drm_connector_status
1735tegra_sor_connector_detect(struct drm_connector *connector, bool force)
1736{
1737	struct tegra_output *output = connector_to_output(connector);
1738	struct tegra_sor *sor = to_sor(output);
1739
1740	if (sor->aux)
1741		return drm_dp_aux_detect(sor->aux);
1742
1743	return tegra_output_connector_detect(connector, force);
1744}
1745
1746static struct drm_connector_state *
1747tegra_sor_connector_duplicate_state(struct drm_connector *connector)
1748{
1749	struct tegra_sor_state *state = to_sor_state(connector->state);
1750	struct tegra_sor_state *copy;
1751
1752	copy = kmemdup(state, sizeof(*state), GFP_KERNEL);
1753	if (!copy)
1754		return NULL;
1755
1756	__drm_atomic_helper_connector_duplicate_state(connector, &copy->base);
1757
1758	return &copy->base;
1759}
1760
1761static const struct drm_connector_funcs tegra_sor_connector_funcs = {
1762	.reset = tegra_sor_connector_reset,
1763	.detect = tegra_sor_connector_detect,
1764	.fill_modes = drm_helper_probe_single_connector_modes,
1765	.destroy = tegra_output_connector_destroy,
1766	.atomic_duplicate_state = tegra_sor_connector_duplicate_state,
1767	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
1768	.late_register = tegra_sor_late_register,
1769	.early_unregister = tegra_sor_early_unregister,
1770};
1771
1772static int tegra_sor_connector_get_modes(struct drm_connector *connector)
1773{
1774	struct tegra_output *output = connector_to_output(connector);
1775	struct tegra_sor *sor = to_sor(output);
1776	int err;
1777
1778	if (sor->aux)
1779		drm_dp_aux_enable(sor->aux);
1780
1781	err = tegra_output_connector_get_modes(connector);
1782
1783	if (sor->aux)
1784		drm_dp_aux_disable(sor->aux);
1785
1786	return err;
1787}
1788
1789static enum drm_mode_status
1790tegra_sor_connector_mode_valid(struct drm_connector *connector,
1791			       struct drm_display_mode *mode)
1792{
1793	return MODE_OK;
1794}
1795
1796static const struct drm_connector_helper_funcs tegra_sor_connector_helper_funcs = {
1797	.get_modes = tegra_sor_connector_get_modes,
1798	.mode_valid = tegra_sor_connector_mode_valid,
1799};
1800
1801static int
1802tegra_sor_encoder_atomic_check(struct drm_encoder *encoder,
1803			       struct drm_crtc_state *crtc_state,
1804			       struct drm_connector_state *conn_state)
1805{
1806	struct tegra_output *output = encoder_to_output(encoder);
1807	struct tegra_sor_state *state = to_sor_state(conn_state);
1808	struct tegra_dc *dc = to_tegra_dc(conn_state->crtc);
1809	unsigned long pclk = crtc_state->mode.clock * 1000;
1810	struct tegra_sor *sor = to_sor(output);
1811	struct drm_display_info *info;
1812	int err;
1813
1814	info = &output->connector.display_info;
1815
1816	/*
1817	 * For HBR2 modes, the SOR brick needs to use the x20 multiplier, so
1818	 * the pixel clock must be corrected accordingly.
1819	 */
1820	if (pclk >= 340000000) {
1821		state->link_speed = 20;
1822		state->pclk = pclk / 2;
1823	} else {
1824		state->link_speed = 10;
1825		state->pclk = pclk;
1826	}
1827
1828	err = tegra_dc_state_setup_clock(dc, crtc_state, sor->clk_parent,
1829					 pclk, 0);
1830	if (err < 0) {
1831		dev_err(output->dev, "failed to setup CRTC state: %d\n", err);
1832		return err;
1833	}
1834
1835	switch (info->bpc) {
1836	case 8:
1837	case 6:
1838		state->bpc = info->bpc;
1839		break;
1840
1841	default:
1842		DRM_DEBUG_KMS("%u bits-per-color not supported\n", info->bpc);
1843		state->bpc = 8;
1844		break;
1845	}
1846
1847	return 0;
1848}
1849
1850static inline u32 tegra_sor_hdmi_subpack(const u8 *ptr, size_t size)
1851{
1852	u32 value = 0;
1853	size_t i;
1854
1855	for (i = size; i > 0; i--)
1856		value = (value << 8) | ptr[i - 1];
1857
1858	return value;
1859}
1860
1861static void tegra_sor_hdmi_write_infopack(struct tegra_sor *sor,
1862					  const void *data, size_t size)
1863{
1864	const u8 *ptr = data;
1865	unsigned long offset;
1866	size_t i, j;
1867	u32 value;
1868
1869	switch (ptr[0]) {
1870	case HDMI_INFOFRAME_TYPE_AVI:
1871		offset = SOR_HDMI_AVI_INFOFRAME_HEADER;
1872		break;
1873
1874	case HDMI_INFOFRAME_TYPE_AUDIO:
1875		offset = SOR_HDMI_AUDIO_INFOFRAME_HEADER;
1876		break;
1877
1878	case HDMI_INFOFRAME_TYPE_VENDOR:
1879		offset = SOR_HDMI_VSI_INFOFRAME_HEADER;
1880		break;
1881
1882	default:
1883		dev_err(sor->dev, "unsupported infoframe type: %02x\n",
1884			ptr[0]);
1885		return;
1886	}
1887
1888	value = INFOFRAME_HEADER_TYPE(ptr[0]) |
1889		INFOFRAME_HEADER_VERSION(ptr[1]) |
1890		INFOFRAME_HEADER_LEN(ptr[2]);
1891	tegra_sor_writel(sor, value, offset);
1892	offset++;
1893
1894	/*
1895	 * Each subpack contains 7 bytes, divided into:
1896	 * - subpack_low: bytes 0 - 3
1897	 * - subpack_high: bytes 4 - 6 (with byte 7 padded to 0x00)
1898	 */
1899	for (i = 3, j = 0; i < size; i += 7, j += 8) {
1900		size_t rem = size - i, num = min_t(size_t, rem, 4);
1901
1902		value = tegra_sor_hdmi_subpack(&ptr[i], num);
1903		tegra_sor_writel(sor, value, offset++);
1904
1905		num = min_t(size_t, rem - num, 3);
1906
1907		value = tegra_sor_hdmi_subpack(&ptr[i + 4], num);
1908		tegra_sor_writel(sor, value, offset++);
1909	}
1910}
1911
1912static int
1913tegra_sor_hdmi_setup_avi_infoframe(struct tegra_sor *sor,
1914				   const struct drm_display_mode *mode)
1915{
1916	u8 buffer[HDMI_INFOFRAME_SIZE(AVI)];
1917	struct hdmi_avi_infoframe frame;
1918	u32 value;
1919	int err;
1920
1921	/* disable AVI infoframe */
1922	value = tegra_sor_readl(sor, SOR_HDMI_AVI_INFOFRAME_CTRL);
1923	value &= ~INFOFRAME_CTRL_SINGLE;
1924	value &= ~INFOFRAME_CTRL_OTHER;
1925	value &= ~INFOFRAME_CTRL_ENABLE;
1926	tegra_sor_writel(sor, value, SOR_HDMI_AVI_INFOFRAME_CTRL);
1927
1928	err = drm_hdmi_avi_infoframe_from_display_mode(&frame,
1929						       &sor->output.connector, mode);
1930	if (err < 0) {
1931		dev_err(sor->dev, "failed to setup AVI infoframe: %d\n", err);
1932		return err;
1933	}
1934
1935	err = hdmi_avi_infoframe_pack(&frame, buffer, sizeof(buffer));
1936	if (err < 0) {
1937		dev_err(sor->dev, "failed to pack AVI infoframe: %d\n", err);
1938		return err;
1939	}
1940
1941	tegra_sor_hdmi_write_infopack(sor, buffer, err);
1942
1943	/* enable AVI infoframe */
1944	value = tegra_sor_readl(sor, SOR_HDMI_AVI_INFOFRAME_CTRL);
1945	value |= INFOFRAME_CTRL_CHECKSUM_ENABLE;
1946	value |= INFOFRAME_CTRL_ENABLE;
1947	tegra_sor_writel(sor, value, SOR_HDMI_AVI_INFOFRAME_CTRL);
1948
1949	return 0;
1950}
1951
1952static void tegra_sor_write_eld(struct tegra_sor *sor)
1953{
1954	size_t length = drm_eld_size(sor->output.connector.eld), i;
1955
1956	for (i = 0; i < length; i++)
1957		tegra_sor_writel(sor, i << 8 | sor->output.connector.eld[i],
1958				 SOR_AUDIO_HDA_ELD_BUFWR);
1959
1960	/*
1961	 * The HDA codec will always report an ELD buffer size of 96 bytes and
1962	 * the HDA codec driver will check that each byte read from the buffer
1963	 * is valid. Therefore every byte must be written, even if no 96 bytes
1964	 * were parsed from EDID.
1965	 */
1966	for (i = length; i < 96; i++)
1967		tegra_sor_writel(sor, i << 8 | 0, SOR_AUDIO_HDA_ELD_BUFWR);
1968}
1969
1970static void tegra_sor_audio_prepare(struct tegra_sor *sor)
1971{
1972	u32 value;
1973
1974	/*
1975	 * Enable and unmask the HDA codec SCRATCH0 register interrupt. This
1976	 * is used for interoperability between the HDA codec driver and the
1977	 * HDMI/DP driver.
1978	 */
1979	value = SOR_INT_CODEC_SCRATCH1 | SOR_INT_CODEC_SCRATCH0;
1980	tegra_sor_writel(sor, value, SOR_INT_ENABLE);
1981	tegra_sor_writel(sor, value, SOR_INT_MASK);
1982
1983	tegra_sor_write_eld(sor);
1984
1985	value = SOR_AUDIO_HDA_PRESENSE_ELDV | SOR_AUDIO_HDA_PRESENSE_PD;
1986	tegra_sor_writel(sor, value, SOR_AUDIO_HDA_PRESENSE);
1987}
1988
1989static void tegra_sor_audio_unprepare(struct tegra_sor *sor)
1990{
1991	tegra_sor_writel(sor, 0, SOR_AUDIO_HDA_PRESENSE);
1992	tegra_sor_writel(sor, 0, SOR_INT_MASK);
1993	tegra_sor_writel(sor, 0, SOR_INT_ENABLE);
1994}
1995
1996static void tegra_sor_audio_enable(struct tegra_sor *sor)
1997{
1998	u32 value;
1999
2000	value = tegra_sor_readl(sor, SOR_AUDIO_CNTRL);
2001
2002	/* select HDA audio input */
2003	value &= ~SOR_AUDIO_CNTRL_SOURCE_SELECT(SOURCE_SELECT_MASK);
2004	value |= SOR_AUDIO_CNTRL_SOURCE_SELECT(SOURCE_SELECT_HDA);
2005
2006	/* inject null samples */
2007	if (sor->format.channels != 2)
2008		value &= ~SOR_AUDIO_CNTRL_INJECT_NULLSMPL;
2009	else
2010		value |= SOR_AUDIO_CNTRL_INJECT_NULLSMPL;
2011
2012	value |= SOR_AUDIO_CNTRL_AFIFO_FLUSH;
2013
2014	tegra_sor_writel(sor, value, SOR_AUDIO_CNTRL);
2015
2016	/* enable advertising HBR capability */
2017	tegra_sor_writel(sor, SOR_AUDIO_SPARE_HBR_ENABLE, SOR_AUDIO_SPARE);
2018}
2019
2020static int tegra_sor_hdmi_enable_audio_infoframe(struct tegra_sor *sor)
2021{
2022	u8 buffer[HDMI_INFOFRAME_SIZE(AUDIO)];
2023	struct hdmi_audio_infoframe frame;
2024	u32 value;
2025	int err;
2026
2027	err = hdmi_audio_infoframe_init(&frame);
2028	if (err < 0) {
2029		dev_err(sor->dev, "failed to setup audio infoframe: %d\n", err);
2030		return err;
2031	}
2032
2033	frame.channels = sor->format.channels;
2034
2035	err = hdmi_audio_infoframe_pack(&frame, buffer, sizeof(buffer));
2036	if (err < 0) {
2037		dev_err(sor->dev, "failed to pack audio infoframe: %d\n", err);
2038		return err;
2039	}
2040
2041	tegra_sor_hdmi_write_infopack(sor, buffer, err);
2042
2043	value = tegra_sor_readl(sor, SOR_HDMI_AUDIO_INFOFRAME_CTRL);
2044	value |= INFOFRAME_CTRL_CHECKSUM_ENABLE;
2045	value |= INFOFRAME_CTRL_ENABLE;
2046	tegra_sor_writel(sor, value, SOR_HDMI_AUDIO_INFOFRAME_CTRL);
2047
2048	return 0;
2049}
2050
2051static void tegra_sor_hdmi_audio_enable(struct tegra_sor *sor)
2052{
2053	u32 value;
2054
2055	tegra_sor_audio_enable(sor);
2056
2057	tegra_sor_writel(sor, 0, SOR_HDMI_ACR_CTRL);
2058
2059	value = SOR_HDMI_SPARE_ACR_PRIORITY_HIGH |
2060		SOR_HDMI_SPARE_CTS_RESET(1) |
2061		SOR_HDMI_SPARE_HW_CTS_ENABLE;
2062	tegra_sor_writel(sor, value, SOR_HDMI_SPARE);
2063
2064	/* enable HW CTS */
2065	value = SOR_HDMI_ACR_SUBPACK_LOW_SB1(0);
2066	tegra_sor_writel(sor, value, SOR_HDMI_ACR_0441_SUBPACK_LOW);
2067
2068	/* allow packet to be sent */
2069	value = SOR_HDMI_ACR_SUBPACK_HIGH_ENABLE;
2070	tegra_sor_writel(sor, value, SOR_HDMI_ACR_0441_SUBPACK_HIGH);
2071
2072	/* reset N counter and enable lookup */
2073	value = SOR_HDMI_AUDIO_N_RESET | SOR_HDMI_AUDIO_N_LOOKUP;
2074	tegra_sor_writel(sor, value, SOR_HDMI_AUDIO_N);
2075
2076	value = (24000 * 4096) / (128 * sor->format.sample_rate / 1000);
2077	tegra_sor_writel(sor, value, SOR_AUDIO_AVAL_0320);
2078	tegra_sor_writel(sor, 4096, SOR_AUDIO_NVAL_0320);
2079
2080	tegra_sor_writel(sor, 20000, SOR_AUDIO_AVAL_0441);
2081	tegra_sor_writel(sor, 4704, SOR_AUDIO_NVAL_0441);
2082
2083	tegra_sor_writel(sor, 20000, SOR_AUDIO_AVAL_0882);
2084	tegra_sor_writel(sor, 9408, SOR_AUDIO_NVAL_0882);
2085
2086	tegra_sor_writel(sor, 20000, SOR_AUDIO_AVAL_1764);
2087	tegra_sor_writel(sor, 18816, SOR_AUDIO_NVAL_1764);
2088
2089	value = (24000 * 6144) / (128 * sor->format.sample_rate / 1000);
2090	tegra_sor_writel(sor, value, SOR_AUDIO_AVAL_0480);
2091	tegra_sor_writel(sor, 6144, SOR_AUDIO_NVAL_0480);
2092
2093	value = (24000 * 12288) / (128 * sor->format.sample_rate / 1000);
2094	tegra_sor_writel(sor, value, SOR_AUDIO_AVAL_0960);
2095	tegra_sor_writel(sor, 12288, SOR_AUDIO_NVAL_0960);
2096
2097	value = (24000 * 24576) / (128 * sor->format.sample_rate / 1000);
2098	tegra_sor_writel(sor, value, SOR_AUDIO_AVAL_1920);
2099	tegra_sor_writel(sor, 24576, SOR_AUDIO_NVAL_1920);
2100
2101	value = tegra_sor_readl(sor, SOR_HDMI_AUDIO_N);
2102	value &= ~SOR_HDMI_AUDIO_N_RESET;
2103	tegra_sor_writel(sor, value, SOR_HDMI_AUDIO_N);
2104
2105	tegra_sor_hdmi_enable_audio_infoframe(sor);
2106}
2107
2108static void tegra_sor_hdmi_disable_audio_infoframe(struct tegra_sor *sor)
2109{
2110	u32 value;
2111
2112	value = tegra_sor_readl(sor, SOR_HDMI_AUDIO_INFOFRAME_CTRL);
2113	value &= ~INFOFRAME_CTRL_ENABLE;
2114	tegra_sor_writel(sor, value, SOR_HDMI_AUDIO_INFOFRAME_CTRL);
2115}
2116
2117static void tegra_sor_hdmi_audio_disable(struct tegra_sor *sor)
2118{
2119	tegra_sor_hdmi_disable_audio_infoframe(sor);
2120}
2121
2122static struct tegra_sor_hdmi_settings *
2123tegra_sor_hdmi_find_settings(struct tegra_sor *sor, unsigned long frequency)
2124{
2125	unsigned int i;
2126
2127	for (i = 0; i < sor->num_settings; i++)
2128		if (frequency <= sor->settings[i].frequency)
2129			return &sor->settings[i];
2130
2131	return NULL;
2132}
2133
2134static void tegra_sor_hdmi_disable_scrambling(struct tegra_sor *sor)
2135{
2136	u32 value;
2137
2138	value = tegra_sor_readl(sor, SOR_HDMI2_CTRL);
2139	value &= ~SOR_HDMI2_CTRL_CLOCK_MODE_DIV_BY_4;
2140	value &= ~SOR_HDMI2_CTRL_SCRAMBLE;
2141	tegra_sor_writel(sor, value, SOR_HDMI2_CTRL);
2142}
2143
2144static void tegra_sor_hdmi_scdc_disable(struct tegra_sor *sor)
2145{
2146	drm_scdc_set_high_tmds_clock_ratio(&sor->output.connector, false);
2147	drm_scdc_set_scrambling(&sor->output.connector, false);
 
 
2148
2149	tegra_sor_hdmi_disable_scrambling(sor);
2150}
2151
2152static void tegra_sor_hdmi_scdc_stop(struct tegra_sor *sor)
2153{
2154	if (sor->scdc_enabled) {
2155		cancel_delayed_work_sync(&sor->scdc);
2156		tegra_sor_hdmi_scdc_disable(sor);
2157	}
2158}
2159
2160static void tegra_sor_hdmi_enable_scrambling(struct tegra_sor *sor)
2161{
2162	u32 value;
2163
2164	value = tegra_sor_readl(sor, SOR_HDMI2_CTRL);
2165	value |= SOR_HDMI2_CTRL_CLOCK_MODE_DIV_BY_4;
2166	value |= SOR_HDMI2_CTRL_SCRAMBLE;
2167	tegra_sor_writel(sor, value, SOR_HDMI2_CTRL);
2168}
2169
2170static void tegra_sor_hdmi_scdc_enable(struct tegra_sor *sor)
2171{
2172	drm_scdc_set_high_tmds_clock_ratio(&sor->output.connector, true);
2173	drm_scdc_set_scrambling(&sor->output.connector, true);
 
 
2174
2175	tegra_sor_hdmi_enable_scrambling(sor);
2176}
2177
2178static void tegra_sor_hdmi_scdc_work(struct work_struct *work)
2179{
2180	struct tegra_sor *sor = container_of(work, struct tegra_sor, scdc.work);
 
2181
2182	if (!drm_scdc_get_scrambling_status(&sor->output.connector)) {
2183		DRM_DEBUG_KMS("SCDC not scrambled\n");
2184		tegra_sor_hdmi_scdc_enable(sor);
2185	}
2186
2187	schedule_delayed_work(&sor->scdc, msecs_to_jiffies(5000));
2188}
2189
2190static void tegra_sor_hdmi_scdc_start(struct tegra_sor *sor)
2191{
2192	struct drm_scdc *scdc = &sor->output.connector.display_info.hdmi.scdc;
2193	struct drm_display_mode *mode;
2194
2195	mode = &sor->output.encoder.crtc->state->adjusted_mode;
2196
2197	if (mode->clock >= 340000 && scdc->supported) {
2198		schedule_delayed_work(&sor->scdc, msecs_to_jiffies(5000));
2199		tegra_sor_hdmi_scdc_enable(sor);
2200		sor->scdc_enabled = true;
2201	}
2202}
2203
2204static void tegra_sor_hdmi_disable(struct drm_encoder *encoder)
2205{
2206	struct tegra_output *output = encoder_to_output(encoder);
2207	struct tegra_dc *dc = to_tegra_dc(encoder->crtc);
2208	struct tegra_sor *sor = to_sor(output);
2209	u32 value;
2210	int err;
2211
2212	tegra_sor_audio_unprepare(sor);
2213	tegra_sor_hdmi_scdc_stop(sor);
2214
2215	err = tegra_sor_detach(sor);
2216	if (err < 0)
2217		dev_err(sor->dev, "failed to detach SOR: %d\n", err);
2218
2219	tegra_sor_writel(sor, 0, SOR_STATE1);
2220	tegra_sor_update(sor);
2221
2222	/* disable display to SOR clock */
2223	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
2224
2225	if (!sor->soc->has_nvdisplay)
2226		value &= ~SOR1_TIMING_CYA;
2227
2228	value &= ~SOR_ENABLE(sor->index);
2229
2230	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
2231
2232	tegra_dc_commit(dc);
2233
2234	err = tegra_sor_power_down(sor);
2235	if (err < 0)
2236		dev_err(sor->dev, "failed to power down SOR: %d\n", err);
2237
2238	err = tegra_io_pad_power_disable(sor->pad);
2239	if (err < 0)
2240		dev_err(sor->dev, "failed to power off I/O pad: %d\n", err);
2241
2242	host1x_client_suspend(&sor->client);
2243}
2244
2245static void tegra_sor_hdmi_enable(struct drm_encoder *encoder)
2246{
2247	struct tegra_output *output = encoder_to_output(encoder);
2248	unsigned int h_ref_to_sync = 1, pulse_start, max_ac;
2249	struct tegra_dc *dc = to_tegra_dc(encoder->crtc);
2250	struct tegra_sor_hdmi_settings *settings;
2251	struct tegra_sor *sor = to_sor(output);
2252	struct tegra_sor_state *state;
2253	struct drm_display_mode *mode;
2254	unsigned long rate, pclk;
2255	unsigned int div, i;
2256	u32 value;
2257	int err;
2258
2259	state = to_sor_state(output->connector.state);
2260	mode = &encoder->crtc->state->adjusted_mode;
2261	pclk = mode->clock * 1000;
2262
2263	err = host1x_client_resume(&sor->client);
2264	if (err < 0) {
2265		dev_err(sor->dev, "failed to resume: %d\n", err);
2266		return;
2267	}
2268
2269	/* switch to safe parent clock */
2270	err = tegra_sor_set_parent_clock(sor, sor->clk_safe);
2271	if (err < 0) {
2272		dev_err(sor->dev, "failed to set safe parent clock: %d\n", err);
2273		return;
2274	}
2275
2276	div = clk_get_rate(sor->clk) / 1000000 * 4;
2277
2278	err = tegra_io_pad_power_enable(sor->pad);
2279	if (err < 0)
2280		dev_err(sor->dev, "failed to power on I/O pad: %d\n", err);
2281
2282	usleep_range(20, 100);
2283
2284	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
2285	value &= ~SOR_PLL2_BANDGAP_POWERDOWN;
2286	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
2287
2288	usleep_range(20, 100);
2289
2290	value = tegra_sor_readl(sor, sor->soc->regs->pll3);
2291	value &= ~SOR_PLL3_PLL_VDD_MODE_3V3;
2292	tegra_sor_writel(sor, value, sor->soc->regs->pll3);
2293
2294	value = tegra_sor_readl(sor, sor->soc->regs->pll0);
2295	value &= ~SOR_PLL0_VCOPD;
2296	value &= ~SOR_PLL0_PWR;
2297	tegra_sor_writel(sor, value, sor->soc->regs->pll0);
2298
2299	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
2300	value &= ~SOR_PLL2_SEQ_PLLCAPPD_ENFORCE;
2301	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
2302
2303	usleep_range(200, 400);
2304
2305	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
2306	value &= ~SOR_PLL2_POWERDOWN_OVERRIDE;
2307	value &= ~SOR_PLL2_PORT_POWERDOWN;
2308	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
2309
2310	usleep_range(20, 100);
2311
2312	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
2313	value |= SOR_DP_PADCTL_PD_TXD_3 | SOR_DP_PADCTL_PD_TXD_0 |
2314		 SOR_DP_PADCTL_PD_TXD_1 | SOR_DP_PADCTL_PD_TXD_2;
2315	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
2316
2317	while (true) {
2318		value = tegra_sor_readl(sor, SOR_LANE_SEQ_CTL);
2319		if ((value & SOR_LANE_SEQ_CTL_STATE_BUSY) == 0)
2320			break;
2321
2322		usleep_range(250, 1000);
2323	}
2324
2325	value = SOR_LANE_SEQ_CTL_TRIGGER | SOR_LANE_SEQ_CTL_SEQUENCE_DOWN |
2326		SOR_LANE_SEQ_CTL_POWER_STATE_UP | SOR_LANE_SEQ_CTL_DELAY(5);
2327	tegra_sor_writel(sor, value, SOR_LANE_SEQ_CTL);
2328
2329	while (true) {
2330		value = tegra_sor_readl(sor, SOR_LANE_SEQ_CTL);
2331		if ((value & SOR_LANE_SEQ_CTL_TRIGGER) == 0)
2332			break;
2333
2334		usleep_range(250, 1000);
2335	}
2336
2337	value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
2338	value &= ~SOR_CLK_CNTRL_DP_LINK_SPEED_MASK;
2339	value &= ~SOR_CLK_CNTRL_DP_CLK_SEL_MASK;
2340
2341	if (mode->clock < 340000) {
2342		DRM_DEBUG_KMS("setting 2.7 GHz link speed\n");
2343		value |= SOR_CLK_CNTRL_DP_LINK_SPEED_G2_70;
2344	} else {
2345		DRM_DEBUG_KMS("setting 5.4 GHz link speed\n");
2346		value |= SOR_CLK_CNTRL_DP_LINK_SPEED_G5_40;
2347	}
2348
2349	value |= SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_PCLK;
2350	tegra_sor_writel(sor, value, SOR_CLK_CNTRL);
2351
2352	/* SOR pad PLL stabilization time */
2353	usleep_range(250, 1000);
2354
2355	value = tegra_sor_readl(sor, SOR_DP_LINKCTL0);
2356	value &= ~SOR_DP_LINKCTL_LANE_COUNT_MASK;
2357	value |= SOR_DP_LINKCTL_LANE_COUNT(4);
2358	tegra_sor_writel(sor, value, SOR_DP_LINKCTL0);
2359
2360	value = tegra_sor_readl(sor, SOR_DP_SPARE0);
2361	value &= ~SOR_DP_SPARE_DISP_VIDEO_PREAMBLE;
2362	value &= ~SOR_DP_SPARE_PANEL_INTERNAL;
2363	value &= ~SOR_DP_SPARE_SEQ_ENABLE;
2364	value &= ~SOR_DP_SPARE_MACRO_SOR_CLK;
2365	tegra_sor_writel(sor, value, SOR_DP_SPARE0);
2366
2367	value = SOR_SEQ_CTL_PU_PC(0) | SOR_SEQ_CTL_PU_PC_ALT(0) |
2368		SOR_SEQ_CTL_PD_PC(8) | SOR_SEQ_CTL_PD_PC_ALT(8);
2369	tegra_sor_writel(sor, value, SOR_SEQ_CTL);
2370
2371	value = SOR_SEQ_INST_DRIVE_PWM_OUT_LO | SOR_SEQ_INST_HALT |
2372		SOR_SEQ_INST_WAIT_VSYNC | SOR_SEQ_INST_WAIT(1);
2373	tegra_sor_writel(sor, value, SOR_SEQ_INST(0));
2374	tegra_sor_writel(sor, value, SOR_SEQ_INST(8));
2375
2376	if (!sor->soc->has_nvdisplay) {
2377		/* program the reference clock */
2378		value = SOR_REFCLK_DIV_INT(div) | SOR_REFCLK_DIV_FRAC(div);
2379		tegra_sor_writel(sor, value, SOR_REFCLK);
2380	}
2381
2382	/* XXX not in TRM */
2383	for (value = 0, i = 0; i < 5; i++)
2384		value |= SOR_XBAR_CTRL_LINK0_XSEL(i, sor->xbar_cfg[i]) |
2385			 SOR_XBAR_CTRL_LINK1_XSEL(i, i);
2386
2387	tegra_sor_writel(sor, 0x00000000, SOR_XBAR_POL);
2388	tegra_sor_writel(sor, value, SOR_XBAR_CTRL);
2389
2390	/*
2391	 * Switch the pad clock to the DP clock. Note that we cannot actually
2392	 * do this because Tegra186 and later don't support clk_set_parent()
2393	 * on the sorX_pad_clkout clocks. We already do the equivalent above
2394	 * using the DP_CLK_SEL mux of the SOR_CLK_CNTRL register.
2395	 */
2396#if 0
2397	err = clk_set_parent(sor->clk_pad, sor->clk_dp);
2398	if (err < 0) {
2399		dev_err(sor->dev, "failed to select pad parent clock: %d\n",
2400			err);
2401		return;
2402	}
2403#endif
2404
2405	/* switch the SOR clock to the pad clock */
2406	err = tegra_sor_set_parent_clock(sor, sor->clk_pad);
2407	if (err < 0) {
2408		dev_err(sor->dev, "failed to select SOR parent clock: %d\n",
2409			err);
2410		return;
2411	}
2412
2413	/* switch the output clock to the parent pixel clock */
2414	err = clk_set_parent(sor->clk, sor->clk_parent);
2415	if (err < 0) {
2416		dev_err(sor->dev, "failed to select output parent clock: %d\n",
2417			err);
2418		return;
2419	}
2420
2421	/* adjust clock rate for HDMI 2.0 modes */
2422	rate = clk_get_rate(sor->clk_parent);
2423
2424	if (mode->clock >= 340000)
2425		rate /= 2;
2426
2427	DRM_DEBUG_KMS("setting clock to %lu Hz, mode: %lu Hz\n", rate, pclk);
2428
2429	clk_set_rate(sor->clk, rate);
2430
2431	if (!sor->soc->has_nvdisplay) {
2432		value = SOR_INPUT_CONTROL_HDMI_SRC_SELECT(dc->pipe);
2433
2434		/* XXX is this the proper check? */
2435		if (mode->clock < 75000)
2436			value |= SOR_INPUT_CONTROL_ARM_VIDEO_RANGE_LIMITED;
2437
2438		tegra_sor_writel(sor, value, SOR_INPUT_CONTROL);
2439	}
2440
2441	max_ac = ((mode->htotal - mode->hdisplay) - SOR_REKEY - 18) / 32;
2442
2443	value = SOR_HDMI_CTRL_ENABLE | SOR_HDMI_CTRL_MAX_AC_PACKET(max_ac) |
2444		SOR_HDMI_CTRL_AUDIO_LAYOUT | SOR_HDMI_CTRL_REKEY(SOR_REKEY);
2445	tegra_sor_writel(sor, value, SOR_HDMI_CTRL);
2446
2447	if (!dc->soc->has_nvdisplay) {
2448		/* H_PULSE2 setup */
2449		pulse_start = h_ref_to_sync +
2450			      (mode->hsync_end - mode->hsync_start) +
2451			      (mode->htotal - mode->hsync_end) - 10;
2452
2453		value = PULSE_LAST_END_A | PULSE_QUAL_VACTIVE |
2454			PULSE_POLARITY_HIGH | PULSE_MODE_NORMAL;
2455		tegra_dc_writel(dc, value, DC_DISP_H_PULSE2_CONTROL);
2456
2457		value = PULSE_END(pulse_start + 8) | PULSE_START(pulse_start);
2458		tegra_dc_writel(dc, value, DC_DISP_H_PULSE2_POSITION_A);
2459
2460		value = tegra_dc_readl(dc, DC_DISP_DISP_SIGNAL_OPTIONS0);
2461		value |= H_PULSE2_ENABLE;
2462		tegra_dc_writel(dc, value, DC_DISP_DISP_SIGNAL_OPTIONS0);
2463	}
2464
2465	/* infoframe setup */
2466	err = tegra_sor_hdmi_setup_avi_infoframe(sor, mode);
2467	if (err < 0)
2468		dev_err(sor->dev, "failed to setup AVI infoframe: %d\n", err);
2469
2470	/* XXX HDMI audio support not implemented yet */
2471	tegra_sor_hdmi_disable_audio_infoframe(sor);
2472
2473	/* use single TMDS protocol */
2474	value = tegra_sor_readl(sor, SOR_STATE1);
2475	value &= ~SOR_STATE_ASY_PROTOCOL_MASK;
2476	value |= SOR_STATE_ASY_PROTOCOL_SINGLE_TMDS_A;
2477	tegra_sor_writel(sor, value, SOR_STATE1);
2478
2479	/* power up pad calibration */
2480	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
2481	value &= ~SOR_DP_PADCTL_PAD_CAL_PD;
2482	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
2483
2484	/* production settings */
2485	settings = tegra_sor_hdmi_find_settings(sor, mode->clock * 1000);
2486	if (!settings) {
2487		dev_err(sor->dev, "no settings for pixel clock %d Hz\n",
2488			mode->clock * 1000);
2489		return;
2490	}
2491
2492	value = tegra_sor_readl(sor, sor->soc->regs->pll0);
2493	value &= ~SOR_PLL0_ICHPMP_MASK;
2494	value &= ~SOR_PLL0_FILTER_MASK;
2495	value &= ~SOR_PLL0_VCOCAP_MASK;
2496	value |= SOR_PLL0_ICHPMP(settings->ichpmp);
2497	value |= SOR_PLL0_FILTER(settings->filter);
2498	value |= SOR_PLL0_VCOCAP(settings->vcocap);
2499	tegra_sor_writel(sor, value, sor->soc->regs->pll0);
2500
2501	/* XXX not in TRM */
2502	value = tegra_sor_readl(sor, sor->soc->regs->pll1);
2503	value &= ~SOR_PLL1_LOADADJ_MASK;
2504	value &= ~SOR_PLL1_TMDS_TERMADJ_MASK;
2505	value |= SOR_PLL1_LOADADJ(settings->loadadj);
2506	value |= SOR_PLL1_TMDS_TERMADJ(settings->tmds_termadj);
2507	value |= SOR_PLL1_TMDS_TERM;
2508	tegra_sor_writel(sor, value, sor->soc->regs->pll1);
2509
2510	value = tegra_sor_readl(sor, sor->soc->regs->pll3);
2511	value &= ~SOR_PLL3_BG_TEMP_COEF_MASK;
2512	value &= ~SOR_PLL3_BG_VREF_LEVEL_MASK;
2513	value &= ~SOR_PLL3_AVDD10_LEVEL_MASK;
2514	value &= ~SOR_PLL3_AVDD14_LEVEL_MASK;
2515	value |= SOR_PLL3_BG_TEMP_COEF(settings->bg_temp_coef);
2516	value |= SOR_PLL3_BG_VREF_LEVEL(settings->bg_vref_level);
2517	value |= SOR_PLL3_AVDD10_LEVEL(settings->avdd10_level);
2518	value |= SOR_PLL3_AVDD14_LEVEL(settings->avdd14_level);
2519	tegra_sor_writel(sor, value, sor->soc->regs->pll3);
2520
2521	value = settings->drive_current[3] << 24 |
2522		settings->drive_current[2] << 16 |
2523		settings->drive_current[1] <<  8 |
2524		settings->drive_current[0] <<  0;
2525	tegra_sor_writel(sor, value, SOR_LANE_DRIVE_CURRENT0);
2526
2527	value = settings->preemphasis[3] << 24 |
2528		settings->preemphasis[2] << 16 |
2529		settings->preemphasis[1] <<  8 |
2530		settings->preemphasis[0] <<  0;
2531	tegra_sor_writel(sor, value, SOR_LANE_PREEMPHASIS0);
2532
2533	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
2534	value &= ~SOR_DP_PADCTL_TX_PU_MASK;
2535	value |= SOR_DP_PADCTL_TX_PU_ENABLE;
2536	value |= SOR_DP_PADCTL_TX_PU(settings->tx_pu_value);
2537	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
2538
2539	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl2);
2540	value &= ~SOR_DP_PADCTL_SPAREPLL_MASK;
2541	value |= SOR_DP_PADCTL_SPAREPLL(settings->sparepll);
2542	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl2);
2543
2544	/* power down pad calibration */
2545	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
2546	value |= SOR_DP_PADCTL_PAD_CAL_PD;
2547	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
2548
2549	if (!dc->soc->has_nvdisplay) {
2550		/* miscellaneous display controller settings */
2551		value = VSYNC_H_POSITION(1);
2552		tegra_dc_writel(dc, value, DC_DISP_DISP_TIMING_OPTIONS);
2553	}
2554
2555	value = tegra_dc_readl(dc, DC_DISP_DISP_COLOR_CONTROL);
2556	value &= ~DITHER_CONTROL_MASK;
2557	value &= ~BASE_COLOR_SIZE_MASK;
2558
2559	switch (state->bpc) {
2560	case 6:
2561		value |= BASE_COLOR_SIZE_666;
2562		break;
2563
2564	case 8:
2565		value |= BASE_COLOR_SIZE_888;
2566		break;
2567
2568	case 10:
2569		value |= BASE_COLOR_SIZE_101010;
2570		break;
2571
2572	case 12:
2573		value |= BASE_COLOR_SIZE_121212;
2574		break;
2575
2576	default:
2577		WARN(1, "%u bits-per-color not supported\n", state->bpc);
2578		value |= BASE_COLOR_SIZE_888;
2579		break;
2580	}
2581
2582	tegra_dc_writel(dc, value, DC_DISP_DISP_COLOR_CONTROL);
2583
2584	/* XXX set display head owner */
2585	value = tegra_sor_readl(sor, SOR_STATE1);
2586	value &= ~SOR_STATE_ASY_OWNER_MASK;
2587	value |= SOR_STATE_ASY_OWNER(1 + dc->pipe);
2588	tegra_sor_writel(sor, value, SOR_STATE1);
2589
2590	err = tegra_sor_power_up(sor, 250);
2591	if (err < 0)
2592		dev_err(sor->dev, "failed to power up SOR: %d\n", err);
2593
2594	/* configure dynamic range of output */
2595	value = tegra_sor_readl(sor, sor->soc->regs->head_state0 + dc->pipe);
2596	value &= ~SOR_HEAD_STATE_RANGECOMPRESS_MASK;
2597	value &= ~SOR_HEAD_STATE_DYNRANGE_MASK;
2598	tegra_sor_writel(sor, value, sor->soc->regs->head_state0 + dc->pipe);
2599
2600	/* configure colorspace */
2601	value = tegra_sor_readl(sor, sor->soc->regs->head_state0 + dc->pipe);
2602	value &= ~SOR_HEAD_STATE_COLORSPACE_MASK;
2603	value |= SOR_HEAD_STATE_COLORSPACE_RGB;
2604	tegra_sor_writel(sor, value, sor->soc->regs->head_state0 + dc->pipe);
2605
2606	tegra_sor_mode_set(sor, mode, state);
2607
2608	tegra_sor_update(sor);
2609
2610	/* program preamble timing in SOR (XXX) */
2611	value = tegra_sor_readl(sor, SOR_DP_SPARE0);
2612	value &= ~SOR_DP_SPARE_DISP_VIDEO_PREAMBLE;
2613	tegra_sor_writel(sor, value, SOR_DP_SPARE0);
2614
2615	err = tegra_sor_attach(sor);
2616	if (err < 0)
2617		dev_err(sor->dev, "failed to attach SOR: %d\n", err);
2618
2619	/* enable display to SOR clock and generate HDMI preamble */
2620	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
2621
2622	if (!sor->soc->has_nvdisplay)
2623		value |= SOR1_TIMING_CYA;
2624
2625	value |= SOR_ENABLE(sor->index);
2626
2627	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
2628
2629	if (dc->soc->has_nvdisplay) {
2630		value = tegra_dc_readl(dc, DC_DISP_CORE_SOR_SET_CONTROL(sor->index));
2631		value &= ~PROTOCOL_MASK;
2632		value |= PROTOCOL_SINGLE_TMDS_A;
2633		tegra_dc_writel(dc, value, DC_DISP_CORE_SOR_SET_CONTROL(sor->index));
2634	}
2635
2636	tegra_dc_commit(dc);
2637
2638	err = tegra_sor_wakeup(sor);
2639	if (err < 0)
2640		dev_err(sor->dev, "failed to wakeup SOR: %d\n", err);
2641
2642	tegra_sor_hdmi_scdc_start(sor);
2643	tegra_sor_audio_prepare(sor);
2644}
2645
2646static const struct drm_encoder_helper_funcs tegra_sor_hdmi_helpers = {
2647	.disable = tegra_sor_hdmi_disable,
2648	.enable = tegra_sor_hdmi_enable,
2649	.atomic_check = tegra_sor_encoder_atomic_check,
2650};
2651
2652static void tegra_sor_dp_disable(struct drm_encoder *encoder)
2653{
2654	struct tegra_output *output = encoder_to_output(encoder);
2655	struct tegra_dc *dc = to_tegra_dc(encoder->crtc);
2656	struct tegra_sor *sor = to_sor(output);
2657	u32 value;
2658	int err;
2659
2660	if (output->panel)
2661		drm_panel_disable(output->panel);
2662
2663	/*
2664	 * Do not attempt to power down a DP link if we're not connected since
2665	 * the AUX transactions would just be timing out.
2666	 */
2667	if (output->connector.status != connector_status_disconnected) {
2668		err = drm_dp_link_power_down(sor->aux, &sor->link);
2669		if (err < 0)
2670			dev_err(sor->dev, "failed to power down link: %d\n",
2671				err);
2672	}
2673
2674	err = tegra_sor_detach(sor);
2675	if (err < 0)
2676		dev_err(sor->dev, "failed to detach SOR: %d\n", err);
2677
2678	tegra_sor_writel(sor, 0, SOR_STATE1);
2679	tegra_sor_update(sor);
2680
2681	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
2682	value &= ~SOR_ENABLE(sor->index);
2683	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
2684	tegra_dc_commit(dc);
2685
2686	value = tegra_sor_readl(sor, SOR_STATE1);
2687	value &= ~SOR_STATE_ASY_PROTOCOL_MASK;
2688	value &= ~SOR_STATE_ASY_SUBOWNER_MASK;
2689	value &= ~SOR_STATE_ASY_OWNER_MASK;
2690	tegra_sor_writel(sor, value, SOR_STATE1);
2691	tegra_sor_update(sor);
2692
2693	/* switch to safe parent clock */
2694	err = tegra_sor_set_parent_clock(sor, sor->clk_safe);
2695	if (err < 0)
2696		dev_err(sor->dev, "failed to set safe clock: %d\n", err);
2697
2698	err = tegra_sor_power_down(sor);
2699	if (err < 0)
2700		dev_err(sor->dev, "failed to power down SOR: %d\n", err);
2701
2702	err = tegra_io_pad_power_disable(sor->pad);
2703	if (err < 0)
2704		dev_err(sor->dev, "failed to power off I/O pad: %d\n", err);
2705
2706	err = drm_dp_aux_disable(sor->aux);
2707	if (err < 0)
2708		dev_err(sor->dev, "failed disable DPAUX: %d\n", err);
2709
2710	if (output->panel)
2711		drm_panel_unprepare(output->panel);
2712
2713	host1x_client_suspend(&sor->client);
2714}
2715
2716static void tegra_sor_dp_enable(struct drm_encoder *encoder)
2717{
2718	struct tegra_output *output = encoder_to_output(encoder);
2719	struct tegra_dc *dc = to_tegra_dc(encoder->crtc);
2720	struct tegra_sor *sor = to_sor(output);
2721	struct tegra_sor_config config;
2722	struct tegra_sor_state *state;
2723	struct drm_display_mode *mode;
2724	struct drm_display_info *info;
2725	unsigned int i;
2726	u32 value;
2727	int err;
2728
2729	state = to_sor_state(output->connector.state);
2730	mode = &encoder->crtc->state->adjusted_mode;
2731	info = &output->connector.display_info;
2732
2733	err = host1x_client_resume(&sor->client);
2734	if (err < 0) {
2735		dev_err(sor->dev, "failed to resume: %d\n", err);
2736		return;
2737	}
2738
2739	/* switch to safe parent clock */
2740	err = tegra_sor_set_parent_clock(sor, sor->clk_safe);
2741	if (err < 0)
2742		dev_err(sor->dev, "failed to set safe parent clock: %d\n", err);
2743
2744	err = tegra_io_pad_power_enable(sor->pad);
2745	if (err < 0)
2746		dev_err(sor->dev, "failed to power on LVDS rail: %d\n", err);
2747
2748	usleep_range(20, 100);
2749
2750	err = drm_dp_aux_enable(sor->aux);
2751	if (err < 0)
2752		dev_err(sor->dev, "failed to enable DPAUX: %d\n", err);
2753
2754	err = drm_dp_link_probe(sor->aux, &sor->link);
2755	if (err < 0)
2756		dev_err(sor->dev, "failed to probe DP link: %d\n", err);
2757
2758	tegra_sor_filter_rates(sor);
2759
2760	err = drm_dp_link_choose(&sor->link, mode, info);
2761	if (err < 0)
2762		dev_err(sor->dev, "failed to choose link: %d\n", err);
2763
2764	if (output->panel)
2765		drm_panel_prepare(output->panel);
2766
2767	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
2768	value &= ~SOR_PLL2_BANDGAP_POWERDOWN;
2769	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
2770
2771	usleep_range(20, 40);
2772
2773	value = tegra_sor_readl(sor, sor->soc->regs->pll3);
2774	value |= SOR_PLL3_PLL_VDD_MODE_3V3;
2775	tegra_sor_writel(sor, value, sor->soc->regs->pll3);
2776
2777	value = tegra_sor_readl(sor, sor->soc->regs->pll0);
2778	value &= ~(SOR_PLL0_VCOPD | SOR_PLL0_PWR);
2779	tegra_sor_writel(sor, value, sor->soc->regs->pll0);
2780
2781	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
2782	value &= ~SOR_PLL2_SEQ_PLLCAPPD_ENFORCE;
2783	value |= SOR_PLL2_SEQ_PLLCAPPD;
2784	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
2785
2786	usleep_range(200, 400);
2787
2788	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
2789	value &= ~SOR_PLL2_POWERDOWN_OVERRIDE;
2790	value &= ~SOR_PLL2_PORT_POWERDOWN;
2791	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
2792
2793	value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
2794	value &= ~SOR_CLK_CNTRL_DP_CLK_SEL_MASK;
2795
2796	if (output->panel)
2797		value |= SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_DPCLK;
2798	else
2799		value |= SOR_CLK_CNTRL_DP_CLK_SEL_DIFF_DPCLK;
2800
2801	tegra_sor_writel(sor, value, SOR_CLK_CNTRL);
2802
2803	usleep_range(200, 400);
2804
2805	value = tegra_sor_readl(sor, SOR_DP_SPARE0);
2806	/* XXX not in TRM */
2807	if (output->panel)
2808		value |= SOR_DP_SPARE_PANEL_INTERNAL;
2809	else
2810		value &= ~SOR_DP_SPARE_PANEL_INTERNAL;
2811
2812	value |= SOR_DP_SPARE_SEQ_ENABLE;
2813	tegra_sor_writel(sor, value, SOR_DP_SPARE0);
2814
2815	/* XXX not in TRM */
2816	tegra_sor_writel(sor, 0, SOR_LVDS);
2817
2818	value = tegra_sor_readl(sor, sor->soc->regs->pll0);
2819	value &= ~SOR_PLL0_ICHPMP_MASK;
2820	value &= ~SOR_PLL0_VCOCAP_MASK;
2821	value |= SOR_PLL0_ICHPMP(0x1);
2822	value |= SOR_PLL0_VCOCAP(0x3);
2823	value |= SOR_PLL0_RESISTOR_EXT;
2824	tegra_sor_writel(sor, value, sor->soc->regs->pll0);
2825
2826	/* XXX not in TRM */
2827	for (value = 0, i = 0; i < 5; i++)
2828		value |= SOR_XBAR_CTRL_LINK0_XSEL(i, sor->soc->xbar_cfg[i]) |
2829			 SOR_XBAR_CTRL_LINK1_XSEL(i, i);
2830
2831	tegra_sor_writel(sor, 0x00000000, SOR_XBAR_POL);
2832	tegra_sor_writel(sor, value, SOR_XBAR_CTRL);
2833
2834	/*
2835	 * Switch the pad clock to the DP clock. Note that we cannot actually
2836	 * do this because Tegra186 and later don't support clk_set_parent()
2837	 * on the sorX_pad_clkout clocks. We already do the equivalent above
2838	 * using the DP_CLK_SEL mux of the SOR_CLK_CNTRL register.
2839	 */
2840#if 0
2841	err = clk_set_parent(sor->clk_pad, sor->clk_parent);
2842	if (err < 0) {
2843		dev_err(sor->dev, "failed to select pad parent clock: %d\n",
2844			err);
2845		return;
2846	}
2847#endif
2848
2849	/* switch the SOR clock to the pad clock */
2850	err = tegra_sor_set_parent_clock(sor, sor->clk_pad);
2851	if (err < 0) {
2852		dev_err(sor->dev, "failed to select SOR parent clock: %d\n",
2853			err);
2854		return;
2855	}
2856
2857	/* switch the output clock to the parent pixel clock */
2858	err = clk_set_parent(sor->clk, sor->clk_parent);
2859	if (err < 0) {
2860		dev_err(sor->dev, "failed to select output parent clock: %d\n",
2861			err);
2862		return;
2863	}
2864
2865	/* use DP-A protocol */
2866	value = tegra_sor_readl(sor, SOR_STATE1);
2867	value &= ~SOR_STATE_ASY_PROTOCOL_MASK;
2868	value |= SOR_STATE_ASY_PROTOCOL_DP_A;
2869	tegra_sor_writel(sor, value, SOR_STATE1);
2870
2871	/* enable port */
2872	value = tegra_sor_readl(sor, SOR_DP_LINKCTL0);
2873	value |= SOR_DP_LINKCTL_ENABLE;
2874	tegra_sor_writel(sor, value, SOR_DP_LINKCTL0);
2875
2876	tegra_sor_dp_term_calibrate(sor);
2877
2878	err = drm_dp_link_train(&sor->link);
2879	if (err < 0)
2880		dev_err(sor->dev, "link training failed: %d\n", err);
2881	else
2882		dev_dbg(sor->dev, "link training succeeded\n");
2883
2884	err = drm_dp_link_power_up(sor->aux, &sor->link);
2885	if (err < 0)
2886		dev_err(sor->dev, "failed to power up DP link: %d\n", err);
2887
2888	/* compute configuration */
2889	memset(&config, 0, sizeof(config));
2890	config.bits_per_pixel = state->bpc * 3;
2891
2892	err = tegra_sor_compute_config(sor, mode, &config, &sor->link);
2893	if (err < 0)
2894		dev_err(sor->dev, "failed to compute configuration: %d\n", err);
2895
2896	tegra_sor_apply_config(sor, &config);
2897	tegra_sor_mode_set(sor, mode, state);
2898
2899	if (output->panel) {
2900		/* CSTM (LVDS, link A/B, upper) */
2901		value = SOR_CSTM_LVDS | SOR_CSTM_LINK_ACT_A | SOR_CSTM_LINK_ACT_B |
2902			SOR_CSTM_UPPER;
2903		tegra_sor_writel(sor, value, SOR_CSTM);
2904
2905		/* PWM setup */
2906		err = tegra_sor_setup_pwm(sor, 250);
2907		if (err < 0)
2908			dev_err(sor->dev, "failed to setup PWM: %d\n", err);
2909	}
2910
2911	tegra_sor_update(sor);
2912
2913	err = tegra_sor_power_up(sor, 250);
2914	if (err < 0)
2915		dev_err(sor->dev, "failed to power up SOR: %d\n", err);
2916
2917	/* attach and wake up */
2918	err = tegra_sor_attach(sor);
2919	if (err < 0)
2920		dev_err(sor->dev, "failed to attach SOR: %d\n", err);
2921
2922	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
2923	value |= SOR_ENABLE(sor->index);
2924	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
2925
2926	tegra_dc_commit(dc);
2927
2928	err = tegra_sor_wakeup(sor);
2929	if (err < 0)
2930		dev_err(sor->dev, "failed to wakeup SOR: %d\n", err);
2931
2932	if (output->panel)
2933		drm_panel_enable(output->panel);
2934}
2935
2936static const struct drm_encoder_helper_funcs tegra_sor_dp_helpers = {
2937	.disable = tegra_sor_dp_disable,
2938	.enable = tegra_sor_dp_enable,
2939	.atomic_check = tegra_sor_encoder_atomic_check,
2940};
2941
2942static void tegra_sor_disable_regulator(void *data)
2943{
2944	struct regulator *reg = data;
2945
2946	regulator_disable(reg);
2947}
2948
2949static int tegra_sor_enable_regulator(struct tegra_sor *sor, struct regulator *reg)
2950{
2951	int err;
2952
2953	err = regulator_enable(reg);
2954	if (err)
2955		return err;
2956
2957	return devm_add_action_or_reset(sor->dev, tegra_sor_disable_regulator, reg);
2958}
2959
2960static int tegra_sor_hdmi_probe(struct tegra_sor *sor)
2961{
2962	int err;
2963
2964	sor->avdd_io_supply = devm_regulator_get(sor->dev, "avdd-io-hdmi-dp");
2965	if (IS_ERR(sor->avdd_io_supply))
2966		return dev_err_probe(sor->dev, PTR_ERR(sor->avdd_io_supply),
2967				     "cannot get AVDD I/O supply\n");
 
 
2968
2969	err = tegra_sor_enable_regulator(sor, sor->avdd_io_supply);
2970	if (err < 0) {
2971		dev_err(sor->dev, "failed to enable AVDD I/O supply: %d\n",
2972			err);
2973		return err;
2974	}
2975
2976	sor->vdd_pll_supply = devm_regulator_get(sor->dev, "vdd-hdmi-dp-pll");
2977	if (IS_ERR(sor->vdd_pll_supply))
2978		return dev_err_probe(sor->dev, PTR_ERR(sor->vdd_pll_supply),
2979				     "cannot get VDD PLL supply\n");
 
 
2980
2981	err = tegra_sor_enable_regulator(sor, sor->vdd_pll_supply);
2982	if (err < 0) {
2983		dev_err(sor->dev, "failed to enable VDD PLL supply: %d\n",
2984			err);
2985		return err;
2986	}
2987
2988	sor->hdmi_supply = devm_regulator_get(sor->dev, "hdmi");
2989	if (IS_ERR(sor->hdmi_supply))
2990		return dev_err_probe(sor->dev, PTR_ERR(sor->hdmi_supply),
2991				     "cannot get HDMI supply\n");
 
 
2992
2993	err = tegra_sor_enable_regulator(sor, sor->hdmi_supply);
2994	if (err < 0) {
2995		dev_err(sor->dev, "failed to enable HDMI supply: %d\n", err);
2996		return err;
2997	}
2998
2999	INIT_DELAYED_WORK(&sor->scdc, tegra_sor_hdmi_scdc_work);
3000
3001	return 0;
3002}
3003
3004static const struct tegra_sor_ops tegra_sor_hdmi_ops = {
3005	.name = "HDMI",
3006	.probe = tegra_sor_hdmi_probe,
3007	.audio_enable = tegra_sor_hdmi_audio_enable,
3008	.audio_disable = tegra_sor_hdmi_audio_disable,
3009};
3010
3011static int tegra_sor_dp_probe(struct tegra_sor *sor)
3012{
3013	int err;
3014
3015	sor->avdd_io_supply = devm_regulator_get(sor->dev, "avdd-io-hdmi-dp");
3016	if (IS_ERR(sor->avdd_io_supply))
3017		return PTR_ERR(sor->avdd_io_supply);
3018
3019	err = tegra_sor_enable_regulator(sor, sor->avdd_io_supply);
3020	if (err < 0)
3021		return err;
3022
3023	sor->vdd_pll_supply = devm_regulator_get(sor->dev, "vdd-hdmi-dp-pll");
3024	if (IS_ERR(sor->vdd_pll_supply))
3025		return PTR_ERR(sor->vdd_pll_supply);
3026
3027	err = tegra_sor_enable_regulator(sor, sor->vdd_pll_supply);
3028	if (err < 0)
3029		return err;
3030
3031	return 0;
3032}
3033
3034static const struct tegra_sor_ops tegra_sor_dp_ops = {
3035	.name = "DP",
3036	.probe = tegra_sor_dp_probe,
3037};
3038
3039static int tegra_sor_init(struct host1x_client *client)
3040{
3041	struct drm_device *drm = dev_get_drvdata(client->host);
3042	const struct drm_encoder_helper_funcs *helpers = NULL;
3043	struct tegra_sor *sor = host1x_client_to_sor(client);
3044	int connector = DRM_MODE_CONNECTOR_Unknown;
3045	int encoder = DRM_MODE_ENCODER_NONE;
3046	int err;
3047
3048	if (!sor->aux) {
3049		if (sor->ops == &tegra_sor_hdmi_ops) {
3050			connector = DRM_MODE_CONNECTOR_HDMIA;
3051			encoder = DRM_MODE_ENCODER_TMDS;
3052			helpers = &tegra_sor_hdmi_helpers;
3053		} else if (sor->soc->supports_lvds) {
3054			connector = DRM_MODE_CONNECTOR_LVDS;
3055			encoder = DRM_MODE_ENCODER_LVDS;
3056		}
3057	} else {
3058		if (sor->output.panel) {
3059			connector = DRM_MODE_CONNECTOR_eDP;
3060			encoder = DRM_MODE_ENCODER_TMDS;
3061			helpers = &tegra_sor_dp_helpers;
3062		} else {
3063			connector = DRM_MODE_CONNECTOR_DisplayPort;
3064			encoder = DRM_MODE_ENCODER_TMDS;
3065			helpers = &tegra_sor_dp_helpers;
3066		}
3067
3068		sor->link.ops = &tegra_sor_dp_link_ops;
3069		sor->link.aux = sor->aux;
3070	}
3071
3072	sor->output.dev = sor->dev;
3073
3074	drm_connector_init_with_ddc(drm, &sor->output.connector,
3075				    &tegra_sor_connector_funcs,
3076				    connector,
3077				    sor->output.ddc);
3078	drm_connector_helper_add(&sor->output.connector,
3079				 &tegra_sor_connector_helper_funcs);
3080	sor->output.connector.dpms = DRM_MODE_DPMS_OFF;
3081
3082	drm_simple_encoder_init(drm, &sor->output.encoder, encoder);
3083	drm_encoder_helper_add(&sor->output.encoder, helpers);
3084
3085	drm_connector_attach_encoder(&sor->output.connector,
3086					  &sor->output.encoder);
3087	drm_connector_register(&sor->output.connector);
3088
3089	err = tegra_output_init(drm, &sor->output);
3090	if (err < 0) {
3091		dev_err(client->dev, "failed to initialize output: %d\n", err);
3092		return err;
3093	}
3094
3095	tegra_output_find_possible_crtcs(&sor->output, drm);
3096
3097	if (sor->aux) {
3098		err = drm_dp_aux_attach(sor->aux, &sor->output);
3099		if (err < 0) {
3100			dev_err(sor->dev, "failed to attach DP: %d\n", err);
3101			return err;
3102		}
3103	}
3104
3105	/*
3106	 * XXX: Remove this reset once proper hand-over from firmware to
3107	 * kernel is possible.
3108	 */
3109	if (sor->rst) {
3110		err = pm_runtime_resume_and_get(sor->dev);
3111		if (err < 0) {
3112			dev_err(sor->dev, "failed to get runtime PM: %d\n", err);
3113			return err;
3114		}
3115
3116		err = reset_control_acquire(sor->rst);
3117		if (err < 0) {
3118			dev_err(sor->dev, "failed to acquire SOR reset: %d\n",
3119				err);
3120			goto rpm_put;
3121		}
3122
3123		err = reset_control_assert(sor->rst);
3124		if (err < 0) {
3125			dev_err(sor->dev, "failed to assert SOR reset: %d\n",
3126				err);
3127			goto rpm_put;
3128		}
3129	}
3130
3131	err = clk_prepare_enable(sor->clk);
3132	if (err < 0) {
3133		dev_err(sor->dev, "failed to enable clock: %d\n", err);
3134		goto rpm_put;
3135	}
3136
3137	usleep_range(1000, 3000);
3138
3139	if (sor->rst) {
3140		err = reset_control_deassert(sor->rst);
3141		if (err < 0) {
3142			dev_err(sor->dev, "failed to deassert SOR reset: %d\n",
3143				err);
3144			clk_disable_unprepare(sor->clk);
3145			goto rpm_put;
3146		}
3147
3148		reset_control_release(sor->rst);
3149		pm_runtime_put(sor->dev);
3150	}
3151
3152	err = clk_prepare_enable(sor->clk_safe);
3153	if (err < 0) {
3154		clk_disable_unprepare(sor->clk);
3155		return err;
3156	}
3157
3158	err = clk_prepare_enable(sor->clk_dp);
3159	if (err < 0) {
3160		clk_disable_unprepare(sor->clk_safe);
3161		clk_disable_unprepare(sor->clk);
3162		return err;
3163	}
3164
3165	return 0;
3166
3167rpm_put:
3168	if (sor->rst)
3169		pm_runtime_put(sor->dev);
3170
3171	return err;
3172}
3173
3174static int tegra_sor_exit(struct host1x_client *client)
3175{
3176	struct tegra_sor *sor = host1x_client_to_sor(client);
3177	int err;
3178
3179	tegra_output_exit(&sor->output);
3180
3181	if (sor->aux) {
3182		err = drm_dp_aux_detach(sor->aux);
3183		if (err < 0) {
3184			dev_err(sor->dev, "failed to detach DP: %d\n", err);
3185			return err;
3186		}
3187	}
3188
3189	clk_disable_unprepare(sor->clk_safe);
3190	clk_disable_unprepare(sor->clk_dp);
3191	clk_disable_unprepare(sor->clk);
3192
3193	return 0;
3194}
3195
3196static int tegra_sor_runtime_suspend(struct host1x_client *client)
3197{
3198	struct tegra_sor *sor = host1x_client_to_sor(client);
3199	struct device *dev = client->dev;
3200	int err;
3201
3202	if (sor->rst) {
3203		err = reset_control_assert(sor->rst);
3204		if (err < 0) {
3205			dev_err(dev, "failed to assert reset: %d\n", err);
3206			return err;
3207		}
3208
3209		reset_control_release(sor->rst);
3210	}
3211
3212	usleep_range(1000, 2000);
3213
3214	clk_disable_unprepare(sor->clk);
3215	pm_runtime_put_sync(dev);
3216
3217	return 0;
3218}
3219
3220static int tegra_sor_runtime_resume(struct host1x_client *client)
3221{
3222	struct tegra_sor *sor = host1x_client_to_sor(client);
3223	struct device *dev = client->dev;
3224	int err;
3225
3226	err = pm_runtime_resume_and_get(dev);
3227	if (err < 0) {
3228		dev_err(dev, "failed to get runtime PM: %d\n", err);
3229		return err;
3230	}
3231
3232	err = clk_prepare_enable(sor->clk);
3233	if (err < 0) {
3234		dev_err(dev, "failed to enable clock: %d\n", err);
3235		goto put_rpm;
3236	}
3237
3238	usleep_range(1000, 2000);
3239
3240	if (sor->rst) {
3241		err = reset_control_acquire(sor->rst);
3242		if (err < 0) {
3243			dev_err(dev, "failed to acquire reset: %d\n", err);
3244			goto disable_clk;
3245		}
3246
3247		err = reset_control_deassert(sor->rst);
3248		if (err < 0) {
3249			dev_err(dev, "failed to deassert reset: %d\n", err);
3250			goto release_reset;
3251		}
3252	}
3253
3254	return 0;
3255
3256release_reset:
3257	reset_control_release(sor->rst);
3258disable_clk:
3259	clk_disable_unprepare(sor->clk);
3260put_rpm:
3261	pm_runtime_put_sync(dev);
3262	return err;
3263}
3264
3265static const struct host1x_client_ops sor_client_ops = {
3266	.init = tegra_sor_init,
3267	.exit = tegra_sor_exit,
3268	.suspend = tegra_sor_runtime_suspend,
3269	.resume = tegra_sor_runtime_resume,
3270};
3271
3272static const u8 tegra124_sor_xbar_cfg[5] = {
3273	0, 1, 2, 3, 4
3274};
3275
3276static const struct tegra_sor_regs tegra124_sor_regs = {
3277	.head_state0 = 0x05,
3278	.head_state1 = 0x07,
3279	.head_state2 = 0x09,
3280	.head_state3 = 0x0b,
3281	.head_state4 = 0x0d,
3282	.head_state5 = 0x0f,
3283	.pll0 = 0x17,
3284	.pll1 = 0x18,
3285	.pll2 = 0x19,
3286	.pll3 = 0x1a,
3287	.dp_padctl0 = 0x5c,
3288	.dp_padctl2 = 0x73,
3289};
3290
3291/* Tegra124 and Tegra132 have lanes 0 and 2 swapped. */
3292static const u8 tegra124_sor_lane_map[4] = {
3293	2, 1, 0, 3,
3294};
3295
3296static const u8 tegra124_sor_voltage_swing[4][4][4] = {
3297	{
3298		{ 0x13, 0x19, 0x1e, 0x28 },
3299		{ 0x1e, 0x25, 0x2d, },
3300		{ 0x28, 0x32, },
3301		{ 0x3c, },
3302	}, {
3303		{ 0x12, 0x17, 0x1b, 0x25 },
3304		{ 0x1c, 0x23, 0x2a, },
3305		{ 0x25, 0x2f, },
3306		{ 0x39, }
3307	}, {
3308		{ 0x12, 0x16, 0x1a, 0x22 },
3309		{ 0x1b, 0x20, 0x27, },
3310		{ 0x24, 0x2d, },
3311		{ 0x36, },
3312	}, {
3313		{ 0x11, 0x14, 0x17, 0x1f },
3314		{ 0x19, 0x1e, 0x24, },
3315		{ 0x22, 0x2a, },
3316		{ 0x32, },
3317	},
3318};
3319
3320static const u8 tegra124_sor_pre_emphasis[4][4][4] = {
3321	{
3322		{ 0x00, 0x09, 0x13, 0x25 },
3323		{ 0x00, 0x0f, 0x1e, },
3324		{ 0x00, 0x14, },
3325		{ 0x00, },
3326	}, {
3327		{ 0x00, 0x0a, 0x14, 0x28 },
3328		{ 0x00, 0x0f, 0x1e, },
3329		{ 0x00, 0x14, },
3330		{ 0x00 },
3331	}, {
3332		{ 0x00, 0x0a, 0x14, 0x28 },
3333		{ 0x00, 0x0f, 0x1e, },
3334		{ 0x00, 0x14, },
3335		{ 0x00, },
3336	}, {
3337		{ 0x00, 0x0a, 0x14, 0x28 },
3338		{ 0x00, 0x0f, 0x1e, },
3339		{ 0x00, 0x14, },
3340		{ 0x00, },
3341	},
3342};
3343
3344static const u8 tegra124_sor_post_cursor[4][4][4] = {
3345	{
3346		{ 0x00, 0x00, 0x00, 0x00 },
3347		{ 0x00, 0x00, 0x00, },
3348		{ 0x00, 0x00, },
3349		{ 0x00, },
3350	}, {
3351		{ 0x02, 0x02, 0x04, 0x05 },
3352		{ 0x02, 0x04, 0x05, },
3353		{ 0x04, 0x05, },
3354		{ 0x05, },
3355	}, {
3356		{ 0x04, 0x05, 0x08, 0x0b },
3357		{ 0x05, 0x09, 0x0b, },
3358		{ 0x08, 0x0a, },
3359		{ 0x0b, },
3360	}, {
3361		{ 0x05, 0x09, 0x0b, 0x12 },
3362		{ 0x09, 0x0d, 0x12, },
3363		{ 0x0b, 0x0f, },
3364		{ 0x12, },
3365	},
3366};
3367
3368static const u8 tegra124_sor_tx_pu[4][4][4] = {
3369	{
3370		{ 0x20, 0x30, 0x40, 0x60 },
3371		{ 0x30, 0x40, 0x60, },
3372		{ 0x40, 0x60, },
3373		{ 0x60, },
3374	}, {
3375		{ 0x20, 0x20, 0x30, 0x50 },
3376		{ 0x30, 0x40, 0x50, },
3377		{ 0x40, 0x50, },
3378		{ 0x60, },
3379	}, {
3380		{ 0x20, 0x20, 0x30, 0x40, },
3381		{ 0x30, 0x30, 0x40, },
3382		{ 0x40, 0x50, },
3383		{ 0x60, },
3384	}, {
3385		{ 0x20, 0x20, 0x20, 0x40, },
3386		{ 0x30, 0x30, 0x40, },
3387		{ 0x40, 0x40, },
3388		{ 0x60, },
3389	},
3390};
3391
3392static const struct tegra_sor_soc tegra124_sor = {
3393	.supports_lvds = true,
3394	.supports_hdmi = false,
3395	.supports_dp = true,
3396	.supports_audio = false,
3397	.supports_hdcp = false,
3398	.regs = &tegra124_sor_regs,
3399	.has_nvdisplay = false,
3400	.xbar_cfg = tegra124_sor_xbar_cfg,
3401	.lane_map = tegra124_sor_lane_map,
3402	.voltage_swing = tegra124_sor_voltage_swing,
3403	.pre_emphasis = tegra124_sor_pre_emphasis,
3404	.post_cursor = tegra124_sor_post_cursor,
3405	.tx_pu = tegra124_sor_tx_pu,
3406};
3407
3408static const u8 tegra132_sor_pre_emphasis[4][4][4] = {
3409	{
3410		{ 0x00, 0x08, 0x12, 0x24 },
3411		{ 0x01, 0x0e, 0x1d, },
3412		{ 0x01, 0x13, },
3413		{ 0x00, },
3414	}, {
3415		{ 0x00, 0x08, 0x12, 0x24 },
3416		{ 0x00, 0x0e, 0x1d, },
3417		{ 0x00, 0x13, },
3418		{ 0x00 },
3419	}, {
3420		{ 0x00, 0x08, 0x12, 0x24 },
3421		{ 0x00, 0x0e, 0x1d, },
3422		{ 0x00, 0x13, },
3423		{ 0x00, },
3424	}, {
3425		{ 0x00, 0x08, 0x12, 0x24 },
3426		{ 0x00, 0x0e, 0x1d, },
3427		{ 0x00, 0x13, },
3428		{ 0x00, },
3429	},
3430};
3431
3432static const struct tegra_sor_soc tegra132_sor = {
3433	.supports_lvds = true,
3434	.supports_hdmi = false,
3435	.supports_dp = true,
3436	.supports_audio = false,
3437	.supports_hdcp = false,
3438	.regs = &tegra124_sor_regs,
3439	.has_nvdisplay = false,
3440	.xbar_cfg = tegra124_sor_xbar_cfg,
3441	.lane_map = tegra124_sor_lane_map,
3442	.voltage_swing = tegra124_sor_voltage_swing,
3443	.pre_emphasis = tegra132_sor_pre_emphasis,
3444	.post_cursor = tegra124_sor_post_cursor,
3445	.tx_pu = tegra124_sor_tx_pu,
3446};
3447
3448static const struct tegra_sor_regs tegra210_sor_regs = {
3449	.head_state0 = 0x05,
3450	.head_state1 = 0x07,
3451	.head_state2 = 0x09,
3452	.head_state3 = 0x0b,
3453	.head_state4 = 0x0d,
3454	.head_state5 = 0x0f,
3455	.pll0 = 0x17,
3456	.pll1 = 0x18,
3457	.pll2 = 0x19,
3458	.pll3 = 0x1a,
3459	.dp_padctl0 = 0x5c,
3460	.dp_padctl2 = 0x73,
3461};
3462
3463static const u8 tegra210_sor_xbar_cfg[5] = {
3464	2, 1, 0, 3, 4
3465};
3466
3467static const u8 tegra210_sor_lane_map[4] = {
3468	0, 1, 2, 3,
3469};
3470
3471static const struct tegra_sor_soc tegra210_sor = {
3472	.supports_lvds = false,
3473	.supports_hdmi = false,
3474	.supports_dp = true,
3475	.supports_audio = false,
3476	.supports_hdcp = false,
3477
3478	.regs = &tegra210_sor_regs,
3479	.has_nvdisplay = false,
3480
3481	.xbar_cfg = tegra210_sor_xbar_cfg,
3482	.lane_map = tegra210_sor_lane_map,
3483	.voltage_swing = tegra124_sor_voltage_swing,
3484	.pre_emphasis = tegra124_sor_pre_emphasis,
3485	.post_cursor = tegra124_sor_post_cursor,
3486	.tx_pu = tegra124_sor_tx_pu,
3487};
3488
3489static const struct tegra_sor_soc tegra210_sor1 = {
3490	.supports_lvds = false,
3491	.supports_hdmi = true,
3492	.supports_dp = true,
3493	.supports_audio = true,
3494	.supports_hdcp = true,
3495
3496	.regs = &tegra210_sor_regs,
3497	.has_nvdisplay = false,
3498
3499	.num_settings = ARRAY_SIZE(tegra210_sor_hdmi_defaults),
3500	.settings = tegra210_sor_hdmi_defaults,
3501	.xbar_cfg = tegra210_sor_xbar_cfg,
3502	.lane_map = tegra210_sor_lane_map,
3503	.voltage_swing = tegra124_sor_voltage_swing,
3504	.pre_emphasis = tegra124_sor_pre_emphasis,
3505	.post_cursor = tegra124_sor_post_cursor,
3506	.tx_pu = tegra124_sor_tx_pu,
3507};
3508
3509static const struct tegra_sor_regs tegra186_sor_regs = {
3510	.head_state0 = 0x151,
3511	.head_state1 = 0x154,
3512	.head_state2 = 0x157,
3513	.head_state3 = 0x15a,
3514	.head_state4 = 0x15d,
3515	.head_state5 = 0x160,
3516	.pll0 = 0x163,
3517	.pll1 = 0x164,
3518	.pll2 = 0x165,
3519	.pll3 = 0x166,
3520	.dp_padctl0 = 0x168,
3521	.dp_padctl2 = 0x16a,
3522};
3523
3524static const u8 tegra186_sor_voltage_swing[4][4][4] = {
3525	{
3526		{ 0x13, 0x19, 0x1e, 0x28 },
3527		{ 0x1e, 0x25, 0x2d, },
3528		{ 0x28, 0x32, },
3529		{ 0x39, },
3530	}, {
3531		{ 0x12, 0x16, 0x1b, 0x25 },
3532		{ 0x1c, 0x23, 0x2a, },
3533		{ 0x25, 0x2f, },
3534		{ 0x37, }
3535	}, {
3536		{ 0x12, 0x16, 0x1a, 0x22 },
3537		{ 0x1b, 0x20, 0x27, },
3538		{ 0x24, 0x2d, },
3539		{ 0x35, },
3540	}, {
3541		{ 0x11, 0x14, 0x17, 0x1f },
3542		{ 0x19, 0x1e, 0x24, },
3543		{ 0x22, 0x2a, },
3544		{ 0x32, },
3545	},
3546};
3547
3548static const u8 tegra186_sor_pre_emphasis[4][4][4] = {
3549	{
3550		{ 0x00, 0x08, 0x12, 0x24 },
3551		{ 0x01, 0x0e, 0x1d, },
3552		{ 0x01, 0x13, },
3553		{ 0x00, },
3554	}, {
3555		{ 0x00, 0x08, 0x12, 0x24 },
3556		{ 0x00, 0x0e, 0x1d, },
3557		{ 0x00, 0x13, },
3558		{ 0x00 },
3559	}, {
3560		{ 0x00, 0x08, 0x14, 0x24 },
3561		{ 0x00, 0x0e, 0x1d, },
3562		{ 0x00, 0x13, },
3563		{ 0x00, },
3564	}, {
3565		{ 0x00, 0x08, 0x12, 0x24 },
3566		{ 0x00, 0x0e, 0x1d, },
3567		{ 0x00, 0x13, },
3568		{ 0x00, },
3569	},
3570};
3571
3572static const struct tegra_sor_soc tegra186_sor = {
3573	.supports_lvds = false,
3574	.supports_hdmi = true,
3575	.supports_dp = true,
3576	.supports_audio = true,
3577	.supports_hdcp = true,
3578
3579	.regs = &tegra186_sor_regs,
3580	.has_nvdisplay = true,
3581
3582	.num_settings = ARRAY_SIZE(tegra186_sor_hdmi_defaults),
3583	.settings = tegra186_sor_hdmi_defaults,
3584	.xbar_cfg = tegra124_sor_xbar_cfg,
3585	.lane_map = tegra124_sor_lane_map,
3586	.voltage_swing = tegra186_sor_voltage_swing,
3587	.pre_emphasis = tegra186_sor_pre_emphasis,
3588	.post_cursor = tegra124_sor_post_cursor,
3589	.tx_pu = tegra124_sor_tx_pu,
3590};
3591
3592static const struct tegra_sor_regs tegra194_sor_regs = {
3593	.head_state0 = 0x151,
3594	.head_state1 = 0x155,
3595	.head_state2 = 0x159,
3596	.head_state3 = 0x15d,
3597	.head_state4 = 0x161,
3598	.head_state5 = 0x165,
3599	.pll0 = 0x169,
3600	.pll1 = 0x16a,
3601	.pll2 = 0x16b,
3602	.pll3 = 0x16c,
3603	.dp_padctl0 = 0x16e,
3604	.dp_padctl2 = 0x16f,
3605};
3606
3607static const struct tegra_sor_soc tegra194_sor = {
3608	.supports_lvds = false,
3609	.supports_hdmi = true,
3610	.supports_dp = true,
3611	.supports_audio = true,
3612	.supports_hdcp = true,
3613
3614	.regs = &tegra194_sor_regs,
3615	.has_nvdisplay = true,
3616
3617	.num_settings = ARRAY_SIZE(tegra194_sor_hdmi_defaults),
3618	.settings = tegra194_sor_hdmi_defaults,
3619
3620	.xbar_cfg = tegra210_sor_xbar_cfg,
3621	.lane_map = tegra124_sor_lane_map,
3622	.voltage_swing = tegra186_sor_voltage_swing,
3623	.pre_emphasis = tegra186_sor_pre_emphasis,
3624	.post_cursor = tegra124_sor_post_cursor,
3625	.tx_pu = tegra124_sor_tx_pu,
3626};
3627
3628static const struct of_device_id tegra_sor_of_match[] = {
3629	{ .compatible = "nvidia,tegra194-sor", .data = &tegra194_sor },
3630	{ .compatible = "nvidia,tegra186-sor", .data = &tegra186_sor },
3631	{ .compatible = "nvidia,tegra210-sor1", .data = &tegra210_sor1 },
3632	{ .compatible = "nvidia,tegra210-sor", .data = &tegra210_sor },
3633	{ .compatible = "nvidia,tegra132-sor", .data = &tegra132_sor },
3634	{ .compatible = "nvidia,tegra124-sor", .data = &tegra124_sor },
3635	{ },
3636};
3637MODULE_DEVICE_TABLE(of, tegra_sor_of_match);
3638
3639static int tegra_sor_parse_dt(struct tegra_sor *sor)
3640{
3641	struct device_node *np = sor->dev->of_node;
3642	u32 xbar_cfg[5];
3643	unsigned int i;
3644	u32 value;
3645	int err;
3646
3647	if (sor->soc->has_nvdisplay) {
3648		err = of_property_read_u32(np, "nvidia,interface", &value);
3649		if (err < 0)
3650			return err;
3651
3652		sor->index = value;
3653
3654		/*
3655		 * override the default that we already set for Tegra210 and
3656		 * earlier
3657		 */
3658		sor->pad = TEGRA_IO_PAD_HDMI_DP0 + sor->index;
3659	} else {
3660		if (!sor->soc->supports_audio)
3661			sor->index = 0;
3662		else
3663			sor->index = 1;
3664	}
3665
3666	err = of_property_read_u32_array(np, "nvidia,xbar-cfg", xbar_cfg, 5);
3667	if (err < 0) {
3668		/* fall back to default per-SoC XBAR configuration */
3669		for (i = 0; i < 5; i++)
3670			sor->xbar_cfg[i] = sor->soc->xbar_cfg[i];
3671	} else {
3672		/* copy cells to SOR XBAR configuration */
3673		for (i = 0; i < 5; i++)
3674			sor->xbar_cfg[i] = xbar_cfg[i];
3675	}
3676
3677	return 0;
3678}
3679
3680static irqreturn_t tegra_sor_irq(int irq, void *data)
3681{
3682	struct tegra_sor *sor = data;
3683	u32 value;
3684
3685	value = tegra_sor_readl(sor, SOR_INT_STATUS);
3686	tegra_sor_writel(sor, value, SOR_INT_STATUS);
3687
3688	if (value & SOR_INT_CODEC_SCRATCH0) {
3689		value = tegra_sor_readl(sor, SOR_AUDIO_HDA_CODEC_SCRATCH0);
3690
3691		if (value & SOR_AUDIO_HDA_CODEC_SCRATCH0_VALID) {
3692			unsigned int format;
3693
3694			format = value & SOR_AUDIO_HDA_CODEC_SCRATCH0_FMT_MASK;
3695
3696			tegra_hda_parse_format(format, &sor->format);
3697
3698			if (sor->ops->audio_enable)
3699				sor->ops->audio_enable(sor);
3700		} else {
3701			if (sor->ops->audio_disable)
3702				sor->ops->audio_disable(sor);
3703		}
3704	}
3705
3706	return IRQ_HANDLED;
3707}
3708
3709static int tegra_sor_probe(struct platform_device *pdev)
3710{
3711	struct device_node *np;
3712	struct tegra_sor *sor;
 
3713	int err;
3714
3715	sor = devm_kzalloc(&pdev->dev, sizeof(*sor), GFP_KERNEL);
3716	if (!sor)
3717		return -ENOMEM;
3718
3719	sor->soc = of_device_get_match_data(&pdev->dev);
3720	sor->output.dev = sor->dev = &pdev->dev;
3721
3722	sor->settings = devm_kmemdup(&pdev->dev, sor->soc->settings,
3723				     sor->soc->num_settings *
3724					sizeof(*sor->settings),
3725				     GFP_KERNEL);
3726	if (!sor->settings)
3727		return -ENOMEM;
3728
3729	sor->num_settings = sor->soc->num_settings;
3730
3731	np = of_parse_phandle(pdev->dev.of_node, "nvidia,dpaux", 0);
3732	if (np) {
3733		sor->aux = drm_dp_aux_find_by_of_node(np);
3734		of_node_put(np);
3735
3736		if (!sor->aux)
3737			return -EPROBE_DEFER;
3738
3739		if (get_device(sor->aux->dev))
3740			sor->output.ddc = &sor->aux->ddc;
3741	}
3742
3743	if (!sor->aux) {
3744		if (sor->soc->supports_hdmi) {
3745			sor->ops = &tegra_sor_hdmi_ops;
3746			sor->pad = TEGRA_IO_PAD_HDMI;
3747		} else if (sor->soc->supports_lvds) {
3748			dev_err(&pdev->dev, "LVDS not supported yet\n");
3749			return -ENODEV;
3750		} else {
3751			dev_err(&pdev->dev, "unknown (non-DP) support\n");
3752			return -ENODEV;
3753		}
3754	} else {
3755		np = of_parse_phandle(pdev->dev.of_node, "nvidia,panel", 0);
3756		/*
3757		 * No need to keep this around since we only use it as a check
3758		 * to see if a panel is connected (eDP) or not (DP).
3759		 */
3760		of_node_put(np);
3761
3762		sor->ops = &tegra_sor_dp_ops;
3763		sor->pad = TEGRA_IO_PAD_LVDS;
3764	}
3765
3766	err = tegra_sor_parse_dt(sor);
3767	if (err < 0)
3768		goto put_aux;
3769
3770	err = tegra_output_probe(&sor->output);
3771	if (err < 0) {
3772		dev_err_probe(&pdev->dev, err, "failed to probe output\n");
3773		goto put_aux;
3774	}
3775
3776	if (sor->ops && sor->ops->probe) {
3777		err = sor->ops->probe(sor);
3778		if (err < 0) {
3779			dev_err(&pdev->dev, "failed to probe %s: %d\n",
3780				sor->ops->name, err);
3781			goto remove;
3782		}
3783	}
3784
3785	sor->regs = devm_platform_ioremap_resource(pdev, 0);
 
3786	if (IS_ERR(sor->regs)) {
3787		err = PTR_ERR(sor->regs);
3788		goto remove;
3789	}
3790
3791	err = platform_get_irq(pdev, 0);
3792	if (err < 0)
 
3793		goto remove;
 
3794
3795	sor->irq = err;
3796
3797	err = devm_request_irq(sor->dev, sor->irq, tegra_sor_irq, 0,
3798			       dev_name(sor->dev), sor);
3799	if (err < 0) {
3800		dev_err(&pdev->dev, "failed to request IRQ: %d\n", err);
3801		goto remove;
3802	}
3803
3804	sor->rst = devm_reset_control_get_exclusive_released(&pdev->dev, "sor");
3805	if (IS_ERR(sor->rst)) {
3806		err = PTR_ERR(sor->rst);
3807
3808		if (err != -EBUSY || WARN_ON(!pdev->dev.pm_domain)) {
3809			dev_err(&pdev->dev, "failed to get reset control: %d\n",
3810				err);
3811			goto remove;
3812		}
3813
3814		/*
3815		 * At this point, the reset control is most likely being used
3816		 * by the generic power domain implementation. With any luck
3817		 * the power domain will have taken care of resetting the SOR
3818		 * and we don't have to do anything.
3819		 */
3820		sor->rst = NULL;
3821	}
3822
3823	sor->clk = devm_clk_get(&pdev->dev, NULL);
3824	if (IS_ERR(sor->clk)) {
3825		err = PTR_ERR(sor->clk);
3826		dev_err(&pdev->dev, "failed to get module clock: %d\n", err);
3827		goto remove;
3828	}
3829
3830	if (sor->soc->supports_hdmi || sor->soc->supports_dp) {
3831		struct device_node *np = pdev->dev.of_node;
3832		const char *name;
3833
3834		/*
3835		 * For backwards compatibility with Tegra210 device trees,
3836		 * fall back to the old clock name "source" if the new "out"
3837		 * clock is not available.
3838		 */
3839		if (of_property_match_string(np, "clock-names", "out") < 0)
3840			name = "source";
3841		else
3842			name = "out";
3843
3844		sor->clk_out = devm_clk_get(&pdev->dev, name);
3845		if (IS_ERR(sor->clk_out)) {
3846			err = PTR_ERR(sor->clk_out);
3847			dev_err(sor->dev, "failed to get %s clock: %d\n",
3848				name, err);
3849			goto remove;
3850		}
3851	} else {
3852		/* fall back to the module clock on SOR0 (eDP/LVDS only) */
3853		sor->clk_out = sor->clk;
3854	}
3855
3856	sor->clk_parent = devm_clk_get(&pdev->dev, "parent");
3857	if (IS_ERR(sor->clk_parent)) {
3858		err = PTR_ERR(sor->clk_parent);
3859		dev_err(&pdev->dev, "failed to get parent clock: %d\n", err);
3860		goto remove;
3861	}
3862
3863	sor->clk_safe = devm_clk_get(&pdev->dev, "safe");
3864	if (IS_ERR(sor->clk_safe)) {
3865		err = PTR_ERR(sor->clk_safe);
3866		dev_err(&pdev->dev, "failed to get safe clock: %d\n", err);
3867		goto remove;
3868	}
3869
3870	sor->clk_dp = devm_clk_get(&pdev->dev, "dp");
3871	if (IS_ERR(sor->clk_dp)) {
3872		err = PTR_ERR(sor->clk_dp);
3873		dev_err(&pdev->dev, "failed to get DP clock: %d\n", err);
3874		goto remove;
3875	}
3876
3877	/*
3878	 * Starting with Tegra186, the BPMP provides an implementation for
3879	 * the pad output clock, so we have to look it up from device tree.
3880	 */
3881	sor->clk_pad = devm_clk_get(&pdev->dev, "pad");
3882	if (IS_ERR(sor->clk_pad)) {
3883		if (sor->clk_pad != ERR_PTR(-ENOENT)) {
3884			err = PTR_ERR(sor->clk_pad);
3885			goto remove;
3886		}
3887
3888		/*
3889		 * If the pad output clock is not available, then we assume
3890		 * we're on Tegra210 or earlier and have to provide our own
3891		 * implementation.
3892		 */
3893		sor->clk_pad = NULL;
3894	}
3895
3896	/*
3897	 * The bootloader may have set up the SOR such that it's module clock
3898	 * is sourced by one of the display PLLs. However, that doesn't work
3899	 * without properly having set up other bits of the SOR.
3900	 */
3901	err = clk_set_parent(sor->clk_out, sor->clk_safe);
3902	if (err < 0) {
3903		dev_err(&pdev->dev, "failed to use safe clock: %d\n", err);
3904		goto remove;
3905	}
3906
3907	platform_set_drvdata(pdev, sor);
3908	pm_runtime_enable(&pdev->dev);
3909
3910	host1x_client_init(&sor->client);
3911	sor->client.ops = &sor_client_ops;
3912	sor->client.dev = &pdev->dev;
3913
3914	/*
3915	 * On Tegra210 and earlier, provide our own implementation for the
3916	 * pad output clock.
3917	 */
3918	if (!sor->clk_pad) {
3919		char *name;
3920
3921		name = devm_kasprintf(sor->dev, GFP_KERNEL, "sor%u_pad_clkout",
3922				      sor->index);
3923		if (!name) {
3924			err = -ENOMEM;
3925			goto uninit;
3926		}
3927
3928		err = host1x_client_resume(&sor->client);
3929		if (err < 0) {
3930			dev_err(sor->dev, "failed to resume: %d\n", err);
3931			goto uninit;
3932		}
3933
3934		sor->clk_pad = tegra_clk_sor_pad_register(sor, name);
3935		host1x_client_suspend(&sor->client);
3936	}
3937
3938	if (IS_ERR(sor->clk_pad)) {
3939		err = PTR_ERR(sor->clk_pad);
3940		dev_err(sor->dev, "failed to register SOR pad clock: %d\n",
3941			err);
3942		goto uninit;
3943	}
3944
3945	err = __host1x_client_register(&sor->client);
3946	if (err < 0) {
3947		dev_err(&pdev->dev, "failed to register host1x client: %d\n",
3948			err);
3949		goto uninit;
3950	}
3951
3952	return 0;
3953
3954uninit:
3955	host1x_client_exit(&sor->client);
3956	pm_runtime_disable(&pdev->dev);
3957remove:
3958	if (sor->aux)
3959		sor->output.ddc = NULL;
3960
3961	tegra_output_remove(&sor->output);
3962put_aux:
3963	if (sor->aux)
3964		put_device(sor->aux->dev);
3965
3966	return err;
3967}
3968
3969static void tegra_sor_remove(struct platform_device *pdev)
3970{
3971	struct tegra_sor *sor = platform_get_drvdata(pdev);
 
3972
3973	host1x_client_unregister(&sor->client);
 
 
 
 
 
3974
3975	pm_runtime_disable(&pdev->dev);
3976
3977	if (sor->aux) {
3978		put_device(sor->aux->dev);
3979		sor->output.ddc = NULL;
3980	}
3981
3982	tegra_output_remove(&sor->output);
 
 
3983}
3984
3985static int __maybe_unused tegra_sor_suspend(struct device *dev)
3986{
3987	struct tegra_sor *sor = dev_get_drvdata(dev);
3988	int err;
3989
3990	err = tegra_output_suspend(&sor->output);
3991	if (err < 0) {
3992		dev_err(dev, "failed to suspend output: %d\n", err);
3993		return err;
3994	}
3995
3996	if (sor->hdmi_supply) {
3997		err = regulator_disable(sor->hdmi_supply);
3998		if (err < 0) {
3999			tegra_output_resume(&sor->output);
4000			return err;
4001		}
4002	}
4003
4004	return 0;
4005}
4006
4007static int __maybe_unused tegra_sor_resume(struct device *dev)
4008{
4009	struct tegra_sor *sor = dev_get_drvdata(dev);
4010	int err;
4011
4012	if (sor->hdmi_supply) {
4013		err = regulator_enable(sor->hdmi_supply);
4014		if (err < 0)
4015			return err;
4016	}
4017
4018	err = tegra_output_resume(&sor->output);
4019	if (err < 0) {
4020		dev_err(dev, "failed to resume output: %d\n", err);
4021
4022		if (sor->hdmi_supply)
4023			regulator_disable(sor->hdmi_supply);
4024
4025		return err;
4026	}
4027
4028	return 0;
4029}
4030
4031static const struct dev_pm_ops tegra_sor_pm_ops = {
4032	SET_SYSTEM_SLEEP_PM_OPS(tegra_sor_suspend, tegra_sor_resume)
4033};
4034
4035struct platform_driver tegra_sor_driver = {
4036	.driver = {
4037		.name = "tegra-sor",
4038		.of_match_table = tegra_sor_of_match,
4039		.pm = &tegra_sor_pm_ops,
4040	},
4041	.probe = tegra_sor_probe,
4042	.remove_new = tegra_sor_remove,
4043};
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2013 NVIDIA Corporation
   4 */
   5
   6#include <linux/clk.h>
   7#include <linux/clk-provider.h>
   8#include <linux/debugfs.h>
   9#include <linux/io.h>
  10#include <linux/module.h>
  11#include <linux/of_device.h>
  12#include <linux/platform_device.h>
  13#include <linux/pm_runtime.h>
  14#include <linux/regulator/consumer.h>
  15#include <linux/reset.h>
  16
  17#include <soc/tegra/pmc.h>
  18
  19#include <drm/display/drm_dp_helper.h>
  20#include <drm/display/drm_scdc_helper.h>
  21#include <drm/drm_atomic_helper.h>
  22#include <drm/drm_debugfs.h>
 
  23#include <drm/drm_file.h>
  24#include <drm/drm_panel.h>
  25#include <drm/drm_simple_kms_helper.h>
  26
  27#include "dc.h"
  28#include "dp.h"
  29#include "drm.h"
  30#include "hda.h"
  31#include "sor.h"
  32#include "trace.h"
  33
  34#define SOR_REKEY 0x38
  35
  36struct tegra_sor_hdmi_settings {
  37	unsigned long frequency;
  38
  39	u8 vcocap;
  40	u8 filter;
  41	u8 ichpmp;
  42	u8 loadadj;
  43	u8 tmds_termadj;
  44	u8 tx_pu_value;
  45	u8 bg_temp_coef;
  46	u8 bg_vref_level;
  47	u8 avdd10_level;
  48	u8 avdd14_level;
  49	u8 sparepll;
  50
  51	u8 drive_current[4];
  52	u8 preemphasis[4];
  53};
  54
  55#if 1
  56static const struct tegra_sor_hdmi_settings tegra210_sor_hdmi_defaults[] = {
  57	{
  58		.frequency = 54000000,
  59		.vcocap = 0x0,
  60		.filter = 0x0,
  61		.ichpmp = 0x1,
  62		.loadadj = 0x3,
  63		.tmds_termadj = 0x9,
  64		.tx_pu_value = 0x10,
  65		.bg_temp_coef = 0x3,
  66		.bg_vref_level = 0x8,
  67		.avdd10_level = 0x4,
  68		.avdd14_level = 0x4,
  69		.sparepll = 0x0,
  70		.drive_current = { 0x33, 0x3a, 0x3a, 0x3a },
  71		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
  72	}, {
  73		.frequency = 75000000,
  74		.vcocap = 0x3,
  75		.filter = 0x0,
  76		.ichpmp = 0x1,
  77		.loadadj = 0x3,
  78		.tmds_termadj = 0x9,
  79		.tx_pu_value = 0x40,
  80		.bg_temp_coef = 0x3,
  81		.bg_vref_level = 0x8,
  82		.avdd10_level = 0x4,
  83		.avdd14_level = 0x4,
  84		.sparepll = 0x0,
  85		.drive_current = { 0x33, 0x3a, 0x3a, 0x3a },
  86		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
  87	}, {
  88		.frequency = 150000000,
  89		.vcocap = 0x3,
  90		.filter = 0x0,
  91		.ichpmp = 0x1,
  92		.loadadj = 0x3,
  93		.tmds_termadj = 0x9,
  94		.tx_pu_value = 0x66,
  95		.bg_temp_coef = 0x3,
  96		.bg_vref_level = 0x8,
  97		.avdd10_level = 0x4,
  98		.avdd14_level = 0x4,
  99		.sparepll = 0x0,
 100		.drive_current = { 0x33, 0x3a, 0x3a, 0x3a },
 101		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
 102	}, {
 103		.frequency = 300000000,
 104		.vcocap = 0x3,
 105		.filter = 0x0,
 106		.ichpmp = 0x1,
 107		.loadadj = 0x3,
 108		.tmds_termadj = 0x9,
 109		.tx_pu_value = 0x66,
 110		.bg_temp_coef = 0x3,
 111		.bg_vref_level = 0xa,
 112		.avdd10_level = 0x4,
 113		.avdd14_level = 0x4,
 114		.sparepll = 0x0,
 115		.drive_current = { 0x33, 0x3f, 0x3f, 0x3f },
 116		.preemphasis = { 0x00, 0x17, 0x17, 0x17 },
 117	}, {
 118		.frequency = 600000000,
 119		.vcocap = 0x3,
 120		.filter = 0x0,
 121		.ichpmp = 0x1,
 122		.loadadj = 0x3,
 123		.tmds_termadj = 0x9,
 124		.tx_pu_value = 0x66,
 125		.bg_temp_coef = 0x3,
 126		.bg_vref_level = 0x8,
 127		.avdd10_level = 0x4,
 128		.avdd14_level = 0x4,
 129		.sparepll = 0x0,
 130		.drive_current = { 0x33, 0x3f, 0x3f, 0x3f },
 131		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
 132	},
 133};
 134#else
 135static const struct tegra_sor_hdmi_settings tegra210_sor_hdmi_defaults[] = {
 136	{
 137		.frequency = 75000000,
 138		.vcocap = 0x3,
 139		.filter = 0x0,
 140		.ichpmp = 0x1,
 141		.loadadj = 0x3,
 142		.tmds_termadj = 0x9,
 143		.tx_pu_value = 0x40,
 144		.bg_temp_coef = 0x3,
 145		.bg_vref_level = 0x8,
 146		.avdd10_level = 0x4,
 147		.avdd14_level = 0x4,
 148		.sparepll = 0x0,
 149		.drive_current = { 0x29, 0x29, 0x29, 0x29 },
 150		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
 151	}, {
 152		.frequency = 150000000,
 153		.vcocap = 0x3,
 154		.filter = 0x0,
 155		.ichpmp = 0x1,
 156		.loadadj = 0x3,
 157		.tmds_termadj = 0x9,
 158		.tx_pu_value = 0x66,
 159		.bg_temp_coef = 0x3,
 160		.bg_vref_level = 0x8,
 161		.avdd10_level = 0x4,
 162		.avdd14_level = 0x4,
 163		.sparepll = 0x0,
 164		.drive_current = { 0x30, 0x37, 0x37, 0x37 },
 165		.preemphasis = { 0x01, 0x02, 0x02, 0x02 },
 166	}, {
 167		.frequency = 300000000,
 168		.vcocap = 0x3,
 169		.filter = 0x0,
 170		.ichpmp = 0x6,
 171		.loadadj = 0x3,
 172		.tmds_termadj = 0x9,
 173		.tx_pu_value = 0x66,
 174		.bg_temp_coef = 0x3,
 175		.bg_vref_level = 0xf,
 176		.avdd10_level = 0x4,
 177		.avdd14_level = 0x4,
 178		.sparepll = 0x0,
 179		.drive_current = { 0x30, 0x37, 0x37, 0x37 },
 180		.preemphasis = { 0x10, 0x3e, 0x3e, 0x3e },
 181	}, {
 182		.frequency = 600000000,
 183		.vcocap = 0x3,
 184		.filter = 0x0,
 185		.ichpmp = 0xa,
 186		.loadadj = 0x3,
 187		.tmds_termadj = 0xb,
 188		.tx_pu_value = 0x66,
 189		.bg_temp_coef = 0x3,
 190		.bg_vref_level = 0xe,
 191		.avdd10_level = 0x4,
 192		.avdd14_level = 0x4,
 193		.sparepll = 0x0,
 194		.drive_current = { 0x35, 0x3e, 0x3e, 0x3e },
 195		.preemphasis = { 0x02, 0x3f, 0x3f, 0x3f },
 196	},
 197};
 198#endif
 199
 200static const struct tegra_sor_hdmi_settings tegra186_sor_hdmi_defaults[] = {
 201	{
 202		.frequency = 54000000,
 203		.vcocap = 0,
 204		.filter = 5,
 205		.ichpmp = 5,
 206		.loadadj = 3,
 207		.tmds_termadj = 0xf,
 208		.tx_pu_value = 0,
 209		.bg_temp_coef = 3,
 210		.bg_vref_level = 8,
 211		.avdd10_level = 4,
 212		.avdd14_level = 4,
 213		.sparepll = 0x54,
 214		.drive_current = { 0x3a, 0x3a, 0x3a, 0x33 },
 215		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
 216	}, {
 217		.frequency = 75000000,
 218		.vcocap = 1,
 219		.filter = 5,
 220		.ichpmp = 5,
 221		.loadadj = 3,
 222		.tmds_termadj = 0xf,
 223		.tx_pu_value = 0,
 224		.bg_temp_coef = 3,
 225		.bg_vref_level = 8,
 226		.avdd10_level = 4,
 227		.avdd14_level = 4,
 228		.sparepll = 0x44,
 229		.drive_current = { 0x3a, 0x3a, 0x3a, 0x33 },
 230		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
 231	}, {
 232		.frequency = 150000000,
 233		.vcocap = 3,
 234		.filter = 5,
 235		.ichpmp = 5,
 236		.loadadj = 3,
 237		.tmds_termadj = 15,
 238		.tx_pu_value = 0x66 /* 0 */,
 239		.bg_temp_coef = 3,
 240		.bg_vref_level = 8,
 241		.avdd10_level = 4,
 242		.avdd14_level = 4,
 243		.sparepll = 0x00, /* 0x34 */
 244		.drive_current = { 0x3a, 0x3a, 0x3a, 0x37 },
 245		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
 246	}, {
 247		.frequency = 300000000,
 248		.vcocap = 3,
 249		.filter = 5,
 250		.ichpmp = 5,
 251		.loadadj = 3,
 252		.tmds_termadj = 15,
 253		.tx_pu_value = 64,
 254		.bg_temp_coef = 3,
 255		.bg_vref_level = 8,
 256		.avdd10_level = 4,
 257		.avdd14_level = 4,
 258		.sparepll = 0x34,
 259		.drive_current = { 0x3d, 0x3d, 0x3d, 0x33 },
 260		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
 261	}, {
 262		.frequency = 600000000,
 263		.vcocap = 3,
 264		.filter = 5,
 265		.ichpmp = 5,
 266		.loadadj = 3,
 267		.tmds_termadj = 12,
 268		.tx_pu_value = 96,
 269		.bg_temp_coef = 3,
 270		.bg_vref_level = 8,
 271		.avdd10_level = 4,
 272		.avdd14_level = 4,
 273		.sparepll = 0x34,
 274		.drive_current = { 0x3d, 0x3d, 0x3d, 0x33 },
 275		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
 276	}
 277};
 278
 279static const struct tegra_sor_hdmi_settings tegra194_sor_hdmi_defaults[] = {
 280	{
 281		.frequency = 54000000,
 282		.vcocap = 0,
 283		.filter = 5,
 284		.ichpmp = 5,
 285		.loadadj = 3,
 286		.tmds_termadj = 0xf,
 287		.tx_pu_value = 0,
 288		.bg_temp_coef = 3,
 289		.bg_vref_level = 8,
 290		.avdd10_level = 4,
 291		.avdd14_level = 4,
 292		.sparepll = 0x54,
 293		.drive_current = { 0x3a, 0x3a, 0x3a, 0x33 },
 294		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
 295	}, {
 296		.frequency = 75000000,
 297		.vcocap = 1,
 298		.filter = 5,
 299		.ichpmp = 5,
 300		.loadadj = 3,
 301		.tmds_termadj = 0xf,
 302		.tx_pu_value = 0,
 303		.bg_temp_coef = 3,
 304		.bg_vref_level = 8,
 305		.avdd10_level = 4,
 306		.avdd14_level = 4,
 307		.sparepll = 0x44,
 308		.drive_current = { 0x3a, 0x3a, 0x3a, 0x33 },
 309		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
 310	}, {
 311		.frequency = 150000000,
 312		.vcocap = 3,
 313		.filter = 5,
 314		.ichpmp = 5,
 315		.loadadj = 3,
 316		.tmds_termadj = 15,
 317		.tx_pu_value = 0x66 /* 0 */,
 318		.bg_temp_coef = 3,
 319		.bg_vref_level = 8,
 320		.avdd10_level = 4,
 321		.avdd14_level = 4,
 322		.sparepll = 0x00, /* 0x34 */
 323		.drive_current = { 0x3a, 0x3a, 0x3a, 0x37 },
 324		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
 325	}, {
 326		.frequency = 300000000,
 327		.vcocap = 3,
 328		.filter = 5,
 329		.ichpmp = 5,
 330		.loadadj = 3,
 331		.tmds_termadj = 15,
 332		.tx_pu_value = 64,
 333		.bg_temp_coef = 3,
 334		.bg_vref_level = 8,
 335		.avdd10_level = 4,
 336		.avdd14_level = 4,
 337		.sparepll = 0x34,
 338		.drive_current = { 0x3d, 0x3d, 0x3d, 0x33 },
 339		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
 340	}, {
 341		.frequency = 600000000,
 342		.vcocap = 3,
 343		.filter = 5,
 344		.ichpmp = 5,
 345		.loadadj = 3,
 346		.tmds_termadj = 12,
 347		.tx_pu_value = 96,
 348		.bg_temp_coef = 3,
 349		.bg_vref_level = 8,
 350		.avdd10_level = 4,
 351		.avdd14_level = 4,
 352		.sparepll = 0x34,
 353		.drive_current = { 0x3d, 0x3d, 0x3d, 0x33 },
 354		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
 355	}
 356};
 357
 358struct tegra_sor_regs {
 359	unsigned int head_state0;
 360	unsigned int head_state1;
 361	unsigned int head_state2;
 362	unsigned int head_state3;
 363	unsigned int head_state4;
 364	unsigned int head_state5;
 365	unsigned int pll0;
 366	unsigned int pll1;
 367	unsigned int pll2;
 368	unsigned int pll3;
 369	unsigned int dp_padctl0;
 370	unsigned int dp_padctl2;
 371};
 372
 373struct tegra_sor_soc {
 374	bool supports_lvds;
 375	bool supports_hdmi;
 376	bool supports_dp;
 377	bool supports_audio;
 378	bool supports_hdcp;
 379
 380	const struct tegra_sor_regs *regs;
 381	bool has_nvdisplay;
 382
 383	const struct tegra_sor_hdmi_settings *settings;
 384	unsigned int num_settings;
 385
 386	const u8 *xbar_cfg;
 387	const u8 *lane_map;
 388
 389	const u8 (*voltage_swing)[4][4];
 390	const u8 (*pre_emphasis)[4][4];
 391	const u8 (*post_cursor)[4][4];
 392	const u8 (*tx_pu)[4][4];
 393};
 394
 395struct tegra_sor;
 396
 397struct tegra_sor_ops {
 398	const char *name;
 399	int (*probe)(struct tegra_sor *sor);
 400	void (*audio_enable)(struct tegra_sor *sor);
 401	void (*audio_disable)(struct tegra_sor *sor);
 402};
 403
 404struct tegra_sor {
 405	struct host1x_client client;
 406	struct tegra_output output;
 407	struct device *dev;
 408
 409	const struct tegra_sor_soc *soc;
 410	void __iomem *regs;
 411	unsigned int index;
 412	unsigned int irq;
 413
 414	struct reset_control *rst;
 415	struct clk *clk_parent;
 416	struct clk *clk_safe;
 417	struct clk *clk_out;
 418	struct clk *clk_pad;
 419	struct clk *clk_dp;
 420	struct clk *clk;
 421
 422	u8 xbar_cfg[5];
 423
 424	struct drm_dp_link link;
 425	struct drm_dp_aux *aux;
 426
 427	struct drm_info_list *debugfs_files;
 428
 429	const struct tegra_sor_ops *ops;
 430	enum tegra_io_pad pad;
 431
 432	/* for HDMI 2.0 */
 433	struct tegra_sor_hdmi_settings *settings;
 434	unsigned int num_settings;
 435
 436	struct regulator *avdd_io_supply;
 437	struct regulator *vdd_pll_supply;
 438	struct regulator *hdmi_supply;
 439
 440	struct delayed_work scdc;
 441	bool scdc_enabled;
 442
 443	struct tegra_hda_format format;
 444};
 445
 446struct tegra_sor_state {
 447	struct drm_connector_state base;
 448
 449	unsigned int link_speed;
 450	unsigned long pclk;
 451	unsigned int bpc;
 452};
 453
 454static inline struct tegra_sor_state *
 455to_sor_state(struct drm_connector_state *state)
 456{
 457	return container_of(state, struct tegra_sor_state, base);
 458}
 459
 460struct tegra_sor_config {
 461	u32 bits_per_pixel;
 462
 463	u32 active_polarity;
 464	u32 active_count;
 465	u32 tu_size;
 466	u32 active_frac;
 467	u32 watermark;
 468
 469	u32 hblank_symbols;
 470	u32 vblank_symbols;
 471};
 472
 473static inline struct tegra_sor *
 474host1x_client_to_sor(struct host1x_client *client)
 475{
 476	return container_of(client, struct tegra_sor, client);
 477}
 478
 479static inline struct tegra_sor *to_sor(struct tegra_output *output)
 480{
 481	return container_of(output, struct tegra_sor, output);
 482}
 483
 484static inline u32 tegra_sor_readl(struct tegra_sor *sor, unsigned int offset)
 485{
 486	u32 value = readl(sor->regs + (offset << 2));
 487
 488	trace_sor_readl(sor->dev, offset, value);
 489
 490	return value;
 491}
 492
 493static inline void tegra_sor_writel(struct tegra_sor *sor, u32 value,
 494				    unsigned int offset)
 495{
 496	trace_sor_writel(sor->dev, offset, value);
 497	writel(value, sor->regs + (offset << 2));
 498}
 499
 500static int tegra_sor_set_parent_clock(struct tegra_sor *sor, struct clk *parent)
 501{
 502	int err;
 503
 504	clk_disable_unprepare(sor->clk);
 505
 506	err = clk_set_parent(sor->clk_out, parent);
 507	if (err < 0)
 508		return err;
 509
 510	err = clk_prepare_enable(sor->clk);
 511	if (err < 0)
 512		return err;
 513
 514	return 0;
 515}
 516
 517struct tegra_clk_sor_pad {
 518	struct clk_hw hw;
 519	struct tegra_sor *sor;
 520};
 521
 522static inline struct tegra_clk_sor_pad *to_pad(struct clk_hw *hw)
 523{
 524	return container_of(hw, struct tegra_clk_sor_pad, hw);
 525}
 526
 527static const char * const tegra_clk_sor_pad_parents[2][2] = {
 528	{ "pll_d_out0", "pll_dp" },
 529	{ "pll_d2_out0", "pll_dp" },
 530};
 531
 532/*
 533 * Implementing ->set_parent() here isn't really required because the parent
 534 * will be explicitly selected in the driver code via the DP_CLK_SEL mux in
 535 * the SOR_CLK_CNTRL register. This is primarily for compatibility with the
 536 * Tegra186 and later SoC generations where the BPMP implements this clock
 537 * and doesn't expose the mux via the common clock framework.
 538 */
 539
 540static int tegra_clk_sor_pad_set_parent(struct clk_hw *hw, u8 index)
 541{
 542	struct tegra_clk_sor_pad *pad = to_pad(hw);
 543	struct tegra_sor *sor = pad->sor;
 544	u32 value;
 545
 546	value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
 547	value &= ~SOR_CLK_CNTRL_DP_CLK_SEL_MASK;
 548
 549	switch (index) {
 550	case 0:
 551		value |= SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_PCLK;
 552		break;
 553
 554	case 1:
 555		value |= SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_DPCLK;
 556		break;
 557	}
 558
 559	tegra_sor_writel(sor, value, SOR_CLK_CNTRL);
 560
 561	return 0;
 562}
 563
 564static u8 tegra_clk_sor_pad_get_parent(struct clk_hw *hw)
 565{
 566	struct tegra_clk_sor_pad *pad = to_pad(hw);
 567	struct tegra_sor *sor = pad->sor;
 568	u8 parent = U8_MAX;
 569	u32 value;
 570
 571	value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
 572
 573	switch (value & SOR_CLK_CNTRL_DP_CLK_SEL_MASK) {
 574	case SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_PCLK:
 575	case SOR_CLK_CNTRL_DP_CLK_SEL_DIFF_PCLK:
 576		parent = 0;
 577		break;
 578
 579	case SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_DPCLK:
 580	case SOR_CLK_CNTRL_DP_CLK_SEL_DIFF_DPCLK:
 581		parent = 1;
 582		break;
 583	}
 584
 585	return parent;
 586}
 587
 588static const struct clk_ops tegra_clk_sor_pad_ops = {
 
 589	.set_parent = tegra_clk_sor_pad_set_parent,
 590	.get_parent = tegra_clk_sor_pad_get_parent,
 591};
 592
 593static struct clk *tegra_clk_sor_pad_register(struct tegra_sor *sor,
 594					      const char *name)
 595{
 596	struct tegra_clk_sor_pad *pad;
 597	struct clk_init_data init;
 598	struct clk *clk;
 599
 600	pad = devm_kzalloc(sor->dev, sizeof(*pad), GFP_KERNEL);
 601	if (!pad)
 602		return ERR_PTR(-ENOMEM);
 603
 604	pad->sor = sor;
 605
 606	init.name = name;
 607	init.flags = 0;
 608	init.parent_names = tegra_clk_sor_pad_parents[sor->index];
 609	init.num_parents = ARRAY_SIZE(tegra_clk_sor_pad_parents[sor->index]);
 610	init.ops = &tegra_clk_sor_pad_ops;
 611
 612	pad->hw.init = &init;
 613
 614	clk = devm_clk_register(sor->dev, &pad->hw);
 615
 616	return clk;
 617}
 618
 619static void tegra_sor_filter_rates(struct tegra_sor *sor)
 620{
 621	struct drm_dp_link *link = &sor->link;
 622	unsigned int i;
 623
 624	/* Tegra only supports RBR, HBR and HBR2 */
 625	for (i = 0; i < link->num_rates; i++) {
 626		switch (link->rates[i]) {
 627		case 1620000:
 628		case 2700000:
 629		case 5400000:
 630			break;
 631
 632		default:
 633			DRM_DEBUG_KMS("link rate %lu kHz not supported\n",
 634				      link->rates[i]);
 635			link->rates[i] = 0;
 636			break;
 637		}
 638	}
 639
 640	drm_dp_link_update_rates(link);
 641}
 642
 643static int tegra_sor_power_up_lanes(struct tegra_sor *sor, unsigned int lanes)
 644{
 645	unsigned long timeout;
 646	u32 value;
 647
 648	/*
 649	 * Clear or set the PD_TXD bit corresponding to each lane, depending
 650	 * on whether it is used or not.
 651	 */
 652	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
 653
 654	if (lanes <= 2)
 655		value &= ~(SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[3]) |
 656			   SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[2]));
 657	else
 658		value |= SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[3]) |
 659			 SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[2]);
 660
 661	if (lanes <= 1)
 662		value &= ~SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[1]);
 663	else
 664		value |= SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[1]);
 665
 666	if (lanes == 0)
 667		value &= ~SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[0]);
 668	else
 669		value |= SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[0]);
 670
 671	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
 672
 673	/* start lane sequencer */
 674	value = SOR_LANE_SEQ_CTL_TRIGGER | SOR_LANE_SEQ_CTL_SEQUENCE_DOWN |
 675		SOR_LANE_SEQ_CTL_POWER_STATE_UP;
 676	tegra_sor_writel(sor, value, SOR_LANE_SEQ_CTL);
 677
 678	timeout = jiffies + msecs_to_jiffies(250);
 679
 680	while (time_before(jiffies, timeout)) {
 681		value = tegra_sor_readl(sor, SOR_LANE_SEQ_CTL);
 682		if ((value & SOR_LANE_SEQ_CTL_TRIGGER) == 0)
 683			break;
 684
 685		usleep_range(250, 1000);
 686	}
 687
 688	if ((value & SOR_LANE_SEQ_CTL_TRIGGER) != 0)
 689		return -ETIMEDOUT;
 690
 691	return 0;
 692}
 693
 694static int tegra_sor_power_down_lanes(struct tegra_sor *sor)
 695{
 696	unsigned long timeout;
 697	u32 value;
 698
 699	/* power down all lanes */
 700	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
 701	value &= ~(SOR_DP_PADCTL_PD_TXD_3 | SOR_DP_PADCTL_PD_TXD_0 |
 702		   SOR_DP_PADCTL_PD_TXD_1 | SOR_DP_PADCTL_PD_TXD_2);
 703	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
 704
 705	/* start lane sequencer */
 706	value = SOR_LANE_SEQ_CTL_TRIGGER | SOR_LANE_SEQ_CTL_SEQUENCE_UP |
 707		SOR_LANE_SEQ_CTL_POWER_STATE_DOWN;
 708	tegra_sor_writel(sor, value, SOR_LANE_SEQ_CTL);
 709
 710	timeout = jiffies + msecs_to_jiffies(250);
 711
 712	while (time_before(jiffies, timeout)) {
 713		value = tegra_sor_readl(sor, SOR_LANE_SEQ_CTL);
 714		if ((value & SOR_LANE_SEQ_CTL_TRIGGER) == 0)
 715			break;
 716
 717		usleep_range(25, 100);
 718	}
 719
 720	if ((value & SOR_LANE_SEQ_CTL_TRIGGER) != 0)
 721		return -ETIMEDOUT;
 722
 723	return 0;
 724}
 725
 726static void tegra_sor_dp_precharge(struct tegra_sor *sor, unsigned int lanes)
 727{
 728	u32 value;
 729
 730	/* pre-charge all used lanes */
 731	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
 732
 733	if (lanes <= 2)
 734		value &= ~(SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[3]) |
 735			   SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[2]));
 736	else
 737		value |= SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[3]) |
 738			 SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[2]);
 739
 740	if (lanes <= 1)
 741		value &= ~SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[1]);
 742	else
 743		value |= SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[1]);
 744
 745	if (lanes == 0)
 746		value &= ~SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[0]);
 747	else
 748		value |= SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[0]);
 749
 750	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
 751
 752	usleep_range(15, 100);
 753
 754	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
 755	value &= ~(SOR_DP_PADCTL_CM_TXD_3 | SOR_DP_PADCTL_CM_TXD_2 |
 756		   SOR_DP_PADCTL_CM_TXD_1 | SOR_DP_PADCTL_CM_TXD_0);
 757	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
 758}
 759
 760static void tegra_sor_dp_term_calibrate(struct tegra_sor *sor)
 761{
 762	u32 mask = 0x08, adj = 0, value;
 763
 764	/* enable pad calibration logic */
 765	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
 766	value &= ~SOR_DP_PADCTL_PAD_CAL_PD;
 767	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
 768
 769	value = tegra_sor_readl(sor, sor->soc->regs->pll1);
 770	value |= SOR_PLL1_TMDS_TERM;
 771	tegra_sor_writel(sor, value, sor->soc->regs->pll1);
 772
 773	while (mask) {
 774		adj |= mask;
 775
 776		value = tegra_sor_readl(sor, sor->soc->regs->pll1);
 777		value &= ~SOR_PLL1_TMDS_TERMADJ_MASK;
 778		value |= SOR_PLL1_TMDS_TERMADJ(adj);
 779		tegra_sor_writel(sor, value, sor->soc->regs->pll1);
 780
 781		usleep_range(100, 200);
 782
 783		value = tegra_sor_readl(sor, sor->soc->regs->pll1);
 784		if (value & SOR_PLL1_TERM_COMPOUT)
 785			adj &= ~mask;
 786
 787		mask >>= 1;
 788	}
 789
 790	value = tegra_sor_readl(sor, sor->soc->regs->pll1);
 791	value &= ~SOR_PLL1_TMDS_TERMADJ_MASK;
 792	value |= SOR_PLL1_TMDS_TERMADJ(adj);
 793	tegra_sor_writel(sor, value, sor->soc->regs->pll1);
 794
 795	/* disable pad calibration logic */
 796	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
 797	value |= SOR_DP_PADCTL_PAD_CAL_PD;
 798	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
 799}
 800
 801static int tegra_sor_dp_link_apply_training(struct drm_dp_link *link)
 802{
 803	struct tegra_sor *sor = container_of(link, struct tegra_sor, link);
 804	u32 voltage_swing = 0, pre_emphasis = 0, post_cursor = 0;
 805	const struct tegra_sor_soc *soc = sor->soc;
 806	u32 pattern = 0, tx_pu = 0, value;
 807	unsigned int i;
 808
 809	for (value = 0, i = 0; i < link->lanes; i++) {
 810		u8 vs = link->train.request.voltage_swing[i];
 811		u8 pe = link->train.request.pre_emphasis[i];
 812		u8 pc = link->train.request.post_cursor[i];
 813		u8 shift = sor->soc->lane_map[i] << 3;
 814
 815		voltage_swing |= soc->voltage_swing[pc][vs][pe] << shift;
 816		pre_emphasis |= soc->pre_emphasis[pc][vs][pe] << shift;
 817		post_cursor |= soc->post_cursor[pc][vs][pe] << shift;
 818
 819		if (sor->soc->tx_pu[pc][vs][pe] > tx_pu)
 820			tx_pu = sor->soc->tx_pu[pc][vs][pe];
 821
 822		switch (link->train.pattern) {
 823		case DP_TRAINING_PATTERN_DISABLE:
 824			value = SOR_DP_TPG_SCRAMBLER_GALIOS |
 825				SOR_DP_TPG_PATTERN_NONE;
 826			break;
 827
 828		case DP_TRAINING_PATTERN_1:
 829			value = SOR_DP_TPG_SCRAMBLER_NONE |
 830				SOR_DP_TPG_PATTERN_TRAIN1;
 831			break;
 832
 833		case DP_TRAINING_PATTERN_2:
 834			value = SOR_DP_TPG_SCRAMBLER_NONE |
 835				SOR_DP_TPG_PATTERN_TRAIN2;
 836			break;
 837
 838		case DP_TRAINING_PATTERN_3:
 839			value = SOR_DP_TPG_SCRAMBLER_NONE |
 840				SOR_DP_TPG_PATTERN_TRAIN3;
 841			break;
 842
 843		default:
 844			return -EINVAL;
 845		}
 846
 847		if (link->caps.channel_coding)
 848			value |= SOR_DP_TPG_CHANNEL_CODING;
 849
 850		pattern = pattern << 8 | value;
 851	}
 852
 853	tegra_sor_writel(sor, voltage_swing, SOR_LANE_DRIVE_CURRENT0);
 854	tegra_sor_writel(sor, pre_emphasis, SOR_LANE_PREEMPHASIS0);
 855
 856	if (link->caps.tps3_supported)
 857		tegra_sor_writel(sor, post_cursor, SOR_LANE_POSTCURSOR0);
 858
 859	tegra_sor_writel(sor, pattern, SOR_DP_TPG);
 860
 861	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
 862	value &= ~SOR_DP_PADCTL_TX_PU_MASK;
 863	value |= SOR_DP_PADCTL_TX_PU_ENABLE;
 864	value |= SOR_DP_PADCTL_TX_PU(tx_pu);
 865	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
 866
 867	usleep_range(20, 100);
 868
 869	return 0;
 870}
 871
 872static int tegra_sor_dp_link_configure(struct drm_dp_link *link)
 873{
 874	struct tegra_sor *sor = container_of(link, struct tegra_sor, link);
 875	unsigned int rate, lanes;
 876	u32 value;
 877	int err;
 878
 879	rate = drm_dp_link_rate_to_bw_code(link->rate);
 880	lanes = link->lanes;
 881
 882	/* configure link speed and lane count */
 883	value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
 884	value &= ~SOR_CLK_CNTRL_DP_LINK_SPEED_MASK;
 885	value |= SOR_CLK_CNTRL_DP_LINK_SPEED(rate);
 886	tegra_sor_writel(sor, value, SOR_CLK_CNTRL);
 887
 888	value = tegra_sor_readl(sor, SOR_DP_LINKCTL0);
 889	value &= ~SOR_DP_LINKCTL_LANE_COUNT_MASK;
 890	value |= SOR_DP_LINKCTL_LANE_COUNT(lanes);
 891
 892	if (link->caps.enhanced_framing)
 893		value |= SOR_DP_LINKCTL_ENHANCED_FRAME;
 894
 895	tegra_sor_writel(sor, value, SOR_DP_LINKCTL0);
 896
 897	usleep_range(400, 1000);
 898
 899	/* configure load pulse position adjustment */
 900	value = tegra_sor_readl(sor, sor->soc->regs->pll1);
 901	value &= ~SOR_PLL1_LOADADJ_MASK;
 902
 903	switch (rate) {
 904	case DP_LINK_BW_1_62:
 905		value |= SOR_PLL1_LOADADJ(0x3);
 906		break;
 907
 908	case DP_LINK_BW_2_7:
 909		value |= SOR_PLL1_LOADADJ(0x4);
 910		break;
 911
 912	case DP_LINK_BW_5_4:
 913		value |= SOR_PLL1_LOADADJ(0x6);
 914		break;
 915	}
 916
 917	tegra_sor_writel(sor, value, sor->soc->regs->pll1);
 918
 919	/* use alternate scrambler reset for eDP */
 920	value = tegra_sor_readl(sor, SOR_DP_SPARE0);
 921
 922	if (link->edp == 0)
 923		value &= ~SOR_DP_SPARE_PANEL_INTERNAL;
 924	else
 925		value |= SOR_DP_SPARE_PANEL_INTERNAL;
 926
 927	tegra_sor_writel(sor, value, SOR_DP_SPARE0);
 928
 929	err = tegra_sor_power_down_lanes(sor);
 930	if (err < 0) {
 931		dev_err(sor->dev, "failed to power down lanes: %d\n", err);
 932		return err;
 933	}
 934
 935	/* power up and pre-charge lanes */
 936	err = tegra_sor_power_up_lanes(sor, lanes);
 937	if (err < 0) {
 938		dev_err(sor->dev, "failed to power up %u lane%s: %d\n",
 939			lanes, (lanes != 1) ? "s" : "", err);
 940		return err;
 941	}
 942
 943	tegra_sor_dp_precharge(sor, lanes);
 944
 945	return 0;
 946}
 947
 948static const struct drm_dp_link_ops tegra_sor_dp_link_ops = {
 949	.apply_training = tegra_sor_dp_link_apply_training,
 950	.configure = tegra_sor_dp_link_configure,
 951};
 952
 953static void tegra_sor_super_update(struct tegra_sor *sor)
 954{
 955	tegra_sor_writel(sor, 0, SOR_SUPER_STATE0);
 956	tegra_sor_writel(sor, 1, SOR_SUPER_STATE0);
 957	tegra_sor_writel(sor, 0, SOR_SUPER_STATE0);
 958}
 959
 960static void tegra_sor_update(struct tegra_sor *sor)
 961{
 962	tegra_sor_writel(sor, 0, SOR_STATE0);
 963	tegra_sor_writel(sor, 1, SOR_STATE0);
 964	tegra_sor_writel(sor, 0, SOR_STATE0);
 965}
 966
 967static int tegra_sor_setup_pwm(struct tegra_sor *sor, unsigned long timeout)
 968{
 969	u32 value;
 970
 971	value = tegra_sor_readl(sor, SOR_PWM_DIV);
 972	value &= ~SOR_PWM_DIV_MASK;
 973	value |= 0x400; /* period */
 974	tegra_sor_writel(sor, value, SOR_PWM_DIV);
 975
 976	value = tegra_sor_readl(sor, SOR_PWM_CTL);
 977	value &= ~SOR_PWM_CTL_DUTY_CYCLE_MASK;
 978	value |= 0x400; /* duty cycle */
 979	value &= ~SOR_PWM_CTL_CLK_SEL; /* clock source: PCLK */
 980	value |= SOR_PWM_CTL_TRIGGER;
 981	tegra_sor_writel(sor, value, SOR_PWM_CTL);
 982
 983	timeout = jiffies + msecs_to_jiffies(timeout);
 984
 985	while (time_before(jiffies, timeout)) {
 986		value = tegra_sor_readl(sor, SOR_PWM_CTL);
 987		if ((value & SOR_PWM_CTL_TRIGGER) == 0)
 988			return 0;
 989
 990		usleep_range(25, 100);
 991	}
 992
 993	return -ETIMEDOUT;
 994}
 995
 996static int tegra_sor_attach(struct tegra_sor *sor)
 997{
 998	unsigned long value, timeout;
 999
1000	/* wake up in normal mode */
1001	value = tegra_sor_readl(sor, SOR_SUPER_STATE1);
1002	value |= SOR_SUPER_STATE_HEAD_MODE_AWAKE;
1003	value |= SOR_SUPER_STATE_MODE_NORMAL;
1004	tegra_sor_writel(sor, value, SOR_SUPER_STATE1);
1005	tegra_sor_super_update(sor);
1006
1007	/* attach */
1008	value = tegra_sor_readl(sor, SOR_SUPER_STATE1);
1009	value |= SOR_SUPER_STATE_ATTACHED;
1010	tegra_sor_writel(sor, value, SOR_SUPER_STATE1);
1011	tegra_sor_super_update(sor);
1012
1013	timeout = jiffies + msecs_to_jiffies(250);
1014
1015	while (time_before(jiffies, timeout)) {
1016		value = tegra_sor_readl(sor, SOR_TEST);
1017		if ((value & SOR_TEST_ATTACHED) != 0)
1018			return 0;
1019
1020		usleep_range(25, 100);
1021	}
1022
1023	return -ETIMEDOUT;
1024}
1025
1026static int tegra_sor_wakeup(struct tegra_sor *sor)
1027{
1028	unsigned long value, timeout;
1029
1030	timeout = jiffies + msecs_to_jiffies(250);
1031
1032	/* wait for head to wake up */
1033	while (time_before(jiffies, timeout)) {
1034		value = tegra_sor_readl(sor, SOR_TEST);
1035		value &= SOR_TEST_HEAD_MODE_MASK;
1036
1037		if (value == SOR_TEST_HEAD_MODE_AWAKE)
1038			return 0;
1039
1040		usleep_range(25, 100);
1041	}
1042
1043	return -ETIMEDOUT;
1044}
1045
1046static int tegra_sor_power_up(struct tegra_sor *sor, unsigned long timeout)
1047{
1048	u32 value;
1049
1050	value = tegra_sor_readl(sor, SOR_PWR);
1051	value |= SOR_PWR_TRIGGER | SOR_PWR_NORMAL_STATE_PU;
1052	tegra_sor_writel(sor, value, SOR_PWR);
1053
1054	timeout = jiffies + msecs_to_jiffies(timeout);
1055
1056	while (time_before(jiffies, timeout)) {
1057		value = tegra_sor_readl(sor, SOR_PWR);
1058		if ((value & SOR_PWR_TRIGGER) == 0)
1059			return 0;
1060
1061		usleep_range(25, 100);
1062	}
1063
1064	return -ETIMEDOUT;
1065}
1066
1067struct tegra_sor_params {
1068	/* number of link clocks per line */
1069	unsigned int num_clocks;
1070	/* ratio between input and output */
1071	u64 ratio;
1072	/* precision factor */
1073	u64 precision;
1074
1075	unsigned int active_polarity;
1076	unsigned int active_count;
1077	unsigned int active_frac;
1078	unsigned int tu_size;
1079	unsigned int error;
1080};
1081
1082static int tegra_sor_compute_params(struct tegra_sor *sor,
1083				    struct tegra_sor_params *params,
1084				    unsigned int tu_size)
1085{
1086	u64 active_sym, active_count, frac, approx;
1087	u32 active_polarity, active_frac = 0;
1088	const u64 f = params->precision;
1089	s64 error;
1090
1091	active_sym = params->ratio * tu_size;
1092	active_count = div_u64(active_sym, f) * f;
1093	frac = active_sym - active_count;
1094
1095	/* fraction < 0.5 */
1096	if (frac >= (f / 2)) {
1097		active_polarity = 1;
1098		frac = f - frac;
1099	} else {
1100		active_polarity = 0;
1101	}
1102
1103	if (frac != 0) {
1104		frac = div_u64(f * f,  frac); /* 1/fraction */
1105		if (frac <= (15 * f)) {
1106			active_frac = div_u64(frac, f);
1107
1108			/* round up */
1109			if (active_polarity)
1110				active_frac++;
1111		} else {
1112			active_frac = active_polarity ? 1 : 15;
1113		}
1114	}
1115
1116	if (active_frac == 1)
1117		active_polarity = 0;
1118
1119	if (active_polarity == 1) {
1120		if (active_frac) {
1121			approx = active_count + (active_frac * (f - 1)) * f;
1122			approx = div_u64(approx, active_frac * f);
1123		} else {
1124			approx = active_count + f;
1125		}
1126	} else {
1127		if (active_frac)
1128			approx = active_count + div_u64(f, active_frac);
1129		else
1130			approx = active_count;
1131	}
1132
1133	error = div_s64(active_sym - approx, tu_size);
1134	error *= params->num_clocks;
1135
1136	if (error <= 0 && abs(error) < params->error) {
1137		params->active_count = div_u64(active_count, f);
1138		params->active_polarity = active_polarity;
1139		params->active_frac = active_frac;
1140		params->error = abs(error);
1141		params->tu_size = tu_size;
1142
1143		if (error == 0)
1144			return true;
1145	}
1146
1147	return false;
1148}
1149
1150static int tegra_sor_compute_config(struct tegra_sor *sor,
1151				    const struct drm_display_mode *mode,
1152				    struct tegra_sor_config *config,
1153				    struct drm_dp_link *link)
1154{
1155	const u64 f = 100000, link_rate = link->rate * 1000;
1156	const u64 pclk = mode->clock * 1000;
1157	u64 input, output, watermark, num;
1158	struct tegra_sor_params params;
1159	u32 num_syms_per_line;
1160	unsigned int i;
1161
1162	if (!link_rate || !link->lanes || !pclk || !config->bits_per_pixel)
1163		return -EINVAL;
1164
1165	input = pclk * config->bits_per_pixel;
1166	output = link_rate * 8 * link->lanes;
1167
1168	if (input >= output)
1169		return -ERANGE;
1170
1171	memset(&params, 0, sizeof(params));
1172	params.ratio = div64_u64(input * f, output);
1173	params.num_clocks = div_u64(link_rate * mode->hdisplay, pclk);
1174	params.precision = f;
1175	params.error = 64 * f;
1176	params.tu_size = 64;
1177
1178	for (i = params.tu_size; i >= 32; i--)
1179		if (tegra_sor_compute_params(sor, &params, i))
1180			break;
1181
1182	if (params.active_frac == 0) {
1183		config->active_polarity = 0;
1184		config->active_count = params.active_count;
1185
1186		if (!params.active_polarity)
1187			config->active_count--;
1188
1189		config->tu_size = params.tu_size;
1190		config->active_frac = 1;
1191	} else {
1192		config->active_polarity = params.active_polarity;
1193		config->active_count = params.active_count;
1194		config->active_frac = params.active_frac;
1195		config->tu_size = params.tu_size;
1196	}
1197
1198	dev_dbg(sor->dev,
1199		"polarity: %d active count: %d tu size: %d active frac: %d\n",
1200		config->active_polarity, config->active_count,
1201		config->tu_size, config->active_frac);
1202
1203	watermark = params.ratio * config->tu_size * (f - params.ratio);
1204	watermark = div_u64(watermark, f);
1205
1206	watermark = div_u64(watermark + params.error, f);
1207	config->watermark = watermark + (config->bits_per_pixel / 8) + 2;
1208	num_syms_per_line = (mode->hdisplay * config->bits_per_pixel) *
1209			    (link->lanes * 8);
1210
1211	if (config->watermark > 30) {
1212		config->watermark = 30;
1213		dev_err(sor->dev,
1214			"unable to compute TU size, forcing watermark to %u\n",
1215			config->watermark);
1216	} else if (config->watermark > num_syms_per_line) {
1217		config->watermark = num_syms_per_line;
1218		dev_err(sor->dev, "watermark too high, forcing to %u\n",
1219			config->watermark);
1220	}
1221
1222	/* compute the number of symbols per horizontal blanking interval */
1223	num = ((mode->htotal - mode->hdisplay) - 7) * link_rate;
1224	config->hblank_symbols = div_u64(num, pclk);
1225
1226	if (link->caps.enhanced_framing)
1227		config->hblank_symbols -= 3;
1228
1229	config->hblank_symbols -= 12 / link->lanes;
1230
1231	/* compute the number of symbols per vertical blanking interval */
1232	num = (mode->hdisplay - 25) * link_rate;
1233	config->vblank_symbols = div_u64(num, pclk);
1234	config->vblank_symbols -= 36 / link->lanes + 4;
1235
1236	dev_dbg(sor->dev, "blank symbols: H:%u V:%u\n", config->hblank_symbols,
1237		config->vblank_symbols);
1238
1239	return 0;
1240}
1241
1242static void tegra_sor_apply_config(struct tegra_sor *sor,
1243				   const struct tegra_sor_config *config)
1244{
1245	u32 value;
1246
1247	value = tegra_sor_readl(sor, SOR_DP_LINKCTL0);
1248	value &= ~SOR_DP_LINKCTL_TU_SIZE_MASK;
1249	value |= SOR_DP_LINKCTL_TU_SIZE(config->tu_size);
1250	tegra_sor_writel(sor, value, SOR_DP_LINKCTL0);
1251
1252	value = tegra_sor_readl(sor, SOR_DP_CONFIG0);
1253	value &= ~SOR_DP_CONFIG_WATERMARK_MASK;
1254	value |= SOR_DP_CONFIG_WATERMARK(config->watermark);
1255
1256	value &= ~SOR_DP_CONFIG_ACTIVE_SYM_COUNT_MASK;
1257	value |= SOR_DP_CONFIG_ACTIVE_SYM_COUNT(config->active_count);
1258
1259	value &= ~SOR_DP_CONFIG_ACTIVE_SYM_FRAC_MASK;
1260	value |= SOR_DP_CONFIG_ACTIVE_SYM_FRAC(config->active_frac);
1261
1262	if (config->active_polarity)
1263		value |= SOR_DP_CONFIG_ACTIVE_SYM_POLARITY;
1264	else
1265		value &= ~SOR_DP_CONFIG_ACTIVE_SYM_POLARITY;
1266
1267	value |= SOR_DP_CONFIG_ACTIVE_SYM_ENABLE;
1268	value |= SOR_DP_CONFIG_DISPARITY_NEGATIVE;
1269	tegra_sor_writel(sor, value, SOR_DP_CONFIG0);
1270
1271	value = tegra_sor_readl(sor, SOR_DP_AUDIO_HBLANK_SYMBOLS);
1272	value &= ~SOR_DP_AUDIO_HBLANK_SYMBOLS_MASK;
1273	value |= config->hblank_symbols & 0xffff;
1274	tegra_sor_writel(sor, value, SOR_DP_AUDIO_HBLANK_SYMBOLS);
1275
1276	value = tegra_sor_readl(sor, SOR_DP_AUDIO_VBLANK_SYMBOLS);
1277	value &= ~SOR_DP_AUDIO_VBLANK_SYMBOLS_MASK;
1278	value |= config->vblank_symbols & 0xffff;
1279	tegra_sor_writel(sor, value, SOR_DP_AUDIO_VBLANK_SYMBOLS);
1280}
1281
1282static void tegra_sor_mode_set(struct tegra_sor *sor,
1283			       const struct drm_display_mode *mode,
1284			       struct tegra_sor_state *state)
1285{
1286	struct tegra_dc *dc = to_tegra_dc(sor->output.encoder.crtc);
1287	unsigned int vbe, vse, hbe, hse, vbs, hbs;
1288	u32 value;
1289
1290	value = tegra_sor_readl(sor, SOR_STATE1);
1291	value &= ~SOR_STATE_ASY_PIXELDEPTH_MASK;
1292	value &= ~SOR_STATE_ASY_CRC_MODE_MASK;
1293	value &= ~SOR_STATE_ASY_OWNER_MASK;
1294
1295	value |= SOR_STATE_ASY_CRC_MODE_COMPLETE |
1296		 SOR_STATE_ASY_OWNER(dc->pipe + 1);
1297
1298	if (mode->flags & DRM_MODE_FLAG_PHSYNC)
1299		value &= ~SOR_STATE_ASY_HSYNCPOL;
1300
1301	if (mode->flags & DRM_MODE_FLAG_NHSYNC)
1302		value |= SOR_STATE_ASY_HSYNCPOL;
1303
1304	if (mode->flags & DRM_MODE_FLAG_PVSYNC)
1305		value &= ~SOR_STATE_ASY_VSYNCPOL;
1306
1307	if (mode->flags & DRM_MODE_FLAG_NVSYNC)
1308		value |= SOR_STATE_ASY_VSYNCPOL;
1309
1310	switch (state->bpc) {
1311	case 16:
1312		value |= SOR_STATE_ASY_PIXELDEPTH_BPP_48_444;
1313		break;
1314
1315	case 12:
1316		value |= SOR_STATE_ASY_PIXELDEPTH_BPP_36_444;
1317		break;
1318
1319	case 10:
1320		value |= SOR_STATE_ASY_PIXELDEPTH_BPP_30_444;
1321		break;
1322
1323	case 8:
1324		value |= SOR_STATE_ASY_PIXELDEPTH_BPP_24_444;
1325		break;
1326
1327	case 6:
1328		value |= SOR_STATE_ASY_PIXELDEPTH_BPP_18_444;
1329		break;
1330
1331	default:
1332		value |= SOR_STATE_ASY_PIXELDEPTH_BPP_24_444;
1333		break;
1334	}
1335
1336	tegra_sor_writel(sor, value, SOR_STATE1);
1337
1338	/*
1339	 * TODO: The video timing programming below doesn't seem to match the
1340	 * register definitions.
1341	 */
1342
1343	value = ((mode->vtotal & 0x7fff) << 16) | (mode->htotal & 0x7fff);
1344	tegra_sor_writel(sor, value, sor->soc->regs->head_state1 + dc->pipe);
1345
1346	/* sync end = sync width - 1 */
1347	vse = mode->vsync_end - mode->vsync_start - 1;
1348	hse = mode->hsync_end - mode->hsync_start - 1;
1349
1350	value = ((vse & 0x7fff) << 16) | (hse & 0x7fff);
1351	tegra_sor_writel(sor, value, sor->soc->regs->head_state2 + dc->pipe);
1352
1353	/* blank end = sync end + back porch */
1354	vbe = vse + (mode->vtotal - mode->vsync_end);
1355	hbe = hse + (mode->htotal - mode->hsync_end);
1356
1357	value = ((vbe & 0x7fff) << 16) | (hbe & 0x7fff);
1358	tegra_sor_writel(sor, value, sor->soc->regs->head_state3 + dc->pipe);
1359
1360	/* blank start = blank end + active */
1361	vbs = vbe + mode->vdisplay;
1362	hbs = hbe + mode->hdisplay;
1363
1364	value = ((vbs & 0x7fff) << 16) | (hbs & 0x7fff);
1365	tegra_sor_writel(sor, value, sor->soc->regs->head_state4 + dc->pipe);
1366
1367	/* XXX interlacing support */
1368	tegra_sor_writel(sor, 0x001, sor->soc->regs->head_state5 + dc->pipe);
1369}
1370
1371static int tegra_sor_detach(struct tegra_sor *sor)
1372{
1373	unsigned long value, timeout;
1374
1375	/* switch to safe mode */
1376	value = tegra_sor_readl(sor, SOR_SUPER_STATE1);
1377	value &= ~SOR_SUPER_STATE_MODE_NORMAL;
1378	tegra_sor_writel(sor, value, SOR_SUPER_STATE1);
1379	tegra_sor_super_update(sor);
1380
1381	timeout = jiffies + msecs_to_jiffies(250);
1382
1383	while (time_before(jiffies, timeout)) {
1384		value = tegra_sor_readl(sor, SOR_PWR);
1385		if (value & SOR_PWR_MODE_SAFE)
1386			break;
1387	}
1388
1389	if ((value & SOR_PWR_MODE_SAFE) == 0)
1390		return -ETIMEDOUT;
1391
1392	/* go to sleep */
1393	value = tegra_sor_readl(sor, SOR_SUPER_STATE1);
1394	value &= ~SOR_SUPER_STATE_HEAD_MODE_MASK;
1395	tegra_sor_writel(sor, value, SOR_SUPER_STATE1);
1396	tegra_sor_super_update(sor);
1397
1398	/* detach */
1399	value = tegra_sor_readl(sor, SOR_SUPER_STATE1);
1400	value &= ~SOR_SUPER_STATE_ATTACHED;
1401	tegra_sor_writel(sor, value, SOR_SUPER_STATE1);
1402	tegra_sor_super_update(sor);
1403
1404	timeout = jiffies + msecs_to_jiffies(250);
1405
1406	while (time_before(jiffies, timeout)) {
1407		value = tegra_sor_readl(sor, SOR_TEST);
1408		if ((value & SOR_TEST_ATTACHED) == 0)
1409			break;
1410
1411		usleep_range(25, 100);
1412	}
1413
1414	if ((value & SOR_TEST_ATTACHED) != 0)
1415		return -ETIMEDOUT;
1416
1417	return 0;
1418}
1419
1420static int tegra_sor_power_down(struct tegra_sor *sor)
1421{
1422	unsigned long value, timeout;
1423	int err;
1424
1425	value = tegra_sor_readl(sor, SOR_PWR);
1426	value &= ~SOR_PWR_NORMAL_STATE_PU;
1427	value |= SOR_PWR_TRIGGER;
1428	tegra_sor_writel(sor, value, SOR_PWR);
1429
1430	timeout = jiffies + msecs_to_jiffies(250);
1431
1432	while (time_before(jiffies, timeout)) {
1433		value = tegra_sor_readl(sor, SOR_PWR);
1434		if ((value & SOR_PWR_TRIGGER) == 0)
1435			return 0;
1436
1437		usleep_range(25, 100);
1438	}
1439
1440	if ((value & SOR_PWR_TRIGGER) != 0)
1441		return -ETIMEDOUT;
1442
1443	/* switch to safe parent clock */
1444	err = tegra_sor_set_parent_clock(sor, sor->clk_safe);
1445	if (err < 0) {
1446		dev_err(sor->dev, "failed to set safe parent clock: %d\n", err);
1447		return err;
1448	}
1449
1450	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
1451	value |= SOR_PLL2_PORT_POWERDOWN;
1452	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
1453
1454	usleep_range(20, 100);
1455
1456	value = tegra_sor_readl(sor, sor->soc->regs->pll0);
1457	value |= SOR_PLL0_VCOPD | SOR_PLL0_PWR;
1458	tegra_sor_writel(sor, value, sor->soc->regs->pll0);
1459
1460	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
1461	value |= SOR_PLL2_SEQ_PLLCAPPD;
1462	value |= SOR_PLL2_SEQ_PLLCAPPD_ENFORCE;
1463	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
1464
1465	usleep_range(20, 100);
1466
1467	return 0;
1468}
1469
1470static int tegra_sor_crc_wait(struct tegra_sor *sor, unsigned long timeout)
1471{
1472	u32 value;
1473
1474	timeout = jiffies + msecs_to_jiffies(timeout);
1475
1476	while (time_before(jiffies, timeout)) {
1477		value = tegra_sor_readl(sor, SOR_CRCA);
1478		if (value & SOR_CRCA_VALID)
1479			return 0;
1480
1481		usleep_range(100, 200);
1482	}
1483
1484	return -ETIMEDOUT;
1485}
1486
1487static int tegra_sor_show_crc(struct seq_file *s, void *data)
1488{
1489	struct drm_info_node *node = s->private;
1490	struct tegra_sor *sor = node->info_ent->data;
1491	struct drm_crtc *crtc = sor->output.encoder.crtc;
1492	struct drm_device *drm = node->minor->dev;
1493	int err = 0;
1494	u32 value;
1495
1496	drm_modeset_lock_all(drm);
1497
1498	if (!crtc || !crtc->state->active) {
1499		err = -EBUSY;
1500		goto unlock;
1501	}
1502
1503	value = tegra_sor_readl(sor, SOR_STATE1);
1504	value &= ~SOR_STATE_ASY_CRC_MODE_MASK;
1505	tegra_sor_writel(sor, value, SOR_STATE1);
1506
1507	value = tegra_sor_readl(sor, SOR_CRC_CNTRL);
1508	value |= SOR_CRC_CNTRL_ENABLE;
1509	tegra_sor_writel(sor, value, SOR_CRC_CNTRL);
1510
1511	value = tegra_sor_readl(sor, SOR_TEST);
1512	value &= ~SOR_TEST_CRC_POST_SERIALIZE;
1513	tegra_sor_writel(sor, value, SOR_TEST);
1514
1515	err = tegra_sor_crc_wait(sor, 100);
1516	if (err < 0)
1517		goto unlock;
1518
1519	tegra_sor_writel(sor, SOR_CRCA_RESET, SOR_CRCA);
1520	value = tegra_sor_readl(sor, SOR_CRCB);
1521
1522	seq_printf(s, "%08x\n", value);
1523
1524unlock:
1525	drm_modeset_unlock_all(drm);
1526	return err;
1527}
1528
1529#define DEBUGFS_REG32(_name) { .name = #_name, .offset = _name }
1530
1531static const struct debugfs_reg32 tegra_sor_regs[] = {
1532	DEBUGFS_REG32(SOR_CTXSW),
1533	DEBUGFS_REG32(SOR_SUPER_STATE0),
1534	DEBUGFS_REG32(SOR_SUPER_STATE1),
1535	DEBUGFS_REG32(SOR_STATE0),
1536	DEBUGFS_REG32(SOR_STATE1),
1537	DEBUGFS_REG32(SOR_HEAD_STATE0(0)),
1538	DEBUGFS_REG32(SOR_HEAD_STATE0(1)),
1539	DEBUGFS_REG32(SOR_HEAD_STATE1(0)),
1540	DEBUGFS_REG32(SOR_HEAD_STATE1(1)),
1541	DEBUGFS_REG32(SOR_HEAD_STATE2(0)),
1542	DEBUGFS_REG32(SOR_HEAD_STATE2(1)),
1543	DEBUGFS_REG32(SOR_HEAD_STATE3(0)),
1544	DEBUGFS_REG32(SOR_HEAD_STATE3(1)),
1545	DEBUGFS_REG32(SOR_HEAD_STATE4(0)),
1546	DEBUGFS_REG32(SOR_HEAD_STATE4(1)),
1547	DEBUGFS_REG32(SOR_HEAD_STATE5(0)),
1548	DEBUGFS_REG32(SOR_HEAD_STATE5(1)),
1549	DEBUGFS_REG32(SOR_CRC_CNTRL),
1550	DEBUGFS_REG32(SOR_DP_DEBUG_MVID),
1551	DEBUGFS_REG32(SOR_CLK_CNTRL),
1552	DEBUGFS_REG32(SOR_CAP),
1553	DEBUGFS_REG32(SOR_PWR),
1554	DEBUGFS_REG32(SOR_TEST),
1555	DEBUGFS_REG32(SOR_PLL0),
1556	DEBUGFS_REG32(SOR_PLL1),
1557	DEBUGFS_REG32(SOR_PLL2),
1558	DEBUGFS_REG32(SOR_PLL3),
1559	DEBUGFS_REG32(SOR_CSTM),
1560	DEBUGFS_REG32(SOR_LVDS),
1561	DEBUGFS_REG32(SOR_CRCA),
1562	DEBUGFS_REG32(SOR_CRCB),
1563	DEBUGFS_REG32(SOR_BLANK),
1564	DEBUGFS_REG32(SOR_SEQ_CTL),
1565	DEBUGFS_REG32(SOR_LANE_SEQ_CTL),
1566	DEBUGFS_REG32(SOR_SEQ_INST(0)),
1567	DEBUGFS_REG32(SOR_SEQ_INST(1)),
1568	DEBUGFS_REG32(SOR_SEQ_INST(2)),
1569	DEBUGFS_REG32(SOR_SEQ_INST(3)),
1570	DEBUGFS_REG32(SOR_SEQ_INST(4)),
1571	DEBUGFS_REG32(SOR_SEQ_INST(5)),
1572	DEBUGFS_REG32(SOR_SEQ_INST(6)),
1573	DEBUGFS_REG32(SOR_SEQ_INST(7)),
1574	DEBUGFS_REG32(SOR_SEQ_INST(8)),
1575	DEBUGFS_REG32(SOR_SEQ_INST(9)),
1576	DEBUGFS_REG32(SOR_SEQ_INST(10)),
1577	DEBUGFS_REG32(SOR_SEQ_INST(11)),
1578	DEBUGFS_REG32(SOR_SEQ_INST(12)),
1579	DEBUGFS_REG32(SOR_SEQ_INST(13)),
1580	DEBUGFS_REG32(SOR_SEQ_INST(14)),
1581	DEBUGFS_REG32(SOR_SEQ_INST(15)),
1582	DEBUGFS_REG32(SOR_PWM_DIV),
1583	DEBUGFS_REG32(SOR_PWM_CTL),
1584	DEBUGFS_REG32(SOR_VCRC_A0),
1585	DEBUGFS_REG32(SOR_VCRC_A1),
1586	DEBUGFS_REG32(SOR_VCRC_B0),
1587	DEBUGFS_REG32(SOR_VCRC_B1),
1588	DEBUGFS_REG32(SOR_CCRC_A0),
1589	DEBUGFS_REG32(SOR_CCRC_A1),
1590	DEBUGFS_REG32(SOR_CCRC_B0),
1591	DEBUGFS_REG32(SOR_CCRC_B1),
1592	DEBUGFS_REG32(SOR_EDATA_A0),
1593	DEBUGFS_REG32(SOR_EDATA_A1),
1594	DEBUGFS_REG32(SOR_EDATA_B0),
1595	DEBUGFS_REG32(SOR_EDATA_B1),
1596	DEBUGFS_REG32(SOR_COUNT_A0),
1597	DEBUGFS_REG32(SOR_COUNT_A1),
1598	DEBUGFS_REG32(SOR_COUNT_B0),
1599	DEBUGFS_REG32(SOR_COUNT_B1),
1600	DEBUGFS_REG32(SOR_DEBUG_A0),
1601	DEBUGFS_REG32(SOR_DEBUG_A1),
1602	DEBUGFS_REG32(SOR_DEBUG_B0),
1603	DEBUGFS_REG32(SOR_DEBUG_B1),
1604	DEBUGFS_REG32(SOR_TRIG),
1605	DEBUGFS_REG32(SOR_MSCHECK),
1606	DEBUGFS_REG32(SOR_XBAR_CTRL),
1607	DEBUGFS_REG32(SOR_XBAR_POL),
1608	DEBUGFS_REG32(SOR_DP_LINKCTL0),
1609	DEBUGFS_REG32(SOR_DP_LINKCTL1),
1610	DEBUGFS_REG32(SOR_LANE_DRIVE_CURRENT0),
1611	DEBUGFS_REG32(SOR_LANE_DRIVE_CURRENT1),
1612	DEBUGFS_REG32(SOR_LANE4_DRIVE_CURRENT0),
1613	DEBUGFS_REG32(SOR_LANE4_DRIVE_CURRENT1),
1614	DEBUGFS_REG32(SOR_LANE_PREEMPHASIS0),
1615	DEBUGFS_REG32(SOR_LANE_PREEMPHASIS1),
1616	DEBUGFS_REG32(SOR_LANE4_PREEMPHASIS0),
1617	DEBUGFS_REG32(SOR_LANE4_PREEMPHASIS1),
1618	DEBUGFS_REG32(SOR_LANE_POSTCURSOR0),
1619	DEBUGFS_REG32(SOR_LANE_POSTCURSOR1),
1620	DEBUGFS_REG32(SOR_DP_CONFIG0),
1621	DEBUGFS_REG32(SOR_DP_CONFIG1),
1622	DEBUGFS_REG32(SOR_DP_MN0),
1623	DEBUGFS_REG32(SOR_DP_MN1),
1624	DEBUGFS_REG32(SOR_DP_PADCTL0),
1625	DEBUGFS_REG32(SOR_DP_PADCTL1),
1626	DEBUGFS_REG32(SOR_DP_PADCTL2),
1627	DEBUGFS_REG32(SOR_DP_DEBUG0),
1628	DEBUGFS_REG32(SOR_DP_DEBUG1),
1629	DEBUGFS_REG32(SOR_DP_SPARE0),
1630	DEBUGFS_REG32(SOR_DP_SPARE1),
1631	DEBUGFS_REG32(SOR_DP_AUDIO_CTRL),
1632	DEBUGFS_REG32(SOR_DP_AUDIO_HBLANK_SYMBOLS),
1633	DEBUGFS_REG32(SOR_DP_AUDIO_VBLANK_SYMBOLS),
1634	DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_HEADER),
1635	DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK0),
1636	DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK1),
1637	DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK2),
1638	DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK3),
1639	DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK4),
1640	DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK5),
1641	DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK6),
1642	DEBUGFS_REG32(SOR_DP_TPG),
1643	DEBUGFS_REG32(SOR_DP_TPG_CONFIG),
1644	DEBUGFS_REG32(SOR_DP_LQ_CSTM0),
1645	DEBUGFS_REG32(SOR_DP_LQ_CSTM1),
1646	DEBUGFS_REG32(SOR_DP_LQ_CSTM2),
1647};
1648
1649static int tegra_sor_show_regs(struct seq_file *s, void *data)
1650{
1651	struct drm_info_node *node = s->private;
1652	struct tegra_sor *sor = node->info_ent->data;
1653	struct drm_crtc *crtc = sor->output.encoder.crtc;
1654	struct drm_device *drm = node->minor->dev;
1655	unsigned int i;
1656	int err = 0;
1657
1658	drm_modeset_lock_all(drm);
1659
1660	if (!crtc || !crtc->state->active) {
1661		err = -EBUSY;
1662		goto unlock;
1663	}
1664
1665	for (i = 0; i < ARRAY_SIZE(tegra_sor_regs); i++) {
1666		unsigned int offset = tegra_sor_regs[i].offset;
1667
1668		seq_printf(s, "%-38s %#05x %08x\n", tegra_sor_regs[i].name,
1669			   offset, tegra_sor_readl(sor, offset));
1670	}
1671
1672unlock:
1673	drm_modeset_unlock_all(drm);
1674	return err;
1675}
1676
1677static const struct drm_info_list debugfs_files[] = {
1678	{ "crc", tegra_sor_show_crc, 0, NULL },
1679	{ "regs", tegra_sor_show_regs, 0, NULL },
1680};
1681
1682static int tegra_sor_late_register(struct drm_connector *connector)
1683{
1684	struct tegra_output *output = connector_to_output(connector);
1685	unsigned int i, count = ARRAY_SIZE(debugfs_files);
1686	struct drm_minor *minor = connector->dev->primary;
1687	struct dentry *root = connector->debugfs_entry;
1688	struct tegra_sor *sor = to_sor(output);
1689
1690	sor->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1691				     GFP_KERNEL);
1692	if (!sor->debugfs_files)
1693		return -ENOMEM;
1694
1695	for (i = 0; i < count; i++)
1696		sor->debugfs_files[i].data = sor;
1697
1698	drm_debugfs_create_files(sor->debugfs_files, count, root, minor);
1699
1700	return 0;
1701}
1702
1703static void tegra_sor_early_unregister(struct drm_connector *connector)
1704{
1705	struct tegra_output *output = connector_to_output(connector);
1706	unsigned int count = ARRAY_SIZE(debugfs_files);
1707	struct tegra_sor *sor = to_sor(output);
1708
1709	drm_debugfs_remove_files(sor->debugfs_files, count,
 
1710				 connector->dev->primary);
1711	kfree(sor->debugfs_files);
1712	sor->debugfs_files = NULL;
1713}
1714
1715static void tegra_sor_connector_reset(struct drm_connector *connector)
1716{
1717	struct tegra_sor_state *state;
1718
1719	state = kzalloc(sizeof(*state), GFP_KERNEL);
1720	if (!state)
1721		return;
1722
1723	if (connector->state) {
1724		__drm_atomic_helper_connector_destroy_state(connector->state);
1725		kfree(connector->state);
1726	}
1727
1728	__drm_atomic_helper_connector_reset(connector, &state->base);
1729}
1730
1731static enum drm_connector_status
1732tegra_sor_connector_detect(struct drm_connector *connector, bool force)
1733{
1734	struct tegra_output *output = connector_to_output(connector);
1735	struct tegra_sor *sor = to_sor(output);
1736
1737	if (sor->aux)
1738		return drm_dp_aux_detect(sor->aux);
1739
1740	return tegra_output_connector_detect(connector, force);
1741}
1742
1743static struct drm_connector_state *
1744tegra_sor_connector_duplicate_state(struct drm_connector *connector)
1745{
1746	struct tegra_sor_state *state = to_sor_state(connector->state);
1747	struct tegra_sor_state *copy;
1748
1749	copy = kmemdup(state, sizeof(*state), GFP_KERNEL);
1750	if (!copy)
1751		return NULL;
1752
1753	__drm_atomic_helper_connector_duplicate_state(connector, &copy->base);
1754
1755	return &copy->base;
1756}
1757
1758static const struct drm_connector_funcs tegra_sor_connector_funcs = {
1759	.reset = tegra_sor_connector_reset,
1760	.detect = tegra_sor_connector_detect,
1761	.fill_modes = drm_helper_probe_single_connector_modes,
1762	.destroy = tegra_output_connector_destroy,
1763	.atomic_duplicate_state = tegra_sor_connector_duplicate_state,
1764	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
1765	.late_register = tegra_sor_late_register,
1766	.early_unregister = tegra_sor_early_unregister,
1767};
1768
1769static int tegra_sor_connector_get_modes(struct drm_connector *connector)
1770{
1771	struct tegra_output *output = connector_to_output(connector);
1772	struct tegra_sor *sor = to_sor(output);
1773	int err;
1774
1775	if (sor->aux)
1776		drm_dp_aux_enable(sor->aux);
1777
1778	err = tegra_output_connector_get_modes(connector);
1779
1780	if (sor->aux)
1781		drm_dp_aux_disable(sor->aux);
1782
1783	return err;
1784}
1785
1786static enum drm_mode_status
1787tegra_sor_connector_mode_valid(struct drm_connector *connector,
1788			       struct drm_display_mode *mode)
1789{
1790	return MODE_OK;
1791}
1792
1793static const struct drm_connector_helper_funcs tegra_sor_connector_helper_funcs = {
1794	.get_modes = tegra_sor_connector_get_modes,
1795	.mode_valid = tegra_sor_connector_mode_valid,
1796};
1797
1798static int
1799tegra_sor_encoder_atomic_check(struct drm_encoder *encoder,
1800			       struct drm_crtc_state *crtc_state,
1801			       struct drm_connector_state *conn_state)
1802{
1803	struct tegra_output *output = encoder_to_output(encoder);
1804	struct tegra_sor_state *state = to_sor_state(conn_state);
1805	struct tegra_dc *dc = to_tegra_dc(conn_state->crtc);
1806	unsigned long pclk = crtc_state->mode.clock * 1000;
1807	struct tegra_sor *sor = to_sor(output);
1808	struct drm_display_info *info;
1809	int err;
1810
1811	info = &output->connector.display_info;
1812
1813	/*
1814	 * For HBR2 modes, the SOR brick needs to use the x20 multiplier, so
1815	 * the pixel clock must be corrected accordingly.
1816	 */
1817	if (pclk >= 340000000) {
1818		state->link_speed = 20;
1819		state->pclk = pclk / 2;
1820	} else {
1821		state->link_speed = 10;
1822		state->pclk = pclk;
1823	}
1824
1825	err = tegra_dc_state_setup_clock(dc, crtc_state, sor->clk_parent,
1826					 pclk, 0);
1827	if (err < 0) {
1828		dev_err(output->dev, "failed to setup CRTC state: %d\n", err);
1829		return err;
1830	}
1831
1832	switch (info->bpc) {
1833	case 8:
1834	case 6:
1835		state->bpc = info->bpc;
1836		break;
1837
1838	default:
1839		DRM_DEBUG_KMS("%u bits-per-color not supported\n", info->bpc);
1840		state->bpc = 8;
1841		break;
1842	}
1843
1844	return 0;
1845}
1846
1847static inline u32 tegra_sor_hdmi_subpack(const u8 *ptr, size_t size)
1848{
1849	u32 value = 0;
1850	size_t i;
1851
1852	for (i = size; i > 0; i--)
1853		value = (value << 8) | ptr[i - 1];
1854
1855	return value;
1856}
1857
1858static void tegra_sor_hdmi_write_infopack(struct tegra_sor *sor,
1859					  const void *data, size_t size)
1860{
1861	const u8 *ptr = data;
1862	unsigned long offset;
1863	size_t i, j;
1864	u32 value;
1865
1866	switch (ptr[0]) {
1867	case HDMI_INFOFRAME_TYPE_AVI:
1868		offset = SOR_HDMI_AVI_INFOFRAME_HEADER;
1869		break;
1870
1871	case HDMI_INFOFRAME_TYPE_AUDIO:
1872		offset = SOR_HDMI_AUDIO_INFOFRAME_HEADER;
1873		break;
1874
1875	case HDMI_INFOFRAME_TYPE_VENDOR:
1876		offset = SOR_HDMI_VSI_INFOFRAME_HEADER;
1877		break;
1878
1879	default:
1880		dev_err(sor->dev, "unsupported infoframe type: %02x\n",
1881			ptr[0]);
1882		return;
1883	}
1884
1885	value = INFOFRAME_HEADER_TYPE(ptr[0]) |
1886		INFOFRAME_HEADER_VERSION(ptr[1]) |
1887		INFOFRAME_HEADER_LEN(ptr[2]);
1888	tegra_sor_writel(sor, value, offset);
1889	offset++;
1890
1891	/*
1892	 * Each subpack contains 7 bytes, divided into:
1893	 * - subpack_low: bytes 0 - 3
1894	 * - subpack_high: bytes 4 - 6 (with byte 7 padded to 0x00)
1895	 */
1896	for (i = 3, j = 0; i < size; i += 7, j += 8) {
1897		size_t rem = size - i, num = min_t(size_t, rem, 4);
1898
1899		value = tegra_sor_hdmi_subpack(&ptr[i], num);
1900		tegra_sor_writel(sor, value, offset++);
1901
1902		num = min_t(size_t, rem - num, 3);
1903
1904		value = tegra_sor_hdmi_subpack(&ptr[i + 4], num);
1905		tegra_sor_writel(sor, value, offset++);
1906	}
1907}
1908
1909static int
1910tegra_sor_hdmi_setup_avi_infoframe(struct tegra_sor *sor,
1911				   const struct drm_display_mode *mode)
1912{
1913	u8 buffer[HDMI_INFOFRAME_SIZE(AVI)];
1914	struct hdmi_avi_infoframe frame;
1915	u32 value;
1916	int err;
1917
1918	/* disable AVI infoframe */
1919	value = tegra_sor_readl(sor, SOR_HDMI_AVI_INFOFRAME_CTRL);
1920	value &= ~INFOFRAME_CTRL_SINGLE;
1921	value &= ~INFOFRAME_CTRL_OTHER;
1922	value &= ~INFOFRAME_CTRL_ENABLE;
1923	tegra_sor_writel(sor, value, SOR_HDMI_AVI_INFOFRAME_CTRL);
1924
1925	err = drm_hdmi_avi_infoframe_from_display_mode(&frame,
1926						       &sor->output.connector, mode);
1927	if (err < 0) {
1928		dev_err(sor->dev, "failed to setup AVI infoframe: %d\n", err);
1929		return err;
1930	}
1931
1932	err = hdmi_avi_infoframe_pack(&frame, buffer, sizeof(buffer));
1933	if (err < 0) {
1934		dev_err(sor->dev, "failed to pack AVI infoframe: %d\n", err);
1935		return err;
1936	}
1937
1938	tegra_sor_hdmi_write_infopack(sor, buffer, err);
1939
1940	/* enable AVI infoframe */
1941	value = tegra_sor_readl(sor, SOR_HDMI_AVI_INFOFRAME_CTRL);
1942	value |= INFOFRAME_CTRL_CHECKSUM_ENABLE;
1943	value |= INFOFRAME_CTRL_ENABLE;
1944	tegra_sor_writel(sor, value, SOR_HDMI_AVI_INFOFRAME_CTRL);
1945
1946	return 0;
1947}
1948
1949static void tegra_sor_write_eld(struct tegra_sor *sor)
1950{
1951	size_t length = drm_eld_size(sor->output.connector.eld), i;
1952
1953	for (i = 0; i < length; i++)
1954		tegra_sor_writel(sor, i << 8 | sor->output.connector.eld[i],
1955				 SOR_AUDIO_HDA_ELD_BUFWR);
1956
1957	/*
1958	 * The HDA codec will always report an ELD buffer size of 96 bytes and
1959	 * the HDA codec driver will check that each byte read from the buffer
1960	 * is valid. Therefore every byte must be written, even if no 96 bytes
1961	 * were parsed from EDID.
1962	 */
1963	for (i = length; i < 96; i++)
1964		tegra_sor_writel(sor, i << 8 | 0, SOR_AUDIO_HDA_ELD_BUFWR);
1965}
1966
1967static void tegra_sor_audio_prepare(struct tegra_sor *sor)
1968{
1969	u32 value;
1970
1971	/*
1972	 * Enable and unmask the HDA codec SCRATCH0 register interrupt. This
1973	 * is used for interoperability between the HDA codec driver and the
1974	 * HDMI/DP driver.
1975	 */
1976	value = SOR_INT_CODEC_SCRATCH1 | SOR_INT_CODEC_SCRATCH0;
1977	tegra_sor_writel(sor, value, SOR_INT_ENABLE);
1978	tegra_sor_writel(sor, value, SOR_INT_MASK);
1979
1980	tegra_sor_write_eld(sor);
1981
1982	value = SOR_AUDIO_HDA_PRESENSE_ELDV | SOR_AUDIO_HDA_PRESENSE_PD;
1983	tegra_sor_writel(sor, value, SOR_AUDIO_HDA_PRESENSE);
1984}
1985
1986static void tegra_sor_audio_unprepare(struct tegra_sor *sor)
1987{
1988	tegra_sor_writel(sor, 0, SOR_AUDIO_HDA_PRESENSE);
1989	tegra_sor_writel(sor, 0, SOR_INT_MASK);
1990	tegra_sor_writel(sor, 0, SOR_INT_ENABLE);
1991}
1992
1993static void tegra_sor_audio_enable(struct tegra_sor *sor)
1994{
1995	u32 value;
1996
1997	value = tegra_sor_readl(sor, SOR_AUDIO_CNTRL);
1998
1999	/* select HDA audio input */
2000	value &= ~SOR_AUDIO_CNTRL_SOURCE_SELECT(SOURCE_SELECT_MASK);
2001	value |= SOR_AUDIO_CNTRL_SOURCE_SELECT(SOURCE_SELECT_HDA);
2002
2003	/* inject null samples */
2004	if (sor->format.channels != 2)
2005		value &= ~SOR_AUDIO_CNTRL_INJECT_NULLSMPL;
2006	else
2007		value |= SOR_AUDIO_CNTRL_INJECT_NULLSMPL;
2008
2009	value |= SOR_AUDIO_CNTRL_AFIFO_FLUSH;
2010
2011	tegra_sor_writel(sor, value, SOR_AUDIO_CNTRL);
2012
2013	/* enable advertising HBR capability */
2014	tegra_sor_writel(sor, SOR_AUDIO_SPARE_HBR_ENABLE, SOR_AUDIO_SPARE);
2015}
2016
2017static int tegra_sor_hdmi_enable_audio_infoframe(struct tegra_sor *sor)
2018{
2019	u8 buffer[HDMI_INFOFRAME_SIZE(AUDIO)];
2020	struct hdmi_audio_infoframe frame;
2021	u32 value;
2022	int err;
2023
2024	err = hdmi_audio_infoframe_init(&frame);
2025	if (err < 0) {
2026		dev_err(sor->dev, "failed to setup audio infoframe: %d\n", err);
2027		return err;
2028	}
2029
2030	frame.channels = sor->format.channels;
2031
2032	err = hdmi_audio_infoframe_pack(&frame, buffer, sizeof(buffer));
2033	if (err < 0) {
2034		dev_err(sor->dev, "failed to pack audio infoframe: %d\n", err);
2035		return err;
2036	}
2037
2038	tegra_sor_hdmi_write_infopack(sor, buffer, err);
2039
2040	value = tegra_sor_readl(sor, SOR_HDMI_AUDIO_INFOFRAME_CTRL);
2041	value |= INFOFRAME_CTRL_CHECKSUM_ENABLE;
2042	value |= INFOFRAME_CTRL_ENABLE;
2043	tegra_sor_writel(sor, value, SOR_HDMI_AUDIO_INFOFRAME_CTRL);
2044
2045	return 0;
2046}
2047
2048static void tegra_sor_hdmi_audio_enable(struct tegra_sor *sor)
2049{
2050	u32 value;
2051
2052	tegra_sor_audio_enable(sor);
2053
2054	tegra_sor_writel(sor, 0, SOR_HDMI_ACR_CTRL);
2055
2056	value = SOR_HDMI_SPARE_ACR_PRIORITY_HIGH |
2057		SOR_HDMI_SPARE_CTS_RESET(1) |
2058		SOR_HDMI_SPARE_HW_CTS_ENABLE;
2059	tegra_sor_writel(sor, value, SOR_HDMI_SPARE);
2060
2061	/* enable HW CTS */
2062	value = SOR_HDMI_ACR_SUBPACK_LOW_SB1(0);
2063	tegra_sor_writel(sor, value, SOR_HDMI_ACR_0441_SUBPACK_LOW);
2064
2065	/* allow packet to be sent */
2066	value = SOR_HDMI_ACR_SUBPACK_HIGH_ENABLE;
2067	tegra_sor_writel(sor, value, SOR_HDMI_ACR_0441_SUBPACK_HIGH);
2068
2069	/* reset N counter and enable lookup */
2070	value = SOR_HDMI_AUDIO_N_RESET | SOR_HDMI_AUDIO_N_LOOKUP;
2071	tegra_sor_writel(sor, value, SOR_HDMI_AUDIO_N);
2072
2073	value = (24000 * 4096) / (128 * sor->format.sample_rate / 1000);
2074	tegra_sor_writel(sor, value, SOR_AUDIO_AVAL_0320);
2075	tegra_sor_writel(sor, 4096, SOR_AUDIO_NVAL_0320);
2076
2077	tegra_sor_writel(sor, 20000, SOR_AUDIO_AVAL_0441);
2078	tegra_sor_writel(sor, 4704, SOR_AUDIO_NVAL_0441);
2079
2080	tegra_sor_writel(sor, 20000, SOR_AUDIO_AVAL_0882);
2081	tegra_sor_writel(sor, 9408, SOR_AUDIO_NVAL_0882);
2082
2083	tegra_sor_writel(sor, 20000, SOR_AUDIO_AVAL_1764);
2084	tegra_sor_writel(sor, 18816, SOR_AUDIO_NVAL_1764);
2085
2086	value = (24000 * 6144) / (128 * sor->format.sample_rate / 1000);
2087	tegra_sor_writel(sor, value, SOR_AUDIO_AVAL_0480);
2088	tegra_sor_writel(sor, 6144, SOR_AUDIO_NVAL_0480);
2089
2090	value = (24000 * 12288) / (128 * sor->format.sample_rate / 1000);
2091	tegra_sor_writel(sor, value, SOR_AUDIO_AVAL_0960);
2092	tegra_sor_writel(sor, 12288, SOR_AUDIO_NVAL_0960);
2093
2094	value = (24000 * 24576) / (128 * sor->format.sample_rate / 1000);
2095	tegra_sor_writel(sor, value, SOR_AUDIO_AVAL_1920);
2096	tegra_sor_writel(sor, 24576, SOR_AUDIO_NVAL_1920);
2097
2098	value = tegra_sor_readl(sor, SOR_HDMI_AUDIO_N);
2099	value &= ~SOR_HDMI_AUDIO_N_RESET;
2100	tegra_sor_writel(sor, value, SOR_HDMI_AUDIO_N);
2101
2102	tegra_sor_hdmi_enable_audio_infoframe(sor);
2103}
2104
2105static void tegra_sor_hdmi_disable_audio_infoframe(struct tegra_sor *sor)
2106{
2107	u32 value;
2108
2109	value = tegra_sor_readl(sor, SOR_HDMI_AUDIO_INFOFRAME_CTRL);
2110	value &= ~INFOFRAME_CTRL_ENABLE;
2111	tegra_sor_writel(sor, value, SOR_HDMI_AUDIO_INFOFRAME_CTRL);
2112}
2113
2114static void tegra_sor_hdmi_audio_disable(struct tegra_sor *sor)
2115{
2116	tegra_sor_hdmi_disable_audio_infoframe(sor);
2117}
2118
2119static struct tegra_sor_hdmi_settings *
2120tegra_sor_hdmi_find_settings(struct tegra_sor *sor, unsigned long frequency)
2121{
2122	unsigned int i;
2123
2124	for (i = 0; i < sor->num_settings; i++)
2125		if (frequency <= sor->settings[i].frequency)
2126			return &sor->settings[i];
2127
2128	return NULL;
2129}
2130
2131static void tegra_sor_hdmi_disable_scrambling(struct tegra_sor *sor)
2132{
2133	u32 value;
2134
2135	value = tegra_sor_readl(sor, SOR_HDMI2_CTRL);
2136	value &= ~SOR_HDMI2_CTRL_CLOCK_MODE_DIV_BY_4;
2137	value &= ~SOR_HDMI2_CTRL_SCRAMBLE;
2138	tegra_sor_writel(sor, value, SOR_HDMI2_CTRL);
2139}
2140
2141static void tegra_sor_hdmi_scdc_disable(struct tegra_sor *sor)
2142{
2143	struct i2c_adapter *ddc = sor->output.ddc;
2144
2145	drm_scdc_set_high_tmds_clock_ratio(ddc, false);
2146	drm_scdc_set_scrambling(ddc, false);
2147
2148	tegra_sor_hdmi_disable_scrambling(sor);
2149}
2150
2151static void tegra_sor_hdmi_scdc_stop(struct tegra_sor *sor)
2152{
2153	if (sor->scdc_enabled) {
2154		cancel_delayed_work_sync(&sor->scdc);
2155		tegra_sor_hdmi_scdc_disable(sor);
2156	}
2157}
2158
2159static void tegra_sor_hdmi_enable_scrambling(struct tegra_sor *sor)
2160{
2161	u32 value;
2162
2163	value = tegra_sor_readl(sor, SOR_HDMI2_CTRL);
2164	value |= SOR_HDMI2_CTRL_CLOCK_MODE_DIV_BY_4;
2165	value |= SOR_HDMI2_CTRL_SCRAMBLE;
2166	tegra_sor_writel(sor, value, SOR_HDMI2_CTRL);
2167}
2168
2169static void tegra_sor_hdmi_scdc_enable(struct tegra_sor *sor)
2170{
2171	struct i2c_adapter *ddc = sor->output.ddc;
2172
2173	drm_scdc_set_high_tmds_clock_ratio(ddc, true);
2174	drm_scdc_set_scrambling(ddc, true);
2175
2176	tegra_sor_hdmi_enable_scrambling(sor);
2177}
2178
2179static void tegra_sor_hdmi_scdc_work(struct work_struct *work)
2180{
2181	struct tegra_sor *sor = container_of(work, struct tegra_sor, scdc.work);
2182	struct i2c_adapter *ddc = sor->output.ddc;
2183
2184	if (!drm_scdc_get_scrambling_status(ddc)) {
2185		DRM_DEBUG_KMS("SCDC not scrambled\n");
2186		tegra_sor_hdmi_scdc_enable(sor);
2187	}
2188
2189	schedule_delayed_work(&sor->scdc, msecs_to_jiffies(5000));
2190}
2191
2192static void tegra_sor_hdmi_scdc_start(struct tegra_sor *sor)
2193{
2194	struct drm_scdc *scdc = &sor->output.connector.display_info.hdmi.scdc;
2195	struct drm_display_mode *mode;
2196
2197	mode = &sor->output.encoder.crtc->state->adjusted_mode;
2198
2199	if (mode->clock >= 340000 && scdc->supported) {
2200		schedule_delayed_work(&sor->scdc, msecs_to_jiffies(5000));
2201		tegra_sor_hdmi_scdc_enable(sor);
2202		sor->scdc_enabled = true;
2203	}
2204}
2205
2206static void tegra_sor_hdmi_disable(struct drm_encoder *encoder)
2207{
2208	struct tegra_output *output = encoder_to_output(encoder);
2209	struct tegra_dc *dc = to_tegra_dc(encoder->crtc);
2210	struct tegra_sor *sor = to_sor(output);
2211	u32 value;
2212	int err;
2213
2214	tegra_sor_audio_unprepare(sor);
2215	tegra_sor_hdmi_scdc_stop(sor);
2216
2217	err = tegra_sor_detach(sor);
2218	if (err < 0)
2219		dev_err(sor->dev, "failed to detach SOR: %d\n", err);
2220
2221	tegra_sor_writel(sor, 0, SOR_STATE1);
2222	tegra_sor_update(sor);
2223
2224	/* disable display to SOR clock */
2225	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
2226
2227	if (!sor->soc->has_nvdisplay)
2228		value &= ~SOR1_TIMING_CYA;
2229
2230	value &= ~SOR_ENABLE(sor->index);
2231
2232	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
2233
2234	tegra_dc_commit(dc);
2235
2236	err = tegra_sor_power_down(sor);
2237	if (err < 0)
2238		dev_err(sor->dev, "failed to power down SOR: %d\n", err);
2239
2240	err = tegra_io_pad_power_disable(sor->pad);
2241	if (err < 0)
2242		dev_err(sor->dev, "failed to power off I/O pad: %d\n", err);
2243
2244	host1x_client_suspend(&sor->client);
2245}
2246
2247static void tegra_sor_hdmi_enable(struct drm_encoder *encoder)
2248{
2249	struct tegra_output *output = encoder_to_output(encoder);
2250	unsigned int h_ref_to_sync = 1, pulse_start, max_ac;
2251	struct tegra_dc *dc = to_tegra_dc(encoder->crtc);
2252	struct tegra_sor_hdmi_settings *settings;
2253	struct tegra_sor *sor = to_sor(output);
2254	struct tegra_sor_state *state;
2255	struct drm_display_mode *mode;
2256	unsigned long rate, pclk;
2257	unsigned int div, i;
2258	u32 value;
2259	int err;
2260
2261	state = to_sor_state(output->connector.state);
2262	mode = &encoder->crtc->state->adjusted_mode;
2263	pclk = mode->clock * 1000;
2264
2265	err = host1x_client_resume(&sor->client);
2266	if (err < 0) {
2267		dev_err(sor->dev, "failed to resume: %d\n", err);
2268		return;
2269	}
2270
2271	/* switch to safe parent clock */
2272	err = tegra_sor_set_parent_clock(sor, sor->clk_safe);
2273	if (err < 0) {
2274		dev_err(sor->dev, "failed to set safe parent clock: %d\n", err);
2275		return;
2276	}
2277
2278	div = clk_get_rate(sor->clk) / 1000000 * 4;
2279
2280	err = tegra_io_pad_power_enable(sor->pad);
2281	if (err < 0)
2282		dev_err(sor->dev, "failed to power on I/O pad: %d\n", err);
2283
2284	usleep_range(20, 100);
2285
2286	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
2287	value &= ~SOR_PLL2_BANDGAP_POWERDOWN;
2288	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
2289
2290	usleep_range(20, 100);
2291
2292	value = tegra_sor_readl(sor, sor->soc->regs->pll3);
2293	value &= ~SOR_PLL3_PLL_VDD_MODE_3V3;
2294	tegra_sor_writel(sor, value, sor->soc->regs->pll3);
2295
2296	value = tegra_sor_readl(sor, sor->soc->regs->pll0);
2297	value &= ~SOR_PLL0_VCOPD;
2298	value &= ~SOR_PLL0_PWR;
2299	tegra_sor_writel(sor, value, sor->soc->regs->pll0);
2300
2301	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
2302	value &= ~SOR_PLL2_SEQ_PLLCAPPD_ENFORCE;
2303	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
2304
2305	usleep_range(200, 400);
2306
2307	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
2308	value &= ~SOR_PLL2_POWERDOWN_OVERRIDE;
2309	value &= ~SOR_PLL2_PORT_POWERDOWN;
2310	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
2311
2312	usleep_range(20, 100);
2313
2314	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
2315	value |= SOR_DP_PADCTL_PD_TXD_3 | SOR_DP_PADCTL_PD_TXD_0 |
2316		 SOR_DP_PADCTL_PD_TXD_1 | SOR_DP_PADCTL_PD_TXD_2;
2317	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
2318
2319	while (true) {
2320		value = tegra_sor_readl(sor, SOR_LANE_SEQ_CTL);
2321		if ((value & SOR_LANE_SEQ_CTL_STATE_BUSY) == 0)
2322			break;
2323
2324		usleep_range(250, 1000);
2325	}
2326
2327	value = SOR_LANE_SEQ_CTL_TRIGGER | SOR_LANE_SEQ_CTL_SEQUENCE_DOWN |
2328		SOR_LANE_SEQ_CTL_POWER_STATE_UP | SOR_LANE_SEQ_CTL_DELAY(5);
2329	tegra_sor_writel(sor, value, SOR_LANE_SEQ_CTL);
2330
2331	while (true) {
2332		value = tegra_sor_readl(sor, SOR_LANE_SEQ_CTL);
2333		if ((value & SOR_LANE_SEQ_CTL_TRIGGER) == 0)
2334			break;
2335
2336		usleep_range(250, 1000);
2337	}
2338
2339	value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
2340	value &= ~SOR_CLK_CNTRL_DP_LINK_SPEED_MASK;
2341	value &= ~SOR_CLK_CNTRL_DP_CLK_SEL_MASK;
2342
2343	if (mode->clock < 340000) {
2344		DRM_DEBUG_KMS("setting 2.7 GHz link speed\n");
2345		value |= SOR_CLK_CNTRL_DP_LINK_SPEED_G2_70;
2346	} else {
2347		DRM_DEBUG_KMS("setting 5.4 GHz link speed\n");
2348		value |= SOR_CLK_CNTRL_DP_LINK_SPEED_G5_40;
2349	}
2350
2351	value |= SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_PCLK;
2352	tegra_sor_writel(sor, value, SOR_CLK_CNTRL);
2353
2354	/* SOR pad PLL stabilization time */
2355	usleep_range(250, 1000);
2356
2357	value = tegra_sor_readl(sor, SOR_DP_LINKCTL0);
2358	value &= ~SOR_DP_LINKCTL_LANE_COUNT_MASK;
2359	value |= SOR_DP_LINKCTL_LANE_COUNT(4);
2360	tegra_sor_writel(sor, value, SOR_DP_LINKCTL0);
2361
2362	value = tegra_sor_readl(sor, SOR_DP_SPARE0);
2363	value &= ~SOR_DP_SPARE_DISP_VIDEO_PREAMBLE;
2364	value &= ~SOR_DP_SPARE_PANEL_INTERNAL;
2365	value &= ~SOR_DP_SPARE_SEQ_ENABLE;
2366	value &= ~SOR_DP_SPARE_MACRO_SOR_CLK;
2367	tegra_sor_writel(sor, value, SOR_DP_SPARE0);
2368
2369	value = SOR_SEQ_CTL_PU_PC(0) | SOR_SEQ_CTL_PU_PC_ALT(0) |
2370		SOR_SEQ_CTL_PD_PC(8) | SOR_SEQ_CTL_PD_PC_ALT(8);
2371	tegra_sor_writel(sor, value, SOR_SEQ_CTL);
2372
2373	value = SOR_SEQ_INST_DRIVE_PWM_OUT_LO | SOR_SEQ_INST_HALT |
2374		SOR_SEQ_INST_WAIT_VSYNC | SOR_SEQ_INST_WAIT(1);
2375	tegra_sor_writel(sor, value, SOR_SEQ_INST(0));
2376	tegra_sor_writel(sor, value, SOR_SEQ_INST(8));
2377
2378	if (!sor->soc->has_nvdisplay) {
2379		/* program the reference clock */
2380		value = SOR_REFCLK_DIV_INT(div) | SOR_REFCLK_DIV_FRAC(div);
2381		tegra_sor_writel(sor, value, SOR_REFCLK);
2382	}
2383
2384	/* XXX not in TRM */
2385	for (value = 0, i = 0; i < 5; i++)
2386		value |= SOR_XBAR_CTRL_LINK0_XSEL(i, sor->xbar_cfg[i]) |
2387			 SOR_XBAR_CTRL_LINK1_XSEL(i, i);
2388
2389	tegra_sor_writel(sor, 0x00000000, SOR_XBAR_POL);
2390	tegra_sor_writel(sor, value, SOR_XBAR_CTRL);
2391
2392	/*
2393	 * Switch the pad clock to the DP clock. Note that we cannot actually
2394	 * do this because Tegra186 and later don't support clk_set_parent()
2395	 * on the sorX_pad_clkout clocks. We already do the equivalent above
2396	 * using the DP_CLK_SEL mux of the SOR_CLK_CNTRL register.
2397	 */
2398#if 0
2399	err = clk_set_parent(sor->clk_pad, sor->clk_dp);
2400	if (err < 0) {
2401		dev_err(sor->dev, "failed to select pad parent clock: %d\n",
2402			err);
2403		return;
2404	}
2405#endif
2406
2407	/* switch the SOR clock to the pad clock */
2408	err = tegra_sor_set_parent_clock(sor, sor->clk_pad);
2409	if (err < 0) {
2410		dev_err(sor->dev, "failed to select SOR parent clock: %d\n",
2411			err);
2412		return;
2413	}
2414
2415	/* switch the output clock to the parent pixel clock */
2416	err = clk_set_parent(sor->clk, sor->clk_parent);
2417	if (err < 0) {
2418		dev_err(sor->dev, "failed to select output parent clock: %d\n",
2419			err);
2420		return;
2421	}
2422
2423	/* adjust clock rate for HDMI 2.0 modes */
2424	rate = clk_get_rate(sor->clk_parent);
2425
2426	if (mode->clock >= 340000)
2427		rate /= 2;
2428
2429	DRM_DEBUG_KMS("setting clock to %lu Hz, mode: %lu Hz\n", rate, pclk);
2430
2431	clk_set_rate(sor->clk, rate);
2432
2433	if (!sor->soc->has_nvdisplay) {
2434		value = SOR_INPUT_CONTROL_HDMI_SRC_SELECT(dc->pipe);
2435
2436		/* XXX is this the proper check? */
2437		if (mode->clock < 75000)
2438			value |= SOR_INPUT_CONTROL_ARM_VIDEO_RANGE_LIMITED;
2439
2440		tegra_sor_writel(sor, value, SOR_INPUT_CONTROL);
2441	}
2442
2443	max_ac = ((mode->htotal - mode->hdisplay) - SOR_REKEY - 18) / 32;
2444
2445	value = SOR_HDMI_CTRL_ENABLE | SOR_HDMI_CTRL_MAX_AC_PACKET(max_ac) |
2446		SOR_HDMI_CTRL_AUDIO_LAYOUT | SOR_HDMI_CTRL_REKEY(SOR_REKEY);
2447	tegra_sor_writel(sor, value, SOR_HDMI_CTRL);
2448
2449	if (!dc->soc->has_nvdisplay) {
2450		/* H_PULSE2 setup */
2451		pulse_start = h_ref_to_sync +
2452			      (mode->hsync_end - mode->hsync_start) +
2453			      (mode->htotal - mode->hsync_end) - 10;
2454
2455		value = PULSE_LAST_END_A | PULSE_QUAL_VACTIVE |
2456			PULSE_POLARITY_HIGH | PULSE_MODE_NORMAL;
2457		tegra_dc_writel(dc, value, DC_DISP_H_PULSE2_CONTROL);
2458
2459		value = PULSE_END(pulse_start + 8) | PULSE_START(pulse_start);
2460		tegra_dc_writel(dc, value, DC_DISP_H_PULSE2_POSITION_A);
2461
2462		value = tegra_dc_readl(dc, DC_DISP_DISP_SIGNAL_OPTIONS0);
2463		value |= H_PULSE2_ENABLE;
2464		tegra_dc_writel(dc, value, DC_DISP_DISP_SIGNAL_OPTIONS0);
2465	}
2466
2467	/* infoframe setup */
2468	err = tegra_sor_hdmi_setup_avi_infoframe(sor, mode);
2469	if (err < 0)
2470		dev_err(sor->dev, "failed to setup AVI infoframe: %d\n", err);
2471
2472	/* XXX HDMI audio support not implemented yet */
2473	tegra_sor_hdmi_disable_audio_infoframe(sor);
2474
2475	/* use single TMDS protocol */
2476	value = tegra_sor_readl(sor, SOR_STATE1);
2477	value &= ~SOR_STATE_ASY_PROTOCOL_MASK;
2478	value |= SOR_STATE_ASY_PROTOCOL_SINGLE_TMDS_A;
2479	tegra_sor_writel(sor, value, SOR_STATE1);
2480
2481	/* power up pad calibration */
2482	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
2483	value &= ~SOR_DP_PADCTL_PAD_CAL_PD;
2484	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
2485
2486	/* production settings */
2487	settings = tegra_sor_hdmi_find_settings(sor, mode->clock * 1000);
2488	if (!settings) {
2489		dev_err(sor->dev, "no settings for pixel clock %d Hz\n",
2490			mode->clock * 1000);
2491		return;
2492	}
2493
2494	value = tegra_sor_readl(sor, sor->soc->regs->pll0);
2495	value &= ~SOR_PLL0_ICHPMP_MASK;
2496	value &= ~SOR_PLL0_FILTER_MASK;
2497	value &= ~SOR_PLL0_VCOCAP_MASK;
2498	value |= SOR_PLL0_ICHPMP(settings->ichpmp);
2499	value |= SOR_PLL0_FILTER(settings->filter);
2500	value |= SOR_PLL0_VCOCAP(settings->vcocap);
2501	tegra_sor_writel(sor, value, sor->soc->regs->pll0);
2502
2503	/* XXX not in TRM */
2504	value = tegra_sor_readl(sor, sor->soc->regs->pll1);
2505	value &= ~SOR_PLL1_LOADADJ_MASK;
2506	value &= ~SOR_PLL1_TMDS_TERMADJ_MASK;
2507	value |= SOR_PLL1_LOADADJ(settings->loadadj);
2508	value |= SOR_PLL1_TMDS_TERMADJ(settings->tmds_termadj);
2509	value |= SOR_PLL1_TMDS_TERM;
2510	tegra_sor_writel(sor, value, sor->soc->regs->pll1);
2511
2512	value = tegra_sor_readl(sor, sor->soc->regs->pll3);
2513	value &= ~SOR_PLL3_BG_TEMP_COEF_MASK;
2514	value &= ~SOR_PLL3_BG_VREF_LEVEL_MASK;
2515	value &= ~SOR_PLL3_AVDD10_LEVEL_MASK;
2516	value &= ~SOR_PLL3_AVDD14_LEVEL_MASK;
2517	value |= SOR_PLL3_BG_TEMP_COEF(settings->bg_temp_coef);
2518	value |= SOR_PLL3_BG_VREF_LEVEL(settings->bg_vref_level);
2519	value |= SOR_PLL3_AVDD10_LEVEL(settings->avdd10_level);
2520	value |= SOR_PLL3_AVDD14_LEVEL(settings->avdd14_level);
2521	tegra_sor_writel(sor, value, sor->soc->regs->pll3);
2522
2523	value = settings->drive_current[3] << 24 |
2524		settings->drive_current[2] << 16 |
2525		settings->drive_current[1] <<  8 |
2526		settings->drive_current[0] <<  0;
2527	tegra_sor_writel(sor, value, SOR_LANE_DRIVE_CURRENT0);
2528
2529	value = settings->preemphasis[3] << 24 |
2530		settings->preemphasis[2] << 16 |
2531		settings->preemphasis[1] <<  8 |
2532		settings->preemphasis[0] <<  0;
2533	tegra_sor_writel(sor, value, SOR_LANE_PREEMPHASIS0);
2534
2535	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
2536	value &= ~SOR_DP_PADCTL_TX_PU_MASK;
2537	value |= SOR_DP_PADCTL_TX_PU_ENABLE;
2538	value |= SOR_DP_PADCTL_TX_PU(settings->tx_pu_value);
2539	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
2540
2541	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl2);
2542	value &= ~SOR_DP_PADCTL_SPAREPLL_MASK;
2543	value |= SOR_DP_PADCTL_SPAREPLL(settings->sparepll);
2544	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl2);
2545
2546	/* power down pad calibration */
2547	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
2548	value |= SOR_DP_PADCTL_PAD_CAL_PD;
2549	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
2550
2551	if (!dc->soc->has_nvdisplay) {
2552		/* miscellaneous display controller settings */
2553		value = VSYNC_H_POSITION(1);
2554		tegra_dc_writel(dc, value, DC_DISP_DISP_TIMING_OPTIONS);
2555	}
2556
2557	value = tegra_dc_readl(dc, DC_DISP_DISP_COLOR_CONTROL);
2558	value &= ~DITHER_CONTROL_MASK;
2559	value &= ~BASE_COLOR_SIZE_MASK;
2560
2561	switch (state->bpc) {
2562	case 6:
2563		value |= BASE_COLOR_SIZE_666;
2564		break;
2565
2566	case 8:
2567		value |= BASE_COLOR_SIZE_888;
2568		break;
2569
2570	case 10:
2571		value |= BASE_COLOR_SIZE_101010;
2572		break;
2573
2574	case 12:
2575		value |= BASE_COLOR_SIZE_121212;
2576		break;
2577
2578	default:
2579		WARN(1, "%u bits-per-color not supported\n", state->bpc);
2580		value |= BASE_COLOR_SIZE_888;
2581		break;
2582	}
2583
2584	tegra_dc_writel(dc, value, DC_DISP_DISP_COLOR_CONTROL);
2585
2586	/* XXX set display head owner */
2587	value = tegra_sor_readl(sor, SOR_STATE1);
2588	value &= ~SOR_STATE_ASY_OWNER_MASK;
2589	value |= SOR_STATE_ASY_OWNER(1 + dc->pipe);
2590	tegra_sor_writel(sor, value, SOR_STATE1);
2591
2592	err = tegra_sor_power_up(sor, 250);
2593	if (err < 0)
2594		dev_err(sor->dev, "failed to power up SOR: %d\n", err);
2595
2596	/* configure dynamic range of output */
2597	value = tegra_sor_readl(sor, sor->soc->regs->head_state0 + dc->pipe);
2598	value &= ~SOR_HEAD_STATE_RANGECOMPRESS_MASK;
2599	value &= ~SOR_HEAD_STATE_DYNRANGE_MASK;
2600	tegra_sor_writel(sor, value, sor->soc->regs->head_state0 + dc->pipe);
2601
2602	/* configure colorspace */
2603	value = tegra_sor_readl(sor, sor->soc->regs->head_state0 + dc->pipe);
2604	value &= ~SOR_HEAD_STATE_COLORSPACE_MASK;
2605	value |= SOR_HEAD_STATE_COLORSPACE_RGB;
2606	tegra_sor_writel(sor, value, sor->soc->regs->head_state0 + dc->pipe);
2607
2608	tegra_sor_mode_set(sor, mode, state);
2609
2610	tegra_sor_update(sor);
2611
2612	/* program preamble timing in SOR (XXX) */
2613	value = tegra_sor_readl(sor, SOR_DP_SPARE0);
2614	value &= ~SOR_DP_SPARE_DISP_VIDEO_PREAMBLE;
2615	tegra_sor_writel(sor, value, SOR_DP_SPARE0);
2616
2617	err = tegra_sor_attach(sor);
2618	if (err < 0)
2619		dev_err(sor->dev, "failed to attach SOR: %d\n", err);
2620
2621	/* enable display to SOR clock and generate HDMI preamble */
2622	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
2623
2624	if (!sor->soc->has_nvdisplay)
2625		value |= SOR1_TIMING_CYA;
2626
2627	value |= SOR_ENABLE(sor->index);
2628
2629	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
2630
2631	if (dc->soc->has_nvdisplay) {
2632		value = tegra_dc_readl(dc, DC_DISP_CORE_SOR_SET_CONTROL(sor->index));
2633		value &= ~PROTOCOL_MASK;
2634		value |= PROTOCOL_SINGLE_TMDS_A;
2635		tegra_dc_writel(dc, value, DC_DISP_CORE_SOR_SET_CONTROL(sor->index));
2636	}
2637
2638	tegra_dc_commit(dc);
2639
2640	err = tegra_sor_wakeup(sor);
2641	if (err < 0)
2642		dev_err(sor->dev, "failed to wakeup SOR: %d\n", err);
2643
2644	tegra_sor_hdmi_scdc_start(sor);
2645	tegra_sor_audio_prepare(sor);
2646}
2647
2648static const struct drm_encoder_helper_funcs tegra_sor_hdmi_helpers = {
2649	.disable = tegra_sor_hdmi_disable,
2650	.enable = tegra_sor_hdmi_enable,
2651	.atomic_check = tegra_sor_encoder_atomic_check,
2652};
2653
2654static void tegra_sor_dp_disable(struct drm_encoder *encoder)
2655{
2656	struct tegra_output *output = encoder_to_output(encoder);
2657	struct tegra_dc *dc = to_tegra_dc(encoder->crtc);
2658	struct tegra_sor *sor = to_sor(output);
2659	u32 value;
2660	int err;
2661
2662	if (output->panel)
2663		drm_panel_disable(output->panel);
2664
2665	/*
2666	 * Do not attempt to power down a DP link if we're not connected since
2667	 * the AUX transactions would just be timing out.
2668	 */
2669	if (output->connector.status != connector_status_disconnected) {
2670		err = drm_dp_link_power_down(sor->aux, &sor->link);
2671		if (err < 0)
2672			dev_err(sor->dev, "failed to power down link: %d\n",
2673				err);
2674	}
2675
2676	err = tegra_sor_detach(sor);
2677	if (err < 0)
2678		dev_err(sor->dev, "failed to detach SOR: %d\n", err);
2679
2680	tegra_sor_writel(sor, 0, SOR_STATE1);
2681	tegra_sor_update(sor);
2682
2683	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
2684	value &= ~SOR_ENABLE(sor->index);
2685	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
2686	tegra_dc_commit(dc);
2687
2688	value = tegra_sor_readl(sor, SOR_STATE1);
2689	value &= ~SOR_STATE_ASY_PROTOCOL_MASK;
2690	value &= ~SOR_STATE_ASY_SUBOWNER_MASK;
2691	value &= ~SOR_STATE_ASY_OWNER_MASK;
2692	tegra_sor_writel(sor, value, SOR_STATE1);
2693	tegra_sor_update(sor);
2694
2695	/* switch to safe parent clock */
2696	err = tegra_sor_set_parent_clock(sor, sor->clk_safe);
2697	if (err < 0)
2698		dev_err(sor->dev, "failed to set safe clock: %d\n", err);
2699
2700	err = tegra_sor_power_down(sor);
2701	if (err < 0)
2702		dev_err(sor->dev, "failed to power down SOR: %d\n", err);
2703
2704	err = tegra_io_pad_power_disable(sor->pad);
2705	if (err < 0)
2706		dev_err(sor->dev, "failed to power off I/O pad: %d\n", err);
2707
2708	err = drm_dp_aux_disable(sor->aux);
2709	if (err < 0)
2710		dev_err(sor->dev, "failed disable DPAUX: %d\n", err);
2711
2712	if (output->panel)
2713		drm_panel_unprepare(output->panel);
2714
2715	host1x_client_suspend(&sor->client);
2716}
2717
2718static void tegra_sor_dp_enable(struct drm_encoder *encoder)
2719{
2720	struct tegra_output *output = encoder_to_output(encoder);
2721	struct tegra_dc *dc = to_tegra_dc(encoder->crtc);
2722	struct tegra_sor *sor = to_sor(output);
2723	struct tegra_sor_config config;
2724	struct tegra_sor_state *state;
2725	struct drm_display_mode *mode;
2726	struct drm_display_info *info;
2727	unsigned int i;
2728	u32 value;
2729	int err;
2730
2731	state = to_sor_state(output->connector.state);
2732	mode = &encoder->crtc->state->adjusted_mode;
2733	info = &output->connector.display_info;
2734
2735	err = host1x_client_resume(&sor->client);
2736	if (err < 0) {
2737		dev_err(sor->dev, "failed to resume: %d\n", err);
2738		return;
2739	}
2740
2741	/* switch to safe parent clock */
2742	err = tegra_sor_set_parent_clock(sor, sor->clk_safe);
2743	if (err < 0)
2744		dev_err(sor->dev, "failed to set safe parent clock: %d\n", err);
2745
2746	err = tegra_io_pad_power_enable(sor->pad);
2747	if (err < 0)
2748		dev_err(sor->dev, "failed to power on LVDS rail: %d\n", err);
2749
2750	usleep_range(20, 100);
2751
2752	err = drm_dp_aux_enable(sor->aux);
2753	if (err < 0)
2754		dev_err(sor->dev, "failed to enable DPAUX: %d\n", err);
2755
2756	err = drm_dp_link_probe(sor->aux, &sor->link);
2757	if (err < 0)
2758		dev_err(sor->dev, "failed to probe DP link: %d\n", err);
2759
2760	tegra_sor_filter_rates(sor);
2761
2762	err = drm_dp_link_choose(&sor->link, mode, info);
2763	if (err < 0)
2764		dev_err(sor->dev, "failed to choose link: %d\n", err);
2765
2766	if (output->panel)
2767		drm_panel_prepare(output->panel);
2768
2769	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
2770	value &= ~SOR_PLL2_BANDGAP_POWERDOWN;
2771	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
2772
2773	usleep_range(20, 40);
2774
2775	value = tegra_sor_readl(sor, sor->soc->regs->pll3);
2776	value |= SOR_PLL3_PLL_VDD_MODE_3V3;
2777	tegra_sor_writel(sor, value, sor->soc->regs->pll3);
2778
2779	value = tegra_sor_readl(sor, sor->soc->regs->pll0);
2780	value &= ~(SOR_PLL0_VCOPD | SOR_PLL0_PWR);
2781	tegra_sor_writel(sor, value, sor->soc->regs->pll0);
2782
2783	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
2784	value &= ~SOR_PLL2_SEQ_PLLCAPPD_ENFORCE;
2785	value |= SOR_PLL2_SEQ_PLLCAPPD;
2786	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
2787
2788	usleep_range(200, 400);
2789
2790	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
2791	value &= ~SOR_PLL2_POWERDOWN_OVERRIDE;
2792	value &= ~SOR_PLL2_PORT_POWERDOWN;
2793	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
2794
2795	value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
2796	value &= ~SOR_CLK_CNTRL_DP_CLK_SEL_MASK;
2797
2798	if (output->panel)
2799		value |= SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_DPCLK;
2800	else
2801		value |= SOR_CLK_CNTRL_DP_CLK_SEL_DIFF_DPCLK;
2802
2803	tegra_sor_writel(sor, value, SOR_CLK_CNTRL);
2804
2805	usleep_range(200, 400);
2806
2807	value = tegra_sor_readl(sor, SOR_DP_SPARE0);
2808	/* XXX not in TRM */
2809	if (output->panel)
2810		value |= SOR_DP_SPARE_PANEL_INTERNAL;
2811	else
2812		value &= ~SOR_DP_SPARE_PANEL_INTERNAL;
2813
2814	value |= SOR_DP_SPARE_SEQ_ENABLE;
2815	tegra_sor_writel(sor, value, SOR_DP_SPARE0);
2816
2817	/* XXX not in TRM */
2818	tegra_sor_writel(sor, 0, SOR_LVDS);
2819
2820	value = tegra_sor_readl(sor, sor->soc->regs->pll0);
2821	value &= ~SOR_PLL0_ICHPMP_MASK;
2822	value &= ~SOR_PLL0_VCOCAP_MASK;
2823	value |= SOR_PLL0_ICHPMP(0x1);
2824	value |= SOR_PLL0_VCOCAP(0x3);
2825	value |= SOR_PLL0_RESISTOR_EXT;
2826	tegra_sor_writel(sor, value, sor->soc->regs->pll0);
2827
2828	/* XXX not in TRM */
2829	for (value = 0, i = 0; i < 5; i++)
2830		value |= SOR_XBAR_CTRL_LINK0_XSEL(i, sor->soc->xbar_cfg[i]) |
2831			 SOR_XBAR_CTRL_LINK1_XSEL(i, i);
2832
2833	tegra_sor_writel(sor, 0x00000000, SOR_XBAR_POL);
2834	tegra_sor_writel(sor, value, SOR_XBAR_CTRL);
2835
2836	/*
2837	 * Switch the pad clock to the DP clock. Note that we cannot actually
2838	 * do this because Tegra186 and later don't support clk_set_parent()
2839	 * on the sorX_pad_clkout clocks. We already do the equivalent above
2840	 * using the DP_CLK_SEL mux of the SOR_CLK_CNTRL register.
2841	 */
2842#if 0
2843	err = clk_set_parent(sor->clk_pad, sor->clk_parent);
2844	if (err < 0) {
2845		dev_err(sor->dev, "failed to select pad parent clock: %d\n",
2846			err);
2847		return;
2848	}
2849#endif
2850
2851	/* switch the SOR clock to the pad clock */
2852	err = tegra_sor_set_parent_clock(sor, sor->clk_pad);
2853	if (err < 0) {
2854		dev_err(sor->dev, "failed to select SOR parent clock: %d\n",
2855			err);
2856		return;
2857	}
2858
2859	/* switch the output clock to the parent pixel clock */
2860	err = clk_set_parent(sor->clk, sor->clk_parent);
2861	if (err < 0) {
2862		dev_err(sor->dev, "failed to select output parent clock: %d\n",
2863			err);
2864		return;
2865	}
2866
2867	/* use DP-A protocol */
2868	value = tegra_sor_readl(sor, SOR_STATE1);
2869	value &= ~SOR_STATE_ASY_PROTOCOL_MASK;
2870	value |= SOR_STATE_ASY_PROTOCOL_DP_A;
2871	tegra_sor_writel(sor, value, SOR_STATE1);
2872
2873	/* enable port */
2874	value = tegra_sor_readl(sor, SOR_DP_LINKCTL0);
2875	value |= SOR_DP_LINKCTL_ENABLE;
2876	tegra_sor_writel(sor, value, SOR_DP_LINKCTL0);
2877
2878	tegra_sor_dp_term_calibrate(sor);
2879
2880	err = drm_dp_link_train(&sor->link);
2881	if (err < 0)
2882		dev_err(sor->dev, "link training failed: %d\n", err);
2883	else
2884		dev_dbg(sor->dev, "link training succeeded\n");
2885
2886	err = drm_dp_link_power_up(sor->aux, &sor->link);
2887	if (err < 0)
2888		dev_err(sor->dev, "failed to power up DP link: %d\n", err);
2889
2890	/* compute configuration */
2891	memset(&config, 0, sizeof(config));
2892	config.bits_per_pixel = state->bpc * 3;
2893
2894	err = tegra_sor_compute_config(sor, mode, &config, &sor->link);
2895	if (err < 0)
2896		dev_err(sor->dev, "failed to compute configuration: %d\n", err);
2897
2898	tegra_sor_apply_config(sor, &config);
2899	tegra_sor_mode_set(sor, mode, state);
2900
2901	if (output->panel) {
2902		/* CSTM (LVDS, link A/B, upper) */
2903		value = SOR_CSTM_LVDS | SOR_CSTM_LINK_ACT_A | SOR_CSTM_LINK_ACT_B |
2904			SOR_CSTM_UPPER;
2905		tegra_sor_writel(sor, value, SOR_CSTM);
2906
2907		/* PWM setup */
2908		err = tegra_sor_setup_pwm(sor, 250);
2909		if (err < 0)
2910			dev_err(sor->dev, "failed to setup PWM: %d\n", err);
2911	}
2912
2913	tegra_sor_update(sor);
2914
2915	err = tegra_sor_power_up(sor, 250);
2916	if (err < 0)
2917		dev_err(sor->dev, "failed to power up SOR: %d\n", err);
2918
2919	/* attach and wake up */
2920	err = tegra_sor_attach(sor);
2921	if (err < 0)
2922		dev_err(sor->dev, "failed to attach SOR: %d\n", err);
2923
2924	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
2925	value |= SOR_ENABLE(sor->index);
2926	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
2927
2928	tegra_dc_commit(dc);
2929
2930	err = tegra_sor_wakeup(sor);
2931	if (err < 0)
2932		dev_err(sor->dev, "failed to wakeup SOR: %d\n", err);
2933
2934	if (output->panel)
2935		drm_panel_enable(output->panel);
2936}
2937
2938static const struct drm_encoder_helper_funcs tegra_sor_dp_helpers = {
2939	.disable = tegra_sor_dp_disable,
2940	.enable = tegra_sor_dp_enable,
2941	.atomic_check = tegra_sor_encoder_atomic_check,
2942};
2943
2944static void tegra_sor_disable_regulator(void *data)
2945{
2946	struct regulator *reg = data;
2947
2948	regulator_disable(reg);
2949}
2950
2951static int tegra_sor_enable_regulator(struct tegra_sor *sor, struct regulator *reg)
2952{
2953	int err;
2954
2955	err = regulator_enable(reg);
2956	if (err)
2957		return err;
2958
2959	return devm_add_action_or_reset(sor->dev, tegra_sor_disable_regulator, reg);
2960}
2961
2962static int tegra_sor_hdmi_probe(struct tegra_sor *sor)
2963{
2964	int err;
2965
2966	sor->avdd_io_supply = devm_regulator_get(sor->dev, "avdd-io-hdmi-dp");
2967	if (IS_ERR(sor->avdd_io_supply)) {
2968		dev_err(sor->dev, "cannot get AVDD I/O supply: %ld\n",
2969			PTR_ERR(sor->avdd_io_supply));
2970		return PTR_ERR(sor->avdd_io_supply);
2971	}
2972
2973	err = tegra_sor_enable_regulator(sor, sor->avdd_io_supply);
2974	if (err < 0) {
2975		dev_err(sor->dev, "failed to enable AVDD I/O supply: %d\n",
2976			err);
2977		return err;
2978	}
2979
2980	sor->vdd_pll_supply = devm_regulator_get(sor->dev, "vdd-hdmi-dp-pll");
2981	if (IS_ERR(sor->vdd_pll_supply)) {
2982		dev_err(sor->dev, "cannot get VDD PLL supply: %ld\n",
2983			PTR_ERR(sor->vdd_pll_supply));
2984		return PTR_ERR(sor->vdd_pll_supply);
2985	}
2986
2987	err = tegra_sor_enable_regulator(sor, sor->vdd_pll_supply);
2988	if (err < 0) {
2989		dev_err(sor->dev, "failed to enable VDD PLL supply: %d\n",
2990			err);
2991		return err;
2992	}
2993
2994	sor->hdmi_supply = devm_regulator_get(sor->dev, "hdmi");
2995	if (IS_ERR(sor->hdmi_supply)) {
2996		dev_err(sor->dev, "cannot get HDMI supply: %ld\n",
2997			PTR_ERR(sor->hdmi_supply));
2998		return PTR_ERR(sor->hdmi_supply);
2999	}
3000
3001	err = tegra_sor_enable_regulator(sor, sor->hdmi_supply);
3002	if (err < 0) {
3003		dev_err(sor->dev, "failed to enable HDMI supply: %d\n", err);
3004		return err;
3005	}
3006
3007	INIT_DELAYED_WORK(&sor->scdc, tegra_sor_hdmi_scdc_work);
3008
3009	return 0;
3010}
3011
3012static const struct tegra_sor_ops tegra_sor_hdmi_ops = {
3013	.name = "HDMI",
3014	.probe = tegra_sor_hdmi_probe,
3015	.audio_enable = tegra_sor_hdmi_audio_enable,
3016	.audio_disable = tegra_sor_hdmi_audio_disable,
3017};
3018
3019static int tegra_sor_dp_probe(struct tegra_sor *sor)
3020{
3021	int err;
3022
3023	sor->avdd_io_supply = devm_regulator_get(sor->dev, "avdd-io-hdmi-dp");
3024	if (IS_ERR(sor->avdd_io_supply))
3025		return PTR_ERR(sor->avdd_io_supply);
3026
3027	err = tegra_sor_enable_regulator(sor, sor->avdd_io_supply);
3028	if (err < 0)
3029		return err;
3030
3031	sor->vdd_pll_supply = devm_regulator_get(sor->dev, "vdd-hdmi-dp-pll");
3032	if (IS_ERR(sor->vdd_pll_supply))
3033		return PTR_ERR(sor->vdd_pll_supply);
3034
3035	err = tegra_sor_enable_regulator(sor, sor->vdd_pll_supply);
3036	if (err < 0)
3037		return err;
3038
3039	return 0;
3040}
3041
3042static const struct tegra_sor_ops tegra_sor_dp_ops = {
3043	.name = "DP",
3044	.probe = tegra_sor_dp_probe,
3045};
3046
3047static int tegra_sor_init(struct host1x_client *client)
3048{
3049	struct drm_device *drm = dev_get_drvdata(client->host);
3050	const struct drm_encoder_helper_funcs *helpers = NULL;
3051	struct tegra_sor *sor = host1x_client_to_sor(client);
3052	int connector = DRM_MODE_CONNECTOR_Unknown;
3053	int encoder = DRM_MODE_ENCODER_NONE;
3054	int err;
3055
3056	if (!sor->aux) {
3057		if (sor->ops == &tegra_sor_hdmi_ops) {
3058			connector = DRM_MODE_CONNECTOR_HDMIA;
3059			encoder = DRM_MODE_ENCODER_TMDS;
3060			helpers = &tegra_sor_hdmi_helpers;
3061		} else if (sor->soc->supports_lvds) {
3062			connector = DRM_MODE_CONNECTOR_LVDS;
3063			encoder = DRM_MODE_ENCODER_LVDS;
3064		}
3065	} else {
3066		if (sor->output.panel) {
3067			connector = DRM_MODE_CONNECTOR_eDP;
3068			encoder = DRM_MODE_ENCODER_TMDS;
3069			helpers = &tegra_sor_dp_helpers;
3070		} else {
3071			connector = DRM_MODE_CONNECTOR_DisplayPort;
3072			encoder = DRM_MODE_ENCODER_TMDS;
3073			helpers = &tegra_sor_dp_helpers;
3074		}
3075
3076		sor->link.ops = &tegra_sor_dp_link_ops;
3077		sor->link.aux = sor->aux;
3078	}
3079
3080	sor->output.dev = sor->dev;
3081
3082	drm_connector_init_with_ddc(drm, &sor->output.connector,
3083				    &tegra_sor_connector_funcs,
3084				    connector,
3085				    sor->output.ddc);
3086	drm_connector_helper_add(&sor->output.connector,
3087				 &tegra_sor_connector_helper_funcs);
3088	sor->output.connector.dpms = DRM_MODE_DPMS_OFF;
3089
3090	drm_simple_encoder_init(drm, &sor->output.encoder, encoder);
3091	drm_encoder_helper_add(&sor->output.encoder, helpers);
3092
3093	drm_connector_attach_encoder(&sor->output.connector,
3094					  &sor->output.encoder);
3095	drm_connector_register(&sor->output.connector);
3096
3097	err = tegra_output_init(drm, &sor->output);
3098	if (err < 0) {
3099		dev_err(client->dev, "failed to initialize output: %d\n", err);
3100		return err;
3101	}
3102
3103	tegra_output_find_possible_crtcs(&sor->output, drm);
3104
3105	if (sor->aux) {
3106		err = drm_dp_aux_attach(sor->aux, &sor->output);
3107		if (err < 0) {
3108			dev_err(sor->dev, "failed to attach DP: %d\n", err);
3109			return err;
3110		}
3111	}
3112
3113	/*
3114	 * XXX: Remove this reset once proper hand-over from firmware to
3115	 * kernel is possible.
3116	 */
3117	if (sor->rst) {
3118		err = pm_runtime_resume_and_get(sor->dev);
3119		if (err < 0) {
3120			dev_err(sor->dev, "failed to get runtime PM: %d\n", err);
3121			return err;
3122		}
3123
3124		err = reset_control_acquire(sor->rst);
3125		if (err < 0) {
3126			dev_err(sor->dev, "failed to acquire SOR reset: %d\n",
3127				err);
3128			goto rpm_put;
3129		}
3130
3131		err = reset_control_assert(sor->rst);
3132		if (err < 0) {
3133			dev_err(sor->dev, "failed to assert SOR reset: %d\n",
3134				err);
3135			goto rpm_put;
3136		}
3137	}
3138
3139	err = clk_prepare_enable(sor->clk);
3140	if (err < 0) {
3141		dev_err(sor->dev, "failed to enable clock: %d\n", err);
3142		goto rpm_put;
3143	}
3144
3145	usleep_range(1000, 3000);
3146
3147	if (sor->rst) {
3148		err = reset_control_deassert(sor->rst);
3149		if (err < 0) {
3150			dev_err(sor->dev, "failed to deassert SOR reset: %d\n",
3151				err);
3152			clk_disable_unprepare(sor->clk);
3153			goto rpm_put;
3154		}
3155
3156		reset_control_release(sor->rst);
3157		pm_runtime_put(sor->dev);
3158	}
3159
3160	err = clk_prepare_enable(sor->clk_safe);
3161	if (err < 0) {
3162		clk_disable_unprepare(sor->clk);
3163		return err;
3164	}
3165
3166	err = clk_prepare_enable(sor->clk_dp);
3167	if (err < 0) {
3168		clk_disable_unprepare(sor->clk_safe);
3169		clk_disable_unprepare(sor->clk);
3170		return err;
3171	}
3172
3173	return 0;
3174
3175rpm_put:
3176	if (sor->rst)
3177		pm_runtime_put(sor->dev);
3178
3179	return err;
3180}
3181
3182static int tegra_sor_exit(struct host1x_client *client)
3183{
3184	struct tegra_sor *sor = host1x_client_to_sor(client);
3185	int err;
3186
3187	tegra_output_exit(&sor->output);
3188
3189	if (sor->aux) {
3190		err = drm_dp_aux_detach(sor->aux);
3191		if (err < 0) {
3192			dev_err(sor->dev, "failed to detach DP: %d\n", err);
3193			return err;
3194		}
3195	}
3196
3197	clk_disable_unprepare(sor->clk_safe);
3198	clk_disable_unprepare(sor->clk_dp);
3199	clk_disable_unprepare(sor->clk);
3200
3201	return 0;
3202}
3203
3204static int tegra_sor_runtime_suspend(struct host1x_client *client)
3205{
3206	struct tegra_sor *sor = host1x_client_to_sor(client);
3207	struct device *dev = client->dev;
3208	int err;
3209
3210	if (sor->rst) {
3211		err = reset_control_assert(sor->rst);
3212		if (err < 0) {
3213			dev_err(dev, "failed to assert reset: %d\n", err);
3214			return err;
3215		}
3216
3217		reset_control_release(sor->rst);
3218	}
3219
3220	usleep_range(1000, 2000);
3221
3222	clk_disable_unprepare(sor->clk);
3223	pm_runtime_put_sync(dev);
3224
3225	return 0;
3226}
3227
3228static int tegra_sor_runtime_resume(struct host1x_client *client)
3229{
3230	struct tegra_sor *sor = host1x_client_to_sor(client);
3231	struct device *dev = client->dev;
3232	int err;
3233
3234	err = pm_runtime_resume_and_get(dev);
3235	if (err < 0) {
3236		dev_err(dev, "failed to get runtime PM: %d\n", err);
3237		return err;
3238	}
3239
3240	err = clk_prepare_enable(sor->clk);
3241	if (err < 0) {
3242		dev_err(dev, "failed to enable clock: %d\n", err);
3243		goto put_rpm;
3244	}
3245
3246	usleep_range(1000, 2000);
3247
3248	if (sor->rst) {
3249		err = reset_control_acquire(sor->rst);
3250		if (err < 0) {
3251			dev_err(dev, "failed to acquire reset: %d\n", err);
3252			goto disable_clk;
3253		}
3254
3255		err = reset_control_deassert(sor->rst);
3256		if (err < 0) {
3257			dev_err(dev, "failed to deassert reset: %d\n", err);
3258			goto release_reset;
3259		}
3260	}
3261
3262	return 0;
3263
3264release_reset:
3265	reset_control_release(sor->rst);
3266disable_clk:
3267	clk_disable_unprepare(sor->clk);
3268put_rpm:
3269	pm_runtime_put_sync(dev);
3270	return err;
3271}
3272
3273static const struct host1x_client_ops sor_client_ops = {
3274	.init = tegra_sor_init,
3275	.exit = tegra_sor_exit,
3276	.suspend = tegra_sor_runtime_suspend,
3277	.resume = tegra_sor_runtime_resume,
3278};
3279
3280static const u8 tegra124_sor_xbar_cfg[5] = {
3281	0, 1, 2, 3, 4
3282};
3283
3284static const struct tegra_sor_regs tegra124_sor_regs = {
3285	.head_state0 = 0x05,
3286	.head_state1 = 0x07,
3287	.head_state2 = 0x09,
3288	.head_state3 = 0x0b,
3289	.head_state4 = 0x0d,
3290	.head_state5 = 0x0f,
3291	.pll0 = 0x17,
3292	.pll1 = 0x18,
3293	.pll2 = 0x19,
3294	.pll3 = 0x1a,
3295	.dp_padctl0 = 0x5c,
3296	.dp_padctl2 = 0x73,
3297};
3298
3299/* Tegra124 and Tegra132 have lanes 0 and 2 swapped. */
3300static const u8 tegra124_sor_lane_map[4] = {
3301	2, 1, 0, 3,
3302};
3303
3304static const u8 tegra124_sor_voltage_swing[4][4][4] = {
3305	{
3306		{ 0x13, 0x19, 0x1e, 0x28 },
3307		{ 0x1e, 0x25, 0x2d, },
3308		{ 0x28, 0x32, },
3309		{ 0x3c, },
3310	}, {
3311		{ 0x12, 0x17, 0x1b, 0x25 },
3312		{ 0x1c, 0x23, 0x2a, },
3313		{ 0x25, 0x2f, },
3314		{ 0x39, }
3315	}, {
3316		{ 0x12, 0x16, 0x1a, 0x22 },
3317		{ 0x1b, 0x20, 0x27, },
3318		{ 0x24, 0x2d, },
3319		{ 0x36, },
3320	}, {
3321		{ 0x11, 0x14, 0x17, 0x1f },
3322		{ 0x19, 0x1e, 0x24, },
3323		{ 0x22, 0x2a, },
3324		{ 0x32, },
3325	},
3326};
3327
3328static const u8 tegra124_sor_pre_emphasis[4][4][4] = {
3329	{
3330		{ 0x00, 0x09, 0x13, 0x25 },
3331		{ 0x00, 0x0f, 0x1e, },
3332		{ 0x00, 0x14, },
3333		{ 0x00, },
3334	}, {
3335		{ 0x00, 0x0a, 0x14, 0x28 },
3336		{ 0x00, 0x0f, 0x1e, },
3337		{ 0x00, 0x14, },
3338		{ 0x00 },
3339	}, {
3340		{ 0x00, 0x0a, 0x14, 0x28 },
3341		{ 0x00, 0x0f, 0x1e, },
3342		{ 0x00, 0x14, },
3343		{ 0x00, },
3344	}, {
3345		{ 0x00, 0x0a, 0x14, 0x28 },
3346		{ 0x00, 0x0f, 0x1e, },
3347		{ 0x00, 0x14, },
3348		{ 0x00, },
3349	},
3350};
3351
3352static const u8 tegra124_sor_post_cursor[4][4][4] = {
3353	{
3354		{ 0x00, 0x00, 0x00, 0x00 },
3355		{ 0x00, 0x00, 0x00, },
3356		{ 0x00, 0x00, },
3357		{ 0x00, },
3358	}, {
3359		{ 0x02, 0x02, 0x04, 0x05 },
3360		{ 0x02, 0x04, 0x05, },
3361		{ 0x04, 0x05, },
3362		{ 0x05, },
3363	}, {
3364		{ 0x04, 0x05, 0x08, 0x0b },
3365		{ 0x05, 0x09, 0x0b, },
3366		{ 0x08, 0x0a, },
3367		{ 0x0b, },
3368	}, {
3369		{ 0x05, 0x09, 0x0b, 0x12 },
3370		{ 0x09, 0x0d, 0x12, },
3371		{ 0x0b, 0x0f, },
3372		{ 0x12, },
3373	},
3374};
3375
3376static const u8 tegra124_sor_tx_pu[4][4][4] = {
3377	{
3378		{ 0x20, 0x30, 0x40, 0x60 },
3379		{ 0x30, 0x40, 0x60, },
3380		{ 0x40, 0x60, },
3381		{ 0x60, },
3382	}, {
3383		{ 0x20, 0x20, 0x30, 0x50 },
3384		{ 0x30, 0x40, 0x50, },
3385		{ 0x40, 0x50, },
3386		{ 0x60, },
3387	}, {
3388		{ 0x20, 0x20, 0x30, 0x40, },
3389		{ 0x30, 0x30, 0x40, },
3390		{ 0x40, 0x50, },
3391		{ 0x60, },
3392	}, {
3393		{ 0x20, 0x20, 0x20, 0x40, },
3394		{ 0x30, 0x30, 0x40, },
3395		{ 0x40, 0x40, },
3396		{ 0x60, },
3397	},
3398};
3399
3400static const struct tegra_sor_soc tegra124_sor = {
3401	.supports_lvds = true,
3402	.supports_hdmi = false,
3403	.supports_dp = true,
3404	.supports_audio = false,
3405	.supports_hdcp = false,
3406	.regs = &tegra124_sor_regs,
3407	.has_nvdisplay = false,
3408	.xbar_cfg = tegra124_sor_xbar_cfg,
3409	.lane_map = tegra124_sor_lane_map,
3410	.voltage_swing = tegra124_sor_voltage_swing,
3411	.pre_emphasis = tegra124_sor_pre_emphasis,
3412	.post_cursor = tegra124_sor_post_cursor,
3413	.tx_pu = tegra124_sor_tx_pu,
3414};
3415
3416static const u8 tegra132_sor_pre_emphasis[4][4][4] = {
3417	{
3418		{ 0x00, 0x08, 0x12, 0x24 },
3419		{ 0x01, 0x0e, 0x1d, },
3420		{ 0x01, 0x13, },
3421		{ 0x00, },
3422	}, {
3423		{ 0x00, 0x08, 0x12, 0x24 },
3424		{ 0x00, 0x0e, 0x1d, },
3425		{ 0x00, 0x13, },
3426		{ 0x00 },
3427	}, {
3428		{ 0x00, 0x08, 0x12, 0x24 },
3429		{ 0x00, 0x0e, 0x1d, },
3430		{ 0x00, 0x13, },
3431		{ 0x00, },
3432	}, {
3433		{ 0x00, 0x08, 0x12, 0x24 },
3434		{ 0x00, 0x0e, 0x1d, },
3435		{ 0x00, 0x13, },
3436		{ 0x00, },
3437	},
3438};
3439
3440static const struct tegra_sor_soc tegra132_sor = {
3441	.supports_lvds = true,
3442	.supports_hdmi = false,
3443	.supports_dp = true,
3444	.supports_audio = false,
3445	.supports_hdcp = false,
3446	.regs = &tegra124_sor_regs,
3447	.has_nvdisplay = false,
3448	.xbar_cfg = tegra124_sor_xbar_cfg,
3449	.lane_map = tegra124_sor_lane_map,
3450	.voltage_swing = tegra124_sor_voltage_swing,
3451	.pre_emphasis = tegra132_sor_pre_emphasis,
3452	.post_cursor = tegra124_sor_post_cursor,
3453	.tx_pu = tegra124_sor_tx_pu,
3454};
3455
3456static const struct tegra_sor_regs tegra210_sor_regs = {
3457	.head_state0 = 0x05,
3458	.head_state1 = 0x07,
3459	.head_state2 = 0x09,
3460	.head_state3 = 0x0b,
3461	.head_state4 = 0x0d,
3462	.head_state5 = 0x0f,
3463	.pll0 = 0x17,
3464	.pll1 = 0x18,
3465	.pll2 = 0x19,
3466	.pll3 = 0x1a,
3467	.dp_padctl0 = 0x5c,
3468	.dp_padctl2 = 0x73,
3469};
3470
3471static const u8 tegra210_sor_xbar_cfg[5] = {
3472	2, 1, 0, 3, 4
3473};
3474
3475static const u8 tegra210_sor_lane_map[4] = {
3476	0, 1, 2, 3,
3477};
3478
3479static const struct tegra_sor_soc tegra210_sor = {
3480	.supports_lvds = false,
3481	.supports_hdmi = false,
3482	.supports_dp = true,
3483	.supports_audio = false,
3484	.supports_hdcp = false,
3485
3486	.regs = &tegra210_sor_regs,
3487	.has_nvdisplay = false,
3488
3489	.xbar_cfg = tegra210_sor_xbar_cfg,
3490	.lane_map = tegra210_sor_lane_map,
3491	.voltage_swing = tegra124_sor_voltage_swing,
3492	.pre_emphasis = tegra124_sor_pre_emphasis,
3493	.post_cursor = tegra124_sor_post_cursor,
3494	.tx_pu = tegra124_sor_tx_pu,
3495};
3496
3497static const struct tegra_sor_soc tegra210_sor1 = {
3498	.supports_lvds = false,
3499	.supports_hdmi = true,
3500	.supports_dp = true,
3501	.supports_audio = true,
3502	.supports_hdcp = true,
3503
3504	.regs = &tegra210_sor_regs,
3505	.has_nvdisplay = false,
3506
3507	.num_settings = ARRAY_SIZE(tegra210_sor_hdmi_defaults),
3508	.settings = tegra210_sor_hdmi_defaults,
3509	.xbar_cfg = tegra210_sor_xbar_cfg,
3510	.lane_map = tegra210_sor_lane_map,
3511	.voltage_swing = tegra124_sor_voltage_swing,
3512	.pre_emphasis = tegra124_sor_pre_emphasis,
3513	.post_cursor = tegra124_sor_post_cursor,
3514	.tx_pu = tegra124_sor_tx_pu,
3515};
3516
3517static const struct tegra_sor_regs tegra186_sor_regs = {
3518	.head_state0 = 0x151,
3519	.head_state1 = 0x154,
3520	.head_state2 = 0x157,
3521	.head_state3 = 0x15a,
3522	.head_state4 = 0x15d,
3523	.head_state5 = 0x160,
3524	.pll0 = 0x163,
3525	.pll1 = 0x164,
3526	.pll2 = 0x165,
3527	.pll3 = 0x166,
3528	.dp_padctl0 = 0x168,
3529	.dp_padctl2 = 0x16a,
3530};
3531
3532static const u8 tegra186_sor_voltage_swing[4][4][4] = {
3533	{
3534		{ 0x13, 0x19, 0x1e, 0x28 },
3535		{ 0x1e, 0x25, 0x2d, },
3536		{ 0x28, 0x32, },
3537		{ 0x39, },
3538	}, {
3539		{ 0x12, 0x16, 0x1b, 0x25 },
3540		{ 0x1c, 0x23, 0x2a, },
3541		{ 0x25, 0x2f, },
3542		{ 0x37, }
3543	}, {
3544		{ 0x12, 0x16, 0x1a, 0x22 },
3545		{ 0x1b, 0x20, 0x27, },
3546		{ 0x24, 0x2d, },
3547		{ 0x35, },
3548	}, {
3549		{ 0x11, 0x14, 0x17, 0x1f },
3550		{ 0x19, 0x1e, 0x24, },
3551		{ 0x22, 0x2a, },
3552		{ 0x32, },
3553	},
3554};
3555
3556static const u8 tegra186_sor_pre_emphasis[4][4][4] = {
3557	{
3558		{ 0x00, 0x08, 0x12, 0x24 },
3559		{ 0x01, 0x0e, 0x1d, },
3560		{ 0x01, 0x13, },
3561		{ 0x00, },
3562	}, {
3563		{ 0x00, 0x08, 0x12, 0x24 },
3564		{ 0x00, 0x0e, 0x1d, },
3565		{ 0x00, 0x13, },
3566		{ 0x00 },
3567	}, {
3568		{ 0x00, 0x08, 0x14, 0x24 },
3569		{ 0x00, 0x0e, 0x1d, },
3570		{ 0x00, 0x13, },
3571		{ 0x00, },
3572	}, {
3573		{ 0x00, 0x08, 0x12, 0x24 },
3574		{ 0x00, 0x0e, 0x1d, },
3575		{ 0x00, 0x13, },
3576		{ 0x00, },
3577	},
3578};
3579
3580static const struct tegra_sor_soc tegra186_sor = {
3581	.supports_lvds = false,
3582	.supports_hdmi = true,
3583	.supports_dp = true,
3584	.supports_audio = true,
3585	.supports_hdcp = true,
3586
3587	.regs = &tegra186_sor_regs,
3588	.has_nvdisplay = true,
3589
3590	.num_settings = ARRAY_SIZE(tegra186_sor_hdmi_defaults),
3591	.settings = tegra186_sor_hdmi_defaults,
3592	.xbar_cfg = tegra124_sor_xbar_cfg,
3593	.lane_map = tegra124_sor_lane_map,
3594	.voltage_swing = tegra186_sor_voltage_swing,
3595	.pre_emphasis = tegra186_sor_pre_emphasis,
3596	.post_cursor = tegra124_sor_post_cursor,
3597	.tx_pu = tegra124_sor_tx_pu,
3598};
3599
3600static const struct tegra_sor_regs tegra194_sor_regs = {
3601	.head_state0 = 0x151,
3602	.head_state1 = 0x155,
3603	.head_state2 = 0x159,
3604	.head_state3 = 0x15d,
3605	.head_state4 = 0x161,
3606	.head_state5 = 0x165,
3607	.pll0 = 0x169,
3608	.pll1 = 0x16a,
3609	.pll2 = 0x16b,
3610	.pll3 = 0x16c,
3611	.dp_padctl0 = 0x16e,
3612	.dp_padctl2 = 0x16f,
3613};
3614
3615static const struct tegra_sor_soc tegra194_sor = {
3616	.supports_lvds = false,
3617	.supports_hdmi = true,
3618	.supports_dp = true,
3619	.supports_audio = true,
3620	.supports_hdcp = true,
3621
3622	.regs = &tegra194_sor_regs,
3623	.has_nvdisplay = true,
3624
3625	.num_settings = ARRAY_SIZE(tegra194_sor_hdmi_defaults),
3626	.settings = tegra194_sor_hdmi_defaults,
3627
3628	.xbar_cfg = tegra210_sor_xbar_cfg,
3629	.lane_map = tegra124_sor_lane_map,
3630	.voltage_swing = tegra186_sor_voltage_swing,
3631	.pre_emphasis = tegra186_sor_pre_emphasis,
3632	.post_cursor = tegra124_sor_post_cursor,
3633	.tx_pu = tegra124_sor_tx_pu,
3634};
3635
3636static const struct of_device_id tegra_sor_of_match[] = {
3637	{ .compatible = "nvidia,tegra194-sor", .data = &tegra194_sor },
3638	{ .compatible = "nvidia,tegra186-sor", .data = &tegra186_sor },
3639	{ .compatible = "nvidia,tegra210-sor1", .data = &tegra210_sor1 },
3640	{ .compatible = "nvidia,tegra210-sor", .data = &tegra210_sor },
3641	{ .compatible = "nvidia,tegra132-sor", .data = &tegra132_sor },
3642	{ .compatible = "nvidia,tegra124-sor", .data = &tegra124_sor },
3643	{ },
3644};
3645MODULE_DEVICE_TABLE(of, tegra_sor_of_match);
3646
3647static int tegra_sor_parse_dt(struct tegra_sor *sor)
3648{
3649	struct device_node *np = sor->dev->of_node;
3650	u32 xbar_cfg[5];
3651	unsigned int i;
3652	u32 value;
3653	int err;
3654
3655	if (sor->soc->has_nvdisplay) {
3656		err = of_property_read_u32(np, "nvidia,interface", &value);
3657		if (err < 0)
3658			return err;
3659
3660		sor->index = value;
3661
3662		/*
3663		 * override the default that we already set for Tegra210 and
3664		 * earlier
3665		 */
3666		sor->pad = TEGRA_IO_PAD_HDMI_DP0 + sor->index;
3667	} else {
3668		if (!sor->soc->supports_audio)
3669			sor->index = 0;
3670		else
3671			sor->index = 1;
3672	}
3673
3674	err = of_property_read_u32_array(np, "nvidia,xbar-cfg", xbar_cfg, 5);
3675	if (err < 0) {
3676		/* fall back to default per-SoC XBAR configuration */
3677		for (i = 0; i < 5; i++)
3678			sor->xbar_cfg[i] = sor->soc->xbar_cfg[i];
3679	} else {
3680		/* copy cells to SOR XBAR configuration */
3681		for (i = 0; i < 5; i++)
3682			sor->xbar_cfg[i] = xbar_cfg[i];
3683	}
3684
3685	return 0;
3686}
3687
3688static irqreturn_t tegra_sor_irq(int irq, void *data)
3689{
3690	struct tegra_sor *sor = data;
3691	u32 value;
3692
3693	value = tegra_sor_readl(sor, SOR_INT_STATUS);
3694	tegra_sor_writel(sor, value, SOR_INT_STATUS);
3695
3696	if (value & SOR_INT_CODEC_SCRATCH0) {
3697		value = tegra_sor_readl(sor, SOR_AUDIO_HDA_CODEC_SCRATCH0);
3698
3699		if (value & SOR_AUDIO_HDA_CODEC_SCRATCH0_VALID) {
3700			unsigned int format;
3701
3702			format = value & SOR_AUDIO_HDA_CODEC_SCRATCH0_FMT_MASK;
3703
3704			tegra_hda_parse_format(format, &sor->format);
3705
3706			if (sor->ops->audio_enable)
3707				sor->ops->audio_enable(sor);
3708		} else {
3709			if (sor->ops->audio_disable)
3710				sor->ops->audio_disable(sor);
3711		}
3712	}
3713
3714	return IRQ_HANDLED;
3715}
3716
3717static int tegra_sor_probe(struct platform_device *pdev)
3718{
3719	struct device_node *np;
3720	struct tegra_sor *sor;
3721	struct resource *regs;
3722	int err;
3723
3724	sor = devm_kzalloc(&pdev->dev, sizeof(*sor), GFP_KERNEL);
3725	if (!sor)
3726		return -ENOMEM;
3727
3728	sor->soc = of_device_get_match_data(&pdev->dev);
3729	sor->output.dev = sor->dev = &pdev->dev;
3730
3731	sor->settings = devm_kmemdup(&pdev->dev, sor->soc->settings,
3732				     sor->soc->num_settings *
3733					sizeof(*sor->settings),
3734				     GFP_KERNEL);
3735	if (!sor->settings)
3736		return -ENOMEM;
3737
3738	sor->num_settings = sor->soc->num_settings;
3739
3740	np = of_parse_phandle(pdev->dev.of_node, "nvidia,dpaux", 0);
3741	if (np) {
3742		sor->aux = drm_dp_aux_find_by_of_node(np);
3743		of_node_put(np);
3744
3745		if (!sor->aux)
3746			return -EPROBE_DEFER;
3747
3748		if (get_device(sor->aux->dev))
3749			sor->output.ddc = &sor->aux->ddc;
3750	}
3751
3752	if (!sor->aux) {
3753		if (sor->soc->supports_hdmi) {
3754			sor->ops = &tegra_sor_hdmi_ops;
3755			sor->pad = TEGRA_IO_PAD_HDMI;
3756		} else if (sor->soc->supports_lvds) {
3757			dev_err(&pdev->dev, "LVDS not supported yet\n");
3758			return -ENODEV;
3759		} else {
3760			dev_err(&pdev->dev, "unknown (non-DP) support\n");
3761			return -ENODEV;
3762		}
3763	} else {
3764		np = of_parse_phandle(pdev->dev.of_node, "nvidia,panel", 0);
3765		/*
3766		 * No need to keep this around since we only use it as a check
3767		 * to see if a panel is connected (eDP) or not (DP).
3768		 */
3769		of_node_put(np);
3770
3771		sor->ops = &tegra_sor_dp_ops;
3772		sor->pad = TEGRA_IO_PAD_LVDS;
3773	}
3774
3775	err = tegra_sor_parse_dt(sor);
3776	if (err < 0)
3777		goto put_aux;
3778
3779	err = tegra_output_probe(&sor->output);
3780	if (err < 0) {
3781		dev_err_probe(&pdev->dev, err, "failed to probe output\n");
3782		goto put_aux;
3783	}
3784
3785	if (sor->ops && sor->ops->probe) {
3786		err = sor->ops->probe(sor);
3787		if (err < 0) {
3788			dev_err(&pdev->dev, "failed to probe %s: %d\n",
3789				sor->ops->name, err);
3790			goto remove;
3791		}
3792	}
3793
3794	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3795	sor->regs = devm_ioremap_resource(&pdev->dev, regs);
3796	if (IS_ERR(sor->regs)) {
3797		err = PTR_ERR(sor->regs);
3798		goto remove;
3799	}
3800
3801	err = platform_get_irq(pdev, 0);
3802	if (err < 0) {
3803		dev_err(&pdev->dev, "failed to get IRQ: %d\n", err);
3804		goto remove;
3805	}
3806
3807	sor->irq = err;
3808
3809	err = devm_request_irq(sor->dev, sor->irq, tegra_sor_irq, 0,
3810			       dev_name(sor->dev), sor);
3811	if (err < 0) {
3812		dev_err(&pdev->dev, "failed to request IRQ: %d\n", err);
3813		goto remove;
3814	}
3815
3816	sor->rst = devm_reset_control_get_exclusive_released(&pdev->dev, "sor");
3817	if (IS_ERR(sor->rst)) {
3818		err = PTR_ERR(sor->rst);
3819
3820		if (err != -EBUSY || WARN_ON(!pdev->dev.pm_domain)) {
3821			dev_err(&pdev->dev, "failed to get reset control: %d\n",
3822				err);
3823			goto remove;
3824		}
3825
3826		/*
3827		 * At this point, the reset control is most likely being used
3828		 * by the generic power domain implementation. With any luck
3829		 * the power domain will have taken care of resetting the SOR
3830		 * and we don't have to do anything.
3831		 */
3832		sor->rst = NULL;
3833	}
3834
3835	sor->clk = devm_clk_get(&pdev->dev, NULL);
3836	if (IS_ERR(sor->clk)) {
3837		err = PTR_ERR(sor->clk);
3838		dev_err(&pdev->dev, "failed to get module clock: %d\n", err);
3839		goto remove;
3840	}
3841
3842	if (sor->soc->supports_hdmi || sor->soc->supports_dp) {
3843		struct device_node *np = pdev->dev.of_node;
3844		const char *name;
3845
3846		/*
3847		 * For backwards compatibility with Tegra210 device trees,
3848		 * fall back to the old clock name "source" if the new "out"
3849		 * clock is not available.
3850		 */
3851		if (of_property_match_string(np, "clock-names", "out") < 0)
3852			name = "source";
3853		else
3854			name = "out";
3855
3856		sor->clk_out = devm_clk_get(&pdev->dev, name);
3857		if (IS_ERR(sor->clk_out)) {
3858			err = PTR_ERR(sor->clk_out);
3859			dev_err(sor->dev, "failed to get %s clock: %d\n",
3860				name, err);
3861			goto remove;
3862		}
3863	} else {
3864		/* fall back to the module clock on SOR0 (eDP/LVDS only) */
3865		sor->clk_out = sor->clk;
3866	}
3867
3868	sor->clk_parent = devm_clk_get(&pdev->dev, "parent");
3869	if (IS_ERR(sor->clk_parent)) {
3870		err = PTR_ERR(sor->clk_parent);
3871		dev_err(&pdev->dev, "failed to get parent clock: %d\n", err);
3872		goto remove;
3873	}
3874
3875	sor->clk_safe = devm_clk_get(&pdev->dev, "safe");
3876	if (IS_ERR(sor->clk_safe)) {
3877		err = PTR_ERR(sor->clk_safe);
3878		dev_err(&pdev->dev, "failed to get safe clock: %d\n", err);
3879		goto remove;
3880	}
3881
3882	sor->clk_dp = devm_clk_get(&pdev->dev, "dp");
3883	if (IS_ERR(sor->clk_dp)) {
3884		err = PTR_ERR(sor->clk_dp);
3885		dev_err(&pdev->dev, "failed to get DP clock: %d\n", err);
3886		goto remove;
3887	}
3888
3889	/*
3890	 * Starting with Tegra186, the BPMP provides an implementation for
3891	 * the pad output clock, so we have to look it up from device tree.
3892	 */
3893	sor->clk_pad = devm_clk_get(&pdev->dev, "pad");
3894	if (IS_ERR(sor->clk_pad)) {
3895		if (sor->clk_pad != ERR_PTR(-ENOENT)) {
3896			err = PTR_ERR(sor->clk_pad);
3897			goto remove;
3898		}
3899
3900		/*
3901		 * If the pad output clock is not available, then we assume
3902		 * we're on Tegra210 or earlier and have to provide our own
3903		 * implementation.
3904		 */
3905		sor->clk_pad = NULL;
3906	}
3907
3908	/*
3909	 * The bootloader may have set up the SOR such that it's module clock
3910	 * is sourced by one of the display PLLs. However, that doesn't work
3911	 * without properly having set up other bits of the SOR.
3912	 */
3913	err = clk_set_parent(sor->clk_out, sor->clk_safe);
3914	if (err < 0) {
3915		dev_err(&pdev->dev, "failed to use safe clock: %d\n", err);
3916		goto remove;
3917	}
3918
3919	platform_set_drvdata(pdev, sor);
3920	pm_runtime_enable(&pdev->dev);
3921
3922	host1x_client_init(&sor->client);
3923	sor->client.ops = &sor_client_ops;
3924	sor->client.dev = &pdev->dev;
3925
3926	/*
3927	 * On Tegra210 and earlier, provide our own implementation for the
3928	 * pad output clock.
3929	 */
3930	if (!sor->clk_pad) {
3931		char *name;
3932
3933		name = devm_kasprintf(sor->dev, GFP_KERNEL, "sor%u_pad_clkout",
3934				      sor->index);
3935		if (!name) {
3936			err = -ENOMEM;
3937			goto uninit;
3938		}
3939
3940		err = host1x_client_resume(&sor->client);
3941		if (err < 0) {
3942			dev_err(sor->dev, "failed to resume: %d\n", err);
3943			goto uninit;
3944		}
3945
3946		sor->clk_pad = tegra_clk_sor_pad_register(sor, name);
3947		host1x_client_suspend(&sor->client);
3948	}
3949
3950	if (IS_ERR(sor->clk_pad)) {
3951		err = PTR_ERR(sor->clk_pad);
3952		dev_err(sor->dev, "failed to register SOR pad clock: %d\n",
3953			err);
3954		goto uninit;
3955	}
3956
3957	err = __host1x_client_register(&sor->client);
3958	if (err < 0) {
3959		dev_err(&pdev->dev, "failed to register host1x client: %d\n",
3960			err);
3961		goto uninit;
3962	}
3963
3964	return 0;
3965
3966uninit:
3967	host1x_client_exit(&sor->client);
3968	pm_runtime_disable(&pdev->dev);
3969remove:
3970	if (sor->aux)
3971		sor->output.ddc = NULL;
3972
3973	tegra_output_remove(&sor->output);
3974put_aux:
3975	if (sor->aux)
3976		put_device(sor->aux->dev);
3977
3978	return err;
3979}
3980
3981static int tegra_sor_remove(struct platform_device *pdev)
3982{
3983	struct tegra_sor *sor = platform_get_drvdata(pdev);
3984	int err;
3985
3986	err = host1x_client_unregister(&sor->client);
3987	if (err < 0) {
3988		dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
3989			err);
3990		return err;
3991	}
3992
3993	pm_runtime_disable(&pdev->dev);
3994
3995	if (sor->aux) {
3996		put_device(sor->aux->dev);
3997		sor->output.ddc = NULL;
3998	}
3999
4000	tegra_output_remove(&sor->output);
4001
4002	return 0;
4003}
4004
4005static int __maybe_unused tegra_sor_suspend(struct device *dev)
4006{
4007	struct tegra_sor *sor = dev_get_drvdata(dev);
4008	int err;
4009
4010	err = tegra_output_suspend(&sor->output);
4011	if (err < 0) {
4012		dev_err(dev, "failed to suspend output: %d\n", err);
4013		return err;
4014	}
4015
4016	if (sor->hdmi_supply) {
4017		err = regulator_disable(sor->hdmi_supply);
4018		if (err < 0) {
4019			tegra_output_resume(&sor->output);
4020			return err;
4021		}
4022	}
4023
4024	return 0;
4025}
4026
4027static int __maybe_unused tegra_sor_resume(struct device *dev)
4028{
4029	struct tegra_sor *sor = dev_get_drvdata(dev);
4030	int err;
4031
4032	if (sor->hdmi_supply) {
4033		err = regulator_enable(sor->hdmi_supply);
4034		if (err < 0)
4035			return err;
4036	}
4037
4038	err = tegra_output_resume(&sor->output);
4039	if (err < 0) {
4040		dev_err(dev, "failed to resume output: %d\n", err);
4041
4042		if (sor->hdmi_supply)
4043			regulator_disable(sor->hdmi_supply);
4044
4045		return err;
4046	}
4047
4048	return 0;
4049}
4050
4051static const struct dev_pm_ops tegra_sor_pm_ops = {
4052	SET_SYSTEM_SLEEP_PM_OPS(tegra_sor_suspend, tegra_sor_resume)
4053};
4054
4055struct platform_driver tegra_sor_driver = {
4056	.driver = {
4057		.name = "tegra-sor",
4058		.of_match_table = tegra_sor_of_match,
4059		.pm = &tegra_sor_pm_ops,
4060	},
4061	.probe = tegra_sor_probe,
4062	.remove = tegra_sor_remove,
4063};