Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * pSeries NUMA support
   4 *
   5 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
   6 */
   7#define pr_fmt(fmt) "numa: " fmt
   8
   9#include <linux/threads.h>
  10#include <linux/memblock.h>
  11#include <linux/init.h>
  12#include <linux/mm.h>
  13#include <linux/mmzone.h>
  14#include <linux/export.h>
  15#include <linux/nodemask.h>
  16#include <linux/cpu.h>
  17#include <linux/notifier.h>
  18#include <linux/of.h>
  19#include <linux/of_address.h>
  20#include <linux/pfn.h>
  21#include <linux/cpuset.h>
  22#include <linux/node.h>
  23#include <linux/stop_machine.h>
  24#include <linux/proc_fs.h>
  25#include <linux/seq_file.h>
  26#include <linux/uaccess.h>
  27#include <linux/slab.h>
  28#include <asm/cputhreads.h>
  29#include <asm/sparsemem.h>
  30#include <asm/smp.h>
  31#include <asm/topology.h>
  32#include <asm/firmware.h>
  33#include <asm/paca.h>
  34#include <asm/hvcall.h>
  35#include <asm/setup.h>
  36#include <asm/vdso.h>
  37#include <asm/vphn.h>
  38#include <asm/drmem.h>
  39
  40static int numa_enabled = 1;
  41
  42static char *cmdline __initdata;
  43
  44int numa_cpu_lookup_table[NR_CPUS];
  45cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
  46struct pglist_data *node_data[MAX_NUMNODES];
  47
  48EXPORT_SYMBOL(numa_cpu_lookup_table);
  49EXPORT_SYMBOL(node_to_cpumask_map);
  50EXPORT_SYMBOL(node_data);
  51
  52static int primary_domain_index;
  53static int n_mem_addr_cells, n_mem_size_cells;
  54
  55#define FORM0_AFFINITY 0
  56#define FORM1_AFFINITY 1
  57#define FORM2_AFFINITY 2
  58static int affinity_form;
  59
  60#define MAX_DISTANCE_REF_POINTS 4
  61static int distance_ref_points_depth;
  62static const __be32 *distance_ref_points;
  63static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
  64static int numa_distance_table[MAX_NUMNODES][MAX_NUMNODES] = {
  65	[0 ... MAX_NUMNODES - 1] = { [0 ... MAX_NUMNODES - 1] = -1 }
  66};
  67static int numa_id_index_table[MAX_NUMNODES] = { [0 ... MAX_NUMNODES - 1] = NUMA_NO_NODE };
  68
  69/*
  70 * Allocate node_to_cpumask_map based on number of available nodes
  71 * Requires node_possible_map to be valid.
  72 *
  73 * Note: cpumask_of_node() is not valid until after this is done.
  74 */
  75static void __init setup_node_to_cpumask_map(void)
  76{
  77	unsigned int node;
  78
  79	/* setup nr_node_ids if not done yet */
  80	if (nr_node_ids == MAX_NUMNODES)
  81		setup_nr_node_ids();
  82
  83	/* allocate the map */
  84	for_each_node(node)
  85		alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
  86
  87	/* cpumask_of_node() will now work */
  88	pr_debug("Node to cpumask map for %u nodes\n", nr_node_ids);
  89}
  90
  91static int __init fake_numa_create_new_node(unsigned long end_pfn,
  92						unsigned int *nid)
  93{
  94	unsigned long long mem;
  95	char *p = cmdline;
  96	static unsigned int fake_nid;
  97	static unsigned long long curr_boundary;
  98
  99	/*
 100	 * Modify node id, iff we started creating NUMA nodes
 101	 * We want to continue from where we left of the last time
 102	 */
 103	if (fake_nid)
 104		*nid = fake_nid;
 105	/*
 106	 * In case there are no more arguments to parse, the
 107	 * node_id should be the same as the last fake node id
 108	 * (we've handled this above).
 109	 */
 110	if (!p)
 111		return 0;
 112
 113	mem = memparse(p, &p);
 114	if (!mem)
 115		return 0;
 116
 117	if (mem < curr_boundary)
 118		return 0;
 119
 120	curr_boundary = mem;
 121
 122	if ((end_pfn << PAGE_SHIFT) > mem) {
 123		/*
 124		 * Skip commas and spaces
 125		 */
 126		while (*p == ',' || *p == ' ' || *p == '\t')
 127			p++;
 128
 129		cmdline = p;
 130		fake_nid++;
 131		*nid = fake_nid;
 132		pr_debug("created new fake_node with id %d\n", fake_nid);
 133		return 1;
 134	}
 135	return 0;
 136}
 137
 138static void __init reset_numa_cpu_lookup_table(void)
 139{
 140	unsigned int cpu;
 141
 142	for_each_possible_cpu(cpu)
 143		numa_cpu_lookup_table[cpu] = -1;
 144}
 145
 146void map_cpu_to_node(int cpu, int node)
 147{
 148	update_numa_cpu_lookup_table(cpu, node);
 149
 150	if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node]))) {
 151		pr_debug("adding cpu %d to node %d\n", cpu, node);
 152		cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
 153	}
 154}
 155
 156#if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
 157void unmap_cpu_from_node(unsigned long cpu)
 158{
 159	int node = numa_cpu_lookup_table[cpu];
 160
 161	if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
 162		cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
 163		pr_debug("removing cpu %lu from node %d\n", cpu, node);
 164	} else {
 165		pr_warn("Warning: cpu %lu not found in node %d\n", cpu, node);
 166	}
 167}
 168#endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
 169
 170static int __associativity_to_nid(const __be32 *associativity,
 171				  int max_array_sz)
 172{
 173	int nid;
 174	/*
 175	 * primary_domain_index is 1 based array index.
 176	 */
 177	int index = primary_domain_index  - 1;
 178
 179	if (!numa_enabled || index >= max_array_sz)
 180		return NUMA_NO_NODE;
 181
 182	nid = of_read_number(&associativity[index], 1);
 183
 184	/* POWER4 LPAR uses 0xffff as invalid node */
 185	if (nid == 0xffff || nid >= nr_node_ids)
 186		nid = NUMA_NO_NODE;
 187	return nid;
 188}
 189/*
 190 * Returns nid in the range [0..nr_node_ids], or -1 if no useful NUMA
 191 * info is found.
 192 */
 193static int associativity_to_nid(const __be32 *associativity)
 194{
 195	int array_sz = of_read_number(associativity, 1);
 196
 197	/* Skip the first element in the associativity array */
 198	return __associativity_to_nid((associativity + 1), array_sz);
 199}
 200
 201static int __cpu_form2_relative_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc)
 202{
 203	int dist;
 204	int node1, node2;
 205
 206	node1 = associativity_to_nid(cpu1_assoc);
 207	node2 = associativity_to_nid(cpu2_assoc);
 208
 209	dist = numa_distance_table[node1][node2];
 210	if (dist <= LOCAL_DISTANCE)
 211		return 0;
 212	else if (dist <= REMOTE_DISTANCE)
 213		return 1;
 214	else
 215		return 2;
 216}
 217
 218static int __cpu_form1_relative_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc)
 219{
 220	int dist = 0;
 221
 222	int i, index;
 223
 224	for (i = 0; i < distance_ref_points_depth; i++) {
 225		index = be32_to_cpu(distance_ref_points[i]);
 226		if (cpu1_assoc[index] == cpu2_assoc[index])
 227			break;
 228		dist++;
 229	}
 230
 231	return dist;
 232}
 233
 234int cpu_relative_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc)
 235{
 236	/* We should not get called with FORM0 */
 237	VM_WARN_ON(affinity_form == FORM0_AFFINITY);
 238	if (affinity_form == FORM1_AFFINITY)
 239		return __cpu_form1_relative_distance(cpu1_assoc, cpu2_assoc);
 240	return __cpu_form2_relative_distance(cpu1_assoc, cpu2_assoc);
 241}
 242
 243/* must hold reference to node during call */
 244static const __be32 *of_get_associativity(struct device_node *dev)
 245{
 246	return of_get_property(dev, "ibm,associativity", NULL);
 247}
 248
 249int __node_distance(int a, int b)
 250{
 251	int i;
 252	int distance = LOCAL_DISTANCE;
 253
 254	if (affinity_form == FORM2_AFFINITY)
 255		return numa_distance_table[a][b];
 256	else if (affinity_form == FORM0_AFFINITY)
 257		return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
 258
 259	for (i = 0; i < distance_ref_points_depth; i++) {
 260		if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
 261			break;
 262
 263		/* Double the distance for each NUMA level */
 264		distance *= 2;
 265	}
 266
 267	return distance;
 268}
 269EXPORT_SYMBOL(__node_distance);
 270
 271/* Returns the nid associated with the given device tree node,
 272 * or -1 if not found.
 273 */
 274static int of_node_to_nid_single(struct device_node *device)
 275{
 276	int nid = NUMA_NO_NODE;
 277	const __be32 *tmp;
 278
 279	tmp = of_get_associativity(device);
 280	if (tmp)
 281		nid = associativity_to_nid(tmp);
 282	return nid;
 283}
 284
 285/* Walk the device tree upwards, looking for an associativity id */
 286int of_node_to_nid(struct device_node *device)
 287{
 288	int nid = NUMA_NO_NODE;
 289
 290	of_node_get(device);
 291	while (device) {
 292		nid = of_node_to_nid_single(device);
 293		if (nid != -1)
 294			break;
 295
 296		device = of_get_next_parent(device);
 297	}
 298	of_node_put(device);
 299
 300	return nid;
 301}
 302EXPORT_SYMBOL(of_node_to_nid);
 303
 304static void __initialize_form1_numa_distance(const __be32 *associativity,
 305					     int max_array_sz)
 306{
 307	int i, nid;
 308
 309	if (affinity_form != FORM1_AFFINITY)
 310		return;
 311
 312	nid = __associativity_to_nid(associativity, max_array_sz);
 313	if (nid != NUMA_NO_NODE) {
 314		for (i = 0; i < distance_ref_points_depth; i++) {
 315			const __be32 *entry;
 316			int index = be32_to_cpu(distance_ref_points[i]) - 1;
 317
 318			/*
 319			 * broken hierarchy, return with broken distance table
 320			 */
 321			if (WARN(index >= max_array_sz, "Broken ibm,associativity property"))
 322				return;
 323
 324			entry = &associativity[index];
 325			distance_lookup_table[nid][i] = of_read_number(entry, 1);
 326		}
 327	}
 328}
 329
 330static void initialize_form1_numa_distance(const __be32 *associativity)
 331{
 332	int array_sz;
 333
 334	array_sz = of_read_number(associativity, 1);
 335	/* Skip the first element in the associativity array */
 336	__initialize_form1_numa_distance(associativity + 1, array_sz);
 337}
 338
 339/*
 340 * Used to update distance information w.r.t newly added node.
 341 */
 342void update_numa_distance(struct device_node *node)
 343{
 344	int nid;
 345
 346	if (affinity_form == FORM0_AFFINITY)
 347		return;
 348	else if (affinity_form == FORM1_AFFINITY) {
 349		const __be32 *associativity;
 350
 351		associativity = of_get_associativity(node);
 352		if (!associativity)
 353			return;
 354
 355		initialize_form1_numa_distance(associativity);
 356		return;
 357	}
 358
 359	/* FORM2 affinity  */
 360	nid = of_node_to_nid_single(node);
 361	if (nid == NUMA_NO_NODE)
 362		return;
 363
 364	/*
 365	 * With FORM2 we expect NUMA distance of all possible NUMA
 366	 * nodes to be provided during boot.
 367	 */
 368	WARN(numa_distance_table[nid][nid] == -1,
 369	     "NUMA distance details for node %d not provided\n", nid);
 370}
 371EXPORT_SYMBOL_GPL(update_numa_distance);
 372
 373/*
 374 * ibm,numa-lookup-index-table= {N, domainid1, domainid2, ..... domainidN}
 375 * ibm,numa-distance-table = { N, 1, 2, 4, 5, 1, 6, .... N elements}
 376 */
 377static void __init initialize_form2_numa_distance_lookup_table(void)
 378{
 379	int i, j;
 380	struct device_node *root;
 381	const __u8 *form2_distances;
 382	const __be32 *numa_lookup_index;
 383	int form2_distances_length;
 384	int max_numa_index, distance_index;
 385
 386	if (firmware_has_feature(FW_FEATURE_OPAL))
 387		root = of_find_node_by_path("/ibm,opal");
 388	else
 389		root = of_find_node_by_path("/rtas");
 390	if (!root)
 391		root = of_find_node_by_path("/");
 392
 393	numa_lookup_index = of_get_property(root, "ibm,numa-lookup-index-table", NULL);
 394	max_numa_index = of_read_number(&numa_lookup_index[0], 1);
 395
 396	/* first element of the array is the size and is encode-int */
 397	form2_distances = of_get_property(root, "ibm,numa-distance-table", NULL);
 398	form2_distances_length = of_read_number((const __be32 *)&form2_distances[0], 1);
 399	/* Skip the size which is encoded int */
 400	form2_distances += sizeof(__be32);
 401
 402	pr_debug("form2_distances_len = %d, numa_dist_indexes_len = %d\n",
 403		 form2_distances_length, max_numa_index);
 404
 405	for (i = 0; i < max_numa_index; i++)
 406		/* +1 skip the max_numa_index in the property */
 407		numa_id_index_table[i] = of_read_number(&numa_lookup_index[i + 1], 1);
 408
 409
 410	if (form2_distances_length != max_numa_index * max_numa_index) {
 411		WARN(1, "Wrong NUMA distance information\n");
 412		form2_distances = NULL; // don't use it
 413	}
 414	distance_index = 0;
 415	for (i = 0;  i < max_numa_index; i++) {
 416		for (j = 0; j < max_numa_index; j++) {
 417			int nodeA = numa_id_index_table[i];
 418			int nodeB = numa_id_index_table[j];
 419			int dist;
 420
 421			if (form2_distances)
 422				dist = form2_distances[distance_index++];
 423			else if (nodeA == nodeB)
 424				dist = LOCAL_DISTANCE;
 425			else
 426				dist = REMOTE_DISTANCE;
 427			numa_distance_table[nodeA][nodeB] = dist;
 428			pr_debug("dist[%d][%d]=%d ", nodeA, nodeB, dist);
 429		}
 430	}
 431
 432	of_node_put(root);
 433}
 434
 435static int __init find_primary_domain_index(void)
 436{
 437	int index;
 438	struct device_node *root;
 439
 440	/*
 441	 * Check for which form of affinity.
 442	 */
 443	if (firmware_has_feature(FW_FEATURE_OPAL)) {
 444		affinity_form = FORM1_AFFINITY;
 445	} else if (firmware_has_feature(FW_FEATURE_FORM2_AFFINITY)) {
 446		pr_debug("Using form 2 affinity\n");
 447		affinity_form = FORM2_AFFINITY;
 448	} else if (firmware_has_feature(FW_FEATURE_FORM1_AFFINITY)) {
 449		pr_debug("Using form 1 affinity\n");
 450		affinity_form = FORM1_AFFINITY;
 451	} else
 452		affinity_form = FORM0_AFFINITY;
 453
 454	if (firmware_has_feature(FW_FEATURE_OPAL))
 455		root = of_find_node_by_path("/ibm,opal");
 456	else
 457		root = of_find_node_by_path("/rtas");
 458	if (!root)
 459		root = of_find_node_by_path("/");
 460
 461	/*
 462	 * This property is a set of 32-bit integers, each representing
 463	 * an index into the ibm,associativity nodes.
 464	 *
 465	 * With form 0 affinity the first integer is for an SMP configuration
 466	 * (should be all 0's) and the second is for a normal NUMA
 467	 * configuration. We have only one level of NUMA.
 468	 *
 469	 * With form 1 affinity the first integer is the most significant
 470	 * NUMA boundary and the following are progressively less significant
 471	 * boundaries. There can be more than one level of NUMA.
 472	 */
 473	distance_ref_points = of_get_property(root,
 474					"ibm,associativity-reference-points",
 475					&distance_ref_points_depth);
 476
 477	if (!distance_ref_points) {
 478		pr_debug("ibm,associativity-reference-points not found.\n");
 479		goto err;
 480	}
 481
 482	distance_ref_points_depth /= sizeof(int);
 483	if (affinity_form == FORM0_AFFINITY) {
 484		if (distance_ref_points_depth < 2) {
 485			pr_warn("short ibm,associativity-reference-points\n");
 486			goto err;
 487		}
 488
 489		index = of_read_number(&distance_ref_points[1], 1);
 490	} else {
 491		/*
 492		 * Both FORM1 and FORM2 affinity find the primary domain details
 493		 * at the same offset.
 494		 */
 495		index = of_read_number(distance_ref_points, 1);
 496	}
 497	/*
 498	 * Warn and cap if the hardware supports more than
 499	 * MAX_DISTANCE_REF_POINTS domains.
 500	 */
 501	if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
 502		pr_warn("distance array capped at %d entries\n",
 503			MAX_DISTANCE_REF_POINTS);
 504		distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
 505	}
 506
 507	of_node_put(root);
 508	return index;
 509
 510err:
 511	of_node_put(root);
 512	return -1;
 513}
 514
 515static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
 516{
 517	struct device_node *memory = NULL;
 518
 519	memory = of_find_node_by_type(memory, "memory");
 520	if (!memory)
 521		panic("numa.c: No memory nodes found!");
 522
 523	*n_addr_cells = of_n_addr_cells(memory);
 524	*n_size_cells = of_n_size_cells(memory);
 525	of_node_put(memory);
 526}
 527
 528static unsigned long read_n_cells(int n, const __be32 **buf)
 529{
 530	unsigned long result = 0;
 531
 532	while (n--) {
 533		result = (result << 32) | of_read_number(*buf, 1);
 534		(*buf)++;
 535	}
 536	return result;
 537}
 538
 539struct assoc_arrays {
 540	u32	n_arrays;
 541	u32	array_sz;
 542	const __be32 *arrays;
 543};
 544
 545/*
 546 * Retrieve and validate the list of associativity arrays for drconf
 547 * memory from the ibm,associativity-lookup-arrays property of the
 548 * device tree..
 549 *
 550 * The layout of the ibm,associativity-lookup-arrays property is a number N
 551 * indicating the number of associativity arrays, followed by a number M
 552 * indicating the size of each associativity array, followed by a list
 553 * of N associativity arrays.
 554 */
 555static int of_get_assoc_arrays(struct assoc_arrays *aa)
 556{
 557	struct device_node *memory;
 558	const __be32 *prop;
 559	u32 len;
 560
 561	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
 562	if (!memory)
 563		return -1;
 564
 565	prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
 566	if (!prop || len < 2 * sizeof(unsigned int)) {
 567		of_node_put(memory);
 568		return -1;
 569	}
 570
 571	aa->n_arrays = of_read_number(prop++, 1);
 572	aa->array_sz = of_read_number(prop++, 1);
 573
 574	of_node_put(memory);
 575
 576	/* Now that we know the number of arrays and size of each array,
 577	 * revalidate the size of the property read in.
 578	 */
 579	if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
 580		return -1;
 581
 582	aa->arrays = prop;
 583	return 0;
 584}
 585
 586static int __init get_nid_and_numa_distance(struct drmem_lmb *lmb)
 587{
 588	struct assoc_arrays aa = { .arrays = NULL };
 589	int default_nid = NUMA_NO_NODE;
 590	int nid = default_nid;
 591	int rc, index;
 592
 593	if ((primary_domain_index < 0) || !numa_enabled)
 594		return default_nid;
 595
 596	rc = of_get_assoc_arrays(&aa);
 597	if (rc)
 598		return default_nid;
 599
 600	if (primary_domain_index <= aa.array_sz &&
 601	    !(lmb->flags & DRCONF_MEM_AI_INVALID) && lmb->aa_index < aa.n_arrays) {
 602		const __be32 *associativity;
 603
 604		index = lmb->aa_index * aa.array_sz;
 605		associativity = &aa.arrays[index];
 606		nid = __associativity_to_nid(associativity, aa.array_sz);
 607		if (nid > 0 && affinity_form == FORM1_AFFINITY) {
 608			/*
 609			 * lookup array associativity entries have
 610			 * no length of the array as the first element.
 611			 */
 612			__initialize_form1_numa_distance(associativity, aa.array_sz);
 613		}
 614	}
 615	return nid;
 616}
 617
 618/*
 619 * This is like of_node_to_nid_single() for memory represented in the
 620 * ibm,dynamic-reconfiguration-memory node.
 621 */
 622int of_drconf_to_nid_single(struct drmem_lmb *lmb)
 623{
 624	struct assoc_arrays aa = { .arrays = NULL };
 625	int default_nid = NUMA_NO_NODE;
 626	int nid = default_nid;
 627	int rc, index;
 628
 629	if ((primary_domain_index < 0) || !numa_enabled)
 630		return default_nid;
 631
 632	rc = of_get_assoc_arrays(&aa);
 633	if (rc)
 634		return default_nid;
 635
 636	if (primary_domain_index <= aa.array_sz &&
 637	    !(lmb->flags & DRCONF_MEM_AI_INVALID) && lmb->aa_index < aa.n_arrays) {
 638		const __be32 *associativity;
 639
 640		index = lmb->aa_index * aa.array_sz;
 641		associativity = &aa.arrays[index];
 642		nid = __associativity_to_nid(associativity, aa.array_sz);
 643	}
 644	return nid;
 645}
 646
 647#ifdef CONFIG_PPC_SPLPAR
 648
 649static int __vphn_get_associativity(long lcpu, __be32 *associativity)
 650{
 651	long rc, hwid;
 652
 653	/*
 654	 * On a shared lpar, device tree will not have node associativity.
 655	 * At this time lppaca, or its __old_status field may not be
 656	 * updated. Hence kernel cannot detect if its on a shared lpar. So
 657	 * request an explicit associativity irrespective of whether the
 658	 * lpar is shared or dedicated. Use the device tree property as a
 659	 * fallback. cpu_to_phys_id is only valid between
 660	 * smp_setup_cpu_maps() and smp_setup_pacas().
 661	 */
 662	if (firmware_has_feature(FW_FEATURE_VPHN)) {
 663		if (cpu_to_phys_id)
 664			hwid = cpu_to_phys_id[lcpu];
 665		else
 666			hwid = get_hard_smp_processor_id(lcpu);
 667
 668		rc = hcall_vphn(hwid, VPHN_FLAG_VCPU, associativity);
 669		if (rc == H_SUCCESS)
 670			return 0;
 671	}
 672
 673	return -1;
 674}
 675
 676static int vphn_get_nid(long lcpu)
 677{
 678	__be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
 679
 680
 681	if (!__vphn_get_associativity(lcpu, associativity))
 682		return associativity_to_nid(associativity);
 683
 684	return NUMA_NO_NODE;
 685
 686}
 687#else
 688
 689static int __vphn_get_associativity(long lcpu, __be32 *associativity)
 690{
 691	return -1;
 692}
 693
 694static int vphn_get_nid(long unused)
 695{
 696	return NUMA_NO_NODE;
 697}
 698#endif  /* CONFIG_PPC_SPLPAR */
 699
 700/*
 701 * Figure out to which domain a cpu belongs and stick it there.
 702 * Return the id of the domain used.
 703 */
 704static int numa_setup_cpu(unsigned long lcpu)
 705{
 706	struct device_node *cpu;
 707	int fcpu = cpu_first_thread_sibling(lcpu);
 708	int nid = NUMA_NO_NODE;
 709
 710	if (!cpu_present(lcpu)) {
 711		set_cpu_numa_node(lcpu, first_online_node);
 712		return first_online_node;
 713	}
 714
 715	/*
 716	 * If a valid cpu-to-node mapping is already available, use it
 717	 * directly instead of querying the firmware, since it represents
 718	 * the most recent mapping notified to us by the platform (eg: VPHN).
 719	 * Since cpu_to_node binding remains the same for all threads in the
 720	 * core. If a valid cpu-to-node mapping is already available, for
 721	 * the first thread in the core, use it.
 722	 */
 723	nid = numa_cpu_lookup_table[fcpu];
 724	if (nid >= 0) {
 725		map_cpu_to_node(lcpu, nid);
 726		return nid;
 727	}
 728
 729	nid = vphn_get_nid(lcpu);
 730	if (nid != NUMA_NO_NODE)
 731		goto out_present;
 732
 733	cpu = of_get_cpu_node(lcpu, NULL);
 734
 735	if (!cpu) {
 736		WARN_ON(1);
 737		if (cpu_present(lcpu))
 738			goto out_present;
 739		else
 740			goto out;
 741	}
 742
 743	nid = of_node_to_nid_single(cpu);
 744	of_node_put(cpu);
 745
 746out_present:
 747	if (nid < 0 || !node_possible(nid))
 748		nid = first_online_node;
 749
 750	/*
 751	 * Update for the first thread of the core. All threads of a core
 752	 * have to be part of the same node. This not only avoids querying
 753	 * for every other thread in the core, but always avoids a case
 754	 * where virtual node associativity change causes subsequent threads
 755	 * of a core to be associated with different nid. However if first
 756	 * thread is already online, expect it to have a valid mapping.
 757	 */
 758	if (fcpu != lcpu) {
 759		WARN_ON(cpu_online(fcpu));
 760		map_cpu_to_node(fcpu, nid);
 761	}
 762
 763	map_cpu_to_node(lcpu, nid);
 764out:
 765	return nid;
 766}
 767
 768static void verify_cpu_node_mapping(int cpu, int node)
 769{
 770	int base, sibling, i;
 771
 772	/* Verify that all the threads in the core belong to the same node */
 773	base = cpu_first_thread_sibling(cpu);
 774
 775	for (i = 0; i < threads_per_core; i++) {
 776		sibling = base + i;
 777
 778		if (sibling == cpu || cpu_is_offline(sibling))
 779			continue;
 780
 781		if (cpu_to_node(sibling) != node) {
 782			WARN(1, "CPU thread siblings %d and %d don't belong"
 783				" to the same node!\n", cpu, sibling);
 784			break;
 785		}
 786	}
 787}
 788
 789/* Must run before sched domains notifier. */
 790static int ppc_numa_cpu_prepare(unsigned int cpu)
 791{
 792	int nid;
 793
 794	nid = numa_setup_cpu(cpu);
 795	verify_cpu_node_mapping(cpu, nid);
 796	return 0;
 797}
 798
 799static int ppc_numa_cpu_dead(unsigned int cpu)
 800{
 801	return 0;
 802}
 803
 804/*
 805 * Check and possibly modify a memory region to enforce the memory limit.
 806 *
 807 * Returns the size the region should have to enforce the memory limit.
 808 * This will either be the original value of size, a truncated value,
 809 * or zero. If the returned value of size is 0 the region should be
 810 * discarded as it lies wholly above the memory limit.
 811 */
 812static unsigned long __init numa_enforce_memory_limit(unsigned long start,
 813						      unsigned long size)
 814{
 815	/*
 816	 * We use memblock_end_of_DRAM() in here instead of memory_limit because
 817	 * we've already adjusted it for the limit and it takes care of
 818	 * having memory holes below the limit.  Also, in the case of
 819	 * iommu_is_off, memory_limit is not set but is implicitly enforced.
 820	 */
 821
 822	if (start + size <= memblock_end_of_DRAM())
 823		return size;
 824
 825	if (start >= memblock_end_of_DRAM())
 826		return 0;
 827
 828	return memblock_end_of_DRAM() - start;
 829}
 830
 831/*
 832 * Reads the counter for a given entry in
 833 * linux,drconf-usable-memory property
 834 */
 835static inline int __init read_usm_ranges(const __be32 **usm)
 836{
 837	/*
 838	 * For each lmb in ibm,dynamic-memory a corresponding
 839	 * entry in linux,drconf-usable-memory property contains
 840	 * a counter followed by that many (base, size) duple.
 841	 * read the counter from linux,drconf-usable-memory
 842	 */
 843	return read_n_cells(n_mem_size_cells, usm);
 844}
 845
 846/*
 847 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
 848 * node.  This assumes n_mem_{addr,size}_cells have been set.
 849 */
 850static int __init numa_setup_drmem_lmb(struct drmem_lmb *lmb,
 851					const __be32 **usm,
 852					void *data)
 853{
 854	unsigned int ranges, is_kexec_kdump = 0;
 855	unsigned long base, size, sz;
 856	int nid;
 857
 858	/*
 859	 * Skip this block if the reserved bit is set in flags (0x80)
 860	 * or if the block is not assigned to this partition (0x8)
 861	 */
 862	if ((lmb->flags & DRCONF_MEM_RESERVED)
 863	    || !(lmb->flags & DRCONF_MEM_ASSIGNED))
 864		return 0;
 865
 866	if (*usm)
 867		is_kexec_kdump = 1;
 868
 869	base = lmb->base_addr;
 870	size = drmem_lmb_size();
 871	ranges = 1;
 872
 873	if (is_kexec_kdump) {
 874		ranges = read_usm_ranges(usm);
 875		if (!ranges) /* there are no (base, size) duple */
 876			return 0;
 877	}
 878
 879	do {
 880		if (is_kexec_kdump) {
 881			base = read_n_cells(n_mem_addr_cells, usm);
 882			size = read_n_cells(n_mem_size_cells, usm);
 883		}
 884
 885		nid = get_nid_and_numa_distance(lmb);
 886		fake_numa_create_new_node(((base + size) >> PAGE_SHIFT),
 887					  &nid);
 888		node_set_online(nid);
 889		sz = numa_enforce_memory_limit(base, size);
 890		if (sz)
 891			memblock_set_node(base, sz, &memblock.memory, nid);
 892	} while (--ranges);
 893
 894	return 0;
 895}
 896
 897static int __init parse_numa_properties(void)
 898{
 899	struct device_node *memory;
 900	int default_nid = 0;
 901	unsigned long i;
 902	const __be32 *associativity;
 903
 904	if (numa_enabled == 0) {
 905		pr_warn("disabled by user\n");
 906		return -1;
 907	}
 908
 909	primary_domain_index = find_primary_domain_index();
 910
 911	if (primary_domain_index < 0) {
 912		/*
 913		 * if we fail to parse primary_domain_index from device tree
 914		 * mark the numa disabled, boot with numa disabled.
 915		 */
 916		numa_enabled = false;
 917		return primary_domain_index;
 918	}
 919
 920	pr_debug("associativity depth for CPU/Memory: %d\n", primary_domain_index);
 921
 922	/*
 923	 * If it is FORM2 initialize the distance table here.
 924	 */
 925	if (affinity_form == FORM2_AFFINITY)
 926		initialize_form2_numa_distance_lookup_table();
 927
 928	/*
 929	 * Even though we connect cpus to numa domains later in SMP
 930	 * init, we need to know the node ids now. This is because
 931	 * each node to be onlined must have NODE_DATA etc backing it.
 932	 */
 933	for_each_present_cpu(i) {
 934		__be32 vphn_assoc[VPHN_ASSOC_BUFSIZE];
 935		struct device_node *cpu;
 936		int nid = NUMA_NO_NODE;
 937
 938		memset(vphn_assoc, 0, VPHN_ASSOC_BUFSIZE * sizeof(__be32));
 939
 940		if (__vphn_get_associativity(i, vphn_assoc) == 0) {
 941			nid = associativity_to_nid(vphn_assoc);
 942			initialize_form1_numa_distance(vphn_assoc);
 943		} else {
 944
 945			/*
 946			 * Don't fall back to default_nid yet -- we will plug
 947			 * cpus into nodes once the memory scan has discovered
 948			 * the topology.
 949			 */
 950			cpu = of_get_cpu_node(i, NULL);
 951			BUG_ON(!cpu);
 952
 953			associativity = of_get_associativity(cpu);
 954			if (associativity) {
 955				nid = associativity_to_nid(associativity);
 956				initialize_form1_numa_distance(associativity);
 957			}
 958			of_node_put(cpu);
 959		}
 960
 961		/* node_set_online() is an UB if 'nid' is negative */
 962		if (likely(nid >= 0))
 963			node_set_online(nid);
 964	}
 965
 966	get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
 967
 968	for_each_node_by_type(memory, "memory") {
 969		unsigned long start;
 970		unsigned long size;
 971		int nid;
 972		int ranges;
 973		const __be32 *memcell_buf;
 974		unsigned int len;
 975
 976		memcell_buf = of_get_property(memory,
 977			"linux,usable-memory", &len);
 978		if (!memcell_buf || len <= 0)
 979			memcell_buf = of_get_property(memory, "reg", &len);
 980		if (!memcell_buf || len <= 0)
 981			continue;
 982
 983		/* ranges in cell */
 984		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
 985new_range:
 986		/* these are order-sensitive, and modify the buffer pointer */
 987		start = read_n_cells(n_mem_addr_cells, &memcell_buf);
 988		size = read_n_cells(n_mem_size_cells, &memcell_buf);
 989
 990		/*
 991		 * Assumption: either all memory nodes or none will
 992		 * have associativity properties.  If none, then
 993		 * everything goes to default_nid.
 994		 */
 995		associativity = of_get_associativity(memory);
 996		if (associativity) {
 997			nid = associativity_to_nid(associativity);
 998			initialize_form1_numa_distance(associativity);
 999		} else
1000			nid = default_nid;
1001
1002		fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
1003		node_set_online(nid);
1004
1005		size = numa_enforce_memory_limit(start, size);
1006		if (size)
1007			memblock_set_node(start, size, &memblock.memory, nid);
1008
1009		if (--ranges)
1010			goto new_range;
1011	}
1012
1013	/*
1014	 * Now do the same thing for each MEMBLOCK listed in the
1015	 * ibm,dynamic-memory property in the
1016	 * ibm,dynamic-reconfiguration-memory node.
1017	 */
1018	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1019	if (memory) {
1020		walk_drmem_lmbs(memory, NULL, numa_setup_drmem_lmb);
1021		of_node_put(memory);
1022	}
1023
1024	return 0;
1025}
1026
1027static void __init setup_nonnuma(void)
1028{
1029	unsigned long top_of_ram = memblock_end_of_DRAM();
1030	unsigned long total_ram = memblock_phys_mem_size();
1031	unsigned long start_pfn, end_pfn;
1032	unsigned int nid = 0;
1033	int i;
1034
1035	pr_debug("Top of RAM: 0x%lx, Total RAM: 0x%lx\n", top_of_ram, total_ram);
1036	pr_debug("Memory hole size: %ldMB\n", (top_of_ram - total_ram) >> 20);
1037
1038	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
1039		fake_numa_create_new_node(end_pfn, &nid);
1040		memblock_set_node(PFN_PHYS(start_pfn),
1041				  PFN_PHYS(end_pfn - start_pfn),
1042				  &memblock.memory, nid);
1043		node_set_online(nid);
1044	}
1045}
1046
1047void __init dump_numa_cpu_topology(void)
1048{
1049	unsigned int node;
1050	unsigned int cpu, count;
1051
1052	if (!numa_enabled)
1053		return;
1054
1055	for_each_online_node(node) {
1056		pr_info("Node %d CPUs:", node);
1057
1058		count = 0;
1059		/*
1060		 * If we used a CPU iterator here we would miss printing
1061		 * the holes in the cpumap.
1062		 */
1063		for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
1064			if (cpumask_test_cpu(cpu,
1065					node_to_cpumask_map[node])) {
1066				if (count == 0)
1067					pr_cont(" %u", cpu);
1068				++count;
1069			} else {
1070				if (count > 1)
1071					pr_cont("-%u", cpu - 1);
1072				count = 0;
1073			}
1074		}
1075
1076		if (count > 1)
1077			pr_cont("-%u", nr_cpu_ids - 1);
1078		pr_cont("\n");
1079	}
1080}
1081
1082/* Initialize NODE_DATA for a node on the local memory */
1083static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn)
1084{
1085	u64 spanned_pages = end_pfn - start_pfn;
1086	const size_t nd_size = roundup(sizeof(pg_data_t), SMP_CACHE_BYTES);
1087	u64 nd_pa;
1088	void *nd;
1089	int tnid;
1090
1091	nd_pa = memblock_phys_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid);
1092	if (!nd_pa)
1093		panic("Cannot allocate %zu bytes for node %d data\n",
1094		      nd_size, nid);
1095
1096	nd = __va(nd_pa);
1097
1098	/* report and initialize */
1099	pr_info("  NODE_DATA [mem %#010Lx-%#010Lx]\n",
1100		nd_pa, nd_pa + nd_size - 1);
1101	tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
1102	if (tnid != nid)
1103		pr_info("    NODE_DATA(%d) on node %d\n", nid, tnid);
1104
1105	node_data[nid] = nd;
1106	memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
1107	NODE_DATA(nid)->node_id = nid;
1108	NODE_DATA(nid)->node_start_pfn = start_pfn;
1109	NODE_DATA(nid)->node_spanned_pages = spanned_pages;
1110}
1111
1112static void __init find_possible_nodes(void)
1113{
1114	struct device_node *rtas;
1115	const __be32 *domains = NULL;
1116	int prop_length, max_nodes;
1117	u32 i;
1118
1119	if (!numa_enabled)
1120		return;
1121
1122	rtas = of_find_node_by_path("/rtas");
1123	if (!rtas)
1124		return;
1125
1126	/*
1127	 * ibm,current-associativity-domains is a fairly recent property. If
1128	 * it doesn't exist, then fallback on ibm,max-associativity-domains.
1129	 * Current denotes what the platform can support compared to max
1130	 * which denotes what the Hypervisor can support.
1131	 *
1132	 * If the LPAR is migratable, new nodes might be activated after a LPM,
1133	 * so we should consider the max number in that case.
1134	 */
1135	if (!of_get_property(of_root, "ibm,migratable-partition", NULL))
1136		domains = of_get_property(rtas,
1137					  "ibm,current-associativity-domains",
1138					  &prop_length);
1139	if (!domains) {
1140		domains = of_get_property(rtas, "ibm,max-associativity-domains",
1141					&prop_length);
1142		if (!domains)
1143			goto out;
1144	}
1145
1146	max_nodes = of_read_number(&domains[primary_domain_index], 1);
1147	pr_info("Partition configured for %d NUMA nodes.\n", max_nodes);
1148
1149	for (i = 0; i < max_nodes; i++) {
1150		if (!node_possible(i))
1151			node_set(i, node_possible_map);
1152	}
1153
1154	prop_length /= sizeof(int);
1155	if (prop_length > primary_domain_index + 2)
1156		coregroup_enabled = 1;
1157
1158out:
1159	of_node_put(rtas);
1160}
1161
1162void __init mem_topology_setup(void)
1163{
1164	int cpu;
1165
1166	max_low_pfn = max_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1167	min_low_pfn = MEMORY_START >> PAGE_SHIFT;
1168
1169	/*
1170	 * Linux/mm assumes node 0 to be online at boot. However this is not
1171	 * true on PowerPC, where node 0 is similar to any other node, it
1172	 * could be cpuless, memoryless node. So force node 0 to be offline
1173	 * for now. This will prevent cpuless, memoryless node 0 showing up
1174	 * unnecessarily as online. If a node has cpus or memory that need
1175	 * to be online, then node will anyway be marked online.
1176	 */
1177	node_set_offline(0);
1178
1179	if (parse_numa_properties())
1180		setup_nonnuma();
1181
1182	/*
1183	 * Modify the set of possible NUMA nodes to reflect information
1184	 * available about the set of online nodes, and the set of nodes
1185	 * that we expect to make use of for this platform's affinity
1186	 * calculations.
1187	 */
1188	nodes_and(node_possible_map, node_possible_map, node_online_map);
1189
1190	find_possible_nodes();
1191
1192	setup_node_to_cpumask_map();
1193
1194	reset_numa_cpu_lookup_table();
1195
1196	for_each_possible_cpu(cpu) {
1197		/*
1198		 * Powerpc with CONFIG_NUMA always used to have a node 0,
1199		 * even if it was memoryless or cpuless. For all cpus that
1200		 * are possible but not present, cpu_to_node() would point
1201		 * to node 0. To remove a cpuless, memoryless dummy node,
1202		 * powerpc need to make sure all possible but not present
1203		 * cpu_to_node are set to a proper node.
1204		 */
1205		numa_setup_cpu(cpu);
1206	}
1207}
1208
1209void __init initmem_init(void)
1210{
1211	int nid;
1212
1213	memblock_dump_all();
1214
1215	for_each_online_node(nid) {
1216		unsigned long start_pfn, end_pfn;
1217
1218		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1219		setup_node_data(nid, start_pfn, end_pfn);
1220	}
1221
1222	sparse_init();
1223
1224	/*
1225	 * We need the numa_cpu_lookup_table to be accurate for all CPUs,
1226	 * even before we online them, so that we can use cpu_to_{node,mem}
1227	 * early in boot, cf. smp_prepare_cpus().
1228	 * _nocalls() + manual invocation is used because cpuhp is not yet
1229	 * initialized for the boot CPU.
1230	 */
1231	cpuhp_setup_state_nocalls(CPUHP_POWER_NUMA_PREPARE, "powerpc/numa:prepare",
1232				  ppc_numa_cpu_prepare, ppc_numa_cpu_dead);
1233}
1234
1235static int __init early_numa(char *p)
1236{
1237	if (!p)
1238		return 0;
1239
1240	if (strstr(p, "off"))
1241		numa_enabled = 0;
1242
1243	p = strstr(p, "fake=");
1244	if (p)
1245		cmdline = p + strlen("fake=");
1246
1247	return 0;
1248}
1249early_param("numa", early_numa);
1250
1251#ifdef CONFIG_MEMORY_HOTPLUG
1252/*
1253 * Find the node associated with a hot added memory section for
1254 * memory represented in the device tree by the property
1255 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
1256 */
1257static int hot_add_drconf_scn_to_nid(unsigned long scn_addr)
1258{
1259	struct drmem_lmb *lmb;
1260	unsigned long lmb_size;
1261	int nid = NUMA_NO_NODE;
1262
1263	lmb_size = drmem_lmb_size();
1264
1265	for_each_drmem_lmb(lmb) {
1266		/* skip this block if it is reserved or not assigned to
1267		 * this partition */
1268		if ((lmb->flags & DRCONF_MEM_RESERVED)
1269		    || !(lmb->flags & DRCONF_MEM_ASSIGNED))
1270			continue;
1271
1272		if ((scn_addr < lmb->base_addr)
1273		    || (scn_addr >= (lmb->base_addr + lmb_size)))
1274			continue;
1275
1276		nid = of_drconf_to_nid_single(lmb);
1277		break;
1278	}
1279
1280	return nid;
1281}
1282
1283/*
1284 * Find the node associated with a hot added memory section for memory
1285 * represented in the device tree as a node (i.e. memory@XXXX) for
1286 * each memblock.
1287 */
1288static int hot_add_node_scn_to_nid(unsigned long scn_addr)
1289{
1290	struct device_node *memory;
1291	int nid = NUMA_NO_NODE;
1292
1293	for_each_node_by_type(memory, "memory") {
1294		int i = 0;
 
 
 
 
 
 
 
1295
1296		while (1) {
1297			struct resource res;
1298
1299			if (of_address_to_resource(memory, i++, &res))
1300				break;
 
1301
1302			if ((scn_addr < res.start) || (scn_addr > res.end))
1303				continue;
1304
1305			nid = of_node_to_nid_single(memory);
1306			break;
1307		}
1308
1309		if (nid >= 0)
1310			break;
1311	}
1312
1313	of_node_put(memory);
1314
1315	return nid;
1316}
1317
1318/*
1319 * Find the node associated with a hot added memory section.  Section
1320 * corresponds to a SPARSEMEM section, not an MEMBLOCK.  It is assumed that
1321 * sections are fully contained within a single MEMBLOCK.
1322 */
1323int hot_add_scn_to_nid(unsigned long scn_addr)
1324{
1325	struct device_node *memory = NULL;
1326	int nid;
1327
1328	if (!numa_enabled)
1329		return first_online_node;
1330
1331	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1332	if (memory) {
1333		nid = hot_add_drconf_scn_to_nid(scn_addr);
1334		of_node_put(memory);
1335	} else {
1336		nid = hot_add_node_scn_to_nid(scn_addr);
1337	}
1338
1339	if (nid < 0 || !node_possible(nid))
1340		nid = first_online_node;
1341
1342	return nid;
1343}
1344
1345static u64 hot_add_drconf_memory_max(void)
1346{
1347	struct device_node *memory = NULL;
1348	struct device_node *dn = NULL;
1349	const __be64 *lrdr = NULL;
1350
1351	dn = of_find_node_by_path("/rtas");
1352	if (dn) {
1353		lrdr = of_get_property(dn, "ibm,lrdr-capacity", NULL);
1354		of_node_put(dn);
1355		if (lrdr)
1356			return be64_to_cpup(lrdr);
1357	}
1358
1359	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1360	if (memory) {
1361		of_node_put(memory);
1362		return drmem_lmb_memory_max();
1363	}
1364	return 0;
1365}
1366
1367/*
1368 * memory_hotplug_max - return max address of memory that may be added
1369 *
1370 * This is currently only used on systems that support drconfig memory
1371 * hotplug.
1372 */
1373u64 memory_hotplug_max(void)
1374{
1375        return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
1376}
1377#endif /* CONFIG_MEMORY_HOTPLUG */
1378
1379/* Virtual Processor Home Node (VPHN) support */
1380#ifdef CONFIG_PPC_SPLPAR
1381static int topology_inited;
1382
1383/*
1384 * Retrieve the new associativity information for a virtual processor's
1385 * home node.
1386 */
1387static long vphn_get_associativity(unsigned long cpu,
1388					__be32 *associativity)
1389{
1390	long rc;
1391
1392	rc = hcall_vphn(get_hard_smp_processor_id(cpu),
1393				VPHN_FLAG_VCPU, associativity);
1394
1395	switch (rc) {
1396	case H_SUCCESS:
1397		pr_debug("VPHN hcall succeeded. Reset polling...\n");
1398		goto out;
1399
1400	case H_FUNCTION:
1401		pr_err_ratelimited("VPHN unsupported. Disabling polling...\n");
1402		break;
1403	case H_HARDWARE:
1404		pr_err_ratelimited("hcall_vphn() experienced a hardware fault "
1405			"preventing VPHN. Disabling polling...\n");
1406		break;
1407	case H_PARAMETER:
1408		pr_err_ratelimited("hcall_vphn() was passed an invalid parameter. "
1409			"Disabling polling...\n");
1410		break;
1411	default:
1412		pr_err_ratelimited("hcall_vphn() returned %ld. Disabling polling...\n"
1413			, rc);
1414		break;
1415	}
1416out:
1417	return rc;
1418}
1419
1420void find_and_update_cpu_nid(int cpu)
1421{
1422	__be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
1423	int new_nid;
1424
1425	/* Use associativity from first thread for all siblings */
1426	if (vphn_get_associativity(cpu, associativity))
1427		return;
1428
1429	/* Do not have previous associativity, so find it now. */
1430	new_nid = associativity_to_nid(associativity);
1431
1432	if (new_nid < 0 || !node_possible(new_nid))
1433		new_nid = first_online_node;
1434	else
1435		// Associate node <-> cpu, so cpu_up() calls
1436		// try_online_node() on the right node.
1437		set_cpu_numa_node(cpu, new_nid);
1438
1439	pr_debug("%s:%d cpu %d nid %d\n", __func__, __LINE__, cpu, new_nid);
1440}
1441
1442int cpu_to_coregroup_id(int cpu)
1443{
1444	__be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
1445	int index;
1446
1447	if (cpu < 0 || cpu > nr_cpu_ids)
1448		return -1;
1449
1450	if (!coregroup_enabled)
1451		goto out;
1452
1453	if (!firmware_has_feature(FW_FEATURE_VPHN))
1454		goto out;
1455
1456	if (vphn_get_associativity(cpu, associativity))
1457		goto out;
1458
1459	index = of_read_number(associativity, 1);
1460	if (index > primary_domain_index + 1)
1461		return of_read_number(&associativity[index - 1], 1);
1462
1463out:
1464	return cpu_to_core_id(cpu);
1465}
1466
1467static int topology_update_init(void)
1468{
1469	topology_inited = 1;
1470	return 0;
1471}
1472device_initcall(topology_update_init);
1473#endif /* CONFIG_PPC_SPLPAR */
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * pSeries NUMA support
   4 *
   5 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
   6 */
   7#define pr_fmt(fmt) "numa: " fmt
   8
   9#include <linux/threads.h>
  10#include <linux/memblock.h>
  11#include <linux/init.h>
  12#include <linux/mm.h>
  13#include <linux/mmzone.h>
  14#include <linux/export.h>
  15#include <linux/nodemask.h>
  16#include <linux/cpu.h>
  17#include <linux/notifier.h>
  18#include <linux/of.h>
 
  19#include <linux/pfn.h>
  20#include <linux/cpuset.h>
  21#include <linux/node.h>
  22#include <linux/stop_machine.h>
  23#include <linux/proc_fs.h>
  24#include <linux/seq_file.h>
  25#include <linux/uaccess.h>
  26#include <linux/slab.h>
  27#include <asm/cputhreads.h>
  28#include <asm/sparsemem.h>
  29#include <asm/smp.h>
  30#include <asm/topology.h>
  31#include <asm/firmware.h>
  32#include <asm/paca.h>
  33#include <asm/hvcall.h>
  34#include <asm/setup.h>
  35#include <asm/vdso.h>
 
  36#include <asm/drmem.h>
  37
  38static int numa_enabled = 1;
  39
  40static char *cmdline __initdata;
  41
  42int numa_cpu_lookup_table[NR_CPUS];
  43cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
  44struct pglist_data *node_data[MAX_NUMNODES];
  45
  46EXPORT_SYMBOL(numa_cpu_lookup_table);
  47EXPORT_SYMBOL(node_to_cpumask_map);
  48EXPORT_SYMBOL(node_data);
  49
  50static int primary_domain_index;
  51static int n_mem_addr_cells, n_mem_size_cells;
  52
  53#define FORM0_AFFINITY 0
  54#define FORM1_AFFINITY 1
  55#define FORM2_AFFINITY 2
  56static int affinity_form;
  57
  58#define MAX_DISTANCE_REF_POINTS 4
  59static int distance_ref_points_depth;
  60static const __be32 *distance_ref_points;
  61static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
  62static int numa_distance_table[MAX_NUMNODES][MAX_NUMNODES] = {
  63	[0 ... MAX_NUMNODES - 1] = { [0 ... MAX_NUMNODES - 1] = -1 }
  64};
  65static int numa_id_index_table[MAX_NUMNODES] = { [0 ... MAX_NUMNODES - 1] = NUMA_NO_NODE };
  66
  67/*
  68 * Allocate node_to_cpumask_map based on number of available nodes
  69 * Requires node_possible_map to be valid.
  70 *
  71 * Note: cpumask_of_node() is not valid until after this is done.
  72 */
  73static void __init setup_node_to_cpumask_map(void)
  74{
  75	unsigned int node;
  76
  77	/* setup nr_node_ids if not done yet */
  78	if (nr_node_ids == MAX_NUMNODES)
  79		setup_nr_node_ids();
  80
  81	/* allocate the map */
  82	for_each_node(node)
  83		alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
  84
  85	/* cpumask_of_node() will now work */
  86	pr_debug("Node to cpumask map for %u nodes\n", nr_node_ids);
  87}
  88
  89static int __init fake_numa_create_new_node(unsigned long end_pfn,
  90						unsigned int *nid)
  91{
  92	unsigned long long mem;
  93	char *p = cmdline;
  94	static unsigned int fake_nid;
  95	static unsigned long long curr_boundary;
  96
  97	/*
  98	 * Modify node id, iff we started creating NUMA nodes
  99	 * We want to continue from where we left of the last time
 100	 */
 101	if (fake_nid)
 102		*nid = fake_nid;
 103	/*
 104	 * In case there are no more arguments to parse, the
 105	 * node_id should be the same as the last fake node id
 106	 * (we've handled this above).
 107	 */
 108	if (!p)
 109		return 0;
 110
 111	mem = memparse(p, &p);
 112	if (!mem)
 113		return 0;
 114
 115	if (mem < curr_boundary)
 116		return 0;
 117
 118	curr_boundary = mem;
 119
 120	if ((end_pfn << PAGE_SHIFT) > mem) {
 121		/*
 122		 * Skip commas and spaces
 123		 */
 124		while (*p == ',' || *p == ' ' || *p == '\t')
 125			p++;
 126
 127		cmdline = p;
 128		fake_nid++;
 129		*nid = fake_nid;
 130		pr_debug("created new fake_node with id %d\n", fake_nid);
 131		return 1;
 132	}
 133	return 0;
 134}
 135
 136static void __init reset_numa_cpu_lookup_table(void)
 137{
 138	unsigned int cpu;
 139
 140	for_each_possible_cpu(cpu)
 141		numa_cpu_lookup_table[cpu] = -1;
 142}
 143
 144void map_cpu_to_node(int cpu, int node)
 145{
 146	update_numa_cpu_lookup_table(cpu, node);
 147
 148	if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node]))) {
 149		pr_debug("adding cpu %d to node %d\n", cpu, node);
 150		cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
 151	}
 152}
 153
 154#if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
 155void unmap_cpu_from_node(unsigned long cpu)
 156{
 157	int node = numa_cpu_lookup_table[cpu];
 158
 159	if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
 160		cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
 161		pr_debug("removing cpu %lu from node %d\n", cpu, node);
 162	} else {
 163		pr_warn("Warning: cpu %lu not found in node %d\n", cpu, node);
 164	}
 165}
 166#endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
 167
 168static int __associativity_to_nid(const __be32 *associativity,
 169				  int max_array_sz)
 170{
 171	int nid;
 172	/*
 173	 * primary_domain_index is 1 based array index.
 174	 */
 175	int index = primary_domain_index  - 1;
 176
 177	if (!numa_enabled || index >= max_array_sz)
 178		return NUMA_NO_NODE;
 179
 180	nid = of_read_number(&associativity[index], 1);
 181
 182	/* POWER4 LPAR uses 0xffff as invalid node */
 183	if (nid == 0xffff || nid >= nr_node_ids)
 184		nid = NUMA_NO_NODE;
 185	return nid;
 186}
 187/*
 188 * Returns nid in the range [0..nr_node_ids], or -1 if no useful NUMA
 189 * info is found.
 190 */
 191static int associativity_to_nid(const __be32 *associativity)
 192{
 193	int array_sz = of_read_number(associativity, 1);
 194
 195	/* Skip the first element in the associativity array */
 196	return __associativity_to_nid((associativity + 1), array_sz);
 197}
 198
 199static int __cpu_form2_relative_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc)
 200{
 201	int dist;
 202	int node1, node2;
 203
 204	node1 = associativity_to_nid(cpu1_assoc);
 205	node2 = associativity_to_nid(cpu2_assoc);
 206
 207	dist = numa_distance_table[node1][node2];
 208	if (dist <= LOCAL_DISTANCE)
 209		return 0;
 210	else if (dist <= REMOTE_DISTANCE)
 211		return 1;
 212	else
 213		return 2;
 214}
 215
 216static int __cpu_form1_relative_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc)
 217{
 218	int dist = 0;
 219
 220	int i, index;
 221
 222	for (i = 0; i < distance_ref_points_depth; i++) {
 223		index = be32_to_cpu(distance_ref_points[i]);
 224		if (cpu1_assoc[index] == cpu2_assoc[index])
 225			break;
 226		dist++;
 227	}
 228
 229	return dist;
 230}
 231
 232int cpu_relative_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc)
 233{
 234	/* We should not get called with FORM0 */
 235	VM_WARN_ON(affinity_form == FORM0_AFFINITY);
 236	if (affinity_form == FORM1_AFFINITY)
 237		return __cpu_form1_relative_distance(cpu1_assoc, cpu2_assoc);
 238	return __cpu_form2_relative_distance(cpu1_assoc, cpu2_assoc);
 239}
 240
 241/* must hold reference to node during call */
 242static const __be32 *of_get_associativity(struct device_node *dev)
 243{
 244	return of_get_property(dev, "ibm,associativity", NULL);
 245}
 246
 247int __node_distance(int a, int b)
 248{
 249	int i;
 250	int distance = LOCAL_DISTANCE;
 251
 252	if (affinity_form == FORM2_AFFINITY)
 253		return numa_distance_table[a][b];
 254	else if (affinity_form == FORM0_AFFINITY)
 255		return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
 256
 257	for (i = 0; i < distance_ref_points_depth; i++) {
 258		if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
 259			break;
 260
 261		/* Double the distance for each NUMA level */
 262		distance *= 2;
 263	}
 264
 265	return distance;
 266}
 267EXPORT_SYMBOL(__node_distance);
 268
 269/* Returns the nid associated with the given device tree node,
 270 * or -1 if not found.
 271 */
 272static int of_node_to_nid_single(struct device_node *device)
 273{
 274	int nid = NUMA_NO_NODE;
 275	const __be32 *tmp;
 276
 277	tmp = of_get_associativity(device);
 278	if (tmp)
 279		nid = associativity_to_nid(tmp);
 280	return nid;
 281}
 282
 283/* Walk the device tree upwards, looking for an associativity id */
 284int of_node_to_nid(struct device_node *device)
 285{
 286	int nid = NUMA_NO_NODE;
 287
 288	of_node_get(device);
 289	while (device) {
 290		nid = of_node_to_nid_single(device);
 291		if (nid != -1)
 292			break;
 293
 294		device = of_get_next_parent(device);
 295	}
 296	of_node_put(device);
 297
 298	return nid;
 299}
 300EXPORT_SYMBOL(of_node_to_nid);
 301
 302static void __initialize_form1_numa_distance(const __be32 *associativity,
 303					     int max_array_sz)
 304{
 305	int i, nid;
 306
 307	if (affinity_form != FORM1_AFFINITY)
 308		return;
 309
 310	nid = __associativity_to_nid(associativity, max_array_sz);
 311	if (nid != NUMA_NO_NODE) {
 312		for (i = 0; i < distance_ref_points_depth; i++) {
 313			const __be32 *entry;
 314			int index = be32_to_cpu(distance_ref_points[i]) - 1;
 315
 316			/*
 317			 * broken hierarchy, return with broken distance table
 318			 */
 319			if (WARN(index >= max_array_sz, "Broken ibm,associativity property"))
 320				return;
 321
 322			entry = &associativity[index];
 323			distance_lookup_table[nid][i] = of_read_number(entry, 1);
 324		}
 325	}
 326}
 327
 328static void initialize_form1_numa_distance(const __be32 *associativity)
 329{
 330	int array_sz;
 331
 332	array_sz = of_read_number(associativity, 1);
 333	/* Skip the first element in the associativity array */
 334	__initialize_form1_numa_distance(associativity + 1, array_sz);
 335}
 336
 337/*
 338 * Used to update distance information w.r.t newly added node.
 339 */
 340void update_numa_distance(struct device_node *node)
 341{
 342	int nid;
 343
 344	if (affinity_form == FORM0_AFFINITY)
 345		return;
 346	else if (affinity_form == FORM1_AFFINITY) {
 347		const __be32 *associativity;
 348
 349		associativity = of_get_associativity(node);
 350		if (!associativity)
 351			return;
 352
 353		initialize_form1_numa_distance(associativity);
 354		return;
 355	}
 356
 357	/* FORM2 affinity  */
 358	nid = of_node_to_nid_single(node);
 359	if (nid == NUMA_NO_NODE)
 360		return;
 361
 362	/*
 363	 * With FORM2 we expect NUMA distance of all possible NUMA
 364	 * nodes to be provided during boot.
 365	 */
 366	WARN(numa_distance_table[nid][nid] == -1,
 367	     "NUMA distance details for node %d not provided\n", nid);
 368}
 
 369
 370/*
 371 * ibm,numa-lookup-index-table= {N, domainid1, domainid2, ..... domainidN}
 372 * ibm,numa-distance-table = { N, 1, 2, 4, 5, 1, 6, .... N elements}
 373 */
 374static void __init initialize_form2_numa_distance_lookup_table(void)
 375{
 376	int i, j;
 377	struct device_node *root;
 378	const __u8 *form2_distances;
 379	const __be32 *numa_lookup_index;
 380	int form2_distances_length;
 381	int max_numa_index, distance_index;
 382
 383	if (firmware_has_feature(FW_FEATURE_OPAL))
 384		root = of_find_node_by_path("/ibm,opal");
 385	else
 386		root = of_find_node_by_path("/rtas");
 387	if (!root)
 388		root = of_find_node_by_path("/");
 389
 390	numa_lookup_index = of_get_property(root, "ibm,numa-lookup-index-table", NULL);
 391	max_numa_index = of_read_number(&numa_lookup_index[0], 1);
 392
 393	/* first element of the array is the size and is encode-int */
 394	form2_distances = of_get_property(root, "ibm,numa-distance-table", NULL);
 395	form2_distances_length = of_read_number((const __be32 *)&form2_distances[0], 1);
 396	/* Skip the size which is encoded int */
 397	form2_distances += sizeof(__be32);
 398
 399	pr_debug("form2_distances_len = %d, numa_dist_indexes_len = %d\n",
 400		 form2_distances_length, max_numa_index);
 401
 402	for (i = 0; i < max_numa_index; i++)
 403		/* +1 skip the max_numa_index in the property */
 404		numa_id_index_table[i] = of_read_number(&numa_lookup_index[i + 1], 1);
 405
 406
 407	if (form2_distances_length != max_numa_index * max_numa_index) {
 408		WARN(1, "Wrong NUMA distance information\n");
 409		form2_distances = NULL; // don't use it
 410	}
 411	distance_index = 0;
 412	for (i = 0;  i < max_numa_index; i++) {
 413		for (j = 0; j < max_numa_index; j++) {
 414			int nodeA = numa_id_index_table[i];
 415			int nodeB = numa_id_index_table[j];
 416			int dist;
 417
 418			if (form2_distances)
 419				dist = form2_distances[distance_index++];
 420			else if (nodeA == nodeB)
 421				dist = LOCAL_DISTANCE;
 422			else
 423				dist = REMOTE_DISTANCE;
 424			numa_distance_table[nodeA][nodeB] = dist;
 425			pr_debug("dist[%d][%d]=%d ", nodeA, nodeB, dist);
 426		}
 427	}
 428
 429	of_node_put(root);
 430}
 431
 432static int __init find_primary_domain_index(void)
 433{
 434	int index;
 435	struct device_node *root;
 436
 437	/*
 438	 * Check for which form of affinity.
 439	 */
 440	if (firmware_has_feature(FW_FEATURE_OPAL)) {
 441		affinity_form = FORM1_AFFINITY;
 442	} else if (firmware_has_feature(FW_FEATURE_FORM2_AFFINITY)) {
 443		pr_debug("Using form 2 affinity\n");
 444		affinity_form = FORM2_AFFINITY;
 445	} else if (firmware_has_feature(FW_FEATURE_FORM1_AFFINITY)) {
 446		pr_debug("Using form 1 affinity\n");
 447		affinity_form = FORM1_AFFINITY;
 448	} else
 449		affinity_form = FORM0_AFFINITY;
 450
 451	if (firmware_has_feature(FW_FEATURE_OPAL))
 452		root = of_find_node_by_path("/ibm,opal");
 453	else
 454		root = of_find_node_by_path("/rtas");
 455	if (!root)
 456		root = of_find_node_by_path("/");
 457
 458	/*
 459	 * This property is a set of 32-bit integers, each representing
 460	 * an index into the ibm,associativity nodes.
 461	 *
 462	 * With form 0 affinity the first integer is for an SMP configuration
 463	 * (should be all 0's) and the second is for a normal NUMA
 464	 * configuration. We have only one level of NUMA.
 465	 *
 466	 * With form 1 affinity the first integer is the most significant
 467	 * NUMA boundary and the following are progressively less significant
 468	 * boundaries. There can be more than one level of NUMA.
 469	 */
 470	distance_ref_points = of_get_property(root,
 471					"ibm,associativity-reference-points",
 472					&distance_ref_points_depth);
 473
 474	if (!distance_ref_points) {
 475		pr_debug("ibm,associativity-reference-points not found.\n");
 476		goto err;
 477	}
 478
 479	distance_ref_points_depth /= sizeof(int);
 480	if (affinity_form == FORM0_AFFINITY) {
 481		if (distance_ref_points_depth < 2) {
 482			pr_warn("short ibm,associativity-reference-points\n");
 483			goto err;
 484		}
 485
 486		index = of_read_number(&distance_ref_points[1], 1);
 487	} else {
 488		/*
 489		 * Both FORM1 and FORM2 affinity find the primary domain details
 490		 * at the same offset.
 491		 */
 492		index = of_read_number(distance_ref_points, 1);
 493	}
 494	/*
 495	 * Warn and cap if the hardware supports more than
 496	 * MAX_DISTANCE_REF_POINTS domains.
 497	 */
 498	if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
 499		pr_warn("distance array capped at %d entries\n",
 500			MAX_DISTANCE_REF_POINTS);
 501		distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
 502	}
 503
 504	of_node_put(root);
 505	return index;
 506
 507err:
 508	of_node_put(root);
 509	return -1;
 510}
 511
 512static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
 513{
 514	struct device_node *memory = NULL;
 515
 516	memory = of_find_node_by_type(memory, "memory");
 517	if (!memory)
 518		panic("numa.c: No memory nodes found!");
 519
 520	*n_addr_cells = of_n_addr_cells(memory);
 521	*n_size_cells = of_n_size_cells(memory);
 522	of_node_put(memory);
 523}
 524
 525static unsigned long read_n_cells(int n, const __be32 **buf)
 526{
 527	unsigned long result = 0;
 528
 529	while (n--) {
 530		result = (result << 32) | of_read_number(*buf, 1);
 531		(*buf)++;
 532	}
 533	return result;
 534}
 535
 536struct assoc_arrays {
 537	u32	n_arrays;
 538	u32	array_sz;
 539	const __be32 *arrays;
 540};
 541
 542/*
 543 * Retrieve and validate the list of associativity arrays for drconf
 544 * memory from the ibm,associativity-lookup-arrays property of the
 545 * device tree..
 546 *
 547 * The layout of the ibm,associativity-lookup-arrays property is a number N
 548 * indicating the number of associativity arrays, followed by a number M
 549 * indicating the size of each associativity array, followed by a list
 550 * of N associativity arrays.
 551 */
 552static int of_get_assoc_arrays(struct assoc_arrays *aa)
 553{
 554	struct device_node *memory;
 555	const __be32 *prop;
 556	u32 len;
 557
 558	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
 559	if (!memory)
 560		return -1;
 561
 562	prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
 563	if (!prop || len < 2 * sizeof(unsigned int)) {
 564		of_node_put(memory);
 565		return -1;
 566	}
 567
 568	aa->n_arrays = of_read_number(prop++, 1);
 569	aa->array_sz = of_read_number(prop++, 1);
 570
 571	of_node_put(memory);
 572
 573	/* Now that we know the number of arrays and size of each array,
 574	 * revalidate the size of the property read in.
 575	 */
 576	if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
 577		return -1;
 578
 579	aa->arrays = prop;
 580	return 0;
 581}
 582
 583static int __init get_nid_and_numa_distance(struct drmem_lmb *lmb)
 584{
 585	struct assoc_arrays aa = { .arrays = NULL };
 586	int default_nid = NUMA_NO_NODE;
 587	int nid = default_nid;
 588	int rc, index;
 589
 590	if ((primary_domain_index < 0) || !numa_enabled)
 591		return default_nid;
 592
 593	rc = of_get_assoc_arrays(&aa);
 594	if (rc)
 595		return default_nid;
 596
 597	if (primary_domain_index <= aa.array_sz &&
 598	    !(lmb->flags & DRCONF_MEM_AI_INVALID) && lmb->aa_index < aa.n_arrays) {
 599		const __be32 *associativity;
 600
 601		index = lmb->aa_index * aa.array_sz;
 602		associativity = &aa.arrays[index];
 603		nid = __associativity_to_nid(associativity, aa.array_sz);
 604		if (nid > 0 && affinity_form == FORM1_AFFINITY) {
 605			/*
 606			 * lookup array associativity entries have
 607			 * no length of the array as the first element.
 608			 */
 609			__initialize_form1_numa_distance(associativity, aa.array_sz);
 610		}
 611	}
 612	return nid;
 613}
 614
 615/*
 616 * This is like of_node_to_nid_single() for memory represented in the
 617 * ibm,dynamic-reconfiguration-memory node.
 618 */
 619int of_drconf_to_nid_single(struct drmem_lmb *lmb)
 620{
 621	struct assoc_arrays aa = { .arrays = NULL };
 622	int default_nid = NUMA_NO_NODE;
 623	int nid = default_nid;
 624	int rc, index;
 625
 626	if ((primary_domain_index < 0) || !numa_enabled)
 627		return default_nid;
 628
 629	rc = of_get_assoc_arrays(&aa);
 630	if (rc)
 631		return default_nid;
 632
 633	if (primary_domain_index <= aa.array_sz &&
 634	    !(lmb->flags & DRCONF_MEM_AI_INVALID) && lmb->aa_index < aa.n_arrays) {
 635		const __be32 *associativity;
 636
 637		index = lmb->aa_index * aa.array_sz;
 638		associativity = &aa.arrays[index];
 639		nid = __associativity_to_nid(associativity, aa.array_sz);
 640	}
 641	return nid;
 642}
 643
 644#ifdef CONFIG_PPC_SPLPAR
 645
 646static int __vphn_get_associativity(long lcpu, __be32 *associativity)
 647{
 648	long rc, hwid;
 649
 650	/*
 651	 * On a shared lpar, device tree will not have node associativity.
 652	 * At this time lppaca, or its __old_status field may not be
 653	 * updated. Hence kernel cannot detect if its on a shared lpar. So
 654	 * request an explicit associativity irrespective of whether the
 655	 * lpar is shared or dedicated. Use the device tree property as a
 656	 * fallback. cpu_to_phys_id is only valid between
 657	 * smp_setup_cpu_maps() and smp_setup_pacas().
 658	 */
 659	if (firmware_has_feature(FW_FEATURE_VPHN)) {
 660		if (cpu_to_phys_id)
 661			hwid = cpu_to_phys_id[lcpu];
 662		else
 663			hwid = get_hard_smp_processor_id(lcpu);
 664
 665		rc = hcall_vphn(hwid, VPHN_FLAG_VCPU, associativity);
 666		if (rc == H_SUCCESS)
 667			return 0;
 668	}
 669
 670	return -1;
 671}
 672
 673static int vphn_get_nid(long lcpu)
 674{
 675	__be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
 676
 677
 678	if (!__vphn_get_associativity(lcpu, associativity))
 679		return associativity_to_nid(associativity);
 680
 681	return NUMA_NO_NODE;
 682
 683}
 684#else
 685
 686static int __vphn_get_associativity(long lcpu, __be32 *associativity)
 687{
 688	return -1;
 689}
 690
 691static int vphn_get_nid(long unused)
 692{
 693	return NUMA_NO_NODE;
 694}
 695#endif  /* CONFIG_PPC_SPLPAR */
 696
 697/*
 698 * Figure out to which domain a cpu belongs and stick it there.
 699 * Return the id of the domain used.
 700 */
 701static int numa_setup_cpu(unsigned long lcpu)
 702{
 703	struct device_node *cpu;
 704	int fcpu = cpu_first_thread_sibling(lcpu);
 705	int nid = NUMA_NO_NODE;
 706
 707	if (!cpu_present(lcpu)) {
 708		set_cpu_numa_node(lcpu, first_online_node);
 709		return first_online_node;
 710	}
 711
 712	/*
 713	 * If a valid cpu-to-node mapping is already available, use it
 714	 * directly instead of querying the firmware, since it represents
 715	 * the most recent mapping notified to us by the platform (eg: VPHN).
 716	 * Since cpu_to_node binding remains the same for all threads in the
 717	 * core. If a valid cpu-to-node mapping is already available, for
 718	 * the first thread in the core, use it.
 719	 */
 720	nid = numa_cpu_lookup_table[fcpu];
 721	if (nid >= 0) {
 722		map_cpu_to_node(lcpu, nid);
 723		return nid;
 724	}
 725
 726	nid = vphn_get_nid(lcpu);
 727	if (nid != NUMA_NO_NODE)
 728		goto out_present;
 729
 730	cpu = of_get_cpu_node(lcpu, NULL);
 731
 732	if (!cpu) {
 733		WARN_ON(1);
 734		if (cpu_present(lcpu))
 735			goto out_present;
 736		else
 737			goto out;
 738	}
 739
 740	nid = of_node_to_nid_single(cpu);
 741	of_node_put(cpu);
 742
 743out_present:
 744	if (nid < 0 || !node_possible(nid))
 745		nid = first_online_node;
 746
 747	/*
 748	 * Update for the first thread of the core. All threads of a core
 749	 * have to be part of the same node. This not only avoids querying
 750	 * for every other thread in the core, but always avoids a case
 751	 * where virtual node associativity change causes subsequent threads
 752	 * of a core to be associated with different nid. However if first
 753	 * thread is already online, expect it to have a valid mapping.
 754	 */
 755	if (fcpu != lcpu) {
 756		WARN_ON(cpu_online(fcpu));
 757		map_cpu_to_node(fcpu, nid);
 758	}
 759
 760	map_cpu_to_node(lcpu, nid);
 761out:
 762	return nid;
 763}
 764
 765static void verify_cpu_node_mapping(int cpu, int node)
 766{
 767	int base, sibling, i;
 768
 769	/* Verify that all the threads in the core belong to the same node */
 770	base = cpu_first_thread_sibling(cpu);
 771
 772	for (i = 0; i < threads_per_core; i++) {
 773		sibling = base + i;
 774
 775		if (sibling == cpu || cpu_is_offline(sibling))
 776			continue;
 777
 778		if (cpu_to_node(sibling) != node) {
 779			WARN(1, "CPU thread siblings %d and %d don't belong"
 780				" to the same node!\n", cpu, sibling);
 781			break;
 782		}
 783	}
 784}
 785
 786/* Must run before sched domains notifier. */
 787static int ppc_numa_cpu_prepare(unsigned int cpu)
 788{
 789	int nid;
 790
 791	nid = numa_setup_cpu(cpu);
 792	verify_cpu_node_mapping(cpu, nid);
 793	return 0;
 794}
 795
 796static int ppc_numa_cpu_dead(unsigned int cpu)
 797{
 798	return 0;
 799}
 800
 801/*
 802 * Check and possibly modify a memory region to enforce the memory limit.
 803 *
 804 * Returns the size the region should have to enforce the memory limit.
 805 * This will either be the original value of size, a truncated value,
 806 * or zero. If the returned value of size is 0 the region should be
 807 * discarded as it lies wholly above the memory limit.
 808 */
 809static unsigned long __init numa_enforce_memory_limit(unsigned long start,
 810						      unsigned long size)
 811{
 812	/*
 813	 * We use memblock_end_of_DRAM() in here instead of memory_limit because
 814	 * we've already adjusted it for the limit and it takes care of
 815	 * having memory holes below the limit.  Also, in the case of
 816	 * iommu_is_off, memory_limit is not set but is implicitly enforced.
 817	 */
 818
 819	if (start + size <= memblock_end_of_DRAM())
 820		return size;
 821
 822	if (start >= memblock_end_of_DRAM())
 823		return 0;
 824
 825	return memblock_end_of_DRAM() - start;
 826}
 827
 828/*
 829 * Reads the counter for a given entry in
 830 * linux,drconf-usable-memory property
 831 */
 832static inline int __init read_usm_ranges(const __be32 **usm)
 833{
 834	/*
 835	 * For each lmb in ibm,dynamic-memory a corresponding
 836	 * entry in linux,drconf-usable-memory property contains
 837	 * a counter followed by that many (base, size) duple.
 838	 * read the counter from linux,drconf-usable-memory
 839	 */
 840	return read_n_cells(n_mem_size_cells, usm);
 841}
 842
 843/*
 844 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
 845 * node.  This assumes n_mem_{addr,size}_cells have been set.
 846 */
 847static int __init numa_setup_drmem_lmb(struct drmem_lmb *lmb,
 848					const __be32 **usm,
 849					void *data)
 850{
 851	unsigned int ranges, is_kexec_kdump = 0;
 852	unsigned long base, size, sz;
 853	int nid;
 854
 855	/*
 856	 * Skip this block if the reserved bit is set in flags (0x80)
 857	 * or if the block is not assigned to this partition (0x8)
 858	 */
 859	if ((lmb->flags & DRCONF_MEM_RESERVED)
 860	    || !(lmb->flags & DRCONF_MEM_ASSIGNED))
 861		return 0;
 862
 863	if (*usm)
 864		is_kexec_kdump = 1;
 865
 866	base = lmb->base_addr;
 867	size = drmem_lmb_size();
 868	ranges = 1;
 869
 870	if (is_kexec_kdump) {
 871		ranges = read_usm_ranges(usm);
 872		if (!ranges) /* there are no (base, size) duple */
 873			return 0;
 874	}
 875
 876	do {
 877		if (is_kexec_kdump) {
 878			base = read_n_cells(n_mem_addr_cells, usm);
 879			size = read_n_cells(n_mem_size_cells, usm);
 880		}
 881
 882		nid = get_nid_and_numa_distance(lmb);
 883		fake_numa_create_new_node(((base + size) >> PAGE_SHIFT),
 884					  &nid);
 885		node_set_online(nid);
 886		sz = numa_enforce_memory_limit(base, size);
 887		if (sz)
 888			memblock_set_node(base, sz, &memblock.memory, nid);
 889	} while (--ranges);
 890
 891	return 0;
 892}
 893
 894static int __init parse_numa_properties(void)
 895{
 896	struct device_node *memory;
 897	int default_nid = 0;
 898	unsigned long i;
 899	const __be32 *associativity;
 900
 901	if (numa_enabled == 0) {
 902		pr_warn("disabled by user\n");
 903		return -1;
 904	}
 905
 906	primary_domain_index = find_primary_domain_index();
 907
 908	if (primary_domain_index < 0) {
 909		/*
 910		 * if we fail to parse primary_domain_index from device tree
 911		 * mark the numa disabled, boot with numa disabled.
 912		 */
 913		numa_enabled = false;
 914		return primary_domain_index;
 915	}
 916
 917	pr_debug("associativity depth for CPU/Memory: %d\n", primary_domain_index);
 918
 919	/*
 920	 * If it is FORM2 initialize the distance table here.
 921	 */
 922	if (affinity_form == FORM2_AFFINITY)
 923		initialize_form2_numa_distance_lookup_table();
 924
 925	/*
 926	 * Even though we connect cpus to numa domains later in SMP
 927	 * init, we need to know the node ids now. This is because
 928	 * each node to be onlined must have NODE_DATA etc backing it.
 929	 */
 930	for_each_present_cpu(i) {
 931		__be32 vphn_assoc[VPHN_ASSOC_BUFSIZE];
 932		struct device_node *cpu;
 933		int nid = NUMA_NO_NODE;
 934
 935		memset(vphn_assoc, 0, VPHN_ASSOC_BUFSIZE * sizeof(__be32));
 936
 937		if (__vphn_get_associativity(i, vphn_assoc) == 0) {
 938			nid = associativity_to_nid(vphn_assoc);
 939			initialize_form1_numa_distance(vphn_assoc);
 940		} else {
 941
 942			/*
 943			 * Don't fall back to default_nid yet -- we will plug
 944			 * cpus into nodes once the memory scan has discovered
 945			 * the topology.
 946			 */
 947			cpu = of_get_cpu_node(i, NULL);
 948			BUG_ON(!cpu);
 949
 950			associativity = of_get_associativity(cpu);
 951			if (associativity) {
 952				nid = associativity_to_nid(associativity);
 953				initialize_form1_numa_distance(associativity);
 954			}
 955			of_node_put(cpu);
 956		}
 957
 958		/* node_set_online() is an UB if 'nid' is negative */
 959		if (likely(nid >= 0))
 960			node_set_online(nid);
 961	}
 962
 963	get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
 964
 965	for_each_node_by_type(memory, "memory") {
 966		unsigned long start;
 967		unsigned long size;
 968		int nid;
 969		int ranges;
 970		const __be32 *memcell_buf;
 971		unsigned int len;
 972
 973		memcell_buf = of_get_property(memory,
 974			"linux,usable-memory", &len);
 975		if (!memcell_buf || len <= 0)
 976			memcell_buf = of_get_property(memory, "reg", &len);
 977		if (!memcell_buf || len <= 0)
 978			continue;
 979
 980		/* ranges in cell */
 981		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
 982new_range:
 983		/* these are order-sensitive, and modify the buffer pointer */
 984		start = read_n_cells(n_mem_addr_cells, &memcell_buf);
 985		size = read_n_cells(n_mem_size_cells, &memcell_buf);
 986
 987		/*
 988		 * Assumption: either all memory nodes or none will
 989		 * have associativity properties.  If none, then
 990		 * everything goes to default_nid.
 991		 */
 992		associativity = of_get_associativity(memory);
 993		if (associativity) {
 994			nid = associativity_to_nid(associativity);
 995			initialize_form1_numa_distance(associativity);
 996		} else
 997			nid = default_nid;
 998
 999		fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
1000		node_set_online(nid);
1001
1002		size = numa_enforce_memory_limit(start, size);
1003		if (size)
1004			memblock_set_node(start, size, &memblock.memory, nid);
1005
1006		if (--ranges)
1007			goto new_range;
1008	}
1009
1010	/*
1011	 * Now do the same thing for each MEMBLOCK listed in the
1012	 * ibm,dynamic-memory property in the
1013	 * ibm,dynamic-reconfiguration-memory node.
1014	 */
1015	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1016	if (memory) {
1017		walk_drmem_lmbs(memory, NULL, numa_setup_drmem_lmb);
1018		of_node_put(memory);
1019	}
1020
1021	return 0;
1022}
1023
1024static void __init setup_nonnuma(void)
1025{
1026	unsigned long top_of_ram = memblock_end_of_DRAM();
1027	unsigned long total_ram = memblock_phys_mem_size();
1028	unsigned long start_pfn, end_pfn;
1029	unsigned int nid = 0;
1030	int i;
1031
1032	pr_debug("Top of RAM: 0x%lx, Total RAM: 0x%lx\n", top_of_ram, total_ram);
1033	pr_debug("Memory hole size: %ldMB\n", (top_of_ram - total_ram) >> 20);
1034
1035	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
1036		fake_numa_create_new_node(end_pfn, &nid);
1037		memblock_set_node(PFN_PHYS(start_pfn),
1038				  PFN_PHYS(end_pfn - start_pfn),
1039				  &memblock.memory, nid);
1040		node_set_online(nid);
1041	}
1042}
1043
1044void __init dump_numa_cpu_topology(void)
1045{
1046	unsigned int node;
1047	unsigned int cpu, count;
1048
1049	if (!numa_enabled)
1050		return;
1051
1052	for_each_online_node(node) {
1053		pr_info("Node %d CPUs:", node);
1054
1055		count = 0;
1056		/*
1057		 * If we used a CPU iterator here we would miss printing
1058		 * the holes in the cpumap.
1059		 */
1060		for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
1061			if (cpumask_test_cpu(cpu,
1062					node_to_cpumask_map[node])) {
1063				if (count == 0)
1064					pr_cont(" %u", cpu);
1065				++count;
1066			} else {
1067				if (count > 1)
1068					pr_cont("-%u", cpu - 1);
1069				count = 0;
1070			}
1071		}
1072
1073		if (count > 1)
1074			pr_cont("-%u", nr_cpu_ids - 1);
1075		pr_cont("\n");
1076	}
1077}
1078
1079/* Initialize NODE_DATA for a node on the local memory */
1080static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn)
1081{
1082	u64 spanned_pages = end_pfn - start_pfn;
1083	const size_t nd_size = roundup(sizeof(pg_data_t), SMP_CACHE_BYTES);
1084	u64 nd_pa;
1085	void *nd;
1086	int tnid;
1087
1088	nd_pa = memblock_phys_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid);
1089	if (!nd_pa)
1090		panic("Cannot allocate %zu bytes for node %d data\n",
1091		      nd_size, nid);
1092
1093	nd = __va(nd_pa);
1094
1095	/* report and initialize */
1096	pr_info("  NODE_DATA [mem %#010Lx-%#010Lx]\n",
1097		nd_pa, nd_pa + nd_size - 1);
1098	tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
1099	if (tnid != nid)
1100		pr_info("    NODE_DATA(%d) on node %d\n", nid, tnid);
1101
1102	node_data[nid] = nd;
1103	memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
1104	NODE_DATA(nid)->node_id = nid;
1105	NODE_DATA(nid)->node_start_pfn = start_pfn;
1106	NODE_DATA(nid)->node_spanned_pages = spanned_pages;
1107}
1108
1109static void __init find_possible_nodes(void)
1110{
1111	struct device_node *rtas;
1112	const __be32 *domains = NULL;
1113	int prop_length, max_nodes;
1114	u32 i;
1115
1116	if (!numa_enabled)
1117		return;
1118
1119	rtas = of_find_node_by_path("/rtas");
1120	if (!rtas)
1121		return;
1122
1123	/*
1124	 * ibm,current-associativity-domains is a fairly recent property. If
1125	 * it doesn't exist, then fallback on ibm,max-associativity-domains.
1126	 * Current denotes what the platform can support compared to max
1127	 * which denotes what the Hypervisor can support.
1128	 *
1129	 * If the LPAR is migratable, new nodes might be activated after a LPM,
1130	 * so we should consider the max number in that case.
1131	 */
1132	if (!of_get_property(of_root, "ibm,migratable-partition", NULL))
1133		domains = of_get_property(rtas,
1134					  "ibm,current-associativity-domains",
1135					  &prop_length);
1136	if (!domains) {
1137		domains = of_get_property(rtas, "ibm,max-associativity-domains",
1138					&prop_length);
1139		if (!domains)
1140			goto out;
1141	}
1142
1143	max_nodes = of_read_number(&domains[primary_domain_index], 1);
1144	pr_info("Partition configured for %d NUMA nodes.\n", max_nodes);
1145
1146	for (i = 0; i < max_nodes; i++) {
1147		if (!node_possible(i))
1148			node_set(i, node_possible_map);
1149	}
1150
1151	prop_length /= sizeof(int);
1152	if (prop_length > primary_domain_index + 2)
1153		coregroup_enabled = 1;
1154
1155out:
1156	of_node_put(rtas);
1157}
1158
1159void __init mem_topology_setup(void)
1160{
1161	int cpu;
1162
1163	max_low_pfn = max_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1164	min_low_pfn = MEMORY_START >> PAGE_SHIFT;
1165
1166	/*
1167	 * Linux/mm assumes node 0 to be online at boot. However this is not
1168	 * true on PowerPC, where node 0 is similar to any other node, it
1169	 * could be cpuless, memoryless node. So force node 0 to be offline
1170	 * for now. This will prevent cpuless, memoryless node 0 showing up
1171	 * unnecessarily as online. If a node has cpus or memory that need
1172	 * to be online, then node will anyway be marked online.
1173	 */
1174	node_set_offline(0);
1175
1176	if (parse_numa_properties())
1177		setup_nonnuma();
1178
1179	/*
1180	 * Modify the set of possible NUMA nodes to reflect information
1181	 * available about the set of online nodes, and the set of nodes
1182	 * that we expect to make use of for this platform's affinity
1183	 * calculations.
1184	 */
1185	nodes_and(node_possible_map, node_possible_map, node_online_map);
1186
1187	find_possible_nodes();
1188
1189	setup_node_to_cpumask_map();
1190
1191	reset_numa_cpu_lookup_table();
1192
1193	for_each_possible_cpu(cpu) {
1194		/*
1195		 * Powerpc with CONFIG_NUMA always used to have a node 0,
1196		 * even if it was memoryless or cpuless. For all cpus that
1197		 * are possible but not present, cpu_to_node() would point
1198		 * to node 0. To remove a cpuless, memoryless dummy node,
1199		 * powerpc need to make sure all possible but not present
1200		 * cpu_to_node are set to a proper node.
1201		 */
1202		numa_setup_cpu(cpu);
1203	}
1204}
1205
1206void __init initmem_init(void)
1207{
1208	int nid;
1209
1210	memblock_dump_all();
1211
1212	for_each_online_node(nid) {
1213		unsigned long start_pfn, end_pfn;
1214
1215		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1216		setup_node_data(nid, start_pfn, end_pfn);
1217	}
1218
1219	sparse_init();
1220
1221	/*
1222	 * We need the numa_cpu_lookup_table to be accurate for all CPUs,
1223	 * even before we online them, so that we can use cpu_to_{node,mem}
1224	 * early in boot, cf. smp_prepare_cpus().
1225	 * _nocalls() + manual invocation is used because cpuhp is not yet
1226	 * initialized for the boot CPU.
1227	 */
1228	cpuhp_setup_state_nocalls(CPUHP_POWER_NUMA_PREPARE, "powerpc/numa:prepare",
1229				  ppc_numa_cpu_prepare, ppc_numa_cpu_dead);
1230}
1231
1232static int __init early_numa(char *p)
1233{
1234	if (!p)
1235		return 0;
1236
1237	if (strstr(p, "off"))
1238		numa_enabled = 0;
1239
1240	p = strstr(p, "fake=");
1241	if (p)
1242		cmdline = p + strlen("fake=");
1243
1244	return 0;
1245}
1246early_param("numa", early_numa);
1247
1248#ifdef CONFIG_MEMORY_HOTPLUG
1249/*
1250 * Find the node associated with a hot added memory section for
1251 * memory represented in the device tree by the property
1252 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
1253 */
1254static int hot_add_drconf_scn_to_nid(unsigned long scn_addr)
1255{
1256	struct drmem_lmb *lmb;
1257	unsigned long lmb_size;
1258	int nid = NUMA_NO_NODE;
1259
1260	lmb_size = drmem_lmb_size();
1261
1262	for_each_drmem_lmb(lmb) {
1263		/* skip this block if it is reserved or not assigned to
1264		 * this partition */
1265		if ((lmb->flags & DRCONF_MEM_RESERVED)
1266		    || !(lmb->flags & DRCONF_MEM_ASSIGNED))
1267			continue;
1268
1269		if ((scn_addr < lmb->base_addr)
1270		    || (scn_addr >= (lmb->base_addr + lmb_size)))
1271			continue;
1272
1273		nid = of_drconf_to_nid_single(lmb);
1274		break;
1275	}
1276
1277	return nid;
1278}
1279
1280/*
1281 * Find the node associated with a hot added memory section for memory
1282 * represented in the device tree as a node (i.e. memory@XXXX) for
1283 * each memblock.
1284 */
1285static int hot_add_node_scn_to_nid(unsigned long scn_addr)
1286{
1287	struct device_node *memory;
1288	int nid = NUMA_NO_NODE;
1289
1290	for_each_node_by_type(memory, "memory") {
1291		unsigned long start, size;
1292		int ranges;
1293		const __be32 *memcell_buf;
1294		unsigned int len;
1295
1296		memcell_buf = of_get_property(memory, "reg", &len);
1297		if (!memcell_buf || len <= 0)
1298			continue;
1299
1300		/* ranges in cell */
1301		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1302
1303		while (ranges--) {
1304			start = read_n_cells(n_mem_addr_cells, &memcell_buf);
1305			size = read_n_cells(n_mem_size_cells, &memcell_buf);
1306
1307			if ((scn_addr < start) || (scn_addr >= (start + size)))
1308				continue;
1309
1310			nid = of_node_to_nid_single(memory);
1311			break;
1312		}
1313
1314		if (nid >= 0)
1315			break;
1316	}
1317
1318	of_node_put(memory);
1319
1320	return nid;
1321}
1322
1323/*
1324 * Find the node associated with a hot added memory section.  Section
1325 * corresponds to a SPARSEMEM section, not an MEMBLOCK.  It is assumed that
1326 * sections are fully contained within a single MEMBLOCK.
1327 */
1328int hot_add_scn_to_nid(unsigned long scn_addr)
1329{
1330	struct device_node *memory = NULL;
1331	int nid;
1332
1333	if (!numa_enabled)
1334		return first_online_node;
1335
1336	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1337	if (memory) {
1338		nid = hot_add_drconf_scn_to_nid(scn_addr);
1339		of_node_put(memory);
1340	} else {
1341		nid = hot_add_node_scn_to_nid(scn_addr);
1342	}
1343
1344	if (nid < 0 || !node_possible(nid))
1345		nid = first_online_node;
1346
1347	return nid;
1348}
1349
1350static u64 hot_add_drconf_memory_max(void)
1351{
1352	struct device_node *memory = NULL;
1353	struct device_node *dn = NULL;
1354	const __be64 *lrdr = NULL;
1355
1356	dn = of_find_node_by_path("/rtas");
1357	if (dn) {
1358		lrdr = of_get_property(dn, "ibm,lrdr-capacity", NULL);
1359		of_node_put(dn);
1360		if (lrdr)
1361			return be64_to_cpup(lrdr);
1362	}
1363
1364	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1365	if (memory) {
1366		of_node_put(memory);
1367		return drmem_lmb_memory_max();
1368	}
1369	return 0;
1370}
1371
1372/*
1373 * memory_hotplug_max - return max address of memory that may be added
1374 *
1375 * This is currently only used on systems that support drconfig memory
1376 * hotplug.
1377 */
1378u64 memory_hotplug_max(void)
1379{
1380        return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
1381}
1382#endif /* CONFIG_MEMORY_HOTPLUG */
1383
1384/* Virtual Processor Home Node (VPHN) support */
1385#ifdef CONFIG_PPC_SPLPAR
1386static int topology_inited;
1387
1388/*
1389 * Retrieve the new associativity information for a virtual processor's
1390 * home node.
1391 */
1392static long vphn_get_associativity(unsigned long cpu,
1393					__be32 *associativity)
1394{
1395	long rc;
1396
1397	rc = hcall_vphn(get_hard_smp_processor_id(cpu),
1398				VPHN_FLAG_VCPU, associativity);
1399
1400	switch (rc) {
1401	case H_SUCCESS:
1402		pr_debug("VPHN hcall succeeded. Reset polling...\n");
1403		goto out;
1404
1405	case H_FUNCTION:
1406		pr_err_ratelimited("VPHN unsupported. Disabling polling...\n");
1407		break;
1408	case H_HARDWARE:
1409		pr_err_ratelimited("hcall_vphn() experienced a hardware fault "
1410			"preventing VPHN. Disabling polling...\n");
1411		break;
1412	case H_PARAMETER:
1413		pr_err_ratelimited("hcall_vphn() was passed an invalid parameter. "
1414			"Disabling polling...\n");
1415		break;
1416	default:
1417		pr_err_ratelimited("hcall_vphn() returned %ld. Disabling polling...\n"
1418			, rc);
1419		break;
1420	}
1421out:
1422	return rc;
1423}
1424
1425void find_and_update_cpu_nid(int cpu)
1426{
1427	__be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
1428	int new_nid;
1429
1430	/* Use associativity from first thread for all siblings */
1431	if (vphn_get_associativity(cpu, associativity))
1432		return;
1433
1434	/* Do not have previous associativity, so find it now. */
1435	new_nid = associativity_to_nid(associativity);
1436
1437	if (new_nid < 0 || !node_possible(new_nid))
1438		new_nid = first_online_node;
1439	else
1440		// Associate node <-> cpu, so cpu_up() calls
1441		// try_online_node() on the right node.
1442		set_cpu_numa_node(cpu, new_nid);
1443
1444	pr_debug("%s:%d cpu %d nid %d\n", __func__, __LINE__, cpu, new_nid);
1445}
1446
1447int cpu_to_coregroup_id(int cpu)
1448{
1449	__be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
1450	int index;
1451
1452	if (cpu < 0 || cpu > nr_cpu_ids)
1453		return -1;
1454
1455	if (!coregroup_enabled)
1456		goto out;
1457
1458	if (!firmware_has_feature(FW_FEATURE_VPHN))
1459		goto out;
1460
1461	if (vphn_get_associativity(cpu, associativity))
1462		goto out;
1463
1464	index = of_read_number(associativity, 1);
1465	if (index > primary_domain_index + 1)
1466		return of_read_number(&associativity[index - 1], 1);
1467
1468out:
1469	return cpu_to_core_id(cpu);
1470}
1471
1472static int topology_update_init(void)
1473{
1474	topology_inited = 1;
1475	return 0;
1476}
1477device_initcall(topology_update_init);
1478#endif /* CONFIG_PPC_SPLPAR */