Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * pSeries NUMA support
   4 *
   5 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
 
 
 
 
 
   6 */
   7#define pr_fmt(fmt) "numa: " fmt
   8
   9#include <linux/threads.h>
  10#include <linux/memblock.h>
  11#include <linux/init.h>
  12#include <linux/mm.h>
  13#include <linux/mmzone.h>
  14#include <linux/export.h>
  15#include <linux/nodemask.h>
  16#include <linux/cpu.h>
  17#include <linux/notifier.h>
 
  18#include <linux/of.h>
  19#include <linux/of_address.h>
  20#include <linux/pfn.h>
  21#include <linux/cpuset.h>
  22#include <linux/node.h>
  23#include <linux/stop_machine.h>
  24#include <linux/proc_fs.h>
  25#include <linux/seq_file.h>
  26#include <linux/uaccess.h>
  27#include <linux/slab.h>
  28#include <asm/cputhreads.h>
  29#include <asm/sparsemem.h>
 
  30#include <asm/smp.h>
 
  31#include <asm/topology.h>
  32#include <asm/firmware.h>
  33#include <asm/paca.h>
  34#include <asm/hvcall.h>
  35#include <asm/setup.h>
  36#include <asm/vdso.h>
  37#include <asm/vphn.h>
  38#include <asm/drmem.h>
  39
  40static int numa_enabled = 1;
  41
  42static char *cmdline __initdata;
  43
 
 
 
  44int numa_cpu_lookup_table[NR_CPUS];
  45cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
  46struct pglist_data *node_data[MAX_NUMNODES];
  47
  48EXPORT_SYMBOL(numa_cpu_lookup_table);
  49EXPORT_SYMBOL(node_to_cpumask_map);
  50EXPORT_SYMBOL(node_data);
  51
  52static int primary_domain_index;
  53static int n_mem_addr_cells, n_mem_size_cells;
  54
  55#define FORM0_AFFINITY 0
  56#define FORM1_AFFINITY 1
  57#define FORM2_AFFINITY 2
  58static int affinity_form;
  59
  60#define MAX_DISTANCE_REF_POINTS 4
  61static int distance_ref_points_depth;
  62static const __be32 *distance_ref_points;
  63static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
  64static int numa_distance_table[MAX_NUMNODES][MAX_NUMNODES] = {
  65	[0 ... MAX_NUMNODES - 1] = { [0 ... MAX_NUMNODES - 1] = -1 }
  66};
  67static int numa_id_index_table[MAX_NUMNODES] = { [0 ... MAX_NUMNODES - 1] = NUMA_NO_NODE };
  68
  69/*
  70 * Allocate node_to_cpumask_map based on number of available nodes
  71 * Requires node_possible_map to be valid.
  72 *
  73 * Note: cpumask_of_node() is not valid until after this is done.
  74 */
  75static void __init setup_node_to_cpumask_map(void)
  76{
  77	unsigned int node;
  78
  79	/* setup nr_node_ids if not done yet */
  80	if (nr_node_ids == MAX_NUMNODES)
  81		setup_nr_node_ids();
  82
  83	/* allocate the map */
  84	for_each_node(node)
  85		alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
  86
  87	/* cpumask_of_node() will now work */
  88	pr_debug("Node to cpumask map for %u nodes\n", nr_node_ids);
  89}
  90
  91static int __init fake_numa_create_new_node(unsigned long end_pfn,
  92						unsigned int *nid)
  93{
  94	unsigned long long mem;
  95	char *p = cmdline;
  96	static unsigned int fake_nid;
  97	static unsigned long long curr_boundary;
  98
  99	/*
 100	 * Modify node id, iff we started creating NUMA nodes
 101	 * We want to continue from where we left of the last time
 102	 */
 103	if (fake_nid)
 104		*nid = fake_nid;
 105	/*
 106	 * In case there are no more arguments to parse, the
 107	 * node_id should be the same as the last fake node id
 108	 * (we've handled this above).
 109	 */
 110	if (!p)
 111		return 0;
 112
 113	mem = memparse(p, &p);
 114	if (!mem)
 115		return 0;
 116
 117	if (mem < curr_boundary)
 118		return 0;
 119
 120	curr_boundary = mem;
 121
 122	if ((end_pfn << PAGE_SHIFT) > mem) {
 123		/*
 124		 * Skip commas and spaces
 125		 */
 126		while (*p == ',' || *p == ' ' || *p == '\t')
 127			p++;
 128
 129		cmdline = p;
 130		fake_nid++;
 131		*nid = fake_nid;
 132		pr_debug("created new fake_node with id %d\n", fake_nid);
 133		return 1;
 134	}
 135	return 0;
 136}
 137
 138static void __init reset_numa_cpu_lookup_table(void)
 139{
 140	unsigned int cpu;
 141
 142	for_each_possible_cpu(cpu)
 143		numa_cpu_lookup_table[cpu] = -1;
 144}
 145
 146void map_cpu_to_node(int cpu, int node)
 147{
 148	update_numa_cpu_lookup_table(cpu, node);
 149
 150	if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node]))) {
 151		pr_debug("adding cpu %d to node %d\n", cpu, node);
 
 152		cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
 153	}
 154}
 155
 156#if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
 157void unmap_cpu_from_node(unsigned long cpu)
 158{
 159	int node = numa_cpu_lookup_table[cpu];
 160
 
 
 161	if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
 162		cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
 163		pr_debug("removing cpu %lu from node %d\n", cpu, node);
 164	} else {
 165		pr_warn("Warning: cpu %lu not found in node %d\n", cpu, node);
 
 166	}
 167}
 168#endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
 169
 170static int __associativity_to_nid(const __be32 *associativity,
 171				  int max_array_sz)
 172{
 173	int nid;
 174	/*
 175	 * primary_domain_index is 1 based array index.
 176	 */
 177	int index = primary_domain_index  - 1;
 178
 179	if (!numa_enabled || index >= max_array_sz)
 180		return NUMA_NO_NODE;
 181
 182	nid = of_read_number(&associativity[index], 1);
 183
 184	/* POWER4 LPAR uses 0xffff as invalid node */
 185	if (nid == 0xffff || nid >= nr_node_ids)
 186		nid = NUMA_NO_NODE;
 187	return nid;
 188}
 189/*
 190 * Returns nid in the range [0..nr_node_ids], or -1 if no useful NUMA
 191 * info is found.
 192 */
 193static int associativity_to_nid(const __be32 *associativity)
 194{
 195	int array_sz = of_read_number(associativity, 1);
 196
 197	/* Skip the first element in the associativity array */
 198	return __associativity_to_nid((associativity + 1), array_sz);
 199}
 200
 201static int __cpu_form2_relative_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc)
 202{
 203	int dist;
 204	int node1, node2;
 205
 206	node1 = associativity_to_nid(cpu1_assoc);
 207	node2 = associativity_to_nid(cpu2_assoc);
 208
 209	dist = numa_distance_table[node1][node2];
 210	if (dist <= LOCAL_DISTANCE)
 211		return 0;
 212	else if (dist <= REMOTE_DISTANCE)
 213		return 1;
 214	else
 215		return 2;
 216}
 217
 218static int __cpu_form1_relative_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc)
 219{
 220	int dist = 0;
 221
 222	int i, index;
 223
 224	for (i = 0; i < distance_ref_points_depth; i++) {
 225		index = be32_to_cpu(distance_ref_points[i]);
 226		if (cpu1_assoc[index] == cpu2_assoc[index])
 227			break;
 228		dist++;
 229	}
 230
 231	return dist;
 232}
 233
 234int cpu_relative_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc)
 235{
 236	/* We should not get called with FORM0 */
 237	VM_WARN_ON(affinity_form == FORM0_AFFINITY);
 238	if (affinity_form == FORM1_AFFINITY)
 239		return __cpu_form1_relative_distance(cpu1_assoc, cpu2_assoc);
 240	return __cpu_form2_relative_distance(cpu1_assoc, cpu2_assoc);
 241}
 242
 243/* must hold reference to node during call */
 244static const __be32 *of_get_associativity(struct device_node *dev)
 245{
 246	return of_get_property(dev, "ibm,associativity", NULL);
 247}
 248
 249int __node_distance(int a, int b)
 250{
 251	int i;
 252	int distance = LOCAL_DISTANCE;
 253
 254	if (affinity_form == FORM2_AFFINITY)
 255		return numa_distance_table[a][b];
 256	else if (affinity_form == FORM0_AFFINITY)
 257		return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
 258
 259	for (i = 0; i < distance_ref_points_depth; i++) {
 260		if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
 261			break;
 262
 263		/* Double the distance for each NUMA level */
 264		distance *= 2;
 265	}
 266
 267	return distance;
 268}
 269EXPORT_SYMBOL(__node_distance);
 270
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 271/* Returns the nid associated with the given device tree node,
 272 * or -1 if not found.
 273 */
 274static int of_node_to_nid_single(struct device_node *device)
 275{
 276	int nid = NUMA_NO_NODE;
 277	const __be32 *tmp;
 278
 279	tmp = of_get_associativity(device);
 280	if (tmp)
 281		nid = associativity_to_nid(tmp);
 282	return nid;
 283}
 284
 285/* Walk the device tree upwards, looking for an associativity id */
 286int of_node_to_nid(struct device_node *device)
 287{
 288	int nid = NUMA_NO_NODE;
 289
 290	of_node_get(device);
 291	while (device) {
 292		nid = of_node_to_nid_single(device);
 293		if (nid != -1)
 294			break;
 295
 296		device = of_get_next_parent(device);
 297	}
 298	of_node_put(device);
 299
 300	return nid;
 301}
 302EXPORT_SYMBOL(of_node_to_nid);
 303
 304static void __initialize_form1_numa_distance(const __be32 *associativity,
 305					     int max_array_sz)
 306{
 307	int i, nid;
 308
 309	if (affinity_form != FORM1_AFFINITY)
 310		return;
 311
 312	nid = __associativity_to_nid(associativity, max_array_sz);
 313	if (nid != NUMA_NO_NODE) {
 314		for (i = 0; i < distance_ref_points_depth; i++) {
 315			const __be32 *entry;
 316			int index = be32_to_cpu(distance_ref_points[i]) - 1;
 317
 318			/*
 319			 * broken hierarchy, return with broken distance table
 320			 */
 321			if (WARN(index >= max_array_sz, "Broken ibm,associativity property"))
 322				return;
 323
 324			entry = &associativity[index];
 325			distance_lookup_table[nid][i] = of_read_number(entry, 1);
 326		}
 327	}
 328}
 329
 330static void initialize_form1_numa_distance(const __be32 *associativity)
 331{
 332	int array_sz;
 333
 334	array_sz = of_read_number(associativity, 1);
 335	/* Skip the first element in the associativity array */
 336	__initialize_form1_numa_distance(associativity + 1, array_sz);
 337}
 338
 339/*
 340 * Used to update distance information w.r.t newly added node.
 341 */
 342void update_numa_distance(struct device_node *node)
 343{
 344	int nid;
 345
 346	if (affinity_form == FORM0_AFFINITY)
 347		return;
 348	else if (affinity_form == FORM1_AFFINITY) {
 349		const __be32 *associativity;
 350
 351		associativity = of_get_associativity(node);
 352		if (!associativity)
 353			return;
 354
 355		initialize_form1_numa_distance(associativity);
 356		return;
 357	}
 358
 359	/* FORM2 affinity  */
 360	nid = of_node_to_nid_single(node);
 361	if (nid == NUMA_NO_NODE)
 362		return;
 363
 364	/*
 365	 * With FORM2 we expect NUMA distance of all possible NUMA
 366	 * nodes to be provided during boot.
 367	 */
 368	WARN(numa_distance_table[nid][nid] == -1,
 369	     "NUMA distance details for node %d not provided\n", nid);
 370}
 371EXPORT_SYMBOL_GPL(update_numa_distance);
 372
 373/*
 374 * ibm,numa-lookup-index-table= {N, domainid1, domainid2, ..... domainidN}
 375 * ibm,numa-distance-table = { N, 1, 2, 4, 5, 1, 6, .... N elements}
 376 */
 377static void __init initialize_form2_numa_distance_lookup_table(void)
 378{
 379	int i, j;
 380	struct device_node *root;
 381	const __u8 *form2_distances;
 382	const __be32 *numa_lookup_index;
 383	int form2_distances_length;
 384	int max_numa_index, distance_index;
 385
 386	if (firmware_has_feature(FW_FEATURE_OPAL))
 387		root = of_find_node_by_path("/ibm,opal");
 388	else
 389		root = of_find_node_by_path("/rtas");
 390	if (!root)
 391		root = of_find_node_by_path("/");
 392
 393	numa_lookup_index = of_get_property(root, "ibm,numa-lookup-index-table", NULL);
 394	max_numa_index = of_read_number(&numa_lookup_index[0], 1);
 395
 396	/* first element of the array is the size and is encode-int */
 397	form2_distances = of_get_property(root, "ibm,numa-distance-table", NULL);
 398	form2_distances_length = of_read_number((const __be32 *)&form2_distances[0], 1);
 399	/* Skip the size which is encoded int */
 400	form2_distances += sizeof(__be32);
 401
 402	pr_debug("form2_distances_len = %d, numa_dist_indexes_len = %d\n",
 403		 form2_distances_length, max_numa_index);
 404
 405	for (i = 0; i < max_numa_index; i++)
 406		/* +1 skip the max_numa_index in the property */
 407		numa_id_index_table[i] = of_read_number(&numa_lookup_index[i + 1], 1);
 408
 409
 410	if (form2_distances_length != max_numa_index * max_numa_index) {
 411		WARN(1, "Wrong NUMA distance information\n");
 412		form2_distances = NULL; // don't use it
 413	}
 414	distance_index = 0;
 415	for (i = 0;  i < max_numa_index; i++) {
 416		for (j = 0; j < max_numa_index; j++) {
 417			int nodeA = numa_id_index_table[i];
 418			int nodeB = numa_id_index_table[j];
 419			int dist;
 420
 421			if (form2_distances)
 422				dist = form2_distances[distance_index++];
 423			else if (nodeA == nodeB)
 424				dist = LOCAL_DISTANCE;
 425			else
 426				dist = REMOTE_DISTANCE;
 427			numa_distance_table[nodeA][nodeB] = dist;
 428			pr_debug("dist[%d][%d]=%d ", nodeA, nodeB, dist);
 429		}
 430	}
 431
 432	of_node_put(root);
 433}
 434
 435static int __init find_primary_domain_index(void)
 436{
 437	int index;
 438	struct device_node *root;
 439
 440	/*
 441	 * Check for which form of affinity.
 442	 */
 443	if (firmware_has_feature(FW_FEATURE_OPAL)) {
 444		affinity_form = FORM1_AFFINITY;
 445	} else if (firmware_has_feature(FW_FEATURE_FORM2_AFFINITY)) {
 446		pr_debug("Using form 2 affinity\n");
 447		affinity_form = FORM2_AFFINITY;
 448	} else if (firmware_has_feature(FW_FEATURE_FORM1_AFFINITY)) {
 449		pr_debug("Using form 1 affinity\n");
 450		affinity_form = FORM1_AFFINITY;
 451	} else
 452		affinity_form = FORM0_AFFINITY;
 453
 454	if (firmware_has_feature(FW_FEATURE_OPAL))
 455		root = of_find_node_by_path("/ibm,opal");
 456	else
 457		root = of_find_node_by_path("/rtas");
 458	if (!root)
 459		root = of_find_node_by_path("/");
 460
 461	/*
 462	 * This property is a set of 32-bit integers, each representing
 463	 * an index into the ibm,associativity nodes.
 464	 *
 465	 * With form 0 affinity the first integer is for an SMP configuration
 466	 * (should be all 0's) and the second is for a normal NUMA
 467	 * configuration. We have only one level of NUMA.
 468	 *
 469	 * With form 1 affinity the first integer is the most significant
 470	 * NUMA boundary and the following are progressively less significant
 471	 * boundaries. There can be more than one level of NUMA.
 472	 */
 473	distance_ref_points = of_get_property(root,
 474					"ibm,associativity-reference-points",
 475					&distance_ref_points_depth);
 476
 477	if (!distance_ref_points) {
 478		pr_debug("ibm,associativity-reference-points not found.\n");
 479		goto err;
 480	}
 481
 482	distance_ref_points_depth /= sizeof(int);
 483	if (affinity_form == FORM0_AFFINITY) {
 
 
 
 
 
 
 
 
 
 484		if (distance_ref_points_depth < 2) {
 485			pr_warn("short ibm,associativity-reference-points\n");
 
 486			goto err;
 487		}
 488
 489		index = of_read_number(&distance_ref_points[1], 1);
 490	} else {
 491		/*
 492		 * Both FORM1 and FORM2 affinity find the primary domain details
 493		 * at the same offset.
 494		 */
 495		index = of_read_number(distance_ref_points, 1);
 496	}
 
 497	/*
 498	 * Warn and cap if the hardware supports more than
 499	 * MAX_DISTANCE_REF_POINTS domains.
 500	 */
 501	if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
 502		pr_warn("distance array capped at %d entries\n",
 503			MAX_DISTANCE_REF_POINTS);
 504		distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
 505	}
 506
 507	of_node_put(root);
 508	return index;
 509
 510err:
 511	of_node_put(root);
 512	return -1;
 513}
 514
 515static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
 516{
 517	struct device_node *memory = NULL;
 518
 519	memory = of_find_node_by_type(memory, "memory");
 520	if (!memory)
 521		panic("numa.c: No memory nodes found!");
 522
 523	*n_addr_cells = of_n_addr_cells(memory);
 524	*n_size_cells = of_n_size_cells(memory);
 525	of_node_put(memory);
 526}
 527
 528static unsigned long read_n_cells(int n, const __be32 **buf)
 529{
 530	unsigned long result = 0;
 531
 532	while (n--) {
 533		result = (result << 32) | of_read_number(*buf, 1);
 534		(*buf)++;
 535	}
 536	return result;
 537}
 538
 539struct assoc_arrays {
 540	u32	n_arrays;
 541	u32	array_sz;
 542	const __be32 *arrays;
 543};
 544
 545/*
 546 * Retrieve and validate the list of associativity arrays for drconf
 547 * memory from the ibm,associativity-lookup-arrays property of the
 548 * device tree..
 549 *
 550 * The layout of the ibm,associativity-lookup-arrays property is a number N
 551 * indicating the number of associativity arrays, followed by a number M
 552 * indicating the size of each associativity array, followed by a list
 553 * of N associativity arrays.
 554 */
 555static int of_get_assoc_arrays(struct assoc_arrays *aa)
 556{
 557	struct device_node *memory;
 558	const __be32 *prop;
 559	u32 len;
 560
 561	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
 562	if (!memory)
 563		return -1;
 564
 565	prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
 566	if (!prop || len < 2 * sizeof(unsigned int)) {
 567		of_node_put(memory);
 568		return -1;
 569	}
 570
 571	aa->n_arrays = of_read_number(prop++, 1);
 572	aa->array_sz = of_read_number(prop++, 1);
 573
 574	of_node_put(memory);
 575
 576	/* Now that we know the number of arrays and size of each array,
 577	 * revalidate the size of the property read in.
 578	 */
 579	if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
 580		return -1;
 581
 582	aa->arrays = prop;
 583	return 0;
 584}
 585
 586static int __init get_nid_and_numa_distance(struct drmem_lmb *lmb)
 587{
 588	struct assoc_arrays aa = { .arrays = NULL };
 589	int default_nid = NUMA_NO_NODE;
 590	int nid = default_nid;
 591	int rc, index;
 592
 593	if ((primary_domain_index < 0) || !numa_enabled)
 594		return default_nid;
 595
 596	rc = of_get_assoc_arrays(&aa);
 597	if (rc)
 598		return default_nid;
 599
 600	if (primary_domain_index <= aa.array_sz &&
 601	    !(lmb->flags & DRCONF_MEM_AI_INVALID) && lmb->aa_index < aa.n_arrays) {
 602		const __be32 *associativity;
 603
 604		index = lmb->aa_index * aa.array_sz;
 605		associativity = &aa.arrays[index];
 606		nid = __associativity_to_nid(associativity, aa.array_sz);
 607		if (nid > 0 && affinity_form == FORM1_AFFINITY) {
 608			/*
 609			 * lookup array associativity entries have
 610			 * no length of the array as the first element.
 611			 */
 612			__initialize_form1_numa_distance(associativity, aa.array_sz);
 613		}
 614	}
 615	return nid;
 616}
 617
 618/*
 619 * This is like of_node_to_nid_single() for memory represented in the
 620 * ibm,dynamic-reconfiguration-memory node.
 621 */
 622int of_drconf_to_nid_single(struct drmem_lmb *lmb)
 623{
 624	struct assoc_arrays aa = { .arrays = NULL };
 625	int default_nid = NUMA_NO_NODE;
 626	int nid = default_nid;
 627	int rc, index;
 628
 629	if ((primary_domain_index < 0) || !numa_enabled)
 630		return default_nid;
 631
 632	rc = of_get_assoc_arrays(&aa);
 633	if (rc)
 634		return default_nid;
 635
 636	if (primary_domain_index <= aa.array_sz &&
 637	    !(lmb->flags & DRCONF_MEM_AI_INVALID) && lmb->aa_index < aa.n_arrays) {
 638		const __be32 *associativity;
 639
 640		index = lmb->aa_index * aa.array_sz;
 641		associativity = &aa.arrays[index];
 642		nid = __associativity_to_nid(associativity, aa.array_sz);
 643	}
 644	return nid;
 645}
 646
 647#ifdef CONFIG_PPC_SPLPAR
 648
 649static int __vphn_get_associativity(long lcpu, __be32 *associativity)
 650{
 651	long rc, hwid;
 652
 653	/*
 654	 * On a shared lpar, device tree will not have node associativity.
 655	 * At this time lppaca, or its __old_status field may not be
 656	 * updated. Hence kernel cannot detect if its on a shared lpar. So
 657	 * request an explicit associativity irrespective of whether the
 658	 * lpar is shared or dedicated. Use the device tree property as a
 659	 * fallback. cpu_to_phys_id is only valid between
 660	 * smp_setup_cpu_maps() and smp_setup_pacas().
 661	 */
 662	if (firmware_has_feature(FW_FEATURE_VPHN)) {
 663		if (cpu_to_phys_id)
 664			hwid = cpu_to_phys_id[lcpu];
 665		else
 666			hwid = get_hard_smp_processor_id(lcpu);
 667
 668		rc = hcall_vphn(hwid, VPHN_FLAG_VCPU, associativity);
 669		if (rc == H_SUCCESS)
 670			return 0;
 
 
 671	}
 672
 673	return -1;
 674}
 675
 676static int vphn_get_nid(long lcpu)
 677{
 678	__be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
 679
 680
 681	if (!__vphn_get_associativity(lcpu, associativity))
 682		return associativity_to_nid(associativity);
 683
 684	return NUMA_NO_NODE;
 685
 686}
 687#else
 688
 689static int __vphn_get_associativity(long lcpu, __be32 *associativity)
 690{
 691	return -1;
 692}
 693
 694static int vphn_get_nid(long unused)
 695{
 696	return NUMA_NO_NODE;
 697}
 698#endif  /* CONFIG_PPC_SPLPAR */
 699
 700/*
 701 * Figure out to which domain a cpu belongs and stick it there.
 702 * Return the id of the domain used.
 703 */
 704static int numa_setup_cpu(unsigned long lcpu)
 705{
 
 706	struct device_node *cpu;
 707	int fcpu = cpu_first_thread_sibling(lcpu);
 708	int nid = NUMA_NO_NODE;
 709
 710	if (!cpu_present(lcpu)) {
 711		set_cpu_numa_node(lcpu, first_online_node);
 712		return first_online_node;
 713	}
 714
 715	/*
 716	 * If a valid cpu-to-node mapping is already available, use it
 717	 * directly instead of querying the firmware, since it represents
 718	 * the most recent mapping notified to us by the platform (eg: VPHN).
 719	 * Since cpu_to_node binding remains the same for all threads in the
 720	 * core. If a valid cpu-to-node mapping is already available, for
 721	 * the first thread in the core, use it.
 722	 */
 723	nid = numa_cpu_lookup_table[fcpu];
 724	if (nid >= 0) {
 725		map_cpu_to_node(lcpu, nid);
 726		return nid;
 727	}
 728
 729	nid = vphn_get_nid(lcpu);
 730	if (nid != NUMA_NO_NODE)
 731		goto out_present;
 732
 733	cpu = of_get_cpu_node(lcpu, NULL);
 734
 735	if (!cpu) {
 736		WARN_ON(1);
 737		if (cpu_present(lcpu))
 738			goto out_present;
 739		else
 740			goto out;
 741	}
 742
 743	nid = of_node_to_nid_single(cpu);
 744	of_node_put(cpu);
 745
 746out_present:
 747	if (nid < 0 || !node_possible(nid))
 748		nid = first_online_node;
 749
 750	/*
 751	 * Update for the first thread of the core. All threads of a core
 752	 * have to be part of the same node. This not only avoids querying
 753	 * for every other thread in the core, but always avoids a case
 754	 * where virtual node associativity change causes subsequent threads
 755	 * of a core to be associated with different nid. However if first
 756	 * thread is already online, expect it to have a valid mapping.
 757	 */
 758	if (fcpu != lcpu) {
 759		WARN_ON(cpu_online(fcpu));
 760		map_cpu_to_node(fcpu, nid);
 761	}
 762
 763	map_cpu_to_node(lcpu, nid);
 
 764out:
 765	return nid;
 766}
 767
 768static void verify_cpu_node_mapping(int cpu, int node)
 769{
 770	int base, sibling, i;
 771
 772	/* Verify that all the threads in the core belong to the same node */
 773	base = cpu_first_thread_sibling(cpu);
 774
 775	for (i = 0; i < threads_per_core; i++) {
 776		sibling = base + i;
 777
 778		if (sibling == cpu || cpu_is_offline(sibling))
 779			continue;
 780
 781		if (cpu_to_node(sibling) != node) {
 782			WARN(1, "CPU thread siblings %d and %d don't belong"
 783				" to the same node!\n", cpu, sibling);
 784			break;
 785		}
 786	}
 787}
 788
 789/* Must run before sched domains notifier. */
 790static int ppc_numa_cpu_prepare(unsigned int cpu)
 791{
 792	int nid;
 793
 794	nid = numa_setup_cpu(cpu);
 795	verify_cpu_node_mapping(cpu, nid);
 796	return 0;
 797}
 798
 799static int ppc_numa_cpu_dead(unsigned int cpu)
 800{
 
 
 
 801	return 0;
 802}
 803
 804/*
 805 * Check and possibly modify a memory region to enforce the memory limit.
 806 *
 807 * Returns the size the region should have to enforce the memory limit.
 808 * This will either be the original value of size, a truncated value,
 809 * or zero. If the returned value of size is 0 the region should be
 810 * discarded as it lies wholly above the memory limit.
 811 */
 812static unsigned long __init numa_enforce_memory_limit(unsigned long start,
 813						      unsigned long size)
 814{
 815	/*
 816	 * We use memblock_end_of_DRAM() in here instead of memory_limit because
 817	 * we've already adjusted it for the limit and it takes care of
 818	 * having memory holes below the limit.  Also, in the case of
 819	 * iommu_is_off, memory_limit is not set but is implicitly enforced.
 820	 */
 821
 822	if (start + size <= memblock_end_of_DRAM())
 823		return size;
 824
 825	if (start >= memblock_end_of_DRAM())
 826		return 0;
 827
 828	return memblock_end_of_DRAM() - start;
 829}
 830
 831/*
 832 * Reads the counter for a given entry in
 833 * linux,drconf-usable-memory property
 834 */
 835static inline int __init read_usm_ranges(const __be32 **usm)
 836{
 837	/*
 838	 * For each lmb in ibm,dynamic-memory a corresponding
 839	 * entry in linux,drconf-usable-memory property contains
 840	 * a counter followed by that many (base, size) duple.
 841	 * read the counter from linux,drconf-usable-memory
 842	 */
 843	return read_n_cells(n_mem_size_cells, usm);
 844}
 845
 846/*
 847 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
 848 * node.  This assumes n_mem_{addr,size}_cells have been set.
 849 */
 850static int __init numa_setup_drmem_lmb(struct drmem_lmb *lmb,
 851					const __be32 **usm,
 852					void *data)
 853{
 854	unsigned int ranges, is_kexec_kdump = 0;
 855	unsigned long base, size, sz;
 856	int nid;
 857
 858	/*
 859	 * Skip this block if the reserved bit is set in flags (0x80)
 860	 * or if the block is not assigned to this partition (0x8)
 861	 */
 862	if ((lmb->flags & DRCONF_MEM_RESERVED)
 863	    || !(lmb->flags & DRCONF_MEM_ASSIGNED))
 864		return 0;
 865
 866	if (*usm)
 867		is_kexec_kdump = 1;
 868
 869	base = lmb->base_addr;
 870	size = drmem_lmb_size();
 871	ranges = 1;
 872
 873	if (is_kexec_kdump) {
 874		ranges = read_usm_ranges(usm);
 875		if (!ranges) /* there are no (base, size) duple */
 876			return 0;
 877	}
 878
 879	do {
 880		if (is_kexec_kdump) {
 881			base = read_n_cells(n_mem_addr_cells, usm);
 882			size = read_n_cells(n_mem_size_cells, usm);
 883		}
 884
 885		nid = get_nid_and_numa_distance(lmb);
 886		fake_numa_create_new_node(((base + size) >> PAGE_SHIFT),
 887					  &nid);
 888		node_set_online(nid);
 889		sz = numa_enforce_memory_limit(base, size);
 890		if (sz)
 891			memblock_set_node(base, sz, &memblock.memory, nid);
 892	} while (--ranges);
 893
 894	return 0;
 895}
 896
 897static int __init parse_numa_properties(void)
 898{
 899	struct device_node *memory;
 900	int default_nid = 0;
 901	unsigned long i;
 902	const __be32 *associativity;
 903
 904	if (numa_enabled == 0) {
 905		pr_warn("disabled by user\n");
 906		return -1;
 907	}
 908
 909	primary_domain_index = find_primary_domain_index();
 910
 911	if (primary_domain_index < 0) {
 912		/*
 913		 * if we fail to parse primary_domain_index from device tree
 914		 * mark the numa disabled, boot with numa disabled.
 915		 */
 916		numa_enabled = false;
 917		return primary_domain_index;
 918	}
 919
 920	pr_debug("associativity depth for CPU/Memory: %d\n", primary_domain_index);
 921
 922	/*
 923	 * If it is FORM2 initialize the distance table here.
 924	 */
 925	if (affinity_form == FORM2_AFFINITY)
 926		initialize_form2_numa_distance_lookup_table();
 927
 928	/*
 929	 * Even though we connect cpus to numa domains later in SMP
 930	 * init, we need to know the node ids now. This is because
 931	 * each node to be onlined must have NODE_DATA etc backing it.
 932	 */
 933	for_each_present_cpu(i) {
 934		__be32 vphn_assoc[VPHN_ASSOC_BUFSIZE];
 935		struct device_node *cpu;
 936		int nid = NUMA_NO_NODE;
 937
 938		memset(vphn_assoc, 0, VPHN_ASSOC_BUFSIZE * sizeof(__be32));
 939
 940		if (__vphn_get_associativity(i, vphn_assoc) == 0) {
 941			nid = associativity_to_nid(vphn_assoc);
 942			initialize_form1_numa_distance(vphn_assoc);
 943		} else {
 944
 945			/*
 946			 * Don't fall back to default_nid yet -- we will plug
 947			 * cpus into nodes once the memory scan has discovered
 948			 * the topology.
 949			 */
 950			cpu = of_get_cpu_node(i, NULL);
 951			BUG_ON(!cpu);
 952
 953			associativity = of_get_associativity(cpu);
 954			if (associativity) {
 955				nid = associativity_to_nid(associativity);
 956				initialize_form1_numa_distance(associativity);
 957			}
 958			of_node_put(cpu);
 959		}
 960
 961		/* node_set_online() is an UB if 'nid' is negative */
 962		if (likely(nid >= 0))
 963			node_set_online(nid);
 
 
 
 
 
 964	}
 965
 966	get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
 967
 968	for_each_node_by_type(memory, "memory") {
 969		unsigned long start;
 970		unsigned long size;
 971		int nid;
 972		int ranges;
 973		const __be32 *memcell_buf;
 974		unsigned int len;
 975
 976		memcell_buf = of_get_property(memory,
 977			"linux,usable-memory", &len);
 978		if (!memcell_buf || len <= 0)
 979			memcell_buf = of_get_property(memory, "reg", &len);
 980		if (!memcell_buf || len <= 0)
 981			continue;
 982
 983		/* ranges in cell */
 984		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
 985new_range:
 986		/* these are order-sensitive, and modify the buffer pointer */
 987		start = read_n_cells(n_mem_addr_cells, &memcell_buf);
 988		size = read_n_cells(n_mem_size_cells, &memcell_buf);
 989
 990		/*
 991		 * Assumption: either all memory nodes or none will
 992		 * have associativity properties.  If none, then
 993		 * everything goes to default_nid.
 994		 */
 995		associativity = of_get_associativity(memory);
 996		if (associativity) {
 997			nid = associativity_to_nid(associativity);
 998			initialize_form1_numa_distance(associativity);
 999		} else
1000			nid = default_nid;
1001
1002		fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
1003		node_set_online(nid);
1004
1005		size = numa_enforce_memory_limit(start, size);
1006		if (size)
1007			memblock_set_node(start, size, &memblock.memory, nid);
1008
1009		if (--ranges)
1010			goto new_range;
1011	}
1012
1013	/*
1014	 * Now do the same thing for each MEMBLOCK listed in the
1015	 * ibm,dynamic-memory property in the
1016	 * ibm,dynamic-reconfiguration-memory node.
1017	 */
1018	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1019	if (memory) {
1020		walk_drmem_lmbs(memory, NULL, numa_setup_drmem_lmb);
1021		of_node_put(memory);
1022	}
1023
1024	return 0;
1025}
1026
1027static void __init setup_nonnuma(void)
1028{
1029	unsigned long top_of_ram = memblock_end_of_DRAM();
1030	unsigned long total_ram = memblock_phys_mem_size();
1031	unsigned long start_pfn, end_pfn;
1032	unsigned int nid = 0;
1033	int i;
1034
1035	pr_debug("Top of RAM: 0x%lx, Total RAM: 0x%lx\n", top_of_ram, total_ram);
1036	pr_debug("Memory hole size: %ldMB\n", (top_of_ram - total_ram) >> 20);
 
 
 
 
 
 
1037
1038	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
1039		fake_numa_create_new_node(end_pfn, &nid);
1040		memblock_set_node(PFN_PHYS(start_pfn),
1041				  PFN_PHYS(end_pfn - start_pfn),
1042				  &memblock.memory, nid);
1043		node_set_online(nid);
1044	}
1045}
1046
1047void __init dump_numa_cpu_topology(void)
1048{
1049	unsigned int node;
1050	unsigned int cpu, count;
1051
1052	if (!numa_enabled)
1053		return;
1054
1055	for_each_online_node(node) {
1056		pr_info("Node %d CPUs:", node);
1057
1058		count = 0;
1059		/*
1060		 * If we used a CPU iterator here we would miss printing
1061		 * the holes in the cpumap.
1062		 */
1063		for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
1064			if (cpumask_test_cpu(cpu,
1065					node_to_cpumask_map[node])) {
1066				if (count == 0)
1067					pr_cont(" %u", cpu);
1068				++count;
1069			} else {
1070				if (count > 1)
1071					pr_cont("-%u", cpu - 1);
1072				count = 0;
1073			}
1074		}
1075
1076		if (count > 1)
1077			pr_cont("-%u", nr_cpu_ids - 1);
1078		pr_cont("\n");
1079	}
1080}
1081
1082/* Initialize NODE_DATA for a node on the local memory */
1083static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn)
1084{
1085	u64 spanned_pages = end_pfn - start_pfn;
1086	const size_t nd_size = roundup(sizeof(pg_data_t), SMP_CACHE_BYTES);
1087	u64 nd_pa;
1088	void *nd;
1089	int tnid;
1090
1091	nd_pa = memblock_phys_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid);
1092	if (!nd_pa)
1093		panic("Cannot allocate %zu bytes for node %d data\n",
1094		      nd_size, nid);
1095
1096	nd = __va(nd_pa);
1097
1098	/* report and initialize */
1099	pr_info("  NODE_DATA [mem %#010Lx-%#010Lx]\n",
1100		nd_pa, nd_pa + nd_size - 1);
1101	tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
1102	if (tnid != nid)
1103		pr_info("    NODE_DATA(%d) on node %d\n", nid, tnid);
1104
1105	node_data[nid] = nd;
1106	memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
1107	NODE_DATA(nid)->node_id = nid;
1108	NODE_DATA(nid)->node_start_pfn = start_pfn;
1109	NODE_DATA(nid)->node_spanned_pages = spanned_pages;
1110}
1111
1112static void __init find_possible_nodes(void)
1113{
1114	struct device_node *rtas;
1115	const __be32 *domains = NULL;
1116	int prop_length, max_nodes;
1117	u32 i;
1118
1119	if (!numa_enabled)
1120		return;
1121
1122	rtas = of_find_node_by_path("/rtas");
1123	if (!rtas)
1124		return;
1125
1126	/*
1127	 * ibm,current-associativity-domains is a fairly recent property. If
1128	 * it doesn't exist, then fallback on ibm,max-associativity-domains.
1129	 * Current denotes what the platform can support compared to max
1130	 * which denotes what the Hypervisor can support.
1131	 *
1132	 * If the LPAR is migratable, new nodes might be activated after a LPM,
1133	 * so we should consider the max number in that case.
1134	 */
1135	if (!of_get_property(of_root, "ibm,migratable-partition", NULL))
1136		domains = of_get_property(rtas,
1137					  "ibm,current-associativity-domains",
1138					  &prop_length);
1139	if (!domains) {
1140		domains = of_get_property(rtas, "ibm,max-associativity-domains",
1141					&prop_length);
1142		if (!domains)
1143			goto out;
1144	}
1145
1146	max_nodes = of_read_number(&domains[primary_domain_index], 1);
1147	pr_info("Partition configured for %d NUMA nodes.\n", max_nodes);
1148
1149	for (i = 0; i < max_nodes; i++) {
1150		if (!node_possible(i))
1151			node_set(i, node_possible_map);
1152	}
1153
1154	prop_length /= sizeof(int);
1155	if (prop_length > primary_domain_index + 2)
1156		coregroup_enabled = 1;
1157
1158out:
1159	of_node_put(rtas);
1160}
1161
1162void __init mem_topology_setup(void)
1163{
1164	int cpu;
1165
1166	max_low_pfn = max_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1167	min_low_pfn = MEMORY_START >> PAGE_SHIFT;
1168
1169	/*
1170	 * Linux/mm assumes node 0 to be online at boot. However this is not
1171	 * true on PowerPC, where node 0 is similar to any other node, it
1172	 * could be cpuless, memoryless node. So force node 0 to be offline
1173	 * for now. This will prevent cpuless, memoryless node 0 showing up
1174	 * unnecessarily as online. If a node has cpus or memory that need
1175	 * to be online, then node will anyway be marked online.
1176	 */
1177	node_set_offline(0);
1178
1179	if (parse_numa_properties())
1180		setup_nonnuma();
1181
1182	/*
1183	 * Modify the set of possible NUMA nodes to reflect information
1184	 * available about the set of online nodes, and the set of nodes
1185	 * that we expect to make use of for this platform's affinity
1186	 * calculations.
1187	 */
1188	nodes_and(node_possible_map, node_possible_map, node_online_map);
1189
1190	find_possible_nodes();
1191
1192	setup_node_to_cpumask_map();
1193
1194	reset_numa_cpu_lookup_table();
1195
1196	for_each_possible_cpu(cpu) {
1197		/*
1198		 * Powerpc with CONFIG_NUMA always used to have a node 0,
1199		 * even if it was memoryless or cpuless. For all cpus that
1200		 * are possible but not present, cpu_to_node() would point
1201		 * to node 0. To remove a cpuless, memoryless dummy node,
1202		 * powerpc need to make sure all possible but not present
1203		 * cpu_to_node are set to a proper node.
1204		 */
1205		numa_setup_cpu(cpu);
1206	}
1207}
1208
1209void __init initmem_init(void)
1210{
1211	int nid;
1212
 
 
 
1213	memblock_dump_all();
1214
1215	for_each_online_node(nid) {
1216		unsigned long start_pfn, end_pfn;
1217
1218		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1219		setup_node_data(nid, start_pfn, end_pfn);
 
1220	}
1221
1222	sparse_init();
1223
1224	/*
1225	 * We need the numa_cpu_lookup_table to be accurate for all CPUs,
1226	 * even before we online them, so that we can use cpu_to_{node,mem}
1227	 * early in boot, cf. smp_prepare_cpus().
1228	 * _nocalls() + manual invocation is used because cpuhp is not yet
1229	 * initialized for the boot CPU.
1230	 */
1231	cpuhp_setup_state_nocalls(CPUHP_POWER_NUMA_PREPARE, "powerpc/numa:prepare",
1232				  ppc_numa_cpu_prepare, ppc_numa_cpu_dead);
1233}
1234
1235static int __init early_numa(char *p)
1236{
1237	if (!p)
1238		return 0;
1239
1240	if (strstr(p, "off"))
1241		numa_enabled = 0;
1242
 
 
 
1243	p = strstr(p, "fake=");
1244	if (p)
1245		cmdline = p + strlen("fake=");
1246
1247	return 0;
1248}
1249early_param("numa", early_numa);
1250
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1251#ifdef CONFIG_MEMORY_HOTPLUG
1252/*
1253 * Find the node associated with a hot added memory section for
1254 * memory represented in the device tree by the property
1255 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
1256 */
1257static int hot_add_drconf_scn_to_nid(unsigned long scn_addr)
1258{
1259	struct drmem_lmb *lmb;
1260	unsigned long lmb_size;
1261	int nid = NUMA_NO_NODE;
1262
1263	lmb_size = drmem_lmb_size();
1264
1265	for_each_drmem_lmb(lmb) {
1266		/* skip this block if it is reserved or not assigned to
1267		 * this partition */
1268		if ((lmb->flags & DRCONF_MEM_RESERVED)
1269		    || !(lmb->flags & DRCONF_MEM_ASSIGNED))
1270			continue;
1271
1272		if ((scn_addr < lmb->base_addr)
1273		    || (scn_addr >= (lmb->base_addr + lmb_size)))
1274			continue;
1275
1276		nid = of_drconf_to_nid_single(lmb);
1277		break;
1278	}
1279
1280	return nid;
1281}
1282
1283/*
1284 * Find the node associated with a hot added memory section for memory
1285 * represented in the device tree as a node (i.e. memory@XXXX) for
1286 * each memblock.
1287 */
1288static int hot_add_node_scn_to_nid(unsigned long scn_addr)
1289{
1290	struct device_node *memory;
1291	int nid = NUMA_NO_NODE;
1292
1293	for_each_node_by_type(memory, "memory") {
1294		int i = 0;
 
 
 
1295
1296		while (1) {
1297			struct resource res;
 
 
 
 
1298
1299			if (of_address_to_resource(memory, i++, &res))
1300				break;
 
1301
1302			if ((scn_addr < res.start) || (scn_addr > res.end))
1303				continue;
1304
1305			nid = of_node_to_nid_single(memory);
1306			break;
1307		}
1308
1309		if (nid >= 0)
1310			break;
1311	}
1312
1313	of_node_put(memory);
1314
1315	return nid;
1316}
1317
1318/*
1319 * Find the node associated with a hot added memory section.  Section
1320 * corresponds to a SPARSEMEM section, not an MEMBLOCK.  It is assumed that
1321 * sections are fully contained within a single MEMBLOCK.
1322 */
1323int hot_add_scn_to_nid(unsigned long scn_addr)
1324{
1325	struct device_node *memory = NULL;
1326	int nid;
1327
1328	if (!numa_enabled)
1329		return first_online_node;
1330
1331	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1332	if (memory) {
1333		nid = hot_add_drconf_scn_to_nid(scn_addr);
1334		of_node_put(memory);
1335	} else {
1336		nid = hot_add_node_scn_to_nid(scn_addr);
1337	}
1338
1339	if (nid < 0 || !node_possible(nid))
1340		nid = first_online_node;
1341
1342	return nid;
1343}
1344
1345static u64 hot_add_drconf_memory_max(void)
1346{
1347	struct device_node *memory = NULL;
1348	struct device_node *dn = NULL;
1349	const __be64 *lrdr = NULL;
1350
1351	dn = of_find_node_by_path("/rtas");
1352	if (dn) {
1353		lrdr = of_get_property(dn, "ibm,lrdr-capacity", NULL);
1354		of_node_put(dn);
1355		if (lrdr)
1356			return be64_to_cpup(lrdr);
1357	}
1358
1359	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1360	if (memory) {
1361		of_node_put(memory);
1362		return drmem_lmb_memory_max();
1363	}
1364	return 0;
1365}
1366
1367/*
1368 * memory_hotplug_max - return max address of memory that may be added
1369 *
1370 * This is currently only used on systems that support drconfig memory
1371 * hotplug.
1372 */
1373u64 memory_hotplug_max(void)
1374{
1375        return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
1376}
1377#endif /* CONFIG_MEMORY_HOTPLUG */
1378
1379/* Virtual Processor Home Node (VPHN) support */
1380#ifdef CONFIG_PPC_SPLPAR
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1381static int topology_inited;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1382
1383/*
1384 * Retrieve the new associativity information for a virtual processor's
1385 * home node.
1386 */
 
 
 
 
 
 
 
 
 
 
 
 
 
1387static long vphn_get_associativity(unsigned long cpu,
1388					__be32 *associativity)
1389{
1390	long rc;
1391
1392	rc = hcall_vphn(get_hard_smp_processor_id(cpu),
1393				VPHN_FLAG_VCPU, associativity);
1394
1395	switch (rc) {
1396	case H_SUCCESS:
1397		pr_debug("VPHN hcall succeeded. Reset polling...\n");
1398		goto out;
1399
1400	case H_FUNCTION:
1401		pr_err_ratelimited("VPHN unsupported. Disabling polling...\n");
 
 
1402		break;
1403	case H_HARDWARE:
1404		pr_err_ratelimited("hcall_vphn() experienced a hardware fault "
 
1405			"preventing VPHN. Disabling polling...\n");
 
1406		break;
1407	case H_PARAMETER:
1408		pr_err_ratelimited("hcall_vphn() was passed an invalid parameter. "
1409			"Disabling polling...\n");
1410		break;
1411	default:
1412		pr_err_ratelimited("hcall_vphn() returned %ld. Disabling polling...\n"
1413			, rc);
1414		break;
1415	}
1416out:
1417	return rc;
1418}
1419
1420void find_and_update_cpu_nid(int cpu)
1421{
1422	__be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
1423	int new_nid;
1424
1425	/* Use associativity from first thread for all siblings */
1426	if (vphn_get_associativity(cpu, associativity))
1427		return;
1428
1429	/* Do not have previous associativity, so find it now. */
1430	new_nid = associativity_to_nid(associativity);
1431
1432	if (new_nid < 0 || !node_possible(new_nid))
1433		new_nid = first_online_node;
1434	else
1435		// Associate node <-> cpu, so cpu_up() calls
1436		// try_online_node() on the right node.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1437		set_cpu_numa_node(cpu, new_nid);
 
 
 
1438
1439	pr_debug("%s:%d cpu %d nid %d\n", __func__, __LINE__, cpu, new_nid);
1440}
1441
1442int cpu_to_coregroup_id(int cpu)
1443{
1444	__be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
1445	int index;
1446
1447	if (cpu < 0 || cpu > nr_cpu_ids)
1448		return -1;
1449
1450	if (!coregroup_enabled)
1451		goto out;
 
 
 
 
 
 
1452
1453	if (!firmware_has_feature(FW_FEATURE_VPHN))
1454		goto out;
1455
1456	if (vphn_get_associativity(cpu, associativity))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1457		goto out;
1458
1459	index = of_read_number(associativity, 1);
1460	if (index > primary_domain_index + 1)
1461		return of_read_number(&associativity[index - 1], 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1462
1463out:
1464	return cpu_to_core_id(cpu);
 
 
1465}
1466
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1467static int topology_update_init(void)
1468{
 
 
 
 
 
 
 
 
 
 
1469	topology_inited = 1;
 
 
 
 
1470	return 0;
1471}
1472device_initcall(topology_update_init);
1473#endif /* CONFIG_PPC_SPLPAR */
v4.17
 
   1/*
   2 * pSeries NUMA support
   3 *
   4 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version
   9 * 2 of the License, or (at your option) any later version.
  10 */
  11#define pr_fmt(fmt) "numa: " fmt
  12
  13#include <linux/threads.h>
  14#include <linux/bootmem.h>
  15#include <linux/init.h>
  16#include <linux/mm.h>
  17#include <linux/mmzone.h>
  18#include <linux/export.h>
  19#include <linux/nodemask.h>
  20#include <linux/cpu.h>
  21#include <linux/notifier.h>
  22#include <linux/memblock.h>
  23#include <linux/of.h>
 
  24#include <linux/pfn.h>
  25#include <linux/cpuset.h>
  26#include <linux/node.h>
  27#include <linux/stop_machine.h>
  28#include <linux/proc_fs.h>
  29#include <linux/seq_file.h>
  30#include <linux/uaccess.h>
  31#include <linux/slab.h>
  32#include <asm/cputhreads.h>
  33#include <asm/sparsemem.h>
  34#include <asm/prom.h>
  35#include <asm/smp.h>
  36#include <asm/cputhreads.h>
  37#include <asm/topology.h>
  38#include <asm/firmware.h>
  39#include <asm/paca.h>
  40#include <asm/hvcall.h>
  41#include <asm/setup.h>
  42#include <asm/vdso.h>
 
  43#include <asm/drmem.h>
  44
  45static int numa_enabled = 1;
  46
  47static char *cmdline __initdata;
  48
  49static int numa_debug;
  50#define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
  51
  52int numa_cpu_lookup_table[NR_CPUS];
  53cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
  54struct pglist_data *node_data[MAX_NUMNODES];
  55
  56EXPORT_SYMBOL(numa_cpu_lookup_table);
  57EXPORT_SYMBOL(node_to_cpumask_map);
  58EXPORT_SYMBOL(node_data);
  59
  60static int min_common_depth;
  61static int n_mem_addr_cells, n_mem_size_cells;
  62static int form1_affinity;
 
 
 
 
  63
  64#define MAX_DISTANCE_REF_POINTS 4
  65static int distance_ref_points_depth;
  66static const __be32 *distance_ref_points;
  67static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
 
 
 
 
  68
  69/*
  70 * Allocate node_to_cpumask_map based on number of available nodes
  71 * Requires node_possible_map to be valid.
  72 *
  73 * Note: cpumask_of_node() is not valid until after this is done.
  74 */
  75static void __init setup_node_to_cpumask_map(void)
  76{
  77	unsigned int node;
  78
  79	/* setup nr_node_ids if not done yet */
  80	if (nr_node_ids == MAX_NUMNODES)
  81		setup_nr_node_ids();
  82
  83	/* allocate the map */
  84	for_each_node(node)
  85		alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
  86
  87	/* cpumask_of_node() will now work */
  88	dbg("Node to cpumask map for %d nodes\n", nr_node_ids);
  89}
  90
  91static int __init fake_numa_create_new_node(unsigned long end_pfn,
  92						unsigned int *nid)
  93{
  94	unsigned long long mem;
  95	char *p = cmdline;
  96	static unsigned int fake_nid;
  97	static unsigned long long curr_boundary;
  98
  99	/*
 100	 * Modify node id, iff we started creating NUMA nodes
 101	 * We want to continue from where we left of the last time
 102	 */
 103	if (fake_nid)
 104		*nid = fake_nid;
 105	/*
 106	 * In case there are no more arguments to parse, the
 107	 * node_id should be the same as the last fake node id
 108	 * (we've handled this above).
 109	 */
 110	if (!p)
 111		return 0;
 112
 113	mem = memparse(p, &p);
 114	if (!mem)
 115		return 0;
 116
 117	if (mem < curr_boundary)
 118		return 0;
 119
 120	curr_boundary = mem;
 121
 122	if ((end_pfn << PAGE_SHIFT) > mem) {
 123		/*
 124		 * Skip commas and spaces
 125		 */
 126		while (*p == ',' || *p == ' ' || *p == '\t')
 127			p++;
 128
 129		cmdline = p;
 130		fake_nid++;
 131		*nid = fake_nid;
 132		dbg("created new fake_node with id %d\n", fake_nid);
 133		return 1;
 134	}
 135	return 0;
 136}
 137
 138static void reset_numa_cpu_lookup_table(void)
 139{
 140	unsigned int cpu;
 141
 142	for_each_possible_cpu(cpu)
 143		numa_cpu_lookup_table[cpu] = -1;
 144}
 145
 146static void map_cpu_to_node(int cpu, int node)
 147{
 148	update_numa_cpu_lookup_table(cpu, node);
 149
 150	dbg("adding cpu %d to node %d\n", cpu, node);
 151
 152	if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
 153		cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
 
 154}
 155
 156#if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
 157static void unmap_cpu_from_node(unsigned long cpu)
 158{
 159	int node = numa_cpu_lookup_table[cpu];
 160
 161	dbg("removing cpu %lu from node %d\n", cpu, node);
 162
 163	if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
 164		cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
 
 165	} else {
 166		printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
 167		       cpu, node);
 168	}
 169}
 170#endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
 171
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 172/* must hold reference to node during call */
 173static const __be32 *of_get_associativity(struct device_node *dev)
 174{
 175	return of_get_property(dev, "ibm,associativity", NULL);
 176}
 177
 178int __node_distance(int a, int b)
 179{
 180	int i;
 181	int distance = LOCAL_DISTANCE;
 182
 183	if (!form1_affinity)
 
 
 184		return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
 185
 186	for (i = 0; i < distance_ref_points_depth; i++) {
 187		if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
 188			break;
 189
 190		/* Double the distance for each NUMA level */
 191		distance *= 2;
 192	}
 193
 194	return distance;
 195}
 196EXPORT_SYMBOL(__node_distance);
 197
 198static void initialize_distance_lookup_table(int nid,
 199		const __be32 *associativity)
 200{
 201	int i;
 202
 203	if (!form1_affinity)
 204		return;
 205
 206	for (i = 0; i < distance_ref_points_depth; i++) {
 207		const __be32 *entry;
 208
 209		entry = &associativity[be32_to_cpu(distance_ref_points[i]) - 1];
 210		distance_lookup_table[nid][i] = of_read_number(entry, 1);
 211	}
 212}
 213
 214/* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
 215 * info is found.
 216 */
 217static int associativity_to_nid(const __be32 *associativity)
 218{
 219	int nid = -1;
 220
 221	if (min_common_depth == -1)
 222		goto out;
 223
 224	if (of_read_number(associativity, 1) >= min_common_depth)
 225		nid = of_read_number(&associativity[min_common_depth], 1);
 226
 227	/* POWER4 LPAR uses 0xffff as invalid node */
 228	if (nid == 0xffff || nid >= MAX_NUMNODES)
 229		nid = -1;
 230
 231	if (nid > 0 &&
 232		of_read_number(associativity, 1) >= distance_ref_points_depth) {
 233		/*
 234		 * Skip the length field and send start of associativity array
 235		 */
 236		initialize_distance_lookup_table(nid, associativity + 1);
 237	}
 238
 239out:
 240	return nid;
 241}
 242
 243/* Returns the nid associated with the given device tree node,
 244 * or -1 if not found.
 245 */
 246static int of_node_to_nid_single(struct device_node *device)
 247{
 248	int nid = -1;
 249	const __be32 *tmp;
 250
 251	tmp = of_get_associativity(device);
 252	if (tmp)
 253		nid = associativity_to_nid(tmp);
 254	return nid;
 255}
 256
 257/* Walk the device tree upwards, looking for an associativity id */
 258int of_node_to_nid(struct device_node *device)
 259{
 260	int nid = -1;
 261
 262	of_node_get(device);
 263	while (device) {
 264		nid = of_node_to_nid_single(device);
 265		if (nid != -1)
 266			break;
 267
 268		device = of_get_next_parent(device);
 269	}
 270	of_node_put(device);
 271
 272	return nid;
 273}
 274EXPORT_SYMBOL(of_node_to_nid);
 275
 276static int __init find_min_common_depth(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 277{
 278	int depth;
 279	struct device_node *root;
 280
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 281	if (firmware_has_feature(FW_FEATURE_OPAL))
 282		root = of_find_node_by_path("/ibm,opal");
 283	else
 284		root = of_find_node_by_path("/rtas");
 285	if (!root)
 286		root = of_find_node_by_path("/");
 287
 288	/*
 289	 * This property is a set of 32-bit integers, each representing
 290	 * an index into the ibm,associativity nodes.
 291	 *
 292	 * With form 0 affinity the first integer is for an SMP configuration
 293	 * (should be all 0's) and the second is for a normal NUMA
 294	 * configuration. We have only one level of NUMA.
 295	 *
 296	 * With form 1 affinity the first integer is the most significant
 297	 * NUMA boundary and the following are progressively less significant
 298	 * boundaries. There can be more than one level of NUMA.
 299	 */
 300	distance_ref_points = of_get_property(root,
 301					"ibm,associativity-reference-points",
 302					&distance_ref_points_depth);
 303
 304	if (!distance_ref_points) {
 305		dbg("NUMA: ibm,associativity-reference-points not found.\n");
 306		goto err;
 307	}
 308
 309	distance_ref_points_depth /= sizeof(int);
 310
 311	if (firmware_has_feature(FW_FEATURE_OPAL) ||
 312	    firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) {
 313		dbg("Using form 1 affinity\n");
 314		form1_affinity = 1;
 315	}
 316
 317	if (form1_affinity) {
 318		depth = of_read_number(distance_ref_points, 1);
 319	} else {
 320		if (distance_ref_points_depth < 2) {
 321			printk(KERN_WARNING "NUMA: "
 322				"short ibm,associativity-reference-points\n");
 323			goto err;
 324		}
 325
 326		depth = of_read_number(&distance_ref_points[1], 1);
 
 
 
 
 
 
 327	}
 328
 329	/*
 330	 * Warn and cap if the hardware supports more than
 331	 * MAX_DISTANCE_REF_POINTS domains.
 332	 */
 333	if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
 334		printk(KERN_WARNING "NUMA: distance array capped at "
 335			"%d entries\n", MAX_DISTANCE_REF_POINTS);
 336		distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
 337	}
 338
 339	of_node_put(root);
 340	return depth;
 341
 342err:
 343	of_node_put(root);
 344	return -1;
 345}
 346
 347static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
 348{
 349	struct device_node *memory = NULL;
 350
 351	memory = of_find_node_by_type(memory, "memory");
 352	if (!memory)
 353		panic("numa.c: No memory nodes found!");
 354
 355	*n_addr_cells = of_n_addr_cells(memory);
 356	*n_size_cells = of_n_size_cells(memory);
 357	of_node_put(memory);
 358}
 359
 360static unsigned long read_n_cells(int n, const __be32 **buf)
 361{
 362	unsigned long result = 0;
 363
 364	while (n--) {
 365		result = (result << 32) | of_read_number(*buf, 1);
 366		(*buf)++;
 367	}
 368	return result;
 369}
 370
 371struct assoc_arrays {
 372	u32	n_arrays;
 373	u32	array_sz;
 374	const __be32 *arrays;
 375};
 376
 377/*
 378 * Retrieve and validate the list of associativity arrays for drconf
 379 * memory from the ibm,associativity-lookup-arrays property of the
 380 * device tree..
 381 *
 382 * The layout of the ibm,associativity-lookup-arrays property is a number N
 383 * indicating the number of associativity arrays, followed by a number M
 384 * indicating the size of each associativity array, followed by a list
 385 * of N associativity arrays.
 386 */
 387static int of_get_assoc_arrays(struct assoc_arrays *aa)
 388{
 389	struct device_node *memory;
 390	const __be32 *prop;
 391	u32 len;
 392
 393	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
 394	if (!memory)
 395		return -1;
 396
 397	prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
 398	if (!prop || len < 2 * sizeof(unsigned int)) {
 399		of_node_put(memory);
 400		return -1;
 401	}
 402
 403	aa->n_arrays = of_read_number(prop++, 1);
 404	aa->array_sz = of_read_number(prop++, 1);
 405
 406	of_node_put(memory);
 407
 408	/* Now that we know the number of arrays and size of each array,
 409	 * revalidate the size of the property read in.
 410	 */
 411	if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
 412		return -1;
 413
 414	aa->arrays = prop;
 415	return 0;
 416}
 417
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 418/*
 419 * This is like of_node_to_nid_single() for memory represented in the
 420 * ibm,dynamic-reconfiguration-memory node.
 421 */
 422static int of_drconf_to_nid_single(struct drmem_lmb *lmb)
 423{
 424	struct assoc_arrays aa = { .arrays = NULL };
 425	int default_nid = 0;
 426	int nid = default_nid;
 427	int rc, index;
 428
 
 
 
 429	rc = of_get_assoc_arrays(&aa);
 430	if (rc)
 431		return default_nid;
 432
 433	if (min_common_depth > 0 && min_common_depth <= aa.array_sz &&
 434	    !(lmb->flags & DRCONF_MEM_AI_INVALID) &&
 435	    lmb->aa_index < aa.n_arrays) {
 436		index = lmb->aa_index * aa.array_sz + min_common_depth - 1;
 437		nid = of_read_number(&aa.arrays[index], 1);
 
 
 
 
 
 
 
 438
 439		if (nid == 0xffff || nid >= MAX_NUMNODES)
 440			nid = default_nid;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 441
 442		if (nid > 0) {
 443			index = lmb->aa_index * aa.array_sz;
 444			initialize_distance_lookup_table(nid,
 445							&aa.arrays[index]);
 446		}
 447	}
 448
 449	return nid;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 450}
 
 451
 452/*
 453 * Figure out to which domain a cpu belongs and stick it there.
 454 * Return the id of the domain used.
 455 */
 456static int numa_setup_cpu(unsigned long lcpu)
 457{
 458	int nid = -1;
 459	struct device_node *cpu;
 
 
 
 
 
 
 
 460
 461	/*
 462	 * If a valid cpu-to-node mapping is already available, use it
 463	 * directly instead of querying the firmware, since it represents
 464	 * the most recent mapping notified to us by the platform (eg: VPHN).
 
 
 
 465	 */
 466	if ((nid = numa_cpu_lookup_table[lcpu]) >= 0) {
 
 467		map_cpu_to_node(lcpu, nid);
 468		return nid;
 469	}
 470
 
 
 
 
 471	cpu = of_get_cpu_node(lcpu, NULL);
 472
 473	if (!cpu) {
 474		WARN_ON(1);
 475		if (cpu_present(lcpu))
 476			goto out_present;
 477		else
 478			goto out;
 479	}
 480
 481	nid = of_node_to_nid_single(cpu);
 
 482
 483out_present:
 484	if (nid < 0 || !node_possible(nid))
 485		nid = first_online_node;
 486
 
 
 
 
 
 
 
 
 
 
 
 
 
 487	map_cpu_to_node(lcpu, nid);
 488	of_node_put(cpu);
 489out:
 490	return nid;
 491}
 492
 493static void verify_cpu_node_mapping(int cpu, int node)
 494{
 495	int base, sibling, i;
 496
 497	/* Verify that all the threads in the core belong to the same node */
 498	base = cpu_first_thread_sibling(cpu);
 499
 500	for (i = 0; i < threads_per_core; i++) {
 501		sibling = base + i;
 502
 503		if (sibling == cpu || cpu_is_offline(sibling))
 504			continue;
 505
 506		if (cpu_to_node(sibling) != node) {
 507			WARN(1, "CPU thread siblings %d and %d don't belong"
 508				" to the same node!\n", cpu, sibling);
 509			break;
 510		}
 511	}
 512}
 513
 514/* Must run before sched domains notifier. */
 515static int ppc_numa_cpu_prepare(unsigned int cpu)
 516{
 517	int nid;
 518
 519	nid = numa_setup_cpu(cpu);
 520	verify_cpu_node_mapping(cpu, nid);
 521	return 0;
 522}
 523
 524static int ppc_numa_cpu_dead(unsigned int cpu)
 525{
 526#ifdef CONFIG_HOTPLUG_CPU
 527	unmap_cpu_from_node(cpu);
 528#endif
 529	return 0;
 530}
 531
 532/*
 533 * Check and possibly modify a memory region to enforce the memory limit.
 534 *
 535 * Returns the size the region should have to enforce the memory limit.
 536 * This will either be the original value of size, a truncated value,
 537 * or zero. If the returned value of size is 0 the region should be
 538 * discarded as it lies wholly above the memory limit.
 539 */
 540static unsigned long __init numa_enforce_memory_limit(unsigned long start,
 541						      unsigned long size)
 542{
 543	/*
 544	 * We use memblock_end_of_DRAM() in here instead of memory_limit because
 545	 * we've already adjusted it for the limit and it takes care of
 546	 * having memory holes below the limit.  Also, in the case of
 547	 * iommu_is_off, memory_limit is not set but is implicitly enforced.
 548	 */
 549
 550	if (start + size <= memblock_end_of_DRAM())
 551		return size;
 552
 553	if (start >= memblock_end_of_DRAM())
 554		return 0;
 555
 556	return memblock_end_of_DRAM() - start;
 557}
 558
 559/*
 560 * Reads the counter for a given entry in
 561 * linux,drconf-usable-memory property
 562 */
 563static inline int __init read_usm_ranges(const __be32 **usm)
 564{
 565	/*
 566	 * For each lmb in ibm,dynamic-memory a corresponding
 567	 * entry in linux,drconf-usable-memory property contains
 568	 * a counter followed by that many (base, size) duple.
 569	 * read the counter from linux,drconf-usable-memory
 570	 */
 571	return read_n_cells(n_mem_size_cells, usm);
 572}
 573
 574/*
 575 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
 576 * node.  This assumes n_mem_{addr,size}_cells have been set.
 577 */
 578static void __init numa_setup_drmem_lmb(struct drmem_lmb *lmb,
 579					const __be32 **usm)
 
 580{
 581	unsigned int ranges, is_kexec_kdump = 0;
 582	unsigned long base, size, sz;
 583	int nid;
 584
 585	/*
 586	 * Skip this block if the reserved bit is set in flags (0x80)
 587	 * or if the block is not assigned to this partition (0x8)
 588	 */
 589	if ((lmb->flags & DRCONF_MEM_RESERVED)
 590	    || !(lmb->flags & DRCONF_MEM_ASSIGNED))
 591		return;
 592
 593	if (*usm)
 594		is_kexec_kdump = 1;
 595
 596	base = lmb->base_addr;
 597	size = drmem_lmb_size();
 598	ranges = 1;
 599
 600	if (is_kexec_kdump) {
 601		ranges = read_usm_ranges(usm);
 602		if (!ranges) /* there are no (base, size) duple */
 603			return;
 604	}
 605
 606	do {
 607		if (is_kexec_kdump) {
 608			base = read_n_cells(n_mem_addr_cells, usm);
 609			size = read_n_cells(n_mem_size_cells, usm);
 610		}
 611
 612		nid = of_drconf_to_nid_single(lmb);
 613		fake_numa_create_new_node(((base + size) >> PAGE_SHIFT),
 614					  &nid);
 615		node_set_online(nid);
 616		sz = numa_enforce_memory_limit(base, size);
 617		if (sz)
 618			memblock_set_node(base, sz, &memblock.memory, nid);
 619	} while (--ranges);
 
 
 620}
 621
 622static int __init parse_numa_properties(void)
 623{
 624	struct device_node *memory;
 625	int default_nid = 0;
 626	unsigned long i;
 
 627
 628	if (numa_enabled == 0) {
 629		printk(KERN_WARNING "NUMA disabled by user\n");
 630		return -1;
 631	}
 632
 633	min_common_depth = find_min_common_depth();
 634
 635	if (min_common_depth < 0)
 636		return min_common_depth;
 
 
 
 
 
 
 637
 638	dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
 
 
 
 
 
 
 639
 640	/*
 641	 * Even though we connect cpus to numa domains later in SMP
 642	 * init, we need to know the node ids now. This is because
 643	 * each node to be onlined must have NODE_DATA etc backing it.
 644	 */
 645	for_each_present_cpu(i) {
 
 646		struct device_node *cpu;
 647		int nid;
 
 
 648
 649		cpu = of_get_cpu_node(i, NULL);
 650		BUG_ON(!cpu);
 651		nid = of_node_to_nid_single(cpu);
 652		of_node_put(cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 653
 654		/*
 655		 * Don't fall back to default_nid yet -- we will plug
 656		 * cpus into nodes once the memory scan has discovered
 657		 * the topology.
 658		 */
 659		if (nid < 0)
 660			continue;
 661		node_set_online(nid);
 662	}
 663
 664	get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
 665
 666	for_each_node_by_type(memory, "memory") {
 667		unsigned long start;
 668		unsigned long size;
 669		int nid;
 670		int ranges;
 671		const __be32 *memcell_buf;
 672		unsigned int len;
 673
 674		memcell_buf = of_get_property(memory,
 675			"linux,usable-memory", &len);
 676		if (!memcell_buf || len <= 0)
 677			memcell_buf = of_get_property(memory, "reg", &len);
 678		if (!memcell_buf || len <= 0)
 679			continue;
 680
 681		/* ranges in cell */
 682		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
 683new_range:
 684		/* these are order-sensitive, and modify the buffer pointer */
 685		start = read_n_cells(n_mem_addr_cells, &memcell_buf);
 686		size = read_n_cells(n_mem_size_cells, &memcell_buf);
 687
 688		/*
 689		 * Assumption: either all memory nodes or none will
 690		 * have associativity properties.  If none, then
 691		 * everything goes to default_nid.
 692		 */
 693		nid = of_node_to_nid_single(memory);
 694		if (nid < 0)
 
 
 
 695			nid = default_nid;
 696
 697		fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
 698		node_set_online(nid);
 699
 700		size = numa_enforce_memory_limit(start, size);
 701		if (size)
 702			memblock_set_node(start, size, &memblock.memory, nid);
 703
 704		if (--ranges)
 705			goto new_range;
 706	}
 707
 708	/*
 709	 * Now do the same thing for each MEMBLOCK listed in the
 710	 * ibm,dynamic-memory property in the
 711	 * ibm,dynamic-reconfiguration-memory node.
 712	 */
 713	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
 714	if (memory) {
 715		walk_drmem_lmbs(memory, numa_setup_drmem_lmb);
 716		of_node_put(memory);
 717	}
 718
 719	return 0;
 720}
 721
 722static void __init setup_nonnuma(void)
 723{
 724	unsigned long top_of_ram = memblock_end_of_DRAM();
 725	unsigned long total_ram = memblock_phys_mem_size();
 726	unsigned long start_pfn, end_pfn;
 727	unsigned int nid = 0;
 728	struct memblock_region *reg;
 729
 730	printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
 731	       top_of_ram, total_ram);
 732	printk(KERN_DEBUG "Memory hole size: %ldMB\n",
 733	       (top_of_ram - total_ram) >> 20);
 734
 735	for_each_memblock(memory, reg) {
 736		start_pfn = memblock_region_memory_base_pfn(reg);
 737		end_pfn = memblock_region_memory_end_pfn(reg);
 738
 
 739		fake_numa_create_new_node(end_pfn, &nid);
 740		memblock_set_node(PFN_PHYS(start_pfn),
 741				  PFN_PHYS(end_pfn - start_pfn),
 742				  &memblock.memory, nid);
 743		node_set_online(nid);
 744	}
 745}
 746
 747void __init dump_numa_cpu_topology(void)
 748{
 749	unsigned int node;
 750	unsigned int cpu, count;
 751
 752	if (min_common_depth == -1 || !numa_enabled)
 753		return;
 754
 755	for_each_online_node(node) {
 756		pr_info("Node %d CPUs:", node);
 757
 758		count = 0;
 759		/*
 760		 * If we used a CPU iterator here we would miss printing
 761		 * the holes in the cpumap.
 762		 */
 763		for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
 764			if (cpumask_test_cpu(cpu,
 765					node_to_cpumask_map[node])) {
 766				if (count == 0)
 767					pr_cont(" %u", cpu);
 768				++count;
 769			} else {
 770				if (count > 1)
 771					pr_cont("-%u", cpu - 1);
 772				count = 0;
 773			}
 774		}
 775
 776		if (count > 1)
 777			pr_cont("-%u", nr_cpu_ids - 1);
 778		pr_cont("\n");
 779	}
 780}
 781
 782/* Initialize NODE_DATA for a node on the local memory */
 783static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn)
 784{
 785	u64 spanned_pages = end_pfn - start_pfn;
 786	const size_t nd_size = roundup(sizeof(pg_data_t), SMP_CACHE_BYTES);
 787	u64 nd_pa;
 788	void *nd;
 789	int tnid;
 790
 791	nd_pa = memblock_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid);
 
 
 
 
 792	nd = __va(nd_pa);
 793
 794	/* report and initialize */
 795	pr_info("  NODE_DATA [mem %#010Lx-%#010Lx]\n",
 796		nd_pa, nd_pa + nd_size - 1);
 797	tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
 798	if (tnid != nid)
 799		pr_info("    NODE_DATA(%d) on node %d\n", nid, tnid);
 800
 801	node_data[nid] = nd;
 802	memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
 803	NODE_DATA(nid)->node_id = nid;
 804	NODE_DATA(nid)->node_start_pfn = start_pfn;
 805	NODE_DATA(nid)->node_spanned_pages = spanned_pages;
 806}
 807
 808static void __init find_possible_nodes(void)
 809{
 810	struct device_node *rtas;
 811	u32 numnodes, i;
 
 
 812
 813	if (min_common_depth <= 0)
 814		return;
 815
 816	rtas = of_find_node_by_path("/rtas");
 817	if (!rtas)
 818		return;
 819
 820	if (of_property_read_u32_index(rtas,
 821				"ibm,max-associativity-domains",
 822				min_common_depth, &numnodes))
 823		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 824
 825	for (i = 0; i < numnodes; i++) {
 826		if (!node_possible(i))
 827			node_set(i, node_possible_map);
 828	}
 829
 
 
 
 
 830out:
 831	of_node_put(rtas);
 832}
 833
 834void __init mem_topology_setup(void)
 835{
 836	int cpu;
 837
 
 
 
 
 
 
 
 
 
 
 
 
 
 838	if (parse_numa_properties())
 839		setup_nonnuma();
 840
 841	/*
 842	 * Modify the set of possible NUMA nodes to reflect information
 843	 * available about the set of online nodes, and the set of nodes
 844	 * that we expect to make use of for this platform's affinity
 845	 * calculations.
 846	 */
 847	nodes_and(node_possible_map, node_possible_map, node_online_map);
 848
 849	find_possible_nodes();
 850
 851	setup_node_to_cpumask_map();
 852
 853	reset_numa_cpu_lookup_table();
 854
 855	for_each_present_cpu(cpu)
 
 
 
 
 
 
 
 
 856		numa_setup_cpu(cpu);
 
 857}
 858
 859void __init initmem_init(void)
 860{
 861	int nid;
 862
 863	max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
 864	max_pfn = max_low_pfn;
 865
 866	memblock_dump_all();
 867
 868	for_each_online_node(nid) {
 869		unsigned long start_pfn, end_pfn;
 870
 871		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
 872		setup_node_data(nid, start_pfn, end_pfn);
 873		sparse_memory_present_with_active_regions(nid);
 874	}
 875
 876	sparse_init();
 877
 878	/*
 879	 * We need the numa_cpu_lookup_table to be accurate for all CPUs,
 880	 * even before we online them, so that we can use cpu_to_{node,mem}
 881	 * early in boot, cf. smp_prepare_cpus().
 882	 * _nocalls() + manual invocation is used because cpuhp is not yet
 883	 * initialized for the boot CPU.
 884	 */
 885	cpuhp_setup_state_nocalls(CPUHP_POWER_NUMA_PREPARE, "powerpc/numa:prepare",
 886				  ppc_numa_cpu_prepare, ppc_numa_cpu_dead);
 887}
 888
 889static int __init early_numa(char *p)
 890{
 891	if (!p)
 892		return 0;
 893
 894	if (strstr(p, "off"))
 895		numa_enabled = 0;
 896
 897	if (strstr(p, "debug"))
 898		numa_debug = 1;
 899
 900	p = strstr(p, "fake=");
 901	if (p)
 902		cmdline = p + strlen("fake=");
 903
 904	return 0;
 905}
 906early_param("numa", early_numa);
 907
 908static bool topology_updates_enabled = true;
 909
 910static int __init early_topology_updates(char *p)
 911{
 912	if (!p)
 913		return 0;
 914
 915	if (!strcmp(p, "off")) {
 916		pr_info("Disabling topology updates\n");
 917		topology_updates_enabled = false;
 918	}
 919
 920	return 0;
 921}
 922early_param("topology_updates", early_topology_updates);
 923
 924#ifdef CONFIG_MEMORY_HOTPLUG
 925/*
 926 * Find the node associated with a hot added memory section for
 927 * memory represented in the device tree by the property
 928 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
 929 */
 930static int hot_add_drconf_scn_to_nid(unsigned long scn_addr)
 931{
 932	struct drmem_lmb *lmb;
 933	unsigned long lmb_size;
 934	int nid = -1;
 935
 936	lmb_size = drmem_lmb_size();
 937
 938	for_each_drmem_lmb(lmb) {
 939		/* skip this block if it is reserved or not assigned to
 940		 * this partition */
 941		if ((lmb->flags & DRCONF_MEM_RESERVED)
 942		    || !(lmb->flags & DRCONF_MEM_ASSIGNED))
 943			continue;
 944
 945		if ((scn_addr < lmb->base_addr)
 946		    || (scn_addr >= (lmb->base_addr + lmb_size)))
 947			continue;
 948
 949		nid = of_drconf_to_nid_single(lmb);
 950		break;
 951	}
 952
 953	return nid;
 954}
 955
 956/*
 957 * Find the node associated with a hot added memory section for memory
 958 * represented in the device tree as a node (i.e. memory@XXXX) for
 959 * each memblock.
 960 */
 961static int hot_add_node_scn_to_nid(unsigned long scn_addr)
 962{
 963	struct device_node *memory;
 964	int nid = -1;
 965
 966	for_each_node_by_type(memory, "memory") {
 967		unsigned long start, size;
 968		int ranges;
 969		const __be32 *memcell_buf;
 970		unsigned int len;
 971
 972		memcell_buf = of_get_property(memory, "reg", &len);
 973		if (!memcell_buf || len <= 0)
 974			continue;
 975
 976		/* ranges in cell */
 977		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
 978
 979		while (ranges--) {
 980			start = read_n_cells(n_mem_addr_cells, &memcell_buf);
 981			size = read_n_cells(n_mem_size_cells, &memcell_buf);
 982
 983			if ((scn_addr < start) || (scn_addr >= (start + size)))
 984				continue;
 985
 986			nid = of_node_to_nid_single(memory);
 987			break;
 988		}
 989
 990		if (nid >= 0)
 991			break;
 992	}
 993
 994	of_node_put(memory);
 995
 996	return nid;
 997}
 998
 999/*
1000 * Find the node associated with a hot added memory section.  Section
1001 * corresponds to a SPARSEMEM section, not an MEMBLOCK.  It is assumed that
1002 * sections are fully contained within a single MEMBLOCK.
1003 */
1004int hot_add_scn_to_nid(unsigned long scn_addr)
1005{
1006	struct device_node *memory = NULL;
1007	int nid;
1008
1009	if (!numa_enabled || (min_common_depth < 0))
1010		return first_online_node;
1011
1012	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1013	if (memory) {
1014		nid = hot_add_drconf_scn_to_nid(scn_addr);
1015		of_node_put(memory);
1016	} else {
1017		nid = hot_add_node_scn_to_nid(scn_addr);
1018	}
1019
1020	if (nid < 0 || !node_possible(nid))
1021		nid = first_online_node;
1022
1023	return nid;
1024}
1025
1026static u64 hot_add_drconf_memory_max(void)
1027{
1028	struct device_node *memory = NULL;
1029	struct device_node *dn = NULL;
1030	const __be64 *lrdr = NULL;
1031
1032	dn = of_find_node_by_path("/rtas");
1033	if (dn) {
1034		lrdr = of_get_property(dn, "ibm,lrdr-capacity", NULL);
1035		of_node_put(dn);
1036		if (lrdr)
1037			return be64_to_cpup(lrdr);
1038	}
1039
1040	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1041	if (memory) {
1042		of_node_put(memory);
1043		return drmem_lmb_memory_max();
1044	}
1045	return 0;
1046}
1047
1048/*
1049 * memory_hotplug_max - return max address of memory that may be added
1050 *
1051 * This is currently only used on systems that support drconfig memory
1052 * hotplug.
1053 */
1054u64 memory_hotplug_max(void)
1055{
1056        return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
1057}
1058#endif /* CONFIG_MEMORY_HOTPLUG */
1059
1060/* Virtual Processor Home Node (VPHN) support */
1061#ifdef CONFIG_PPC_SPLPAR
1062
1063#include "vphn.h"
1064
1065struct topology_update_data {
1066	struct topology_update_data *next;
1067	unsigned int cpu;
1068	int old_nid;
1069	int new_nid;
1070};
1071
1072#define TOPOLOGY_DEF_TIMER_SECS	60
1073
1074static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS];
1075static cpumask_t cpu_associativity_changes_mask;
1076static int vphn_enabled;
1077static int prrn_enabled;
1078static void reset_topology_timer(void);
1079static int topology_timer_secs = 1;
1080static int topology_inited;
1081static int topology_update_needed;
1082
1083/*
1084 * Change polling interval for associativity changes.
1085 */
1086int timed_topology_update(int nsecs)
1087{
1088	if (vphn_enabled) {
1089		if (nsecs > 0)
1090			topology_timer_secs = nsecs;
1091		else
1092			topology_timer_secs = TOPOLOGY_DEF_TIMER_SECS;
1093
1094		reset_topology_timer();
1095	}
1096
1097	return 0;
1098}
1099
1100/*
1101 * Store the current values of the associativity change counters in the
1102 * hypervisor.
1103 */
1104static void setup_cpu_associativity_change_counters(void)
1105{
1106	int cpu;
1107
1108	/* The VPHN feature supports a maximum of 8 reference points */
1109	BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8);
1110
1111	for_each_possible_cpu(cpu) {
1112		int i;
1113		u8 *counts = vphn_cpu_change_counts[cpu];
1114		volatile u8 *hypervisor_counts = lppaca_of(cpu).vphn_assoc_counts;
1115
1116		for (i = 0; i < distance_ref_points_depth; i++)
1117			counts[i] = hypervisor_counts[i];
1118	}
1119}
1120
1121/*
1122 * The hypervisor maintains a set of 8 associativity change counters in
1123 * the VPA of each cpu that correspond to the associativity levels in the
1124 * ibm,associativity-reference-points property. When an associativity
1125 * level changes, the corresponding counter is incremented.
1126 *
1127 * Set a bit in cpu_associativity_changes_mask for each cpu whose home
1128 * node associativity levels have changed.
1129 *
1130 * Returns the number of cpus with unhandled associativity changes.
1131 */
1132static int update_cpu_associativity_changes_mask(void)
1133{
1134	int cpu;
1135	cpumask_t *changes = &cpu_associativity_changes_mask;
1136
1137	for_each_possible_cpu(cpu) {
1138		int i, changed = 0;
1139		u8 *counts = vphn_cpu_change_counts[cpu];
1140		volatile u8 *hypervisor_counts = lppaca_of(cpu).vphn_assoc_counts;
1141
1142		for (i = 0; i < distance_ref_points_depth; i++) {
1143			if (hypervisor_counts[i] != counts[i]) {
1144				counts[i] = hypervisor_counts[i];
1145				changed = 1;
1146			}
1147		}
1148		if (changed) {
1149			cpumask_or(changes, changes, cpu_sibling_mask(cpu));
1150			cpu = cpu_last_thread_sibling(cpu);
1151		}
1152	}
1153
1154	return cpumask_weight(changes);
1155}
1156
1157/*
1158 * Retrieve the new associativity information for a virtual processor's
1159 * home node.
1160 */
1161static long hcall_vphn(unsigned long cpu, __be32 *associativity)
1162{
1163	long rc;
1164	long retbuf[PLPAR_HCALL9_BUFSIZE] = {0};
1165	u64 flags = 1;
1166	int hwcpu = get_hard_smp_processor_id(cpu);
1167
1168	rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu);
1169	vphn_unpack_associativity(retbuf, associativity);
1170
1171	return rc;
1172}
1173
1174static long vphn_get_associativity(unsigned long cpu,
1175					__be32 *associativity)
1176{
1177	long rc;
1178
1179	rc = hcall_vphn(cpu, associativity);
 
1180
1181	switch (rc) {
 
 
 
 
1182	case H_FUNCTION:
1183		printk(KERN_INFO
1184			"VPHN is not supported. Disabling polling...\n");
1185		stop_topology_update();
1186		break;
1187	case H_HARDWARE:
1188		printk(KERN_ERR
1189			"hcall_vphn() experienced a hardware fault "
1190			"preventing VPHN. Disabling polling...\n");
1191		stop_topology_update();
1192		break;
1193	case H_SUCCESS:
1194		dbg("VPHN hcall succeeded. Reset polling...\n");
1195		timed_topology_update(0);
 
 
 
 
1196		break;
1197	}
1198
1199	return rc;
1200}
1201
1202int find_and_online_cpu_nid(int cpu)
1203{
1204	__be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
1205	int new_nid;
1206
1207	/* Use associativity from first thread for all siblings */
1208	vphn_get_associativity(cpu, associativity);
 
 
 
1209	new_nid = associativity_to_nid(associativity);
 
1210	if (new_nid < 0 || !node_possible(new_nid))
1211		new_nid = first_online_node;
1212
1213	if (NODE_DATA(new_nid) == NULL) {
1214#ifdef CONFIG_MEMORY_HOTPLUG
1215		/*
1216		 * Need to ensure that NODE_DATA is initialized for a node from
1217		 * available memory (see memblock_alloc_try_nid). If unable to
1218		 * init the node, then default to nearest node that has memory
1219		 * installed.
1220		 */
1221		if (try_online_node(new_nid))
1222			new_nid = first_online_node;
1223#else
1224		/*
1225		 * Default to using the nearest node that has memory installed.
1226		 * Otherwise, it would be necessary to patch the kernel MM code
1227		 * to deal with more memoryless-node error conditions.
1228		 */
1229		new_nid = first_online_node;
1230#endif
1231	}
1232
1233	pr_debug("%s:%d cpu %d nid %d\n", __FUNCTION__, __LINE__,
1234		cpu, new_nid);
1235	return new_nid;
1236}
1237
1238/*
1239 * Update the CPU maps and sysfs entries for a single CPU when its NUMA
1240 * characteristics change. This function doesn't perform any locking and is
1241 * only safe to call from stop_machine().
1242 */
1243static int update_cpu_topology(void *data)
1244{
1245	struct topology_update_data *update;
1246	unsigned long cpu;
1247
1248	if (!data)
1249		return -EINVAL;
1250
1251	cpu = smp_processor_id();
1252
1253	for (update = data; update; update = update->next) {
1254		int new_nid = update->new_nid;
1255		if (cpu != update->cpu)
1256			continue;
1257
1258		unmap_cpu_from_node(cpu);
1259		map_cpu_to_node(cpu, new_nid);
1260		set_cpu_numa_node(cpu, new_nid);
1261		set_cpu_numa_mem(cpu, local_memory_node(new_nid));
1262		vdso_getcpu_init();
1263	}
1264
1265	return 0;
1266}
1267
1268static int update_lookup_table(void *data)
1269{
1270	struct topology_update_data *update;
 
1271
1272	if (!data)
1273		return -EINVAL;
1274
1275	/*
1276	 * Upon topology update, the numa-cpu lookup table needs to be updated
1277	 * for all threads in the core, including offline CPUs, to ensure that
1278	 * future hotplug operations respect the cpu-to-node associativity
1279	 * properly.
1280	 */
1281	for (update = data; update; update = update->next) {
1282		int nid, base, j;
1283
1284		nid = update->new_nid;
1285		base = cpu_first_thread_sibling(update->cpu);
1286
1287		for (j = 0; j < threads_per_core; j++) {
1288			update_numa_cpu_lookup_table(base + j, nid);
1289		}
1290	}
1291
1292	return 0;
1293}
1294
1295/*
1296 * Update the node maps and sysfs entries for each cpu whose home node
1297 * has changed. Returns 1 when the topology has changed, and 0 otherwise.
1298 *
1299 * cpus_locked says whether we already hold cpu_hotplug_lock.
1300 */
1301int numa_update_cpu_topology(bool cpus_locked)
1302{
1303	unsigned int cpu, sibling, changed = 0;
1304	struct topology_update_data *updates, *ud;
1305	cpumask_t updated_cpus;
1306	struct device *dev;
1307	int weight, new_nid, i = 0;
1308
1309	if (!prrn_enabled && !vphn_enabled) {
1310		if (!topology_inited)
1311			topology_update_needed = 1;
1312		return 0;
1313	}
1314
1315	weight = cpumask_weight(&cpu_associativity_changes_mask);
1316	if (!weight)
1317		return 0;
1318
1319	updates = kzalloc(weight * (sizeof(*updates)), GFP_KERNEL);
1320	if (!updates)
1321		return 0;
1322
1323	cpumask_clear(&updated_cpus);
1324
1325	for_each_cpu(cpu, &cpu_associativity_changes_mask) {
1326		/*
1327		 * If siblings aren't flagged for changes, updates list
1328		 * will be too short. Skip on this update and set for next
1329		 * update.
1330		 */
1331		if (!cpumask_subset(cpu_sibling_mask(cpu),
1332					&cpu_associativity_changes_mask)) {
1333			pr_info("Sibling bits not set for associativity "
1334					"change, cpu%d\n", cpu);
1335			cpumask_or(&cpu_associativity_changes_mask,
1336					&cpu_associativity_changes_mask,
1337					cpu_sibling_mask(cpu));
1338			cpu = cpu_last_thread_sibling(cpu);
1339			continue;
1340		}
1341
1342		new_nid = find_and_online_cpu_nid(cpu);
1343
1344		if (new_nid == numa_cpu_lookup_table[cpu]) {
1345			cpumask_andnot(&cpu_associativity_changes_mask,
1346					&cpu_associativity_changes_mask,
1347					cpu_sibling_mask(cpu));
1348			dbg("Assoc chg gives same node %d for cpu%d\n",
1349					new_nid, cpu);
1350			cpu = cpu_last_thread_sibling(cpu);
1351			continue;
1352		}
1353
1354		for_each_cpu(sibling, cpu_sibling_mask(cpu)) {
1355			ud = &updates[i++];
1356			ud->next = &updates[i];
1357			ud->cpu = sibling;
1358			ud->new_nid = new_nid;
1359			ud->old_nid = numa_cpu_lookup_table[sibling];
1360			cpumask_set_cpu(sibling, &updated_cpus);
1361		}
1362		cpu = cpu_last_thread_sibling(cpu);
1363	}
1364
1365	/*
1366	 * Prevent processing of 'updates' from overflowing array
1367	 * where last entry filled in a 'next' pointer.
1368	 */
1369	if (i)
1370		updates[i-1].next = NULL;
1371
1372	pr_debug("Topology update for the following CPUs:\n");
1373	if (cpumask_weight(&updated_cpus)) {
1374		for (ud = &updates[0]; ud; ud = ud->next) {
1375			pr_debug("cpu %d moving from node %d "
1376					  "to %d\n", ud->cpu,
1377					  ud->old_nid, ud->new_nid);
1378		}
1379	}
1380
1381	/*
1382	 * In cases where we have nothing to update (because the updates list
1383	 * is too short or because the new topology is same as the old one),
1384	 * skip invoking update_cpu_topology() via stop-machine(). This is
1385	 * necessary (and not just a fast-path optimization) since stop-machine
1386	 * can end up electing a random CPU to run update_cpu_topology(), and
1387	 * thus trick us into setting up incorrect cpu-node mappings (since
1388	 * 'updates' is kzalloc()'ed).
1389	 *
1390	 * And for the similar reason, we will skip all the following updating.
1391	 */
1392	if (!cpumask_weight(&updated_cpus))
1393		goto out;
1394
1395	if (cpus_locked)
1396		stop_machine_cpuslocked(update_cpu_topology, &updates[0],
1397					&updated_cpus);
1398	else
1399		stop_machine(update_cpu_topology, &updates[0], &updated_cpus);
1400
1401	/*
1402	 * Update the numa-cpu lookup table with the new mappings, even for
1403	 * offline CPUs. It is best to perform this update from the stop-
1404	 * machine context.
1405	 */
1406	if (cpus_locked)
1407		stop_machine_cpuslocked(update_lookup_table, &updates[0],
1408					cpumask_of(raw_smp_processor_id()));
1409	else
1410		stop_machine(update_lookup_table, &updates[0],
1411			     cpumask_of(raw_smp_processor_id()));
1412
1413	for (ud = &updates[0]; ud; ud = ud->next) {
1414		unregister_cpu_under_node(ud->cpu, ud->old_nid);
1415		register_cpu_under_node(ud->cpu, ud->new_nid);
1416
1417		dev = get_cpu_device(ud->cpu);
1418		if (dev)
1419			kobject_uevent(&dev->kobj, KOBJ_CHANGE);
1420		cpumask_clear_cpu(ud->cpu, &cpu_associativity_changes_mask);
1421		changed = 1;
1422	}
1423
1424out:
1425	kfree(updates);
1426	topology_update_needed = 0;
1427	return changed;
1428}
1429
1430int arch_update_cpu_topology(void)
1431{
1432	return numa_update_cpu_topology(true);
1433}
1434
1435static void topology_work_fn(struct work_struct *work)
1436{
1437	rebuild_sched_domains();
1438}
1439static DECLARE_WORK(topology_work, topology_work_fn);
1440
1441static void topology_schedule_update(void)
1442{
1443	schedule_work(&topology_work);
1444}
1445
1446static void topology_timer_fn(struct timer_list *unused)
1447{
1448	if (prrn_enabled && cpumask_weight(&cpu_associativity_changes_mask))
1449		topology_schedule_update();
1450	else if (vphn_enabled) {
1451		if (update_cpu_associativity_changes_mask() > 0)
1452			topology_schedule_update();
1453		reset_topology_timer();
1454	}
1455}
1456static struct timer_list topology_timer;
1457
1458static void reset_topology_timer(void)
1459{
1460	mod_timer(&topology_timer, jiffies + topology_timer_secs * HZ);
1461}
1462
1463#ifdef CONFIG_SMP
1464
1465static void stage_topology_update(int core_id)
1466{
1467	cpumask_or(&cpu_associativity_changes_mask,
1468		&cpu_associativity_changes_mask, cpu_sibling_mask(core_id));
1469	reset_topology_timer();
1470}
1471
1472static int dt_update_callback(struct notifier_block *nb,
1473				unsigned long action, void *data)
1474{
1475	struct of_reconfig_data *update = data;
1476	int rc = NOTIFY_DONE;
1477
1478	switch (action) {
1479	case OF_RECONFIG_UPDATE_PROPERTY:
1480		if (!of_prop_cmp(update->dn->type, "cpu") &&
1481		    !of_prop_cmp(update->prop->name, "ibm,associativity")) {
1482			u32 core_id;
1483			of_property_read_u32(update->dn, "reg", &core_id);
1484			stage_topology_update(core_id);
1485			rc = NOTIFY_OK;
1486		}
1487		break;
1488	}
1489
1490	return rc;
1491}
1492
1493static struct notifier_block dt_update_nb = {
1494	.notifier_call = dt_update_callback,
1495};
1496
1497#endif
1498
1499/*
1500 * Start polling for associativity changes.
1501 */
1502int start_topology_update(void)
1503{
1504	int rc = 0;
1505
1506	if (firmware_has_feature(FW_FEATURE_PRRN)) {
1507		if (!prrn_enabled) {
1508			prrn_enabled = 1;
1509#ifdef CONFIG_SMP
1510			rc = of_reconfig_notifier_register(&dt_update_nb);
1511#endif
1512		}
1513	}
1514	if (firmware_has_feature(FW_FEATURE_VPHN) &&
1515		   lppaca_shared_proc(get_lppaca())) {
1516		if (!vphn_enabled) {
1517			vphn_enabled = 1;
1518			setup_cpu_associativity_change_counters();
1519			timer_setup(&topology_timer, topology_timer_fn,
1520				    TIMER_DEFERRABLE);
1521			reset_topology_timer();
1522		}
1523	}
1524
1525	return rc;
1526}
1527
1528/*
1529 * Disable polling for VPHN associativity changes.
1530 */
1531int stop_topology_update(void)
1532{
1533	int rc = 0;
1534
1535	if (prrn_enabled) {
1536		prrn_enabled = 0;
1537#ifdef CONFIG_SMP
1538		rc = of_reconfig_notifier_unregister(&dt_update_nb);
1539#endif
1540	}
1541	if (vphn_enabled) {
1542		vphn_enabled = 0;
1543		rc = del_timer_sync(&topology_timer);
1544	}
1545
1546	return rc;
1547}
1548
1549int prrn_is_enabled(void)
1550{
1551	return prrn_enabled;
1552}
1553
1554static int topology_read(struct seq_file *file, void *v)
1555{
1556	if (vphn_enabled || prrn_enabled)
1557		seq_puts(file, "on\n");
1558	else
1559		seq_puts(file, "off\n");
1560
1561	return 0;
1562}
1563
1564static int topology_open(struct inode *inode, struct file *file)
1565{
1566	return single_open(file, topology_read, NULL);
1567}
1568
1569static ssize_t topology_write(struct file *file, const char __user *buf,
1570			      size_t count, loff_t *off)
1571{
1572	char kbuf[4]; /* "on" or "off" plus null. */
1573	int read_len;
1574
1575	read_len = count < 3 ? count : 3;
1576	if (copy_from_user(kbuf, buf, read_len))
1577		return -EINVAL;
1578
1579	kbuf[read_len] = '\0';
1580
1581	if (!strncmp(kbuf, "on", 2))
1582		start_topology_update();
1583	else if (!strncmp(kbuf, "off", 3))
1584		stop_topology_update();
1585	else
1586		return -EINVAL;
1587
1588	return count;
1589}
1590
1591static const struct file_operations topology_ops = {
1592	.read = seq_read,
1593	.write = topology_write,
1594	.open = topology_open,
1595	.release = single_release
1596};
1597
1598static int topology_update_init(void)
1599{
1600	/* Do not poll for changes if disabled at boot */
1601	if (topology_updates_enabled)
1602		start_topology_update();
1603
1604	if (vphn_enabled)
1605		topology_schedule_update();
1606
1607	if (!proc_create("powerpc/topology_updates", 0644, NULL, &topology_ops))
1608		return -ENOMEM;
1609
1610	topology_inited = 1;
1611	if (topology_update_needed)
1612		bitmap_fill(cpumask_bits(&cpu_associativity_changes_mask),
1613					nr_cpumask_bits);
1614
1615	return 0;
1616}
1617device_initcall(topology_update_init);
1618#endif /* CONFIG_PPC_SPLPAR */