Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (c) 2000, 2003 Silicon Graphics, Inc.  All rights reserved.
  4 * Copyright (c) 2001 Intel Corp.
  5 * Copyright (c) 2001 Tony Luck <tony.luck@intel.com>
  6 * Copyright (c) 2002 NEC Corp.
  7 * Copyright (c) 2002 Kimio Suganuma <k-suganuma@da.jp.nec.com>
  8 * Copyright (c) 2004 Silicon Graphics, Inc
  9 *	Russ Anderson <rja@sgi.com>
 10 *	Jesse Barnes <jbarnes@sgi.com>
 11 *	Jack Steiner <steiner@sgi.com>
 12 */
 13
 14/*
 15 * Platform initialization for Discontig Memory
 16 */
 17
 18#include <linux/kernel.h>
 19#include <linux/mm.h>
 20#include <linux/nmi.h>
 21#include <linux/swap.h>
 22#include <linux/memblock.h>
 23#include <linux/acpi.h>
 24#include <linux/efi.h>
 25#include <linux/nodemask.h>
 26#include <linux/slab.h>
 27#include <asm/efi.h>
 28#include <asm/tlb.h>
 29#include <asm/meminit.h>
 30#include <asm/numa.h>
 31#include <asm/sections.h>
 32
 33/*
 34 * Track per-node information needed to setup the boot memory allocator, the
 35 * per-node areas, and the real VM.
 36 */
 37struct early_node_data {
 38	struct ia64_node_data *node_data;
 39	unsigned long pernode_addr;
 40	unsigned long pernode_size;
 41	unsigned long min_pfn;
 42	unsigned long max_pfn;
 43};
 44
 45static struct early_node_data mem_data[MAX_NUMNODES] __initdata;
 46static nodemask_t memory_less_mask __initdata;
 47
 48pg_data_t *pgdat_list[MAX_NUMNODES];
 49
 50/*
 51 * To prevent cache aliasing effects, align per-node structures so that they
 52 * start at addresses that are strided by node number.
 53 */
 54#define MAX_NODE_ALIGN_OFFSET	(32 * 1024 * 1024)
 55#define NODEDATA_ALIGN(addr, node)						\
 56	((((addr) + 1024*1024-1) & ~(1024*1024-1)) + 				\
 57	     (((node)*PERCPU_PAGE_SIZE) & (MAX_NODE_ALIGN_OFFSET - 1)))
 58
 59/**
 60 * build_node_maps - callback to setup mem_data structs for each node
 61 * @start: physical start of range
 62 * @len: length of range
 63 * @node: node where this range resides
 64 *
 65 * Detect extents of each piece of memory that we wish to
 66 * treat as a virtually contiguous block (i.e. each node). Each such block
 67 * must start on an %IA64_GRANULE_SIZE boundary, so we round the address down
 68 * if necessary.  Any non-existent pages will simply be part of the virtual
 69 * memmap.
 70 */
 71static int __init build_node_maps(unsigned long start, unsigned long len,
 72				  int node)
 73{
 74	unsigned long spfn, epfn, end = start + len;
 75
 76	epfn = GRANULEROUNDUP(end) >> PAGE_SHIFT;
 77	spfn = GRANULEROUNDDOWN(start) >> PAGE_SHIFT;
 78
 79	if (!mem_data[node].min_pfn) {
 80		mem_data[node].min_pfn = spfn;
 81		mem_data[node].max_pfn = epfn;
 82	} else {
 83		mem_data[node].min_pfn = min(spfn, mem_data[node].min_pfn);
 84		mem_data[node].max_pfn = max(epfn, mem_data[node].max_pfn);
 85	}
 86
 87	return 0;
 88}
 89
 90/**
 91 * early_nr_cpus_node - return number of cpus on a given node
 92 * @node: node to check
 93 *
 94 * Count the number of cpus on @node.  We can't use nr_cpus_node() yet because
 95 * acpi_boot_init() (which builds the node_to_cpu_mask array) hasn't been
 96 * called yet.  Note that node 0 will also count all non-existent cpus.
 97 */
 98static int early_nr_cpus_node(int node)
 99{
100	int cpu, n = 0;
101
102	for_each_possible_early_cpu(cpu)
103		if (node == node_cpuid[cpu].nid)
104			n++;
105
106	return n;
107}
108
109/**
110 * compute_pernodesize - compute size of pernode data
111 * @node: the node id.
112 */
113static unsigned long compute_pernodesize(int node)
114{
115	unsigned long pernodesize = 0, cpus;
116
117	cpus = early_nr_cpus_node(node);
118	pernodesize += PERCPU_PAGE_SIZE * cpus;
119	pernodesize += node * L1_CACHE_BYTES;
120	pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t));
121	pernodesize += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
122	pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t));
123	pernodesize = PAGE_ALIGN(pernodesize);
124	return pernodesize;
125}
126
127/**
128 * per_cpu_node_setup - setup per-cpu areas on each node
129 * @cpu_data: per-cpu area on this node
130 * @node: node to setup
131 *
132 * Copy the static per-cpu data into the region we just set aside and then
133 * setup __per_cpu_offset for each CPU on this node.  Return a pointer to
134 * the end of the area.
135 */
136static void *per_cpu_node_setup(void *cpu_data, int node)
137{
138#ifdef CONFIG_SMP
139	int cpu;
140
141	for_each_possible_early_cpu(cpu) {
142		void *src = cpu == 0 ? __cpu0_per_cpu : __phys_per_cpu_start;
143
144		if (node != node_cpuid[cpu].nid)
145			continue;
146
147		memcpy(__va(cpu_data), src, __per_cpu_end - __per_cpu_start);
148		__per_cpu_offset[cpu] = (char *)__va(cpu_data) -
149			__per_cpu_start;
150
151		/*
152		 * percpu area for cpu0 is moved from the __init area
153		 * which is setup by head.S and used till this point.
154		 * Update ar.k3.  This move is ensures that percpu
155		 * area for cpu0 is on the correct node and its
156		 * virtual address isn't insanely far from other
157		 * percpu areas which is important for congruent
158		 * percpu allocator.
159		 */
160		if (cpu == 0)
161			ia64_set_kr(IA64_KR_PER_CPU_DATA,
162				    (unsigned long)cpu_data -
163				    (unsigned long)__per_cpu_start);
164
165		cpu_data += PERCPU_PAGE_SIZE;
166	}
167#endif
168	return cpu_data;
169}
170
171#ifdef CONFIG_SMP
172/**
173 * setup_per_cpu_areas - setup percpu areas
174 *
175 * Arch code has already allocated and initialized percpu areas.  All
176 * this function has to do is to teach the determined layout to the
177 * dynamic percpu allocator, which happens to be more complex than
178 * creating whole new ones using helpers.
179 */
180void __init setup_per_cpu_areas(void)
181{
182	struct pcpu_alloc_info *ai;
183	struct pcpu_group_info *gi;
184	unsigned int *cpu_map;
185	void *base;
186	unsigned long base_offset;
187	unsigned int cpu;
188	ssize_t static_size, reserved_size, dyn_size;
189	int node, prev_node, unit, nr_units;
190
191	ai = pcpu_alloc_alloc_info(MAX_NUMNODES, nr_cpu_ids);
192	if (!ai)
193		panic("failed to allocate pcpu_alloc_info");
194	cpu_map = ai->groups[0].cpu_map;
195
196	/* determine base */
197	base = (void *)ULONG_MAX;
198	for_each_possible_cpu(cpu)
199		base = min(base,
200			   (void *)(__per_cpu_offset[cpu] + __per_cpu_start));
201	base_offset = (void *)__per_cpu_start - base;
202
203	/* build cpu_map, units are grouped by node */
204	unit = 0;
205	for_each_node(node)
206		for_each_possible_cpu(cpu)
207			if (node == node_cpuid[cpu].nid)
208				cpu_map[unit++] = cpu;
209	nr_units = unit;
210
211	/* set basic parameters */
212	static_size = __per_cpu_end - __per_cpu_start;
213	reserved_size = PERCPU_MODULE_RESERVE;
214	dyn_size = PERCPU_PAGE_SIZE - static_size - reserved_size;
215	if (dyn_size < 0)
216		panic("percpu area overflow static=%zd reserved=%zd\n",
217		      static_size, reserved_size);
218
219	ai->static_size		= static_size;
220	ai->reserved_size	= reserved_size;
221	ai->dyn_size		= dyn_size;
222	ai->unit_size		= PERCPU_PAGE_SIZE;
223	ai->atom_size		= PAGE_SIZE;
224	ai->alloc_size		= PERCPU_PAGE_SIZE;
225
226	/*
227	 * CPUs are put into groups according to node.  Walk cpu_map
228	 * and create new groups at node boundaries.
229	 */
230	prev_node = NUMA_NO_NODE;
231	ai->nr_groups = 0;
232	for (unit = 0; unit < nr_units; unit++) {
233		cpu = cpu_map[unit];
234		node = node_cpuid[cpu].nid;
235
236		if (node == prev_node) {
237			gi->nr_units++;
238			continue;
239		}
240		prev_node = node;
241
242		gi = &ai->groups[ai->nr_groups++];
243		gi->nr_units		= 1;
244		gi->base_offset		= __per_cpu_offset[cpu] + base_offset;
245		gi->cpu_map		= &cpu_map[unit];
246	}
247
248	pcpu_setup_first_chunk(ai, base);
249	pcpu_free_alloc_info(ai);
250}
251#endif
252
253/**
254 * fill_pernode - initialize pernode data.
255 * @node: the node id.
256 * @pernode: physical address of pernode data
257 * @pernodesize: size of the pernode data
258 */
259static void __init fill_pernode(int node, unsigned long pernode,
260	unsigned long pernodesize)
261{
262	void *cpu_data;
263	int cpus = early_nr_cpus_node(node);
264
265	mem_data[node].pernode_addr = pernode;
266	mem_data[node].pernode_size = pernodesize;
267	memset(__va(pernode), 0, pernodesize);
268
269	cpu_data = (void *)pernode;
270	pernode += PERCPU_PAGE_SIZE * cpus;
271	pernode += node * L1_CACHE_BYTES;
272
273	pgdat_list[node] = __va(pernode);
274	pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
275
276	mem_data[node].node_data = __va(pernode);
277	pernode += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
278	pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
279
280	cpu_data = per_cpu_node_setup(cpu_data, node);
281
282	return;
283}
284
285/**
286 * find_pernode_space - allocate memory for memory map and per-node structures
287 * @start: physical start of range
288 * @len: length of range
289 * @node: node where this range resides
290 *
291 * This routine reserves space for the per-cpu data struct, the list of
292 * pg_data_ts and the per-node data struct.  Each node will have something like
293 * the following in the first chunk of addr. space large enough to hold it.
294 *
295 *    ________________________
296 *   |                        |
297 *   |~~~~~~~~~~~~~~~~~~~~~~~~| <-- NODEDATA_ALIGN(start, node) for the first
298 *   |    PERCPU_PAGE_SIZE *  |     start and length big enough
299 *   |    cpus_on_this_node   | Node 0 will also have entries for all non-existent cpus.
300 *   |------------------------|
301 *   |   local pg_data_t *    |
302 *   |------------------------|
303 *   |  local ia64_node_data  |
304 *   |------------------------|
305 *   |          ???           |
306 *   |________________________|
307 *
308 * Once this space has been set aside, the bootmem maps are initialized.  We
309 * could probably move the allocation of the per-cpu and ia64_node_data space
310 * outside of this function and use alloc_bootmem_node(), but doing it here
311 * is straightforward and we get the alignments we want so...
312 */
313static int __init find_pernode_space(unsigned long start, unsigned long len,
314				     int node)
315{
316	unsigned long spfn, epfn;
317	unsigned long pernodesize = 0, pernode;
318
319	spfn = start >> PAGE_SHIFT;
320	epfn = (start + len) >> PAGE_SHIFT;
321
322	/*
323	 * Make sure this memory falls within this node's usable memory
324	 * since we may have thrown some away in build_maps().
325	 */
326	if (spfn < mem_data[node].min_pfn || epfn > mem_data[node].max_pfn)
327		return 0;
328
329	/* Don't setup this node's local space twice... */
330	if (mem_data[node].pernode_addr)
331		return 0;
332
333	/*
334	 * Calculate total size needed, incl. what's necessary
335	 * for good alignment and alias prevention.
336	 */
337	pernodesize = compute_pernodesize(node);
338	pernode = NODEDATA_ALIGN(start, node);
339
340	/* Is this range big enough for what we want to store here? */
341	if (start + len > (pernode + pernodesize))
342		fill_pernode(node, pernode, pernodesize);
343
344	return 0;
345}
346
347/**
348 * reserve_pernode_space - reserve memory for per-node space
349 *
350 * Reserve the space used by the bootmem maps & per-node space in the boot
351 * allocator so that when we actually create the real mem maps we don't
352 * use their memory.
353 */
354static void __init reserve_pernode_space(void)
355{
356	unsigned long base, size;
357	int node;
358
359	for_each_online_node(node) {
360		if (node_isset(node, memory_less_mask))
361			continue;
362
363		/* Now the per-node space */
364		size = mem_data[node].pernode_size;
365		base = __pa(mem_data[node].pernode_addr);
366		memblock_reserve(base, size);
367	}
368}
369
370static void scatter_node_data(void)
371{
372	pg_data_t **dst;
373	int node;
374
375	/*
376	 * for_each_online_node() can't be used at here.
377	 * node_online_map is not set for hot-added nodes at this time,
378	 * because we are halfway through initialization of the new node's
379	 * structures.  If for_each_online_node() is used, a new node's
380	 * pg_data_ptrs will be not initialized. Instead of using it,
381	 * pgdat_list[] is checked.
382	 */
383	for_each_node(node) {
384		if (pgdat_list[node]) {
385			dst = LOCAL_DATA_ADDR(pgdat_list[node])->pg_data_ptrs;
386			memcpy(dst, pgdat_list, sizeof(pgdat_list));
387		}
388	}
389}
390
391/**
392 * initialize_pernode_data - fixup per-cpu & per-node pointers
393 *
394 * Each node's per-node area has a copy of the global pg_data_t list, so
395 * we copy that to each node here, as well as setting the per-cpu pointer
396 * to the local node data structure.
397 */
398static void __init initialize_pernode_data(void)
399{
400	int cpu, node;
401
402	scatter_node_data();
403
404#ifdef CONFIG_SMP
405	/* Set the node_data pointer for each per-cpu struct */
406	for_each_possible_early_cpu(cpu) {
407		node = node_cpuid[cpu].nid;
408		per_cpu(ia64_cpu_info, cpu).node_data =
409			mem_data[node].node_data;
410	}
411#else
412	{
413		struct cpuinfo_ia64 *cpu0_cpu_info;
414		cpu = 0;
415		node = node_cpuid[cpu].nid;
416		cpu0_cpu_info = (struct cpuinfo_ia64 *)(__phys_per_cpu_start +
417			((char *)&ia64_cpu_info - __per_cpu_start));
418		cpu0_cpu_info->node_data = mem_data[node].node_data;
419	}
420#endif /* CONFIG_SMP */
421}
422
423/**
424 * memory_less_node_alloc - * attempt to allocate memory on the best NUMA slit
425 * 	node but fall back to any other node when __alloc_bootmem_node fails
426 *	for best.
427 * @nid: node id
428 * @pernodesize: size of this node's pernode data
429 */
430static void __init *memory_less_node_alloc(int nid, unsigned long pernodesize)
431{
432	void *ptr = NULL;
433	u8 best = 0xff;
434	int bestnode = NUMA_NO_NODE, node, anynode = 0;
435
436	for_each_online_node(node) {
437		if (node_isset(node, memory_less_mask))
438			continue;
439		else if (node_distance(nid, node) < best) {
440			best = node_distance(nid, node);
441			bestnode = node;
442		}
443		anynode = node;
444	}
445
446	if (bestnode == NUMA_NO_NODE)
447		bestnode = anynode;
448
449	ptr = memblock_alloc_try_nid(pernodesize, PERCPU_PAGE_SIZE,
450				     __pa(MAX_DMA_ADDRESS),
451				     MEMBLOCK_ALLOC_ACCESSIBLE,
452				     bestnode);
453	if (!ptr)
454		panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%lx\n",
455		      __func__, pernodesize, PERCPU_PAGE_SIZE, bestnode,
456		      __pa(MAX_DMA_ADDRESS));
457
458	return ptr;
459}
460
461/**
462 * memory_less_nodes - allocate and initialize CPU only nodes pernode
463 *	information.
464 */
465static void __init memory_less_nodes(void)
466{
467	unsigned long pernodesize;
468	void *pernode;
469	int node;
470
471	for_each_node_mask(node, memory_less_mask) {
472		pernodesize = compute_pernodesize(node);
473		pernode = memory_less_node_alloc(node, pernodesize);
474		fill_pernode(node, __pa(pernode), pernodesize);
475	}
476
477	return;
478}
479
480/**
481 * find_memory - walk the EFI memory map and setup the bootmem allocator
482 *
483 * Called early in boot to setup the bootmem allocator, and to
484 * allocate the per-cpu and per-node structures.
485 */
486void __init find_memory(void)
487{
488	int node;
489
490	reserve_memory();
491	efi_memmap_walk(filter_memory, register_active_ranges);
492
493	if (num_online_nodes() == 0) {
494		printk(KERN_ERR "node info missing!\n");
495		node_set_online(0);
496	}
497
498	nodes_or(memory_less_mask, memory_less_mask, node_online_map);
499	min_low_pfn = -1;
500	max_low_pfn = 0;
501
502	/* These actually end up getting called by call_pernode_memory() */
503	efi_memmap_walk(filter_rsvd_memory, build_node_maps);
504	efi_memmap_walk(filter_rsvd_memory, find_pernode_space);
505	efi_memmap_walk(find_max_min_low_pfn, NULL);
506
507	for_each_online_node(node)
508		if (mem_data[node].min_pfn)
509			node_clear(node, memory_less_mask);
510
511	reserve_pernode_space();
512	memory_less_nodes();
513	initialize_pernode_data();
514
515	max_pfn = max_low_pfn;
516
517	find_initrd();
518}
519
520#ifdef CONFIG_SMP
521/**
522 * per_cpu_init - setup per-cpu variables
523 *
524 * find_pernode_space() does most of this already, we just need to set
525 * local_per_cpu_offset
526 */
527void *per_cpu_init(void)
528{
529	int cpu;
530	static int first_time = 1;
531
532	if (first_time) {
533		first_time = 0;
534		for_each_possible_early_cpu(cpu)
535			per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];
536	}
537
538	return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
539}
540#endif /* CONFIG_SMP */
541
542/**
543 * call_pernode_memory - use SRAT to call callback functions with node info
544 * @start: physical start of range
545 * @len: length of range
546 * @arg: function to call for each range
547 *
548 * efi_memmap_walk() knows nothing about layout of memory across nodes. Find
549 * out to which node a block of memory belongs.  Ignore memory that we cannot
550 * identify, and split blocks that run across multiple nodes.
551 *
552 * Take this opportunity to round the start address up and the end address
553 * down to page boundaries.
554 */
555void call_pernode_memory(unsigned long start, unsigned long len, void *arg)
556{
557	unsigned long rs, re, end = start + len;
558	void (*func)(unsigned long, unsigned long, int);
559	int i;
560
561	start = PAGE_ALIGN(start);
562	end &= PAGE_MASK;
563	if (start >= end)
564		return;
565
566	func = arg;
567
568	if (!num_node_memblks) {
569		/* No SRAT table, so assume one node (node 0) */
570		if (start < end)
571			(*func)(start, end - start, 0);
572		return;
573	}
574
575	for (i = 0; i < num_node_memblks; i++) {
576		rs = max(start, node_memblk[i].start_paddr);
577		re = min(end, node_memblk[i].start_paddr +
578			 node_memblk[i].size);
579
580		if (rs < re)
581			(*func)(rs, re - rs, node_memblk[i].nid);
582
583		if (re == end)
584			break;
585	}
586}
587
588/**
589 * paging_init - setup page tables
590 *
591 * paging_init() sets up the page tables for each node of the system and frees
592 * the bootmem allocator memory for general use.
593 */
594void __init paging_init(void)
595{
596	unsigned long max_dma;
597	unsigned long max_zone_pfns[MAX_NR_ZONES];
598
599	max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
600
601	sparse_init();
602
603	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
604	max_zone_pfns[ZONE_DMA32] = max_dma;
605	max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
606	free_area_init(max_zone_pfns);
607
608	zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));
609}
610
611pg_data_t * __init arch_alloc_nodedata(int nid)
612{
613	unsigned long size = compute_pernodesize(nid);
614
615	return memblock_alloc(size, SMP_CACHE_BYTES);
616}
617
618void arch_refresh_nodedata(int update_node, pg_data_t *update_pgdat)
619{
620	pgdat_list[update_node] = update_pgdat;
621	scatter_node_data();
622}
623
624#ifdef CONFIG_SPARSEMEM_VMEMMAP
625int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
626		struct vmem_altmap *altmap)
627{
628	return vmemmap_populate_basepages(start, end, node, NULL);
629}
630
631void vmemmap_free(unsigned long start, unsigned long end,
632		struct vmem_altmap *altmap)
633{
634}
635#endif