Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (c) 2000, 2003 Silicon Graphics, Inc.  All rights reserved.
  4 * Copyright (c) 2001 Intel Corp.
  5 * Copyright (c) 2001 Tony Luck <tony.luck@intel.com>
  6 * Copyright (c) 2002 NEC Corp.
  7 * Copyright (c) 2002 Kimio Suganuma <k-suganuma@da.jp.nec.com>
  8 * Copyright (c) 2004 Silicon Graphics, Inc
  9 *	Russ Anderson <rja@sgi.com>
 10 *	Jesse Barnes <jbarnes@sgi.com>
 11 *	Jack Steiner <steiner@sgi.com>
 12 */
 13
 14/*
 15 * Platform initialization for Discontig Memory
 16 */
 17
 18#include <linux/kernel.h>
 19#include <linux/mm.h>
 20#include <linux/nmi.h>
 21#include <linux/swap.h>
 22#include <linux/memblock.h>
 23#include <linux/acpi.h>
 24#include <linux/efi.h>
 25#include <linux/nodemask.h>
 26#include <linux/slab.h>
 27#include <asm/tlb.h>
 28#include <asm/meminit.h>
 29#include <asm/numa.h>
 30#include <asm/sections.h>
 31
 32/*
 33 * Track per-node information needed to setup the boot memory allocator, the
 34 * per-node areas, and the real VM.
 35 */
 36struct early_node_data {
 37	struct ia64_node_data *node_data;
 38	unsigned long pernode_addr;
 39	unsigned long pernode_size;
 40	unsigned long min_pfn;
 41	unsigned long max_pfn;
 42};
 43
 44static struct early_node_data mem_data[MAX_NUMNODES] __initdata;
 45static nodemask_t memory_less_mask __initdata;
 46
 47pg_data_t *pgdat_list[MAX_NUMNODES];
 48
 49/*
 50 * To prevent cache aliasing effects, align per-node structures so that they
 51 * start at addresses that are strided by node number.
 52 */
 53#define MAX_NODE_ALIGN_OFFSET	(32 * 1024 * 1024)
 54#define NODEDATA_ALIGN(addr, node)						\
 55	((((addr) + 1024*1024-1) & ~(1024*1024-1)) + 				\
 56	     (((node)*PERCPU_PAGE_SIZE) & (MAX_NODE_ALIGN_OFFSET - 1)))
 57
 58/**
 59 * build_node_maps - callback to setup mem_data structs for each node
 60 * @start: physical start of range
 61 * @len: length of range
 62 * @node: node where this range resides
 63 *
 64 * Detect extents of each piece of memory that we wish to
 65 * treat as a virtually contiguous block (i.e. each node). Each such block
 66 * must start on an %IA64_GRANULE_SIZE boundary, so we round the address down
 67 * if necessary.  Any non-existent pages will simply be part of the virtual
 68 * memmap.
 69 */
 70static int __init build_node_maps(unsigned long start, unsigned long len,
 71				  int node)
 72{
 73	unsigned long spfn, epfn, end = start + len;
 74
 75	epfn = GRANULEROUNDUP(end) >> PAGE_SHIFT;
 76	spfn = GRANULEROUNDDOWN(start) >> PAGE_SHIFT;
 77
 78	if (!mem_data[node].min_pfn) {
 79		mem_data[node].min_pfn = spfn;
 80		mem_data[node].max_pfn = epfn;
 81	} else {
 82		mem_data[node].min_pfn = min(spfn, mem_data[node].min_pfn);
 83		mem_data[node].max_pfn = max(epfn, mem_data[node].max_pfn);
 84	}
 85
 86	return 0;
 87}
 88
 89/**
 90 * early_nr_cpus_node - return number of cpus on a given node
 91 * @node: node to check
 92 *
 93 * Count the number of cpus on @node.  We can't use nr_cpus_node() yet because
 94 * acpi_boot_init() (which builds the node_to_cpu_mask array) hasn't been
 95 * called yet.  Note that node 0 will also count all non-existent cpus.
 96 */
 97static int __meminit early_nr_cpus_node(int node)
 98{
 99	int cpu, n = 0;
100
101	for_each_possible_early_cpu(cpu)
102		if (node == node_cpuid[cpu].nid)
103			n++;
104
105	return n;
106}
107
108/**
109 * compute_pernodesize - compute size of pernode data
110 * @node: the node id.
111 */
112static unsigned long __meminit compute_pernodesize(int node)
113{
114	unsigned long pernodesize = 0, cpus;
115
116	cpus = early_nr_cpus_node(node);
117	pernodesize += PERCPU_PAGE_SIZE * cpus;
118	pernodesize += node * L1_CACHE_BYTES;
119	pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t));
120	pernodesize += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
121	pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t));
122	pernodesize = PAGE_ALIGN(pernodesize);
123	return pernodesize;
124}
125
126/**
127 * per_cpu_node_setup - setup per-cpu areas on each node
128 * @cpu_data: per-cpu area on this node
129 * @node: node to setup
130 *
131 * Copy the static per-cpu data into the region we just set aside and then
132 * setup __per_cpu_offset for each CPU on this node.  Return a pointer to
133 * the end of the area.
134 */
135static void *per_cpu_node_setup(void *cpu_data, int node)
136{
137#ifdef CONFIG_SMP
138	int cpu;
139
140	for_each_possible_early_cpu(cpu) {
141		void *src = cpu == 0 ? __cpu0_per_cpu : __phys_per_cpu_start;
142
143		if (node != node_cpuid[cpu].nid)
144			continue;
145
146		memcpy(__va(cpu_data), src, __per_cpu_end - __per_cpu_start);
147		__per_cpu_offset[cpu] = (char *)__va(cpu_data) -
148			__per_cpu_start;
149
150		/*
151		 * percpu area for cpu0 is moved from the __init area
152		 * which is setup by head.S and used till this point.
153		 * Update ar.k3.  This move is ensures that percpu
154		 * area for cpu0 is on the correct node and its
155		 * virtual address isn't insanely far from other
156		 * percpu areas which is important for congruent
157		 * percpu allocator.
158		 */
159		if (cpu == 0)
160			ia64_set_kr(IA64_KR_PER_CPU_DATA,
161				    (unsigned long)cpu_data -
162				    (unsigned long)__per_cpu_start);
163
164		cpu_data += PERCPU_PAGE_SIZE;
165	}
166#endif
167	return cpu_data;
168}
169
170#ifdef CONFIG_SMP
171/**
172 * setup_per_cpu_areas - setup percpu areas
173 *
174 * Arch code has already allocated and initialized percpu areas.  All
175 * this function has to do is to teach the determined layout to the
176 * dynamic percpu allocator, which happens to be more complex than
177 * creating whole new ones using helpers.
178 */
179void __init setup_per_cpu_areas(void)
180{
181	struct pcpu_alloc_info *ai;
182	struct pcpu_group_info *gi;
183	unsigned int *cpu_map;
184	void *base;
185	unsigned long base_offset;
186	unsigned int cpu;
187	ssize_t static_size, reserved_size, dyn_size;
188	int node, prev_node, unit, nr_units;
189
190	ai = pcpu_alloc_alloc_info(MAX_NUMNODES, nr_cpu_ids);
191	if (!ai)
192		panic("failed to allocate pcpu_alloc_info");
193	cpu_map = ai->groups[0].cpu_map;
194
195	/* determine base */
196	base = (void *)ULONG_MAX;
197	for_each_possible_cpu(cpu)
198		base = min(base,
199			   (void *)(__per_cpu_offset[cpu] + __per_cpu_start));
200	base_offset = (void *)__per_cpu_start - base;
201
202	/* build cpu_map, units are grouped by node */
203	unit = 0;
204	for_each_node(node)
205		for_each_possible_cpu(cpu)
206			if (node == node_cpuid[cpu].nid)
207				cpu_map[unit++] = cpu;
208	nr_units = unit;
209
210	/* set basic parameters */
211	static_size = __per_cpu_end - __per_cpu_start;
212	reserved_size = PERCPU_MODULE_RESERVE;
213	dyn_size = PERCPU_PAGE_SIZE - static_size - reserved_size;
214	if (dyn_size < 0)
215		panic("percpu area overflow static=%zd reserved=%zd\n",
216		      static_size, reserved_size);
217
218	ai->static_size		= static_size;
219	ai->reserved_size	= reserved_size;
220	ai->dyn_size		= dyn_size;
221	ai->unit_size		= PERCPU_PAGE_SIZE;
222	ai->atom_size		= PAGE_SIZE;
223	ai->alloc_size		= PERCPU_PAGE_SIZE;
224
225	/*
226	 * CPUs are put into groups according to node.  Walk cpu_map
227	 * and create new groups at node boundaries.
228	 */
229	prev_node = NUMA_NO_NODE;
230	ai->nr_groups = 0;
231	for (unit = 0; unit < nr_units; unit++) {
232		cpu = cpu_map[unit];
233		node = node_cpuid[cpu].nid;
234
235		if (node == prev_node) {
236			gi->nr_units++;
237			continue;
238		}
239		prev_node = node;
240
241		gi = &ai->groups[ai->nr_groups++];
242		gi->nr_units		= 1;
243		gi->base_offset		= __per_cpu_offset[cpu] + base_offset;
244		gi->cpu_map		= &cpu_map[unit];
245	}
246
247	pcpu_setup_first_chunk(ai, base);
248	pcpu_free_alloc_info(ai);
249}
250#endif
251
252/**
253 * fill_pernode - initialize pernode data.
254 * @node: the node id.
255 * @pernode: physical address of pernode data
256 * @pernodesize: size of the pernode data
257 */
258static void __init fill_pernode(int node, unsigned long pernode,
259	unsigned long pernodesize)
260{
261	void *cpu_data;
262	int cpus = early_nr_cpus_node(node);
263
264	mem_data[node].pernode_addr = pernode;
265	mem_data[node].pernode_size = pernodesize;
266	memset(__va(pernode), 0, pernodesize);
267
268	cpu_data = (void *)pernode;
269	pernode += PERCPU_PAGE_SIZE * cpus;
270	pernode += node * L1_CACHE_BYTES;
271
272	pgdat_list[node] = __va(pernode);
273	pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
274
275	mem_data[node].node_data = __va(pernode);
276	pernode += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
277	pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
278
279	cpu_data = per_cpu_node_setup(cpu_data, node);
280
281	return;
282}
283
284/**
285 * find_pernode_space - allocate memory for memory map and per-node structures
286 * @start: physical start of range
287 * @len: length of range
288 * @node: node where this range resides
289 *
290 * This routine reserves space for the per-cpu data struct, the list of
291 * pg_data_ts and the per-node data struct.  Each node will have something like
292 * the following in the first chunk of addr. space large enough to hold it.
293 *
294 *    ________________________
295 *   |                        |
296 *   |~~~~~~~~~~~~~~~~~~~~~~~~| <-- NODEDATA_ALIGN(start, node) for the first
297 *   |    PERCPU_PAGE_SIZE *  |     start and length big enough
298 *   |    cpus_on_this_node   | Node 0 will also have entries for all non-existent cpus.
299 *   |------------------------|
300 *   |   local pg_data_t *    |
301 *   |------------------------|
302 *   |  local ia64_node_data  |
303 *   |------------------------|
304 *   |          ???           |
305 *   |________________________|
306 *
307 * Once this space has been set aside, the bootmem maps are initialized.  We
308 * could probably move the allocation of the per-cpu and ia64_node_data space
309 * outside of this function and use alloc_bootmem_node(), but doing it here
310 * is straightforward and we get the alignments we want so...
311 */
312static int __init find_pernode_space(unsigned long start, unsigned long len,
313				     int node)
314{
315	unsigned long spfn, epfn;
316	unsigned long pernodesize = 0, pernode;
317
318	spfn = start >> PAGE_SHIFT;
319	epfn = (start + len) >> PAGE_SHIFT;
320
321	/*
322	 * Make sure this memory falls within this node's usable memory
323	 * since we may have thrown some away in build_maps().
324	 */
325	if (spfn < mem_data[node].min_pfn || epfn > mem_data[node].max_pfn)
326		return 0;
327
328	/* Don't setup this node's local space twice... */
329	if (mem_data[node].pernode_addr)
330		return 0;
331
332	/*
333	 * Calculate total size needed, incl. what's necessary
334	 * for good alignment and alias prevention.
335	 */
336	pernodesize = compute_pernodesize(node);
337	pernode = NODEDATA_ALIGN(start, node);
338
339	/* Is this range big enough for what we want to store here? */
340	if (start + len > (pernode + pernodesize))
341		fill_pernode(node, pernode, pernodesize);
342
343	return 0;
344}
345
346/**
347 * reserve_pernode_space - reserve memory for per-node space
348 *
349 * Reserve the space used by the bootmem maps & per-node space in the boot
350 * allocator so that when we actually create the real mem maps we don't
351 * use their memory.
352 */
353static void __init reserve_pernode_space(void)
354{
355	unsigned long base, size;
356	int node;
357
358	for_each_online_node(node) {
359		if (node_isset(node, memory_less_mask))
360			continue;
361
362		/* Now the per-node space */
363		size = mem_data[node].pernode_size;
364		base = __pa(mem_data[node].pernode_addr);
365		memblock_reserve(base, size);
366	}
367}
368
369static void __meminit scatter_node_data(void)
370{
371	pg_data_t **dst;
372	int node;
373
374	/*
375	 * for_each_online_node() can't be used at here.
376	 * node_online_map is not set for hot-added nodes at this time,
377	 * because we are halfway through initialization of the new node's
378	 * structures.  If for_each_online_node() is used, a new node's
379	 * pg_data_ptrs will be not initialized. Instead of using it,
380	 * pgdat_list[] is checked.
381	 */
382	for_each_node(node) {
383		if (pgdat_list[node]) {
384			dst = LOCAL_DATA_ADDR(pgdat_list[node])->pg_data_ptrs;
385			memcpy(dst, pgdat_list, sizeof(pgdat_list));
386		}
387	}
388}
389
390/**
391 * initialize_pernode_data - fixup per-cpu & per-node pointers
392 *
393 * Each node's per-node area has a copy of the global pg_data_t list, so
394 * we copy that to each node here, as well as setting the per-cpu pointer
395 * to the local node data structure.
396 */
397static void __init initialize_pernode_data(void)
398{
399	int cpu, node;
400
401	scatter_node_data();
402
403#ifdef CONFIG_SMP
404	/* Set the node_data pointer for each per-cpu struct */
405	for_each_possible_early_cpu(cpu) {
406		node = node_cpuid[cpu].nid;
407		per_cpu(ia64_cpu_info, cpu).node_data =
408			mem_data[node].node_data;
409	}
410#else
411	{
412		struct cpuinfo_ia64 *cpu0_cpu_info;
413		cpu = 0;
414		node = node_cpuid[cpu].nid;
415		cpu0_cpu_info = (struct cpuinfo_ia64 *)(__phys_per_cpu_start +
416			((char *)&ia64_cpu_info - __per_cpu_start));
417		cpu0_cpu_info->node_data = mem_data[node].node_data;
418	}
419#endif /* CONFIG_SMP */
420}
421
422/**
423 * memory_less_node_alloc - * attempt to allocate memory on the best NUMA slit
424 * 	node but fall back to any other node when __alloc_bootmem_node fails
425 *	for best.
426 * @nid: node id
427 * @pernodesize: size of this node's pernode data
428 */
429static void __init *memory_less_node_alloc(int nid, unsigned long pernodesize)
430{
431	void *ptr = NULL;
432	u8 best = 0xff;
433	int bestnode = NUMA_NO_NODE, node, anynode = 0;
434
435	for_each_online_node(node) {
436		if (node_isset(node, memory_less_mask))
437			continue;
438		else if (node_distance(nid, node) < best) {
439			best = node_distance(nid, node);
440			bestnode = node;
441		}
442		anynode = node;
443	}
444
445	if (bestnode == NUMA_NO_NODE)
446		bestnode = anynode;
447
448	ptr = memblock_alloc_try_nid(pernodesize, PERCPU_PAGE_SIZE,
449				     __pa(MAX_DMA_ADDRESS),
450				     MEMBLOCK_ALLOC_ACCESSIBLE,
451				     bestnode);
452	if (!ptr)
453		panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%lx\n",
454		      __func__, pernodesize, PERCPU_PAGE_SIZE, bestnode,
455		      __pa(MAX_DMA_ADDRESS));
456
457	return ptr;
458}
459
460/**
461 * memory_less_nodes - allocate and initialize CPU only nodes pernode
462 *	information.
463 */
464static void __init memory_less_nodes(void)
465{
466	unsigned long pernodesize;
467	void *pernode;
468	int node;
469
470	for_each_node_mask(node, memory_less_mask) {
471		pernodesize = compute_pernodesize(node);
472		pernode = memory_less_node_alloc(node, pernodesize);
473		fill_pernode(node, __pa(pernode), pernodesize);
474	}
475
476	return;
477}
478
479/**
480 * find_memory - walk the EFI memory map and setup the bootmem allocator
481 *
482 * Called early in boot to setup the bootmem allocator, and to
483 * allocate the per-cpu and per-node structures.
484 */
485void __init find_memory(void)
486{
487	int node;
488
489	reserve_memory();
490	efi_memmap_walk(filter_memory, register_active_ranges);
491
492	if (num_online_nodes() == 0) {
493		printk(KERN_ERR "node info missing!\n");
494		node_set_online(0);
495	}
496
497	nodes_or(memory_less_mask, memory_less_mask, node_online_map);
498	min_low_pfn = -1;
499	max_low_pfn = 0;
500
501	/* These actually end up getting called by call_pernode_memory() */
502	efi_memmap_walk(filter_rsvd_memory, build_node_maps);
503	efi_memmap_walk(filter_rsvd_memory, find_pernode_space);
504	efi_memmap_walk(find_max_min_low_pfn, NULL);
505
506	for_each_online_node(node)
507		if (mem_data[node].min_pfn)
508			node_clear(node, memory_less_mask);
509
510	reserve_pernode_space();
511	memory_less_nodes();
512	initialize_pernode_data();
513
514	max_pfn = max_low_pfn;
515
516	find_initrd();
517}
518
519#ifdef CONFIG_SMP
520/**
521 * per_cpu_init - setup per-cpu variables
522 *
523 * find_pernode_space() does most of this already, we just need to set
524 * local_per_cpu_offset
525 */
526void *per_cpu_init(void)
527{
528	int cpu;
529	static int first_time = 1;
530
531	if (first_time) {
532		first_time = 0;
533		for_each_possible_early_cpu(cpu)
534			per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];
535	}
536
537	return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
538}
539#endif /* CONFIG_SMP */
540
541/**
542 * call_pernode_memory - use SRAT to call callback functions with node info
543 * @start: physical start of range
544 * @len: length of range
545 * @arg: function to call for each range
546 *
547 * efi_memmap_walk() knows nothing about layout of memory across nodes. Find
548 * out to which node a block of memory belongs.  Ignore memory that we cannot
549 * identify, and split blocks that run across multiple nodes.
550 *
551 * Take this opportunity to round the start address up and the end address
552 * down to page boundaries.
553 */
554void call_pernode_memory(unsigned long start, unsigned long len, void *arg)
555{
556	unsigned long rs, re, end = start + len;
557	void (*func)(unsigned long, unsigned long, int);
558	int i;
559
560	start = PAGE_ALIGN(start);
561	end &= PAGE_MASK;
562	if (start >= end)
563		return;
564
565	func = arg;
566
567	if (!num_node_memblks) {
568		/* No SRAT table, so assume one node (node 0) */
569		if (start < end)
570			(*func)(start, end - start, 0);
571		return;
572	}
573
574	for (i = 0; i < num_node_memblks; i++) {
575		rs = max(start, node_memblk[i].start_paddr);
576		re = min(end, node_memblk[i].start_paddr +
577			 node_memblk[i].size);
578
579		if (rs < re)
580			(*func)(rs, re - rs, node_memblk[i].nid);
581
582		if (re == end)
583			break;
584	}
585}
586
587/**
588 * paging_init - setup page tables
589 *
590 * paging_init() sets up the page tables for each node of the system and frees
591 * the bootmem allocator memory for general use.
592 */
593void __init paging_init(void)
594{
595	unsigned long max_dma;
596	unsigned long pfn_offset = 0;
597	unsigned long max_pfn = 0;
598	int node;
599	unsigned long max_zone_pfns[MAX_NR_ZONES];
600
601	max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
602
603	sparse_init();
604
605#ifdef CONFIG_VIRTUAL_MEM_MAP
606	VMALLOC_END -= PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) *
607		sizeof(struct page));
608	vmem_map = (struct page *) VMALLOC_END;
609	efi_memmap_walk(create_mem_map_page_table, NULL);
610	printk("Virtual mem_map starts at 0x%p\n", vmem_map);
611#endif
612
613	for_each_online_node(node) {
614		pfn_offset = mem_data[node].min_pfn;
615
616#ifdef CONFIG_VIRTUAL_MEM_MAP
617		NODE_DATA(node)->node_mem_map = vmem_map + pfn_offset;
618#endif
619		if (mem_data[node].max_pfn > max_pfn)
620			max_pfn = mem_data[node].max_pfn;
621	}
622
623	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
624#ifdef CONFIG_ZONE_DMA32
625	max_zone_pfns[ZONE_DMA32] = max_dma;
626#endif
627	max_zone_pfns[ZONE_NORMAL] = max_pfn;
628	free_area_init(max_zone_pfns);
629
630	zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));
631}
632
633#ifdef CONFIG_MEMORY_HOTPLUG
634pg_data_t *arch_alloc_nodedata(int nid)
635{
636	unsigned long size = compute_pernodesize(nid);
637
638	return kzalloc(size, GFP_KERNEL);
639}
640
641void arch_free_nodedata(pg_data_t *pgdat)
642{
643	kfree(pgdat);
644}
645
646void arch_refresh_nodedata(int update_node, pg_data_t *update_pgdat)
647{
648	pgdat_list[update_node] = update_pgdat;
649	scatter_node_data();
650}
651#endif
652
653#ifdef CONFIG_SPARSEMEM_VMEMMAP
654int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
655		struct vmem_altmap *altmap)
656{
657	return vmemmap_populate_basepages(start, end, node, NULL);
658}
659
660void vmemmap_free(unsigned long start, unsigned long end,
661		struct vmem_altmap *altmap)
662{
663}
664#endif