Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *	mm/mremap.c
   4 *
   5 *	(C) Copyright 1996 Linus Torvalds
   6 *
   7 *	Address space accounting code	<alan@lxorguk.ukuu.org.uk>
   8 *	(C) Copyright 2002 Red Hat Inc, All Rights Reserved
   9 */
  10
  11#include <linux/mm.h>
  12#include <linux/mm_inline.h>
  13#include <linux/hugetlb.h>
  14#include <linux/shm.h>
  15#include <linux/ksm.h>
  16#include <linux/mman.h>
  17#include <linux/swap.h>
  18#include <linux/capability.h>
  19#include <linux/fs.h>
  20#include <linux/swapops.h>
  21#include <linux/highmem.h>
  22#include <linux/security.h>
  23#include <linux/syscalls.h>
  24#include <linux/mmu_notifier.h>
  25#include <linux/uaccess.h>
  26#include <linux/userfaultfd_k.h>
  27#include <linux/mempolicy.h>
  28
  29#include <asm/cacheflush.h>
  30#include <asm/tlb.h>
  31#include <asm/pgalloc.h>
  32
  33#include "internal.h"
  34
  35static pud_t *get_old_pud(struct mm_struct *mm, unsigned long addr)
  36{
  37	pgd_t *pgd;
  38	p4d_t *p4d;
  39	pud_t *pud;
  40
  41	pgd = pgd_offset(mm, addr);
  42	if (pgd_none_or_clear_bad(pgd))
  43		return NULL;
  44
  45	p4d = p4d_offset(pgd, addr);
  46	if (p4d_none_or_clear_bad(p4d))
  47		return NULL;
  48
  49	pud = pud_offset(p4d, addr);
  50	if (pud_none_or_clear_bad(pud))
  51		return NULL;
  52
  53	return pud;
  54}
  55
  56static pmd_t *get_old_pmd(struct mm_struct *mm, unsigned long addr)
  57{
  58	pud_t *pud;
  59	pmd_t *pmd;
  60
  61	pud = get_old_pud(mm, addr);
  62	if (!pud)
  63		return NULL;
  64
  65	pmd = pmd_offset(pud, addr);
  66	if (pmd_none(*pmd))
  67		return NULL;
  68
  69	return pmd;
  70}
  71
  72static pud_t *alloc_new_pud(struct mm_struct *mm, struct vm_area_struct *vma,
  73			    unsigned long addr)
  74{
  75	pgd_t *pgd;
  76	p4d_t *p4d;
  77
  78	pgd = pgd_offset(mm, addr);
  79	p4d = p4d_alloc(mm, pgd, addr);
  80	if (!p4d)
  81		return NULL;
  82
  83	return pud_alloc(mm, p4d, addr);
  84}
  85
  86static pmd_t *alloc_new_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
  87			    unsigned long addr)
  88{
  89	pud_t *pud;
  90	pmd_t *pmd;
  91
  92	pud = alloc_new_pud(mm, vma, addr);
  93	if (!pud)
  94		return NULL;
  95
  96	pmd = pmd_alloc(mm, pud, addr);
  97	if (!pmd)
  98		return NULL;
  99
 100	VM_BUG_ON(pmd_trans_huge(*pmd));
 101
 102	return pmd;
 103}
 104
 105static void take_rmap_locks(struct vm_area_struct *vma)
 106{
 107	if (vma->vm_file)
 108		i_mmap_lock_write(vma->vm_file->f_mapping);
 109	if (vma->anon_vma)
 110		anon_vma_lock_write(vma->anon_vma);
 111}
 112
 113static void drop_rmap_locks(struct vm_area_struct *vma)
 114{
 115	if (vma->anon_vma)
 116		anon_vma_unlock_write(vma->anon_vma);
 117	if (vma->vm_file)
 118		i_mmap_unlock_write(vma->vm_file->f_mapping);
 119}
 120
 121static pte_t move_soft_dirty_pte(pte_t pte)
 122{
 123	/*
 124	 * Set soft dirty bit so we can notice
 125	 * in userspace the ptes were moved.
 126	 */
 127#ifdef CONFIG_MEM_SOFT_DIRTY
 128	if (pte_present(pte))
 129		pte = pte_mksoft_dirty(pte);
 130	else if (is_swap_pte(pte))
 131		pte = pte_swp_mksoft_dirty(pte);
 132#endif
 133	return pte;
 134}
 135
 136static int move_ptes(struct vm_area_struct *vma, pmd_t *old_pmd,
 137		unsigned long old_addr, unsigned long old_end,
 138		struct vm_area_struct *new_vma, pmd_t *new_pmd,
 139		unsigned long new_addr, bool need_rmap_locks)
 140{
 
 141	struct mm_struct *mm = vma->vm_mm;
 142	pte_t *old_pte, *new_pte, pte;
 
 143	spinlock_t *old_ptl, *new_ptl;
 144	bool force_flush = false;
 145	unsigned long len = old_end - old_addr;
 146	int err = 0;
 147
 148	/*
 149	 * When need_rmap_locks is true, we take the i_mmap_rwsem and anon_vma
 150	 * locks to ensure that rmap will always observe either the old or the
 151	 * new ptes. This is the easiest way to avoid races with
 152	 * truncate_pagecache(), page migration, etc...
 153	 *
 154	 * When need_rmap_locks is false, we use other ways to avoid
 155	 * such races:
 156	 *
 157	 * - During exec() shift_arg_pages(), we use a specially tagged vma
 158	 *   which rmap call sites look for using vma_is_temporary_stack().
 159	 *
 160	 * - During mremap(), new_vma is often known to be placed after vma
 161	 *   in rmap traversal order. This ensures rmap will always observe
 162	 *   either the old pte, or the new pte, or both (the page table locks
 163	 *   serialize access to individual ptes, but only rmap traversal
 164	 *   order guarantees that we won't miss both the old and new ptes).
 165	 */
 166	if (need_rmap_locks)
 167		take_rmap_locks(vma);
 168
 169	/*
 170	 * We don't have to worry about the ordering of src and dst
 171	 * pte locks because exclusive mmap_lock prevents deadlock.
 172	 */
 173	old_pte = pte_offset_map_lock(mm, old_pmd, old_addr, &old_ptl);
 174	if (!old_pte) {
 175		err = -EAGAIN;
 176		goto out;
 177	}
 178	new_pte = pte_offset_map_nolock(mm, new_pmd, new_addr, &new_ptl);
 
 
 
 
 
 
 
 
 179	if (!new_pte) {
 180		pte_unmap_unlock(old_pte, old_ptl);
 181		err = -EAGAIN;
 182		goto out;
 183	}
 184	if (new_ptl != old_ptl)
 185		spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
 186	flush_tlb_batched_pending(vma->vm_mm);
 187	arch_enter_lazy_mmu_mode();
 188
 189	for (; old_addr < old_end; old_pte++, old_addr += PAGE_SIZE,
 190				   new_pte++, new_addr += PAGE_SIZE) {
 191		if (pte_none(ptep_get(old_pte)))
 192			continue;
 193
 194		pte = ptep_get_and_clear(mm, old_addr, old_pte);
 195		/*
 196		 * If we are remapping a valid PTE, make sure
 197		 * to flush TLB before we drop the PTL for the
 198		 * PTE.
 199		 *
 200		 * NOTE! Both old and new PTL matter: the old one
 201		 * for racing with page_mkclean(), the new one to
 202		 * make sure the physical page stays valid until
 203		 * the TLB entry for the old mapping has been
 204		 * flushed.
 205		 */
 206		if (pte_present(pte))
 207			force_flush = true;
 208		pte = move_pte(pte, new_vma->vm_page_prot, old_addr, new_addr);
 209		pte = move_soft_dirty_pte(pte);
 210		set_pte_at(mm, new_addr, new_pte, pte);
 
 
 
 
 
 
 
 
 
 
 
 211	}
 212
 213	arch_leave_lazy_mmu_mode();
 214	if (force_flush)
 215		flush_tlb_range(vma, old_end - len, old_end);
 216	if (new_ptl != old_ptl)
 217		spin_unlock(new_ptl);
 218	pte_unmap(new_pte - 1);
 219	pte_unmap_unlock(old_pte - 1, old_ptl);
 220out:
 221	if (need_rmap_locks)
 222		drop_rmap_locks(vma);
 223	return err;
 224}
 225
 226#ifndef arch_supports_page_table_move
 227#define arch_supports_page_table_move arch_supports_page_table_move
 228static inline bool arch_supports_page_table_move(void)
 229{
 230	return IS_ENABLED(CONFIG_HAVE_MOVE_PMD) ||
 231		IS_ENABLED(CONFIG_HAVE_MOVE_PUD);
 232}
 233#endif
 234
 235#ifdef CONFIG_HAVE_MOVE_PMD
 236static bool move_normal_pmd(struct vm_area_struct *vma, unsigned long old_addr,
 237		  unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
 238{
 239	spinlock_t *old_ptl, *new_ptl;
 240	struct mm_struct *mm = vma->vm_mm;
 
 241	pmd_t pmd;
 242
 243	if (!arch_supports_page_table_move())
 244		return false;
 245	/*
 246	 * The destination pmd shouldn't be established, free_pgtables()
 247	 * should have released it.
 248	 *
 249	 * However, there's a case during execve() where we use mremap
 250	 * to move the initial stack, and in that case the target area
 251	 * may overlap the source area (always moving down).
 252	 *
 253	 * If everything is PMD-aligned, that works fine, as moving
 254	 * each pmd down will clear the source pmd. But if we first
 255	 * have a few 4kB-only pages that get moved down, and then
 256	 * hit the "now the rest is PMD-aligned, let's do everything
 257	 * one pmd at a time", we will still have the old (now empty
 258	 * of any 4kB pages, but still there) PMD in the page table
 259	 * tree.
 260	 *
 261	 * Warn on it once - because we really should try to figure
 262	 * out how to do this better - but then say "I won't move
 263	 * this pmd".
 264	 *
 265	 * One alternative might be to just unmap the target pmd at
 266	 * this point, and verify that it really is empty. We'll see.
 267	 */
 268	if (WARN_ON_ONCE(!pmd_none(*new_pmd)))
 269		return false;
 270
 
 
 
 
 
 
 
 
 
 271	/*
 272	 * We don't have to worry about the ordering of src and dst
 273	 * ptlocks because exclusive mmap_lock prevents deadlock.
 274	 */
 275	old_ptl = pmd_lock(vma->vm_mm, old_pmd);
 276	new_ptl = pmd_lockptr(mm, new_pmd);
 277	if (new_ptl != old_ptl)
 278		spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
 279
 280	/* Clear the pmd */
 281	pmd = *old_pmd;
 
 
 
 
 
 282	pmd_clear(old_pmd);
 
 283
 284	VM_BUG_ON(!pmd_none(*new_pmd));
 285
 286	pmd_populate(mm, new_pmd, pmd_pgtable(pmd));
 287	flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
 
 288	if (new_ptl != old_ptl)
 289		spin_unlock(new_ptl);
 290	spin_unlock(old_ptl);
 291
 292	return true;
 293}
 294#else
 295static inline bool move_normal_pmd(struct vm_area_struct *vma,
 296		unsigned long old_addr, unsigned long new_addr, pmd_t *old_pmd,
 297		pmd_t *new_pmd)
 298{
 299	return false;
 300}
 301#endif
 302
 303#if CONFIG_PGTABLE_LEVELS > 2 && defined(CONFIG_HAVE_MOVE_PUD)
 304static bool move_normal_pud(struct vm_area_struct *vma, unsigned long old_addr,
 305		  unsigned long new_addr, pud_t *old_pud, pud_t *new_pud)
 306{
 307	spinlock_t *old_ptl, *new_ptl;
 308	struct mm_struct *mm = vma->vm_mm;
 309	pud_t pud;
 310
 311	if (!arch_supports_page_table_move())
 312		return false;
 313	/*
 314	 * The destination pud shouldn't be established, free_pgtables()
 315	 * should have released it.
 316	 */
 317	if (WARN_ON_ONCE(!pud_none(*new_pud)))
 318		return false;
 319
 
 
 
 
 
 
 
 
 
 320	/*
 321	 * We don't have to worry about the ordering of src and dst
 322	 * ptlocks because exclusive mmap_lock prevents deadlock.
 323	 */
 324	old_ptl = pud_lock(vma->vm_mm, old_pud);
 325	new_ptl = pud_lockptr(mm, new_pud);
 326	if (new_ptl != old_ptl)
 327		spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
 328
 329	/* Clear the pud */
 330	pud = *old_pud;
 331	pud_clear(old_pud);
 332
 333	VM_BUG_ON(!pud_none(*new_pud));
 334
 335	pud_populate(mm, new_pud, pud_pgtable(pud));
 336	flush_tlb_range(vma, old_addr, old_addr + PUD_SIZE);
 337	if (new_ptl != old_ptl)
 338		spin_unlock(new_ptl);
 339	spin_unlock(old_ptl);
 340
 341	return true;
 342}
 343#else
 344static inline bool move_normal_pud(struct vm_area_struct *vma,
 345		unsigned long old_addr, unsigned long new_addr, pud_t *old_pud,
 346		pud_t *new_pud)
 347{
 348	return false;
 349}
 350#endif
 351
 352#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
 353static bool move_huge_pud(struct vm_area_struct *vma, unsigned long old_addr,
 354			  unsigned long new_addr, pud_t *old_pud, pud_t *new_pud)
 355{
 356	spinlock_t *old_ptl, *new_ptl;
 357	struct mm_struct *mm = vma->vm_mm;
 358	pud_t pud;
 359
 360	/*
 361	 * The destination pud shouldn't be established, free_pgtables()
 362	 * should have released it.
 363	 */
 364	if (WARN_ON_ONCE(!pud_none(*new_pud)))
 365		return false;
 366
 367	/*
 368	 * We don't have to worry about the ordering of src and dst
 369	 * ptlocks because exclusive mmap_lock prevents deadlock.
 370	 */
 371	old_ptl = pud_lock(vma->vm_mm, old_pud);
 372	new_ptl = pud_lockptr(mm, new_pud);
 373	if (new_ptl != old_ptl)
 374		spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
 375
 376	/* Clear the pud */
 377	pud = *old_pud;
 378	pud_clear(old_pud);
 379
 380	VM_BUG_ON(!pud_none(*new_pud));
 381
 382	/* Set the new pud */
 383	/* mark soft_ditry when we add pud level soft dirty support */
 384	set_pud_at(mm, new_addr, new_pud, pud);
 385	flush_pud_tlb_range(vma, old_addr, old_addr + HPAGE_PUD_SIZE);
 386	if (new_ptl != old_ptl)
 387		spin_unlock(new_ptl);
 388	spin_unlock(old_ptl);
 389
 390	return true;
 391}
 392#else
 393static bool move_huge_pud(struct vm_area_struct *vma, unsigned long old_addr,
 394			  unsigned long new_addr, pud_t *old_pud, pud_t *new_pud)
 395{
 396	WARN_ON_ONCE(1);
 397	return false;
 398
 399}
 400#endif
 401
 402enum pgt_entry {
 403	NORMAL_PMD,
 404	HPAGE_PMD,
 405	NORMAL_PUD,
 406	HPAGE_PUD,
 407};
 408
 409/*
 410 * Returns an extent of the corresponding size for the pgt_entry specified if
 411 * valid. Else returns a smaller extent bounded by the end of the source and
 412 * destination pgt_entry.
 413 */
 414static __always_inline unsigned long get_extent(enum pgt_entry entry,
 415			unsigned long old_addr, unsigned long old_end,
 416			unsigned long new_addr)
 417{
 418	unsigned long next, extent, mask, size;
 419
 420	switch (entry) {
 421	case HPAGE_PMD:
 422	case NORMAL_PMD:
 423		mask = PMD_MASK;
 424		size = PMD_SIZE;
 425		break;
 426	case HPAGE_PUD:
 427	case NORMAL_PUD:
 428		mask = PUD_MASK;
 429		size = PUD_SIZE;
 430		break;
 431	default:
 432		BUILD_BUG();
 433		break;
 434	}
 435
 436	next = (old_addr + size) & mask;
 437	/* even if next overflowed, extent below will be ok */
 438	extent = next - old_addr;
 439	if (extent > old_end - old_addr)
 440		extent = old_end - old_addr;
 441	next = (new_addr + size) & mask;
 442	if (extent > next - new_addr)
 443		extent = next - new_addr;
 444	return extent;
 445}
 446
 447/*
 448 * Attempts to speedup the move by moving entry at the level corresponding to
 449 * pgt_entry. Returns true if the move was successful, else false.
 450 */
 451static bool move_pgt_entry(enum pgt_entry entry, struct vm_area_struct *vma,
 452			unsigned long old_addr, unsigned long new_addr,
 453			void *old_entry, void *new_entry, bool need_rmap_locks)
 454{
 455	bool moved = false;
 456
 457	/* See comment in move_ptes() */
 458	if (need_rmap_locks)
 459		take_rmap_locks(vma);
 460
 461	switch (entry) {
 462	case NORMAL_PMD:
 463		moved = move_normal_pmd(vma, old_addr, new_addr, old_entry,
 464					new_entry);
 465		break;
 466	case NORMAL_PUD:
 467		moved = move_normal_pud(vma, old_addr, new_addr, old_entry,
 468					new_entry);
 469		break;
 470	case HPAGE_PMD:
 471		moved = IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
 472			move_huge_pmd(vma, old_addr, new_addr, old_entry,
 473				      new_entry);
 474		break;
 475	case HPAGE_PUD:
 476		moved = IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
 477			move_huge_pud(vma, old_addr, new_addr, old_entry,
 478				      new_entry);
 479		break;
 480
 481	default:
 482		WARN_ON_ONCE(1);
 483		break;
 484	}
 485
 486	if (need_rmap_locks)
 487		drop_rmap_locks(vma);
 488
 489	return moved;
 490}
 491
 492/*
 493 * A helper to check if aligning down is OK. The aligned address should fall
 494 * on *no mapping*. For the stack moving down, that's a special move within
 495 * the VMA that is created to span the source and destination of the move,
 496 * so we make an exception for it.
 497 */
 498static bool can_align_down(struct vm_area_struct *vma, unsigned long addr_to_align,
 499			    unsigned long mask, bool for_stack)
 500{
 501	unsigned long addr_masked = addr_to_align & mask;
 502
 503	/*
 504	 * If @addr_to_align of either source or destination is not the beginning
 505	 * of the corresponding VMA, we can't align down or we will destroy part
 506	 * of the current mapping.
 507	 */
 508	if (!for_stack && vma->vm_start != addr_to_align)
 509		return false;
 510
 511	/* In the stack case we explicitly permit in-VMA alignment. */
 512	if (for_stack && addr_masked >= vma->vm_start)
 513		return true;
 514
 515	/*
 516	 * Make sure the realignment doesn't cause the address to fall on an
 517	 * existing mapping.
 518	 */
 519	return find_vma_intersection(vma->vm_mm, addr_masked, vma->vm_start) == NULL;
 520}
 521
 522/* Opportunistically realign to specified boundary for faster copy. */
 523static void try_realign_addr(unsigned long *old_addr, struct vm_area_struct *old_vma,
 524			     unsigned long *new_addr, struct vm_area_struct *new_vma,
 525			     unsigned long mask, bool for_stack)
 526{
 527	/* Skip if the addresses are already aligned. */
 528	if ((*old_addr & ~mask) == 0)
 529		return;
 530
 531	/* Only realign if the new and old addresses are mutually aligned. */
 532	if ((*old_addr & ~mask) != (*new_addr & ~mask))
 533		return;
 534
 535	/* Ensure realignment doesn't cause overlap with existing mappings. */
 536	if (!can_align_down(old_vma, *old_addr, mask, for_stack) ||
 537	    !can_align_down(new_vma, *new_addr, mask, for_stack))
 538		return;
 539
 540	*old_addr = *old_addr & mask;
 541	*new_addr = *new_addr & mask;
 542}
 543
 544unsigned long move_page_tables(struct vm_area_struct *vma,
 545		unsigned long old_addr, struct vm_area_struct *new_vma,
 546		unsigned long new_addr, unsigned long len,
 547		bool need_rmap_locks, bool for_stack)
 548{
 549	unsigned long extent, old_end;
 550	struct mmu_notifier_range range;
 551	pmd_t *old_pmd, *new_pmd;
 552	pud_t *old_pud, *new_pud;
 553
 554	if (!len)
 555		return 0;
 556
 557	old_end = old_addr + len;
 558
 559	if (is_vm_hugetlb_page(vma))
 560		return move_hugetlb_page_tables(vma, new_vma, old_addr,
 561						new_addr, len);
 562
 563	/*
 564	 * If possible, realign addresses to PMD boundary for faster copy.
 565	 * Only realign if the mremap copying hits a PMD boundary.
 566	 */
 567	if (len >= PMD_SIZE - (old_addr & ~PMD_MASK))
 568		try_realign_addr(&old_addr, vma, &new_addr, new_vma, PMD_MASK,
 569				 for_stack);
 570
 571	flush_cache_range(vma, old_addr, old_end);
 572	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
 573				old_addr, old_end);
 574	mmu_notifier_invalidate_range_start(&range);
 575
 576	for (; old_addr < old_end; old_addr += extent, new_addr += extent) {
 577		cond_resched();
 578		/*
 579		 * If extent is PUD-sized try to speed up the move by moving at the
 580		 * PUD level if possible.
 581		 */
 582		extent = get_extent(NORMAL_PUD, old_addr, old_end, new_addr);
 583
 584		old_pud = get_old_pud(vma->vm_mm, old_addr);
 585		if (!old_pud)
 586			continue;
 587		new_pud = alloc_new_pud(vma->vm_mm, vma, new_addr);
 588		if (!new_pud)
 589			break;
 590		if (pud_trans_huge(*old_pud) || pud_devmap(*old_pud)) {
 591			if (extent == HPAGE_PUD_SIZE) {
 592				move_pgt_entry(HPAGE_PUD, vma, old_addr, new_addr,
 593					       old_pud, new_pud, need_rmap_locks);
 594				/* We ignore and continue on error? */
 595				continue;
 596			}
 597		} else if (IS_ENABLED(CONFIG_HAVE_MOVE_PUD) && extent == PUD_SIZE) {
 598
 599			if (move_pgt_entry(NORMAL_PUD, vma, old_addr, new_addr,
 600					   old_pud, new_pud, true))
 601				continue;
 602		}
 603
 604		extent = get_extent(NORMAL_PMD, old_addr, old_end, new_addr);
 605		old_pmd = get_old_pmd(vma->vm_mm, old_addr);
 606		if (!old_pmd)
 607			continue;
 608		new_pmd = alloc_new_pmd(vma->vm_mm, vma, new_addr);
 609		if (!new_pmd)
 610			break;
 611again:
 612		if (is_swap_pmd(*old_pmd) || pmd_trans_huge(*old_pmd) ||
 613		    pmd_devmap(*old_pmd)) {
 614			if (extent == HPAGE_PMD_SIZE &&
 615			    move_pgt_entry(HPAGE_PMD, vma, old_addr, new_addr,
 616					   old_pmd, new_pmd, need_rmap_locks))
 617				continue;
 618			split_huge_pmd(vma, old_pmd, old_addr);
 619		} else if (IS_ENABLED(CONFIG_HAVE_MOVE_PMD) &&
 620			   extent == PMD_SIZE) {
 621			/*
 622			 * If the extent is PMD-sized, try to speed the move by
 623			 * moving at the PMD level if possible.
 624			 */
 625			if (move_pgt_entry(NORMAL_PMD, vma, old_addr, new_addr,
 626					   old_pmd, new_pmd, true))
 627				continue;
 628		}
 629		if (pmd_none(*old_pmd))
 630			continue;
 631		if (pte_alloc(new_vma->vm_mm, new_pmd))
 632			break;
 633		if (move_ptes(vma, old_pmd, old_addr, old_addr + extent,
 634			      new_vma, new_pmd, new_addr, need_rmap_locks) < 0)
 635			goto again;
 636	}
 637
 638	mmu_notifier_invalidate_range_end(&range);
 639
 640	/*
 641	 * Prevent negative return values when {old,new}_addr was realigned
 642	 * but we broke out of the above loop for the first PMD itself.
 643	 */
 644	if (len + old_addr < old_end)
 645		return 0;
 646
 647	return len + old_addr - old_end;	/* how much done */
 648}
 649
 650static unsigned long move_vma(struct vm_area_struct *vma,
 651		unsigned long old_addr, unsigned long old_len,
 652		unsigned long new_len, unsigned long new_addr,
 653		bool *locked, unsigned long flags,
 654		struct vm_userfaultfd_ctx *uf, struct list_head *uf_unmap)
 655{
 656	long to_account = new_len - old_len;
 657	struct mm_struct *mm = vma->vm_mm;
 658	struct vm_area_struct *new_vma;
 659	unsigned long vm_flags = vma->vm_flags;
 660	unsigned long new_pgoff;
 661	unsigned long moved_len;
 662	unsigned long account_start = 0;
 663	unsigned long account_end = 0;
 664	unsigned long hiwater_vm;
 665	int err = 0;
 666	bool need_rmap_locks;
 667	struct vma_iterator vmi;
 668
 669	/*
 670	 * We'd prefer to avoid failure later on in do_munmap:
 671	 * which may split one vma into three before unmapping.
 672	 */
 673	if (mm->map_count >= sysctl_max_map_count - 3)
 674		return -ENOMEM;
 675
 676	if (unlikely(flags & MREMAP_DONTUNMAP))
 677		to_account = new_len;
 678
 679	if (vma->vm_ops && vma->vm_ops->may_split) {
 680		if (vma->vm_start != old_addr)
 681			err = vma->vm_ops->may_split(vma, old_addr);
 682		if (!err && vma->vm_end != old_addr + old_len)
 683			err = vma->vm_ops->may_split(vma, old_addr + old_len);
 684		if (err)
 685			return err;
 686	}
 687
 688	/*
 689	 * Advise KSM to break any KSM pages in the area to be moved:
 690	 * it would be confusing if they were to turn up at the new
 691	 * location, where they happen to coincide with different KSM
 692	 * pages recently unmapped.  But leave vma->vm_flags as it was,
 693	 * so KSM can come around to merge on vma and new_vma afterwards.
 694	 */
 695	err = ksm_madvise(vma, old_addr, old_addr + old_len,
 696						MADV_UNMERGEABLE, &vm_flags);
 697	if (err)
 698		return err;
 699
 700	if (vm_flags & VM_ACCOUNT) {
 701		if (security_vm_enough_memory_mm(mm, to_account >> PAGE_SHIFT))
 702			return -ENOMEM;
 703	}
 704
 705	vma_start_write(vma);
 706	new_pgoff = vma->vm_pgoff + ((old_addr - vma->vm_start) >> PAGE_SHIFT);
 707	new_vma = copy_vma(&vma, new_addr, new_len, new_pgoff,
 708			   &need_rmap_locks);
 709	if (!new_vma) {
 710		if (vm_flags & VM_ACCOUNT)
 711			vm_unacct_memory(to_account >> PAGE_SHIFT);
 712		return -ENOMEM;
 713	}
 714
 715	moved_len = move_page_tables(vma, old_addr, new_vma, new_addr, old_len,
 716				     need_rmap_locks, false);
 717	if (moved_len < old_len) {
 718		err = -ENOMEM;
 719	} else if (vma->vm_ops && vma->vm_ops->mremap) {
 720		err = vma->vm_ops->mremap(new_vma);
 721	}
 722
 723	if (unlikely(err)) {
 724		/*
 725		 * On error, move entries back from new area to old,
 726		 * which will succeed since page tables still there,
 727		 * and then proceed to unmap new area instead of old.
 728		 */
 729		move_page_tables(new_vma, new_addr, vma, old_addr, moved_len,
 730				 true, false);
 731		vma = new_vma;
 732		old_len = new_len;
 733		old_addr = new_addr;
 734		new_addr = err;
 735	} else {
 736		mremap_userfaultfd_prep(new_vma, uf);
 737	}
 738
 739	if (is_vm_hugetlb_page(vma)) {
 740		clear_vma_resv_huge_pages(vma);
 741	}
 742
 743	/* Conceal VM_ACCOUNT so old reservation is not undone */
 744	if (vm_flags & VM_ACCOUNT && !(flags & MREMAP_DONTUNMAP)) {
 745		vm_flags_clear(vma, VM_ACCOUNT);
 746		if (vma->vm_start < old_addr)
 747			account_start = vma->vm_start;
 748		if (vma->vm_end > old_addr + old_len)
 749			account_end = vma->vm_end;
 750	}
 751
 752	/*
 753	 * If we failed to move page tables we still do total_vm increment
 754	 * since do_munmap() will decrement it by old_len == new_len.
 755	 *
 756	 * Since total_vm is about to be raised artificially high for a
 757	 * moment, we need to restore high watermark afterwards: if stats
 758	 * are taken meanwhile, total_vm and hiwater_vm appear too high.
 759	 * If this were a serious issue, we'd add a flag to do_munmap().
 760	 */
 761	hiwater_vm = mm->hiwater_vm;
 762	vm_stat_account(mm, vma->vm_flags, new_len >> PAGE_SHIFT);
 763
 764	/* Tell pfnmap has moved from this vma */
 765	if (unlikely(vma->vm_flags & VM_PFNMAP))
 766		untrack_pfn_clear(vma);
 767
 768	if (unlikely(!err && (flags & MREMAP_DONTUNMAP))) {
 769		/* We always clear VM_LOCKED[ONFAULT] on the old vma */
 770		vm_flags_clear(vma, VM_LOCKED_MASK);
 771
 772		/*
 773		 * anon_vma links of the old vma is no longer needed after its page
 774		 * table has been moved.
 775		 */
 776		if (new_vma != vma && vma->vm_start == old_addr &&
 777			vma->vm_end == (old_addr + old_len))
 778			unlink_anon_vmas(vma);
 779
 780		/* Because we won't unmap we don't need to touch locked_vm */
 781		return new_addr;
 782	}
 783
 784	vma_iter_init(&vmi, mm, old_addr);
 785	if (do_vmi_munmap(&vmi, mm, old_addr, old_len, uf_unmap, false) < 0) {
 786		/* OOM: unable to split vma, just get accounts right */
 787		if (vm_flags & VM_ACCOUNT && !(flags & MREMAP_DONTUNMAP))
 788			vm_acct_memory(old_len >> PAGE_SHIFT);
 789		account_start = account_end = 0;
 790	}
 791
 792	if (vm_flags & VM_LOCKED) {
 793		mm->locked_vm += new_len >> PAGE_SHIFT;
 794		*locked = true;
 795	}
 796
 797	mm->hiwater_vm = hiwater_vm;
 798
 799	/* Restore VM_ACCOUNT if one or two pieces of vma left */
 800	if (account_start) {
 801		vma = vma_prev(&vmi);
 802		vm_flags_set(vma, VM_ACCOUNT);
 803	}
 804
 805	if (account_end) {
 806		vma = vma_next(&vmi);
 807		vm_flags_set(vma, VM_ACCOUNT);
 808	}
 809
 810	return new_addr;
 811}
 812
 813static struct vm_area_struct *vma_to_resize(unsigned long addr,
 
 
 
 
 
 
 
 
 
 
 
 
 814	unsigned long old_len, unsigned long new_len, unsigned long flags)
 815{
 816	struct mm_struct *mm = current->mm;
 817	struct vm_area_struct *vma;
 818	unsigned long pgoff;
 819
 820	vma = vma_lookup(mm, addr);
 821	if (!vma)
 822		return ERR_PTR(-EFAULT);
 823
 824	/*
 825	 * !old_len is a special case where an attempt is made to 'duplicate'
 826	 * a mapping.  This makes no sense for private mappings as it will
 827	 * instead create a fresh/new mapping unrelated to the original.  This
 828	 * is contrary to the basic idea of mremap which creates new mappings
 829	 * based on the original.  There are no known use cases for this
 830	 * behavior.  As a result, fail such attempts.
 831	 */
 832	if (!old_len && !(vma->vm_flags & (VM_SHARED | VM_MAYSHARE))) {
 833		pr_warn_once("%s (%d): attempted to duplicate a private mapping with mremap.  This is not supported.\n", current->comm, current->pid);
 834		return ERR_PTR(-EINVAL);
 835	}
 836
 837	if ((flags & MREMAP_DONTUNMAP) &&
 838			(vma->vm_flags & (VM_DONTEXPAND | VM_PFNMAP)))
 839		return ERR_PTR(-EINVAL);
 840
 841	/* We can't remap across vm area boundaries */
 842	if (old_len > vma->vm_end - addr)
 843		return ERR_PTR(-EFAULT);
 844
 845	if (new_len == old_len)
 846		return vma;
 847
 848	/* Need to be careful about a growing mapping */
 849	pgoff = (addr - vma->vm_start) >> PAGE_SHIFT;
 850	pgoff += vma->vm_pgoff;
 851	if (pgoff + (new_len >> PAGE_SHIFT) < pgoff)
 852		return ERR_PTR(-EINVAL);
 853
 854	if (vma->vm_flags & (VM_DONTEXPAND | VM_PFNMAP))
 855		return ERR_PTR(-EFAULT);
 856
 857	if (!mlock_future_ok(mm, vma->vm_flags, new_len - old_len))
 858		return ERR_PTR(-EAGAIN);
 859
 860	if (!may_expand_vm(mm, vma->vm_flags,
 861				(new_len - old_len) >> PAGE_SHIFT))
 862		return ERR_PTR(-ENOMEM);
 863
 864	return vma;
 865}
 866
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 867static unsigned long mremap_to(unsigned long addr, unsigned long old_len,
 868		unsigned long new_addr, unsigned long new_len, bool *locked,
 869		unsigned long flags, struct vm_userfaultfd_ctx *uf,
 870		struct list_head *uf_unmap_early,
 871		struct list_head *uf_unmap)
 872{
 873	struct mm_struct *mm = current->mm;
 874	struct vm_area_struct *vma;
 875	unsigned long ret = -EINVAL;
 876	unsigned long map_flags = 0;
 877
 878	if (offset_in_page(new_addr))
 879		goto out;
 880
 881	if (new_len > TASK_SIZE || new_addr > TASK_SIZE - new_len)
 882		goto out;
 883
 884	/* Ensure the old/new locations do not overlap */
 885	if (addr + old_len > new_addr && new_addr + new_len > addr)
 886		goto out;
 887
 888	/*
 889	 * move_vma() need us to stay 4 maps below the threshold, otherwise
 890	 * it will bail out at the very beginning.
 891	 * That is a problem if we have already unmaped the regions here
 892	 * (new_addr, and old_addr), because userspace will not know the
 893	 * state of the vma's after it gets -ENOMEM.
 894	 * So, to avoid such scenario we can pre-compute if the whole
 895	 * operation has high chances to success map-wise.
 896	 * Worst-scenario case is when both vma's (new_addr and old_addr) get
 897	 * split in 3 before unmapping it.
 898	 * That means 2 more maps (1 for each) to the ones we already hold.
 899	 * Check whether current map count plus 2 still leads us to 4 maps below
 900	 * the threshold, otherwise return -ENOMEM here to be more safe.
 901	 */
 902	if ((mm->map_count + 2) >= sysctl_max_map_count - 3)
 903		return -ENOMEM;
 904
 905	if (flags & MREMAP_FIXED) {
 
 
 
 
 
 906		ret = do_munmap(mm, new_addr, new_len, uf_unmap_early);
 907		if (ret)
 908			goto out;
 909	}
 910
 911	if (old_len > new_len) {
 912		ret = do_munmap(mm, addr+new_len, old_len - new_len, uf_unmap);
 913		if (ret)
 914			goto out;
 915		old_len = new_len;
 916	}
 917
 918	vma = vma_to_resize(addr, old_len, new_len, flags);
 919	if (IS_ERR(vma)) {
 920		ret = PTR_ERR(vma);
 921		goto out;
 922	}
 
 
 923
 924	/* MREMAP_DONTUNMAP expands by old_len since old_len == new_len */
 925	if (flags & MREMAP_DONTUNMAP &&
 926		!may_expand_vm(mm, vma->vm_flags, old_len >> PAGE_SHIFT)) {
 927		ret = -ENOMEM;
 928		goto out;
 929	}
 930
 931	if (flags & MREMAP_FIXED)
 932		map_flags |= MAP_FIXED;
 933
 934	if (vma->vm_flags & VM_MAYSHARE)
 935		map_flags |= MAP_SHARED;
 936
 937	ret = get_unmapped_area(vma->vm_file, new_addr, new_len, vma->vm_pgoff +
 938				((addr - vma->vm_start) >> PAGE_SHIFT),
 939				map_flags);
 940	if (IS_ERR_VALUE(ret))
 941		goto out;
 942
 943	/* We got a new mapping */
 944	if (!(flags & MREMAP_FIXED))
 945		new_addr = ret;
 946
 947	ret = move_vma(vma, addr, old_len, new_len, new_addr, locked, flags, uf,
 948		       uf_unmap);
 949
 950out:
 951	return ret;
 952}
 953
 954static int vma_expandable(struct vm_area_struct *vma, unsigned long delta)
 955{
 956	unsigned long end = vma->vm_end + delta;
 957
 958	if (end < vma->vm_end) /* overflow */
 959		return 0;
 960	if (find_vma_intersection(vma->vm_mm, vma->vm_end, end))
 961		return 0;
 962	if (get_unmapped_area(NULL, vma->vm_start, end - vma->vm_start,
 963			      0, MAP_FIXED) & ~PAGE_MASK)
 964		return 0;
 965	return 1;
 966}
 967
 968/*
 969 * Expand (or shrink) an existing mapping, potentially moving it at the
 970 * same time (controlled by the MREMAP_MAYMOVE flag and available VM space)
 971 *
 972 * MREMAP_FIXED option added 5-Dec-1999 by Benjamin LaHaise
 973 * This option implies MREMAP_MAYMOVE.
 974 */
 975SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
 976		unsigned long, new_len, unsigned long, flags,
 977		unsigned long, new_addr)
 978{
 979	struct mm_struct *mm = current->mm;
 980	struct vm_area_struct *vma;
 981	unsigned long ret = -EINVAL;
 982	bool locked = false;
 983	struct vm_userfaultfd_ctx uf = NULL_VM_UFFD_CTX;
 984	LIST_HEAD(uf_unmap_early);
 985	LIST_HEAD(uf_unmap);
 986
 987	/*
 988	 * There is a deliberate asymmetry here: we strip the pointer tag
 989	 * from the old address but leave the new address alone. This is
 990	 * for consistency with mmap(), where we prevent the creation of
 991	 * aliasing mappings in userspace by leaving the tag bits of the
 992	 * mapping address intact. A non-zero tag will cause the subsequent
 993	 * range checks to reject the address as invalid.
 994	 *
 995	 * See Documentation/arch/arm64/tagged-address-abi.rst for more
 996	 * information.
 997	 */
 998	addr = untagged_addr(addr);
 999
1000	if (flags & ~(MREMAP_FIXED | MREMAP_MAYMOVE | MREMAP_DONTUNMAP))
1001		return ret;
1002
1003	if (flags & MREMAP_FIXED && !(flags & MREMAP_MAYMOVE))
1004		return ret;
1005
1006	/*
1007	 * MREMAP_DONTUNMAP is always a move and it does not allow resizing
1008	 * in the process.
1009	 */
1010	if (flags & MREMAP_DONTUNMAP &&
1011			(!(flags & MREMAP_MAYMOVE) || old_len != new_len))
1012		return ret;
1013
1014
1015	if (offset_in_page(addr))
1016		return ret;
1017
1018	old_len = PAGE_ALIGN(old_len);
1019	new_len = PAGE_ALIGN(new_len);
1020
1021	/*
1022	 * We allow a zero old-len as a special case
1023	 * for DOS-emu "duplicate shm area" thing. But
1024	 * a zero new-len is nonsensical.
1025	 */
1026	if (!new_len)
1027		return ret;
1028
1029	if (mmap_write_lock_killable(current->mm))
1030		return -EINTR;
1031	vma = vma_lookup(mm, addr);
1032	if (!vma) {
1033		ret = -EFAULT;
1034		goto out;
1035	}
1036
 
 
 
 
 
 
1037	if (is_vm_hugetlb_page(vma)) {
1038		struct hstate *h __maybe_unused = hstate_vma(vma);
1039
1040		old_len = ALIGN(old_len, huge_page_size(h));
1041		new_len = ALIGN(new_len, huge_page_size(h));
1042
1043		/* addrs must be huge page aligned */
1044		if (addr & ~huge_page_mask(h))
1045			goto out;
1046		if (new_addr & ~huge_page_mask(h))
1047			goto out;
1048
1049		/*
1050		 * Don't allow remap expansion, because the underlying hugetlb
1051		 * reservation is not yet capable to handle split reservation.
1052		 */
1053		if (new_len > old_len)
1054			goto out;
1055	}
1056
1057	if (flags & (MREMAP_FIXED | MREMAP_DONTUNMAP)) {
1058		ret = mremap_to(addr, old_len, new_addr, new_len,
1059				&locked, flags, &uf, &uf_unmap_early,
1060				&uf_unmap);
1061		goto out;
1062	}
1063
1064	/*
1065	 * Always allow a shrinking remap: that just unmaps
1066	 * the unnecessary pages..
1067	 * do_vmi_munmap does all the needed commit accounting, and
1068	 * unlocks the mmap_lock if so directed.
1069	 */
1070	if (old_len >= new_len) {
1071		VMA_ITERATOR(vmi, mm, addr + new_len);
1072
1073		if (old_len == new_len) {
1074			ret = addr;
1075			goto out;
1076		}
1077
1078		ret = do_vmi_munmap(&vmi, mm, addr + new_len, old_len - new_len,
1079				    &uf_unmap, true);
1080		if (ret)
1081			goto out;
1082
1083		ret = addr;
1084		goto out_unlocked;
1085	}
1086
1087	/*
1088	 * Ok, we need to grow..
1089	 */
1090	vma = vma_to_resize(addr, old_len, new_len, flags);
1091	if (IS_ERR(vma)) {
1092		ret = PTR_ERR(vma);
1093		goto out;
1094	}
1095
1096	/* old_len exactly to the end of the area..
1097	 */
1098	if (old_len == vma->vm_end - addr) {
1099		unsigned long delta = new_len - old_len;
1100
1101		/* can we just expand the current mapping? */
1102		if (vma_expandable(vma, delta)) {
1103			long pages = delta >> PAGE_SHIFT;
1104			VMA_ITERATOR(vmi, mm, vma->vm_end);
1105			long charged = 0;
1106
1107			if (vma->vm_flags & VM_ACCOUNT) {
1108				if (security_vm_enough_memory_mm(mm, pages)) {
1109					ret = -ENOMEM;
1110					goto out;
1111				}
1112				charged = pages;
1113			}
1114
1115			/*
1116			 * Function vma_merge_extend() is called on the
1117			 * extension we are adding to the already existing vma,
1118			 * vma_merge_extend() will merge this extension with the
1119			 * already existing vma (expand operation itself) and
1120			 * possibly also with the next vma if it becomes
1121			 * adjacent to the expanded vma and otherwise
1122			 * compatible.
1123			 */
1124			vma = vma_merge_extend(&vmi, vma, delta);
1125			if (!vma) {
1126				vm_unacct_memory(charged);
1127				ret = -ENOMEM;
1128				goto out;
1129			}
1130
1131			vm_stat_account(mm, vma->vm_flags, pages);
1132			if (vma->vm_flags & VM_LOCKED) {
1133				mm->locked_vm += pages;
1134				locked = true;
1135				new_addr = addr;
1136			}
1137			ret = addr;
1138			goto out;
1139		}
1140	}
1141
1142	/*
1143	 * We weren't able to just expand or shrink the area,
1144	 * we need to create a new one and move it..
1145	 */
1146	ret = -ENOMEM;
1147	if (flags & MREMAP_MAYMOVE) {
1148		unsigned long map_flags = 0;
1149		if (vma->vm_flags & VM_MAYSHARE)
1150			map_flags |= MAP_SHARED;
1151
1152		new_addr = get_unmapped_area(vma->vm_file, 0, new_len,
1153					vma->vm_pgoff +
1154					((addr - vma->vm_start) >> PAGE_SHIFT),
1155					map_flags);
1156		if (IS_ERR_VALUE(new_addr)) {
1157			ret = new_addr;
1158			goto out;
1159		}
1160
1161		ret = move_vma(vma, addr, old_len, new_len, new_addr,
1162			       &locked, flags, &uf, &uf_unmap);
1163	}
1164out:
1165	if (offset_in_page(ret))
1166		locked = false;
1167	mmap_write_unlock(current->mm);
1168	if (locked && new_len > old_len)
1169		mm_populate(new_addr + old_len, new_len - old_len);
1170out_unlocked:
1171	userfaultfd_unmap_complete(mm, &uf_unmap_early);
1172	mremap_userfaultfd_complete(&uf, addr, ret, old_len);
1173	userfaultfd_unmap_complete(mm, &uf_unmap);
1174	return ret;
1175}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *	mm/mremap.c
   4 *
   5 *	(C) Copyright 1996 Linus Torvalds
   6 *
   7 *	Address space accounting code	<alan@lxorguk.ukuu.org.uk>
   8 *	(C) Copyright 2002 Red Hat Inc, All Rights Reserved
   9 */
  10
  11#include <linux/mm.h>
  12#include <linux/mm_inline.h>
  13#include <linux/hugetlb.h>
  14#include <linux/shm.h>
  15#include <linux/ksm.h>
  16#include <linux/mman.h>
  17#include <linux/swap.h>
  18#include <linux/capability.h>
  19#include <linux/fs.h>
  20#include <linux/swapops.h>
  21#include <linux/highmem.h>
  22#include <linux/security.h>
  23#include <linux/syscalls.h>
  24#include <linux/mmu_notifier.h>
  25#include <linux/uaccess.h>
  26#include <linux/userfaultfd_k.h>
  27#include <linux/mempolicy.h>
  28
  29#include <asm/cacheflush.h>
  30#include <asm/tlb.h>
  31#include <asm/pgalloc.h>
  32
  33#include "internal.h"
  34
  35static pud_t *get_old_pud(struct mm_struct *mm, unsigned long addr)
  36{
  37	pgd_t *pgd;
  38	p4d_t *p4d;
  39	pud_t *pud;
  40
  41	pgd = pgd_offset(mm, addr);
  42	if (pgd_none_or_clear_bad(pgd))
  43		return NULL;
  44
  45	p4d = p4d_offset(pgd, addr);
  46	if (p4d_none_or_clear_bad(p4d))
  47		return NULL;
  48
  49	pud = pud_offset(p4d, addr);
  50	if (pud_none_or_clear_bad(pud))
  51		return NULL;
  52
  53	return pud;
  54}
  55
  56static pmd_t *get_old_pmd(struct mm_struct *mm, unsigned long addr)
  57{
  58	pud_t *pud;
  59	pmd_t *pmd;
  60
  61	pud = get_old_pud(mm, addr);
  62	if (!pud)
  63		return NULL;
  64
  65	pmd = pmd_offset(pud, addr);
  66	if (pmd_none(*pmd))
  67		return NULL;
  68
  69	return pmd;
  70}
  71
  72static pud_t *alloc_new_pud(struct mm_struct *mm, struct vm_area_struct *vma,
  73			    unsigned long addr)
  74{
  75	pgd_t *pgd;
  76	p4d_t *p4d;
  77
  78	pgd = pgd_offset(mm, addr);
  79	p4d = p4d_alloc(mm, pgd, addr);
  80	if (!p4d)
  81		return NULL;
  82
  83	return pud_alloc(mm, p4d, addr);
  84}
  85
  86static pmd_t *alloc_new_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
  87			    unsigned long addr)
  88{
  89	pud_t *pud;
  90	pmd_t *pmd;
  91
  92	pud = alloc_new_pud(mm, vma, addr);
  93	if (!pud)
  94		return NULL;
  95
  96	pmd = pmd_alloc(mm, pud, addr);
  97	if (!pmd)
  98		return NULL;
  99
 100	VM_BUG_ON(pmd_trans_huge(*pmd));
 101
 102	return pmd;
 103}
 104
 105static void take_rmap_locks(struct vm_area_struct *vma)
 106{
 107	if (vma->vm_file)
 108		i_mmap_lock_write(vma->vm_file->f_mapping);
 109	if (vma->anon_vma)
 110		anon_vma_lock_write(vma->anon_vma);
 111}
 112
 113static void drop_rmap_locks(struct vm_area_struct *vma)
 114{
 115	if (vma->anon_vma)
 116		anon_vma_unlock_write(vma->anon_vma);
 117	if (vma->vm_file)
 118		i_mmap_unlock_write(vma->vm_file->f_mapping);
 119}
 120
 121static pte_t move_soft_dirty_pte(pte_t pte)
 122{
 123	/*
 124	 * Set soft dirty bit so we can notice
 125	 * in userspace the ptes were moved.
 126	 */
 127#ifdef CONFIG_MEM_SOFT_DIRTY
 128	if (pte_present(pte))
 129		pte = pte_mksoft_dirty(pte);
 130	else if (is_swap_pte(pte))
 131		pte = pte_swp_mksoft_dirty(pte);
 132#endif
 133	return pte;
 134}
 135
 136static int move_ptes(struct vm_area_struct *vma, pmd_t *old_pmd,
 137		unsigned long old_addr, unsigned long old_end,
 138		struct vm_area_struct *new_vma, pmd_t *new_pmd,
 139		unsigned long new_addr, bool need_rmap_locks)
 140{
 141	bool need_clear_uffd_wp = vma_has_uffd_without_event_remap(vma);
 142	struct mm_struct *mm = vma->vm_mm;
 143	pte_t *old_pte, *new_pte, pte;
 144	pmd_t dummy_pmdval;
 145	spinlock_t *old_ptl, *new_ptl;
 146	bool force_flush = false;
 147	unsigned long len = old_end - old_addr;
 148	int err = 0;
 149
 150	/*
 151	 * When need_rmap_locks is true, we take the i_mmap_rwsem and anon_vma
 152	 * locks to ensure that rmap will always observe either the old or the
 153	 * new ptes. This is the easiest way to avoid races with
 154	 * truncate_pagecache(), page migration, etc...
 155	 *
 156	 * When need_rmap_locks is false, we use other ways to avoid
 157	 * such races:
 158	 *
 159	 * - During exec() shift_arg_pages(), we use a specially tagged vma
 160	 *   which rmap call sites look for using vma_is_temporary_stack().
 161	 *
 162	 * - During mremap(), new_vma is often known to be placed after vma
 163	 *   in rmap traversal order. This ensures rmap will always observe
 164	 *   either the old pte, or the new pte, or both (the page table locks
 165	 *   serialize access to individual ptes, but only rmap traversal
 166	 *   order guarantees that we won't miss both the old and new ptes).
 167	 */
 168	if (need_rmap_locks)
 169		take_rmap_locks(vma);
 170
 171	/*
 172	 * We don't have to worry about the ordering of src and dst
 173	 * pte locks because exclusive mmap_lock prevents deadlock.
 174	 */
 175	old_pte = pte_offset_map_lock(mm, old_pmd, old_addr, &old_ptl);
 176	if (!old_pte) {
 177		err = -EAGAIN;
 178		goto out;
 179	}
 180	/*
 181	 * Now new_pte is none, so hpage_collapse_scan_file() path can not find
 182	 * this by traversing file->f_mapping, so there is no concurrency with
 183	 * retract_page_tables(). In addition, we already hold the exclusive
 184	 * mmap_lock, so this new_pte page is stable, so there is no need to get
 185	 * pmdval and do pmd_same() check.
 186	 */
 187	new_pte = pte_offset_map_rw_nolock(mm, new_pmd, new_addr, &dummy_pmdval,
 188					   &new_ptl);
 189	if (!new_pte) {
 190		pte_unmap_unlock(old_pte, old_ptl);
 191		err = -EAGAIN;
 192		goto out;
 193	}
 194	if (new_ptl != old_ptl)
 195		spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
 196	flush_tlb_batched_pending(vma->vm_mm);
 197	arch_enter_lazy_mmu_mode();
 198
 199	for (; old_addr < old_end; old_pte++, old_addr += PAGE_SIZE,
 200				   new_pte++, new_addr += PAGE_SIZE) {
 201		if (pte_none(ptep_get(old_pte)))
 202			continue;
 203
 204		pte = ptep_get_and_clear(mm, old_addr, old_pte);
 205		/*
 206		 * If we are remapping a valid PTE, make sure
 207		 * to flush TLB before we drop the PTL for the
 208		 * PTE.
 209		 *
 210		 * NOTE! Both old and new PTL matter: the old one
 211		 * for racing with folio_mkclean(), the new one to
 212		 * make sure the physical page stays valid until
 213		 * the TLB entry for the old mapping has been
 214		 * flushed.
 215		 */
 216		if (pte_present(pte))
 217			force_flush = true;
 218		pte = move_pte(pte, old_addr, new_addr);
 219		pte = move_soft_dirty_pte(pte);
 220
 221		if (need_clear_uffd_wp && pte_marker_uffd_wp(pte))
 222			pte_clear(mm, new_addr, new_pte);
 223		else {
 224			if (need_clear_uffd_wp) {
 225				if (pte_present(pte))
 226					pte = pte_clear_uffd_wp(pte);
 227				else if (is_swap_pte(pte))
 228					pte = pte_swp_clear_uffd_wp(pte);
 229			}
 230			set_pte_at(mm, new_addr, new_pte, pte);
 231		}
 232	}
 233
 234	arch_leave_lazy_mmu_mode();
 235	if (force_flush)
 236		flush_tlb_range(vma, old_end - len, old_end);
 237	if (new_ptl != old_ptl)
 238		spin_unlock(new_ptl);
 239	pte_unmap(new_pte - 1);
 240	pte_unmap_unlock(old_pte - 1, old_ptl);
 241out:
 242	if (need_rmap_locks)
 243		drop_rmap_locks(vma);
 244	return err;
 245}
 246
 247#ifndef arch_supports_page_table_move
 248#define arch_supports_page_table_move arch_supports_page_table_move
 249static inline bool arch_supports_page_table_move(void)
 250{
 251	return IS_ENABLED(CONFIG_HAVE_MOVE_PMD) ||
 252		IS_ENABLED(CONFIG_HAVE_MOVE_PUD);
 253}
 254#endif
 255
 256#ifdef CONFIG_HAVE_MOVE_PMD
 257static bool move_normal_pmd(struct vm_area_struct *vma, unsigned long old_addr,
 258		  unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
 259{
 260	spinlock_t *old_ptl, *new_ptl;
 261	struct mm_struct *mm = vma->vm_mm;
 262	bool res = false;
 263	pmd_t pmd;
 264
 265	if (!arch_supports_page_table_move())
 266		return false;
 267	/*
 268	 * The destination pmd shouldn't be established, free_pgtables()
 269	 * should have released it.
 270	 *
 271	 * However, there's a case during execve() where we use mremap
 272	 * to move the initial stack, and in that case the target area
 273	 * may overlap the source area (always moving down).
 274	 *
 275	 * If everything is PMD-aligned, that works fine, as moving
 276	 * each pmd down will clear the source pmd. But if we first
 277	 * have a few 4kB-only pages that get moved down, and then
 278	 * hit the "now the rest is PMD-aligned, let's do everything
 279	 * one pmd at a time", we will still have the old (now empty
 280	 * of any 4kB pages, but still there) PMD in the page table
 281	 * tree.
 282	 *
 283	 * Warn on it once - because we really should try to figure
 284	 * out how to do this better - but then say "I won't move
 285	 * this pmd".
 286	 *
 287	 * One alternative might be to just unmap the target pmd at
 288	 * this point, and verify that it really is empty. We'll see.
 289	 */
 290	if (WARN_ON_ONCE(!pmd_none(*new_pmd)))
 291		return false;
 292
 293	/* If this pmd belongs to a uffd vma with remap events disabled, we need
 294	 * to ensure that the uffd-wp state is cleared from all pgtables. This
 295	 * means recursing into lower page tables in move_page_tables(), and we
 296	 * can reuse the existing code if we simply treat the entry as "not
 297	 * moved".
 298	 */
 299	if (vma_has_uffd_without_event_remap(vma))
 300		return false;
 301
 302	/*
 303	 * We don't have to worry about the ordering of src and dst
 304	 * ptlocks because exclusive mmap_lock prevents deadlock.
 305	 */
 306	old_ptl = pmd_lock(vma->vm_mm, old_pmd);
 307	new_ptl = pmd_lockptr(mm, new_pmd);
 308	if (new_ptl != old_ptl)
 309		spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
 310
 
 311	pmd = *old_pmd;
 312
 313	/* Racing with collapse? */
 314	if (unlikely(!pmd_present(pmd) || pmd_leaf(pmd)))
 315		goto out_unlock;
 316	/* Clear the pmd */
 317	pmd_clear(old_pmd);
 318	res = true;
 319
 320	VM_BUG_ON(!pmd_none(*new_pmd));
 321
 322	pmd_populate(mm, new_pmd, pmd_pgtable(pmd));
 323	flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
 324out_unlock:
 325	if (new_ptl != old_ptl)
 326		spin_unlock(new_ptl);
 327	spin_unlock(old_ptl);
 328
 329	return res;
 330}
 331#else
 332static inline bool move_normal_pmd(struct vm_area_struct *vma,
 333		unsigned long old_addr, unsigned long new_addr, pmd_t *old_pmd,
 334		pmd_t *new_pmd)
 335{
 336	return false;
 337}
 338#endif
 339
 340#if CONFIG_PGTABLE_LEVELS > 2 && defined(CONFIG_HAVE_MOVE_PUD)
 341static bool move_normal_pud(struct vm_area_struct *vma, unsigned long old_addr,
 342		  unsigned long new_addr, pud_t *old_pud, pud_t *new_pud)
 343{
 344	spinlock_t *old_ptl, *new_ptl;
 345	struct mm_struct *mm = vma->vm_mm;
 346	pud_t pud;
 347
 348	if (!arch_supports_page_table_move())
 349		return false;
 350	/*
 351	 * The destination pud shouldn't be established, free_pgtables()
 352	 * should have released it.
 353	 */
 354	if (WARN_ON_ONCE(!pud_none(*new_pud)))
 355		return false;
 356
 357	/* If this pud belongs to a uffd vma with remap events disabled, we need
 358	 * to ensure that the uffd-wp state is cleared from all pgtables. This
 359	 * means recursing into lower page tables in move_page_tables(), and we
 360	 * can reuse the existing code if we simply treat the entry as "not
 361	 * moved".
 362	 */
 363	if (vma_has_uffd_without_event_remap(vma))
 364		return false;
 365
 366	/*
 367	 * We don't have to worry about the ordering of src and dst
 368	 * ptlocks because exclusive mmap_lock prevents deadlock.
 369	 */
 370	old_ptl = pud_lock(vma->vm_mm, old_pud);
 371	new_ptl = pud_lockptr(mm, new_pud);
 372	if (new_ptl != old_ptl)
 373		spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
 374
 375	/* Clear the pud */
 376	pud = *old_pud;
 377	pud_clear(old_pud);
 378
 379	VM_BUG_ON(!pud_none(*new_pud));
 380
 381	pud_populate(mm, new_pud, pud_pgtable(pud));
 382	flush_tlb_range(vma, old_addr, old_addr + PUD_SIZE);
 383	if (new_ptl != old_ptl)
 384		spin_unlock(new_ptl);
 385	spin_unlock(old_ptl);
 386
 387	return true;
 388}
 389#else
 390static inline bool move_normal_pud(struct vm_area_struct *vma,
 391		unsigned long old_addr, unsigned long new_addr, pud_t *old_pud,
 392		pud_t *new_pud)
 393{
 394	return false;
 395}
 396#endif
 397
 398#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
 399static bool move_huge_pud(struct vm_area_struct *vma, unsigned long old_addr,
 400			  unsigned long new_addr, pud_t *old_pud, pud_t *new_pud)
 401{
 402	spinlock_t *old_ptl, *new_ptl;
 403	struct mm_struct *mm = vma->vm_mm;
 404	pud_t pud;
 405
 406	/*
 407	 * The destination pud shouldn't be established, free_pgtables()
 408	 * should have released it.
 409	 */
 410	if (WARN_ON_ONCE(!pud_none(*new_pud)))
 411		return false;
 412
 413	/*
 414	 * We don't have to worry about the ordering of src and dst
 415	 * ptlocks because exclusive mmap_lock prevents deadlock.
 416	 */
 417	old_ptl = pud_lock(vma->vm_mm, old_pud);
 418	new_ptl = pud_lockptr(mm, new_pud);
 419	if (new_ptl != old_ptl)
 420		spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
 421
 422	/* Clear the pud */
 423	pud = *old_pud;
 424	pud_clear(old_pud);
 425
 426	VM_BUG_ON(!pud_none(*new_pud));
 427
 428	/* Set the new pud */
 429	/* mark soft_ditry when we add pud level soft dirty support */
 430	set_pud_at(mm, new_addr, new_pud, pud);
 431	flush_pud_tlb_range(vma, old_addr, old_addr + HPAGE_PUD_SIZE);
 432	if (new_ptl != old_ptl)
 433		spin_unlock(new_ptl);
 434	spin_unlock(old_ptl);
 435
 436	return true;
 437}
 438#else
 439static bool move_huge_pud(struct vm_area_struct *vma, unsigned long old_addr,
 440			  unsigned long new_addr, pud_t *old_pud, pud_t *new_pud)
 441{
 442	WARN_ON_ONCE(1);
 443	return false;
 444
 445}
 446#endif
 447
 448enum pgt_entry {
 449	NORMAL_PMD,
 450	HPAGE_PMD,
 451	NORMAL_PUD,
 452	HPAGE_PUD,
 453};
 454
 455/*
 456 * Returns an extent of the corresponding size for the pgt_entry specified if
 457 * valid. Else returns a smaller extent bounded by the end of the source and
 458 * destination pgt_entry.
 459 */
 460static __always_inline unsigned long get_extent(enum pgt_entry entry,
 461			unsigned long old_addr, unsigned long old_end,
 462			unsigned long new_addr)
 463{
 464	unsigned long next, extent, mask, size;
 465
 466	switch (entry) {
 467	case HPAGE_PMD:
 468	case NORMAL_PMD:
 469		mask = PMD_MASK;
 470		size = PMD_SIZE;
 471		break;
 472	case HPAGE_PUD:
 473	case NORMAL_PUD:
 474		mask = PUD_MASK;
 475		size = PUD_SIZE;
 476		break;
 477	default:
 478		BUILD_BUG();
 479		break;
 480	}
 481
 482	next = (old_addr + size) & mask;
 483	/* even if next overflowed, extent below will be ok */
 484	extent = next - old_addr;
 485	if (extent > old_end - old_addr)
 486		extent = old_end - old_addr;
 487	next = (new_addr + size) & mask;
 488	if (extent > next - new_addr)
 489		extent = next - new_addr;
 490	return extent;
 491}
 492
 493/*
 494 * Attempts to speedup the move by moving entry at the level corresponding to
 495 * pgt_entry. Returns true if the move was successful, else false.
 496 */
 497static bool move_pgt_entry(enum pgt_entry entry, struct vm_area_struct *vma,
 498			unsigned long old_addr, unsigned long new_addr,
 499			void *old_entry, void *new_entry, bool need_rmap_locks)
 500{
 501	bool moved = false;
 502
 503	/* See comment in move_ptes() */
 504	if (need_rmap_locks)
 505		take_rmap_locks(vma);
 506
 507	switch (entry) {
 508	case NORMAL_PMD:
 509		moved = move_normal_pmd(vma, old_addr, new_addr, old_entry,
 510					new_entry);
 511		break;
 512	case NORMAL_PUD:
 513		moved = move_normal_pud(vma, old_addr, new_addr, old_entry,
 514					new_entry);
 515		break;
 516	case HPAGE_PMD:
 517		moved = IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
 518			move_huge_pmd(vma, old_addr, new_addr, old_entry,
 519				      new_entry);
 520		break;
 521	case HPAGE_PUD:
 522		moved = IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
 523			move_huge_pud(vma, old_addr, new_addr, old_entry,
 524				      new_entry);
 525		break;
 526
 527	default:
 528		WARN_ON_ONCE(1);
 529		break;
 530	}
 531
 532	if (need_rmap_locks)
 533		drop_rmap_locks(vma);
 534
 535	return moved;
 536}
 537
 538/*
 539 * A helper to check if aligning down is OK. The aligned address should fall
 540 * on *no mapping*. For the stack moving down, that's a special move within
 541 * the VMA that is created to span the source and destination of the move,
 542 * so we make an exception for it.
 543 */
 544static bool can_align_down(struct vm_area_struct *vma, unsigned long addr_to_align,
 545			    unsigned long mask, bool for_stack)
 546{
 547	unsigned long addr_masked = addr_to_align & mask;
 548
 549	/*
 550	 * If @addr_to_align of either source or destination is not the beginning
 551	 * of the corresponding VMA, we can't align down or we will destroy part
 552	 * of the current mapping.
 553	 */
 554	if (!for_stack && vma->vm_start != addr_to_align)
 555		return false;
 556
 557	/* In the stack case we explicitly permit in-VMA alignment. */
 558	if (for_stack && addr_masked >= vma->vm_start)
 559		return true;
 560
 561	/*
 562	 * Make sure the realignment doesn't cause the address to fall on an
 563	 * existing mapping.
 564	 */
 565	return find_vma_intersection(vma->vm_mm, addr_masked, vma->vm_start) == NULL;
 566}
 567
 568/* Opportunistically realign to specified boundary for faster copy. */
 569static void try_realign_addr(unsigned long *old_addr, struct vm_area_struct *old_vma,
 570			     unsigned long *new_addr, struct vm_area_struct *new_vma,
 571			     unsigned long mask, bool for_stack)
 572{
 573	/* Skip if the addresses are already aligned. */
 574	if ((*old_addr & ~mask) == 0)
 575		return;
 576
 577	/* Only realign if the new and old addresses are mutually aligned. */
 578	if ((*old_addr & ~mask) != (*new_addr & ~mask))
 579		return;
 580
 581	/* Ensure realignment doesn't cause overlap with existing mappings. */
 582	if (!can_align_down(old_vma, *old_addr, mask, for_stack) ||
 583	    !can_align_down(new_vma, *new_addr, mask, for_stack))
 584		return;
 585
 586	*old_addr = *old_addr & mask;
 587	*new_addr = *new_addr & mask;
 588}
 589
 590unsigned long move_page_tables(struct vm_area_struct *vma,
 591		unsigned long old_addr, struct vm_area_struct *new_vma,
 592		unsigned long new_addr, unsigned long len,
 593		bool need_rmap_locks, bool for_stack)
 594{
 595	unsigned long extent, old_end;
 596	struct mmu_notifier_range range;
 597	pmd_t *old_pmd, *new_pmd;
 598	pud_t *old_pud, *new_pud;
 599
 600	if (!len)
 601		return 0;
 602
 603	old_end = old_addr + len;
 604
 605	if (is_vm_hugetlb_page(vma))
 606		return move_hugetlb_page_tables(vma, new_vma, old_addr,
 607						new_addr, len);
 608
 609	/*
 610	 * If possible, realign addresses to PMD boundary for faster copy.
 611	 * Only realign if the mremap copying hits a PMD boundary.
 612	 */
 613	if (len >= PMD_SIZE - (old_addr & ~PMD_MASK))
 614		try_realign_addr(&old_addr, vma, &new_addr, new_vma, PMD_MASK,
 615				 for_stack);
 616
 617	flush_cache_range(vma, old_addr, old_end);
 618	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
 619				old_addr, old_end);
 620	mmu_notifier_invalidate_range_start(&range);
 621
 622	for (; old_addr < old_end; old_addr += extent, new_addr += extent) {
 623		cond_resched();
 624		/*
 625		 * If extent is PUD-sized try to speed up the move by moving at the
 626		 * PUD level if possible.
 627		 */
 628		extent = get_extent(NORMAL_PUD, old_addr, old_end, new_addr);
 629
 630		old_pud = get_old_pud(vma->vm_mm, old_addr);
 631		if (!old_pud)
 632			continue;
 633		new_pud = alloc_new_pud(vma->vm_mm, vma, new_addr);
 634		if (!new_pud)
 635			break;
 636		if (pud_trans_huge(*old_pud) || pud_devmap(*old_pud)) {
 637			if (extent == HPAGE_PUD_SIZE) {
 638				move_pgt_entry(HPAGE_PUD, vma, old_addr, new_addr,
 639					       old_pud, new_pud, need_rmap_locks);
 640				/* We ignore and continue on error? */
 641				continue;
 642			}
 643		} else if (IS_ENABLED(CONFIG_HAVE_MOVE_PUD) && extent == PUD_SIZE) {
 644
 645			if (move_pgt_entry(NORMAL_PUD, vma, old_addr, new_addr,
 646					   old_pud, new_pud, true))
 647				continue;
 648		}
 649
 650		extent = get_extent(NORMAL_PMD, old_addr, old_end, new_addr);
 651		old_pmd = get_old_pmd(vma->vm_mm, old_addr);
 652		if (!old_pmd)
 653			continue;
 654		new_pmd = alloc_new_pmd(vma->vm_mm, vma, new_addr);
 655		if (!new_pmd)
 656			break;
 657again:
 658		if (is_swap_pmd(*old_pmd) || pmd_trans_huge(*old_pmd) ||
 659		    pmd_devmap(*old_pmd)) {
 660			if (extent == HPAGE_PMD_SIZE &&
 661			    move_pgt_entry(HPAGE_PMD, vma, old_addr, new_addr,
 662					   old_pmd, new_pmd, need_rmap_locks))
 663				continue;
 664			split_huge_pmd(vma, old_pmd, old_addr);
 665		} else if (IS_ENABLED(CONFIG_HAVE_MOVE_PMD) &&
 666			   extent == PMD_SIZE) {
 667			/*
 668			 * If the extent is PMD-sized, try to speed the move by
 669			 * moving at the PMD level if possible.
 670			 */
 671			if (move_pgt_entry(NORMAL_PMD, vma, old_addr, new_addr,
 672					   old_pmd, new_pmd, true))
 673				continue;
 674		}
 675		if (pmd_none(*old_pmd))
 676			continue;
 677		if (pte_alloc(new_vma->vm_mm, new_pmd))
 678			break;
 679		if (move_ptes(vma, old_pmd, old_addr, old_addr + extent,
 680			      new_vma, new_pmd, new_addr, need_rmap_locks) < 0)
 681			goto again;
 682	}
 683
 684	mmu_notifier_invalidate_range_end(&range);
 685
 686	/*
 687	 * Prevent negative return values when {old,new}_addr was realigned
 688	 * but we broke out of the above loop for the first PMD itself.
 689	 */
 690	if (old_addr < old_end - len)
 691		return 0;
 692
 693	return len + old_addr - old_end;	/* how much done */
 694}
 695
 696static unsigned long move_vma(struct vm_area_struct *vma,
 697		unsigned long old_addr, unsigned long old_len,
 698		unsigned long new_len, unsigned long new_addr,
 699		bool *locked, unsigned long flags,
 700		struct vm_userfaultfd_ctx *uf, struct list_head *uf_unmap)
 701{
 702	long to_account = new_len - old_len;
 703	struct mm_struct *mm = vma->vm_mm;
 704	struct vm_area_struct *new_vma;
 705	unsigned long vm_flags = vma->vm_flags;
 706	unsigned long new_pgoff;
 707	unsigned long moved_len;
 708	unsigned long account_start = 0;
 709	unsigned long account_end = 0;
 710	unsigned long hiwater_vm;
 711	int err = 0;
 712	bool need_rmap_locks;
 713	struct vma_iterator vmi;
 714
 715	/*
 716	 * We'd prefer to avoid failure later on in do_munmap:
 717	 * which may split one vma into three before unmapping.
 718	 */
 719	if (mm->map_count >= sysctl_max_map_count - 3)
 720		return -ENOMEM;
 721
 722	if (unlikely(flags & MREMAP_DONTUNMAP))
 723		to_account = new_len;
 724
 725	if (vma->vm_ops && vma->vm_ops->may_split) {
 726		if (vma->vm_start != old_addr)
 727			err = vma->vm_ops->may_split(vma, old_addr);
 728		if (!err && vma->vm_end != old_addr + old_len)
 729			err = vma->vm_ops->may_split(vma, old_addr + old_len);
 730		if (err)
 731			return err;
 732	}
 733
 734	/*
 735	 * Advise KSM to break any KSM pages in the area to be moved:
 736	 * it would be confusing if they were to turn up at the new
 737	 * location, where they happen to coincide with different KSM
 738	 * pages recently unmapped.  But leave vma->vm_flags as it was,
 739	 * so KSM can come around to merge on vma and new_vma afterwards.
 740	 */
 741	err = ksm_madvise(vma, old_addr, old_addr + old_len,
 742						MADV_UNMERGEABLE, &vm_flags);
 743	if (err)
 744		return err;
 745
 746	if (vm_flags & VM_ACCOUNT) {
 747		if (security_vm_enough_memory_mm(mm, to_account >> PAGE_SHIFT))
 748			return -ENOMEM;
 749	}
 750
 751	vma_start_write(vma);
 752	new_pgoff = vma->vm_pgoff + ((old_addr - vma->vm_start) >> PAGE_SHIFT);
 753	new_vma = copy_vma(&vma, new_addr, new_len, new_pgoff,
 754			   &need_rmap_locks);
 755	if (!new_vma) {
 756		if (vm_flags & VM_ACCOUNT)
 757			vm_unacct_memory(to_account >> PAGE_SHIFT);
 758		return -ENOMEM;
 759	}
 760
 761	moved_len = move_page_tables(vma, old_addr, new_vma, new_addr, old_len,
 762				     need_rmap_locks, false);
 763	if (moved_len < old_len) {
 764		err = -ENOMEM;
 765	} else if (vma->vm_ops && vma->vm_ops->mremap) {
 766		err = vma->vm_ops->mremap(new_vma);
 767	}
 768
 769	if (unlikely(err)) {
 770		/*
 771		 * On error, move entries back from new area to old,
 772		 * which will succeed since page tables still there,
 773		 * and then proceed to unmap new area instead of old.
 774		 */
 775		move_page_tables(new_vma, new_addr, vma, old_addr, moved_len,
 776				 true, false);
 777		vma = new_vma;
 778		old_len = new_len;
 779		old_addr = new_addr;
 780		new_addr = err;
 781	} else {
 782		mremap_userfaultfd_prep(new_vma, uf);
 783	}
 784
 785	if (is_vm_hugetlb_page(vma)) {
 786		clear_vma_resv_huge_pages(vma);
 787	}
 788
 789	/* Conceal VM_ACCOUNT so old reservation is not undone */
 790	if (vm_flags & VM_ACCOUNT && !(flags & MREMAP_DONTUNMAP)) {
 791		vm_flags_clear(vma, VM_ACCOUNT);
 792		if (vma->vm_start < old_addr)
 793			account_start = vma->vm_start;
 794		if (vma->vm_end > old_addr + old_len)
 795			account_end = vma->vm_end;
 796	}
 797
 798	/*
 799	 * If we failed to move page tables we still do total_vm increment
 800	 * since do_munmap() will decrement it by old_len == new_len.
 801	 *
 802	 * Since total_vm is about to be raised artificially high for a
 803	 * moment, we need to restore high watermark afterwards: if stats
 804	 * are taken meanwhile, total_vm and hiwater_vm appear too high.
 805	 * If this were a serious issue, we'd add a flag to do_munmap().
 806	 */
 807	hiwater_vm = mm->hiwater_vm;
 808	vm_stat_account(mm, vma->vm_flags, new_len >> PAGE_SHIFT);
 809
 810	/* Tell pfnmap has moved from this vma */
 811	if (unlikely(vma->vm_flags & VM_PFNMAP))
 812		untrack_pfn_clear(vma);
 813
 814	if (unlikely(!err && (flags & MREMAP_DONTUNMAP))) {
 815		/* We always clear VM_LOCKED[ONFAULT] on the old vma */
 816		vm_flags_clear(vma, VM_LOCKED_MASK);
 817
 818		/*
 819		 * anon_vma links of the old vma is no longer needed after its page
 820		 * table has been moved.
 821		 */
 822		if (new_vma != vma && vma->vm_start == old_addr &&
 823			vma->vm_end == (old_addr + old_len))
 824			unlink_anon_vmas(vma);
 825
 826		/* Because we won't unmap we don't need to touch locked_vm */
 827		return new_addr;
 828	}
 829
 830	vma_iter_init(&vmi, mm, old_addr);
 831	if (do_vmi_munmap(&vmi, mm, old_addr, old_len, uf_unmap, false) < 0) {
 832		/* OOM: unable to split vma, just get accounts right */
 833		if (vm_flags & VM_ACCOUNT && !(flags & MREMAP_DONTUNMAP))
 834			vm_acct_memory(old_len >> PAGE_SHIFT);
 835		account_start = account_end = 0;
 836	}
 837
 838	if (vm_flags & VM_LOCKED) {
 839		mm->locked_vm += new_len >> PAGE_SHIFT;
 840		*locked = true;
 841	}
 842
 843	mm->hiwater_vm = hiwater_vm;
 844
 845	/* Restore VM_ACCOUNT if one or two pieces of vma left */
 846	if (account_start) {
 847		vma = vma_prev(&vmi);
 848		vm_flags_set(vma, VM_ACCOUNT);
 849	}
 850
 851	if (account_end) {
 852		vma = vma_next(&vmi);
 853		vm_flags_set(vma, VM_ACCOUNT);
 854	}
 855
 856	return new_addr;
 857}
 858
 859/*
 860 * resize_is_valid() - Ensure the vma can be resized to the new length at the give
 861 * address.
 862 *
 863 * @vma: The vma to resize
 864 * @addr: The old address
 865 * @old_len: The current size
 866 * @new_len: The desired size
 867 * @flags: The vma flags
 868 *
 869 * Return 0 on success, error otherwise.
 870 */
 871static int resize_is_valid(struct vm_area_struct *vma, unsigned long addr,
 872	unsigned long old_len, unsigned long new_len, unsigned long flags)
 873{
 874	struct mm_struct *mm = current->mm;
 
 875	unsigned long pgoff;
 876
 
 
 
 
 877	/*
 878	 * !old_len is a special case where an attempt is made to 'duplicate'
 879	 * a mapping.  This makes no sense for private mappings as it will
 880	 * instead create a fresh/new mapping unrelated to the original.  This
 881	 * is contrary to the basic idea of mremap which creates new mappings
 882	 * based on the original.  There are no known use cases for this
 883	 * behavior.  As a result, fail such attempts.
 884	 */
 885	if (!old_len && !(vma->vm_flags & (VM_SHARED | VM_MAYSHARE))) {
 886		pr_warn_once("%s (%d): attempted to duplicate a private mapping with mremap.  This is not supported.\n", current->comm, current->pid);
 887		return -EINVAL;
 888	}
 889
 890	if ((flags & MREMAP_DONTUNMAP) &&
 891			(vma->vm_flags & (VM_DONTEXPAND | VM_PFNMAP)))
 892		return -EINVAL;
 893
 894	/* We can't remap across vm area boundaries */
 895	if (old_len > vma->vm_end - addr)
 896		return -EFAULT;
 897
 898	if (new_len == old_len)
 899		return 0;
 900
 901	/* Need to be careful about a growing mapping */
 902	pgoff = (addr - vma->vm_start) >> PAGE_SHIFT;
 903	pgoff += vma->vm_pgoff;
 904	if (pgoff + (new_len >> PAGE_SHIFT) < pgoff)
 905		return -EINVAL;
 906
 907	if (vma->vm_flags & (VM_DONTEXPAND | VM_PFNMAP))
 908		return -EFAULT;
 909
 910	if (!mlock_future_ok(mm, vma->vm_flags, new_len - old_len))
 911		return -EAGAIN;
 912
 913	if (!may_expand_vm(mm, vma->vm_flags,
 914				(new_len - old_len) >> PAGE_SHIFT))
 915		return -ENOMEM;
 916
 917	return 0;
 918}
 919
 920/*
 921 * mremap_to() - remap a vma to a new location
 922 * @addr: The old address
 923 * @old_len: The old size
 924 * @new_addr: The target address
 925 * @new_len: The new size
 926 * @locked: If the returned vma is locked (VM_LOCKED)
 927 * @flags: the mremap flags
 928 * @uf: The mremap userfaultfd context
 929 * @uf_unmap_early: The userfaultfd unmap early context
 930 * @uf_unmap: The userfaultfd unmap context
 931 *
 932 * Returns: The new address of the vma or an error.
 933 */
 934static unsigned long mremap_to(unsigned long addr, unsigned long old_len,
 935		unsigned long new_addr, unsigned long new_len, bool *locked,
 936		unsigned long flags, struct vm_userfaultfd_ctx *uf,
 937		struct list_head *uf_unmap_early,
 938		struct list_head *uf_unmap)
 939{
 940	struct mm_struct *mm = current->mm;
 941	struct vm_area_struct *vma;
 942	unsigned long ret;
 943	unsigned long map_flags = 0;
 944
 945	if (offset_in_page(new_addr))
 946		return -EINVAL;
 947
 948	if (new_len > TASK_SIZE || new_addr > TASK_SIZE - new_len)
 949		return -EINVAL;
 950
 951	/* Ensure the old/new locations do not overlap */
 952	if (addr + old_len > new_addr && new_addr + new_len > addr)
 953		return -EINVAL;
 954
 955	/*
 956	 * move_vma() need us to stay 4 maps below the threshold, otherwise
 957	 * it will bail out at the very beginning.
 958	 * That is a problem if we have already unmaped the regions here
 959	 * (new_addr, and old_addr), because userspace will not know the
 960	 * state of the vma's after it gets -ENOMEM.
 961	 * So, to avoid such scenario we can pre-compute if the whole
 962	 * operation has high chances to success map-wise.
 963	 * Worst-scenario case is when both vma's (new_addr and old_addr) get
 964	 * split in 3 before unmapping it.
 965	 * That means 2 more maps (1 for each) to the ones we already hold.
 966	 * Check whether current map count plus 2 still leads us to 4 maps below
 967	 * the threshold, otherwise return -ENOMEM here to be more safe.
 968	 */
 969	if ((mm->map_count + 2) >= sysctl_max_map_count - 3)
 970		return -ENOMEM;
 971
 972	if (flags & MREMAP_FIXED) {
 973		/*
 974		 * In mremap_to().
 975		 * VMA is moved to dst address, and munmap dst first.
 976		 * do_munmap will check if dst is sealed.
 977		 */
 978		ret = do_munmap(mm, new_addr, new_len, uf_unmap_early);
 979		if (ret)
 980			return ret;
 981	}
 982
 983	if (old_len > new_len) {
 984		ret = do_munmap(mm, addr+new_len, old_len - new_len, uf_unmap);
 985		if (ret)
 986			return ret;
 987		old_len = new_len;
 988	}
 989
 990	vma = vma_lookup(mm, addr);
 991	if (!vma)
 992		return -EFAULT;
 993
 994	ret = resize_is_valid(vma, addr, old_len, new_len, flags);
 995	if (ret)
 996		return ret;
 997
 998	/* MREMAP_DONTUNMAP expands by old_len since old_len == new_len */
 999	if (flags & MREMAP_DONTUNMAP &&
1000		!may_expand_vm(mm, vma->vm_flags, old_len >> PAGE_SHIFT)) {
1001		return -ENOMEM;
 
1002	}
1003
1004	if (flags & MREMAP_FIXED)
1005		map_flags |= MAP_FIXED;
1006
1007	if (vma->vm_flags & VM_MAYSHARE)
1008		map_flags |= MAP_SHARED;
1009
1010	ret = get_unmapped_area(vma->vm_file, new_addr, new_len, vma->vm_pgoff +
1011				((addr - vma->vm_start) >> PAGE_SHIFT),
1012				map_flags);
1013	if (IS_ERR_VALUE(ret))
1014		return ret;
1015
1016	/* We got a new mapping */
1017	if (!(flags & MREMAP_FIXED))
1018		new_addr = ret;
1019
1020	return move_vma(vma, addr, old_len, new_len, new_addr, locked, flags,
1021			uf, uf_unmap);
 
 
 
1022}
1023
1024static int vma_expandable(struct vm_area_struct *vma, unsigned long delta)
1025{
1026	unsigned long end = vma->vm_end + delta;
1027
1028	if (end < vma->vm_end) /* overflow */
1029		return 0;
1030	if (find_vma_intersection(vma->vm_mm, vma->vm_end, end))
1031		return 0;
1032	if (get_unmapped_area(NULL, vma->vm_start, end - vma->vm_start,
1033			      0, MAP_FIXED) & ~PAGE_MASK)
1034		return 0;
1035	return 1;
1036}
1037
1038/*
1039 * Expand (or shrink) an existing mapping, potentially moving it at the
1040 * same time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1041 *
1042 * MREMAP_FIXED option added 5-Dec-1999 by Benjamin LaHaise
1043 * This option implies MREMAP_MAYMOVE.
1044 */
1045SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1046		unsigned long, new_len, unsigned long, flags,
1047		unsigned long, new_addr)
1048{
1049	struct mm_struct *mm = current->mm;
1050	struct vm_area_struct *vma;
1051	unsigned long ret = -EINVAL;
1052	bool locked = false;
1053	struct vm_userfaultfd_ctx uf = NULL_VM_UFFD_CTX;
1054	LIST_HEAD(uf_unmap_early);
1055	LIST_HEAD(uf_unmap);
1056
1057	/*
1058	 * There is a deliberate asymmetry here: we strip the pointer tag
1059	 * from the old address but leave the new address alone. This is
1060	 * for consistency with mmap(), where we prevent the creation of
1061	 * aliasing mappings in userspace by leaving the tag bits of the
1062	 * mapping address intact. A non-zero tag will cause the subsequent
1063	 * range checks to reject the address as invalid.
1064	 *
1065	 * See Documentation/arch/arm64/tagged-address-abi.rst for more
1066	 * information.
1067	 */
1068	addr = untagged_addr(addr);
1069
1070	if (flags & ~(MREMAP_FIXED | MREMAP_MAYMOVE | MREMAP_DONTUNMAP))
1071		return ret;
1072
1073	if (flags & MREMAP_FIXED && !(flags & MREMAP_MAYMOVE))
1074		return ret;
1075
1076	/*
1077	 * MREMAP_DONTUNMAP is always a move and it does not allow resizing
1078	 * in the process.
1079	 */
1080	if (flags & MREMAP_DONTUNMAP &&
1081			(!(flags & MREMAP_MAYMOVE) || old_len != new_len))
1082		return ret;
1083
1084
1085	if (offset_in_page(addr))
1086		return ret;
1087
1088	old_len = PAGE_ALIGN(old_len);
1089	new_len = PAGE_ALIGN(new_len);
1090
1091	/*
1092	 * We allow a zero old-len as a special case
1093	 * for DOS-emu "duplicate shm area" thing. But
1094	 * a zero new-len is nonsensical.
1095	 */
1096	if (!new_len)
1097		return ret;
1098
1099	if (mmap_write_lock_killable(current->mm))
1100		return -EINTR;
1101	vma = vma_lookup(mm, addr);
1102	if (!vma) {
1103		ret = -EFAULT;
1104		goto out;
1105	}
1106
1107	/* Don't allow remapping vmas when they have already been sealed */
1108	if (!can_modify_vma(vma)) {
1109		ret = -EPERM;
1110		goto out;
1111	}
1112
1113	if (is_vm_hugetlb_page(vma)) {
1114		struct hstate *h __maybe_unused = hstate_vma(vma);
1115
1116		old_len = ALIGN(old_len, huge_page_size(h));
1117		new_len = ALIGN(new_len, huge_page_size(h));
1118
1119		/* addrs must be huge page aligned */
1120		if (addr & ~huge_page_mask(h))
1121			goto out;
1122		if (new_addr & ~huge_page_mask(h))
1123			goto out;
1124
1125		/*
1126		 * Don't allow remap expansion, because the underlying hugetlb
1127		 * reservation is not yet capable to handle split reservation.
1128		 */
1129		if (new_len > old_len)
1130			goto out;
1131	}
1132
1133	if (flags & (MREMAP_FIXED | MREMAP_DONTUNMAP)) {
1134		ret = mremap_to(addr, old_len, new_addr, new_len,
1135				&locked, flags, &uf, &uf_unmap_early,
1136				&uf_unmap);
1137		goto out;
1138	}
1139
1140	/*
1141	 * Always allow a shrinking remap: that just unmaps
1142	 * the unnecessary pages..
1143	 * do_vmi_munmap does all the needed commit accounting, and
1144	 * unlocks the mmap_lock if so directed.
1145	 */
1146	if (old_len >= new_len) {
1147		VMA_ITERATOR(vmi, mm, addr + new_len);
1148
1149		if (old_len == new_len) {
1150			ret = addr;
1151			goto out;
1152		}
1153
1154		ret = do_vmi_munmap(&vmi, mm, addr + new_len, old_len - new_len,
1155				    &uf_unmap, true);
1156		if (ret)
1157			goto out;
1158
1159		ret = addr;
1160		goto out_unlocked;
1161	}
1162
1163	/*
1164	 * Ok, we need to grow..
1165	 */
1166	ret = resize_is_valid(vma, addr, old_len, new_len, flags);
1167	if (ret)
 
1168		goto out;
 
1169
1170	/* old_len exactly to the end of the area..
1171	 */
1172	if (old_len == vma->vm_end - addr) {
1173		unsigned long delta = new_len - old_len;
1174
1175		/* can we just expand the current mapping? */
1176		if (vma_expandable(vma, delta)) {
1177			long pages = delta >> PAGE_SHIFT;
1178			VMA_ITERATOR(vmi, mm, vma->vm_end);
1179			long charged = 0;
1180
1181			if (vma->vm_flags & VM_ACCOUNT) {
1182				if (security_vm_enough_memory_mm(mm, pages)) {
1183					ret = -ENOMEM;
1184					goto out;
1185				}
1186				charged = pages;
1187			}
1188
1189			/*
1190			 * Function vma_merge_extend() is called on the
1191			 * extension we are adding to the already existing vma,
1192			 * vma_merge_extend() will merge this extension with the
1193			 * already existing vma (expand operation itself) and
1194			 * possibly also with the next vma if it becomes
1195			 * adjacent to the expanded vma and otherwise
1196			 * compatible.
1197			 */
1198			vma = vma_merge_extend(&vmi, vma, delta);
1199			if (!vma) {
1200				vm_unacct_memory(charged);
1201				ret = -ENOMEM;
1202				goto out;
1203			}
1204
1205			vm_stat_account(mm, vma->vm_flags, pages);
1206			if (vma->vm_flags & VM_LOCKED) {
1207				mm->locked_vm += pages;
1208				locked = true;
1209				new_addr = addr;
1210			}
1211			ret = addr;
1212			goto out;
1213		}
1214	}
1215
1216	/*
1217	 * We weren't able to just expand or shrink the area,
1218	 * we need to create a new one and move it..
1219	 */
1220	ret = -ENOMEM;
1221	if (flags & MREMAP_MAYMOVE) {
1222		unsigned long map_flags = 0;
1223		if (vma->vm_flags & VM_MAYSHARE)
1224			map_flags |= MAP_SHARED;
1225
1226		new_addr = get_unmapped_area(vma->vm_file, 0, new_len,
1227					vma->vm_pgoff +
1228					((addr - vma->vm_start) >> PAGE_SHIFT),
1229					map_flags);
1230		if (IS_ERR_VALUE(new_addr)) {
1231			ret = new_addr;
1232			goto out;
1233		}
1234
1235		ret = move_vma(vma, addr, old_len, new_len, new_addr,
1236			       &locked, flags, &uf, &uf_unmap);
1237	}
1238out:
1239	if (offset_in_page(ret))
1240		locked = false;
1241	mmap_write_unlock(current->mm);
1242	if (locked && new_len > old_len)
1243		mm_populate(new_addr + old_len, new_len - old_len);
1244out_unlocked:
1245	userfaultfd_unmap_complete(mm, &uf_unmap_early);
1246	mremap_userfaultfd_complete(&uf, addr, ret, old_len);
1247	userfaultfd_unmap_complete(mm, &uf_unmap);
1248	return ret;
1249}