Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *	mm/mremap.c
   4 *
   5 *	(C) Copyright 1996 Linus Torvalds
   6 *
   7 *	Address space accounting code	<alan@lxorguk.ukuu.org.uk>
   8 *	(C) Copyright 2002 Red Hat Inc, All Rights Reserved
   9 */
  10
  11#include <linux/mm.h>
  12#include <linux/mm_inline.h>
  13#include <linux/hugetlb.h>
  14#include <linux/shm.h>
  15#include <linux/ksm.h>
  16#include <linux/mman.h>
  17#include <linux/swap.h>
  18#include <linux/capability.h>
  19#include <linux/fs.h>
  20#include <linux/swapops.h>
  21#include <linux/highmem.h>
  22#include <linux/security.h>
  23#include <linux/syscalls.h>
  24#include <linux/mmu_notifier.h>
  25#include <linux/uaccess.h>
  26#include <linux/userfaultfd_k.h>
  27#include <linux/mempolicy.h>
  28
  29#include <asm/cacheflush.h>
  30#include <asm/tlb.h>
  31#include <asm/pgalloc.h>
  32
  33#include "internal.h"
  34
  35static pud_t *get_old_pud(struct mm_struct *mm, unsigned long addr)
  36{
  37	pgd_t *pgd;
  38	p4d_t *p4d;
  39	pud_t *pud;
  40
  41	pgd = pgd_offset(mm, addr);
  42	if (pgd_none_or_clear_bad(pgd))
  43		return NULL;
  44
  45	p4d = p4d_offset(pgd, addr);
  46	if (p4d_none_or_clear_bad(p4d))
  47		return NULL;
  48
  49	pud = pud_offset(p4d, addr);
  50	if (pud_none_or_clear_bad(pud))
  51		return NULL;
  52
  53	return pud;
  54}
  55
  56static pmd_t *get_old_pmd(struct mm_struct *mm, unsigned long addr)
  57{
  58	pud_t *pud;
  59	pmd_t *pmd;
  60
  61	pud = get_old_pud(mm, addr);
  62	if (!pud)
  63		return NULL;
  64
  65	pmd = pmd_offset(pud, addr);
  66	if (pmd_none(*pmd))
  67		return NULL;
  68
  69	return pmd;
  70}
  71
  72static pud_t *alloc_new_pud(struct mm_struct *mm, struct vm_area_struct *vma,
  73			    unsigned long addr)
  74{
  75	pgd_t *pgd;
  76	p4d_t *p4d;
  77
  78	pgd = pgd_offset(mm, addr);
  79	p4d = p4d_alloc(mm, pgd, addr);
  80	if (!p4d)
  81		return NULL;
  82
  83	return pud_alloc(mm, p4d, addr);
  84}
  85
  86static pmd_t *alloc_new_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
  87			    unsigned long addr)
  88{
  89	pud_t *pud;
  90	pmd_t *pmd;
  91
  92	pud = alloc_new_pud(mm, vma, addr);
  93	if (!pud)
  94		return NULL;
  95
  96	pmd = pmd_alloc(mm, pud, addr);
  97	if (!pmd)
  98		return NULL;
  99
 100	VM_BUG_ON(pmd_trans_huge(*pmd));
 101
 102	return pmd;
 103}
 104
 105static void take_rmap_locks(struct vm_area_struct *vma)
 106{
 107	if (vma->vm_file)
 108		i_mmap_lock_write(vma->vm_file->f_mapping);
 109	if (vma->anon_vma)
 110		anon_vma_lock_write(vma->anon_vma);
 111}
 112
 113static void drop_rmap_locks(struct vm_area_struct *vma)
 114{
 115	if (vma->anon_vma)
 116		anon_vma_unlock_write(vma->anon_vma);
 117	if (vma->vm_file)
 118		i_mmap_unlock_write(vma->vm_file->f_mapping);
 119}
 120
 121static pte_t move_soft_dirty_pte(pte_t pte)
 122{
 123	/*
 124	 * Set soft dirty bit so we can notice
 125	 * in userspace the ptes were moved.
 126	 */
 127#ifdef CONFIG_MEM_SOFT_DIRTY
 128	if (pte_present(pte))
 129		pte = pte_mksoft_dirty(pte);
 130	else if (is_swap_pte(pte))
 131		pte = pte_swp_mksoft_dirty(pte);
 132#endif
 133	return pte;
 134}
 135
 136static int move_ptes(struct vm_area_struct *vma, pmd_t *old_pmd,
 137		unsigned long old_addr, unsigned long old_end,
 138		struct vm_area_struct *new_vma, pmd_t *new_pmd,
 139		unsigned long new_addr, bool need_rmap_locks)
 140{
 141	struct mm_struct *mm = vma->vm_mm;
 142	pte_t *old_pte, *new_pte, pte;
 143	spinlock_t *old_ptl, *new_ptl;
 144	bool force_flush = false;
 145	unsigned long len = old_end - old_addr;
 146	int err = 0;
 147
 148	/*
 149	 * When need_rmap_locks is true, we take the i_mmap_rwsem and anon_vma
 150	 * locks to ensure that rmap will always observe either the old or the
 151	 * new ptes. This is the easiest way to avoid races with
 152	 * truncate_pagecache(), page migration, etc...
 153	 *
 154	 * When need_rmap_locks is false, we use other ways to avoid
 155	 * such races:
 156	 *
 157	 * - During exec() shift_arg_pages(), we use a specially tagged vma
 158	 *   which rmap call sites look for using vma_is_temporary_stack().
 159	 *
 160	 * - During mremap(), new_vma is often known to be placed after vma
 161	 *   in rmap traversal order. This ensures rmap will always observe
 162	 *   either the old pte, or the new pte, or both (the page table locks
 163	 *   serialize access to individual ptes, but only rmap traversal
 164	 *   order guarantees that we won't miss both the old and new ptes).
 165	 */
 166	if (need_rmap_locks)
 167		take_rmap_locks(vma);
 168
 169	/*
 170	 * We don't have to worry about the ordering of src and dst
 171	 * pte locks because exclusive mmap_lock prevents deadlock.
 172	 */
 173	old_pte = pte_offset_map_lock(mm, old_pmd, old_addr, &old_ptl);
 174	if (!old_pte) {
 175		err = -EAGAIN;
 176		goto out;
 177	}
 178	new_pte = pte_offset_map_nolock(mm, new_pmd, new_addr, &new_ptl);
 179	if (!new_pte) {
 180		pte_unmap_unlock(old_pte, old_ptl);
 181		err = -EAGAIN;
 182		goto out;
 183	}
 184	if (new_ptl != old_ptl)
 185		spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
 186	flush_tlb_batched_pending(vma->vm_mm);
 187	arch_enter_lazy_mmu_mode();
 188
 189	for (; old_addr < old_end; old_pte++, old_addr += PAGE_SIZE,
 190				   new_pte++, new_addr += PAGE_SIZE) {
 191		if (pte_none(ptep_get(old_pte)))
 192			continue;
 193
 194		pte = ptep_get_and_clear(mm, old_addr, old_pte);
 195		/*
 196		 * If we are remapping a valid PTE, make sure
 197		 * to flush TLB before we drop the PTL for the
 198		 * PTE.
 199		 *
 200		 * NOTE! Both old and new PTL matter: the old one
 201		 * for racing with page_mkclean(), the new one to
 202		 * make sure the physical page stays valid until
 203		 * the TLB entry for the old mapping has been
 204		 * flushed.
 205		 */
 206		if (pte_present(pte))
 207			force_flush = true;
 208		pte = move_pte(pte, new_vma->vm_page_prot, old_addr, new_addr);
 209		pte = move_soft_dirty_pte(pte);
 210		set_pte_at(mm, new_addr, new_pte, pte);
 211	}
 212
 213	arch_leave_lazy_mmu_mode();
 214	if (force_flush)
 215		flush_tlb_range(vma, old_end - len, old_end);
 216	if (new_ptl != old_ptl)
 217		spin_unlock(new_ptl);
 218	pte_unmap(new_pte - 1);
 219	pte_unmap_unlock(old_pte - 1, old_ptl);
 220out:
 221	if (need_rmap_locks)
 222		drop_rmap_locks(vma);
 223	return err;
 224}
 225
 226#ifndef arch_supports_page_table_move
 227#define arch_supports_page_table_move arch_supports_page_table_move
 228static inline bool arch_supports_page_table_move(void)
 229{
 230	return IS_ENABLED(CONFIG_HAVE_MOVE_PMD) ||
 231		IS_ENABLED(CONFIG_HAVE_MOVE_PUD);
 232}
 233#endif
 234
 235#ifdef CONFIG_HAVE_MOVE_PMD
 236static bool move_normal_pmd(struct vm_area_struct *vma, unsigned long old_addr,
 237		  unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
 238{
 239	spinlock_t *old_ptl, *new_ptl;
 240	struct mm_struct *mm = vma->vm_mm;
 241	pmd_t pmd;
 242
 243	if (!arch_supports_page_table_move())
 244		return false;
 245	/*
 246	 * The destination pmd shouldn't be established, free_pgtables()
 247	 * should have released it.
 248	 *
 249	 * However, there's a case during execve() where we use mremap
 250	 * to move the initial stack, and in that case the target area
 251	 * may overlap the source area (always moving down).
 252	 *
 253	 * If everything is PMD-aligned, that works fine, as moving
 254	 * each pmd down will clear the source pmd. But if we first
 255	 * have a few 4kB-only pages that get moved down, and then
 256	 * hit the "now the rest is PMD-aligned, let's do everything
 257	 * one pmd at a time", we will still have the old (now empty
 258	 * of any 4kB pages, but still there) PMD in the page table
 259	 * tree.
 260	 *
 261	 * Warn on it once - because we really should try to figure
 262	 * out how to do this better - but then say "I won't move
 263	 * this pmd".
 264	 *
 265	 * One alternative might be to just unmap the target pmd at
 266	 * this point, and verify that it really is empty. We'll see.
 267	 */
 268	if (WARN_ON_ONCE(!pmd_none(*new_pmd)))
 269		return false;
 270
 271	/*
 272	 * We don't have to worry about the ordering of src and dst
 273	 * ptlocks because exclusive mmap_lock prevents deadlock.
 274	 */
 275	old_ptl = pmd_lock(vma->vm_mm, old_pmd);
 276	new_ptl = pmd_lockptr(mm, new_pmd);
 277	if (new_ptl != old_ptl)
 278		spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
 279
 280	/* Clear the pmd */
 281	pmd = *old_pmd;
 282	pmd_clear(old_pmd);
 283
 284	VM_BUG_ON(!pmd_none(*new_pmd));
 285
 286	pmd_populate(mm, new_pmd, pmd_pgtable(pmd));
 287	flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
 288	if (new_ptl != old_ptl)
 289		spin_unlock(new_ptl);
 290	spin_unlock(old_ptl);
 291
 292	return true;
 293}
 294#else
 295static inline bool move_normal_pmd(struct vm_area_struct *vma,
 296		unsigned long old_addr, unsigned long new_addr, pmd_t *old_pmd,
 297		pmd_t *new_pmd)
 298{
 299	return false;
 300}
 301#endif
 302
 303#if CONFIG_PGTABLE_LEVELS > 2 && defined(CONFIG_HAVE_MOVE_PUD)
 304static bool move_normal_pud(struct vm_area_struct *vma, unsigned long old_addr,
 305		  unsigned long new_addr, pud_t *old_pud, pud_t *new_pud)
 306{
 307	spinlock_t *old_ptl, *new_ptl;
 308	struct mm_struct *mm = vma->vm_mm;
 309	pud_t pud;
 310
 311	if (!arch_supports_page_table_move())
 312		return false;
 313	/*
 314	 * The destination pud shouldn't be established, free_pgtables()
 315	 * should have released it.
 316	 */
 317	if (WARN_ON_ONCE(!pud_none(*new_pud)))
 318		return false;
 319
 320	/*
 321	 * We don't have to worry about the ordering of src and dst
 322	 * ptlocks because exclusive mmap_lock prevents deadlock.
 323	 */
 324	old_ptl = pud_lock(vma->vm_mm, old_pud);
 325	new_ptl = pud_lockptr(mm, new_pud);
 326	if (new_ptl != old_ptl)
 327		spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
 328
 329	/* Clear the pud */
 330	pud = *old_pud;
 331	pud_clear(old_pud);
 332
 333	VM_BUG_ON(!pud_none(*new_pud));
 334
 335	pud_populate(mm, new_pud, pud_pgtable(pud));
 336	flush_tlb_range(vma, old_addr, old_addr + PUD_SIZE);
 337	if (new_ptl != old_ptl)
 338		spin_unlock(new_ptl);
 339	spin_unlock(old_ptl);
 340
 341	return true;
 342}
 343#else
 344static inline bool move_normal_pud(struct vm_area_struct *vma,
 345		unsigned long old_addr, unsigned long new_addr, pud_t *old_pud,
 346		pud_t *new_pud)
 347{
 348	return false;
 349}
 350#endif
 351
 352#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
 353static bool move_huge_pud(struct vm_area_struct *vma, unsigned long old_addr,
 354			  unsigned long new_addr, pud_t *old_pud, pud_t *new_pud)
 355{
 356	spinlock_t *old_ptl, *new_ptl;
 357	struct mm_struct *mm = vma->vm_mm;
 358	pud_t pud;
 359
 360	/*
 361	 * The destination pud shouldn't be established, free_pgtables()
 362	 * should have released it.
 363	 */
 364	if (WARN_ON_ONCE(!pud_none(*new_pud)))
 365		return false;
 366
 367	/*
 368	 * We don't have to worry about the ordering of src and dst
 369	 * ptlocks because exclusive mmap_lock prevents deadlock.
 370	 */
 371	old_ptl = pud_lock(vma->vm_mm, old_pud);
 372	new_ptl = pud_lockptr(mm, new_pud);
 373	if (new_ptl != old_ptl)
 374		spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
 375
 376	/* Clear the pud */
 377	pud = *old_pud;
 378	pud_clear(old_pud);
 379
 380	VM_BUG_ON(!pud_none(*new_pud));
 381
 382	/* Set the new pud */
 383	/* mark soft_ditry when we add pud level soft dirty support */
 384	set_pud_at(mm, new_addr, new_pud, pud);
 385	flush_pud_tlb_range(vma, old_addr, old_addr + HPAGE_PUD_SIZE);
 386	if (new_ptl != old_ptl)
 387		spin_unlock(new_ptl);
 388	spin_unlock(old_ptl);
 389
 390	return true;
 391}
 392#else
 393static bool move_huge_pud(struct vm_area_struct *vma, unsigned long old_addr,
 394			  unsigned long new_addr, pud_t *old_pud, pud_t *new_pud)
 395{
 396	WARN_ON_ONCE(1);
 397	return false;
 398
 399}
 400#endif
 401
 402enum pgt_entry {
 403	NORMAL_PMD,
 404	HPAGE_PMD,
 405	NORMAL_PUD,
 406	HPAGE_PUD,
 407};
 408
 409/*
 410 * Returns an extent of the corresponding size for the pgt_entry specified if
 411 * valid. Else returns a smaller extent bounded by the end of the source and
 412 * destination pgt_entry.
 413 */
 414static __always_inline unsigned long get_extent(enum pgt_entry entry,
 415			unsigned long old_addr, unsigned long old_end,
 416			unsigned long new_addr)
 417{
 418	unsigned long next, extent, mask, size;
 419
 420	switch (entry) {
 421	case HPAGE_PMD:
 422	case NORMAL_PMD:
 423		mask = PMD_MASK;
 424		size = PMD_SIZE;
 425		break;
 426	case HPAGE_PUD:
 427	case NORMAL_PUD:
 428		mask = PUD_MASK;
 429		size = PUD_SIZE;
 430		break;
 431	default:
 432		BUILD_BUG();
 433		break;
 434	}
 435
 436	next = (old_addr + size) & mask;
 437	/* even if next overflowed, extent below will be ok */
 438	extent = next - old_addr;
 439	if (extent > old_end - old_addr)
 440		extent = old_end - old_addr;
 441	next = (new_addr + size) & mask;
 442	if (extent > next - new_addr)
 443		extent = next - new_addr;
 444	return extent;
 445}
 446
 447/*
 448 * Attempts to speedup the move by moving entry at the level corresponding to
 449 * pgt_entry. Returns true if the move was successful, else false.
 450 */
 451static bool move_pgt_entry(enum pgt_entry entry, struct vm_area_struct *vma,
 452			unsigned long old_addr, unsigned long new_addr,
 453			void *old_entry, void *new_entry, bool need_rmap_locks)
 454{
 455	bool moved = false;
 456
 457	/* See comment in move_ptes() */
 458	if (need_rmap_locks)
 459		take_rmap_locks(vma);
 460
 461	switch (entry) {
 462	case NORMAL_PMD:
 463		moved = move_normal_pmd(vma, old_addr, new_addr, old_entry,
 464					new_entry);
 465		break;
 466	case NORMAL_PUD:
 467		moved = move_normal_pud(vma, old_addr, new_addr, old_entry,
 468					new_entry);
 469		break;
 470	case HPAGE_PMD:
 471		moved = IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
 472			move_huge_pmd(vma, old_addr, new_addr, old_entry,
 473				      new_entry);
 474		break;
 475	case HPAGE_PUD:
 476		moved = IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
 477			move_huge_pud(vma, old_addr, new_addr, old_entry,
 478				      new_entry);
 479		break;
 480
 481	default:
 482		WARN_ON_ONCE(1);
 483		break;
 484	}
 485
 486	if (need_rmap_locks)
 487		drop_rmap_locks(vma);
 488
 489	return moved;
 490}
 491
 492/*
 493 * A helper to check if aligning down is OK. The aligned address should fall
 494 * on *no mapping*. For the stack moving down, that's a special move within
 495 * the VMA that is created to span the source and destination of the move,
 496 * so we make an exception for it.
 497 */
 498static bool can_align_down(struct vm_area_struct *vma, unsigned long addr_to_align,
 499			    unsigned long mask, bool for_stack)
 500{
 501	unsigned long addr_masked = addr_to_align & mask;
 502
 503	/*
 504	 * If @addr_to_align of either source or destination is not the beginning
 505	 * of the corresponding VMA, we can't align down or we will destroy part
 506	 * of the current mapping.
 507	 */
 508	if (!for_stack && vma->vm_start != addr_to_align)
 509		return false;
 510
 511	/* In the stack case we explicitly permit in-VMA alignment. */
 512	if (for_stack && addr_masked >= vma->vm_start)
 513		return true;
 514
 515	/*
 516	 * Make sure the realignment doesn't cause the address to fall on an
 517	 * existing mapping.
 518	 */
 519	return find_vma_intersection(vma->vm_mm, addr_masked, vma->vm_start) == NULL;
 520}
 521
 522/* Opportunistically realign to specified boundary for faster copy. */
 523static void try_realign_addr(unsigned long *old_addr, struct vm_area_struct *old_vma,
 524			     unsigned long *new_addr, struct vm_area_struct *new_vma,
 525			     unsigned long mask, bool for_stack)
 526{
 527	/* Skip if the addresses are already aligned. */
 528	if ((*old_addr & ~mask) == 0)
 529		return;
 530
 531	/* Only realign if the new and old addresses are mutually aligned. */
 532	if ((*old_addr & ~mask) != (*new_addr & ~mask))
 533		return;
 534
 535	/* Ensure realignment doesn't cause overlap with existing mappings. */
 536	if (!can_align_down(old_vma, *old_addr, mask, for_stack) ||
 537	    !can_align_down(new_vma, *new_addr, mask, for_stack))
 538		return;
 539
 540	*old_addr = *old_addr & mask;
 541	*new_addr = *new_addr & mask;
 542}
 543
 544unsigned long move_page_tables(struct vm_area_struct *vma,
 545		unsigned long old_addr, struct vm_area_struct *new_vma,
 546		unsigned long new_addr, unsigned long len,
 547		bool need_rmap_locks, bool for_stack)
 548{
 549	unsigned long extent, old_end;
 550	struct mmu_notifier_range range;
 551	pmd_t *old_pmd, *new_pmd;
 552	pud_t *old_pud, *new_pud;
 553
 554	if (!len)
 555		return 0;
 556
 557	old_end = old_addr + len;
 558
 559	if (is_vm_hugetlb_page(vma))
 560		return move_hugetlb_page_tables(vma, new_vma, old_addr,
 561						new_addr, len);
 562
 563	/*
 564	 * If possible, realign addresses to PMD boundary for faster copy.
 565	 * Only realign if the mremap copying hits a PMD boundary.
 566	 */
 567	if (len >= PMD_SIZE - (old_addr & ~PMD_MASK))
 568		try_realign_addr(&old_addr, vma, &new_addr, new_vma, PMD_MASK,
 569				 for_stack);
 570
 571	flush_cache_range(vma, old_addr, old_end);
 572	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
 
 573				old_addr, old_end);
 574	mmu_notifier_invalidate_range_start(&range);
 575
 576	for (; old_addr < old_end; old_addr += extent, new_addr += extent) {
 577		cond_resched();
 578		/*
 579		 * If extent is PUD-sized try to speed up the move by moving at the
 580		 * PUD level if possible.
 581		 */
 582		extent = get_extent(NORMAL_PUD, old_addr, old_end, new_addr);
 583
 584		old_pud = get_old_pud(vma->vm_mm, old_addr);
 585		if (!old_pud)
 586			continue;
 587		new_pud = alloc_new_pud(vma->vm_mm, vma, new_addr);
 588		if (!new_pud)
 589			break;
 590		if (pud_trans_huge(*old_pud) || pud_devmap(*old_pud)) {
 591			if (extent == HPAGE_PUD_SIZE) {
 592				move_pgt_entry(HPAGE_PUD, vma, old_addr, new_addr,
 593					       old_pud, new_pud, need_rmap_locks);
 594				/* We ignore and continue on error? */
 595				continue;
 596			}
 597		} else if (IS_ENABLED(CONFIG_HAVE_MOVE_PUD) && extent == PUD_SIZE) {
 598
 599			if (move_pgt_entry(NORMAL_PUD, vma, old_addr, new_addr,
 600					   old_pud, new_pud, true))
 601				continue;
 602		}
 603
 604		extent = get_extent(NORMAL_PMD, old_addr, old_end, new_addr);
 605		old_pmd = get_old_pmd(vma->vm_mm, old_addr);
 606		if (!old_pmd)
 607			continue;
 608		new_pmd = alloc_new_pmd(vma->vm_mm, vma, new_addr);
 609		if (!new_pmd)
 610			break;
 611again:
 612		if (is_swap_pmd(*old_pmd) || pmd_trans_huge(*old_pmd) ||
 613		    pmd_devmap(*old_pmd)) {
 614			if (extent == HPAGE_PMD_SIZE &&
 615			    move_pgt_entry(HPAGE_PMD, vma, old_addr, new_addr,
 616					   old_pmd, new_pmd, need_rmap_locks))
 617				continue;
 618			split_huge_pmd(vma, old_pmd, old_addr);
 
 
 619		} else if (IS_ENABLED(CONFIG_HAVE_MOVE_PMD) &&
 620			   extent == PMD_SIZE) {
 621			/*
 622			 * If the extent is PMD-sized, try to speed the move by
 623			 * moving at the PMD level if possible.
 624			 */
 625			if (move_pgt_entry(NORMAL_PMD, vma, old_addr, new_addr,
 626					   old_pmd, new_pmd, true))
 627				continue;
 628		}
 629		if (pmd_none(*old_pmd))
 630			continue;
 631		if (pte_alloc(new_vma->vm_mm, new_pmd))
 632			break;
 633		if (move_ptes(vma, old_pmd, old_addr, old_addr + extent,
 634			      new_vma, new_pmd, new_addr, need_rmap_locks) < 0)
 635			goto again;
 636	}
 637
 638	mmu_notifier_invalidate_range_end(&range);
 639
 640	/*
 641	 * Prevent negative return values when {old,new}_addr was realigned
 642	 * but we broke out of the above loop for the first PMD itself.
 643	 */
 644	if (len + old_addr < old_end)
 645		return 0;
 646
 647	return len + old_addr - old_end;	/* how much done */
 648}
 649
 650static unsigned long move_vma(struct vm_area_struct *vma,
 651		unsigned long old_addr, unsigned long old_len,
 652		unsigned long new_len, unsigned long new_addr,
 653		bool *locked, unsigned long flags,
 654		struct vm_userfaultfd_ctx *uf, struct list_head *uf_unmap)
 655{
 656	long to_account = new_len - old_len;
 657	struct mm_struct *mm = vma->vm_mm;
 658	struct vm_area_struct *new_vma;
 659	unsigned long vm_flags = vma->vm_flags;
 660	unsigned long new_pgoff;
 661	unsigned long moved_len;
 662	unsigned long account_start = 0;
 663	unsigned long account_end = 0;
 664	unsigned long hiwater_vm;
 
 665	int err = 0;
 666	bool need_rmap_locks;
 667	struct vma_iterator vmi;
 668
 669	/*
 670	 * We'd prefer to avoid failure later on in do_munmap:
 671	 * which may split one vma into three before unmapping.
 672	 */
 673	if (mm->map_count >= sysctl_max_map_count - 3)
 674		return -ENOMEM;
 675
 676	if (unlikely(flags & MREMAP_DONTUNMAP))
 677		to_account = new_len;
 678
 679	if (vma->vm_ops && vma->vm_ops->may_split) {
 680		if (vma->vm_start != old_addr)
 681			err = vma->vm_ops->may_split(vma, old_addr);
 682		if (!err && vma->vm_end != old_addr + old_len)
 683			err = vma->vm_ops->may_split(vma, old_addr + old_len);
 684		if (err)
 685			return err;
 686	}
 687
 688	/*
 689	 * Advise KSM to break any KSM pages in the area to be moved:
 690	 * it would be confusing if they were to turn up at the new
 691	 * location, where they happen to coincide with different KSM
 692	 * pages recently unmapped.  But leave vma->vm_flags as it was,
 693	 * so KSM can come around to merge on vma and new_vma afterwards.
 694	 */
 695	err = ksm_madvise(vma, old_addr, old_addr + old_len,
 696						MADV_UNMERGEABLE, &vm_flags);
 697	if (err)
 698		return err;
 699
 700	if (vm_flags & VM_ACCOUNT) {
 701		if (security_vm_enough_memory_mm(mm, to_account >> PAGE_SHIFT))
 702			return -ENOMEM;
 703	}
 704
 705	vma_start_write(vma);
 706	new_pgoff = vma->vm_pgoff + ((old_addr - vma->vm_start) >> PAGE_SHIFT);
 707	new_vma = copy_vma(&vma, new_addr, new_len, new_pgoff,
 708			   &need_rmap_locks);
 709	if (!new_vma) {
 710		if (vm_flags & VM_ACCOUNT)
 711			vm_unacct_memory(to_account >> PAGE_SHIFT);
 712		return -ENOMEM;
 713	}
 714
 715	moved_len = move_page_tables(vma, old_addr, new_vma, new_addr, old_len,
 716				     need_rmap_locks, false);
 717	if (moved_len < old_len) {
 718		err = -ENOMEM;
 719	} else if (vma->vm_ops && vma->vm_ops->mremap) {
 720		err = vma->vm_ops->mremap(new_vma);
 721	}
 722
 723	if (unlikely(err)) {
 724		/*
 725		 * On error, move entries back from new area to old,
 726		 * which will succeed since page tables still there,
 727		 * and then proceed to unmap new area instead of old.
 728		 */
 729		move_page_tables(new_vma, new_addr, vma, old_addr, moved_len,
 730				 true, false);
 731		vma = new_vma;
 732		old_len = new_len;
 733		old_addr = new_addr;
 734		new_addr = err;
 735	} else {
 736		mremap_userfaultfd_prep(new_vma, uf);
 737	}
 738
 739	if (is_vm_hugetlb_page(vma)) {
 740		clear_vma_resv_huge_pages(vma);
 741	}
 742
 743	/* Conceal VM_ACCOUNT so old reservation is not undone */
 744	if (vm_flags & VM_ACCOUNT && !(flags & MREMAP_DONTUNMAP)) {
 745		vm_flags_clear(vma, VM_ACCOUNT);
 746		if (vma->vm_start < old_addr)
 747			account_start = vma->vm_start;
 748		if (vma->vm_end > old_addr + old_len)
 749			account_end = vma->vm_end;
 750	}
 751
 752	/*
 753	 * If we failed to move page tables we still do total_vm increment
 754	 * since do_munmap() will decrement it by old_len == new_len.
 755	 *
 756	 * Since total_vm is about to be raised artificially high for a
 757	 * moment, we need to restore high watermark afterwards: if stats
 758	 * are taken meanwhile, total_vm and hiwater_vm appear too high.
 759	 * If this were a serious issue, we'd add a flag to do_munmap().
 760	 */
 761	hiwater_vm = mm->hiwater_vm;
 762	vm_stat_account(mm, vma->vm_flags, new_len >> PAGE_SHIFT);
 763
 764	/* Tell pfnmap has moved from this vma */
 765	if (unlikely(vma->vm_flags & VM_PFNMAP))
 766		untrack_pfn_clear(vma);
 767
 768	if (unlikely(!err && (flags & MREMAP_DONTUNMAP))) {
 769		/* We always clear VM_LOCKED[ONFAULT] on the old vma */
 770		vm_flags_clear(vma, VM_LOCKED_MASK);
 771
 772		/*
 773		 * anon_vma links of the old vma is no longer needed after its page
 774		 * table has been moved.
 775		 */
 776		if (new_vma != vma && vma->vm_start == old_addr &&
 777			vma->vm_end == (old_addr + old_len))
 778			unlink_anon_vmas(vma);
 779
 780		/* Because we won't unmap we don't need to touch locked_vm */
 781		return new_addr;
 782	}
 783
 784	vma_iter_init(&vmi, mm, old_addr);
 785	if (do_vmi_munmap(&vmi, mm, old_addr, old_len, uf_unmap, false) < 0) {
 786		/* OOM: unable to split vma, just get accounts right */
 787		if (vm_flags & VM_ACCOUNT && !(flags & MREMAP_DONTUNMAP))
 788			vm_acct_memory(old_len >> PAGE_SHIFT);
 789		account_start = account_end = 0;
 790	}
 791
 792	if (vm_flags & VM_LOCKED) {
 793		mm->locked_vm += new_len >> PAGE_SHIFT;
 794		*locked = true;
 795	}
 796
 797	mm->hiwater_vm = hiwater_vm;
 798
 799	/* Restore VM_ACCOUNT if one or two pieces of vma left */
 800	if (account_start) {
 801		vma = vma_prev(&vmi);
 802		vm_flags_set(vma, VM_ACCOUNT);
 803	}
 804
 805	if (account_end) {
 806		vma = vma_next(&vmi);
 807		vm_flags_set(vma, VM_ACCOUNT);
 808	}
 809
 810	return new_addr;
 811}
 812
 813static struct vm_area_struct *vma_to_resize(unsigned long addr,
 814	unsigned long old_len, unsigned long new_len, unsigned long flags)
 
 815{
 816	struct mm_struct *mm = current->mm;
 817	struct vm_area_struct *vma;
 818	unsigned long pgoff;
 819
 820	vma = vma_lookup(mm, addr);
 821	if (!vma)
 822		return ERR_PTR(-EFAULT);
 823
 824	/*
 825	 * !old_len is a special case where an attempt is made to 'duplicate'
 826	 * a mapping.  This makes no sense for private mappings as it will
 827	 * instead create a fresh/new mapping unrelated to the original.  This
 828	 * is contrary to the basic idea of mremap which creates new mappings
 829	 * based on the original.  There are no known use cases for this
 830	 * behavior.  As a result, fail such attempts.
 831	 */
 832	if (!old_len && !(vma->vm_flags & (VM_SHARED | VM_MAYSHARE))) {
 833		pr_warn_once("%s (%d): attempted to duplicate a private mapping with mremap.  This is not supported.\n", current->comm, current->pid);
 834		return ERR_PTR(-EINVAL);
 835	}
 836
 837	if ((flags & MREMAP_DONTUNMAP) &&
 838			(vma->vm_flags & (VM_DONTEXPAND | VM_PFNMAP)))
 839		return ERR_PTR(-EINVAL);
 840
 
 
 
 841	/* We can't remap across vm area boundaries */
 842	if (old_len > vma->vm_end - addr)
 843		return ERR_PTR(-EFAULT);
 844
 845	if (new_len == old_len)
 846		return vma;
 847
 848	/* Need to be careful about a growing mapping */
 849	pgoff = (addr - vma->vm_start) >> PAGE_SHIFT;
 850	pgoff += vma->vm_pgoff;
 851	if (pgoff + (new_len >> PAGE_SHIFT) < pgoff)
 852		return ERR_PTR(-EINVAL);
 853
 854	if (vma->vm_flags & (VM_DONTEXPAND | VM_PFNMAP))
 855		return ERR_PTR(-EFAULT);
 856
 857	if (!mlock_future_ok(mm, vma->vm_flags, new_len - old_len))
 858		return ERR_PTR(-EAGAIN);
 
 
 
 
 
 
 859
 860	if (!may_expand_vm(mm, vma->vm_flags,
 861				(new_len - old_len) >> PAGE_SHIFT))
 862		return ERR_PTR(-ENOMEM);
 863
 
 
 
 
 
 
 
 864	return vma;
 865}
 866
 867static unsigned long mremap_to(unsigned long addr, unsigned long old_len,
 868		unsigned long new_addr, unsigned long new_len, bool *locked,
 869		unsigned long flags, struct vm_userfaultfd_ctx *uf,
 870		struct list_head *uf_unmap_early,
 871		struct list_head *uf_unmap)
 872{
 873	struct mm_struct *mm = current->mm;
 874	struct vm_area_struct *vma;
 875	unsigned long ret = -EINVAL;
 
 876	unsigned long map_flags = 0;
 877
 878	if (offset_in_page(new_addr))
 879		goto out;
 880
 881	if (new_len > TASK_SIZE || new_addr > TASK_SIZE - new_len)
 882		goto out;
 883
 884	/* Ensure the old/new locations do not overlap */
 885	if (addr + old_len > new_addr && new_addr + new_len > addr)
 886		goto out;
 887
 888	/*
 889	 * move_vma() need us to stay 4 maps below the threshold, otherwise
 890	 * it will bail out at the very beginning.
 891	 * That is a problem if we have already unmaped the regions here
 892	 * (new_addr, and old_addr), because userspace will not know the
 893	 * state of the vma's after it gets -ENOMEM.
 894	 * So, to avoid such scenario we can pre-compute if the whole
 895	 * operation has high chances to success map-wise.
 896	 * Worst-scenario case is when both vma's (new_addr and old_addr) get
 897	 * split in 3 before unmapping it.
 898	 * That means 2 more maps (1 for each) to the ones we already hold.
 899	 * Check whether current map count plus 2 still leads us to 4 maps below
 900	 * the threshold, otherwise return -ENOMEM here to be more safe.
 901	 */
 902	if ((mm->map_count + 2) >= sysctl_max_map_count - 3)
 903		return -ENOMEM;
 904
 905	if (flags & MREMAP_FIXED) {
 906		ret = do_munmap(mm, new_addr, new_len, uf_unmap_early);
 907		if (ret)
 908			goto out;
 909	}
 910
 911	if (old_len > new_len) {
 912		ret = do_munmap(mm, addr+new_len, old_len - new_len, uf_unmap);
 913		if (ret)
 914			goto out;
 915		old_len = new_len;
 916	}
 917
 918	vma = vma_to_resize(addr, old_len, new_len, flags);
 919	if (IS_ERR(vma)) {
 920		ret = PTR_ERR(vma);
 921		goto out;
 922	}
 923
 924	/* MREMAP_DONTUNMAP expands by old_len since old_len == new_len */
 925	if (flags & MREMAP_DONTUNMAP &&
 926		!may_expand_vm(mm, vma->vm_flags, old_len >> PAGE_SHIFT)) {
 927		ret = -ENOMEM;
 928		goto out;
 929	}
 930
 931	if (flags & MREMAP_FIXED)
 932		map_flags |= MAP_FIXED;
 933
 934	if (vma->vm_flags & VM_MAYSHARE)
 935		map_flags |= MAP_SHARED;
 936
 937	ret = get_unmapped_area(vma->vm_file, new_addr, new_len, vma->vm_pgoff +
 938				((addr - vma->vm_start) >> PAGE_SHIFT),
 939				map_flags);
 940	if (IS_ERR_VALUE(ret))
 941		goto out;
 942
 943	/* We got a new mapping */
 944	if (!(flags & MREMAP_FIXED))
 945		new_addr = ret;
 946
 947	ret = move_vma(vma, addr, old_len, new_len, new_addr, locked, flags, uf,
 948		       uf_unmap);
 949
 
 
 
 
 
 
 950out:
 951	return ret;
 952}
 953
 954static int vma_expandable(struct vm_area_struct *vma, unsigned long delta)
 955{
 956	unsigned long end = vma->vm_end + delta;
 957
 958	if (end < vma->vm_end) /* overflow */
 959		return 0;
 960	if (find_vma_intersection(vma->vm_mm, vma->vm_end, end))
 961		return 0;
 962	if (get_unmapped_area(NULL, vma->vm_start, end - vma->vm_start,
 963			      0, MAP_FIXED) & ~PAGE_MASK)
 964		return 0;
 965	return 1;
 966}
 967
 968/*
 969 * Expand (or shrink) an existing mapping, potentially moving it at the
 970 * same time (controlled by the MREMAP_MAYMOVE flag and available VM space)
 971 *
 972 * MREMAP_FIXED option added 5-Dec-1999 by Benjamin LaHaise
 973 * This option implies MREMAP_MAYMOVE.
 974 */
 975SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
 976		unsigned long, new_len, unsigned long, flags,
 977		unsigned long, new_addr)
 978{
 979	struct mm_struct *mm = current->mm;
 980	struct vm_area_struct *vma;
 981	unsigned long ret = -EINVAL;
 
 982	bool locked = false;
 
 983	struct vm_userfaultfd_ctx uf = NULL_VM_UFFD_CTX;
 984	LIST_HEAD(uf_unmap_early);
 985	LIST_HEAD(uf_unmap);
 986
 987	/*
 988	 * There is a deliberate asymmetry here: we strip the pointer tag
 989	 * from the old address but leave the new address alone. This is
 990	 * for consistency with mmap(), where we prevent the creation of
 991	 * aliasing mappings in userspace by leaving the tag bits of the
 992	 * mapping address intact. A non-zero tag will cause the subsequent
 993	 * range checks to reject the address as invalid.
 994	 *
 995	 * See Documentation/arch/arm64/tagged-address-abi.rst for more
 996	 * information.
 997	 */
 998	addr = untagged_addr(addr);
 999
1000	if (flags & ~(MREMAP_FIXED | MREMAP_MAYMOVE | MREMAP_DONTUNMAP))
1001		return ret;
1002
1003	if (flags & MREMAP_FIXED && !(flags & MREMAP_MAYMOVE))
1004		return ret;
1005
1006	/*
1007	 * MREMAP_DONTUNMAP is always a move and it does not allow resizing
1008	 * in the process.
1009	 */
1010	if (flags & MREMAP_DONTUNMAP &&
1011			(!(flags & MREMAP_MAYMOVE) || old_len != new_len))
1012		return ret;
1013
1014
1015	if (offset_in_page(addr))
1016		return ret;
1017
1018	old_len = PAGE_ALIGN(old_len);
1019	new_len = PAGE_ALIGN(new_len);
1020
1021	/*
1022	 * We allow a zero old-len as a special case
1023	 * for DOS-emu "duplicate shm area" thing. But
1024	 * a zero new-len is nonsensical.
1025	 */
1026	if (!new_len)
1027		return ret;
1028
1029	if (mmap_write_lock_killable(current->mm))
1030		return -EINTR;
1031	vma = vma_lookup(mm, addr);
1032	if (!vma) {
1033		ret = -EFAULT;
1034		goto out;
1035	}
1036
1037	if (is_vm_hugetlb_page(vma)) {
1038		struct hstate *h __maybe_unused = hstate_vma(vma);
1039
1040		old_len = ALIGN(old_len, huge_page_size(h));
1041		new_len = ALIGN(new_len, huge_page_size(h));
1042
1043		/* addrs must be huge page aligned */
1044		if (addr & ~huge_page_mask(h))
1045			goto out;
1046		if (new_addr & ~huge_page_mask(h))
1047			goto out;
1048
1049		/*
1050		 * Don't allow remap expansion, because the underlying hugetlb
1051		 * reservation is not yet capable to handle split reservation.
1052		 */
1053		if (new_len > old_len)
1054			goto out;
1055	}
1056
1057	if (flags & (MREMAP_FIXED | MREMAP_DONTUNMAP)) {
1058		ret = mremap_to(addr, old_len, new_addr, new_len,
1059				&locked, flags, &uf, &uf_unmap_early,
1060				&uf_unmap);
1061		goto out;
1062	}
1063
1064	/*
1065	 * Always allow a shrinking remap: that just unmaps
1066	 * the unnecessary pages..
1067	 * do_vmi_munmap does all the needed commit accounting, and
1068	 * unlocks the mmap_lock if so directed.
1069	 */
1070	if (old_len >= new_len) {
1071		VMA_ITERATOR(vmi, mm, addr + new_len);
1072
1073		if (old_len == new_len) {
1074			ret = addr;
 
 
1075			goto out;
1076		}
1077
1078		ret = do_vmi_munmap(&vmi, mm, addr + new_len, old_len - new_len,
1079				    &uf_unmap, true);
1080		if (ret)
1081			goto out;
1082
1083		ret = addr;
1084		goto out_unlocked;
1085	}
1086
1087	/*
1088	 * Ok, we need to grow..
1089	 */
1090	vma = vma_to_resize(addr, old_len, new_len, flags);
1091	if (IS_ERR(vma)) {
1092		ret = PTR_ERR(vma);
1093		goto out;
1094	}
1095
1096	/* old_len exactly to the end of the area..
1097	 */
1098	if (old_len == vma->vm_end - addr) {
1099		unsigned long delta = new_len - old_len;
1100
1101		/* can we just expand the current mapping? */
1102		if (vma_expandable(vma, delta)) {
1103			long pages = delta >> PAGE_SHIFT;
1104			VMA_ITERATOR(vmi, mm, vma->vm_end);
1105			long charged = 0;
1106
1107			if (vma->vm_flags & VM_ACCOUNT) {
1108				if (security_vm_enough_memory_mm(mm, pages)) {
1109					ret = -ENOMEM;
1110					goto out;
1111				}
1112				charged = pages;
1113			}
1114
1115			/*
1116			 * Function vma_merge_extend() is called on the
1117			 * extension we are adding to the already existing vma,
1118			 * vma_merge_extend() will merge this extension with the
1119			 * already existing vma (expand operation itself) and
1120			 * possibly also with the next vma if it becomes
1121			 * adjacent to the expanded vma and otherwise
1122			 * compatible.
1123			 */
1124			vma = vma_merge_extend(&vmi, vma, delta);
1125			if (!vma) {
1126				vm_unacct_memory(charged);
1127				ret = -ENOMEM;
1128				goto out;
1129			}
1130
1131			vm_stat_account(mm, vma->vm_flags, pages);
1132			if (vma->vm_flags & VM_LOCKED) {
1133				mm->locked_vm += pages;
1134				locked = true;
1135				new_addr = addr;
1136			}
1137			ret = addr;
1138			goto out;
1139		}
1140	}
1141
1142	/*
1143	 * We weren't able to just expand or shrink the area,
1144	 * we need to create a new one and move it..
1145	 */
1146	ret = -ENOMEM;
1147	if (flags & MREMAP_MAYMOVE) {
1148		unsigned long map_flags = 0;
1149		if (vma->vm_flags & VM_MAYSHARE)
1150			map_flags |= MAP_SHARED;
1151
1152		new_addr = get_unmapped_area(vma->vm_file, 0, new_len,
1153					vma->vm_pgoff +
1154					((addr - vma->vm_start) >> PAGE_SHIFT),
1155					map_flags);
1156		if (IS_ERR_VALUE(new_addr)) {
1157			ret = new_addr;
1158			goto out;
1159		}
1160
1161		ret = move_vma(vma, addr, old_len, new_len, new_addr,
1162			       &locked, flags, &uf, &uf_unmap);
1163	}
1164out:
1165	if (offset_in_page(ret))
 
1166		locked = false;
1167	mmap_write_unlock(current->mm);
 
 
 
 
1168	if (locked && new_len > old_len)
1169		mm_populate(new_addr + old_len, new_len - old_len);
1170out_unlocked:
1171	userfaultfd_unmap_complete(mm, &uf_unmap_early);
1172	mremap_userfaultfd_complete(&uf, addr, ret, old_len);
1173	userfaultfd_unmap_complete(mm, &uf_unmap);
1174	return ret;
1175}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *	mm/mremap.c
   4 *
   5 *	(C) Copyright 1996 Linus Torvalds
   6 *
   7 *	Address space accounting code	<alan@lxorguk.ukuu.org.uk>
   8 *	(C) Copyright 2002 Red Hat Inc, All Rights Reserved
   9 */
  10
  11#include <linux/mm.h>
 
  12#include <linux/hugetlb.h>
  13#include <linux/shm.h>
  14#include <linux/ksm.h>
  15#include <linux/mman.h>
  16#include <linux/swap.h>
  17#include <linux/capability.h>
  18#include <linux/fs.h>
  19#include <linux/swapops.h>
  20#include <linux/highmem.h>
  21#include <linux/security.h>
  22#include <linux/syscalls.h>
  23#include <linux/mmu_notifier.h>
  24#include <linux/uaccess.h>
  25#include <linux/userfaultfd_k.h>
 
  26
  27#include <asm/cacheflush.h>
  28#include <asm/tlb.h>
  29#include <asm/pgalloc.h>
  30
  31#include "internal.h"
  32
  33static pud_t *get_old_pud(struct mm_struct *mm, unsigned long addr)
  34{
  35	pgd_t *pgd;
  36	p4d_t *p4d;
  37	pud_t *pud;
  38
  39	pgd = pgd_offset(mm, addr);
  40	if (pgd_none_or_clear_bad(pgd))
  41		return NULL;
  42
  43	p4d = p4d_offset(pgd, addr);
  44	if (p4d_none_or_clear_bad(p4d))
  45		return NULL;
  46
  47	pud = pud_offset(p4d, addr);
  48	if (pud_none_or_clear_bad(pud))
  49		return NULL;
  50
  51	return pud;
  52}
  53
  54static pmd_t *get_old_pmd(struct mm_struct *mm, unsigned long addr)
  55{
  56	pud_t *pud;
  57	pmd_t *pmd;
  58
  59	pud = get_old_pud(mm, addr);
  60	if (!pud)
  61		return NULL;
  62
  63	pmd = pmd_offset(pud, addr);
  64	if (pmd_none(*pmd))
  65		return NULL;
  66
  67	return pmd;
  68}
  69
  70static pud_t *alloc_new_pud(struct mm_struct *mm, struct vm_area_struct *vma,
  71			    unsigned long addr)
  72{
  73	pgd_t *pgd;
  74	p4d_t *p4d;
  75
  76	pgd = pgd_offset(mm, addr);
  77	p4d = p4d_alloc(mm, pgd, addr);
  78	if (!p4d)
  79		return NULL;
  80
  81	return pud_alloc(mm, p4d, addr);
  82}
  83
  84static pmd_t *alloc_new_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
  85			    unsigned long addr)
  86{
  87	pud_t *pud;
  88	pmd_t *pmd;
  89
  90	pud = alloc_new_pud(mm, vma, addr);
  91	if (!pud)
  92		return NULL;
  93
  94	pmd = pmd_alloc(mm, pud, addr);
  95	if (!pmd)
  96		return NULL;
  97
  98	VM_BUG_ON(pmd_trans_huge(*pmd));
  99
 100	return pmd;
 101}
 102
 103static void take_rmap_locks(struct vm_area_struct *vma)
 104{
 105	if (vma->vm_file)
 106		i_mmap_lock_write(vma->vm_file->f_mapping);
 107	if (vma->anon_vma)
 108		anon_vma_lock_write(vma->anon_vma);
 109}
 110
 111static void drop_rmap_locks(struct vm_area_struct *vma)
 112{
 113	if (vma->anon_vma)
 114		anon_vma_unlock_write(vma->anon_vma);
 115	if (vma->vm_file)
 116		i_mmap_unlock_write(vma->vm_file->f_mapping);
 117}
 118
 119static pte_t move_soft_dirty_pte(pte_t pte)
 120{
 121	/*
 122	 * Set soft dirty bit so we can notice
 123	 * in userspace the ptes were moved.
 124	 */
 125#ifdef CONFIG_MEM_SOFT_DIRTY
 126	if (pte_present(pte))
 127		pte = pte_mksoft_dirty(pte);
 128	else if (is_swap_pte(pte))
 129		pte = pte_swp_mksoft_dirty(pte);
 130#endif
 131	return pte;
 132}
 133
 134static void move_ptes(struct vm_area_struct *vma, pmd_t *old_pmd,
 135		unsigned long old_addr, unsigned long old_end,
 136		struct vm_area_struct *new_vma, pmd_t *new_pmd,
 137		unsigned long new_addr, bool need_rmap_locks)
 138{
 139	struct mm_struct *mm = vma->vm_mm;
 140	pte_t *old_pte, *new_pte, pte;
 141	spinlock_t *old_ptl, *new_ptl;
 142	bool force_flush = false;
 143	unsigned long len = old_end - old_addr;
 
 144
 145	/*
 146	 * When need_rmap_locks is true, we take the i_mmap_rwsem and anon_vma
 147	 * locks to ensure that rmap will always observe either the old or the
 148	 * new ptes. This is the easiest way to avoid races with
 149	 * truncate_pagecache(), page migration, etc...
 150	 *
 151	 * When need_rmap_locks is false, we use other ways to avoid
 152	 * such races:
 153	 *
 154	 * - During exec() shift_arg_pages(), we use a specially tagged vma
 155	 *   which rmap call sites look for using vma_is_temporary_stack().
 156	 *
 157	 * - During mremap(), new_vma is often known to be placed after vma
 158	 *   in rmap traversal order. This ensures rmap will always observe
 159	 *   either the old pte, or the new pte, or both (the page table locks
 160	 *   serialize access to individual ptes, but only rmap traversal
 161	 *   order guarantees that we won't miss both the old and new ptes).
 162	 */
 163	if (need_rmap_locks)
 164		take_rmap_locks(vma);
 165
 166	/*
 167	 * We don't have to worry about the ordering of src and dst
 168	 * pte locks because exclusive mmap_lock prevents deadlock.
 169	 */
 170	old_pte = pte_offset_map_lock(mm, old_pmd, old_addr, &old_ptl);
 171	new_pte = pte_offset_map(new_pmd, new_addr);
 172	new_ptl = pte_lockptr(mm, new_pmd);
 
 
 
 
 
 
 
 
 173	if (new_ptl != old_ptl)
 174		spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
 175	flush_tlb_batched_pending(vma->vm_mm);
 176	arch_enter_lazy_mmu_mode();
 177
 178	for (; old_addr < old_end; old_pte++, old_addr += PAGE_SIZE,
 179				   new_pte++, new_addr += PAGE_SIZE) {
 180		if (pte_none(*old_pte))
 181			continue;
 182
 183		pte = ptep_get_and_clear(mm, old_addr, old_pte);
 184		/*
 185		 * If we are remapping a valid PTE, make sure
 186		 * to flush TLB before we drop the PTL for the
 187		 * PTE.
 188		 *
 189		 * NOTE! Both old and new PTL matter: the old one
 190		 * for racing with page_mkclean(), the new one to
 191		 * make sure the physical page stays valid until
 192		 * the TLB entry for the old mapping has been
 193		 * flushed.
 194		 */
 195		if (pte_present(pte))
 196			force_flush = true;
 197		pte = move_pte(pte, new_vma->vm_page_prot, old_addr, new_addr);
 198		pte = move_soft_dirty_pte(pte);
 199		set_pte_at(mm, new_addr, new_pte, pte);
 200	}
 201
 202	arch_leave_lazy_mmu_mode();
 203	if (force_flush)
 204		flush_tlb_range(vma, old_end - len, old_end);
 205	if (new_ptl != old_ptl)
 206		spin_unlock(new_ptl);
 207	pte_unmap(new_pte - 1);
 208	pte_unmap_unlock(old_pte - 1, old_ptl);
 
 209	if (need_rmap_locks)
 210		drop_rmap_locks(vma);
 
 211}
 212
 213#ifndef arch_supports_page_table_move
 214#define arch_supports_page_table_move arch_supports_page_table_move
 215static inline bool arch_supports_page_table_move(void)
 216{
 217	return IS_ENABLED(CONFIG_HAVE_MOVE_PMD) ||
 218		IS_ENABLED(CONFIG_HAVE_MOVE_PUD);
 219}
 220#endif
 221
 222#ifdef CONFIG_HAVE_MOVE_PMD
 223static bool move_normal_pmd(struct vm_area_struct *vma, unsigned long old_addr,
 224		  unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
 225{
 226	spinlock_t *old_ptl, *new_ptl;
 227	struct mm_struct *mm = vma->vm_mm;
 228	pmd_t pmd;
 229
 230	if (!arch_supports_page_table_move())
 231		return false;
 232	/*
 233	 * The destination pmd shouldn't be established, free_pgtables()
 234	 * should have released it.
 235	 *
 236	 * However, there's a case during execve() where we use mremap
 237	 * to move the initial stack, and in that case the target area
 238	 * may overlap the source area (always moving down).
 239	 *
 240	 * If everything is PMD-aligned, that works fine, as moving
 241	 * each pmd down will clear the source pmd. But if we first
 242	 * have a few 4kB-only pages that get moved down, and then
 243	 * hit the "now the rest is PMD-aligned, let's do everything
 244	 * one pmd at a time", we will still have the old (now empty
 245	 * of any 4kB pages, but still there) PMD in the page table
 246	 * tree.
 247	 *
 248	 * Warn on it once - because we really should try to figure
 249	 * out how to do this better - but then say "I won't move
 250	 * this pmd".
 251	 *
 252	 * One alternative might be to just unmap the target pmd at
 253	 * this point, and verify that it really is empty. We'll see.
 254	 */
 255	if (WARN_ON_ONCE(!pmd_none(*new_pmd)))
 256		return false;
 257
 258	/*
 259	 * We don't have to worry about the ordering of src and dst
 260	 * ptlocks because exclusive mmap_lock prevents deadlock.
 261	 */
 262	old_ptl = pmd_lock(vma->vm_mm, old_pmd);
 263	new_ptl = pmd_lockptr(mm, new_pmd);
 264	if (new_ptl != old_ptl)
 265		spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
 266
 267	/* Clear the pmd */
 268	pmd = *old_pmd;
 269	pmd_clear(old_pmd);
 270
 271	VM_BUG_ON(!pmd_none(*new_pmd));
 272
 273	pmd_populate(mm, new_pmd, pmd_pgtable(pmd));
 274	flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
 275	if (new_ptl != old_ptl)
 276		spin_unlock(new_ptl);
 277	spin_unlock(old_ptl);
 278
 279	return true;
 280}
 281#else
 282static inline bool move_normal_pmd(struct vm_area_struct *vma,
 283		unsigned long old_addr, unsigned long new_addr, pmd_t *old_pmd,
 284		pmd_t *new_pmd)
 285{
 286	return false;
 287}
 288#endif
 289
 290#if CONFIG_PGTABLE_LEVELS > 2 && defined(CONFIG_HAVE_MOVE_PUD)
 291static bool move_normal_pud(struct vm_area_struct *vma, unsigned long old_addr,
 292		  unsigned long new_addr, pud_t *old_pud, pud_t *new_pud)
 293{
 294	spinlock_t *old_ptl, *new_ptl;
 295	struct mm_struct *mm = vma->vm_mm;
 296	pud_t pud;
 297
 298	if (!arch_supports_page_table_move())
 299		return false;
 300	/*
 301	 * The destination pud shouldn't be established, free_pgtables()
 302	 * should have released it.
 303	 */
 304	if (WARN_ON_ONCE(!pud_none(*new_pud)))
 305		return false;
 306
 307	/*
 308	 * We don't have to worry about the ordering of src and dst
 309	 * ptlocks because exclusive mmap_lock prevents deadlock.
 310	 */
 311	old_ptl = pud_lock(vma->vm_mm, old_pud);
 312	new_ptl = pud_lockptr(mm, new_pud);
 313	if (new_ptl != old_ptl)
 314		spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
 315
 316	/* Clear the pud */
 317	pud = *old_pud;
 318	pud_clear(old_pud);
 319
 320	VM_BUG_ON(!pud_none(*new_pud));
 321
 322	pud_populate(mm, new_pud, pud_pgtable(pud));
 323	flush_tlb_range(vma, old_addr, old_addr + PUD_SIZE);
 324	if (new_ptl != old_ptl)
 325		spin_unlock(new_ptl);
 326	spin_unlock(old_ptl);
 327
 328	return true;
 329}
 330#else
 331static inline bool move_normal_pud(struct vm_area_struct *vma,
 332		unsigned long old_addr, unsigned long new_addr, pud_t *old_pud,
 333		pud_t *new_pud)
 334{
 335	return false;
 336}
 337#endif
 338
 339#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
 340static bool move_huge_pud(struct vm_area_struct *vma, unsigned long old_addr,
 341			  unsigned long new_addr, pud_t *old_pud, pud_t *new_pud)
 342{
 343	spinlock_t *old_ptl, *new_ptl;
 344	struct mm_struct *mm = vma->vm_mm;
 345	pud_t pud;
 346
 347	/*
 348	 * The destination pud shouldn't be established, free_pgtables()
 349	 * should have released it.
 350	 */
 351	if (WARN_ON_ONCE(!pud_none(*new_pud)))
 352		return false;
 353
 354	/*
 355	 * We don't have to worry about the ordering of src and dst
 356	 * ptlocks because exclusive mmap_lock prevents deadlock.
 357	 */
 358	old_ptl = pud_lock(vma->vm_mm, old_pud);
 359	new_ptl = pud_lockptr(mm, new_pud);
 360	if (new_ptl != old_ptl)
 361		spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
 362
 363	/* Clear the pud */
 364	pud = *old_pud;
 365	pud_clear(old_pud);
 366
 367	VM_BUG_ON(!pud_none(*new_pud));
 368
 369	/* Set the new pud */
 370	/* mark soft_ditry when we add pud level soft dirty support */
 371	set_pud_at(mm, new_addr, new_pud, pud);
 372	flush_pud_tlb_range(vma, old_addr, old_addr + HPAGE_PUD_SIZE);
 373	if (new_ptl != old_ptl)
 374		spin_unlock(new_ptl);
 375	spin_unlock(old_ptl);
 376
 377	return true;
 378}
 379#else
 380static bool move_huge_pud(struct vm_area_struct *vma, unsigned long old_addr,
 381			  unsigned long new_addr, pud_t *old_pud, pud_t *new_pud)
 382{
 383	WARN_ON_ONCE(1);
 384	return false;
 385
 386}
 387#endif
 388
 389enum pgt_entry {
 390	NORMAL_PMD,
 391	HPAGE_PMD,
 392	NORMAL_PUD,
 393	HPAGE_PUD,
 394};
 395
 396/*
 397 * Returns an extent of the corresponding size for the pgt_entry specified if
 398 * valid. Else returns a smaller extent bounded by the end of the source and
 399 * destination pgt_entry.
 400 */
 401static __always_inline unsigned long get_extent(enum pgt_entry entry,
 402			unsigned long old_addr, unsigned long old_end,
 403			unsigned long new_addr)
 404{
 405	unsigned long next, extent, mask, size;
 406
 407	switch (entry) {
 408	case HPAGE_PMD:
 409	case NORMAL_PMD:
 410		mask = PMD_MASK;
 411		size = PMD_SIZE;
 412		break;
 413	case HPAGE_PUD:
 414	case NORMAL_PUD:
 415		mask = PUD_MASK;
 416		size = PUD_SIZE;
 417		break;
 418	default:
 419		BUILD_BUG();
 420		break;
 421	}
 422
 423	next = (old_addr + size) & mask;
 424	/* even if next overflowed, extent below will be ok */
 425	extent = next - old_addr;
 426	if (extent > old_end - old_addr)
 427		extent = old_end - old_addr;
 428	next = (new_addr + size) & mask;
 429	if (extent > next - new_addr)
 430		extent = next - new_addr;
 431	return extent;
 432}
 433
 434/*
 435 * Attempts to speedup the move by moving entry at the level corresponding to
 436 * pgt_entry. Returns true if the move was successful, else false.
 437 */
 438static bool move_pgt_entry(enum pgt_entry entry, struct vm_area_struct *vma,
 439			unsigned long old_addr, unsigned long new_addr,
 440			void *old_entry, void *new_entry, bool need_rmap_locks)
 441{
 442	bool moved = false;
 443
 444	/* See comment in move_ptes() */
 445	if (need_rmap_locks)
 446		take_rmap_locks(vma);
 447
 448	switch (entry) {
 449	case NORMAL_PMD:
 450		moved = move_normal_pmd(vma, old_addr, new_addr, old_entry,
 451					new_entry);
 452		break;
 453	case NORMAL_PUD:
 454		moved = move_normal_pud(vma, old_addr, new_addr, old_entry,
 455					new_entry);
 456		break;
 457	case HPAGE_PMD:
 458		moved = IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
 459			move_huge_pmd(vma, old_addr, new_addr, old_entry,
 460				      new_entry);
 461		break;
 462	case HPAGE_PUD:
 463		moved = IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
 464			move_huge_pud(vma, old_addr, new_addr, old_entry,
 465				      new_entry);
 466		break;
 467
 468	default:
 469		WARN_ON_ONCE(1);
 470		break;
 471	}
 472
 473	if (need_rmap_locks)
 474		drop_rmap_locks(vma);
 475
 476	return moved;
 477}
 478
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 479unsigned long move_page_tables(struct vm_area_struct *vma,
 480		unsigned long old_addr, struct vm_area_struct *new_vma,
 481		unsigned long new_addr, unsigned long len,
 482		bool need_rmap_locks)
 483{
 484	unsigned long extent, old_end;
 485	struct mmu_notifier_range range;
 486	pmd_t *old_pmd, *new_pmd;
 487	pud_t *old_pud, *new_pud;
 488
 
 
 
 489	old_end = old_addr + len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 490	flush_cache_range(vma, old_addr, old_end);
 491
 492	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
 493				old_addr, old_end);
 494	mmu_notifier_invalidate_range_start(&range);
 495
 496	for (; old_addr < old_end; old_addr += extent, new_addr += extent) {
 497		cond_resched();
 498		/*
 499		 * If extent is PUD-sized try to speed up the move by moving at the
 500		 * PUD level if possible.
 501		 */
 502		extent = get_extent(NORMAL_PUD, old_addr, old_end, new_addr);
 503
 504		old_pud = get_old_pud(vma->vm_mm, old_addr);
 505		if (!old_pud)
 506			continue;
 507		new_pud = alloc_new_pud(vma->vm_mm, vma, new_addr);
 508		if (!new_pud)
 509			break;
 510		if (pud_trans_huge(*old_pud) || pud_devmap(*old_pud)) {
 511			if (extent == HPAGE_PUD_SIZE) {
 512				move_pgt_entry(HPAGE_PUD, vma, old_addr, new_addr,
 513					       old_pud, new_pud, need_rmap_locks);
 514				/* We ignore and continue on error? */
 515				continue;
 516			}
 517		} else if (IS_ENABLED(CONFIG_HAVE_MOVE_PUD) && extent == PUD_SIZE) {
 518
 519			if (move_pgt_entry(NORMAL_PUD, vma, old_addr, new_addr,
 520					   old_pud, new_pud, true))
 521				continue;
 522		}
 523
 524		extent = get_extent(NORMAL_PMD, old_addr, old_end, new_addr);
 525		old_pmd = get_old_pmd(vma->vm_mm, old_addr);
 526		if (!old_pmd)
 527			continue;
 528		new_pmd = alloc_new_pmd(vma->vm_mm, vma, new_addr);
 529		if (!new_pmd)
 530			break;
 
 531		if (is_swap_pmd(*old_pmd) || pmd_trans_huge(*old_pmd) ||
 532		    pmd_devmap(*old_pmd)) {
 533			if (extent == HPAGE_PMD_SIZE &&
 534			    move_pgt_entry(HPAGE_PMD, vma, old_addr, new_addr,
 535					   old_pmd, new_pmd, need_rmap_locks))
 536				continue;
 537			split_huge_pmd(vma, old_pmd, old_addr);
 538			if (pmd_trans_unstable(old_pmd))
 539				continue;
 540		} else if (IS_ENABLED(CONFIG_HAVE_MOVE_PMD) &&
 541			   extent == PMD_SIZE) {
 542			/*
 543			 * If the extent is PMD-sized, try to speed the move by
 544			 * moving at the PMD level if possible.
 545			 */
 546			if (move_pgt_entry(NORMAL_PMD, vma, old_addr, new_addr,
 547					   old_pmd, new_pmd, true))
 548				continue;
 549		}
 550
 
 551		if (pte_alloc(new_vma->vm_mm, new_pmd))
 552			break;
 553		move_ptes(vma, old_pmd, old_addr, old_addr + extent, new_vma,
 554			  new_pmd, new_addr, need_rmap_locks);
 
 555	}
 556
 557	mmu_notifier_invalidate_range_end(&range);
 558
 
 
 
 
 
 
 
 559	return len + old_addr - old_end;	/* how much done */
 560}
 561
 562static unsigned long move_vma(struct vm_area_struct *vma,
 563		unsigned long old_addr, unsigned long old_len,
 564		unsigned long new_len, unsigned long new_addr,
 565		bool *locked, unsigned long flags,
 566		struct vm_userfaultfd_ctx *uf, struct list_head *uf_unmap)
 567{
 
 568	struct mm_struct *mm = vma->vm_mm;
 569	struct vm_area_struct *new_vma;
 570	unsigned long vm_flags = vma->vm_flags;
 571	unsigned long new_pgoff;
 572	unsigned long moved_len;
 573	unsigned long excess = 0;
 
 574	unsigned long hiwater_vm;
 575	int split = 0;
 576	int err = 0;
 577	bool need_rmap_locks;
 
 578
 579	/*
 580	 * We'd prefer to avoid failure later on in do_munmap:
 581	 * which may split one vma into three before unmapping.
 582	 */
 583	if (mm->map_count >= sysctl_max_map_count - 3)
 584		return -ENOMEM;
 585
 
 
 
 586	if (vma->vm_ops && vma->vm_ops->may_split) {
 587		if (vma->vm_start != old_addr)
 588			err = vma->vm_ops->may_split(vma, old_addr);
 589		if (!err && vma->vm_end != old_addr + old_len)
 590			err = vma->vm_ops->may_split(vma, old_addr + old_len);
 591		if (err)
 592			return err;
 593	}
 594
 595	/*
 596	 * Advise KSM to break any KSM pages in the area to be moved:
 597	 * it would be confusing if they were to turn up at the new
 598	 * location, where they happen to coincide with different KSM
 599	 * pages recently unmapped.  But leave vma->vm_flags as it was,
 600	 * so KSM can come around to merge on vma and new_vma afterwards.
 601	 */
 602	err = ksm_madvise(vma, old_addr, old_addr + old_len,
 603						MADV_UNMERGEABLE, &vm_flags);
 604	if (err)
 605		return err;
 606
 607	if (unlikely(flags & MREMAP_DONTUNMAP && vm_flags & VM_ACCOUNT)) {
 608		if (security_vm_enough_memory_mm(mm, new_len >> PAGE_SHIFT))
 609			return -ENOMEM;
 610	}
 611
 
 612	new_pgoff = vma->vm_pgoff + ((old_addr - vma->vm_start) >> PAGE_SHIFT);
 613	new_vma = copy_vma(&vma, new_addr, new_len, new_pgoff,
 614			   &need_rmap_locks);
 615	if (!new_vma) {
 616		if (unlikely(flags & MREMAP_DONTUNMAP && vm_flags & VM_ACCOUNT))
 617			vm_unacct_memory(new_len >> PAGE_SHIFT);
 618		return -ENOMEM;
 619	}
 620
 621	moved_len = move_page_tables(vma, old_addr, new_vma, new_addr, old_len,
 622				     need_rmap_locks);
 623	if (moved_len < old_len) {
 624		err = -ENOMEM;
 625	} else if (vma->vm_ops && vma->vm_ops->mremap) {
 626		err = vma->vm_ops->mremap(new_vma);
 627	}
 628
 629	if (unlikely(err)) {
 630		/*
 631		 * On error, move entries back from new area to old,
 632		 * which will succeed since page tables still there,
 633		 * and then proceed to unmap new area instead of old.
 634		 */
 635		move_page_tables(new_vma, new_addr, vma, old_addr, moved_len,
 636				 true);
 637		vma = new_vma;
 638		old_len = new_len;
 639		old_addr = new_addr;
 640		new_addr = err;
 641	} else {
 642		mremap_userfaultfd_prep(new_vma, uf);
 643	}
 644
 
 
 
 
 645	/* Conceal VM_ACCOUNT so old reservation is not undone */
 646	if (vm_flags & VM_ACCOUNT && !(flags & MREMAP_DONTUNMAP)) {
 647		vma->vm_flags &= ~VM_ACCOUNT;
 648		excess = vma->vm_end - vma->vm_start - old_len;
 649		if (old_addr > vma->vm_start &&
 650		    old_addr + old_len < vma->vm_end)
 651			split = 1;
 652	}
 653
 654	/*
 655	 * If we failed to move page tables we still do total_vm increment
 656	 * since do_munmap() will decrement it by old_len == new_len.
 657	 *
 658	 * Since total_vm is about to be raised artificially high for a
 659	 * moment, we need to restore high watermark afterwards: if stats
 660	 * are taken meanwhile, total_vm and hiwater_vm appear too high.
 661	 * If this were a serious issue, we'd add a flag to do_munmap().
 662	 */
 663	hiwater_vm = mm->hiwater_vm;
 664	vm_stat_account(mm, vma->vm_flags, new_len >> PAGE_SHIFT);
 665
 666	/* Tell pfnmap has moved from this vma */
 667	if (unlikely(vma->vm_flags & VM_PFNMAP))
 668		untrack_pfn_moved(vma);
 669
 670	if (unlikely(!err && (flags & MREMAP_DONTUNMAP))) {
 671		/* We always clear VM_LOCKED[ONFAULT] on the old vma */
 672		vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
 673
 674		/*
 675		 * anon_vma links of the old vma is no longer needed after its page
 676		 * table has been moved.
 677		 */
 678		if (new_vma != vma && vma->vm_start == old_addr &&
 679			vma->vm_end == (old_addr + old_len))
 680			unlink_anon_vmas(vma);
 681
 682		/* Because we won't unmap we don't need to touch locked_vm */
 683		return new_addr;
 684	}
 685
 686	if (do_munmap(mm, old_addr, old_len, uf_unmap) < 0) {
 
 687		/* OOM: unable to split vma, just get accounts right */
 688		if (vm_flags & VM_ACCOUNT && !(flags & MREMAP_DONTUNMAP))
 689			vm_acct_memory(new_len >> PAGE_SHIFT);
 690		excess = 0;
 691	}
 692
 693	if (vm_flags & VM_LOCKED) {
 694		mm->locked_vm += new_len >> PAGE_SHIFT;
 695		*locked = true;
 696	}
 697
 698	mm->hiwater_vm = hiwater_vm;
 699
 700	/* Restore VM_ACCOUNT if one or two pieces of vma left */
 701	if (excess) {
 702		vma->vm_flags |= VM_ACCOUNT;
 703		if (split)
 704			vma->vm_next->vm_flags |= VM_ACCOUNT;
 
 
 
 
 705	}
 706
 707	return new_addr;
 708}
 709
 710static struct vm_area_struct *vma_to_resize(unsigned long addr,
 711	unsigned long old_len, unsigned long new_len, unsigned long flags,
 712	unsigned long *p)
 713{
 714	struct mm_struct *mm = current->mm;
 715	struct vm_area_struct *vma;
 716	unsigned long pgoff;
 717
 718	vma = vma_lookup(mm, addr);
 719	if (!vma)
 720		return ERR_PTR(-EFAULT);
 721
 722	/*
 723	 * !old_len is a special case where an attempt is made to 'duplicate'
 724	 * a mapping.  This makes no sense for private mappings as it will
 725	 * instead create a fresh/new mapping unrelated to the original.  This
 726	 * is contrary to the basic idea of mremap which creates new mappings
 727	 * based on the original.  There are no known use cases for this
 728	 * behavior.  As a result, fail such attempts.
 729	 */
 730	if (!old_len && !(vma->vm_flags & (VM_SHARED | VM_MAYSHARE))) {
 731		pr_warn_once("%s (%d): attempted to duplicate a private mapping with mremap.  This is not supported.\n", current->comm, current->pid);
 732		return ERR_PTR(-EINVAL);
 733	}
 734
 735	if ((flags & MREMAP_DONTUNMAP) &&
 736			(vma->vm_flags & (VM_DONTEXPAND | VM_PFNMAP)))
 737		return ERR_PTR(-EINVAL);
 738
 739	if (is_vm_hugetlb_page(vma))
 740		return ERR_PTR(-EINVAL);
 741
 742	/* We can't remap across vm area boundaries */
 743	if (old_len > vma->vm_end - addr)
 744		return ERR_PTR(-EFAULT);
 745
 746	if (new_len == old_len)
 747		return vma;
 748
 749	/* Need to be careful about a growing mapping */
 750	pgoff = (addr - vma->vm_start) >> PAGE_SHIFT;
 751	pgoff += vma->vm_pgoff;
 752	if (pgoff + (new_len >> PAGE_SHIFT) < pgoff)
 753		return ERR_PTR(-EINVAL);
 754
 755	if (vma->vm_flags & (VM_DONTEXPAND | VM_PFNMAP))
 756		return ERR_PTR(-EFAULT);
 757
 758	if (vma->vm_flags & VM_LOCKED) {
 759		unsigned long locked, lock_limit;
 760		locked = mm->locked_vm << PAGE_SHIFT;
 761		lock_limit = rlimit(RLIMIT_MEMLOCK);
 762		locked += new_len - old_len;
 763		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
 764			return ERR_PTR(-EAGAIN);
 765	}
 766
 767	if (!may_expand_vm(mm, vma->vm_flags,
 768				(new_len - old_len) >> PAGE_SHIFT))
 769		return ERR_PTR(-ENOMEM);
 770
 771	if (vma->vm_flags & VM_ACCOUNT) {
 772		unsigned long charged = (new_len - old_len) >> PAGE_SHIFT;
 773		if (security_vm_enough_memory_mm(mm, charged))
 774			return ERR_PTR(-ENOMEM);
 775		*p = charged;
 776	}
 777
 778	return vma;
 779}
 780
 781static unsigned long mremap_to(unsigned long addr, unsigned long old_len,
 782		unsigned long new_addr, unsigned long new_len, bool *locked,
 783		unsigned long flags, struct vm_userfaultfd_ctx *uf,
 784		struct list_head *uf_unmap_early,
 785		struct list_head *uf_unmap)
 786{
 787	struct mm_struct *mm = current->mm;
 788	struct vm_area_struct *vma;
 789	unsigned long ret = -EINVAL;
 790	unsigned long charged = 0;
 791	unsigned long map_flags = 0;
 792
 793	if (offset_in_page(new_addr))
 794		goto out;
 795
 796	if (new_len > TASK_SIZE || new_addr > TASK_SIZE - new_len)
 797		goto out;
 798
 799	/* Ensure the old/new locations do not overlap */
 800	if (addr + old_len > new_addr && new_addr + new_len > addr)
 801		goto out;
 802
 803	/*
 804	 * move_vma() need us to stay 4 maps below the threshold, otherwise
 805	 * it will bail out at the very beginning.
 806	 * That is a problem if we have already unmaped the regions here
 807	 * (new_addr, and old_addr), because userspace will not know the
 808	 * state of the vma's after it gets -ENOMEM.
 809	 * So, to avoid such scenario we can pre-compute if the whole
 810	 * operation has high chances to success map-wise.
 811	 * Worst-scenario case is when both vma's (new_addr and old_addr) get
 812	 * split in 3 before unmapping it.
 813	 * That means 2 more maps (1 for each) to the ones we already hold.
 814	 * Check whether current map count plus 2 still leads us to 4 maps below
 815	 * the threshold, otherwise return -ENOMEM here to be more safe.
 816	 */
 817	if ((mm->map_count + 2) >= sysctl_max_map_count - 3)
 818		return -ENOMEM;
 819
 820	if (flags & MREMAP_FIXED) {
 821		ret = do_munmap(mm, new_addr, new_len, uf_unmap_early);
 822		if (ret)
 823			goto out;
 824	}
 825
 826	if (old_len >= new_len) {
 827		ret = do_munmap(mm, addr+new_len, old_len - new_len, uf_unmap);
 828		if (ret && old_len != new_len)
 829			goto out;
 830		old_len = new_len;
 831	}
 832
 833	vma = vma_to_resize(addr, old_len, new_len, flags, &charged);
 834	if (IS_ERR(vma)) {
 835		ret = PTR_ERR(vma);
 836		goto out;
 837	}
 838
 839	/* MREMAP_DONTUNMAP expands by old_len since old_len == new_len */
 840	if (flags & MREMAP_DONTUNMAP &&
 841		!may_expand_vm(mm, vma->vm_flags, old_len >> PAGE_SHIFT)) {
 842		ret = -ENOMEM;
 843		goto out;
 844	}
 845
 846	if (flags & MREMAP_FIXED)
 847		map_flags |= MAP_FIXED;
 848
 849	if (vma->vm_flags & VM_MAYSHARE)
 850		map_flags |= MAP_SHARED;
 851
 852	ret = get_unmapped_area(vma->vm_file, new_addr, new_len, vma->vm_pgoff +
 853				((addr - vma->vm_start) >> PAGE_SHIFT),
 854				map_flags);
 855	if (IS_ERR_VALUE(ret))
 856		goto out1;
 857
 858	/* We got a new mapping */
 859	if (!(flags & MREMAP_FIXED))
 860		new_addr = ret;
 861
 862	ret = move_vma(vma, addr, old_len, new_len, new_addr, locked, flags, uf,
 863		       uf_unmap);
 864
 865	if (!(offset_in_page(ret)))
 866		goto out;
 867
 868out1:
 869	vm_unacct_memory(charged);
 870
 871out:
 872	return ret;
 873}
 874
 875static int vma_expandable(struct vm_area_struct *vma, unsigned long delta)
 876{
 877	unsigned long end = vma->vm_end + delta;
 
 878	if (end < vma->vm_end) /* overflow */
 879		return 0;
 880	if (vma->vm_next && vma->vm_next->vm_start < end) /* intersection */
 881		return 0;
 882	if (get_unmapped_area(NULL, vma->vm_start, end - vma->vm_start,
 883			      0, MAP_FIXED) & ~PAGE_MASK)
 884		return 0;
 885	return 1;
 886}
 887
 888/*
 889 * Expand (or shrink) an existing mapping, potentially moving it at the
 890 * same time (controlled by the MREMAP_MAYMOVE flag and available VM space)
 891 *
 892 * MREMAP_FIXED option added 5-Dec-1999 by Benjamin LaHaise
 893 * This option implies MREMAP_MAYMOVE.
 894 */
 895SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
 896		unsigned long, new_len, unsigned long, flags,
 897		unsigned long, new_addr)
 898{
 899	struct mm_struct *mm = current->mm;
 900	struct vm_area_struct *vma;
 901	unsigned long ret = -EINVAL;
 902	unsigned long charged = 0;
 903	bool locked = false;
 904	bool downgraded = false;
 905	struct vm_userfaultfd_ctx uf = NULL_VM_UFFD_CTX;
 906	LIST_HEAD(uf_unmap_early);
 907	LIST_HEAD(uf_unmap);
 908
 909	/*
 910	 * There is a deliberate asymmetry here: we strip the pointer tag
 911	 * from the old address but leave the new address alone. This is
 912	 * for consistency with mmap(), where we prevent the creation of
 913	 * aliasing mappings in userspace by leaving the tag bits of the
 914	 * mapping address intact. A non-zero tag will cause the subsequent
 915	 * range checks to reject the address as invalid.
 916	 *
 917	 * See Documentation/arm64/tagged-address-abi.rst for more information.
 
 918	 */
 919	addr = untagged_addr(addr);
 920
 921	if (flags & ~(MREMAP_FIXED | MREMAP_MAYMOVE | MREMAP_DONTUNMAP))
 922		return ret;
 923
 924	if (flags & MREMAP_FIXED && !(flags & MREMAP_MAYMOVE))
 925		return ret;
 926
 927	/*
 928	 * MREMAP_DONTUNMAP is always a move and it does not allow resizing
 929	 * in the process.
 930	 */
 931	if (flags & MREMAP_DONTUNMAP &&
 932			(!(flags & MREMAP_MAYMOVE) || old_len != new_len))
 933		return ret;
 934
 935
 936	if (offset_in_page(addr))
 937		return ret;
 938
 939	old_len = PAGE_ALIGN(old_len);
 940	new_len = PAGE_ALIGN(new_len);
 941
 942	/*
 943	 * We allow a zero old-len as a special case
 944	 * for DOS-emu "duplicate shm area" thing. But
 945	 * a zero new-len is nonsensical.
 946	 */
 947	if (!new_len)
 948		return ret;
 949
 950	if (mmap_write_lock_killable(current->mm))
 951		return -EINTR;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 952
 953	if (flags & (MREMAP_FIXED | MREMAP_DONTUNMAP)) {
 954		ret = mremap_to(addr, old_len, new_addr, new_len,
 955				&locked, flags, &uf, &uf_unmap_early,
 956				&uf_unmap);
 957		goto out;
 958	}
 959
 960	/*
 961	 * Always allow a shrinking remap: that just unmaps
 962	 * the unnecessary pages..
 963	 * __do_munmap does all the needed commit accounting, and
 964	 * downgrades mmap_lock to read if so directed.
 965	 */
 966	if (old_len >= new_len) {
 967		int retval;
 968
 969		retval = __do_munmap(mm, addr+new_len, old_len - new_len,
 970				  &uf_unmap, true);
 971		if (retval < 0 && old_len != new_len) {
 972			ret = retval;
 973			goto out;
 974		/* Returning 1 indicates mmap_lock is downgraded to read. */
 975		} else if (retval == 1)
 976			downgraded = true;
 
 
 
 
 977		ret = addr;
 978		goto out;
 979	}
 980
 981	/*
 982	 * Ok, we need to grow..
 983	 */
 984	vma = vma_to_resize(addr, old_len, new_len, flags, &charged);
 985	if (IS_ERR(vma)) {
 986		ret = PTR_ERR(vma);
 987		goto out;
 988	}
 989
 990	/* old_len exactly to the end of the area..
 991	 */
 992	if (old_len == vma->vm_end - addr) {
 
 
 993		/* can we just expand the current mapping? */
 994		if (vma_expandable(vma, new_len - old_len)) {
 995			int pages = (new_len - old_len) >> PAGE_SHIFT;
 
 
 
 
 
 
 
 
 
 
 996
 997			if (vma_adjust(vma, vma->vm_start, addr + new_len,
 998				       vma->vm_pgoff, NULL)) {
 
 
 
 
 
 
 
 
 
 
 999				ret = -ENOMEM;
1000				goto out;
1001			}
1002
1003			vm_stat_account(mm, vma->vm_flags, pages);
1004			if (vma->vm_flags & VM_LOCKED) {
1005				mm->locked_vm += pages;
1006				locked = true;
1007				new_addr = addr;
1008			}
1009			ret = addr;
1010			goto out;
1011		}
1012	}
1013
1014	/*
1015	 * We weren't able to just expand or shrink the area,
1016	 * we need to create a new one and move it..
1017	 */
1018	ret = -ENOMEM;
1019	if (flags & MREMAP_MAYMOVE) {
1020		unsigned long map_flags = 0;
1021		if (vma->vm_flags & VM_MAYSHARE)
1022			map_flags |= MAP_SHARED;
1023
1024		new_addr = get_unmapped_area(vma->vm_file, 0, new_len,
1025					vma->vm_pgoff +
1026					((addr - vma->vm_start) >> PAGE_SHIFT),
1027					map_flags);
1028		if (IS_ERR_VALUE(new_addr)) {
1029			ret = new_addr;
1030			goto out;
1031		}
1032
1033		ret = move_vma(vma, addr, old_len, new_len, new_addr,
1034			       &locked, flags, &uf, &uf_unmap);
1035	}
1036out:
1037	if (offset_in_page(ret)) {
1038		vm_unacct_memory(charged);
1039		locked = false;
1040	}
1041	if (downgraded)
1042		mmap_read_unlock(current->mm);
1043	else
1044		mmap_write_unlock(current->mm);
1045	if (locked && new_len > old_len)
1046		mm_populate(new_addr + old_len, new_len - old_len);
 
1047	userfaultfd_unmap_complete(mm, &uf_unmap_early);
1048	mremap_userfaultfd_complete(&uf, addr, ret, old_len);
1049	userfaultfd_unmap_complete(mm, &uf_unmap);
1050	return ret;
1051}