Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_format.h"
   9#include "xfs_log_format.h"
  10#include "xfs_shared.h"
  11#include "xfs_trans_resv.h"
  12#include "xfs_bit.h"
  13#include "xfs_mount.h"
  14#include "xfs_defer.h"
  15#include "xfs_btree.h"
  16#include "xfs_rmap.h"
  17#include "xfs_alloc_btree.h"
  18#include "xfs_alloc.h"
  19#include "xfs_extent_busy.h"
  20#include "xfs_errortag.h"
  21#include "xfs_error.h"
  22#include "xfs_trace.h"
  23#include "xfs_trans.h"
  24#include "xfs_buf_item.h"
  25#include "xfs_log.h"
  26#include "xfs_ag.h"
  27#include "xfs_ag_resv.h"
  28#include "xfs_bmap.h"
 
 
  29
  30struct kmem_cache	*xfs_extfree_item_cache;
  31
  32struct workqueue_struct *xfs_alloc_wq;
  33
  34#define XFS_ABSDIFF(a,b)	(((a) <= (b)) ? ((b) - (a)) : ((a) - (b)))
  35
  36#define	XFSA_FIXUP_BNO_OK	1
  37#define	XFSA_FIXUP_CNT_OK	2
  38
  39/*
  40 * Size of the AGFL.  For CRC-enabled filesystes we steal a couple of slots in
  41 * the beginning of the block for a proper header with the location information
  42 * and CRC.
  43 */
  44unsigned int
  45xfs_agfl_size(
  46	struct xfs_mount	*mp)
  47{
  48	unsigned int		size = mp->m_sb.sb_sectsize;
  49
  50	if (xfs_has_crc(mp))
  51		size -= sizeof(struct xfs_agfl);
  52
  53	return size / sizeof(xfs_agblock_t);
  54}
  55
  56unsigned int
  57xfs_refc_block(
  58	struct xfs_mount	*mp)
  59{
  60	if (xfs_has_rmapbt(mp))
  61		return XFS_RMAP_BLOCK(mp) + 1;
  62	if (xfs_has_finobt(mp))
  63		return XFS_FIBT_BLOCK(mp) + 1;
  64	return XFS_IBT_BLOCK(mp) + 1;
  65}
  66
  67xfs_extlen_t
  68xfs_prealloc_blocks(
  69	struct xfs_mount	*mp)
  70{
  71	if (xfs_has_reflink(mp))
  72		return xfs_refc_block(mp) + 1;
  73	if (xfs_has_rmapbt(mp))
  74		return XFS_RMAP_BLOCK(mp) + 1;
  75	if (xfs_has_finobt(mp))
  76		return XFS_FIBT_BLOCK(mp) + 1;
  77	return XFS_IBT_BLOCK(mp) + 1;
  78}
  79
  80/*
  81 * The number of blocks per AG that we withhold from xfs_mod_fdblocks to
  82 * guarantee that we can refill the AGFL prior to allocating space in a nearly
  83 * full AG.  Although the space described by the free space btrees, the
  84 * blocks used by the freesp btrees themselves, and the blocks owned by the
  85 * AGFL are counted in the ondisk fdblocks, it's a mistake to let the ondisk
  86 * free space in the AG drop so low that the free space btrees cannot refill an
  87 * empty AGFL up to the minimum level.  Rather than grind through empty AGs
  88 * until the fs goes down, we subtract this many AG blocks from the incore
  89 * fdblocks to ensure user allocation does not overcommit the space the
  90 * filesystem needs for the AGFLs.  The rmap btree uses a per-AG reservation to
  91 * withhold space from xfs_mod_fdblocks, so we do not account for that here.
  92 */
  93#define XFS_ALLOCBT_AGFL_RESERVE	4
  94
  95/*
  96 * Compute the number of blocks that we set aside to guarantee the ability to
  97 * refill the AGFL and handle a full bmap btree split.
  98 *
  99 * In order to avoid ENOSPC-related deadlock caused by out-of-order locking of
 100 * AGF buffer (PV 947395), we place constraints on the relationship among
 101 * actual allocations for data blocks, freelist blocks, and potential file data
 102 * bmap btree blocks. However, these restrictions may result in no actual space
 103 * allocated for a delayed extent, for example, a data block in a certain AG is
 104 * allocated but there is no additional block for the additional bmap btree
 105 * block due to a split of the bmap btree of the file. The result of this may
 106 * lead to an infinite loop when the file gets flushed to disk and all delayed
 107 * extents need to be actually allocated. To get around this, we explicitly set
 108 * aside a few blocks which will not be reserved in delayed allocation.
 109 *
 110 * For each AG, we need to reserve enough blocks to replenish a totally empty
 111 * AGFL and 4 more to handle a potential split of the file's bmap btree.
 112 */
 113unsigned int
 114xfs_alloc_set_aside(
 115	struct xfs_mount	*mp)
 116{
 117	return mp->m_sb.sb_agcount * (XFS_ALLOCBT_AGFL_RESERVE + 4);
 118}
 119
 120/*
 121 * When deciding how much space to allocate out of an AG, we limit the
 122 * allocation maximum size to the size the AG. However, we cannot use all the
 123 * blocks in the AG - some are permanently used by metadata. These
 124 * blocks are generally:
 125 *	- the AG superblock, AGF, AGI and AGFL
 126 *	- the AGF (bno and cnt) and AGI btree root blocks, and optionally
 127 *	  the AGI free inode and rmap btree root blocks.
 128 *	- blocks on the AGFL according to xfs_alloc_set_aside() limits
 129 *	- the rmapbt root block
 130 *
 131 * The AG headers are sector sized, so the amount of space they take up is
 132 * dependent on filesystem geometry. The others are all single blocks.
 133 */
 134unsigned int
 135xfs_alloc_ag_max_usable(
 136	struct xfs_mount	*mp)
 137{
 138	unsigned int		blocks;
 139
 140	blocks = XFS_BB_TO_FSB(mp, XFS_FSS_TO_BB(mp, 4)); /* ag headers */
 141	blocks += XFS_ALLOCBT_AGFL_RESERVE;
 142	blocks += 3;			/* AGF, AGI btree root blocks */
 143	if (xfs_has_finobt(mp))
 144		blocks++;		/* finobt root block */
 145	if (xfs_has_rmapbt(mp))
 146		blocks++;		/* rmap root block */
 147	if (xfs_has_reflink(mp))
 148		blocks++;		/* refcount root block */
 149
 150	return mp->m_sb.sb_agblocks - blocks;
 151}
 152
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 153/*
 154 * Lookup the record equal to [bno, len] in the btree given by cur.
 155 */
 156STATIC int				/* error */
 157xfs_alloc_lookup_eq(
 158	struct xfs_btree_cur	*cur,	/* btree cursor */
 159	xfs_agblock_t		bno,	/* starting block of extent */
 160	xfs_extlen_t		len,	/* length of extent */
 161	int			*stat)	/* success/failure */
 162{
 163	int			error;
 164
 165	cur->bc_rec.a.ar_startblock = bno;
 166	cur->bc_rec.a.ar_blockcount = len;
 167	error = xfs_btree_lookup(cur, XFS_LOOKUP_EQ, stat);
 168	cur->bc_ag.abt.active = (*stat == 1);
 169	return error;
 170}
 171
 172/*
 173 * Lookup the first record greater than or equal to [bno, len]
 174 * in the btree given by cur.
 175 */
 176int				/* error */
 177xfs_alloc_lookup_ge(
 178	struct xfs_btree_cur	*cur,	/* btree cursor */
 179	xfs_agblock_t		bno,	/* starting block of extent */
 180	xfs_extlen_t		len,	/* length of extent */
 181	int			*stat)	/* success/failure */
 182{
 183	int			error;
 184
 185	cur->bc_rec.a.ar_startblock = bno;
 186	cur->bc_rec.a.ar_blockcount = len;
 187	error = xfs_btree_lookup(cur, XFS_LOOKUP_GE, stat);
 188	cur->bc_ag.abt.active = (*stat == 1);
 189	return error;
 190}
 191
 192/*
 193 * Lookup the first record less than or equal to [bno, len]
 194 * in the btree given by cur.
 195 */
 196int					/* error */
 197xfs_alloc_lookup_le(
 198	struct xfs_btree_cur	*cur,	/* btree cursor */
 199	xfs_agblock_t		bno,	/* starting block of extent */
 200	xfs_extlen_t		len,	/* length of extent */
 201	int			*stat)	/* success/failure */
 202{
 203	int			error;
 204	cur->bc_rec.a.ar_startblock = bno;
 205	cur->bc_rec.a.ar_blockcount = len;
 206	error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, stat);
 207	cur->bc_ag.abt.active = (*stat == 1);
 208	return error;
 209}
 210
 211static inline bool
 212xfs_alloc_cur_active(
 213	struct xfs_btree_cur	*cur)
 214{
 215	return cur && cur->bc_ag.abt.active;
 216}
 217
 218/*
 219 * Update the record referred to by cur to the value given
 220 * by [bno, len].
 221 * This either works (return 0) or gets an EFSCORRUPTED error.
 222 */
 223STATIC int				/* error */
 224xfs_alloc_update(
 225	struct xfs_btree_cur	*cur,	/* btree cursor */
 226	xfs_agblock_t		bno,	/* starting block of extent */
 227	xfs_extlen_t		len)	/* length of extent */
 228{
 229	union xfs_btree_rec	rec;
 230
 231	rec.alloc.ar_startblock = cpu_to_be32(bno);
 232	rec.alloc.ar_blockcount = cpu_to_be32(len);
 233	return xfs_btree_update(cur, &rec);
 234}
 235
 236/* Convert the ondisk btree record to its incore representation. */
 237void
 238xfs_alloc_btrec_to_irec(
 239	const union xfs_btree_rec	*rec,
 240	struct xfs_alloc_rec_incore	*irec)
 241{
 242	irec->ar_startblock = be32_to_cpu(rec->alloc.ar_startblock);
 243	irec->ar_blockcount = be32_to_cpu(rec->alloc.ar_blockcount);
 244}
 245
 246/* Simple checks for free space records. */
 247xfs_failaddr_t
 248xfs_alloc_check_irec(
 249	struct xfs_perag			*pag,
 250	const struct xfs_alloc_rec_incore	*irec)
 251{
 252	if (irec->ar_blockcount == 0)
 253		return __this_address;
 254
 255	/* check for valid extent range, including overflow */
 256	if (!xfs_verify_agbext(pag, irec->ar_startblock, irec->ar_blockcount))
 257		return __this_address;
 258
 259	return NULL;
 260}
 261
 262static inline int
 263xfs_alloc_complain_bad_rec(
 264	struct xfs_btree_cur		*cur,
 265	xfs_failaddr_t			fa,
 266	const struct xfs_alloc_rec_incore *irec)
 267{
 268	struct xfs_mount		*mp = cur->bc_mp;
 269
 270	xfs_warn(mp,
 271		"%s Freespace BTree record corruption in AG %d detected at %pS!",
 272		cur->bc_btnum == XFS_BTNUM_BNO ? "Block" : "Size",
 273		cur->bc_ag.pag->pag_agno, fa);
 274	xfs_warn(mp,
 275		"start block 0x%x block count 0x%x", irec->ar_startblock,
 276		irec->ar_blockcount);
 
 277	return -EFSCORRUPTED;
 278}
 279
 280/*
 281 * Get the data from the pointed-to record.
 282 */
 283int					/* error */
 284xfs_alloc_get_rec(
 285	struct xfs_btree_cur	*cur,	/* btree cursor */
 286	xfs_agblock_t		*bno,	/* output: starting block of extent */
 287	xfs_extlen_t		*len,	/* output: length of extent */
 288	int			*stat)	/* output: success/failure */
 289{
 290	struct xfs_alloc_rec_incore irec;
 291	union xfs_btree_rec	*rec;
 292	xfs_failaddr_t		fa;
 293	int			error;
 294
 295	error = xfs_btree_get_rec(cur, &rec, stat);
 296	if (error || !(*stat))
 297		return error;
 298
 299	xfs_alloc_btrec_to_irec(rec, &irec);
 300	fa = xfs_alloc_check_irec(cur->bc_ag.pag, &irec);
 301	if (fa)
 302		return xfs_alloc_complain_bad_rec(cur, fa, &irec);
 303
 304	*bno = irec.ar_startblock;
 305	*len = irec.ar_blockcount;
 306	return 0;
 307}
 308
 309/*
 310 * Compute aligned version of the found extent.
 311 * Takes alignment and min length into account.
 312 */
 313STATIC bool
 314xfs_alloc_compute_aligned(
 315	xfs_alloc_arg_t	*args,		/* allocation argument structure */
 316	xfs_agblock_t	foundbno,	/* starting block in found extent */
 317	xfs_extlen_t	foundlen,	/* length in found extent */
 318	xfs_agblock_t	*resbno,	/* result block number */
 319	xfs_extlen_t	*reslen,	/* result length */
 320	unsigned	*busy_gen)
 321{
 322	xfs_agblock_t	bno = foundbno;
 323	xfs_extlen_t	len = foundlen;
 324	xfs_extlen_t	diff;
 325	bool		busy;
 326
 327	/* Trim busy sections out of found extent */
 328	busy = xfs_extent_busy_trim(args, &bno, &len, busy_gen);
 
 329
 330	/*
 331	 * If we have a largish extent that happens to start before min_agbno,
 332	 * see if we can shift it into range...
 333	 */
 334	if (bno < args->min_agbno && bno + len > args->min_agbno) {
 335		diff = args->min_agbno - bno;
 336		if (len > diff) {
 337			bno += diff;
 338			len -= diff;
 339		}
 340	}
 341
 342	if (args->alignment > 1 && len >= args->minlen) {
 343		xfs_agblock_t	aligned_bno = roundup(bno, args->alignment);
 344
 345		diff = aligned_bno - bno;
 346
 347		*resbno = aligned_bno;
 348		*reslen = diff >= len ? 0 : len - diff;
 349	} else {
 350		*resbno = bno;
 351		*reslen = len;
 352	}
 353
 354	return busy;
 355}
 356
 357/*
 358 * Compute best start block and diff for "near" allocations.
 359 * freelen >= wantlen already checked by caller.
 360 */
 361STATIC xfs_extlen_t			/* difference value (absolute) */
 362xfs_alloc_compute_diff(
 363	xfs_agblock_t	wantbno,	/* target starting block */
 364	xfs_extlen_t	wantlen,	/* target length */
 365	xfs_extlen_t	alignment,	/* target alignment */
 366	int		datatype,	/* are we allocating data? */
 367	xfs_agblock_t	freebno,	/* freespace's starting block */
 368	xfs_extlen_t	freelen,	/* freespace's length */
 369	xfs_agblock_t	*newbnop)	/* result: best start block from free */
 370{
 371	xfs_agblock_t	freeend;	/* end of freespace extent */
 372	xfs_agblock_t	newbno1;	/* return block number */
 373	xfs_agblock_t	newbno2;	/* other new block number */
 374	xfs_extlen_t	newlen1=0;	/* length with newbno1 */
 375	xfs_extlen_t	newlen2=0;	/* length with newbno2 */
 376	xfs_agblock_t	wantend;	/* end of target extent */
 377	bool		userdata = datatype & XFS_ALLOC_USERDATA;
 378
 379	ASSERT(freelen >= wantlen);
 380	freeend = freebno + freelen;
 381	wantend = wantbno + wantlen;
 382	/*
 383	 * We want to allocate from the start of a free extent if it is past
 384	 * the desired block or if we are allocating user data and the free
 385	 * extent is before desired block. The second case is there to allow
 386	 * for contiguous allocation from the remaining free space if the file
 387	 * grows in the short term.
 388	 */
 389	if (freebno >= wantbno || (userdata && freeend < wantend)) {
 390		if ((newbno1 = roundup(freebno, alignment)) >= freeend)
 391			newbno1 = NULLAGBLOCK;
 392	} else if (freeend >= wantend && alignment > 1) {
 393		newbno1 = roundup(wantbno, alignment);
 394		newbno2 = newbno1 - alignment;
 395		if (newbno1 >= freeend)
 396			newbno1 = NULLAGBLOCK;
 397		else
 398			newlen1 = XFS_EXTLEN_MIN(wantlen, freeend - newbno1);
 399		if (newbno2 < freebno)
 400			newbno2 = NULLAGBLOCK;
 401		else
 402			newlen2 = XFS_EXTLEN_MIN(wantlen, freeend - newbno2);
 403		if (newbno1 != NULLAGBLOCK && newbno2 != NULLAGBLOCK) {
 404			if (newlen1 < newlen2 ||
 405			    (newlen1 == newlen2 &&
 406			     XFS_ABSDIFF(newbno1, wantbno) >
 407			     XFS_ABSDIFF(newbno2, wantbno)))
 408				newbno1 = newbno2;
 409		} else if (newbno2 != NULLAGBLOCK)
 410			newbno1 = newbno2;
 411	} else if (freeend >= wantend) {
 412		newbno1 = wantbno;
 413	} else if (alignment > 1) {
 414		newbno1 = roundup(freeend - wantlen, alignment);
 415		if (newbno1 > freeend - wantlen &&
 416		    newbno1 - alignment >= freebno)
 417			newbno1 -= alignment;
 418		else if (newbno1 >= freeend)
 419			newbno1 = NULLAGBLOCK;
 420	} else
 421		newbno1 = freeend - wantlen;
 422	*newbnop = newbno1;
 423	return newbno1 == NULLAGBLOCK ? 0 : XFS_ABSDIFF(newbno1, wantbno);
 424}
 425
 426/*
 427 * Fix up the length, based on mod and prod.
 428 * len should be k * prod + mod for some k.
 429 * If len is too small it is returned unchanged.
 430 * If len hits maxlen it is left alone.
 431 */
 432STATIC void
 433xfs_alloc_fix_len(
 434	xfs_alloc_arg_t	*args)		/* allocation argument structure */
 435{
 436	xfs_extlen_t	k;
 437	xfs_extlen_t	rlen;
 438
 439	ASSERT(args->mod < args->prod);
 440	rlen = args->len;
 441	ASSERT(rlen >= args->minlen);
 442	ASSERT(rlen <= args->maxlen);
 443	if (args->prod <= 1 || rlen < args->mod || rlen == args->maxlen ||
 444	    (args->mod == 0 && rlen < args->prod))
 445		return;
 446	k = rlen % args->prod;
 447	if (k == args->mod)
 448		return;
 449	if (k > args->mod)
 450		rlen = rlen - (k - args->mod);
 451	else
 452		rlen = rlen - args->prod + (args->mod - k);
 453	/* casts to (int) catch length underflows */
 454	if ((int)rlen < (int)args->minlen)
 455		return;
 456	ASSERT(rlen >= args->minlen && rlen <= args->maxlen);
 457	ASSERT(rlen % args->prod == args->mod);
 458	ASSERT(args->pag->pagf_freeblks + args->pag->pagf_flcount >=
 459		rlen + args->minleft);
 460	args->len = rlen;
 461}
 462
 463/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 464 * Update the two btrees, logically removing from freespace the extent
 465 * starting at rbno, rlen blocks.  The extent is contained within the
 466 * actual (current) free extent fbno for flen blocks.
 467 * Flags are passed in indicating whether the cursors are set to the
 468 * relevant records.
 469 */
 470STATIC int				/* error code */
 471xfs_alloc_fixup_trees(
 472	struct xfs_btree_cur *cnt_cur,	/* cursor for by-size btree */
 473	struct xfs_btree_cur *bno_cur,	/* cursor for by-block btree */
 474	xfs_agblock_t	fbno,		/* starting block of free extent */
 475	xfs_extlen_t	flen,		/* length of free extent */
 476	xfs_agblock_t	rbno,		/* starting block of returned extent */
 477	xfs_extlen_t	rlen,		/* length of returned extent */
 478	int		flags)		/* flags, XFSA_FIXUP_... */
 479{
 480	int		error;		/* error code */
 481	int		i;		/* operation results */
 482	xfs_agblock_t	nfbno1;		/* first new free startblock */
 483	xfs_agblock_t	nfbno2;		/* second new free startblock */
 484	xfs_extlen_t	nflen1=0;	/* first new free length */
 485	xfs_extlen_t	nflen2=0;	/* second new free length */
 486	struct xfs_mount *mp;
 
 487
 488	mp = cnt_cur->bc_mp;
 489
 490	/*
 491	 * Look up the record in the by-size tree if necessary.
 492	 */
 493	if (flags & XFSA_FIXUP_CNT_OK) {
 494#ifdef DEBUG
 495		if ((error = xfs_alloc_get_rec(cnt_cur, &nfbno1, &nflen1, &i)))
 496			return error;
 497		if (XFS_IS_CORRUPT(mp,
 498				   i != 1 ||
 499				   nfbno1 != fbno ||
 500				   nflen1 != flen))
 
 501			return -EFSCORRUPTED;
 
 502#endif
 503	} else {
 504		if ((error = xfs_alloc_lookup_eq(cnt_cur, fbno, flen, &i)))
 505			return error;
 506		if (XFS_IS_CORRUPT(mp, i != 1))
 
 507			return -EFSCORRUPTED;
 
 508	}
 509	/*
 510	 * Look up the record in the by-block tree if necessary.
 511	 */
 512	if (flags & XFSA_FIXUP_BNO_OK) {
 513#ifdef DEBUG
 514		if ((error = xfs_alloc_get_rec(bno_cur, &nfbno1, &nflen1, &i)))
 515			return error;
 516		if (XFS_IS_CORRUPT(mp,
 517				   i != 1 ||
 518				   nfbno1 != fbno ||
 519				   nflen1 != flen))
 
 520			return -EFSCORRUPTED;
 
 521#endif
 522	} else {
 523		if ((error = xfs_alloc_lookup_eq(bno_cur, fbno, flen, &i)))
 524			return error;
 525		if (XFS_IS_CORRUPT(mp, i != 1))
 
 526			return -EFSCORRUPTED;
 
 527	}
 528
 529#ifdef DEBUG
 530	if (bno_cur->bc_nlevels == 1 && cnt_cur->bc_nlevels == 1) {
 531		struct xfs_btree_block	*bnoblock;
 532		struct xfs_btree_block	*cntblock;
 533
 534		bnoblock = XFS_BUF_TO_BLOCK(bno_cur->bc_levels[0].bp);
 535		cntblock = XFS_BUF_TO_BLOCK(cnt_cur->bc_levels[0].bp);
 536
 537		if (XFS_IS_CORRUPT(mp,
 538				   bnoblock->bb_numrecs !=
 539				   cntblock->bb_numrecs))
 
 540			return -EFSCORRUPTED;
 
 541	}
 542#endif
 543
 544	/*
 545	 * Deal with all four cases: the allocated record is contained
 546	 * within the freespace record, so we can have new freespace
 547	 * at either (or both) end, or no freespace remaining.
 548	 */
 549	if (rbno == fbno && rlen == flen)
 550		nfbno1 = nfbno2 = NULLAGBLOCK;
 551	else if (rbno == fbno) {
 552		nfbno1 = rbno + rlen;
 553		nflen1 = flen - rlen;
 554		nfbno2 = NULLAGBLOCK;
 555	} else if (rbno + rlen == fbno + flen) {
 556		nfbno1 = fbno;
 557		nflen1 = flen - rlen;
 558		nfbno2 = NULLAGBLOCK;
 559	} else {
 560		nfbno1 = fbno;
 561		nflen1 = rbno - fbno;
 562		nfbno2 = rbno + rlen;
 563		nflen2 = (fbno + flen) - nfbno2;
 564	}
 
 
 
 
 565	/*
 566	 * Delete the entry from the by-size btree.
 567	 */
 568	if ((error = xfs_btree_delete(cnt_cur, &i)))
 569		return error;
 570	if (XFS_IS_CORRUPT(mp, i != 1))
 
 571		return -EFSCORRUPTED;
 
 572	/*
 573	 * Add new by-size btree entry(s).
 574	 */
 575	if (nfbno1 != NULLAGBLOCK) {
 576		if ((error = xfs_alloc_lookup_eq(cnt_cur, nfbno1, nflen1, &i)))
 577			return error;
 578		if (XFS_IS_CORRUPT(mp, i != 0))
 
 579			return -EFSCORRUPTED;
 
 580		if ((error = xfs_btree_insert(cnt_cur, &i)))
 581			return error;
 582		if (XFS_IS_CORRUPT(mp, i != 1))
 
 583			return -EFSCORRUPTED;
 
 584	}
 585	if (nfbno2 != NULLAGBLOCK) {
 586		if ((error = xfs_alloc_lookup_eq(cnt_cur, nfbno2, nflen2, &i)))
 587			return error;
 588		if (XFS_IS_CORRUPT(mp, i != 0))
 
 589			return -EFSCORRUPTED;
 
 590		if ((error = xfs_btree_insert(cnt_cur, &i)))
 591			return error;
 592		if (XFS_IS_CORRUPT(mp, i != 1))
 
 593			return -EFSCORRUPTED;
 
 594	}
 595	/*
 596	 * Fix up the by-block btree entry(s).
 597	 */
 598	if (nfbno1 == NULLAGBLOCK) {
 599		/*
 600		 * No remaining freespace, just delete the by-block tree entry.
 601		 */
 602		if ((error = xfs_btree_delete(bno_cur, &i)))
 603			return error;
 604		if (XFS_IS_CORRUPT(mp, i != 1))
 
 605			return -EFSCORRUPTED;
 
 606	} else {
 607		/*
 608		 * Update the by-block entry to start later|be shorter.
 609		 */
 610		if ((error = xfs_alloc_update(bno_cur, nfbno1, nflen1)))
 611			return error;
 612	}
 613	if (nfbno2 != NULLAGBLOCK) {
 614		/*
 615		 * 2 resulting free entries, need to add one.
 616		 */
 617		if ((error = xfs_alloc_lookup_eq(bno_cur, nfbno2, nflen2, &i)))
 618			return error;
 619		if (XFS_IS_CORRUPT(mp, i != 0))
 
 620			return -EFSCORRUPTED;
 
 621		if ((error = xfs_btree_insert(bno_cur, &i)))
 622			return error;
 623		if (XFS_IS_CORRUPT(mp, i != 1))
 
 624			return -EFSCORRUPTED;
 
 625	}
 
 
 
 
 626	return 0;
 627}
 628
 629/*
 630 * We do not verify the AGFL contents against AGF-based index counters here,
 631 * even though we may have access to the perag that contains shadow copies. We
 632 * don't know if the AGF based counters have been checked, and if they have they
 633 * still may be inconsistent because they haven't yet been reset on the first
 634 * allocation after the AGF has been read in.
 635 *
 636 * This means we can only check that all agfl entries contain valid or null
 637 * values because we can't reliably determine the active range to exclude
 638 * NULLAGBNO as a valid value.
 639 *
 640 * However, we can't even do that for v4 format filesystems because there are
 641 * old versions of mkfs out there that does not initialise the AGFL to known,
 642 * verifiable values. HEnce we can't tell the difference between a AGFL block
 643 * allocated by mkfs and a corrupted AGFL block here on v4 filesystems.
 644 *
 645 * As a result, we can only fully validate AGFL block numbers when we pull them
 646 * from the freelist in xfs_alloc_get_freelist().
 647 */
 648static xfs_failaddr_t
 649xfs_agfl_verify(
 650	struct xfs_buf	*bp)
 651{
 652	struct xfs_mount *mp = bp->b_mount;
 653	struct xfs_agfl	*agfl = XFS_BUF_TO_AGFL(bp);
 654	__be32		*agfl_bno = xfs_buf_to_agfl_bno(bp);
 655	int		i;
 656
 657	if (!xfs_has_crc(mp))
 658		return NULL;
 659
 660	if (!xfs_verify_magic(bp, agfl->agfl_magicnum))
 661		return __this_address;
 662	if (!uuid_equal(&agfl->agfl_uuid, &mp->m_sb.sb_meta_uuid))
 663		return __this_address;
 664	/*
 665	 * during growfs operations, the perag is not fully initialised,
 666	 * so we can't use it for any useful checking. growfs ensures we can't
 667	 * use it by using uncached buffers that don't have the perag attached
 668	 * so we can detect and avoid this problem.
 669	 */
 670	if (bp->b_pag && be32_to_cpu(agfl->agfl_seqno) != bp->b_pag->pag_agno)
 671		return __this_address;
 672
 673	for (i = 0; i < xfs_agfl_size(mp); i++) {
 674		if (be32_to_cpu(agfl_bno[i]) != NULLAGBLOCK &&
 675		    be32_to_cpu(agfl_bno[i]) >= mp->m_sb.sb_agblocks)
 676			return __this_address;
 677	}
 678
 679	if (!xfs_log_check_lsn(mp, be64_to_cpu(XFS_BUF_TO_AGFL(bp)->agfl_lsn)))
 680		return __this_address;
 681	return NULL;
 682}
 683
 684static void
 685xfs_agfl_read_verify(
 686	struct xfs_buf	*bp)
 687{
 688	struct xfs_mount *mp = bp->b_mount;
 689	xfs_failaddr_t	fa;
 690
 691	/*
 692	 * There is no verification of non-crc AGFLs because mkfs does not
 693	 * initialise the AGFL to zero or NULL. Hence the only valid part of the
 694	 * AGFL is what the AGF says is active. We can't get to the AGF, so we
 695	 * can't verify just those entries are valid.
 696	 */
 697	if (!xfs_has_crc(mp))
 698		return;
 699
 700	if (!xfs_buf_verify_cksum(bp, XFS_AGFL_CRC_OFF))
 701		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
 702	else {
 703		fa = xfs_agfl_verify(bp);
 704		if (fa)
 705			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
 706	}
 707}
 708
 709static void
 710xfs_agfl_write_verify(
 711	struct xfs_buf	*bp)
 712{
 713	struct xfs_mount	*mp = bp->b_mount;
 714	struct xfs_buf_log_item	*bip = bp->b_log_item;
 715	xfs_failaddr_t		fa;
 716
 717	/* no verification of non-crc AGFLs */
 718	if (!xfs_has_crc(mp))
 719		return;
 720
 721	fa = xfs_agfl_verify(bp);
 722	if (fa) {
 723		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
 724		return;
 725	}
 726
 727	if (bip)
 728		XFS_BUF_TO_AGFL(bp)->agfl_lsn = cpu_to_be64(bip->bli_item.li_lsn);
 729
 730	xfs_buf_update_cksum(bp, XFS_AGFL_CRC_OFF);
 731}
 732
 733const struct xfs_buf_ops xfs_agfl_buf_ops = {
 734	.name = "xfs_agfl",
 735	.magic = { cpu_to_be32(XFS_AGFL_MAGIC), cpu_to_be32(XFS_AGFL_MAGIC) },
 736	.verify_read = xfs_agfl_read_verify,
 737	.verify_write = xfs_agfl_write_verify,
 738	.verify_struct = xfs_agfl_verify,
 739};
 740
 741/*
 742 * Read in the allocation group free block array.
 743 */
 744int
 745xfs_alloc_read_agfl(
 746	struct xfs_perag	*pag,
 747	struct xfs_trans	*tp,
 748	struct xfs_buf		**bpp)
 749{
 750	struct xfs_mount	*mp = pag->pag_mount;
 751	struct xfs_buf		*bp;
 752	int			error;
 753
 754	error = xfs_trans_read_buf(
 755			mp, tp, mp->m_ddev_targp,
 756			XFS_AG_DADDR(mp, pag->pag_agno, XFS_AGFL_DADDR(mp)),
 757			XFS_FSS_TO_BB(mp, 1), 0, &bp, &xfs_agfl_buf_ops);
 
 
 758	if (error)
 759		return error;
 760	xfs_buf_set_ref(bp, XFS_AGFL_REF);
 761	*bpp = bp;
 762	return 0;
 763}
 764
 765STATIC int
 766xfs_alloc_update_counters(
 767	struct xfs_trans	*tp,
 768	struct xfs_buf		*agbp,
 769	long			len)
 770{
 771	struct xfs_agf		*agf = agbp->b_addr;
 772
 773	agbp->b_pag->pagf_freeblks += len;
 774	be32_add_cpu(&agf->agf_freeblks, len);
 775
 776	if (unlikely(be32_to_cpu(agf->agf_freeblks) >
 777		     be32_to_cpu(agf->agf_length))) {
 778		xfs_buf_mark_corrupt(agbp);
 
 779		return -EFSCORRUPTED;
 780	}
 781
 782	xfs_alloc_log_agf(tp, agbp, XFS_AGF_FREEBLKS);
 783	return 0;
 784}
 785
 786/*
 787 * Block allocation algorithm and data structures.
 788 */
 789struct xfs_alloc_cur {
 790	struct xfs_btree_cur		*cnt;	/* btree cursors */
 791	struct xfs_btree_cur		*bnolt;
 792	struct xfs_btree_cur		*bnogt;
 793	xfs_extlen_t			cur_len;/* current search length */
 794	xfs_agblock_t			rec_bno;/* extent startblock */
 795	xfs_extlen_t			rec_len;/* extent length */
 796	xfs_agblock_t			bno;	/* alloc bno */
 797	xfs_extlen_t			len;	/* alloc len */
 798	xfs_extlen_t			diff;	/* diff from search bno */
 799	unsigned int			busy_gen;/* busy state */
 800	bool				busy;
 801};
 802
 803/*
 804 * Set up cursors, etc. in the extent allocation cursor. This function can be
 805 * called multiple times to reset an initialized structure without having to
 806 * reallocate cursors.
 807 */
 808static int
 809xfs_alloc_cur_setup(
 810	struct xfs_alloc_arg	*args,
 811	struct xfs_alloc_cur	*acur)
 812{
 813	int			error;
 814	int			i;
 815
 816	acur->cur_len = args->maxlen;
 817	acur->rec_bno = 0;
 818	acur->rec_len = 0;
 819	acur->bno = 0;
 820	acur->len = 0;
 821	acur->diff = -1;
 822	acur->busy = false;
 823	acur->busy_gen = 0;
 824
 825	/*
 826	 * Perform an initial cntbt lookup to check for availability of maxlen
 827	 * extents. If this fails, we'll return -ENOSPC to signal the caller to
 828	 * attempt a small allocation.
 829	 */
 830	if (!acur->cnt)
 831		acur->cnt = xfs_allocbt_init_cursor(args->mp, args->tp,
 832					args->agbp, args->pag, XFS_BTNUM_CNT);
 833	error = xfs_alloc_lookup_ge(acur->cnt, 0, args->maxlen, &i);
 834	if (error)
 835		return error;
 836
 837	/*
 838	 * Allocate the bnobt left and right search cursors.
 839	 */
 840	if (!acur->bnolt)
 841		acur->bnolt = xfs_allocbt_init_cursor(args->mp, args->tp,
 842					args->agbp, args->pag, XFS_BTNUM_BNO);
 843	if (!acur->bnogt)
 844		acur->bnogt = xfs_allocbt_init_cursor(args->mp, args->tp,
 845					args->agbp, args->pag, XFS_BTNUM_BNO);
 846	return i == 1 ? 0 : -ENOSPC;
 847}
 848
 849static void
 850xfs_alloc_cur_close(
 851	struct xfs_alloc_cur	*acur,
 852	bool			error)
 853{
 854	int			cur_error = XFS_BTREE_NOERROR;
 855
 856	if (error)
 857		cur_error = XFS_BTREE_ERROR;
 858
 859	if (acur->cnt)
 860		xfs_btree_del_cursor(acur->cnt, cur_error);
 861	if (acur->bnolt)
 862		xfs_btree_del_cursor(acur->bnolt, cur_error);
 863	if (acur->bnogt)
 864		xfs_btree_del_cursor(acur->bnogt, cur_error);
 865	acur->cnt = acur->bnolt = acur->bnogt = NULL;
 866}
 867
 868/*
 869 * Check an extent for allocation and track the best available candidate in the
 870 * allocation structure. The cursor is deactivated if it has entered an out of
 871 * range state based on allocation arguments. Optionally return the extent
 872 * extent geometry and allocation status if requested by the caller.
 873 */
 874static int
 875xfs_alloc_cur_check(
 876	struct xfs_alloc_arg	*args,
 877	struct xfs_alloc_cur	*acur,
 878	struct xfs_btree_cur	*cur,
 879	int			*new)
 880{
 881	int			error, i;
 882	xfs_agblock_t		bno, bnoa, bnew;
 883	xfs_extlen_t		len, lena, diff = -1;
 884	bool			busy;
 885	unsigned		busy_gen = 0;
 886	bool			deactivate = false;
 887	bool			isbnobt = cur->bc_btnum == XFS_BTNUM_BNO;
 888
 889	*new = 0;
 890
 891	error = xfs_alloc_get_rec(cur, &bno, &len, &i);
 892	if (error)
 893		return error;
 894	if (XFS_IS_CORRUPT(args->mp, i != 1))
 
 895		return -EFSCORRUPTED;
 
 896
 897	/*
 898	 * Check minlen and deactivate a cntbt cursor if out of acceptable size
 899	 * range (i.e., walking backwards looking for a minlen extent).
 900	 */
 901	if (len < args->minlen) {
 902		deactivate = !isbnobt;
 903		goto out;
 904	}
 905
 906	busy = xfs_alloc_compute_aligned(args, bno, len, &bnoa, &lena,
 907					 &busy_gen);
 908	acur->busy |= busy;
 909	if (busy)
 910		acur->busy_gen = busy_gen;
 911	/* deactivate a bnobt cursor outside of locality range */
 912	if (bnoa < args->min_agbno || bnoa > args->max_agbno) {
 913		deactivate = isbnobt;
 914		goto out;
 915	}
 916	if (lena < args->minlen)
 917		goto out;
 918
 919	args->len = XFS_EXTLEN_MIN(lena, args->maxlen);
 920	xfs_alloc_fix_len(args);
 921	ASSERT(args->len >= args->minlen);
 922	if (args->len < acur->len)
 923		goto out;
 924
 925	/*
 926	 * We have an aligned record that satisfies minlen and beats or matches
 927	 * the candidate extent size. Compare locality for near allocation mode.
 928	 */
 929	diff = xfs_alloc_compute_diff(args->agbno, args->len,
 930				      args->alignment, args->datatype,
 931				      bnoa, lena, &bnew);
 932	if (bnew == NULLAGBLOCK)
 933		goto out;
 934
 935	/*
 936	 * Deactivate a bnobt cursor with worse locality than the current best.
 937	 */
 938	if (diff > acur->diff) {
 939		deactivate = isbnobt;
 940		goto out;
 941	}
 942
 943	ASSERT(args->len > acur->len ||
 944	       (args->len == acur->len && diff <= acur->diff));
 945	acur->rec_bno = bno;
 946	acur->rec_len = len;
 947	acur->bno = bnew;
 948	acur->len = args->len;
 949	acur->diff = diff;
 950	*new = 1;
 951
 952	/*
 953	 * We're done if we found a perfect allocation. This only deactivates
 954	 * the current cursor, but this is just an optimization to terminate a
 955	 * cntbt search that otherwise runs to the edge of the tree.
 956	 */
 957	if (acur->diff == 0 && acur->len == args->maxlen)
 958		deactivate = true;
 959out:
 960	if (deactivate)
 961		cur->bc_ag.abt.active = false;
 962	trace_xfs_alloc_cur_check(args->mp, cur->bc_btnum, bno, len, diff,
 963				  *new);
 964	return 0;
 965}
 966
 967/*
 968 * Complete an allocation of a candidate extent. Remove the extent from both
 969 * trees and update the args structure.
 970 */
 971STATIC int
 972xfs_alloc_cur_finish(
 973	struct xfs_alloc_arg	*args,
 974	struct xfs_alloc_cur	*acur)
 975{
 976	struct xfs_agf __maybe_unused *agf = args->agbp->b_addr;
 977	int			error;
 978
 979	ASSERT(acur->cnt && acur->bnolt);
 980	ASSERT(acur->bno >= acur->rec_bno);
 981	ASSERT(acur->bno + acur->len <= acur->rec_bno + acur->rec_len);
 982	ASSERT(acur->rec_bno + acur->rec_len <= be32_to_cpu(agf->agf_length));
 983
 984	error = xfs_alloc_fixup_trees(acur->cnt, acur->bnolt, acur->rec_bno,
 985				      acur->rec_len, acur->bno, acur->len, 0);
 986	if (error)
 987		return error;
 988
 989	args->agbno = acur->bno;
 990	args->len = acur->len;
 991	args->wasfromfl = 0;
 992
 993	trace_xfs_alloc_cur(args);
 994	return 0;
 995}
 996
 997/*
 998 * Locality allocation lookup algorithm. This expects a cntbt cursor and uses
 999 * bno optimized lookup to search for extents with ideal size and locality.
1000 */
1001STATIC int
1002xfs_alloc_cntbt_iter(
1003	struct xfs_alloc_arg		*args,
1004	struct xfs_alloc_cur		*acur)
1005{
1006	struct xfs_btree_cur	*cur = acur->cnt;
1007	xfs_agblock_t		bno;
1008	xfs_extlen_t		len, cur_len;
1009	int			error;
1010	int			i;
1011
1012	if (!xfs_alloc_cur_active(cur))
1013		return 0;
1014
1015	/* locality optimized lookup */
1016	cur_len = acur->cur_len;
1017	error = xfs_alloc_lookup_ge(cur, args->agbno, cur_len, &i);
1018	if (error)
1019		return error;
1020	if (i == 0)
1021		return 0;
1022	error = xfs_alloc_get_rec(cur, &bno, &len, &i);
1023	if (error)
1024		return error;
1025
1026	/* check the current record and update search length from it */
1027	error = xfs_alloc_cur_check(args, acur, cur, &i);
1028	if (error)
1029		return error;
1030	ASSERT(len >= acur->cur_len);
1031	acur->cur_len = len;
1032
1033	/*
1034	 * We looked up the first record >= [agbno, len] above. The agbno is a
1035	 * secondary key and so the current record may lie just before or after
1036	 * agbno. If it is past agbno, check the previous record too so long as
1037	 * the length matches as it may be closer. Don't check a smaller record
1038	 * because that could deactivate our cursor.
1039	 */
1040	if (bno > args->agbno) {
1041		error = xfs_btree_decrement(cur, 0, &i);
1042		if (!error && i) {
1043			error = xfs_alloc_get_rec(cur, &bno, &len, &i);
1044			if (!error && i && len == acur->cur_len)
1045				error = xfs_alloc_cur_check(args, acur, cur,
1046							    &i);
1047		}
1048		if (error)
1049			return error;
1050	}
1051
1052	/*
1053	 * Increment the search key until we find at least one allocation
1054	 * candidate or if the extent we found was larger. Otherwise, double the
1055	 * search key to optimize the search. Efficiency is more important here
1056	 * than absolute best locality.
1057	 */
1058	cur_len <<= 1;
1059	if (!acur->len || acur->cur_len >= cur_len)
1060		acur->cur_len++;
1061	else
1062		acur->cur_len = cur_len;
1063
1064	return error;
1065}
1066
1067/*
1068 * Deal with the case where only small freespaces remain. Either return the
1069 * contents of the last freespace record, or allocate space from the freelist if
1070 * there is nothing in the tree.
1071 */
1072STATIC int			/* error */
1073xfs_alloc_ag_vextent_small(
1074	struct xfs_alloc_arg	*args,	/* allocation argument structure */
1075	struct xfs_btree_cur	*ccur,	/* optional by-size cursor */
1076	xfs_agblock_t		*fbnop,	/* result block number */
1077	xfs_extlen_t		*flenp,	/* result length */
1078	int			*stat)	/* status: 0-freelist, 1-normal/none */
1079{
1080	struct xfs_agf		*agf = args->agbp->b_addr;
1081	int			error = 0;
1082	xfs_agblock_t		fbno = NULLAGBLOCK;
1083	xfs_extlen_t		flen = 0;
1084	int			i = 0;
1085
1086	/*
1087	 * If a cntbt cursor is provided, try to allocate the largest record in
1088	 * the tree. Try the AGFL if the cntbt is empty, otherwise fail the
1089	 * allocation. Make sure to respect minleft even when pulling from the
1090	 * freelist.
1091	 */
1092	if (ccur)
1093		error = xfs_btree_decrement(ccur, 0, &i);
1094	if (error)
1095		goto error;
1096	if (i) {
1097		error = xfs_alloc_get_rec(ccur, &fbno, &flen, &i);
1098		if (error)
1099			goto error;
1100		if (XFS_IS_CORRUPT(args->mp, i != 1)) {
 
1101			error = -EFSCORRUPTED;
1102			goto error;
1103		}
1104		goto out;
1105	}
1106
1107	if (args->minlen != 1 || args->alignment != 1 ||
1108	    args->resv == XFS_AG_RESV_AGFL ||
1109	    be32_to_cpu(agf->agf_flcount) <= args->minleft)
1110		goto out;
1111
1112	error = xfs_alloc_get_freelist(args->pag, args->tp, args->agbp,
1113			&fbno, 0);
1114	if (error)
1115		goto error;
1116	if (fbno == NULLAGBLOCK)
1117		goto out;
1118
1119	xfs_extent_busy_reuse(args->mp, args->pag, fbno, 1,
1120			      (args->datatype & XFS_ALLOC_NOBUSY));
1121
1122	if (args->datatype & XFS_ALLOC_USERDATA) {
1123		struct xfs_buf	*bp;
1124
1125		error = xfs_trans_get_buf(args->tp, args->mp->m_ddev_targp,
1126				XFS_AGB_TO_DADDR(args->mp, args->agno, fbno),
1127				args->mp->m_bsize, 0, &bp);
1128		if (error)
1129			goto error;
1130		xfs_trans_binval(args->tp, bp);
1131	}
1132	*fbnop = args->agbno = fbno;
1133	*flenp = args->len = 1;
1134	if (XFS_IS_CORRUPT(args->mp, fbno >= be32_to_cpu(agf->agf_length))) {
 
1135		error = -EFSCORRUPTED;
1136		goto error;
1137	}
1138	args->wasfromfl = 1;
1139	trace_xfs_alloc_small_freelist(args);
1140
1141	/*
1142	 * If we're feeding an AGFL block to something that doesn't live in the
1143	 * free space, we need to clear out the OWN_AG rmap.
1144	 */
1145	error = xfs_rmap_free(args->tp, args->agbp, args->pag, fbno, 1,
1146			      &XFS_RMAP_OINFO_AG);
1147	if (error)
1148		goto error;
1149
1150	*stat = 0;
1151	return 0;
1152
1153out:
1154	/*
1155	 * Can't do the allocation, give up.
1156	 */
1157	if (flen < args->minlen) {
1158		args->agbno = NULLAGBLOCK;
1159		trace_xfs_alloc_small_notenough(args);
1160		flen = 0;
1161	}
1162	*fbnop = fbno;
1163	*flenp = flen;
1164	*stat = 1;
1165	trace_xfs_alloc_small_done(args);
1166	return 0;
1167
1168error:
1169	trace_xfs_alloc_small_error(args);
1170	return error;
1171}
1172
1173/*
1174 * Allocate a variable extent at exactly agno/bno.
1175 * Extent's length (returned in *len) will be between minlen and maxlen,
1176 * and of the form k * prod + mod unless there's nothing that large.
1177 * Return the starting a.g. block (bno), or NULLAGBLOCK if we can't do it.
1178 */
1179STATIC int			/* error */
1180xfs_alloc_ag_vextent_exact(
1181	xfs_alloc_arg_t	*args)	/* allocation argument structure */
1182{
1183	struct xfs_agf __maybe_unused *agf = args->agbp->b_addr;
1184	struct xfs_btree_cur *bno_cur;/* by block-number btree cursor */
1185	struct xfs_btree_cur *cnt_cur;/* by count btree cursor */
1186	int		error;
1187	xfs_agblock_t	fbno;	/* start block of found extent */
1188	xfs_extlen_t	flen;	/* length of found extent */
1189	xfs_agblock_t	tbno;	/* start block of busy extent */
1190	xfs_extlen_t	tlen;	/* length of busy extent */
1191	xfs_agblock_t	tend;	/* end block of busy extent */
1192	int		i;	/* success/failure of operation */
1193	unsigned	busy_gen;
1194
1195	ASSERT(args->alignment == 1);
1196
1197	/*
1198	 * Allocate/initialize a cursor for the by-number freespace btree.
1199	 */
1200	bno_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp,
1201					  args->pag, XFS_BTNUM_BNO);
1202
1203	/*
1204	 * Lookup bno and minlen in the btree (minlen is irrelevant, really).
1205	 * Look for the closest free block <= bno, it must contain bno
1206	 * if any free block does.
1207	 */
1208	error = xfs_alloc_lookup_le(bno_cur, args->agbno, args->minlen, &i);
1209	if (error)
1210		goto error0;
1211	if (!i)
1212		goto not_found;
1213
1214	/*
1215	 * Grab the freespace record.
1216	 */
1217	error = xfs_alloc_get_rec(bno_cur, &fbno, &flen, &i);
1218	if (error)
1219		goto error0;
1220	if (XFS_IS_CORRUPT(args->mp, i != 1)) {
 
1221		error = -EFSCORRUPTED;
1222		goto error0;
1223	}
1224	ASSERT(fbno <= args->agbno);
1225
1226	/*
1227	 * Check for overlapping busy extents.
1228	 */
1229	tbno = fbno;
1230	tlen = flen;
1231	xfs_extent_busy_trim(args, &tbno, &tlen, &busy_gen);
 
1232
1233	/*
1234	 * Give up if the start of the extent is busy, or the freespace isn't
1235	 * long enough for the minimum request.
1236	 */
1237	if (tbno > args->agbno)
1238		goto not_found;
1239	if (tlen < args->minlen)
1240		goto not_found;
1241	tend = tbno + tlen;
1242	if (tend < args->agbno + args->minlen)
1243		goto not_found;
1244
1245	/*
1246	 * End of extent will be smaller of the freespace end and the
1247	 * maximal requested end.
1248	 *
1249	 * Fix the length according to mod and prod if given.
1250	 */
1251	args->len = XFS_AGBLOCK_MIN(tend, args->agbno + args->maxlen)
1252						- args->agbno;
1253	xfs_alloc_fix_len(args);
1254	ASSERT(args->agbno + args->len <= tend);
1255
1256	/*
1257	 * We are allocating agbno for args->len
1258	 * Allocate/initialize a cursor for the by-size btree.
1259	 */
1260	cnt_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp,
1261					args->pag, XFS_BTNUM_CNT);
1262	ASSERT(args->agbno + args->len <= be32_to_cpu(agf->agf_length));
1263	error = xfs_alloc_fixup_trees(cnt_cur, bno_cur, fbno, flen, args->agbno,
1264				      args->len, XFSA_FIXUP_BNO_OK);
1265	if (error) {
1266		xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR);
1267		goto error0;
1268	}
1269
1270	xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
1271	xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1272
1273	args->wasfromfl = 0;
1274	trace_xfs_alloc_exact_done(args);
1275	return 0;
1276
1277not_found:
1278	/* Didn't find it, return null. */
1279	xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
1280	args->agbno = NULLAGBLOCK;
1281	trace_xfs_alloc_exact_notfound(args);
1282	return 0;
1283
1284error0:
1285	xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR);
1286	trace_xfs_alloc_exact_error(args);
1287	return error;
1288}
1289
1290/*
1291 * Search a given number of btree records in a given direction. Check each
1292 * record against the good extent we've already found.
1293 */
1294STATIC int
1295xfs_alloc_walk_iter(
1296	struct xfs_alloc_arg	*args,
1297	struct xfs_alloc_cur	*acur,
1298	struct xfs_btree_cur	*cur,
1299	bool			increment,
1300	bool			find_one, /* quit on first candidate */
1301	int			count,    /* rec count (-1 for infinite) */
1302	int			*stat)
1303{
1304	int			error;
1305	int			i;
1306
1307	*stat = 0;
1308
1309	/*
1310	 * Search so long as the cursor is active or we find a better extent.
1311	 * The cursor is deactivated if it extends beyond the range of the
1312	 * current allocation candidate.
1313	 */
1314	while (xfs_alloc_cur_active(cur) && count) {
1315		error = xfs_alloc_cur_check(args, acur, cur, &i);
1316		if (error)
1317			return error;
1318		if (i == 1) {
1319			*stat = 1;
1320			if (find_one)
1321				break;
1322		}
1323		if (!xfs_alloc_cur_active(cur))
1324			break;
1325
1326		if (increment)
1327			error = xfs_btree_increment(cur, 0, &i);
1328		else
1329			error = xfs_btree_decrement(cur, 0, &i);
1330		if (error)
1331			return error;
1332		if (i == 0)
1333			cur->bc_ag.abt.active = false;
1334
1335		if (count > 0)
1336			count--;
1337	}
1338
1339	return 0;
1340}
1341
1342/*
1343 * Search the by-bno and by-size btrees in parallel in search of an extent with
1344 * ideal locality based on the NEAR mode ->agbno locality hint.
1345 */
1346STATIC int
1347xfs_alloc_ag_vextent_locality(
1348	struct xfs_alloc_arg	*args,
1349	struct xfs_alloc_cur	*acur,
1350	int			*stat)
1351{
1352	struct xfs_btree_cur	*fbcur = NULL;
1353	int			error;
1354	int			i;
1355	bool			fbinc;
1356
1357	ASSERT(acur->len == 0);
1358
1359	*stat = 0;
1360
1361	error = xfs_alloc_lookup_ge(acur->cnt, args->agbno, acur->cur_len, &i);
1362	if (error)
1363		return error;
1364	error = xfs_alloc_lookup_le(acur->bnolt, args->agbno, 0, &i);
1365	if (error)
1366		return error;
1367	error = xfs_alloc_lookup_ge(acur->bnogt, args->agbno, 0, &i);
1368	if (error)
1369		return error;
1370
1371	/*
1372	 * Search the bnobt and cntbt in parallel. Search the bnobt left and
1373	 * right and lookup the closest extent to the locality hint for each
1374	 * extent size key in the cntbt. The entire search terminates
1375	 * immediately on a bnobt hit because that means we've found best case
1376	 * locality. Otherwise the search continues until the cntbt cursor runs
1377	 * off the end of the tree. If no allocation candidate is found at this
1378	 * point, give up on locality, walk backwards from the end of the cntbt
1379	 * and take the first available extent.
1380	 *
1381	 * The parallel tree searches balance each other out to provide fairly
1382	 * consistent performance for various situations. The bnobt search can
1383	 * have pathological behavior in the worst case scenario of larger
1384	 * allocation requests and fragmented free space. On the other hand, the
1385	 * bnobt is able to satisfy most smaller allocation requests much more
1386	 * quickly than the cntbt. The cntbt search can sift through fragmented
1387	 * free space and sets of free extents for larger allocation requests
1388	 * more quickly than the bnobt. Since the locality hint is just a hint
1389	 * and we don't want to scan the entire bnobt for perfect locality, the
1390	 * cntbt search essentially bounds the bnobt search such that we can
1391	 * find good enough locality at reasonable performance in most cases.
1392	 */
1393	while (xfs_alloc_cur_active(acur->bnolt) ||
1394	       xfs_alloc_cur_active(acur->bnogt) ||
1395	       xfs_alloc_cur_active(acur->cnt)) {
1396
1397		trace_xfs_alloc_cur_lookup(args);
1398
1399		/*
1400		 * Search the bnobt left and right. In the case of a hit, finish
1401		 * the search in the opposite direction and we're done.
1402		 */
1403		error = xfs_alloc_walk_iter(args, acur, acur->bnolt, false,
1404					    true, 1, &i);
1405		if (error)
1406			return error;
1407		if (i == 1) {
1408			trace_xfs_alloc_cur_left(args);
1409			fbcur = acur->bnogt;
1410			fbinc = true;
1411			break;
1412		}
1413		error = xfs_alloc_walk_iter(args, acur, acur->bnogt, true, true,
1414					    1, &i);
1415		if (error)
1416			return error;
1417		if (i == 1) {
1418			trace_xfs_alloc_cur_right(args);
1419			fbcur = acur->bnolt;
1420			fbinc = false;
1421			break;
1422		}
1423
1424		/*
1425		 * Check the extent with best locality based on the current
1426		 * extent size search key and keep track of the best candidate.
1427		 */
1428		error = xfs_alloc_cntbt_iter(args, acur);
1429		if (error)
1430			return error;
1431		if (!xfs_alloc_cur_active(acur->cnt)) {
1432			trace_xfs_alloc_cur_lookup_done(args);
1433			break;
1434		}
1435	}
1436
1437	/*
1438	 * If we failed to find anything due to busy extents, return empty
1439	 * handed so the caller can flush and retry. If no busy extents were
1440	 * found, walk backwards from the end of the cntbt as a last resort.
1441	 */
1442	if (!xfs_alloc_cur_active(acur->cnt) && !acur->len && !acur->busy) {
1443		error = xfs_btree_decrement(acur->cnt, 0, &i);
1444		if (error)
1445			return error;
1446		if (i) {
1447			acur->cnt->bc_ag.abt.active = true;
1448			fbcur = acur->cnt;
1449			fbinc = false;
1450		}
1451	}
1452
1453	/*
1454	 * Search in the opposite direction for a better entry in the case of
1455	 * a bnobt hit or walk backwards from the end of the cntbt.
1456	 */
1457	if (fbcur) {
1458		error = xfs_alloc_walk_iter(args, acur, fbcur, fbinc, true, -1,
1459					    &i);
1460		if (error)
1461			return error;
1462	}
1463
1464	if (acur->len)
1465		*stat = 1;
1466
1467	return 0;
1468}
1469
1470/* Check the last block of the cnt btree for allocations. */
1471static int
1472xfs_alloc_ag_vextent_lastblock(
1473	struct xfs_alloc_arg	*args,
1474	struct xfs_alloc_cur	*acur,
1475	xfs_agblock_t		*bno,
1476	xfs_extlen_t		*len,
1477	bool			*allocated)
1478{
1479	int			error;
1480	int			i;
1481
1482#ifdef DEBUG
1483	/* Randomly don't execute the first algorithm. */
1484	if (get_random_u32_below(2))
1485		return 0;
1486#endif
1487
1488	/*
1489	 * Start from the entry that lookup found, sequence through all larger
1490	 * free blocks.  If we're actually pointing at a record smaller than
1491	 * maxlen, go to the start of this block, and skip all those smaller
1492	 * than minlen.
1493	 */
1494	if (*len || args->alignment > 1) {
1495		acur->cnt->bc_levels[0].ptr = 1;
1496		do {
1497			error = xfs_alloc_get_rec(acur->cnt, bno, len, &i);
1498			if (error)
1499				return error;
1500			if (XFS_IS_CORRUPT(args->mp, i != 1))
 
1501				return -EFSCORRUPTED;
 
1502			if (*len >= args->minlen)
1503				break;
1504			error = xfs_btree_increment(acur->cnt, 0, &i);
1505			if (error)
1506				return error;
1507		} while (i);
1508		ASSERT(*len >= args->minlen);
1509		if (!i)
1510			return 0;
1511	}
1512
1513	error = xfs_alloc_walk_iter(args, acur, acur->cnt, true, false, -1, &i);
1514	if (error)
1515		return error;
1516
1517	/*
1518	 * It didn't work.  We COULD be in a case where there's a good record
1519	 * somewhere, so try again.
1520	 */
1521	if (acur->len == 0)
1522		return 0;
1523
1524	trace_xfs_alloc_near_first(args);
1525	*allocated = true;
1526	return 0;
1527}
1528
1529/*
1530 * Allocate a variable extent near bno in the allocation group agno.
1531 * Extent's length (returned in len) will be between minlen and maxlen,
1532 * and of the form k * prod + mod unless there's nothing that large.
1533 * Return the starting a.g. block, or NULLAGBLOCK if we can't do it.
1534 */
1535STATIC int
1536xfs_alloc_ag_vextent_near(
1537	struct xfs_alloc_arg	*args,
1538	uint32_t		alloc_flags)
1539{
1540	struct xfs_alloc_cur	acur = {};
1541	int			error;		/* error code */
1542	int			i;		/* result code, temporary */
1543	xfs_agblock_t		bno;
1544	xfs_extlen_t		len;
1545
1546	/* handle uninitialized agbno range so caller doesn't have to */
1547	if (!args->min_agbno && !args->max_agbno)
1548		args->max_agbno = args->mp->m_sb.sb_agblocks - 1;
1549	ASSERT(args->min_agbno <= args->max_agbno);
1550
1551	/* clamp agbno to the range if it's outside */
1552	if (args->agbno < args->min_agbno)
1553		args->agbno = args->min_agbno;
1554	if (args->agbno > args->max_agbno)
1555		args->agbno = args->max_agbno;
1556
1557	/* Retry once quickly if we find busy extents before blocking. */
1558	alloc_flags |= XFS_ALLOC_FLAG_TRYFLUSH;
1559restart:
1560	len = 0;
1561
1562	/*
1563	 * Set up cursors and see if there are any free extents as big as
1564	 * maxlen. If not, pick the last entry in the tree unless the tree is
1565	 * empty.
1566	 */
1567	error = xfs_alloc_cur_setup(args, &acur);
1568	if (error == -ENOSPC) {
1569		error = xfs_alloc_ag_vextent_small(args, acur.cnt, &bno,
1570				&len, &i);
1571		if (error)
1572			goto out;
1573		if (i == 0 || len == 0) {
1574			trace_xfs_alloc_near_noentry(args);
1575			goto out;
1576		}
1577		ASSERT(i == 1);
1578	} else if (error) {
1579		goto out;
1580	}
1581
1582	/*
1583	 * First algorithm.
1584	 * If the requested extent is large wrt the freespaces available
1585	 * in this a.g., then the cursor will be pointing to a btree entry
1586	 * near the right edge of the tree.  If it's in the last btree leaf
1587	 * block, then we just examine all the entries in that block
1588	 * that are big enough, and pick the best one.
1589	 */
1590	if (xfs_btree_islastblock(acur.cnt, 0)) {
1591		bool		allocated = false;
1592
1593		error = xfs_alloc_ag_vextent_lastblock(args, &acur, &bno, &len,
1594				&allocated);
1595		if (error)
1596			goto out;
1597		if (allocated)
1598			goto alloc_finish;
1599	}
1600
1601	/*
1602	 * Second algorithm. Combined cntbt and bnobt search to find ideal
1603	 * locality.
1604	 */
1605	error = xfs_alloc_ag_vextent_locality(args, &acur, &i);
1606	if (error)
1607		goto out;
1608
1609	/*
1610	 * If we couldn't get anything, give up.
1611	 */
1612	if (!acur.len) {
1613		if (acur.busy) {
1614			/*
1615			 * Our only valid extents must have been busy. Flush and
1616			 * retry the allocation again. If we get an -EAGAIN
1617			 * error, we're being told that a deadlock was avoided
1618			 * and the current transaction needs committing before
1619			 * the allocation can be retried.
1620			 */
1621			trace_xfs_alloc_near_busy(args);
1622			error = xfs_extent_busy_flush(args->tp, args->pag,
1623					acur.busy_gen, alloc_flags);
 
1624			if (error)
1625				goto out;
1626
1627			alloc_flags &= ~XFS_ALLOC_FLAG_TRYFLUSH;
1628			goto restart;
1629		}
1630		trace_xfs_alloc_size_neither(args);
1631		args->agbno = NULLAGBLOCK;
1632		goto out;
1633	}
1634
1635alloc_finish:
1636	/* fix up btrees on a successful allocation */
1637	error = xfs_alloc_cur_finish(args, &acur);
1638
1639out:
1640	xfs_alloc_cur_close(&acur, error);
1641	return error;
1642}
1643
1644/*
1645 * Allocate a variable extent anywhere in the allocation group agno.
1646 * Extent's length (returned in len) will be between minlen and maxlen,
1647 * and of the form k * prod + mod unless there's nothing that large.
1648 * Return the starting a.g. block, or NULLAGBLOCK if we can't do it.
1649 */
1650static int
1651xfs_alloc_ag_vextent_size(
1652	struct xfs_alloc_arg	*args,
1653	uint32_t		alloc_flags)
1654{
1655	struct xfs_agf		*agf = args->agbp->b_addr;
1656	struct xfs_btree_cur	*bno_cur;
1657	struct xfs_btree_cur	*cnt_cur;
1658	xfs_agblock_t		fbno;		/* start of found freespace */
1659	xfs_extlen_t		flen;		/* length of found freespace */
1660	xfs_agblock_t		rbno;		/* returned block number */
1661	xfs_extlen_t		rlen;		/* length of returned extent */
1662	bool			busy;
1663	unsigned		busy_gen;
1664	int			error;
1665	int			i;
1666
1667	/* Retry once quickly if we find busy extents before blocking. */
1668	alloc_flags |= XFS_ALLOC_FLAG_TRYFLUSH;
1669restart:
1670	/*
1671	 * Allocate and initialize a cursor for the by-size btree.
1672	 */
1673	cnt_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp,
1674					args->pag, XFS_BTNUM_CNT);
1675	bno_cur = NULL;
1676
1677	/*
1678	 * Look for an entry >= maxlen+alignment-1 blocks.
1679	 */
1680	if ((error = xfs_alloc_lookup_ge(cnt_cur, 0,
1681			args->maxlen + args->alignment - 1, &i)))
1682		goto error0;
1683
1684	/*
1685	 * If none then we have to settle for a smaller extent. In the case that
1686	 * there are no large extents, this will return the last entry in the
1687	 * tree unless the tree is empty. In the case that there are only busy
1688	 * large extents, this will return the largest small extent unless there
1689	 * are no smaller extents available.
1690	 */
1691	if (!i) {
1692		error = xfs_alloc_ag_vextent_small(args, cnt_cur,
1693						   &fbno, &flen, &i);
1694		if (error)
1695			goto error0;
1696		if (i == 0 || flen == 0) {
1697			xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1698			trace_xfs_alloc_size_noentry(args);
1699			return 0;
1700		}
1701		ASSERT(i == 1);
1702		busy = xfs_alloc_compute_aligned(args, fbno, flen, &rbno,
1703				&rlen, &busy_gen);
1704	} else {
1705		/*
1706		 * Search for a non-busy extent that is large enough.
1707		 */
1708		for (;;) {
1709			error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen, &i);
1710			if (error)
1711				goto error0;
1712			if (XFS_IS_CORRUPT(args->mp, i != 1)) {
 
1713				error = -EFSCORRUPTED;
1714				goto error0;
1715			}
1716
1717			busy = xfs_alloc_compute_aligned(args, fbno, flen,
1718					&rbno, &rlen, &busy_gen);
1719
1720			if (rlen >= args->maxlen)
1721				break;
1722
1723			error = xfs_btree_increment(cnt_cur, 0, &i);
1724			if (error)
1725				goto error0;
1726			if (i)
1727				continue;
1728
1729			/*
1730			 * Our only valid extents must have been busy. Flush and
1731			 * retry the allocation again. If we get an -EAGAIN
1732			 * error, we're being told that a deadlock was avoided
1733			 * and the current transaction needs committing before
1734			 * the allocation can be retried.
1735			 */
1736			trace_xfs_alloc_size_busy(args);
1737			error = xfs_extent_busy_flush(args->tp, args->pag,
1738					busy_gen, alloc_flags);
 
1739			if (error)
1740				goto error0;
1741
1742			alloc_flags &= ~XFS_ALLOC_FLAG_TRYFLUSH;
1743			xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1744			goto restart;
1745		}
1746	}
1747
1748	/*
1749	 * In the first case above, we got the last entry in the
1750	 * by-size btree.  Now we check to see if the space hits maxlen
1751	 * once aligned; if not, we search left for something better.
1752	 * This can't happen in the second case above.
1753	 */
1754	rlen = XFS_EXTLEN_MIN(args->maxlen, rlen);
1755	if (XFS_IS_CORRUPT(args->mp,
1756			   rlen != 0 &&
1757			   (rlen > flen ||
1758			    rbno + rlen > fbno + flen))) {
 
1759		error = -EFSCORRUPTED;
1760		goto error0;
1761	}
1762	if (rlen < args->maxlen) {
1763		xfs_agblock_t	bestfbno;
1764		xfs_extlen_t	bestflen;
1765		xfs_agblock_t	bestrbno;
1766		xfs_extlen_t	bestrlen;
1767
1768		bestrlen = rlen;
1769		bestrbno = rbno;
1770		bestflen = flen;
1771		bestfbno = fbno;
1772		for (;;) {
1773			if ((error = xfs_btree_decrement(cnt_cur, 0, &i)))
1774				goto error0;
1775			if (i == 0)
1776				break;
1777			if ((error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen,
1778					&i)))
1779				goto error0;
1780			if (XFS_IS_CORRUPT(args->mp, i != 1)) {
 
1781				error = -EFSCORRUPTED;
1782				goto error0;
1783			}
1784			if (flen < bestrlen)
1785				break;
1786			busy = xfs_alloc_compute_aligned(args, fbno, flen,
1787					&rbno, &rlen, &busy_gen);
1788			rlen = XFS_EXTLEN_MIN(args->maxlen, rlen);
1789			if (XFS_IS_CORRUPT(args->mp,
1790					   rlen != 0 &&
1791					   (rlen > flen ||
1792					    rbno + rlen > fbno + flen))) {
 
1793				error = -EFSCORRUPTED;
1794				goto error0;
1795			}
1796			if (rlen > bestrlen) {
1797				bestrlen = rlen;
1798				bestrbno = rbno;
1799				bestflen = flen;
1800				bestfbno = fbno;
1801				if (rlen == args->maxlen)
1802					break;
1803			}
1804		}
1805		if ((error = xfs_alloc_lookup_eq(cnt_cur, bestfbno, bestflen,
1806				&i)))
1807			goto error0;
1808		if (XFS_IS_CORRUPT(args->mp, i != 1)) {
 
1809			error = -EFSCORRUPTED;
1810			goto error0;
1811		}
1812		rlen = bestrlen;
1813		rbno = bestrbno;
1814		flen = bestflen;
1815		fbno = bestfbno;
1816	}
1817	args->wasfromfl = 0;
1818	/*
1819	 * Fix up the length.
1820	 */
1821	args->len = rlen;
1822	if (rlen < args->minlen) {
1823		if (busy) {
1824			/*
1825			 * Our only valid extents must have been busy. Flush and
1826			 * retry the allocation again. If we get an -EAGAIN
1827			 * error, we're being told that a deadlock was avoided
1828			 * and the current transaction needs committing before
1829			 * the allocation can be retried.
1830			 */
1831			trace_xfs_alloc_size_busy(args);
1832			error = xfs_extent_busy_flush(args->tp, args->pag,
1833					busy_gen, alloc_flags);
 
1834			if (error)
1835				goto error0;
1836
1837			alloc_flags &= ~XFS_ALLOC_FLAG_TRYFLUSH;
1838			xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1839			goto restart;
1840		}
1841		goto out_nominleft;
1842	}
1843	xfs_alloc_fix_len(args);
1844
1845	rlen = args->len;
1846	if (XFS_IS_CORRUPT(args->mp, rlen > flen)) {
 
1847		error = -EFSCORRUPTED;
1848		goto error0;
1849	}
1850	/*
1851	 * Allocate and initialize a cursor for the by-block tree.
1852	 */
1853	bno_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp,
1854					args->pag, XFS_BTNUM_BNO);
1855	if ((error = xfs_alloc_fixup_trees(cnt_cur, bno_cur, fbno, flen,
1856			rbno, rlen, XFSA_FIXUP_CNT_OK)))
1857		goto error0;
1858	xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1859	xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
1860	cnt_cur = bno_cur = NULL;
1861	args->len = rlen;
1862	args->agbno = rbno;
1863	if (XFS_IS_CORRUPT(args->mp,
1864			   args->agbno + args->len >
1865			   be32_to_cpu(agf->agf_length))) {
 
1866		error = -EFSCORRUPTED;
1867		goto error0;
1868	}
1869	trace_xfs_alloc_size_done(args);
1870	return 0;
1871
1872error0:
1873	trace_xfs_alloc_size_error(args);
1874	if (cnt_cur)
1875		xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR);
1876	if (bno_cur)
1877		xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR);
1878	return error;
1879
1880out_nominleft:
1881	xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1882	trace_xfs_alloc_size_nominleft(args);
1883	args->agbno = NULLAGBLOCK;
1884	return 0;
1885}
1886
1887/*
1888 * Free the extent starting at agno/bno for length.
1889 */
1890STATIC int
1891xfs_free_ag_extent(
1892	struct xfs_trans		*tp,
1893	struct xfs_buf			*agbp,
1894	xfs_agnumber_t			agno,
1895	xfs_agblock_t			bno,
1896	xfs_extlen_t			len,
1897	const struct xfs_owner_info	*oinfo,
1898	enum xfs_ag_resv_type		type)
1899{
1900	struct xfs_mount		*mp;
1901	struct xfs_btree_cur		*bno_cur;
1902	struct xfs_btree_cur		*cnt_cur;
1903	xfs_agblock_t			gtbno; /* start of right neighbor */
1904	xfs_extlen_t			gtlen; /* length of right neighbor */
1905	xfs_agblock_t			ltbno; /* start of left neighbor */
1906	xfs_extlen_t			ltlen; /* length of left neighbor */
1907	xfs_agblock_t			nbno; /* new starting block of freesp */
1908	xfs_extlen_t			nlen; /* new length of freespace */
1909	int				haveleft; /* have a left neighbor */
1910	int				haveright; /* have a right neighbor */
1911	int				i;
1912	int				error;
1913	struct xfs_perag		*pag = agbp->b_pag;
 
1914
1915	bno_cur = cnt_cur = NULL;
1916	mp = tp->t_mountp;
1917
1918	if (!xfs_rmap_should_skip_owner_update(oinfo)) {
1919		error = xfs_rmap_free(tp, agbp, pag, bno, len, oinfo);
1920		if (error)
1921			goto error0;
1922	}
1923
1924	/*
1925	 * Allocate and initialize a cursor for the by-block btree.
1926	 */
1927	bno_cur = xfs_allocbt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_BNO);
1928	/*
1929	 * Look for a neighboring block on the left (lower block numbers)
1930	 * that is contiguous with this space.
1931	 */
1932	if ((error = xfs_alloc_lookup_le(bno_cur, bno, len, &haveleft)))
1933		goto error0;
1934	if (haveleft) {
1935		/*
1936		 * There is a block to our left.
1937		 */
1938		if ((error = xfs_alloc_get_rec(bno_cur, &ltbno, &ltlen, &i)))
1939			goto error0;
1940		if (XFS_IS_CORRUPT(mp, i != 1)) {
 
1941			error = -EFSCORRUPTED;
1942			goto error0;
1943		}
1944		/*
1945		 * It's not contiguous, though.
1946		 */
1947		if (ltbno + ltlen < bno)
1948			haveleft = 0;
1949		else {
1950			/*
1951			 * If this failure happens the request to free this
1952			 * space was invalid, it's (partly) already free.
1953			 * Very bad.
1954			 */
1955			if (XFS_IS_CORRUPT(mp, ltbno + ltlen > bno)) {
 
1956				error = -EFSCORRUPTED;
1957				goto error0;
1958			}
1959		}
1960	}
1961	/*
1962	 * Look for a neighboring block on the right (higher block numbers)
1963	 * that is contiguous with this space.
1964	 */
1965	if ((error = xfs_btree_increment(bno_cur, 0, &haveright)))
1966		goto error0;
1967	if (haveright) {
1968		/*
1969		 * There is a block to our right.
1970		 */
1971		if ((error = xfs_alloc_get_rec(bno_cur, &gtbno, &gtlen, &i)))
1972			goto error0;
1973		if (XFS_IS_CORRUPT(mp, i != 1)) {
 
1974			error = -EFSCORRUPTED;
1975			goto error0;
1976		}
1977		/*
1978		 * It's not contiguous, though.
1979		 */
1980		if (bno + len < gtbno)
1981			haveright = 0;
1982		else {
1983			/*
1984			 * If this failure happens the request to free this
1985			 * space was invalid, it's (partly) already free.
1986			 * Very bad.
1987			 */
1988			if (XFS_IS_CORRUPT(mp, bno + len > gtbno)) {
 
1989				error = -EFSCORRUPTED;
1990				goto error0;
1991			}
1992		}
1993	}
1994	/*
1995	 * Now allocate and initialize a cursor for the by-size tree.
1996	 */
1997	cnt_cur = xfs_allocbt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_CNT);
1998	/*
1999	 * Have both left and right contiguous neighbors.
2000	 * Merge all three into a single free block.
2001	 */
2002	if (haveleft && haveright) {
2003		/*
2004		 * Delete the old by-size entry on the left.
2005		 */
2006		if ((error = xfs_alloc_lookup_eq(cnt_cur, ltbno, ltlen, &i)))
2007			goto error0;
2008		if (XFS_IS_CORRUPT(mp, i != 1)) {
 
2009			error = -EFSCORRUPTED;
2010			goto error0;
2011		}
2012		if ((error = xfs_btree_delete(cnt_cur, &i)))
2013			goto error0;
2014		if (XFS_IS_CORRUPT(mp, i != 1)) {
 
2015			error = -EFSCORRUPTED;
2016			goto error0;
2017		}
2018		/*
2019		 * Delete the old by-size entry on the right.
2020		 */
2021		if ((error = xfs_alloc_lookup_eq(cnt_cur, gtbno, gtlen, &i)))
2022			goto error0;
2023		if (XFS_IS_CORRUPT(mp, i != 1)) {
 
2024			error = -EFSCORRUPTED;
2025			goto error0;
2026		}
2027		if ((error = xfs_btree_delete(cnt_cur, &i)))
2028			goto error0;
2029		if (XFS_IS_CORRUPT(mp, i != 1)) {
 
2030			error = -EFSCORRUPTED;
2031			goto error0;
2032		}
2033		/*
2034		 * Delete the old by-block entry for the right block.
2035		 */
2036		if ((error = xfs_btree_delete(bno_cur, &i)))
2037			goto error0;
2038		if (XFS_IS_CORRUPT(mp, i != 1)) {
 
2039			error = -EFSCORRUPTED;
2040			goto error0;
2041		}
2042		/*
2043		 * Move the by-block cursor back to the left neighbor.
2044		 */
2045		if ((error = xfs_btree_decrement(bno_cur, 0, &i)))
2046			goto error0;
2047		if (XFS_IS_CORRUPT(mp, i != 1)) {
 
2048			error = -EFSCORRUPTED;
2049			goto error0;
2050		}
2051#ifdef DEBUG
2052		/*
2053		 * Check that this is the right record: delete didn't
2054		 * mangle the cursor.
2055		 */
2056		{
2057			xfs_agblock_t	xxbno;
2058			xfs_extlen_t	xxlen;
2059
2060			if ((error = xfs_alloc_get_rec(bno_cur, &xxbno, &xxlen,
2061					&i)))
2062				goto error0;
2063			if (XFS_IS_CORRUPT(mp,
2064					   i != 1 ||
2065					   xxbno != ltbno ||
2066					   xxlen != ltlen)) {
 
2067				error = -EFSCORRUPTED;
2068				goto error0;
2069			}
2070		}
2071#endif
2072		/*
2073		 * Update remaining by-block entry to the new, joined block.
2074		 */
2075		nbno = ltbno;
2076		nlen = len + ltlen + gtlen;
2077		if ((error = xfs_alloc_update(bno_cur, nbno, nlen)))
2078			goto error0;
2079	}
2080	/*
2081	 * Have only a left contiguous neighbor.
2082	 * Merge it together with the new freespace.
2083	 */
2084	else if (haveleft) {
2085		/*
2086		 * Delete the old by-size entry on the left.
2087		 */
2088		if ((error = xfs_alloc_lookup_eq(cnt_cur, ltbno, ltlen, &i)))
2089			goto error0;
2090		if (XFS_IS_CORRUPT(mp, i != 1)) {
 
2091			error = -EFSCORRUPTED;
2092			goto error0;
2093		}
2094		if ((error = xfs_btree_delete(cnt_cur, &i)))
2095			goto error0;
2096		if (XFS_IS_CORRUPT(mp, i != 1)) {
 
2097			error = -EFSCORRUPTED;
2098			goto error0;
2099		}
2100		/*
2101		 * Back up the by-block cursor to the left neighbor, and
2102		 * update its length.
2103		 */
2104		if ((error = xfs_btree_decrement(bno_cur, 0, &i)))
2105			goto error0;
2106		if (XFS_IS_CORRUPT(mp, i != 1)) {
 
2107			error = -EFSCORRUPTED;
2108			goto error0;
2109		}
2110		nbno = ltbno;
2111		nlen = len + ltlen;
2112		if ((error = xfs_alloc_update(bno_cur, nbno, nlen)))
2113			goto error0;
2114	}
2115	/*
2116	 * Have only a right contiguous neighbor.
2117	 * Merge it together with the new freespace.
2118	 */
2119	else if (haveright) {
2120		/*
2121		 * Delete the old by-size entry on the right.
2122		 */
2123		if ((error = xfs_alloc_lookup_eq(cnt_cur, gtbno, gtlen, &i)))
2124			goto error0;
2125		if (XFS_IS_CORRUPT(mp, i != 1)) {
 
2126			error = -EFSCORRUPTED;
2127			goto error0;
2128		}
2129		if ((error = xfs_btree_delete(cnt_cur, &i)))
2130			goto error0;
2131		if (XFS_IS_CORRUPT(mp, i != 1)) {
 
2132			error = -EFSCORRUPTED;
2133			goto error0;
2134		}
2135		/*
2136		 * Update the starting block and length of the right
2137		 * neighbor in the by-block tree.
2138		 */
2139		nbno = bno;
2140		nlen = len + gtlen;
2141		if ((error = xfs_alloc_update(bno_cur, nbno, nlen)))
2142			goto error0;
2143	}
2144	/*
2145	 * No contiguous neighbors.
2146	 * Insert the new freespace into the by-block tree.
2147	 */
2148	else {
2149		nbno = bno;
2150		nlen = len;
2151		if ((error = xfs_btree_insert(bno_cur, &i)))
2152			goto error0;
2153		if (XFS_IS_CORRUPT(mp, i != 1)) {
 
2154			error = -EFSCORRUPTED;
2155			goto error0;
2156		}
2157	}
2158	xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
2159	bno_cur = NULL;
 
2160	/*
2161	 * In all cases we need to insert the new freespace in the by-size tree.
 
 
 
 
2162	 */
2163	if ((error = xfs_alloc_lookup_eq(cnt_cur, nbno, nlen, &i)))
2164		goto error0;
2165	if (XFS_IS_CORRUPT(mp, i != 0)) {
 
2166		error = -EFSCORRUPTED;
2167		goto error0;
2168	}
 
 
2169	if ((error = xfs_btree_insert(cnt_cur, &i)))
2170		goto error0;
2171	if (XFS_IS_CORRUPT(mp, i != 1)) {
 
2172		error = -EFSCORRUPTED;
2173		goto error0;
2174	}
 
 
 
 
 
 
2175	xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
2176	cnt_cur = NULL;
2177
2178	/*
2179	 * Update the freespace totals in the ag and superblock.
2180	 */
2181	error = xfs_alloc_update_counters(tp, agbp, len);
2182	xfs_ag_resv_free_extent(agbp->b_pag, type, tp, len);
2183	if (error)
2184		goto error0;
2185
2186	XFS_STATS_INC(mp, xs_freex);
2187	XFS_STATS_ADD(mp, xs_freeb, len);
2188
2189	trace_xfs_free_extent(mp, agno, bno, len, type, haveleft, haveright);
2190
2191	return 0;
2192
2193 error0:
2194	trace_xfs_free_extent(mp, agno, bno, len, type, -1, -1);
2195	if (bno_cur)
2196		xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR);
2197	if (cnt_cur)
2198		xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR);
2199	return error;
2200}
2201
2202/*
2203 * Visible (exported) allocation/free functions.
2204 * Some of these are used just by xfs_alloc_btree.c and this file.
2205 */
2206
2207/*
2208 * Compute and fill in value of m_alloc_maxlevels.
2209 */
2210void
2211xfs_alloc_compute_maxlevels(
2212	xfs_mount_t	*mp)	/* file system mount structure */
2213{
2214	mp->m_alloc_maxlevels = xfs_btree_compute_maxlevels(mp->m_alloc_mnr,
2215			(mp->m_sb.sb_agblocks + 1) / 2);
2216	ASSERT(mp->m_alloc_maxlevels <= xfs_allocbt_maxlevels_ondisk());
2217}
2218
2219/*
2220 * Find the length of the longest extent in an AG.  The 'need' parameter
2221 * specifies how much space we're going to need for the AGFL and the
2222 * 'reserved' parameter tells us how many blocks in this AG are reserved for
2223 * other callers.
2224 */
2225xfs_extlen_t
2226xfs_alloc_longest_free_extent(
2227	struct xfs_perag	*pag,
2228	xfs_extlen_t		need,
2229	xfs_extlen_t		reserved)
2230{
2231	xfs_extlen_t		delta = 0;
2232
2233	/*
2234	 * If the AGFL needs a recharge, we'll have to subtract that from the
2235	 * longest extent.
2236	 */
2237	if (need > pag->pagf_flcount)
2238		delta = need - pag->pagf_flcount;
2239
2240	/*
2241	 * If we cannot maintain others' reservations with space from the
2242	 * not-longest freesp extents, we'll have to subtract /that/ from
2243	 * the longest extent too.
2244	 */
2245	if (pag->pagf_freeblks - pag->pagf_longest < reserved)
2246		delta += reserved - (pag->pagf_freeblks - pag->pagf_longest);
2247
2248	/*
2249	 * If the longest extent is long enough to satisfy all the
2250	 * reservations and AGFL rules in place, we can return this extent.
2251	 */
2252	if (pag->pagf_longest > delta)
2253		return min_t(xfs_extlen_t, pag->pag_mount->m_ag_max_usable,
2254				pag->pagf_longest - delta);
2255
2256	/* Otherwise, let the caller try for 1 block if there's space. */
2257	return pag->pagf_flcount > 0 || pag->pagf_longest > 0;
2258}
2259
2260/*
2261 * Compute the minimum length of the AGFL in the given AG.  If @pag is NULL,
2262 * return the largest possible minimum length.
2263 */
2264unsigned int
2265xfs_alloc_min_freelist(
2266	struct xfs_mount	*mp,
2267	struct xfs_perag	*pag)
2268{
2269	/* AG btrees have at least 1 level. */
2270	static const uint8_t	fake_levels[XFS_BTNUM_AGF] = {1, 1, 1};
2271	const uint8_t		*levels = pag ? pag->pagf_levels : fake_levels;
 
2272	unsigned int		min_free;
2273
2274	ASSERT(mp->m_alloc_maxlevels > 0);
2275
2276	/*
2277	 * For a btree shorter than the maximum height, the worst case is that
2278	 * every level gets split and a new level is added, then while inserting
2279	 * another entry to refill the AGFL, every level under the old root gets
2280	 * split again. This is:
2281	 *
2282	 *   (full height split reservation) + (AGFL refill split height)
2283	 * = (current height + 1) + (current height - 1)
2284	 * = (new height) + (new height - 2)
2285	 * = 2 * new height - 2
2286	 *
2287	 * For a btree of maximum height, the worst case is that every level
2288	 * under the root gets split, then while inserting another entry to
2289	 * refill the AGFL, every level under the root gets split again. This is
2290	 * also:
2291	 *
2292	 *   2 * (current height - 1)
2293	 * = 2 * (new height - 1)
2294	 * = 2 * new height - 2
2295	 */
2296
2297	/* space needed by-bno freespace btree */
2298	min_free = min_t(unsigned int, levels[XFS_BTNUM_BNOi] + 1,
2299				       mp->m_alloc_maxlevels) * 2 - 2;
2300	/* space needed by-size freespace btree */
2301	min_free += min_t(unsigned int, levels[XFS_BTNUM_CNTi] + 1,
2302				       mp->m_alloc_maxlevels) * 2 - 2;
2303	/* space needed reverse mapping used space btree */
2304	if (xfs_has_rmapbt(mp))
2305		min_free += min_t(unsigned int, levels[XFS_BTNUM_RMAPi] + 1,
2306						mp->m_rmap_maxlevels) * 2 - 2;
2307
2308	return min_free;
2309}
2310
2311/*
2312 * Check if the operation we are fixing up the freelist for should go ahead or
2313 * not. If we are freeing blocks, we always allow it, otherwise the allocation
2314 * is dependent on whether the size and shape of free space available will
2315 * permit the requested allocation to take place.
2316 */
2317static bool
2318xfs_alloc_space_available(
2319	struct xfs_alloc_arg	*args,
2320	xfs_extlen_t		min_free,
2321	int			flags)
2322{
2323	struct xfs_perag	*pag = args->pag;
2324	xfs_extlen_t		alloc_len, longest;
2325	xfs_extlen_t		reservation; /* blocks that are still reserved */
2326	int			available;
2327	xfs_extlen_t		agflcount;
2328
2329	if (flags & XFS_ALLOC_FLAG_FREEING)
2330		return true;
2331
2332	reservation = xfs_ag_resv_needed(pag, args->resv);
2333
2334	/* do we have enough contiguous free space for the allocation? */
2335	alloc_len = args->minlen + (args->alignment - 1) + args->minalignslop;
2336	longest = xfs_alloc_longest_free_extent(pag, min_free, reservation);
2337	if (longest < alloc_len)
2338		return false;
2339
2340	/*
2341	 * Do we have enough free space remaining for the allocation? Don't
2342	 * account extra agfl blocks because we are about to defer free them,
2343	 * making them unavailable until the current transaction commits.
2344	 */
2345	agflcount = min_t(xfs_extlen_t, pag->pagf_flcount, min_free);
2346	available = (int)(pag->pagf_freeblks + agflcount -
2347			  reservation - min_free - args->minleft);
2348	if (available < (int)max(args->total, alloc_len))
2349		return false;
2350
2351	/*
2352	 * Clamp maxlen to the amount of free space available for the actual
2353	 * extent allocation.
2354	 */
2355	if (available < (int)args->maxlen && !(flags & XFS_ALLOC_FLAG_CHECK)) {
2356		args->maxlen = available;
2357		ASSERT(args->maxlen > 0);
2358		ASSERT(args->maxlen >= args->minlen);
2359	}
2360
2361	return true;
2362}
2363
2364int
2365xfs_free_agfl_block(
2366	struct xfs_trans	*tp,
2367	xfs_agnumber_t		agno,
2368	xfs_agblock_t		agbno,
2369	struct xfs_buf		*agbp,
2370	struct xfs_owner_info	*oinfo)
2371{
2372	int			error;
2373	struct xfs_buf		*bp;
2374
2375	error = xfs_free_ag_extent(tp, agbp, agno, agbno, 1, oinfo,
2376				   XFS_AG_RESV_AGFL);
2377	if (error)
2378		return error;
2379
2380	error = xfs_trans_get_buf(tp, tp->t_mountp->m_ddev_targp,
2381			XFS_AGB_TO_DADDR(tp->t_mountp, agno, agbno),
2382			tp->t_mountp->m_bsize, 0, &bp);
2383	if (error)
2384		return error;
2385	xfs_trans_binval(tp, bp);
2386
2387	return 0;
2388}
2389
2390/*
2391 * Check the agfl fields of the agf for inconsistency or corruption.
2392 *
2393 * The original purpose was to detect an agfl header padding mismatch between
2394 * current and early v5 kernels. This problem manifests as a 1-slot size
2395 * difference between the on-disk flcount and the active [first, last] range of
2396 * a wrapped agfl.
2397 *
2398 * However, we need to use these same checks to catch agfl count corruptions
2399 * unrelated to padding. This could occur on any v4 or v5 filesystem, so either
2400 * way, we need to reset the agfl and warn the user.
2401 *
2402 * Return true if a reset is required before the agfl can be used, false
2403 * otherwise.
2404 */
2405static bool
2406xfs_agfl_needs_reset(
2407	struct xfs_mount	*mp,
2408	struct xfs_agf		*agf)
2409{
2410	uint32_t		f = be32_to_cpu(agf->agf_flfirst);
2411	uint32_t		l = be32_to_cpu(agf->agf_fllast);
2412	uint32_t		c = be32_to_cpu(agf->agf_flcount);
2413	int			agfl_size = xfs_agfl_size(mp);
2414	int			active;
2415
2416	/*
2417	 * The agf read verifier catches severe corruption of these fields.
2418	 * Repeat some sanity checks to cover a packed -> unpacked mismatch if
2419	 * the verifier allows it.
2420	 */
2421	if (f >= agfl_size || l >= agfl_size)
2422		return true;
2423	if (c > agfl_size)
2424		return true;
2425
2426	/*
2427	 * Check consistency between the on-disk count and the active range. An
2428	 * agfl padding mismatch manifests as an inconsistent flcount.
2429	 */
2430	if (c && l >= f)
2431		active = l - f + 1;
2432	else if (c)
2433		active = agfl_size - f + l + 1;
2434	else
2435		active = 0;
2436
2437	return active != c;
2438}
2439
2440/*
2441 * Reset the agfl to an empty state. Ignore/drop any existing blocks since the
2442 * agfl content cannot be trusted. Warn the user that a repair is required to
2443 * recover leaked blocks.
2444 *
2445 * The purpose of this mechanism is to handle filesystems affected by the agfl
2446 * header padding mismatch problem. A reset keeps the filesystem online with a
2447 * relatively minor free space accounting inconsistency rather than suffer the
2448 * inevitable crash from use of an invalid agfl block.
2449 */
2450static void
2451xfs_agfl_reset(
2452	struct xfs_trans	*tp,
2453	struct xfs_buf		*agbp,
2454	struct xfs_perag	*pag)
2455{
2456	struct xfs_mount	*mp = tp->t_mountp;
2457	struct xfs_agf		*agf = agbp->b_addr;
2458
2459	ASSERT(xfs_perag_agfl_needs_reset(pag));
2460	trace_xfs_agfl_reset(mp, agf, 0, _RET_IP_);
2461
2462	xfs_warn(mp,
2463	       "WARNING: Reset corrupted AGFL on AG %u. %d blocks leaked. "
2464	       "Please unmount and run xfs_repair.",
2465	         pag->pag_agno, pag->pagf_flcount);
2466
2467	agf->agf_flfirst = 0;
2468	agf->agf_fllast = cpu_to_be32(xfs_agfl_size(mp) - 1);
2469	agf->agf_flcount = 0;
2470	xfs_alloc_log_agf(tp, agbp, XFS_AGF_FLFIRST | XFS_AGF_FLLAST |
2471				    XFS_AGF_FLCOUNT);
2472
2473	pag->pagf_flcount = 0;
2474	clear_bit(XFS_AGSTATE_AGFL_NEEDS_RESET, &pag->pag_opstate);
2475}
2476
2477/*
2478 * Defer an AGFL block free. This is effectively equivalent to
2479 * xfs_free_extent_later() with some special handling particular to AGFL blocks.
2480 *
2481 * Deferring AGFL frees helps prevent log reservation overruns due to too many
2482 * allocation operations in a transaction. AGFL frees are prone to this problem
2483 * because for one they are always freed one at a time. Further, an immediate
2484 * AGFL block free can cause a btree join and require another block free before
2485 * the real allocation can proceed. Deferring the free disconnects freeing up
2486 * the AGFL slot from freeing the block.
2487 */
2488static int
2489xfs_defer_agfl_block(
2490	struct xfs_trans		*tp,
2491	xfs_agnumber_t			agno,
2492	xfs_agblock_t			agbno,
2493	struct xfs_owner_info		*oinfo)
2494{
2495	struct xfs_mount		*mp = tp->t_mountp;
2496	struct xfs_extent_free_item	*xefi;
2497	xfs_fsblock_t			fsbno = XFS_AGB_TO_FSB(mp, agno, agbno);
2498
2499	ASSERT(xfs_extfree_item_cache != NULL);
2500	ASSERT(oinfo != NULL);
2501
2502	if (XFS_IS_CORRUPT(mp, !xfs_verify_fsbno(mp, fsbno)))
2503		return -EFSCORRUPTED;
2504
2505	xefi = kmem_cache_zalloc(xfs_extfree_item_cache,
2506			       GFP_KERNEL | __GFP_NOFAIL);
2507	xefi->xefi_startblock = fsbno;
2508	xefi->xefi_blockcount = 1;
2509	xefi->xefi_owner = oinfo->oi_owner;
2510	xefi->xefi_agresv = XFS_AG_RESV_AGFL;
2511
2512	trace_xfs_agfl_free_defer(mp, agno, 0, agbno, 1);
2513
2514	xfs_extent_free_get_group(mp, xefi);
2515	xfs_defer_add(tp, &xefi->xefi_list, &xfs_agfl_free_defer_type);
2516	return 0;
2517}
2518
2519/*
2520 * Add the extent to the list of extents to be free at transaction end.
2521 * The list is maintained sorted (by block number).
2522 */
2523static int
2524xfs_defer_extent_free(
2525	struct xfs_trans		*tp,
2526	xfs_fsblock_t			bno,
2527	xfs_filblks_t			len,
2528	const struct xfs_owner_info	*oinfo,
2529	enum xfs_ag_resv_type		type,
2530	bool				skip_discard,
2531	struct xfs_defer_pending	**dfpp)
2532{
2533	struct xfs_extent_free_item	*xefi;
2534	struct xfs_mount		*mp = tp->t_mountp;
2535#ifdef DEBUG
2536	xfs_agnumber_t			agno;
2537	xfs_agblock_t			agbno;
2538
2539	ASSERT(bno != NULLFSBLOCK);
2540	ASSERT(len > 0);
2541	ASSERT(len <= XFS_MAX_BMBT_EXTLEN);
2542	ASSERT(!isnullstartblock(bno));
2543	agno = XFS_FSB_TO_AGNO(mp, bno);
2544	agbno = XFS_FSB_TO_AGBNO(mp, bno);
2545	ASSERT(agno < mp->m_sb.sb_agcount);
2546	ASSERT(agbno < mp->m_sb.sb_agblocks);
2547	ASSERT(len < mp->m_sb.sb_agblocks);
2548	ASSERT(agbno + len <= mp->m_sb.sb_agblocks);
2549#endif
2550	ASSERT(xfs_extfree_item_cache != NULL);
2551	ASSERT(type != XFS_AG_RESV_AGFL);
2552
2553	if (XFS_IS_CORRUPT(mp, !xfs_verify_fsbext(mp, bno, len)))
2554		return -EFSCORRUPTED;
 
 
 
 
 
 
 
 
 
2555
2556	xefi = kmem_cache_zalloc(xfs_extfree_item_cache,
2557			       GFP_KERNEL | __GFP_NOFAIL);
2558	xefi->xefi_startblock = bno;
2559	xefi->xefi_blockcount = (xfs_extlen_t)len;
2560	xefi->xefi_agresv = type;
2561	if (skip_discard)
2562		xefi->xefi_flags |= XFS_EFI_SKIP_DISCARD;
 
 
2563	if (oinfo) {
2564		ASSERT(oinfo->oi_offset == 0);
2565
2566		if (oinfo->oi_flags & XFS_OWNER_INFO_ATTR_FORK)
2567			xefi->xefi_flags |= XFS_EFI_ATTR_FORK;
2568		if (oinfo->oi_flags & XFS_OWNER_INFO_BMBT_BLOCK)
2569			xefi->xefi_flags |= XFS_EFI_BMBT_BLOCK;
2570		xefi->xefi_owner = oinfo->oi_owner;
2571	} else {
2572		xefi->xefi_owner = XFS_RMAP_OWN_NULL;
2573	}
2574	trace_xfs_bmap_free_defer(mp,
2575			XFS_FSB_TO_AGNO(tp->t_mountp, bno), 0,
2576			XFS_FSB_TO_AGBNO(tp->t_mountp, bno), len);
2577
2578	xfs_extent_free_get_group(mp, xefi);
2579	*dfpp = xfs_defer_add(tp, &xefi->xefi_list, &xfs_extent_free_defer_type);
2580	return 0;
2581}
2582
2583int
2584xfs_free_extent_later(
2585	struct xfs_trans		*tp,
2586	xfs_fsblock_t			bno,
2587	xfs_filblks_t			len,
2588	const struct xfs_owner_info	*oinfo,
2589	enum xfs_ag_resv_type		type,
2590	bool				skip_discard)
2591{
2592	struct xfs_defer_pending	*dontcare = NULL;
2593
2594	return xfs_defer_extent_free(tp, bno, len, oinfo, type, skip_discard,
2595			&dontcare);
2596}
2597
2598/*
2599 * Set up automatic freeing of unwritten space in the filesystem.
2600 *
2601 * This function attached a paused deferred extent free item to the
2602 * transaction.  Pausing means that the EFI will be logged in the next
2603 * transaction commit, but the pending EFI will not be finished until the
2604 * pending item is unpaused.
2605 *
2606 * If the system goes down after the EFI has been persisted to the log but
2607 * before the pending item is unpaused, log recovery will find the EFI, fail to
2608 * find the EFD, and free the space.
2609 *
2610 * If the pending item is unpaused, the next transaction commit will log an EFD
2611 * without freeing the space.
2612 *
2613 * Caller must ensure that the tp, fsbno, len, oinfo, and resv flags of the
2614 * @args structure are set to the relevant values.
2615 */
2616int
2617xfs_alloc_schedule_autoreap(
2618	const struct xfs_alloc_arg	*args,
2619	bool				skip_discard,
2620	struct xfs_alloc_autoreap	*aarp)
2621{
2622	int				error;
2623
2624	error = xfs_defer_extent_free(args->tp, args->fsbno, args->len,
2625			&args->oinfo, args->resv, skip_discard, &aarp->dfp);
2626	if (error)
2627		return error;
2628
2629	xfs_defer_item_pause(args->tp, aarp->dfp);
2630	return 0;
2631}
2632
2633/*
2634 * Cancel automatic freeing of unwritten space in the filesystem.
2635 *
2636 * Earlier, we created a paused deferred extent free item and attached it to
2637 * this transaction so that we could automatically roll back a new space
2638 * allocation if the system went down.  Now we want to cancel the paused work
2639 * item by marking the EFI stale so we don't actually free the space, unpausing
2640 * the pending item and logging an EFD.
2641 *
2642 * The caller generally should have already mapped the space into the ondisk
2643 * filesystem.  If the reserved space was partially used, the caller must call
2644 * xfs_free_extent_later to create a new EFI to free the unused space.
2645 */
2646void
2647xfs_alloc_cancel_autoreap(
2648	struct xfs_trans		*tp,
2649	struct xfs_alloc_autoreap	*aarp)
2650{
2651	struct xfs_defer_pending	*dfp = aarp->dfp;
2652	struct xfs_extent_free_item	*xefi;
2653
2654	if (!dfp)
2655		return;
2656
2657	list_for_each_entry(xefi, &dfp->dfp_work, xefi_list)
2658		xefi->xefi_flags |= XFS_EFI_CANCELLED;
2659
2660	xfs_defer_item_unpause(tp, dfp);
2661}
2662
2663/*
2664 * Commit automatic freeing of unwritten space in the filesystem.
2665 *
2666 * This unpauses an earlier _schedule_autoreap and commits to freeing the
2667 * allocated space.  Call this if none of the reserved space was used.
2668 */
2669void
2670xfs_alloc_commit_autoreap(
2671	struct xfs_trans		*tp,
2672	struct xfs_alloc_autoreap	*aarp)
2673{
2674	if (aarp->dfp)
2675		xfs_defer_item_unpause(tp, aarp->dfp);
2676}
2677
2678#ifdef DEBUG
2679/*
2680 * Check if an AGF has a free extent record whose length is equal to
2681 * args->minlen.
2682 */
2683STATIC int
2684xfs_exact_minlen_extent_available(
2685	struct xfs_alloc_arg	*args,
2686	struct xfs_buf		*agbp,
2687	int			*stat)
2688{
2689	struct xfs_btree_cur	*cnt_cur;
2690	xfs_agblock_t		fbno;
2691	xfs_extlen_t		flen;
2692	int			error = 0;
2693
2694	cnt_cur = xfs_allocbt_init_cursor(args->mp, args->tp, agbp,
2695					args->pag, XFS_BTNUM_CNT);
2696	error = xfs_alloc_lookup_ge(cnt_cur, 0, args->minlen, stat);
2697	if (error)
2698		goto out;
2699
2700	if (*stat == 0) {
 
2701		error = -EFSCORRUPTED;
2702		goto out;
2703	}
2704
2705	error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen, stat);
2706	if (error)
2707		goto out;
2708
2709	if (*stat == 1 && flen != args->minlen)
2710		*stat = 0;
2711
2712out:
2713	xfs_btree_del_cursor(cnt_cur, error);
2714
2715	return error;
2716}
2717#endif
2718
2719/*
2720 * Decide whether to use this allocation group for this allocation.
2721 * If so, fix up the btree freelist's size.
2722 */
2723int			/* error */
2724xfs_alloc_fix_freelist(
2725	struct xfs_alloc_arg	*args,	/* allocation argument structure */
2726	uint32_t		alloc_flags)
2727{
2728	struct xfs_mount	*mp = args->mp;
2729	struct xfs_perag	*pag = args->pag;
2730	struct xfs_trans	*tp = args->tp;
2731	struct xfs_buf		*agbp = NULL;
2732	struct xfs_buf		*agflbp = NULL;
2733	struct xfs_alloc_arg	targs;	/* local allocation arguments */
2734	xfs_agblock_t		bno;	/* freelist block */
2735	xfs_extlen_t		need;	/* total blocks needed in freelist */
2736	int			error = 0;
2737
2738	/* deferred ops (AGFL block frees) require permanent transactions */
2739	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
2740
2741	if (!xfs_perag_initialised_agf(pag)) {
2742		error = xfs_alloc_read_agf(pag, tp, alloc_flags, &agbp);
2743		if (error) {
2744			/* Couldn't lock the AGF so skip this AG. */
2745			if (error == -EAGAIN)
2746				error = 0;
2747			goto out_no_agbp;
2748		}
2749	}
2750
2751	/*
2752	 * If this is a metadata preferred pag and we are user data then try
2753	 * somewhere else if we are not being asked to try harder at this
2754	 * point
2755	 */
2756	if (xfs_perag_prefers_metadata(pag) &&
2757	    (args->datatype & XFS_ALLOC_USERDATA) &&
2758	    (alloc_flags & XFS_ALLOC_FLAG_TRYLOCK)) {
2759		ASSERT(!(alloc_flags & XFS_ALLOC_FLAG_FREEING));
2760		goto out_agbp_relse;
2761	}
2762
2763	need = xfs_alloc_min_freelist(mp, pag);
2764	if (!xfs_alloc_space_available(args, need, alloc_flags |
2765			XFS_ALLOC_FLAG_CHECK))
2766		goto out_agbp_relse;
2767
2768	/*
2769	 * Get the a.g. freespace buffer.
2770	 * Can fail if we're not blocking on locks, and it's held.
2771	 */
2772	if (!agbp) {
2773		error = xfs_alloc_read_agf(pag, tp, alloc_flags, &agbp);
2774		if (error) {
2775			/* Couldn't lock the AGF so skip this AG. */
2776			if (error == -EAGAIN)
2777				error = 0;
2778			goto out_no_agbp;
2779		}
2780	}
2781
2782	/* reset a padding mismatched agfl before final free space check */
2783	if (xfs_perag_agfl_needs_reset(pag))
2784		xfs_agfl_reset(tp, agbp, pag);
2785
2786	/* If there isn't enough total space or single-extent, reject it. */
2787	need = xfs_alloc_min_freelist(mp, pag);
2788	if (!xfs_alloc_space_available(args, need, alloc_flags))
2789		goto out_agbp_relse;
2790
2791#ifdef DEBUG
2792	if (args->alloc_minlen_only) {
2793		int stat;
2794
2795		error = xfs_exact_minlen_extent_available(args, agbp, &stat);
2796		if (error || !stat)
2797			goto out_agbp_relse;
2798	}
2799#endif
2800	/*
2801	 * Make the freelist shorter if it's too long.
2802	 *
2803	 * Note that from this point onwards, we will always release the agf and
2804	 * agfl buffers on error. This handles the case where we error out and
2805	 * the buffers are clean or may not have been joined to the transaction
2806	 * and hence need to be released manually. If they have been joined to
2807	 * the transaction, then xfs_trans_brelse() will handle them
2808	 * appropriately based on the recursion count and dirty state of the
2809	 * buffer.
2810	 *
2811	 * XXX (dgc): When we have lots of free space, does this buy us
2812	 * anything other than extra overhead when we need to put more blocks
2813	 * back on the free list? Maybe we should only do this when space is
2814	 * getting low or the AGFL is more than half full?
2815	 *
2816	 * The NOSHRINK flag prevents the AGFL from being shrunk if it's too
2817	 * big; the NORMAP flag prevents AGFL expand/shrink operations from
2818	 * updating the rmapbt.  Both flags are used in xfs_repair while we're
2819	 * rebuilding the rmapbt, and neither are used by the kernel.  They're
2820	 * both required to ensure that rmaps are correctly recorded for the
2821	 * regenerated AGFL, bnobt, and cntbt.  See repair/phase5.c and
2822	 * repair/rmap.c in xfsprogs for details.
2823	 */
2824	memset(&targs, 0, sizeof(targs));
2825	/* struct copy below */
2826	if (alloc_flags & XFS_ALLOC_FLAG_NORMAP)
2827		targs.oinfo = XFS_RMAP_OINFO_SKIP_UPDATE;
2828	else
2829		targs.oinfo = XFS_RMAP_OINFO_AG;
2830	while (!(alloc_flags & XFS_ALLOC_FLAG_NOSHRINK) &&
2831			pag->pagf_flcount > need) {
2832		error = xfs_alloc_get_freelist(pag, tp, agbp, &bno, 0);
2833		if (error)
2834			goto out_agbp_relse;
2835
2836		/* defer agfl frees */
2837		error = xfs_defer_agfl_block(tp, args->agno, bno, &targs.oinfo);
 
 
 
 
 
 
 
 
 
 
 
 
2838		if (error)
2839			goto out_agbp_relse;
2840	}
2841
2842	targs.tp = tp;
2843	targs.mp = mp;
2844	targs.agbp = agbp;
2845	targs.agno = args->agno;
2846	targs.alignment = targs.minlen = targs.prod = 1;
2847	targs.pag = pag;
2848	error = xfs_alloc_read_agfl(pag, tp, &agflbp);
2849	if (error)
2850		goto out_agbp_relse;
2851
2852	/* Make the freelist longer if it's too short. */
2853	while (pag->pagf_flcount < need) {
2854		targs.agbno = 0;
2855		targs.maxlen = need - pag->pagf_flcount;
2856		targs.resv = XFS_AG_RESV_AGFL;
2857
2858		/* Allocate as many blocks as possible at once. */
2859		error = xfs_alloc_ag_vextent_size(&targs, alloc_flags);
2860		if (error)
2861			goto out_agflbp_relse;
2862
2863		/*
2864		 * Stop if we run out.  Won't happen if callers are obeying
2865		 * the restrictions correctly.  Can happen for free calls
2866		 * on a completely full ag.
2867		 */
2868		if (targs.agbno == NULLAGBLOCK) {
2869			if (alloc_flags & XFS_ALLOC_FLAG_FREEING)
2870				break;
2871			goto out_agflbp_relse;
2872		}
2873
2874		if (!xfs_rmap_should_skip_owner_update(&targs.oinfo)) {
2875			error = xfs_rmap_alloc(tp, agbp, pag,
2876				       targs.agbno, targs.len, &targs.oinfo);
2877			if (error)
2878				goto out_agflbp_relse;
2879		}
2880		error = xfs_alloc_update_counters(tp, agbp,
2881						  -((long)(targs.len)));
2882		if (error)
2883			goto out_agflbp_relse;
2884
2885		/*
2886		 * Put each allocated block on the list.
2887		 */
2888		for (bno = targs.agbno; bno < targs.agbno + targs.len; bno++) {
2889			error = xfs_alloc_put_freelist(pag, tp, agbp,
2890							agflbp, bno, 0);
2891			if (error)
2892				goto out_agflbp_relse;
2893		}
2894	}
2895	xfs_trans_brelse(tp, agflbp);
2896	args->agbp = agbp;
2897	return 0;
2898
2899out_agflbp_relse:
2900	xfs_trans_brelse(tp, agflbp);
2901out_agbp_relse:
2902	if (agbp)
2903		xfs_trans_brelse(tp, agbp);
2904out_no_agbp:
2905	args->agbp = NULL;
2906	return error;
2907}
2908
2909/*
2910 * Get a block from the freelist.
2911 * Returns with the buffer for the block gotten.
2912 */
2913int
2914xfs_alloc_get_freelist(
2915	struct xfs_perag	*pag,
2916	struct xfs_trans	*tp,
2917	struct xfs_buf		*agbp,
2918	xfs_agblock_t		*bnop,
2919	int			btreeblk)
2920{
2921	struct xfs_agf		*agf = agbp->b_addr;
2922	struct xfs_buf		*agflbp;
2923	xfs_agblock_t		bno;
2924	__be32			*agfl_bno;
2925	int			error;
2926	uint32_t		logflags;
2927	struct xfs_mount	*mp = tp->t_mountp;
2928
2929	/*
2930	 * Freelist is empty, give up.
2931	 */
2932	if (!agf->agf_flcount) {
2933		*bnop = NULLAGBLOCK;
2934		return 0;
2935	}
2936	/*
2937	 * Read the array of free blocks.
2938	 */
2939	error = xfs_alloc_read_agfl(pag, tp, &agflbp);
2940	if (error)
2941		return error;
2942
2943
2944	/*
2945	 * Get the block number and update the data structures.
2946	 */
2947	agfl_bno = xfs_buf_to_agfl_bno(agflbp);
2948	bno = be32_to_cpu(agfl_bno[be32_to_cpu(agf->agf_flfirst)]);
2949	if (XFS_IS_CORRUPT(tp->t_mountp, !xfs_verify_agbno(pag, bno)))
2950		return -EFSCORRUPTED;
2951
2952	be32_add_cpu(&agf->agf_flfirst, 1);
2953	xfs_trans_brelse(tp, agflbp);
2954	if (be32_to_cpu(agf->agf_flfirst) == xfs_agfl_size(mp))
2955		agf->agf_flfirst = 0;
2956
2957	ASSERT(!xfs_perag_agfl_needs_reset(pag));
2958	be32_add_cpu(&agf->agf_flcount, -1);
2959	pag->pagf_flcount--;
2960
2961	logflags = XFS_AGF_FLFIRST | XFS_AGF_FLCOUNT;
2962	if (btreeblk) {
2963		be32_add_cpu(&agf->agf_btreeblks, 1);
2964		pag->pagf_btreeblks++;
2965		logflags |= XFS_AGF_BTREEBLKS;
2966	}
2967
2968	xfs_alloc_log_agf(tp, agbp, logflags);
2969	*bnop = bno;
2970
2971	return 0;
2972}
2973
2974/*
2975 * Log the given fields from the agf structure.
2976 */
2977void
2978xfs_alloc_log_agf(
2979	struct xfs_trans	*tp,
2980	struct xfs_buf		*bp,
2981	uint32_t		fields)
2982{
2983	int	first;		/* first byte offset */
2984	int	last;		/* last byte offset */
2985	static const short	offsets[] = {
2986		offsetof(xfs_agf_t, agf_magicnum),
2987		offsetof(xfs_agf_t, agf_versionnum),
2988		offsetof(xfs_agf_t, agf_seqno),
2989		offsetof(xfs_agf_t, agf_length),
2990		offsetof(xfs_agf_t, agf_roots[0]),
2991		offsetof(xfs_agf_t, agf_levels[0]),
2992		offsetof(xfs_agf_t, agf_flfirst),
2993		offsetof(xfs_agf_t, agf_fllast),
2994		offsetof(xfs_agf_t, agf_flcount),
2995		offsetof(xfs_agf_t, agf_freeblks),
2996		offsetof(xfs_agf_t, agf_longest),
2997		offsetof(xfs_agf_t, agf_btreeblks),
2998		offsetof(xfs_agf_t, agf_uuid),
2999		offsetof(xfs_agf_t, agf_rmap_blocks),
3000		offsetof(xfs_agf_t, agf_refcount_blocks),
3001		offsetof(xfs_agf_t, agf_refcount_root),
3002		offsetof(xfs_agf_t, agf_refcount_level),
3003		/* needed so that we don't log the whole rest of the structure: */
3004		offsetof(xfs_agf_t, agf_spare64),
3005		sizeof(xfs_agf_t)
3006	};
3007
3008	trace_xfs_agf(tp->t_mountp, bp->b_addr, fields, _RET_IP_);
3009
3010	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_AGF_BUF);
3011
3012	xfs_btree_offsets(fields, offsets, XFS_AGF_NUM_BITS, &first, &last);
3013	xfs_trans_log_buf(tp, bp, (uint)first, (uint)last);
3014}
3015
3016/*
3017 * Put the block on the freelist for the allocation group.
3018 */
3019int
3020xfs_alloc_put_freelist(
3021	struct xfs_perag	*pag,
3022	struct xfs_trans	*tp,
3023	struct xfs_buf		*agbp,
3024	struct xfs_buf		*agflbp,
3025	xfs_agblock_t		bno,
3026	int			btreeblk)
3027{
3028	struct xfs_mount	*mp = tp->t_mountp;
3029	struct xfs_agf		*agf = agbp->b_addr;
3030	__be32			*blockp;
3031	int			error;
3032	uint32_t		logflags;
3033	__be32			*agfl_bno;
3034	int			startoff;
3035
3036	if (!agflbp) {
3037		error = xfs_alloc_read_agfl(pag, tp, &agflbp);
3038		if (error)
3039			return error;
3040	}
3041
3042	be32_add_cpu(&agf->agf_fllast, 1);
3043	if (be32_to_cpu(agf->agf_fllast) == xfs_agfl_size(mp))
3044		agf->agf_fllast = 0;
3045
3046	ASSERT(!xfs_perag_agfl_needs_reset(pag));
3047	be32_add_cpu(&agf->agf_flcount, 1);
3048	pag->pagf_flcount++;
3049
3050	logflags = XFS_AGF_FLLAST | XFS_AGF_FLCOUNT;
3051	if (btreeblk) {
3052		be32_add_cpu(&agf->agf_btreeblks, -1);
3053		pag->pagf_btreeblks--;
3054		logflags |= XFS_AGF_BTREEBLKS;
3055	}
3056
3057	xfs_alloc_log_agf(tp, agbp, logflags);
3058
3059	ASSERT(be32_to_cpu(agf->agf_flcount) <= xfs_agfl_size(mp));
3060
3061	agfl_bno = xfs_buf_to_agfl_bno(agflbp);
3062	blockp = &agfl_bno[be32_to_cpu(agf->agf_fllast)];
3063	*blockp = cpu_to_be32(bno);
3064	startoff = (char *)blockp - (char *)agflbp->b_addr;
3065
3066	xfs_alloc_log_agf(tp, agbp, logflags);
3067
3068	xfs_trans_buf_set_type(tp, agflbp, XFS_BLFT_AGFL_BUF);
3069	xfs_trans_log_buf(tp, agflbp, startoff,
3070			  startoff + sizeof(xfs_agblock_t) - 1);
3071	return 0;
3072}
3073
3074/*
3075 * Check that this AGF/AGI header's sequence number and length matches the AG
3076 * number and size in fsblocks.
3077 */
3078xfs_failaddr_t
3079xfs_validate_ag_length(
3080	struct xfs_buf		*bp,
3081	uint32_t		seqno,
3082	uint32_t		length)
3083{
3084	struct xfs_mount	*mp = bp->b_mount;
3085	/*
3086	 * During growfs operations, the perag is not fully initialised,
3087	 * so we can't use it for any useful checking. growfs ensures we can't
3088	 * use it by using uncached buffers that don't have the perag attached
3089	 * so we can detect and avoid this problem.
3090	 */
3091	if (bp->b_pag && seqno != bp->b_pag->pag_agno)
3092		return __this_address;
3093
3094	/*
3095	 * Only the last AG in the filesystem is allowed to be shorter
3096	 * than the AG size recorded in the superblock.
3097	 */
3098	if (length != mp->m_sb.sb_agblocks) {
3099		/*
3100		 * During growfs, the new last AG can get here before we
3101		 * have updated the superblock. Give it a pass on the seqno
3102		 * check.
3103		 */
3104		if (bp->b_pag && seqno != mp->m_sb.sb_agcount - 1)
3105			return __this_address;
3106		if (length < XFS_MIN_AG_BLOCKS)
3107			return __this_address;
3108		if (length > mp->m_sb.sb_agblocks)
3109			return __this_address;
3110	}
3111
3112	return NULL;
3113}
3114
3115/*
3116 * Verify the AGF is consistent.
3117 *
3118 * We do not verify the AGFL indexes in the AGF are fully consistent here
3119 * because of issues with variable on-disk structure sizes. Instead, we check
3120 * the agfl indexes for consistency when we initialise the perag from the AGF
3121 * information after a read completes.
3122 *
3123 * If the index is inconsistent, then we mark the perag as needing an AGFL
3124 * reset. The first AGFL update performed then resets the AGFL indexes and
3125 * refills the AGFL with known good free blocks, allowing the filesystem to
3126 * continue operating normally at the cost of a few leaked free space blocks.
3127 */
3128static xfs_failaddr_t
3129xfs_agf_verify(
3130	struct xfs_buf		*bp)
3131{
3132	struct xfs_mount	*mp = bp->b_mount;
3133	struct xfs_agf		*agf = bp->b_addr;
3134	xfs_failaddr_t		fa;
3135	uint32_t		agf_seqno = be32_to_cpu(agf->agf_seqno);
3136	uint32_t		agf_length = be32_to_cpu(agf->agf_length);
3137
3138	if (xfs_has_crc(mp)) {
3139		if (!uuid_equal(&agf->agf_uuid, &mp->m_sb.sb_meta_uuid))
3140			return __this_address;
3141		if (!xfs_log_check_lsn(mp, be64_to_cpu(agf->agf_lsn)))
3142			return __this_address;
3143	}
3144
3145	if (!xfs_verify_magic(bp, agf->agf_magicnum))
3146		return __this_address;
3147
3148	if (!XFS_AGF_GOOD_VERSION(be32_to_cpu(agf->agf_versionnum)))
3149		return __this_address;
3150
3151	/*
3152	 * Both agf_seqno and agf_length need to validated before anything else
3153	 * block number related in the AGF or AGFL can be checked.
3154	 */
3155	fa = xfs_validate_ag_length(bp, agf_seqno, agf_length);
3156	if (fa)
3157		return fa;
3158
3159	if (be32_to_cpu(agf->agf_flfirst) >= xfs_agfl_size(mp))
3160		return __this_address;
3161	if (be32_to_cpu(agf->agf_fllast) >= xfs_agfl_size(mp))
3162		return __this_address;
3163	if (be32_to_cpu(agf->agf_flcount) > xfs_agfl_size(mp))
3164		return __this_address;
3165
3166	if (be32_to_cpu(agf->agf_freeblks) < be32_to_cpu(agf->agf_longest) ||
3167	    be32_to_cpu(agf->agf_freeblks) > agf_length)
3168		return __this_address;
3169
3170	if (be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]) < 1 ||
3171	    be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]) < 1 ||
3172	    be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]) >
3173						mp->m_alloc_maxlevels ||
3174	    be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]) >
3175						mp->m_alloc_maxlevels)
3176		return __this_address;
3177
3178	if (xfs_has_lazysbcount(mp) &&
3179	    be32_to_cpu(agf->agf_btreeblks) > agf_length)
3180		return __this_address;
3181
3182	if (xfs_has_rmapbt(mp)) {
3183		if (be32_to_cpu(agf->agf_rmap_blocks) > agf_length)
3184			return __this_address;
3185
3186		if (be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAP]) < 1 ||
3187		    be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAP]) >
3188							mp->m_rmap_maxlevels)
3189			return __this_address;
3190	}
3191
3192	if (xfs_has_reflink(mp)) {
3193		if (be32_to_cpu(agf->agf_refcount_blocks) > agf_length)
3194			return __this_address;
3195
3196		if (be32_to_cpu(agf->agf_refcount_level) < 1 ||
3197		    be32_to_cpu(agf->agf_refcount_level) > mp->m_refc_maxlevels)
3198			return __this_address;
3199	}
3200
3201	return NULL;
3202}
3203
3204static void
3205xfs_agf_read_verify(
3206	struct xfs_buf	*bp)
3207{
3208	struct xfs_mount *mp = bp->b_mount;
3209	xfs_failaddr_t	fa;
3210
3211	if (xfs_has_crc(mp) &&
3212	    !xfs_buf_verify_cksum(bp, XFS_AGF_CRC_OFF))
3213		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
3214	else {
3215		fa = xfs_agf_verify(bp);
3216		if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_ALLOC_READ_AGF))
3217			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
3218	}
3219}
3220
3221static void
3222xfs_agf_write_verify(
3223	struct xfs_buf	*bp)
3224{
3225	struct xfs_mount	*mp = bp->b_mount;
3226	struct xfs_buf_log_item	*bip = bp->b_log_item;
3227	struct xfs_agf		*agf = bp->b_addr;
3228	xfs_failaddr_t		fa;
3229
3230	fa = xfs_agf_verify(bp);
3231	if (fa) {
3232		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
3233		return;
3234	}
3235
3236	if (!xfs_has_crc(mp))
3237		return;
3238
3239	if (bip)
3240		agf->agf_lsn = cpu_to_be64(bip->bli_item.li_lsn);
3241
3242	xfs_buf_update_cksum(bp, XFS_AGF_CRC_OFF);
3243}
3244
3245const struct xfs_buf_ops xfs_agf_buf_ops = {
3246	.name = "xfs_agf",
3247	.magic = { cpu_to_be32(XFS_AGF_MAGIC), cpu_to_be32(XFS_AGF_MAGIC) },
3248	.verify_read = xfs_agf_read_verify,
3249	.verify_write = xfs_agf_write_verify,
3250	.verify_struct = xfs_agf_verify,
3251};
3252
3253/*
3254 * Read in the allocation group header (free/alloc section).
3255 */
3256int
3257xfs_read_agf(
3258	struct xfs_perag	*pag,
3259	struct xfs_trans	*tp,
3260	int			flags,
3261	struct xfs_buf		**agfbpp)
3262{
3263	struct xfs_mount	*mp = pag->pag_mount;
3264	int			error;
3265
3266	trace_xfs_read_agf(pag->pag_mount, pag->pag_agno);
3267
3268	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
3269			XFS_AG_DADDR(mp, pag->pag_agno, XFS_AGF_DADDR(mp)),
3270			XFS_FSS_TO_BB(mp, 1), flags, agfbpp, &xfs_agf_buf_ops);
 
 
3271	if (error)
3272		return error;
3273
3274	xfs_buf_set_ref(*agfbpp, XFS_AGF_REF);
3275	return 0;
3276}
3277
3278/*
3279 * Read in the allocation group header (free/alloc section) and initialise the
3280 * perag structure if necessary. If the caller provides @agfbpp, then return the
3281 * locked buffer to the caller, otherwise free it.
3282 */
3283int
3284xfs_alloc_read_agf(
3285	struct xfs_perag	*pag,
3286	struct xfs_trans	*tp,
3287	int			flags,
3288	struct xfs_buf		**agfbpp)
3289{
 
3290	struct xfs_buf		*agfbp;
3291	struct xfs_agf		*agf;
3292	int			error;
3293	int			allocbt_blks;
3294
3295	trace_xfs_alloc_read_agf(pag->pag_mount, pag->pag_agno);
3296
3297	/* We don't support trylock when freeing. */
3298	ASSERT((flags & (XFS_ALLOC_FLAG_FREEING | XFS_ALLOC_FLAG_TRYLOCK)) !=
3299			(XFS_ALLOC_FLAG_FREEING | XFS_ALLOC_FLAG_TRYLOCK));
3300	error = xfs_read_agf(pag, tp,
3301			(flags & XFS_ALLOC_FLAG_TRYLOCK) ? XBF_TRYLOCK : 0,
3302			&agfbp);
3303	if (error)
3304		return error;
3305
3306	agf = agfbp->b_addr;
3307	if (!xfs_perag_initialised_agf(pag)) {
3308		pag->pagf_freeblks = be32_to_cpu(agf->agf_freeblks);
3309		pag->pagf_btreeblks = be32_to_cpu(agf->agf_btreeblks);
3310		pag->pagf_flcount = be32_to_cpu(agf->agf_flcount);
3311		pag->pagf_longest = be32_to_cpu(agf->agf_longest);
3312		pag->pagf_levels[XFS_BTNUM_BNOi] =
3313			be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNOi]);
3314		pag->pagf_levels[XFS_BTNUM_CNTi] =
3315			be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNTi]);
3316		pag->pagf_levels[XFS_BTNUM_RMAPi] =
3317			be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAPi]);
3318		pag->pagf_refcount_level = be32_to_cpu(agf->agf_refcount_level);
3319		if (xfs_agfl_needs_reset(pag->pag_mount, agf))
3320			set_bit(XFS_AGSTATE_AGFL_NEEDS_RESET, &pag->pag_opstate);
3321		else
3322			clear_bit(XFS_AGSTATE_AGFL_NEEDS_RESET, &pag->pag_opstate);
3323
3324		/*
3325		 * Update the in-core allocbt counter. Filter out the rmapbt
3326		 * subset of the btreeblks counter because the rmapbt is managed
3327		 * by perag reservation. Subtract one for the rmapbt root block
3328		 * because the rmap counter includes it while the btreeblks
3329		 * counter only tracks non-root blocks.
3330		 */
3331		allocbt_blks = pag->pagf_btreeblks;
3332		if (xfs_has_rmapbt(pag->pag_mount))
3333			allocbt_blks -= be32_to_cpu(agf->agf_rmap_blocks) - 1;
3334		if (allocbt_blks > 0)
3335			atomic64_add(allocbt_blks,
3336					&pag->pag_mount->m_allocbt_blks);
3337
3338		set_bit(XFS_AGSTATE_AGF_INIT, &pag->pag_opstate);
3339	}
3340#ifdef DEBUG
3341	else if (!xfs_is_shutdown(pag->pag_mount)) {
3342		ASSERT(pag->pagf_freeblks == be32_to_cpu(agf->agf_freeblks));
3343		ASSERT(pag->pagf_btreeblks == be32_to_cpu(agf->agf_btreeblks));
3344		ASSERT(pag->pagf_flcount == be32_to_cpu(agf->agf_flcount));
3345		ASSERT(pag->pagf_longest == be32_to_cpu(agf->agf_longest));
3346		ASSERT(pag->pagf_levels[XFS_BTNUM_BNOi] ==
3347		       be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNOi]));
3348		ASSERT(pag->pagf_levels[XFS_BTNUM_CNTi] ==
3349		       be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNTi]));
3350	}
3351#endif
3352	if (agfbpp)
3353		*agfbpp = agfbp;
3354	else
3355		xfs_trans_brelse(tp, agfbp);
3356	return 0;
3357}
3358
3359/*
3360 * Pre-proces allocation arguments to set initial state that we don't require
3361 * callers to set up correctly, as well as bounds check the allocation args
3362 * that are set up.
3363 */
3364static int
3365xfs_alloc_vextent_check_args(
3366	struct xfs_alloc_arg	*args,
3367	xfs_fsblock_t		target,
3368	xfs_agnumber_t		*minimum_agno)
3369{
3370	struct xfs_mount	*mp = args->mp;
3371	xfs_agblock_t		agsize;
3372
3373	args->fsbno = NULLFSBLOCK;
3374
3375	*minimum_agno = 0;
3376	if (args->tp->t_highest_agno != NULLAGNUMBER)
3377		*minimum_agno = args->tp->t_highest_agno;
3378
3379	/*
3380	 * Just fix this up, for the case where the last a.g. is shorter
3381	 * (or there's only one a.g.) and the caller couldn't easily figure
3382	 * that out (xfs_bmap_alloc).
3383	 */
3384	agsize = mp->m_sb.sb_agblocks;
3385	if (args->maxlen > agsize)
3386		args->maxlen = agsize;
3387	if (args->alignment == 0)
3388		args->alignment = 1;
3389
3390	ASSERT(args->minlen > 0);
3391	ASSERT(args->maxlen > 0);
3392	ASSERT(args->alignment > 0);
3393	ASSERT(args->resv != XFS_AG_RESV_AGFL);
3394
3395	ASSERT(XFS_FSB_TO_AGNO(mp, target) < mp->m_sb.sb_agcount);
3396	ASSERT(XFS_FSB_TO_AGBNO(mp, target) < agsize);
3397	ASSERT(args->minlen <= args->maxlen);
3398	ASSERT(args->minlen <= agsize);
3399	ASSERT(args->mod < args->prod);
3400
3401	if (XFS_FSB_TO_AGNO(mp, target) >= mp->m_sb.sb_agcount ||
3402	    XFS_FSB_TO_AGBNO(mp, target) >= agsize ||
3403	    args->minlen > args->maxlen || args->minlen > agsize ||
3404	    args->mod >= args->prod) {
3405		trace_xfs_alloc_vextent_badargs(args);
3406		return -ENOSPC;
3407	}
3408
3409	if (args->agno != NULLAGNUMBER && *minimum_agno > args->agno) {
3410		trace_xfs_alloc_vextent_skip_deadlock(args);
3411		return -ENOSPC;
3412	}
3413	return 0;
3414
3415}
3416
3417/*
3418 * Prepare an AG for allocation. If the AG is not prepared to accept the
3419 * allocation, return failure.
3420 *
3421 * XXX(dgc): The complexity of "need_pag" will go away as all caller paths are
3422 * modified to hold their own perag references.
3423 */
3424static int
3425xfs_alloc_vextent_prepare_ag(
3426	struct xfs_alloc_arg	*args,
3427	uint32_t		alloc_flags)
3428{
3429	bool			need_pag = !args->pag;
3430	int			error;
3431
3432	if (need_pag)
3433		args->pag = xfs_perag_get(args->mp, args->agno);
3434
3435	args->agbp = NULL;
3436	error = xfs_alloc_fix_freelist(args, alloc_flags);
3437	if (error) {
3438		trace_xfs_alloc_vextent_nofix(args);
3439		if (need_pag)
3440			xfs_perag_put(args->pag);
3441		args->agbno = NULLAGBLOCK;
3442		return error;
3443	}
3444	if (!args->agbp) {
3445		/* cannot allocate in this AG at all */
3446		trace_xfs_alloc_vextent_noagbp(args);
3447		args->agbno = NULLAGBLOCK;
3448		return 0;
3449	}
3450	args->wasfromfl = 0;
3451	return 0;
3452}
3453
3454/*
3455 * Post-process allocation results to account for the allocation if it succeed
3456 * and set the allocated block number correctly for the caller.
3457 *
3458 * XXX: we should really be returning ENOSPC for ENOSPC, not
3459 * hiding it behind a "successful" NULLFSBLOCK allocation.
3460 */
3461static int
3462xfs_alloc_vextent_finish(
3463	struct xfs_alloc_arg	*args,
3464	xfs_agnumber_t		minimum_agno,
3465	int			alloc_error,
3466	bool			drop_perag)
3467{
3468	struct xfs_mount	*mp = args->mp;
3469	int			error = 0;
3470
3471	/*
3472	 * We can end up here with a locked AGF. If we failed, the caller is
3473	 * likely going to try to allocate again with different parameters, and
3474	 * that can widen the AGs that are searched for free space. If we have
3475	 * to do BMBT block allocation, we have to do a new allocation.
3476	 *
3477	 * Hence leaving this function with the AGF locked opens up potential
3478	 * ABBA AGF deadlocks because a future allocation attempt in this
3479	 * transaction may attempt to lock a lower number AGF.
3480	 *
3481	 * We can't release the AGF until the transaction is commited, so at
3482	 * this point we must update the "first allocation" tracker to point at
3483	 * this AG if the tracker is empty or points to a lower AG. This allows
3484	 * the next allocation attempt to be modified appropriately to avoid
3485	 * deadlocks.
3486	 */
3487	if (args->agbp &&
3488	    (args->tp->t_highest_agno == NULLAGNUMBER ||
3489	     args->agno > minimum_agno))
3490		args->tp->t_highest_agno = args->agno;
3491
3492	/*
3493	 * If the allocation failed with an error or we had an ENOSPC result,
3494	 * preserve the returned error whilst also marking the allocation result
3495	 * as "no extent allocated". This ensures that callers that fail to
3496	 * capture the error will still treat it as a failed allocation.
3497	 */
3498	if (alloc_error || args->agbno == NULLAGBLOCK) {
3499		args->fsbno = NULLFSBLOCK;
3500		error = alloc_error;
3501		goto out_drop_perag;
3502	}
3503
3504	args->fsbno = XFS_AGB_TO_FSB(mp, args->agno, args->agbno);
3505
3506	ASSERT(args->len >= args->minlen);
3507	ASSERT(args->len <= args->maxlen);
3508	ASSERT(args->agbno % args->alignment == 0);
3509	XFS_AG_CHECK_DADDR(mp, XFS_FSB_TO_DADDR(mp, args->fsbno), args->len);
3510
3511	/* if not file data, insert new block into the reverse map btree */
3512	if (!xfs_rmap_should_skip_owner_update(&args->oinfo)) {
3513		error = xfs_rmap_alloc(args->tp, args->agbp, args->pag,
3514				       args->agbno, args->len, &args->oinfo);
3515		if (error)
3516			goto out_drop_perag;
3517	}
3518
3519	if (!args->wasfromfl) {
3520		error = xfs_alloc_update_counters(args->tp, args->agbp,
3521						  -((long)(args->len)));
3522		if (error)
3523			goto out_drop_perag;
3524
3525		ASSERT(!xfs_extent_busy_search(mp, args->pag, args->agbno,
3526				args->len));
3527	}
3528
3529	xfs_ag_resv_alloc_extent(args->pag, args->resv, args);
3530
3531	XFS_STATS_INC(mp, xs_allocx);
3532	XFS_STATS_ADD(mp, xs_allocb, args->len);
3533
3534	trace_xfs_alloc_vextent_finish(args);
3535
3536out_drop_perag:
3537	if (drop_perag && args->pag) {
3538		xfs_perag_rele(args->pag);
3539		args->pag = NULL;
3540	}
3541	return error;
3542}
3543
3544/*
3545 * Allocate within a single AG only. This uses a best-fit length algorithm so if
3546 * you need an exact sized allocation without locality constraints, this is the
3547 * fastest way to do it.
3548 *
3549 * Caller is expected to hold a perag reference in args->pag.
3550 */
3551int
3552xfs_alloc_vextent_this_ag(
3553	struct xfs_alloc_arg	*args,
3554	xfs_agnumber_t		agno)
3555{
3556	struct xfs_mount	*mp = args->mp;
3557	xfs_agnumber_t		minimum_agno;
3558	uint32_t		alloc_flags = 0;
3559	int			error;
3560
3561	ASSERT(args->pag != NULL);
3562	ASSERT(args->pag->pag_agno == agno);
3563
3564	args->agno = agno;
3565	args->agbno = 0;
3566
3567	trace_xfs_alloc_vextent_this_ag(args);
3568
3569	error = xfs_alloc_vextent_check_args(args, XFS_AGB_TO_FSB(mp, agno, 0),
3570			&minimum_agno);
3571	if (error) {
3572		if (error == -ENOSPC)
3573			return 0;
3574		return error;
3575	}
3576
3577	error = xfs_alloc_vextent_prepare_ag(args, alloc_flags);
3578	if (!error && args->agbp)
3579		error = xfs_alloc_ag_vextent_size(args, alloc_flags);
3580
3581	return xfs_alloc_vextent_finish(args, minimum_agno, error, false);
3582}
3583
3584/*
3585 * Iterate all AGs trying to allocate an extent starting from @start_ag.
3586 *
3587 * If the incoming allocation type is XFS_ALLOCTYPE_NEAR_BNO, it means the
3588 * allocation attempts in @start_agno have locality information. If we fail to
3589 * allocate in that AG, then we revert to anywhere-in-AG for all the other AGs
3590 * we attempt to allocation in as there is no locality optimisation possible for
3591 * those allocations.
3592 *
3593 * On return, args->pag may be left referenced if we finish before the "all
3594 * failed" return point. The allocation finish still needs the perag, and
3595 * so the caller will release it once they've finished the allocation.
3596 *
3597 * When we wrap the AG iteration at the end of the filesystem, we have to be
3598 * careful not to wrap into AGs below ones we already have locked in the
3599 * transaction if we are doing a blocking iteration. This will result in an
3600 * out-of-order locking of AGFs and hence can cause deadlocks.
3601 */
3602static int
3603xfs_alloc_vextent_iterate_ags(
3604	struct xfs_alloc_arg	*args,
3605	xfs_agnumber_t		minimum_agno,
3606	xfs_agnumber_t		start_agno,
3607	xfs_agblock_t		target_agbno,
3608	uint32_t		alloc_flags)
3609{
3610	struct xfs_mount	*mp = args->mp;
3611	xfs_agnumber_t		restart_agno = minimum_agno;
3612	xfs_agnumber_t		agno;
3613	int			error = 0;
3614
3615	if (alloc_flags & XFS_ALLOC_FLAG_TRYLOCK)
3616		restart_agno = 0;
3617restart:
3618	for_each_perag_wrap_range(mp, start_agno, restart_agno,
3619			mp->m_sb.sb_agcount, agno, args->pag) {
3620		args->agno = agno;
3621		error = xfs_alloc_vextent_prepare_ag(args, alloc_flags);
3622		if (error)
3623			break;
3624		if (!args->agbp) {
3625			trace_xfs_alloc_vextent_loopfailed(args);
3626			continue;
3627		}
3628
3629		/*
3630		 * Allocation is supposed to succeed now, so break out of the
3631		 * loop regardless of whether we succeed or not.
3632		 */
3633		if (args->agno == start_agno && target_agbno) {
3634			args->agbno = target_agbno;
3635			error = xfs_alloc_ag_vextent_near(args, alloc_flags);
3636		} else {
3637			args->agbno = 0;
3638			error = xfs_alloc_ag_vextent_size(args, alloc_flags);
3639		}
3640		break;
3641	}
3642	if (error) {
3643		xfs_perag_rele(args->pag);
3644		args->pag = NULL;
3645		return error;
3646	}
3647	if (args->agbp)
3648		return 0;
3649
3650	/*
3651	 * We didn't find an AG we can alloation from. If we were given
3652	 * constraining flags by the caller, drop them and retry the allocation
3653	 * without any constraints being set.
3654	 */
3655	if (alloc_flags & XFS_ALLOC_FLAG_TRYLOCK) {
3656		alloc_flags &= ~XFS_ALLOC_FLAG_TRYLOCK;
3657		restart_agno = minimum_agno;
3658		goto restart;
3659	}
3660
3661	ASSERT(args->pag == NULL);
3662	trace_xfs_alloc_vextent_allfailed(args);
3663	return 0;
3664}
3665
3666/*
3667 * Iterate from the AGs from the start AG to the end of the filesystem, trying
3668 * to allocate blocks. It starts with a near allocation attempt in the initial
3669 * AG, then falls back to anywhere-in-ag after the first AG fails. It will wrap
3670 * back to zero if allowed by previous allocations in this transaction,
3671 * otherwise will wrap back to the start AG and run a second blocking pass to
3672 * the end of the filesystem.
3673 */
3674int
3675xfs_alloc_vextent_start_ag(
3676	struct xfs_alloc_arg	*args,
3677	xfs_fsblock_t		target)
3678{
3679	struct xfs_mount	*mp = args->mp;
3680	xfs_agnumber_t		minimum_agno;
3681	xfs_agnumber_t		start_agno;
3682	xfs_agnumber_t		rotorstep = xfs_rotorstep;
3683	bool			bump_rotor = false;
3684	uint32_t		alloc_flags = XFS_ALLOC_FLAG_TRYLOCK;
3685	int			error;
3686
3687	ASSERT(args->pag == NULL);
3688
3689	args->agno = NULLAGNUMBER;
3690	args->agbno = NULLAGBLOCK;
3691
3692	trace_xfs_alloc_vextent_start_ag(args);
3693
3694	error = xfs_alloc_vextent_check_args(args, target, &minimum_agno);
3695	if (error) {
3696		if (error == -ENOSPC)
3697			return 0;
3698		return error;
3699	}
3700
3701	if ((args->datatype & XFS_ALLOC_INITIAL_USER_DATA) &&
3702	    xfs_is_inode32(mp)) {
3703		target = XFS_AGB_TO_FSB(mp,
3704				((mp->m_agfrotor / rotorstep) %
3705				mp->m_sb.sb_agcount), 0);
3706		bump_rotor = 1;
3707	}
3708
3709	start_agno = max(minimum_agno, XFS_FSB_TO_AGNO(mp, target));
3710	error = xfs_alloc_vextent_iterate_ags(args, minimum_agno, start_agno,
3711			XFS_FSB_TO_AGBNO(mp, target), alloc_flags);
3712
3713	if (bump_rotor) {
3714		if (args->agno == start_agno)
3715			mp->m_agfrotor = (mp->m_agfrotor + 1) %
3716				(mp->m_sb.sb_agcount * rotorstep);
3717		else
3718			mp->m_agfrotor = (args->agno * rotorstep + 1) %
3719				(mp->m_sb.sb_agcount * rotorstep);
3720	}
3721
3722	return xfs_alloc_vextent_finish(args, minimum_agno, error, true);
3723}
3724
3725/*
3726 * Iterate from the agno indicated via @target through to the end of the
3727 * filesystem attempting blocking allocation. This does not wrap or try a second
3728 * pass, so will not recurse into AGs lower than indicated by the target.
3729 */
3730int
3731xfs_alloc_vextent_first_ag(
3732	struct xfs_alloc_arg	*args,
3733	xfs_fsblock_t		target)
3734 {
3735	struct xfs_mount	*mp = args->mp;
3736	xfs_agnumber_t		minimum_agno;
3737	xfs_agnumber_t		start_agno;
3738	uint32_t		alloc_flags = XFS_ALLOC_FLAG_TRYLOCK;
3739	int			error;
3740
3741	ASSERT(args->pag == NULL);
3742
3743	args->agno = NULLAGNUMBER;
3744	args->agbno = NULLAGBLOCK;
3745
3746	trace_xfs_alloc_vextent_first_ag(args);
3747
3748	error = xfs_alloc_vextent_check_args(args, target, &minimum_agno);
3749	if (error) {
3750		if (error == -ENOSPC)
3751			return 0;
3752		return error;
3753	}
3754
3755	start_agno = max(minimum_agno, XFS_FSB_TO_AGNO(mp, target));
3756	error = xfs_alloc_vextent_iterate_ags(args, minimum_agno, start_agno,
3757			XFS_FSB_TO_AGBNO(mp, target), alloc_flags);
3758	return xfs_alloc_vextent_finish(args, minimum_agno, error, true);
3759}
3760
3761/*
3762 * Allocate at the exact block target or fail. Caller is expected to hold a
3763 * perag reference in args->pag.
3764 */
3765int
3766xfs_alloc_vextent_exact_bno(
3767	struct xfs_alloc_arg	*args,
3768	xfs_fsblock_t		target)
3769{
3770	struct xfs_mount	*mp = args->mp;
3771	xfs_agnumber_t		minimum_agno;
3772	int			error;
3773
3774	ASSERT(args->pag != NULL);
3775	ASSERT(args->pag->pag_agno == XFS_FSB_TO_AGNO(mp, target));
3776
3777	args->agno = XFS_FSB_TO_AGNO(mp, target);
3778	args->agbno = XFS_FSB_TO_AGBNO(mp, target);
3779
3780	trace_xfs_alloc_vextent_exact_bno(args);
3781
3782	error = xfs_alloc_vextent_check_args(args, target, &minimum_agno);
3783	if (error) {
3784		if (error == -ENOSPC)
3785			return 0;
3786		return error;
3787	}
3788
3789	error = xfs_alloc_vextent_prepare_ag(args, 0);
3790	if (!error && args->agbp)
3791		error = xfs_alloc_ag_vextent_exact(args);
3792
3793	return xfs_alloc_vextent_finish(args, minimum_agno, error, false);
3794}
3795
3796/*
3797 * Allocate an extent as close to the target as possible. If there are not
3798 * viable candidates in the AG, then fail the allocation.
3799 *
3800 * Caller may or may not have a per-ag reference in args->pag.
3801 */
3802int
3803xfs_alloc_vextent_near_bno(
3804	struct xfs_alloc_arg	*args,
3805	xfs_fsblock_t		target)
3806{
3807	struct xfs_mount	*mp = args->mp;
3808	xfs_agnumber_t		minimum_agno;
3809	bool			needs_perag = args->pag == NULL;
3810	uint32_t		alloc_flags = 0;
3811	int			error;
3812
3813	if (!needs_perag)
3814		ASSERT(args->pag->pag_agno == XFS_FSB_TO_AGNO(mp, target));
3815
3816	args->agno = XFS_FSB_TO_AGNO(mp, target);
3817	args->agbno = XFS_FSB_TO_AGBNO(mp, target);
3818
3819	trace_xfs_alloc_vextent_near_bno(args);
3820
3821	error = xfs_alloc_vextent_check_args(args, target, &minimum_agno);
3822	if (error) {
3823		if (error == -ENOSPC)
3824			return 0;
3825		return error;
3826	}
3827
3828	if (needs_perag)
3829		args->pag = xfs_perag_grab(mp, args->agno);
3830
3831	error = xfs_alloc_vextent_prepare_ag(args, alloc_flags);
3832	if (!error && args->agbp)
3833		error = xfs_alloc_ag_vextent_near(args, alloc_flags);
3834
3835	return xfs_alloc_vextent_finish(args, minimum_agno, error, needs_perag);
3836}
3837
3838/* Ensure that the freelist is at full capacity. */
3839int
3840xfs_free_extent_fix_freelist(
3841	struct xfs_trans	*tp,
3842	struct xfs_perag	*pag,
3843	struct xfs_buf		**agbp)
3844{
3845	struct xfs_alloc_arg	args;
3846	int			error;
3847
3848	memset(&args, 0, sizeof(struct xfs_alloc_arg));
3849	args.tp = tp;
3850	args.mp = tp->t_mountp;
3851	args.agno = pag->pag_agno;
3852	args.pag = pag;
3853
3854	/*
3855	 * validate that the block number is legal - the enables us to detect
3856	 * and handle a silent filesystem corruption rather than crashing.
3857	 */
3858	if (args.agno >= args.mp->m_sb.sb_agcount)
3859		return -EFSCORRUPTED;
3860
3861	error = xfs_alloc_fix_freelist(&args, XFS_ALLOC_FLAG_FREEING);
3862	if (error)
3863		return error;
3864
3865	*agbp = args.agbp;
3866	return 0;
3867}
3868
3869/*
3870 * Free an extent.
3871 * Just break up the extent address and hand off to xfs_free_ag_extent
3872 * after fixing up the freelist.
3873 */
3874int
3875__xfs_free_extent(
3876	struct xfs_trans		*tp,
3877	struct xfs_perag		*pag,
3878	xfs_agblock_t			agbno,
3879	xfs_extlen_t			len,
3880	const struct xfs_owner_info	*oinfo,
3881	enum xfs_ag_resv_type		type,
3882	bool				skip_discard)
3883{
3884	struct xfs_mount		*mp = tp->t_mountp;
3885	struct xfs_buf			*agbp;
3886	struct xfs_agf			*agf;
3887	int				error;
3888	unsigned int			busy_flags = 0;
3889
3890	ASSERT(len != 0);
3891	ASSERT(type != XFS_AG_RESV_AGFL);
3892
3893	if (XFS_TEST_ERROR(false, mp,
3894			XFS_ERRTAG_FREE_EXTENT))
3895		return -EIO;
3896
3897	error = xfs_free_extent_fix_freelist(tp, pag, &agbp);
3898	if (error)
 
 
3899		return error;
 
 
3900	agf = agbp->b_addr;
3901
3902	if (XFS_IS_CORRUPT(mp, agbno >= mp->m_sb.sb_agblocks)) {
 
3903		error = -EFSCORRUPTED;
3904		goto err_release;
3905	}
3906
3907	/* validate the extent size is legal now we have the agf locked */
3908	if (XFS_IS_CORRUPT(mp, agbno + len > be32_to_cpu(agf->agf_length))) {
 
3909		error = -EFSCORRUPTED;
3910		goto err_release;
3911	}
3912
3913	error = xfs_free_ag_extent(tp, agbp, pag->pag_agno, agbno, len, oinfo,
3914			type);
3915	if (error)
3916		goto err_release;
3917
3918	if (skip_discard)
3919		busy_flags |= XFS_EXTENT_BUSY_SKIP_DISCARD;
3920	xfs_extent_busy_insert(tp, pag, agbno, len, busy_flags);
3921	return 0;
3922
3923err_release:
3924	xfs_trans_brelse(tp, agbp);
3925	return error;
3926}
3927
3928struct xfs_alloc_query_range_info {
3929	xfs_alloc_query_range_fn	fn;
3930	void				*priv;
3931};
3932
3933/* Format btree record and pass to our callback. */
3934STATIC int
3935xfs_alloc_query_range_helper(
3936	struct xfs_btree_cur		*cur,
3937	const union xfs_btree_rec	*rec,
3938	void				*priv)
3939{
3940	struct xfs_alloc_query_range_info	*query = priv;
3941	struct xfs_alloc_rec_incore		irec;
3942	xfs_failaddr_t				fa;
3943
3944	xfs_alloc_btrec_to_irec(rec, &irec);
3945	fa = xfs_alloc_check_irec(cur->bc_ag.pag, &irec);
3946	if (fa)
3947		return xfs_alloc_complain_bad_rec(cur, fa, &irec);
3948
3949	return query->fn(cur, &irec, query->priv);
3950}
3951
3952/* Find all free space within a given range of blocks. */
3953int
3954xfs_alloc_query_range(
3955	struct xfs_btree_cur			*cur,
3956	const struct xfs_alloc_rec_incore	*low_rec,
3957	const struct xfs_alloc_rec_incore	*high_rec,
3958	xfs_alloc_query_range_fn		fn,
3959	void					*priv)
3960{
3961	union xfs_btree_irec			low_brec = { .a = *low_rec };
3962	union xfs_btree_irec			high_brec = { .a = *high_rec };
3963	struct xfs_alloc_query_range_info	query = { .priv = priv, .fn = fn };
3964
3965	ASSERT(cur->bc_btnum == XFS_BTNUM_BNO);
3966	return xfs_btree_query_range(cur, &low_brec, &high_brec,
3967			xfs_alloc_query_range_helper, &query);
3968}
3969
3970/* Find all free space records. */
3971int
3972xfs_alloc_query_all(
3973	struct xfs_btree_cur			*cur,
3974	xfs_alloc_query_range_fn		fn,
3975	void					*priv)
3976{
3977	struct xfs_alloc_query_range_info	query;
3978
3979	ASSERT(cur->bc_btnum == XFS_BTNUM_BNO);
3980	query.priv = priv;
3981	query.fn = fn;
3982	return xfs_btree_query_all(cur, xfs_alloc_query_range_helper, &query);
3983}
3984
3985/*
3986 * Scan part of the keyspace of the free space and tell us if the area has no
3987 * records, is fully mapped by records, or is partially filled.
3988 */
3989int
3990xfs_alloc_has_records(
3991	struct xfs_btree_cur	*cur,
3992	xfs_agblock_t		bno,
3993	xfs_extlen_t		len,
3994	enum xbtree_recpacking	*outcome)
3995{
3996	union xfs_btree_irec	low;
3997	union xfs_btree_irec	high;
3998
3999	memset(&low, 0, sizeof(low));
4000	low.a.ar_startblock = bno;
4001	memset(&high, 0xFF, sizeof(high));
4002	high.a.ar_startblock = bno + len - 1;
4003
4004	return xfs_btree_has_records(cur, &low, &high, NULL, outcome);
4005}
4006
4007/*
4008 * Walk all the blocks in the AGFL.  The @walk_fn can return any negative
4009 * error code or XFS_ITER_*.
4010 */
4011int
4012xfs_agfl_walk(
4013	struct xfs_mount	*mp,
4014	struct xfs_agf		*agf,
4015	struct xfs_buf		*agflbp,
4016	xfs_agfl_walk_fn	walk_fn,
4017	void			*priv)
4018{
4019	__be32			*agfl_bno;
4020	unsigned int		i;
4021	int			error;
4022
4023	agfl_bno = xfs_buf_to_agfl_bno(agflbp);
4024	i = be32_to_cpu(agf->agf_flfirst);
4025
4026	/* Nothing to walk in an empty AGFL. */
4027	if (agf->agf_flcount == cpu_to_be32(0))
4028		return 0;
4029
4030	/* Otherwise, walk from first to last, wrapping as needed. */
4031	for (;;) {
4032		error = walk_fn(mp, be32_to_cpu(agfl_bno[i]), priv);
4033		if (error)
4034			return error;
4035		if (i == be32_to_cpu(agf->agf_fllast))
4036			break;
4037		if (++i == xfs_agfl_size(mp))
4038			i = 0;
4039	}
4040
4041	return 0;
4042}
4043
4044int __init
4045xfs_extfree_intent_init_cache(void)
4046{
4047	xfs_extfree_item_cache = kmem_cache_create("xfs_extfree_intent",
4048			sizeof(struct xfs_extent_free_item),
4049			0, 0, NULL);
4050
4051	return xfs_extfree_item_cache != NULL ? 0 : -ENOMEM;
4052}
4053
4054void
4055xfs_extfree_intent_destroy_cache(void)
4056{
4057	kmem_cache_destroy(xfs_extfree_item_cache);
4058	xfs_extfree_item_cache = NULL;
4059}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_format.h"
   9#include "xfs_log_format.h"
  10#include "xfs_shared.h"
  11#include "xfs_trans_resv.h"
  12#include "xfs_bit.h"
  13#include "xfs_mount.h"
  14#include "xfs_defer.h"
  15#include "xfs_btree.h"
  16#include "xfs_rmap.h"
  17#include "xfs_alloc_btree.h"
  18#include "xfs_alloc.h"
  19#include "xfs_extent_busy.h"
  20#include "xfs_errortag.h"
  21#include "xfs_error.h"
  22#include "xfs_trace.h"
  23#include "xfs_trans.h"
  24#include "xfs_buf_item.h"
  25#include "xfs_log.h"
  26#include "xfs_ag.h"
  27#include "xfs_ag_resv.h"
  28#include "xfs_bmap.h"
  29#include "xfs_health.h"
  30#include "xfs_extfree_item.h"
  31
  32struct kmem_cache	*xfs_extfree_item_cache;
  33
  34struct workqueue_struct *xfs_alloc_wq;
  35
  36#define XFS_ABSDIFF(a,b)	(((a) <= (b)) ? ((b) - (a)) : ((a) - (b)))
  37
  38#define	XFSA_FIXUP_BNO_OK	1
  39#define	XFSA_FIXUP_CNT_OK	2
  40
  41/*
  42 * Size of the AGFL.  For CRC-enabled filesystes we steal a couple of slots in
  43 * the beginning of the block for a proper header with the location information
  44 * and CRC.
  45 */
  46unsigned int
  47xfs_agfl_size(
  48	struct xfs_mount	*mp)
  49{
  50	unsigned int		size = mp->m_sb.sb_sectsize;
  51
  52	if (xfs_has_crc(mp))
  53		size -= sizeof(struct xfs_agfl);
  54
  55	return size / sizeof(xfs_agblock_t);
  56}
  57
  58unsigned int
  59xfs_refc_block(
  60	struct xfs_mount	*mp)
  61{
  62	if (xfs_has_rmapbt(mp))
  63		return XFS_RMAP_BLOCK(mp) + 1;
  64	if (xfs_has_finobt(mp))
  65		return XFS_FIBT_BLOCK(mp) + 1;
  66	return XFS_IBT_BLOCK(mp) + 1;
  67}
  68
  69xfs_extlen_t
  70xfs_prealloc_blocks(
  71	struct xfs_mount	*mp)
  72{
  73	if (xfs_has_reflink(mp))
  74		return xfs_refc_block(mp) + 1;
  75	if (xfs_has_rmapbt(mp))
  76		return XFS_RMAP_BLOCK(mp) + 1;
  77	if (xfs_has_finobt(mp))
  78		return XFS_FIBT_BLOCK(mp) + 1;
  79	return XFS_IBT_BLOCK(mp) + 1;
  80}
  81
  82/*
  83 * The number of blocks per AG that we withhold from xfs_dec_fdblocks to
  84 * guarantee that we can refill the AGFL prior to allocating space in a nearly
  85 * full AG.  Although the space described by the free space btrees, the
  86 * blocks used by the freesp btrees themselves, and the blocks owned by the
  87 * AGFL are counted in the ondisk fdblocks, it's a mistake to let the ondisk
  88 * free space in the AG drop so low that the free space btrees cannot refill an
  89 * empty AGFL up to the minimum level.  Rather than grind through empty AGs
  90 * until the fs goes down, we subtract this many AG blocks from the incore
  91 * fdblocks to ensure user allocation does not overcommit the space the
  92 * filesystem needs for the AGFLs.  The rmap btree uses a per-AG reservation to
  93 * withhold space from xfs_dec_fdblocks, so we do not account for that here.
  94 */
  95#define XFS_ALLOCBT_AGFL_RESERVE	4
  96
  97/*
  98 * Compute the number of blocks that we set aside to guarantee the ability to
  99 * refill the AGFL and handle a full bmap btree split.
 100 *
 101 * In order to avoid ENOSPC-related deadlock caused by out-of-order locking of
 102 * AGF buffer (PV 947395), we place constraints on the relationship among
 103 * actual allocations for data blocks, freelist blocks, and potential file data
 104 * bmap btree blocks. However, these restrictions may result in no actual space
 105 * allocated for a delayed extent, for example, a data block in a certain AG is
 106 * allocated but there is no additional block for the additional bmap btree
 107 * block due to a split of the bmap btree of the file. The result of this may
 108 * lead to an infinite loop when the file gets flushed to disk and all delayed
 109 * extents need to be actually allocated. To get around this, we explicitly set
 110 * aside a few blocks which will not be reserved in delayed allocation.
 111 *
 112 * For each AG, we need to reserve enough blocks to replenish a totally empty
 113 * AGFL and 4 more to handle a potential split of the file's bmap btree.
 114 */
 115unsigned int
 116xfs_alloc_set_aside(
 117	struct xfs_mount	*mp)
 118{
 119	return mp->m_sb.sb_agcount * (XFS_ALLOCBT_AGFL_RESERVE + 4);
 120}
 121
 122/*
 123 * When deciding how much space to allocate out of an AG, we limit the
 124 * allocation maximum size to the size the AG. However, we cannot use all the
 125 * blocks in the AG - some are permanently used by metadata. These
 126 * blocks are generally:
 127 *	- the AG superblock, AGF, AGI and AGFL
 128 *	- the AGF (bno and cnt) and AGI btree root blocks, and optionally
 129 *	  the AGI free inode and rmap btree root blocks.
 130 *	- blocks on the AGFL according to xfs_alloc_set_aside() limits
 131 *	- the rmapbt root block
 132 *
 133 * The AG headers are sector sized, so the amount of space they take up is
 134 * dependent on filesystem geometry. The others are all single blocks.
 135 */
 136unsigned int
 137xfs_alloc_ag_max_usable(
 138	struct xfs_mount	*mp)
 139{
 140	unsigned int		blocks;
 141
 142	blocks = XFS_BB_TO_FSB(mp, XFS_FSS_TO_BB(mp, 4)); /* ag headers */
 143	blocks += XFS_ALLOCBT_AGFL_RESERVE;
 144	blocks += 3;			/* AGF, AGI btree root blocks */
 145	if (xfs_has_finobt(mp))
 146		blocks++;		/* finobt root block */
 147	if (xfs_has_rmapbt(mp))
 148		blocks++;		/* rmap root block */
 149	if (xfs_has_reflink(mp))
 150		blocks++;		/* refcount root block */
 151
 152	return mp->m_sb.sb_agblocks - blocks;
 153}
 154
 155
 156static int
 157xfs_alloc_lookup(
 158	struct xfs_btree_cur	*cur,
 159	xfs_lookup_t		dir,
 160	xfs_agblock_t		bno,
 161	xfs_extlen_t		len,
 162	int			*stat)
 163{
 164	int			error;
 165
 166	cur->bc_rec.a.ar_startblock = bno;
 167	cur->bc_rec.a.ar_blockcount = len;
 168	error = xfs_btree_lookup(cur, dir, stat);
 169	if (*stat == 1)
 170		cur->bc_flags |= XFS_BTREE_ALLOCBT_ACTIVE;
 171	else
 172		cur->bc_flags &= ~XFS_BTREE_ALLOCBT_ACTIVE;
 173	return error;
 174}
 175
 176/*
 177 * Lookup the record equal to [bno, len] in the btree given by cur.
 178 */
 179static inline int				/* error */
 180xfs_alloc_lookup_eq(
 181	struct xfs_btree_cur	*cur,	/* btree cursor */
 182	xfs_agblock_t		bno,	/* starting block of extent */
 183	xfs_extlen_t		len,	/* length of extent */
 184	int			*stat)	/* success/failure */
 185{
 186	return xfs_alloc_lookup(cur, XFS_LOOKUP_EQ, bno, len, stat);
 
 
 
 
 
 
 187}
 188
 189/*
 190 * Lookup the first record greater than or equal to [bno, len]
 191 * in the btree given by cur.
 192 */
 193int				/* error */
 194xfs_alloc_lookup_ge(
 195	struct xfs_btree_cur	*cur,	/* btree cursor */
 196	xfs_agblock_t		bno,	/* starting block of extent */
 197	xfs_extlen_t		len,	/* length of extent */
 198	int			*stat)	/* success/failure */
 199{
 200	return xfs_alloc_lookup(cur, XFS_LOOKUP_GE, bno, len, stat);
 
 
 
 
 
 
 201}
 202
 203/*
 204 * Lookup the first record less than or equal to [bno, len]
 205 * in the btree given by cur.
 206 */
 207int					/* error */
 208xfs_alloc_lookup_le(
 209	struct xfs_btree_cur	*cur,	/* btree cursor */
 210	xfs_agblock_t		bno,	/* starting block of extent */
 211	xfs_extlen_t		len,	/* length of extent */
 212	int			*stat)	/* success/failure */
 213{
 214	return xfs_alloc_lookup(cur, XFS_LOOKUP_LE, bno, len, stat);
 
 
 
 
 
 215}
 216
 217static inline bool
 218xfs_alloc_cur_active(
 219	struct xfs_btree_cur	*cur)
 220{
 221	return cur && (cur->bc_flags & XFS_BTREE_ALLOCBT_ACTIVE);
 222}
 223
 224/*
 225 * Update the record referred to by cur to the value given
 226 * by [bno, len].
 227 * This either works (return 0) or gets an EFSCORRUPTED error.
 228 */
 229STATIC int				/* error */
 230xfs_alloc_update(
 231	struct xfs_btree_cur	*cur,	/* btree cursor */
 232	xfs_agblock_t		bno,	/* starting block of extent */
 233	xfs_extlen_t		len)	/* length of extent */
 234{
 235	union xfs_btree_rec	rec;
 236
 237	rec.alloc.ar_startblock = cpu_to_be32(bno);
 238	rec.alloc.ar_blockcount = cpu_to_be32(len);
 239	return xfs_btree_update(cur, &rec);
 240}
 241
 242/* Convert the ondisk btree record to its incore representation. */
 243void
 244xfs_alloc_btrec_to_irec(
 245	const union xfs_btree_rec	*rec,
 246	struct xfs_alloc_rec_incore	*irec)
 247{
 248	irec->ar_startblock = be32_to_cpu(rec->alloc.ar_startblock);
 249	irec->ar_blockcount = be32_to_cpu(rec->alloc.ar_blockcount);
 250}
 251
 252/* Simple checks for free space records. */
 253xfs_failaddr_t
 254xfs_alloc_check_irec(
 255	struct xfs_perag			*pag,
 256	const struct xfs_alloc_rec_incore	*irec)
 257{
 258	if (irec->ar_blockcount == 0)
 259		return __this_address;
 260
 261	/* check for valid extent range, including overflow */
 262	if (!xfs_verify_agbext(pag, irec->ar_startblock, irec->ar_blockcount))
 263		return __this_address;
 264
 265	return NULL;
 266}
 267
 268static inline int
 269xfs_alloc_complain_bad_rec(
 270	struct xfs_btree_cur		*cur,
 271	xfs_failaddr_t			fa,
 272	const struct xfs_alloc_rec_incore *irec)
 273{
 274	struct xfs_mount		*mp = cur->bc_mp;
 275
 276	xfs_warn(mp,
 277		"%sbt record corruption in AG %d detected at %pS!",
 278		cur->bc_ops->name, cur->bc_group->xg_gno, fa);
 
 279	xfs_warn(mp,
 280		"start block 0x%x block count 0x%x", irec->ar_startblock,
 281		irec->ar_blockcount);
 282	xfs_btree_mark_sick(cur);
 283	return -EFSCORRUPTED;
 284}
 285
 286/*
 287 * Get the data from the pointed-to record.
 288 */
 289int					/* error */
 290xfs_alloc_get_rec(
 291	struct xfs_btree_cur	*cur,	/* btree cursor */
 292	xfs_agblock_t		*bno,	/* output: starting block of extent */
 293	xfs_extlen_t		*len,	/* output: length of extent */
 294	int			*stat)	/* output: success/failure */
 295{
 296	struct xfs_alloc_rec_incore irec;
 297	union xfs_btree_rec	*rec;
 298	xfs_failaddr_t		fa;
 299	int			error;
 300
 301	error = xfs_btree_get_rec(cur, &rec, stat);
 302	if (error || !(*stat))
 303		return error;
 304
 305	xfs_alloc_btrec_to_irec(rec, &irec);
 306	fa = xfs_alloc_check_irec(to_perag(cur->bc_group), &irec);
 307	if (fa)
 308		return xfs_alloc_complain_bad_rec(cur, fa, &irec);
 309
 310	*bno = irec.ar_startblock;
 311	*len = irec.ar_blockcount;
 312	return 0;
 313}
 314
 315/*
 316 * Compute aligned version of the found extent.
 317 * Takes alignment and min length into account.
 318 */
 319STATIC bool
 320xfs_alloc_compute_aligned(
 321	xfs_alloc_arg_t	*args,		/* allocation argument structure */
 322	xfs_agblock_t	foundbno,	/* starting block in found extent */
 323	xfs_extlen_t	foundlen,	/* length in found extent */
 324	xfs_agblock_t	*resbno,	/* result block number */
 325	xfs_extlen_t	*reslen,	/* result length */
 326	unsigned	*busy_gen)
 327{
 328	xfs_agblock_t	bno = foundbno;
 329	xfs_extlen_t	len = foundlen;
 330	xfs_extlen_t	diff;
 331	bool		busy;
 332
 333	/* Trim busy sections out of found extent */
 334	busy = xfs_extent_busy_trim(pag_group(args->pag), args->minlen,
 335			args->maxlen, &bno, &len, busy_gen);
 336
 337	/*
 338	 * If we have a largish extent that happens to start before min_agbno,
 339	 * see if we can shift it into range...
 340	 */
 341	if (bno < args->min_agbno && bno + len > args->min_agbno) {
 342		diff = args->min_agbno - bno;
 343		if (len > diff) {
 344			bno += diff;
 345			len -= diff;
 346		}
 347	}
 348
 349	if (args->alignment > 1 && len >= args->minlen) {
 350		xfs_agblock_t	aligned_bno = roundup(bno, args->alignment);
 351
 352		diff = aligned_bno - bno;
 353
 354		*resbno = aligned_bno;
 355		*reslen = diff >= len ? 0 : len - diff;
 356	} else {
 357		*resbno = bno;
 358		*reslen = len;
 359	}
 360
 361	return busy;
 362}
 363
 364/*
 365 * Compute best start block and diff for "near" allocations.
 366 * freelen >= wantlen already checked by caller.
 367 */
 368STATIC xfs_extlen_t			/* difference value (absolute) */
 369xfs_alloc_compute_diff(
 370	xfs_agblock_t	wantbno,	/* target starting block */
 371	xfs_extlen_t	wantlen,	/* target length */
 372	xfs_extlen_t	alignment,	/* target alignment */
 373	int		datatype,	/* are we allocating data? */
 374	xfs_agblock_t	freebno,	/* freespace's starting block */
 375	xfs_extlen_t	freelen,	/* freespace's length */
 376	xfs_agblock_t	*newbnop)	/* result: best start block from free */
 377{
 378	xfs_agblock_t	freeend;	/* end of freespace extent */
 379	xfs_agblock_t	newbno1;	/* return block number */
 380	xfs_agblock_t	newbno2;	/* other new block number */
 381	xfs_extlen_t	newlen1=0;	/* length with newbno1 */
 382	xfs_extlen_t	newlen2=0;	/* length with newbno2 */
 383	xfs_agblock_t	wantend;	/* end of target extent */
 384	bool		userdata = datatype & XFS_ALLOC_USERDATA;
 385
 386	ASSERT(freelen >= wantlen);
 387	freeend = freebno + freelen;
 388	wantend = wantbno + wantlen;
 389	/*
 390	 * We want to allocate from the start of a free extent if it is past
 391	 * the desired block or if we are allocating user data and the free
 392	 * extent is before desired block. The second case is there to allow
 393	 * for contiguous allocation from the remaining free space if the file
 394	 * grows in the short term.
 395	 */
 396	if (freebno >= wantbno || (userdata && freeend < wantend)) {
 397		if ((newbno1 = roundup(freebno, alignment)) >= freeend)
 398			newbno1 = NULLAGBLOCK;
 399	} else if (freeend >= wantend && alignment > 1) {
 400		newbno1 = roundup(wantbno, alignment);
 401		newbno2 = newbno1 - alignment;
 402		if (newbno1 >= freeend)
 403			newbno1 = NULLAGBLOCK;
 404		else
 405			newlen1 = XFS_EXTLEN_MIN(wantlen, freeend - newbno1);
 406		if (newbno2 < freebno)
 407			newbno2 = NULLAGBLOCK;
 408		else
 409			newlen2 = XFS_EXTLEN_MIN(wantlen, freeend - newbno2);
 410		if (newbno1 != NULLAGBLOCK && newbno2 != NULLAGBLOCK) {
 411			if (newlen1 < newlen2 ||
 412			    (newlen1 == newlen2 &&
 413			     XFS_ABSDIFF(newbno1, wantbno) >
 414			     XFS_ABSDIFF(newbno2, wantbno)))
 415				newbno1 = newbno2;
 416		} else if (newbno2 != NULLAGBLOCK)
 417			newbno1 = newbno2;
 418	} else if (freeend >= wantend) {
 419		newbno1 = wantbno;
 420	} else if (alignment > 1) {
 421		newbno1 = roundup(freeend - wantlen, alignment);
 422		if (newbno1 > freeend - wantlen &&
 423		    newbno1 - alignment >= freebno)
 424			newbno1 -= alignment;
 425		else if (newbno1 >= freeend)
 426			newbno1 = NULLAGBLOCK;
 427	} else
 428		newbno1 = freeend - wantlen;
 429	*newbnop = newbno1;
 430	return newbno1 == NULLAGBLOCK ? 0 : XFS_ABSDIFF(newbno1, wantbno);
 431}
 432
 433/*
 434 * Fix up the length, based on mod and prod.
 435 * len should be k * prod + mod for some k.
 436 * If len is too small it is returned unchanged.
 437 * If len hits maxlen it is left alone.
 438 */
 439STATIC void
 440xfs_alloc_fix_len(
 441	xfs_alloc_arg_t	*args)		/* allocation argument structure */
 442{
 443	xfs_extlen_t	k;
 444	xfs_extlen_t	rlen;
 445
 446	ASSERT(args->mod < args->prod);
 447	rlen = args->len;
 448	ASSERT(rlen >= args->minlen);
 449	ASSERT(rlen <= args->maxlen);
 450	if (args->prod <= 1 || rlen < args->mod || rlen == args->maxlen ||
 451	    (args->mod == 0 && rlen < args->prod))
 452		return;
 453	k = rlen % args->prod;
 454	if (k == args->mod)
 455		return;
 456	if (k > args->mod)
 457		rlen = rlen - (k - args->mod);
 458	else
 459		rlen = rlen - args->prod + (args->mod - k);
 460	/* casts to (int) catch length underflows */
 461	if ((int)rlen < (int)args->minlen)
 462		return;
 463	ASSERT(rlen >= args->minlen && rlen <= args->maxlen);
 464	ASSERT(rlen % args->prod == args->mod);
 465	ASSERT(args->pag->pagf_freeblks + args->pag->pagf_flcount >=
 466		rlen + args->minleft);
 467	args->len = rlen;
 468}
 469
 470/*
 471 * Determine if the cursor points to the block that contains the right-most
 472 * block of records in the by-count btree. This block contains the largest
 473 * contiguous free extent in the AG, so if we modify a record in this block we
 474 * need to call xfs_alloc_fixup_longest() once the modifications are done to
 475 * ensure the agf->agf_longest field is kept up to date with the longest free
 476 * extent tracked by the by-count btree.
 477 */
 478static bool
 479xfs_alloc_cursor_at_lastrec(
 480	struct xfs_btree_cur	*cnt_cur)
 481{
 482	struct xfs_btree_block	*block;
 483	union xfs_btree_ptr	ptr;
 484	struct xfs_buf		*bp;
 485
 486	block = xfs_btree_get_block(cnt_cur, 0, &bp);
 487
 488	xfs_btree_get_sibling(cnt_cur, block, &ptr, XFS_BB_RIGHTSIB);
 489	return xfs_btree_ptr_is_null(cnt_cur, &ptr);
 490}
 491
 492/*
 493 * Find the rightmost record of the cntbt, and return the longest free space
 494 * recorded in it. Simply set both the block number and the length to their
 495 * maximum values before searching.
 496 */
 497static int
 498xfs_cntbt_longest(
 499	struct xfs_btree_cur	*cnt_cur,
 500	xfs_extlen_t		*longest)
 501{
 502	struct xfs_alloc_rec_incore irec;
 503	union xfs_btree_rec	    *rec;
 504	int			    stat = 0;
 505	int			    error;
 506
 507	memset(&cnt_cur->bc_rec, 0xFF, sizeof(cnt_cur->bc_rec));
 508	error = xfs_btree_lookup(cnt_cur, XFS_LOOKUP_LE, &stat);
 509	if (error)
 510		return error;
 511	if (!stat) {
 512		/* totally empty tree */
 513		*longest = 0;
 514		return 0;
 515	}
 516
 517	error = xfs_btree_get_rec(cnt_cur, &rec, &stat);
 518	if (error)
 519		return error;
 520	if (XFS_IS_CORRUPT(cnt_cur->bc_mp, !stat)) {
 521		xfs_btree_mark_sick(cnt_cur);
 522		return -EFSCORRUPTED;
 523	}
 524
 525	xfs_alloc_btrec_to_irec(rec, &irec);
 526	*longest = irec.ar_blockcount;
 527	return 0;
 528}
 529
 530/*
 531 * Update the longest contiguous free extent in the AG from the by-count cursor
 532 * that is passed to us. This should be done at the end of any allocation or
 533 * freeing operation that touches the longest extent in the btree.
 534 *
 535 * Needing to update the longest extent can be determined by calling
 536 * xfs_alloc_cursor_at_lastrec() after the cursor is positioned for record
 537 * modification but before the modification begins.
 538 */
 539static int
 540xfs_alloc_fixup_longest(
 541	struct xfs_btree_cur	*cnt_cur)
 542{
 543	struct xfs_perag	*pag = to_perag(cnt_cur->bc_group);
 544	struct xfs_buf		*bp = cnt_cur->bc_ag.agbp;
 545	struct xfs_agf		*agf = bp->b_addr;
 546	xfs_extlen_t		longest = 0;
 547	int			error;
 548
 549	/* Lookup last rec in order to update AGF. */
 550	error = xfs_cntbt_longest(cnt_cur, &longest);
 551	if (error)
 552		return error;
 553
 554	pag->pagf_longest = longest;
 555	agf->agf_longest = cpu_to_be32(pag->pagf_longest);
 556	xfs_alloc_log_agf(cnt_cur->bc_tp, bp, XFS_AGF_LONGEST);
 557
 558	return 0;
 559}
 560
 561/*
 562 * Update the two btrees, logically removing from freespace the extent
 563 * starting at rbno, rlen blocks.  The extent is contained within the
 564 * actual (current) free extent fbno for flen blocks.
 565 * Flags are passed in indicating whether the cursors are set to the
 566 * relevant records.
 567 */
 568STATIC int				/* error code */
 569xfs_alloc_fixup_trees(
 570	struct xfs_btree_cur *cnt_cur,	/* cursor for by-size btree */
 571	struct xfs_btree_cur *bno_cur,	/* cursor for by-block btree */
 572	xfs_agblock_t	fbno,		/* starting block of free extent */
 573	xfs_extlen_t	flen,		/* length of free extent */
 574	xfs_agblock_t	rbno,		/* starting block of returned extent */
 575	xfs_extlen_t	rlen,		/* length of returned extent */
 576	int		flags)		/* flags, XFSA_FIXUP_... */
 577{
 578	int		error;		/* error code */
 579	int		i;		/* operation results */
 580	xfs_agblock_t	nfbno1;		/* first new free startblock */
 581	xfs_agblock_t	nfbno2;		/* second new free startblock */
 582	xfs_extlen_t	nflen1=0;	/* first new free length */
 583	xfs_extlen_t	nflen2=0;	/* second new free length */
 584	struct xfs_mount *mp;
 585	bool		fixup_longest = false;
 586
 587	mp = cnt_cur->bc_mp;
 588
 589	/*
 590	 * Look up the record in the by-size tree if necessary.
 591	 */
 592	if (flags & XFSA_FIXUP_CNT_OK) {
 593#ifdef DEBUG
 594		if ((error = xfs_alloc_get_rec(cnt_cur, &nfbno1, &nflen1, &i)))
 595			return error;
 596		if (XFS_IS_CORRUPT(mp,
 597				   i != 1 ||
 598				   nfbno1 != fbno ||
 599				   nflen1 != flen)) {
 600			xfs_btree_mark_sick(cnt_cur);
 601			return -EFSCORRUPTED;
 602		}
 603#endif
 604	} else {
 605		if ((error = xfs_alloc_lookup_eq(cnt_cur, fbno, flen, &i)))
 606			return error;
 607		if (XFS_IS_CORRUPT(mp, i != 1)) {
 608			xfs_btree_mark_sick(cnt_cur);
 609			return -EFSCORRUPTED;
 610		}
 611	}
 612	/*
 613	 * Look up the record in the by-block tree if necessary.
 614	 */
 615	if (flags & XFSA_FIXUP_BNO_OK) {
 616#ifdef DEBUG
 617		if ((error = xfs_alloc_get_rec(bno_cur, &nfbno1, &nflen1, &i)))
 618			return error;
 619		if (XFS_IS_CORRUPT(mp,
 620				   i != 1 ||
 621				   nfbno1 != fbno ||
 622				   nflen1 != flen)) {
 623			xfs_btree_mark_sick(bno_cur);
 624			return -EFSCORRUPTED;
 625		}
 626#endif
 627	} else {
 628		if ((error = xfs_alloc_lookup_eq(bno_cur, fbno, flen, &i)))
 629			return error;
 630		if (XFS_IS_CORRUPT(mp, i != 1)) {
 631			xfs_btree_mark_sick(bno_cur);
 632			return -EFSCORRUPTED;
 633		}
 634	}
 635
 636#ifdef DEBUG
 637	if (bno_cur->bc_nlevels == 1 && cnt_cur->bc_nlevels == 1) {
 638		struct xfs_btree_block	*bnoblock;
 639		struct xfs_btree_block	*cntblock;
 640
 641		bnoblock = XFS_BUF_TO_BLOCK(bno_cur->bc_levels[0].bp);
 642		cntblock = XFS_BUF_TO_BLOCK(cnt_cur->bc_levels[0].bp);
 643
 644		if (XFS_IS_CORRUPT(mp,
 645				   bnoblock->bb_numrecs !=
 646				   cntblock->bb_numrecs)) {
 647			xfs_btree_mark_sick(bno_cur);
 648			return -EFSCORRUPTED;
 649		}
 650	}
 651#endif
 652
 653	/*
 654	 * Deal with all four cases: the allocated record is contained
 655	 * within the freespace record, so we can have new freespace
 656	 * at either (or both) end, or no freespace remaining.
 657	 */
 658	if (rbno == fbno && rlen == flen)
 659		nfbno1 = nfbno2 = NULLAGBLOCK;
 660	else if (rbno == fbno) {
 661		nfbno1 = rbno + rlen;
 662		nflen1 = flen - rlen;
 663		nfbno2 = NULLAGBLOCK;
 664	} else if (rbno + rlen == fbno + flen) {
 665		nfbno1 = fbno;
 666		nflen1 = flen - rlen;
 667		nfbno2 = NULLAGBLOCK;
 668	} else {
 669		nfbno1 = fbno;
 670		nflen1 = rbno - fbno;
 671		nfbno2 = rbno + rlen;
 672		nflen2 = (fbno + flen) - nfbno2;
 673	}
 674
 675	if (xfs_alloc_cursor_at_lastrec(cnt_cur))
 676		fixup_longest = true;
 677
 678	/*
 679	 * Delete the entry from the by-size btree.
 680	 */
 681	if ((error = xfs_btree_delete(cnt_cur, &i)))
 682		return error;
 683	if (XFS_IS_CORRUPT(mp, i != 1)) {
 684		xfs_btree_mark_sick(cnt_cur);
 685		return -EFSCORRUPTED;
 686	}
 687	/*
 688	 * Add new by-size btree entry(s).
 689	 */
 690	if (nfbno1 != NULLAGBLOCK) {
 691		if ((error = xfs_alloc_lookup_eq(cnt_cur, nfbno1, nflen1, &i)))
 692			return error;
 693		if (XFS_IS_CORRUPT(mp, i != 0)) {
 694			xfs_btree_mark_sick(cnt_cur);
 695			return -EFSCORRUPTED;
 696		}
 697		if ((error = xfs_btree_insert(cnt_cur, &i)))
 698			return error;
 699		if (XFS_IS_CORRUPT(mp, i != 1)) {
 700			xfs_btree_mark_sick(cnt_cur);
 701			return -EFSCORRUPTED;
 702		}
 703	}
 704	if (nfbno2 != NULLAGBLOCK) {
 705		if ((error = xfs_alloc_lookup_eq(cnt_cur, nfbno2, nflen2, &i)))
 706			return error;
 707		if (XFS_IS_CORRUPT(mp, i != 0)) {
 708			xfs_btree_mark_sick(cnt_cur);
 709			return -EFSCORRUPTED;
 710		}
 711		if ((error = xfs_btree_insert(cnt_cur, &i)))
 712			return error;
 713		if (XFS_IS_CORRUPT(mp, i != 1)) {
 714			xfs_btree_mark_sick(cnt_cur);
 715			return -EFSCORRUPTED;
 716		}
 717	}
 718	/*
 719	 * Fix up the by-block btree entry(s).
 720	 */
 721	if (nfbno1 == NULLAGBLOCK) {
 722		/*
 723		 * No remaining freespace, just delete the by-block tree entry.
 724		 */
 725		if ((error = xfs_btree_delete(bno_cur, &i)))
 726			return error;
 727		if (XFS_IS_CORRUPT(mp, i != 1)) {
 728			xfs_btree_mark_sick(bno_cur);
 729			return -EFSCORRUPTED;
 730		}
 731	} else {
 732		/*
 733		 * Update the by-block entry to start later|be shorter.
 734		 */
 735		if ((error = xfs_alloc_update(bno_cur, nfbno1, nflen1)))
 736			return error;
 737	}
 738	if (nfbno2 != NULLAGBLOCK) {
 739		/*
 740		 * 2 resulting free entries, need to add one.
 741		 */
 742		if ((error = xfs_alloc_lookup_eq(bno_cur, nfbno2, nflen2, &i)))
 743			return error;
 744		if (XFS_IS_CORRUPT(mp, i != 0)) {
 745			xfs_btree_mark_sick(bno_cur);
 746			return -EFSCORRUPTED;
 747		}
 748		if ((error = xfs_btree_insert(bno_cur, &i)))
 749			return error;
 750		if (XFS_IS_CORRUPT(mp, i != 1)) {
 751			xfs_btree_mark_sick(bno_cur);
 752			return -EFSCORRUPTED;
 753		}
 754	}
 755
 756	if (fixup_longest)
 757		return xfs_alloc_fixup_longest(cnt_cur);
 758
 759	return 0;
 760}
 761
 762/*
 763 * We do not verify the AGFL contents against AGF-based index counters here,
 764 * even though we may have access to the perag that contains shadow copies. We
 765 * don't know if the AGF based counters have been checked, and if they have they
 766 * still may be inconsistent because they haven't yet been reset on the first
 767 * allocation after the AGF has been read in.
 768 *
 769 * This means we can only check that all agfl entries contain valid or null
 770 * values because we can't reliably determine the active range to exclude
 771 * NULLAGBNO as a valid value.
 772 *
 773 * However, we can't even do that for v4 format filesystems because there are
 774 * old versions of mkfs out there that does not initialise the AGFL to known,
 775 * verifiable values. HEnce we can't tell the difference between a AGFL block
 776 * allocated by mkfs and a corrupted AGFL block here on v4 filesystems.
 777 *
 778 * As a result, we can only fully validate AGFL block numbers when we pull them
 779 * from the freelist in xfs_alloc_get_freelist().
 780 */
 781static xfs_failaddr_t
 782xfs_agfl_verify(
 783	struct xfs_buf	*bp)
 784{
 785	struct xfs_mount *mp = bp->b_mount;
 786	struct xfs_agfl	*agfl = XFS_BUF_TO_AGFL(bp);
 787	__be32		*agfl_bno = xfs_buf_to_agfl_bno(bp);
 788	int		i;
 789
 790	if (!xfs_has_crc(mp))
 791		return NULL;
 792
 793	if (!xfs_verify_magic(bp, agfl->agfl_magicnum))
 794		return __this_address;
 795	if (!uuid_equal(&agfl->agfl_uuid, &mp->m_sb.sb_meta_uuid))
 796		return __this_address;
 797	/*
 798	 * during growfs operations, the perag is not fully initialised,
 799	 * so we can't use it for any useful checking. growfs ensures we can't
 800	 * use it by using uncached buffers that don't have the perag attached
 801	 * so we can detect and avoid this problem.
 802	 */
 803	if (bp->b_pag && be32_to_cpu(agfl->agfl_seqno) != pag_agno((bp->b_pag)))
 804		return __this_address;
 805
 806	for (i = 0; i < xfs_agfl_size(mp); i++) {
 807		if (be32_to_cpu(agfl_bno[i]) != NULLAGBLOCK &&
 808		    be32_to_cpu(agfl_bno[i]) >= mp->m_sb.sb_agblocks)
 809			return __this_address;
 810	}
 811
 812	if (!xfs_log_check_lsn(mp, be64_to_cpu(XFS_BUF_TO_AGFL(bp)->agfl_lsn)))
 813		return __this_address;
 814	return NULL;
 815}
 816
 817static void
 818xfs_agfl_read_verify(
 819	struct xfs_buf	*bp)
 820{
 821	struct xfs_mount *mp = bp->b_mount;
 822	xfs_failaddr_t	fa;
 823
 824	/*
 825	 * There is no verification of non-crc AGFLs because mkfs does not
 826	 * initialise the AGFL to zero or NULL. Hence the only valid part of the
 827	 * AGFL is what the AGF says is active. We can't get to the AGF, so we
 828	 * can't verify just those entries are valid.
 829	 */
 830	if (!xfs_has_crc(mp))
 831		return;
 832
 833	if (!xfs_buf_verify_cksum(bp, XFS_AGFL_CRC_OFF))
 834		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
 835	else {
 836		fa = xfs_agfl_verify(bp);
 837		if (fa)
 838			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
 839	}
 840}
 841
 842static void
 843xfs_agfl_write_verify(
 844	struct xfs_buf	*bp)
 845{
 846	struct xfs_mount	*mp = bp->b_mount;
 847	struct xfs_buf_log_item	*bip = bp->b_log_item;
 848	xfs_failaddr_t		fa;
 849
 850	/* no verification of non-crc AGFLs */
 851	if (!xfs_has_crc(mp))
 852		return;
 853
 854	fa = xfs_agfl_verify(bp);
 855	if (fa) {
 856		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
 857		return;
 858	}
 859
 860	if (bip)
 861		XFS_BUF_TO_AGFL(bp)->agfl_lsn = cpu_to_be64(bip->bli_item.li_lsn);
 862
 863	xfs_buf_update_cksum(bp, XFS_AGFL_CRC_OFF);
 864}
 865
 866const struct xfs_buf_ops xfs_agfl_buf_ops = {
 867	.name = "xfs_agfl",
 868	.magic = { cpu_to_be32(XFS_AGFL_MAGIC), cpu_to_be32(XFS_AGFL_MAGIC) },
 869	.verify_read = xfs_agfl_read_verify,
 870	.verify_write = xfs_agfl_write_verify,
 871	.verify_struct = xfs_agfl_verify,
 872};
 873
 874/*
 875 * Read in the allocation group free block array.
 876 */
 877int
 878xfs_alloc_read_agfl(
 879	struct xfs_perag	*pag,
 880	struct xfs_trans	*tp,
 881	struct xfs_buf		**bpp)
 882{
 883	struct xfs_mount	*mp = pag_mount(pag);
 884	struct xfs_buf		*bp;
 885	int			error;
 886
 887	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
 888			XFS_AG_DADDR(mp, pag_agno(pag), XFS_AGFL_DADDR(mp)),
 
 889			XFS_FSS_TO_BB(mp, 1), 0, &bp, &xfs_agfl_buf_ops);
 890	if (xfs_metadata_is_sick(error))
 891		xfs_ag_mark_sick(pag, XFS_SICK_AG_AGFL);
 892	if (error)
 893		return error;
 894	xfs_buf_set_ref(bp, XFS_AGFL_REF);
 895	*bpp = bp;
 896	return 0;
 897}
 898
 899STATIC int
 900xfs_alloc_update_counters(
 901	struct xfs_trans	*tp,
 902	struct xfs_buf		*agbp,
 903	long			len)
 904{
 905	struct xfs_agf		*agf = agbp->b_addr;
 906
 907	agbp->b_pag->pagf_freeblks += len;
 908	be32_add_cpu(&agf->agf_freeblks, len);
 909
 910	if (unlikely(be32_to_cpu(agf->agf_freeblks) >
 911		     be32_to_cpu(agf->agf_length))) {
 912		xfs_buf_mark_corrupt(agbp);
 913		xfs_ag_mark_sick(agbp->b_pag, XFS_SICK_AG_AGF);
 914		return -EFSCORRUPTED;
 915	}
 916
 917	xfs_alloc_log_agf(tp, agbp, XFS_AGF_FREEBLKS);
 918	return 0;
 919}
 920
 921/*
 922 * Block allocation algorithm and data structures.
 923 */
 924struct xfs_alloc_cur {
 925	struct xfs_btree_cur		*cnt;	/* btree cursors */
 926	struct xfs_btree_cur		*bnolt;
 927	struct xfs_btree_cur		*bnogt;
 928	xfs_extlen_t			cur_len;/* current search length */
 929	xfs_agblock_t			rec_bno;/* extent startblock */
 930	xfs_extlen_t			rec_len;/* extent length */
 931	xfs_agblock_t			bno;	/* alloc bno */
 932	xfs_extlen_t			len;	/* alloc len */
 933	xfs_extlen_t			diff;	/* diff from search bno */
 934	unsigned int			busy_gen;/* busy state */
 935	bool				busy;
 936};
 937
 938/*
 939 * Set up cursors, etc. in the extent allocation cursor. This function can be
 940 * called multiple times to reset an initialized structure without having to
 941 * reallocate cursors.
 942 */
 943static int
 944xfs_alloc_cur_setup(
 945	struct xfs_alloc_arg	*args,
 946	struct xfs_alloc_cur	*acur)
 947{
 948	int			error;
 949	int			i;
 950
 951	acur->cur_len = args->maxlen;
 952	acur->rec_bno = 0;
 953	acur->rec_len = 0;
 954	acur->bno = 0;
 955	acur->len = 0;
 956	acur->diff = -1;
 957	acur->busy = false;
 958	acur->busy_gen = 0;
 959
 960	/*
 961	 * Perform an initial cntbt lookup to check for availability of maxlen
 962	 * extents. If this fails, we'll return -ENOSPC to signal the caller to
 963	 * attempt a small allocation.
 964	 */
 965	if (!acur->cnt)
 966		acur->cnt = xfs_cntbt_init_cursor(args->mp, args->tp,
 967					args->agbp, args->pag);
 968	error = xfs_alloc_lookup_ge(acur->cnt, 0, args->maxlen, &i);
 969	if (error)
 970		return error;
 971
 972	/*
 973	 * Allocate the bnobt left and right search cursors.
 974	 */
 975	if (!acur->bnolt)
 976		acur->bnolt = xfs_bnobt_init_cursor(args->mp, args->tp,
 977					args->agbp, args->pag);
 978	if (!acur->bnogt)
 979		acur->bnogt = xfs_bnobt_init_cursor(args->mp, args->tp,
 980					args->agbp, args->pag);
 981	return i == 1 ? 0 : -ENOSPC;
 982}
 983
 984static void
 985xfs_alloc_cur_close(
 986	struct xfs_alloc_cur	*acur,
 987	bool			error)
 988{
 989	int			cur_error = XFS_BTREE_NOERROR;
 990
 991	if (error)
 992		cur_error = XFS_BTREE_ERROR;
 993
 994	if (acur->cnt)
 995		xfs_btree_del_cursor(acur->cnt, cur_error);
 996	if (acur->bnolt)
 997		xfs_btree_del_cursor(acur->bnolt, cur_error);
 998	if (acur->bnogt)
 999		xfs_btree_del_cursor(acur->bnogt, cur_error);
1000	acur->cnt = acur->bnolt = acur->bnogt = NULL;
1001}
1002
1003/*
1004 * Check an extent for allocation and track the best available candidate in the
1005 * allocation structure. The cursor is deactivated if it has entered an out of
1006 * range state based on allocation arguments. Optionally return the extent
1007 * extent geometry and allocation status if requested by the caller.
1008 */
1009static int
1010xfs_alloc_cur_check(
1011	struct xfs_alloc_arg	*args,
1012	struct xfs_alloc_cur	*acur,
1013	struct xfs_btree_cur	*cur,
1014	int			*new)
1015{
1016	int			error, i;
1017	xfs_agblock_t		bno, bnoa, bnew;
1018	xfs_extlen_t		len, lena, diff = -1;
1019	bool			busy;
1020	unsigned		busy_gen = 0;
1021	bool			deactivate = false;
1022	bool			isbnobt = xfs_btree_is_bno(cur->bc_ops);
1023
1024	*new = 0;
1025
1026	error = xfs_alloc_get_rec(cur, &bno, &len, &i);
1027	if (error)
1028		return error;
1029	if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1030		xfs_btree_mark_sick(cur);
1031		return -EFSCORRUPTED;
1032	}
1033
1034	/*
1035	 * Check minlen and deactivate a cntbt cursor if out of acceptable size
1036	 * range (i.e., walking backwards looking for a minlen extent).
1037	 */
1038	if (len < args->minlen) {
1039		deactivate = !isbnobt;
1040		goto out;
1041	}
1042
1043	busy = xfs_alloc_compute_aligned(args, bno, len, &bnoa, &lena,
1044					 &busy_gen);
1045	acur->busy |= busy;
1046	if (busy)
1047		acur->busy_gen = busy_gen;
1048	/* deactivate a bnobt cursor outside of locality range */
1049	if (bnoa < args->min_agbno || bnoa > args->max_agbno) {
1050		deactivate = isbnobt;
1051		goto out;
1052	}
1053	if (lena < args->minlen)
1054		goto out;
1055
1056	args->len = XFS_EXTLEN_MIN(lena, args->maxlen);
1057	xfs_alloc_fix_len(args);
1058	ASSERT(args->len >= args->minlen);
1059	if (args->len < acur->len)
1060		goto out;
1061
1062	/*
1063	 * We have an aligned record that satisfies minlen and beats or matches
1064	 * the candidate extent size. Compare locality for near allocation mode.
1065	 */
1066	diff = xfs_alloc_compute_diff(args->agbno, args->len,
1067				      args->alignment, args->datatype,
1068				      bnoa, lena, &bnew);
1069	if (bnew == NULLAGBLOCK)
1070		goto out;
1071
1072	/*
1073	 * Deactivate a bnobt cursor with worse locality than the current best.
1074	 */
1075	if (diff > acur->diff) {
1076		deactivate = isbnobt;
1077		goto out;
1078	}
1079
1080	ASSERT(args->len > acur->len ||
1081	       (args->len == acur->len && diff <= acur->diff));
1082	acur->rec_bno = bno;
1083	acur->rec_len = len;
1084	acur->bno = bnew;
1085	acur->len = args->len;
1086	acur->diff = diff;
1087	*new = 1;
1088
1089	/*
1090	 * We're done if we found a perfect allocation. This only deactivates
1091	 * the current cursor, but this is just an optimization to terminate a
1092	 * cntbt search that otherwise runs to the edge of the tree.
1093	 */
1094	if (acur->diff == 0 && acur->len == args->maxlen)
1095		deactivate = true;
1096out:
1097	if (deactivate)
1098		cur->bc_flags &= ~XFS_BTREE_ALLOCBT_ACTIVE;
1099	trace_xfs_alloc_cur_check(cur, bno, len, diff, *new);
 
1100	return 0;
1101}
1102
1103/*
1104 * Complete an allocation of a candidate extent. Remove the extent from both
1105 * trees and update the args structure.
1106 */
1107STATIC int
1108xfs_alloc_cur_finish(
1109	struct xfs_alloc_arg	*args,
1110	struct xfs_alloc_cur	*acur)
1111{
 
1112	int			error;
1113
1114	ASSERT(acur->cnt && acur->bnolt);
1115	ASSERT(acur->bno >= acur->rec_bno);
1116	ASSERT(acur->bno + acur->len <= acur->rec_bno + acur->rec_len);
1117	ASSERT(xfs_verify_agbext(args->pag, acur->rec_bno, acur->rec_len));
1118
1119	error = xfs_alloc_fixup_trees(acur->cnt, acur->bnolt, acur->rec_bno,
1120				      acur->rec_len, acur->bno, acur->len, 0);
1121	if (error)
1122		return error;
1123
1124	args->agbno = acur->bno;
1125	args->len = acur->len;
1126	args->wasfromfl = 0;
1127
1128	trace_xfs_alloc_cur(args);
1129	return 0;
1130}
1131
1132/*
1133 * Locality allocation lookup algorithm. This expects a cntbt cursor and uses
1134 * bno optimized lookup to search for extents with ideal size and locality.
1135 */
1136STATIC int
1137xfs_alloc_cntbt_iter(
1138	struct xfs_alloc_arg		*args,
1139	struct xfs_alloc_cur		*acur)
1140{
1141	struct xfs_btree_cur	*cur = acur->cnt;
1142	xfs_agblock_t		bno;
1143	xfs_extlen_t		len, cur_len;
1144	int			error;
1145	int			i;
1146
1147	if (!xfs_alloc_cur_active(cur))
1148		return 0;
1149
1150	/* locality optimized lookup */
1151	cur_len = acur->cur_len;
1152	error = xfs_alloc_lookup_ge(cur, args->agbno, cur_len, &i);
1153	if (error)
1154		return error;
1155	if (i == 0)
1156		return 0;
1157	error = xfs_alloc_get_rec(cur, &bno, &len, &i);
1158	if (error)
1159		return error;
1160
1161	/* check the current record and update search length from it */
1162	error = xfs_alloc_cur_check(args, acur, cur, &i);
1163	if (error)
1164		return error;
1165	ASSERT(len >= acur->cur_len);
1166	acur->cur_len = len;
1167
1168	/*
1169	 * We looked up the first record >= [agbno, len] above. The agbno is a
1170	 * secondary key and so the current record may lie just before or after
1171	 * agbno. If it is past agbno, check the previous record too so long as
1172	 * the length matches as it may be closer. Don't check a smaller record
1173	 * because that could deactivate our cursor.
1174	 */
1175	if (bno > args->agbno) {
1176		error = xfs_btree_decrement(cur, 0, &i);
1177		if (!error && i) {
1178			error = xfs_alloc_get_rec(cur, &bno, &len, &i);
1179			if (!error && i && len == acur->cur_len)
1180				error = xfs_alloc_cur_check(args, acur, cur,
1181							    &i);
1182		}
1183		if (error)
1184			return error;
1185	}
1186
1187	/*
1188	 * Increment the search key until we find at least one allocation
1189	 * candidate or if the extent we found was larger. Otherwise, double the
1190	 * search key to optimize the search. Efficiency is more important here
1191	 * than absolute best locality.
1192	 */
1193	cur_len <<= 1;
1194	if (!acur->len || acur->cur_len >= cur_len)
1195		acur->cur_len++;
1196	else
1197		acur->cur_len = cur_len;
1198
1199	return error;
1200}
1201
1202/*
1203 * Deal with the case where only small freespaces remain. Either return the
1204 * contents of the last freespace record, or allocate space from the freelist if
1205 * there is nothing in the tree.
1206 */
1207STATIC int			/* error */
1208xfs_alloc_ag_vextent_small(
1209	struct xfs_alloc_arg	*args,	/* allocation argument structure */
1210	struct xfs_btree_cur	*ccur,	/* optional by-size cursor */
1211	xfs_agblock_t		*fbnop,	/* result block number */
1212	xfs_extlen_t		*flenp,	/* result length */
1213	int			*stat)	/* status: 0-freelist, 1-normal/none */
1214{
1215	struct xfs_agf		*agf = args->agbp->b_addr;
1216	int			error = 0;
1217	xfs_agblock_t		fbno = NULLAGBLOCK;
1218	xfs_extlen_t		flen = 0;
1219	int			i = 0;
1220
1221	/*
1222	 * If a cntbt cursor is provided, try to allocate the largest record in
1223	 * the tree. Try the AGFL if the cntbt is empty, otherwise fail the
1224	 * allocation. Make sure to respect minleft even when pulling from the
1225	 * freelist.
1226	 */
1227	if (ccur)
1228		error = xfs_btree_decrement(ccur, 0, &i);
1229	if (error)
1230		goto error;
1231	if (i) {
1232		error = xfs_alloc_get_rec(ccur, &fbno, &flen, &i);
1233		if (error)
1234			goto error;
1235		if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1236			xfs_btree_mark_sick(ccur);
1237			error = -EFSCORRUPTED;
1238			goto error;
1239		}
1240		goto out;
1241	}
1242
1243	if (args->minlen != 1 || args->alignment != 1 ||
1244	    args->resv == XFS_AG_RESV_AGFL ||
1245	    be32_to_cpu(agf->agf_flcount) <= args->minleft)
1246		goto out;
1247
1248	error = xfs_alloc_get_freelist(args->pag, args->tp, args->agbp,
1249			&fbno, 0);
1250	if (error)
1251		goto error;
1252	if (fbno == NULLAGBLOCK)
1253		goto out;
1254
1255	xfs_extent_busy_reuse(pag_group(args->pag), fbno, 1,
1256			      (args->datatype & XFS_ALLOC_NOBUSY));
1257
1258	if (args->datatype & XFS_ALLOC_USERDATA) {
1259		struct xfs_buf	*bp;
1260
1261		error = xfs_trans_get_buf(args->tp, args->mp->m_ddev_targp,
1262				xfs_agbno_to_daddr(args->pag, fbno),
1263				args->mp->m_bsize, 0, &bp);
1264		if (error)
1265			goto error;
1266		xfs_trans_binval(args->tp, bp);
1267	}
1268	*fbnop = args->agbno = fbno;
1269	*flenp = args->len = 1;
1270	if (XFS_IS_CORRUPT(args->mp, fbno >= be32_to_cpu(agf->agf_length))) {
1271		xfs_btree_mark_sick(ccur);
1272		error = -EFSCORRUPTED;
1273		goto error;
1274	}
1275	args->wasfromfl = 1;
1276	trace_xfs_alloc_small_freelist(args);
1277
1278	/*
1279	 * If we're feeding an AGFL block to something that doesn't live in the
1280	 * free space, we need to clear out the OWN_AG rmap.
1281	 */
1282	error = xfs_rmap_free(args->tp, args->agbp, args->pag, fbno, 1,
1283			      &XFS_RMAP_OINFO_AG);
1284	if (error)
1285		goto error;
1286
1287	*stat = 0;
1288	return 0;
1289
1290out:
1291	/*
1292	 * Can't do the allocation, give up.
1293	 */
1294	if (flen < args->minlen) {
1295		args->agbno = NULLAGBLOCK;
1296		trace_xfs_alloc_small_notenough(args);
1297		flen = 0;
1298	}
1299	*fbnop = fbno;
1300	*flenp = flen;
1301	*stat = 1;
1302	trace_xfs_alloc_small_done(args);
1303	return 0;
1304
1305error:
1306	trace_xfs_alloc_small_error(args);
1307	return error;
1308}
1309
1310/*
1311 * Allocate a variable extent at exactly agno/bno.
1312 * Extent's length (returned in *len) will be between minlen and maxlen,
1313 * and of the form k * prod + mod unless there's nothing that large.
1314 * Return the starting a.g. block (bno), or NULLAGBLOCK if we can't do it.
1315 */
1316STATIC int			/* error */
1317xfs_alloc_ag_vextent_exact(
1318	xfs_alloc_arg_t	*args)	/* allocation argument structure */
1319{
 
1320	struct xfs_btree_cur *bno_cur;/* by block-number btree cursor */
1321	struct xfs_btree_cur *cnt_cur;/* by count btree cursor */
1322	int		error;
1323	xfs_agblock_t	fbno;	/* start block of found extent */
1324	xfs_extlen_t	flen;	/* length of found extent */
1325	xfs_agblock_t	tbno;	/* start block of busy extent */
1326	xfs_extlen_t	tlen;	/* length of busy extent */
1327	xfs_agblock_t	tend;	/* end block of busy extent */
1328	int		i;	/* success/failure of operation */
1329	unsigned	busy_gen;
1330
1331	ASSERT(args->alignment == 1);
1332
1333	/*
1334	 * Allocate/initialize a cursor for the by-number freespace btree.
1335	 */
1336	bno_cur = xfs_bnobt_init_cursor(args->mp, args->tp, args->agbp,
1337					  args->pag);
1338
1339	/*
1340	 * Lookup bno and minlen in the btree (minlen is irrelevant, really).
1341	 * Look for the closest free block <= bno, it must contain bno
1342	 * if any free block does.
1343	 */
1344	error = xfs_alloc_lookup_le(bno_cur, args->agbno, args->minlen, &i);
1345	if (error)
1346		goto error0;
1347	if (!i)
1348		goto not_found;
1349
1350	/*
1351	 * Grab the freespace record.
1352	 */
1353	error = xfs_alloc_get_rec(bno_cur, &fbno, &flen, &i);
1354	if (error)
1355		goto error0;
1356	if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1357		xfs_btree_mark_sick(bno_cur);
1358		error = -EFSCORRUPTED;
1359		goto error0;
1360	}
1361	ASSERT(fbno <= args->agbno);
1362
1363	/*
1364	 * Check for overlapping busy extents.
1365	 */
1366	tbno = fbno;
1367	tlen = flen;
1368	xfs_extent_busy_trim(pag_group(args->pag), args->minlen, args->maxlen,
1369			&tbno, &tlen, &busy_gen);
1370
1371	/*
1372	 * Give up if the start of the extent is busy, or the freespace isn't
1373	 * long enough for the minimum request.
1374	 */
1375	if (tbno > args->agbno)
1376		goto not_found;
1377	if (tlen < args->minlen)
1378		goto not_found;
1379	tend = tbno + tlen;
1380	if (tend < args->agbno + args->minlen)
1381		goto not_found;
1382
1383	/*
1384	 * End of extent will be smaller of the freespace end and the
1385	 * maximal requested end.
1386	 *
1387	 * Fix the length according to mod and prod if given.
1388	 */
1389	args->len = XFS_AGBLOCK_MIN(tend, args->agbno + args->maxlen)
1390						- args->agbno;
1391	xfs_alloc_fix_len(args);
1392	ASSERT(args->agbno + args->len <= tend);
1393
1394	/*
1395	 * We are allocating agbno for args->len
1396	 * Allocate/initialize a cursor for the by-size btree.
1397	 */
1398	cnt_cur = xfs_cntbt_init_cursor(args->mp, args->tp, args->agbp,
1399					args->pag);
1400	ASSERT(xfs_verify_agbext(args->pag, args->agbno, args->len));
1401	error = xfs_alloc_fixup_trees(cnt_cur, bno_cur, fbno, flen, args->agbno,
1402				      args->len, XFSA_FIXUP_BNO_OK);
1403	if (error) {
1404		xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR);
1405		goto error0;
1406	}
1407
1408	xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
1409	xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1410
1411	args->wasfromfl = 0;
1412	trace_xfs_alloc_exact_done(args);
1413	return 0;
1414
1415not_found:
1416	/* Didn't find it, return null. */
1417	xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
1418	args->agbno = NULLAGBLOCK;
1419	trace_xfs_alloc_exact_notfound(args);
1420	return 0;
1421
1422error0:
1423	xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR);
1424	trace_xfs_alloc_exact_error(args);
1425	return error;
1426}
1427
1428/*
1429 * Search a given number of btree records in a given direction. Check each
1430 * record against the good extent we've already found.
1431 */
1432STATIC int
1433xfs_alloc_walk_iter(
1434	struct xfs_alloc_arg	*args,
1435	struct xfs_alloc_cur	*acur,
1436	struct xfs_btree_cur	*cur,
1437	bool			increment,
1438	bool			find_one, /* quit on first candidate */
1439	int			count,    /* rec count (-1 for infinite) */
1440	int			*stat)
1441{
1442	int			error;
1443	int			i;
1444
1445	*stat = 0;
1446
1447	/*
1448	 * Search so long as the cursor is active or we find a better extent.
1449	 * The cursor is deactivated if it extends beyond the range of the
1450	 * current allocation candidate.
1451	 */
1452	while (xfs_alloc_cur_active(cur) && count) {
1453		error = xfs_alloc_cur_check(args, acur, cur, &i);
1454		if (error)
1455			return error;
1456		if (i == 1) {
1457			*stat = 1;
1458			if (find_one)
1459				break;
1460		}
1461		if (!xfs_alloc_cur_active(cur))
1462			break;
1463
1464		if (increment)
1465			error = xfs_btree_increment(cur, 0, &i);
1466		else
1467			error = xfs_btree_decrement(cur, 0, &i);
1468		if (error)
1469			return error;
1470		if (i == 0)
1471			cur->bc_flags &= ~XFS_BTREE_ALLOCBT_ACTIVE;
1472
1473		if (count > 0)
1474			count--;
1475	}
1476
1477	return 0;
1478}
1479
1480/*
1481 * Search the by-bno and by-size btrees in parallel in search of an extent with
1482 * ideal locality based on the NEAR mode ->agbno locality hint.
1483 */
1484STATIC int
1485xfs_alloc_ag_vextent_locality(
1486	struct xfs_alloc_arg	*args,
1487	struct xfs_alloc_cur	*acur,
1488	int			*stat)
1489{
1490	struct xfs_btree_cur	*fbcur = NULL;
1491	int			error;
1492	int			i;
1493	bool			fbinc;
1494
1495	ASSERT(acur->len == 0);
1496
1497	*stat = 0;
1498
1499	error = xfs_alloc_lookup_ge(acur->cnt, args->agbno, acur->cur_len, &i);
1500	if (error)
1501		return error;
1502	error = xfs_alloc_lookup_le(acur->bnolt, args->agbno, 0, &i);
1503	if (error)
1504		return error;
1505	error = xfs_alloc_lookup_ge(acur->bnogt, args->agbno, 0, &i);
1506	if (error)
1507		return error;
1508
1509	/*
1510	 * Search the bnobt and cntbt in parallel. Search the bnobt left and
1511	 * right and lookup the closest extent to the locality hint for each
1512	 * extent size key in the cntbt. The entire search terminates
1513	 * immediately on a bnobt hit because that means we've found best case
1514	 * locality. Otherwise the search continues until the cntbt cursor runs
1515	 * off the end of the tree. If no allocation candidate is found at this
1516	 * point, give up on locality, walk backwards from the end of the cntbt
1517	 * and take the first available extent.
1518	 *
1519	 * The parallel tree searches balance each other out to provide fairly
1520	 * consistent performance for various situations. The bnobt search can
1521	 * have pathological behavior in the worst case scenario of larger
1522	 * allocation requests and fragmented free space. On the other hand, the
1523	 * bnobt is able to satisfy most smaller allocation requests much more
1524	 * quickly than the cntbt. The cntbt search can sift through fragmented
1525	 * free space and sets of free extents for larger allocation requests
1526	 * more quickly than the bnobt. Since the locality hint is just a hint
1527	 * and we don't want to scan the entire bnobt for perfect locality, the
1528	 * cntbt search essentially bounds the bnobt search such that we can
1529	 * find good enough locality at reasonable performance in most cases.
1530	 */
1531	while (xfs_alloc_cur_active(acur->bnolt) ||
1532	       xfs_alloc_cur_active(acur->bnogt) ||
1533	       xfs_alloc_cur_active(acur->cnt)) {
1534
1535		trace_xfs_alloc_cur_lookup(args);
1536
1537		/*
1538		 * Search the bnobt left and right. In the case of a hit, finish
1539		 * the search in the opposite direction and we're done.
1540		 */
1541		error = xfs_alloc_walk_iter(args, acur, acur->bnolt, false,
1542					    true, 1, &i);
1543		if (error)
1544			return error;
1545		if (i == 1) {
1546			trace_xfs_alloc_cur_left(args);
1547			fbcur = acur->bnogt;
1548			fbinc = true;
1549			break;
1550		}
1551		error = xfs_alloc_walk_iter(args, acur, acur->bnogt, true, true,
1552					    1, &i);
1553		if (error)
1554			return error;
1555		if (i == 1) {
1556			trace_xfs_alloc_cur_right(args);
1557			fbcur = acur->bnolt;
1558			fbinc = false;
1559			break;
1560		}
1561
1562		/*
1563		 * Check the extent with best locality based on the current
1564		 * extent size search key and keep track of the best candidate.
1565		 */
1566		error = xfs_alloc_cntbt_iter(args, acur);
1567		if (error)
1568			return error;
1569		if (!xfs_alloc_cur_active(acur->cnt)) {
1570			trace_xfs_alloc_cur_lookup_done(args);
1571			break;
1572		}
1573	}
1574
1575	/*
1576	 * If we failed to find anything due to busy extents, return empty
1577	 * handed so the caller can flush and retry. If no busy extents were
1578	 * found, walk backwards from the end of the cntbt as a last resort.
1579	 */
1580	if (!xfs_alloc_cur_active(acur->cnt) && !acur->len && !acur->busy) {
1581		error = xfs_btree_decrement(acur->cnt, 0, &i);
1582		if (error)
1583			return error;
1584		if (i) {
1585			acur->cnt->bc_flags |= XFS_BTREE_ALLOCBT_ACTIVE;
1586			fbcur = acur->cnt;
1587			fbinc = false;
1588		}
1589	}
1590
1591	/*
1592	 * Search in the opposite direction for a better entry in the case of
1593	 * a bnobt hit or walk backwards from the end of the cntbt.
1594	 */
1595	if (fbcur) {
1596		error = xfs_alloc_walk_iter(args, acur, fbcur, fbinc, true, -1,
1597					    &i);
1598		if (error)
1599			return error;
1600	}
1601
1602	if (acur->len)
1603		*stat = 1;
1604
1605	return 0;
1606}
1607
1608/* Check the last block of the cnt btree for allocations. */
1609static int
1610xfs_alloc_ag_vextent_lastblock(
1611	struct xfs_alloc_arg	*args,
1612	struct xfs_alloc_cur	*acur,
1613	xfs_agblock_t		*bno,
1614	xfs_extlen_t		*len,
1615	bool			*allocated)
1616{
1617	int			error;
1618	int			i;
1619
1620#ifdef DEBUG
1621	/* Randomly don't execute the first algorithm. */
1622	if (get_random_u32_below(2))
1623		return 0;
1624#endif
1625
1626	/*
1627	 * Start from the entry that lookup found, sequence through all larger
1628	 * free blocks.  If we're actually pointing at a record smaller than
1629	 * maxlen, go to the start of this block, and skip all those smaller
1630	 * than minlen.
1631	 */
1632	if (*len || args->alignment > 1) {
1633		acur->cnt->bc_levels[0].ptr = 1;
1634		do {
1635			error = xfs_alloc_get_rec(acur->cnt, bno, len, &i);
1636			if (error)
1637				return error;
1638			if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1639				xfs_btree_mark_sick(acur->cnt);
1640				return -EFSCORRUPTED;
1641			}
1642			if (*len >= args->minlen)
1643				break;
1644			error = xfs_btree_increment(acur->cnt, 0, &i);
1645			if (error)
1646				return error;
1647		} while (i);
1648		ASSERT(*len >= args->minlen);
1649		if (!i)
1650			return 0;
1651	}
1652
1653	error = xfs_alloc_walk_iter(args, acur, acur->cnt, true, false, -1, &i);
1654	if (error)
1655		return error;
1656
1657	/*
1658	 * It didn't work.  We COULD be in a case where there's a good record
1659	 * somewhere, so try again.
1660	 */
1661	if (acur->len == 0)
1662		return 0;
1663
1664	trace_xfs_alloc_near_first(args);
1665	*allocated = true;
1666	return 0;
1667}
1668
1669/*
1670 * Allocate a variable extent near bno in the allocation group agno.
1671 * Extent's length (returned in len) will be between minlen and maxlen,
1672 * and of the form k * prod + mod unless there's nothing that large.
1673 * Return the starting a.g. block, or NULLAGBLOCK if we can't do it.
1674 */
1675STATIC int
1676xfs_alloc_ag_vextent_near(
1677	struct xfs_alloc_arg	*args,
1678	uint32_t		alloc_flags)
1679{
1680	struct xfs_alloc_cur	acur = {};
1681	int			error;		/* error code */
1682	int			i;		/* result code, temporary */
1683	xfs_agblock_t		bno;
1684	xfs_extlen_t		len;
1685
1686	/* handle uninitialized agbno range so caller doesn't have to */
1687	if (!args->min_agbno && !args->max_agbno)
1688		args->max_agbno = args->mp->m_sb.sb_agblocks - 1;
1689	ASSERT(args->min_agbno <= args->max_agbno);
1690
1691	/* clamp agbno to the range if it's outside */
1692	if (args->agbno < args->min_agbno)
1693		args->agbno = args->min_agbno;
1694	if (args->agbno > args->max_agbno)
1695		args->agbno = args->max_agbno;
1696
1697	/* Retry once quickly if we find busy extents before blocking. */
1698	alloc_flags |= XFS_ALLOC_FLAG_TRYFLUSH;
1699restart:
1700	len = 0;
1701
1702	/*
1703	 * Set up cursors and see if there are any free extents as big as
1704	 * maxlen. If not, pick the last entry in the tree unless the tree is
1705	 * empty.
1706	 */
1707	error = xfs_alloc_cur_setup(args, &acur);
1708	if (error == -ENOSPC) {
1709		error = xfs_alloc_ag_vextent_small(args, acur.cnt, &bno,
1710				&len, &i);
1711		if (error)
1712			goto out;
1713		if (i == 0 || len == 0) {
1714			trace_xfs_alloc_near_noentry(args);
1715			goto out;
1716		}
1717		ASSERT(i == 1);
1718	} else if (error) {
1719		goto out;
1720	}
1721
1722	/*
1723	 * First algorithm.
1724	 * If the requested extent is large wrt the freespaces available
1725	 * in this a.g., then the cursor will be pointing to a btree entry
1726	 * near the right edge of the tree.  If it's in the last btree leaf
1727	 * block, then we just examine all the entries in that block
1728	 * that are big enough, and pick the best one.
1729	 */
1730	if (xfs_btree_islastblock(acur.cnt, 0)) {
1731		bool		allocated = false;
1732
1733		error = xfs_alloc_ag_vextent_lastblock(args, &acur, &bno, &len,
1734				&allocated);
1735		if (error)
1736			goto out;
1737		if (allocated)
1738			goto alloc_finish;
1739	}
1740
1741	/*
1742	 * Second algorithm. Combined cntbt and bnobt search to find ideal
1743	 * locality.
1744	 */
1745	error = xfs_alloc_ag_vextent_locality(args, &acur, &i);
1746	if (error)
1747		goto out;
1748
1749	/*
1750	 * If we couldn't get anything, give up.
1751	 */
1752	if (!acur.len) {
1753		if (acur.busy) {
1754			/*
1755			 * Our only valid extents must have been busy. Flush and
1756			 * retry the allocation again. If we get an -EAGAIN
1757			 * error, we're being told that a deadlock was avoided
1758			 * and the current transaction needs committing before
1759			 * the allocation can be retried.
1760			 */
1761			trace_xfs_alloc_near_busy(args);
1762			error = xfs_extent_busy_flush(args->tp,
1763					pag_group(args->pag), acur.busy_gen,
1764					alloc_flags);
1765			if (error)
1766				goto out;
1767
1768			alloc_flags &= ~XFS_ALLOC_FLAG_TRYFLUSH;
1769			goto restart;
1770		}
1771		trace_xfs_alloc_size_neither(args);
1772		args->agbno = NULLAGBLOCK;
1773		goto out;
1774	}
1775
1776alloc_finish:
1777	/* fix up btrees on a successful allocation */
1778	error = xfs_alloc_cur_finish(args, &acur);
1779
1780out:
1781	xfs_alloc_cur_close(&acur, error);
1782	return error;
1783}
1784
1785/*
1786 * Allocate a variable extent anywhere in the allocation group agno.
1787 * Extent's length (returned in len) will be between minlen and maxlen,
1788 * and of the form k * prod + mod unless there's nothing that large.
1789 * Return the starting a.g. block, or NULLAGBLOCK if we can't do it.
1790 */
1791static int
1792xfs_alloc_ag_vextent_size(
1793	struct xfs_alloc_arg	*args,
1794	uint32_t		alloc_flags)
1795{
1796	struct xfs_agf		*agf = args->agbp->b_addr;
1797	struct xfs_btree_cur	*bno_cur;
1798	struct xfs_btree_cur	*cnt_cur;
1799	xfs_agblock_t		fbno;		/* start of found freespace */
1800	xfs_extlen_t		flen;		/* length of found freespace */
1801	xfs_agblock_t		rbno;		/* returned block number */
1802	xfs_extlen_t		rlen;		/* length of returned extent */
1803	bool			busy;
1804	unsigned		busy_gen;
1805	int			error;
1806	int			i;
1807
1808	/* Retry once quickly if we find busy extents before blocking. */
1809	alloc_flags |= XFS_ALLOC_FLAG_TRYFLUSH;
1810restart:
1811	/*
1812	 * Allocate and initialize a cursor for the by-size btree.
1813	 */
1814	cnt_cur = xfs_cntbt_init_cursor(args->mp, args->tp, args->agbp,
1815					args->pag);
1816	bno_cur = NULL;
1817
1818	/*
1819	 * Look for an entry >= maxlen+alignment-1 blocks.
1820	 */
1821	if ((error = xfs_alloc_lookup_ge(cnt_cur, 0,
1822			args->maxlen + args->alignment - 1, &i)))
1823		goto error0;
1824
1825	/*
1826	 * If none then we have to settle for a smaller extent. In the case that
1827	 * there are no large extents, this will return the last entry in the
1828	 * tree unless the tree is empty. In the case that there are only busy
1829	 * large extents, this will return the largest small extent unless there
1830	 * are no smaller extents available.
1831	 */
1832	if (!i) {
1833		error = xfs_alloc_ag_vextent_small(args, cnt_cur,
1834						   &fbno, &flen, &i);
1835		if (error)
1836			goto error0;
1837		if (i == 0 || flen == 0) {
1838			xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1839			trace_xfs_alloc_size_noentry(args);
1840			return 0;
1841		}
1842		ASSERT(i == 1);
1843		busy = xfs_alloc_compute_aligned(args, fbno, flen, &rbno,
1844				&rlen, &busy_gen);
1845	} else {
1846		/*
1847		 * Search for a non-busy extent that is large enough.
1848		 */
1849		for (;;) {
1850			error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen, &i);
1851			if (error)
1852				goto error0;
1853			if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1854				xfs_btree_mark_sick(cnt_cur);
1855				error = -EFSCORRUPTED;
1856				goto error0;
1857			}
1858
1859			busy = xfs_alloc_compute_aligned(args, fbno, flen,
1860					&rbno, &rlen, &busy_gen);
1861
1862			if (rlen >= args->maxlen)
1863				break;
1864
1865			error = xfs_btree_increment(cnt_cur, 0, &i);
1866			if (error)
1867				goto error0;
1868			if (i)
1869				continue;
1870
1871			/*
1872			 * Our only valid extents must have been busy. Flush and
1873			 * retry the allocation again. If we get an -EAGAIN
1874			 * error, we're being told that a deadlock was avoided
1875			 * and the current transaction needs committing before
1876			 * the allocation can be retried.
1877			 */
1878			trace_xfs_alloc_size_busy(args);
1879			error = xfs_extent_busy_flush(args->tp,
1880					pag_group(args->pag), busy_gen,
1881					alloc_flags);
1882			if (error)
1883				goto error0;
1884
1885			alloc_flags &= ~XFS_ALLOC_FLAG_TRYFLUSH;
1886			xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1887			goto restart;
1888		}
1889	}
1890
1891	/*
1892	 * In the first case above, we got the last entry in the
1893	 * by-size btree.  Now we check to see if the space hits maxlen
1894	 * once aligned; if not, we search left for something better.
1895	 * This can't happen in the second case above.
1896	 */
1897	rlen = XFS_EXTLEN_MIN(args->maxlen, rlen);
1898	if (XFS_IS_CORRUPT(args->mp,
1899			   rlen != 0 &&
1900			   (rlen > flen ||
1901			    rbno + rlen > fbno + flen))) {
1902		xfs_btree_mark_sick(cnt_cur);
1903		error = -EFSCORRUPTED;
1904		goto error0;
1905	}
1906	if (rlen < args->maxlen) {
1907		xfs_agblock_t	bestfbno;
1908		xfs_extlen_t	bestflen;
1909		xfs_agblock_t	bestrbno;
1910		xfs_extlen_t	bestrlen;
1911
1912		bestrlen = rlen;
1913		bestrbno = rbno;
1914		bestflen = flen;
1915		bestfbno = fbno;
1916		for (;;) {
1917			if ((error = xfs_btree_decrement(cnt_cur, 0, &i)))
1918				goto error0;
1919			if (i == 0)
1920				break;
1921			if ((error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen,
1922					&i)))
1923				goto error0;
1924			if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1925				xfs_btree_mark_sick(cnt_cur);
1926				error = -EFSCORRUPTED;
1927				goto error0;
1928			}
1929			if (flen <= bestrlen)
1930				break;
1931			busy = xfs_alloc_compute_aligned(args, fbno, flen,
1932					&rbno, &rlen, &busy_gen);
1933			rlen = XFS_EXTLEN_MIN(args->maxlen, rlen);
1934			if (XFS_IS_CORRUPT(args->mp,
1935					   rlen != 0 &&
1936					   (rlen > flen ||
1937					    rbno + rlen > fbno + flen))) {
1938				xfs_btree_mark_sick(cnt_cur);
1939				error = -EFSCORRUPTED;
1940				goto error0;
1941			}
1942			if (rlen > bestrlen) {
1943				bestrlen = rlen;
1944				bestrbno = rbno;
1945				bestflen = flen;
1946				bestfbno = fbno;
1947				if (rlen == args->maxlen)
1948					break;
1949			}
1950		}
1951		if ((error = xfs_alloc_lookup_eq(cnt_cur, bestfbno, bestflen,
1952				&i)))
1953			goto error0;
1954		if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1955			xfs_btree_mark_sick(cnt_cur);
1956			error = -EFSCORRUPTED;
1957			goto error0;
1958		}
1959		rlen = bestrlen;
1960		rbno = bestrbno;
1961		flen = bestflen;
1962		fbno = bestfbno;
1963	}
1964	args->wasfromfl = 0;
1965	/*
1966	 * Fix up the length.
1967	 */
1968	args->len = rlen;
1969	if (rlen < args->minlen) {
1970		if (busy) {
1971			/*
1972			 * Our only valid extents must have been busy. Flush and
1973			 * retry the allocation again. If we get an -EAGAIN
1974			 * error, we're being told that a deadlock was avoided
1975			 * and the current transaction needs committing before
1976			 * the allocation can be retried.
1977			 */
1978			trace_xfs_alloc_size_busy(args);
1979			error = xfs_extent_busy_flush(args->tp,
1980					pag_group(args->pag), busy_gen,
1981					alloc_flags);
1982			if (error)
1983				goto error0;
1984
1985			alloc_flags &= ~XFS_ALLOC_FLAG_TRYFLUSH;
1986			xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1987			goto restart;
1988		}
1989		goto out_nominleft;
1990	}
1991	xfs_alloc_fix_len(args);
1992
1993	rlen = args->len;
1994	if (XFS_IS_CORRUPT(args->mp, rlen > flen)) {
1995		xfs_btree_mark_sick(cnt_cur);
1996		error = -EFSCORRUPTED;
1997		goto error0;
1998	}
1999	/*
2000	 * Allocate and initialize a cursor for the by-block tree.
2001	 */
2002	bno_cur = xfs_bnobt_init_cursor(args->mp, args->tp, args->agbp,
2003					args->pag);
2004	if ((error = xfs_alloc_fixup_trees(cnt_cur, bno_cur, fbno, flen,
2005			rbno, rlen, XFSA_FIXUP_CNT_OK)))
2006		goto error0;
2007	xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
2008	xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
2009	cnt_cur = bno_cur = NULL;
2010	args->len = rlen;
2011	args->agbno = rbno;
2012	if (XFS_IS_CORRUPT(args->mp,
2013			   args->agbno + args->len >
2014			   be32_to_cpu(agf->agf_length))) {
2015		xfs_ag_mark_sick(args->pag, XFS_SICK_AG_BNOBT);
2016		error = -EFSCORRUPTED;
2017		goto error0;
2018	}
2019	trace_xfs_alloc_size_done(args);
2020	return 0;
2021
2022error0:
2023	trace_xfs_alloc_size_error(args);
2024	if (cnt_cur)
2025		xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR);
2026	if (bno_cur)
2027		xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR);
2028	return error;
2029
2030out_nominleft:
2031	xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
2032	trace_xfs_alloc_size_nominleft(args);
2033	args->agbno = NULLAGBLOCK;
2034	return 0;
2035}
2036
2037/*
2038 * Free the extent starting at agno/bno for length.
2039 */
2040int
2041xfs_free_ag_extent(
2042	struct xfs_trans		*tp,
2043	struct xfs_buf			*agbp,
 
2044	xfs_agblock_t			bno,
2045	xfs_extlen_t			len,
2046	const struct xfs_owner_info	*oinfo,
2047	enum xfs_ag_resv_type		type)
2048{
2049	struct xfs_mount		*mp;
2050	struct xfs_btree_cur		*bno_cur;
2051	struct xfs_btree_cur		*cnt_cur;
2052	xfs_agblock_t			gtbno; /* start of right neighbor */
2053	xfs_extlen_t			gtlen; /* length of right neighbor */
2054	xfs_agblock_t			ltbno; /* start of left neighbor */
2055	xfs_extlen_t			ltlen; /* length of left neighbor */
2056	xfs_agblock_t			nbno; /* new starting block of freesp */
2057	xfs_extlen_t			nlen; /* new length of freespace */
2058	int				haveleft; /* have a left neighbor */
2059	int				haveright; /* have a right neighbor */
2060	int				i;
2061	int				error;
2062	struct xfs_perag		*pag = agbp->b_pag;
2063	bool				fixup_longest = false;
2064
2065	bno_cur = cnt_cur = NULL;
2066	mp = tp->t_mountp;
2067
2068	if (!xfs_rmap_should_skip_owner_update(oinfo)) {
2069		error = xfs_rmap_free(tp, agbp, pag, bno, len, oinfo);
2070		if (error)
2071			goto error0;
2072	}
2073
2074	/*
2075	 * Allocate and initialize a cursor for the by-block btree.
2076	 */
2077	bno_cur = xfs_bnobt_init_cursor(mp, tp, agbp, pag);
2078	/*
2079	 * Look for a neighboring block on the left (lower block numbers)
2080	 * that is contiguous with this space.
2081	 */
2082	if ((error = xfs_alloc_lookup_le(bno_cur, bno, len, &haveleft)))
2083		goto error0;
2084	if (haveleft) {
2085		/*
2086		 * There is a block to our left.
2087		 */
2088		if ((error = xfs_alloc_get_rec(bno_cur, &ltbno, &ltlen, &i)))
2089			goto error0;
2090		if (XFS_IS_CORRUPT(mp, i != 1)) {
2091			xfs_btree_mark_sick(bno_cur);
2092			error = -EFSCORRUPTED;
2093			goto error0;
2094		}
2095		/*
2096		 * It's not contiguous, though.
2097		 */
2098		if (ltbno + ltlen < bno)
2099			haveleft = 0;
2100		else {
2101			/*
2102			 * If this failure happens the request to free this
2103			 * space was invalid, it's (partly) already free.
2104			 * Very bad.
2105			 */
2106			if (XFS_IS_CORRUPT(mp, ltbno + ltlen > bno)) {
2107				xfs_btree_mark_sick(bno_cur);
2108				error = -EFSCORRUPTED;
2109				goto error0;
2110			}
2111		}
2112	}
2113	/*
2114	 * Look for a neighboring block on the right (higher block numbers)
2115	 * that is contiguous with this space.
2116	 */
2117	if ((error = xfs_btree_increment(bno_cur, 0, &haveright)))
2118		goto error0;
2119	if (haveright) {
2120		/*
2121		 * There is a block to our right.
2122		 */
2123		if ((error = xfs_alloc_get_rec(bno_cur, &gtbno, &gtlen, &i)))
2124			goto error0;
2125		if (XFS_IS_CORRUPT(mp, i != 1)) {
2126			xfs_btree_mark_sick(bno_cur);
2127			error = -EFSCORRUPTED;
2128			goto error0;
2129		}
2130		/*
2131		 * It's not contiguous, though.
2132		 */
2133		if (bno + len < gtbno)
2134			haveright = 0;
2135		else {
2136			/*
2137			 * If this failure happens the request to free this
2138			 * space was invalid, it's (partly) already free.
2139			 * Very bad.
2140			 */
2141			if (XFS_IS_CORRUPT(mp, bno + len > gtbno)) {
2142				xfs_btree_mark_sick(bno_cur);
2143				error = -EFSCORRUPTED;
2144				goto error0;
2145			}
2146		}
2147	}
2148	/*
2149	 * Now allocate and initialize a cursor for the by-size tree.
2150	 */
2151	cnt_cur = xfs_cntbt_init_cursor(mp, tp, agbp, pag);
2152	/*
2153	 * Have both left and right contiguous neighbors.
2154	 * Merge all three into a single free block.
2155	 */
2156	if (haveleft && haveright) {
2157		/*
2158		 * Delete the old by-size entry on the left.
2159		 */
2160		if ((error = xfs_alloc_lookup_eq(cnt_cur, ltbno, ltlen, &i)))
2161			goto error0;
2162		if (XFS_IS_CORRUPT(mp, i != 1)) {
2163			xfs_btree_mark_sick(cnt_cur);
2164			error = -EFSCORRUPTED;
2165			goto error0;
2166		}
2167		if ((error = xfs_btree_delete(cnt_cur, &i)))
2168			goto error0;
2169		if (XFS_IS_CORRUPT(mp, i != 1)) {
2170			xfs_btree_mark_sick(cnt_cur);
2171			error = -EFSCORRUPTED;
2172			goto error0;
2173		}
2174		/*
2175		 * Delete the old by-size entry on the right.
2176		 */
2177		if ((error = xfs_alloc_lookup_eq(cnt_cur, gtbno, gtlen, &i)))
2178			goto error0;
2179		if (XFS_IS_CORRUPT(mp, i != 1)) {
2180			xfs_btree_mark_sick(cnt_cur);
2181			error = -EFSCORRUPTED;
2182			goto error0;
2183		}
2184		if ((error = xfs_btree_delete(cnt_cur, &i)))
2185			goto error0;
2186		if (XFS_IS_CORRUPT(mp, i != 1)) {
2187			xfs_btree_mark_sick(cnt_cur);
2188			error = -EFSCORRUPTED;
2189			goto error0;
2190		}
2191		/*
2192		 * Delete the old by-block entry for the right block.
2193		 */
2194		if ((error = xfs_btree_delete(bno_cur, &i)))
2195			goto error0;
2196		if (XFS_IS_CORRUPT(mp, i != 1)) {
2197			xfs_btree_mark_sick(bno_cur);
2198			error = -EFSCORRUPTED;
2199			goto error0;
2200		}
2201		/*
2202		 * Move the by-block cursor back to the left neighbor.
2203		 */
2204		if ((error = xfs_btree_decrement(bno_cur, 0, &i)))
2205			goto error0;
2206		if (XFS_IS_CORRUPT(mp, i != 1)) {
2207			xfs_btree_mark_sick(bno_cur);
2208			error = -EFSCORRUPTED;
2209			goto error0;
2210		}
2211#ifdef DEBUG
2212		/*
2213		 * Check that this is the right record: delete didn't
2214		 * mangle the cursor.
2215		 */
2216		{
2217			xfs_agblock_t	xxbno;
2218			xfs_extlen_t	xxlen;
2219
2220			if ((error = xfs_alloc_get_rec(bno_cur, &xxbno, &xxlen,
2221					&i)))
2222				goto error0;
2223			if (XFS_IS_CORRUPT(mp,
2224					   i != 1 ||
2225					   xxbno != ltbno ||
2226					   xxlen != ltlen)) {
2227				xfs_btree_mark_sick(bno_cur);
2228				error = -EFSCORRUPTED;
2229				goto error0;
2230			}
2231		}
2232#endif
2233		/*
2234		 * Update remaining by-block entry to the new, joined block.
2235		 */
2236		nbno = ltbno;
2237		nlen = len + ltlen + gtlen;
2238		if ((error = xfs_alloc_update(bno_cur, nbno, nlen)))
2239			goto error0;
2240	}
2241	/*
2242	 * Have only a left contiguous neighbor.
2243	 * Merge it together with the new freespace.
2244	 */
2245	else if (haveleft) {
2246		/*
2247		 * Delete the old by-size entry on the left.
2248		 */
2249		if ((error = xfs_alloc_lookup_eq(cnt_cur, ltbno, ltlen, &i)))
2250			goto error0;
2251		if (XFS_IS_CORRUPT(mp, i != 1)) {
2252			xfs_btree_mark_sick(cnt_cur);
2253			error = -EFSCORRUPTED;
2254			goto error0;
2255		}
2256		if ((error = xfs_btree_delete(cnt_cur, &i)))
2257			goto error0;
2258		if (XFS_IS_CORRUPT(mp, i != 1)) {
2259			xfs_btree_mark_sick(cnt_cur);
2260			error = -EFSCORRUPTED;
2261			goto error0;
2262		}
2263		/*
2264		 * Back up the by-block cursor to the left neighbor, and
2265		 * update its length.
2266		 */
2267		if ((error = xfs_btree_decrement(bno_cur, 0, &i)))
2268			goto error0;
2269		if (XFS_IS_CORRUPT(mp, i != 1)) {
2270			xfs_btree_mark_sick(bno_cur);
2271			error = -EFSCORRUPTED;
2272			goto error0;
2273		}
2274		nbno = ltbno;
2275		nlen = len + ltlen;
2276		if ((error = xfs_alloc_update(bno_cur, nbno, nlen)))
2277			goto error0;
2278	}
2279	/*
2280	 * Have only a right contiguous neighbor.
2281	 * Merge it together with the new freespace.
2282	 */
2283	else if (haveright) {
2284		/*
2285		 * Delete the old by-size entry on the right.
2286		 */
2287		if ((error = xfs_alloc_lookup_eq(cnt_cur, gtbno, gtlen, &i)))
2288			goto error0;
2289		if (XFS_IS_CORRUPT(mp, i != 1)) {
2290			xfs_btree_mark_sick(cnt_cur);
2291			error = -EFSCORRUPTED;
2292			goto error0;
2293		}
2294		if ((error = xfs_btree_delete(cnt_cur, &i)))
2295			goto error0;
2296		if (XFS_IS_CORRUPT(mp, i != 1)) {
2297			xfs_btree_mark_sick(cnt_cur);
2298			error = -EFSCORRUPTED;
2299			goto error0;
2300		}
2301		/*
2302		 * Update the starting block and length of the right
2303		 * neighbor in the by-block tree.
2304		 */
2305		nbno = bno;
2306		nlen = len + gtlen;
2307		if ((error = xfs_alloc_update(bno_cur, nbno, nlen)))
2308			goto error0;
2309	}
2310	/*
2311	 * No contiguous neighbors.
2312	 * Insert the new freespace into the by-block tree.
2313	 */
2314	else {
2315		nbno = bno;
2316		nlen = len;
2317		if ((error = xfs_btree_insert(bno_cur, &i)))
2318			goto error0;
2319		if (XFS_IS_CORRUPT(mp, i != 1)) {
2320			xfs_btree_mark_sick(bno_cur);
2321			error = -EFSCORRUPTED;
2322			goto error0;
2323		}
2324	}
2325	xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
2326	bno_cur = NULL;
2327
2328	/*
2329	 * In all cases we need to insert the new freespace in the by-size tree.
2330	 *
2331	 * If this new freespace is being inserted in the block that contains
2332	 * the largest free space in the btree, make sure we also fix up the
2333	 * agf->agf-longest tracker field.
2334	 */
2335	if ((error = xfs_alloc_lookup_eq(cnt_cur, nbno, nlen, &i)))
2336		goto error0;
2337	if (XFS_IS_CORRUPT(mp, i != 0)) {
2338		xfs_btree_mark_sick(cnt_cur);
2339		error = -EFSCORRUPTED;
2340		goto error0;
2341	}
2342	if (xfs_alloc_cursor_at_lastrec(cnt_cur))
2343		fixup_longest = true;
2344	if ((error = xfs_btree_insert(cnt_cur, &i)))
2345		goto error0;
2346	if (XFS_IS_CORRUPT(mp, i != 1)) {
2347		xfs_btree_mark_sick(cnt_cur);
2348		error = -EFSCORRUPTED;
2349		goto error0;
2350	}
2351	if (fixup_longest) {
2352		error = xfs_alloc_fixup_longest(cnt_cur);
2353		if (error)
2354			goto error0;
2355	}
2356
2357	xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
2358	cnt_cur = NULL;
2359
2360	/*
2361	 * Update the freespace totals in the ag and superblock.
2362	 */
2363	error = xfs_alloc_update_counters(tp, agbp, len);
2364	xfs_ag_resv_free_extent(pag, type, tp, len);
2365	if (error)
2366		goto error0;
2367
2368	XFS_STATS_INC(mp, xs_freex);
2369	XFS_STATS_ADD(mp, xs_freeb, len);
2370
2371	trace_xfs_free_extent(pag, bno, len, type, haveleft, haveright);
2372
2373	return 0;
2374
2375 error0:
2376	trace_xfs_free_extent(pag, bno, len, type, -1, -1);
2377	if (bno_cur)
2378		xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR);
2379	if (cnt_cur)
2380		xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR);
2381	return error;
2382}
2383
2384/*
2385 * Visible (exported) allocation/free functions.
2386 * Some of these are used just by xfs_alloc_btree.c and this file.
2387 */
2388
2389/*
2390 * Compute and fill in value of m_alloc_maxlevels.
2391 */
2392void
2393xfs_alloc_compute_maxlevels(
2394	xfs_mount_t	*mp)	/* file system mount structure */
2395{
2396	mp->m_alloc_maxlevels = xfs_btree_compute_maxlevels(mp->m_alloc_mnr,
2397			(mp->m_sb.sb_agblocks + 1) / 2);
2398	ASSERT(mp->m_alloc_maxlevels <= xfs_allocbt_maxlevels_ondisk());
2399}
2400
2401/*
2402 * Find the length of the longest extent in an AG.  The 'need' parameter
2403 * specifies how much space we're going to need for the AGFL and the
2404 * 'reserved' parameter tells us how many blocks in this AG are reserved for
2405 * other callers.
2406 */
2407xfs_extlen_t
2408xfs_alloc_longest_free_extent(
2409	struct xfs_perag	*pag,
2410	xfs_extlen_t		need,
2411	xfs_extlen_t		reserved)
2412{
2413	xfs_extlen_t		delta = 0;
2414
2415	/*
2416	 * If the AGFL needs a recharge, we'll have to subtract that from the
2417	 * longest extent.
2418	 */
2419	if (need > pag->pagf_flcount)
2420		delta = need - pag->pagf_flcount;
2421
2422	/*
2423	 * If we cannot maintain others' reservations with space from the
2424	 * not-longest freesp extents, we'll have to subtract /that/ from
2425	 * the longest extent too.
2426	 */
2427	if (pag->pagf_freeblks - pag->pagf_longest < reserved)
2428		delta += reserved - (pag->pagf_freeblks - pag->pagf_longest);
2429
2430	/*
2431	 * If the longest extent is long enough to satisfy all the
2432	 * reservations and AGFL rules in place, we can return this extent.
2433	 */
2434	if (pag->pagf_longest > delta)
2435		return min_t(xfs_extlen_t, pag_mount(pag)->m_ag_max_usable,
2436				pag->pagf_longest - delta);
2437
2438	/* Otherwise, let the caller try for 1 block if there's space. */
2439	return pag->pagf_flcount > 0 || pag->pagf_longest > 0;
2440}
2441
2442/*
2443 * Compute the minimum length of the AGFL in the given AG.  If @pag is NULL,
2444 * return the largest possible minimum length.
2445 */
2446unsigned int
2447xfs_alloc_min_freelist(
2448	struct xfs_mount	*mp,
2449	struct xfs_perag	*pag)
2450{
2451	/* AG btrees have at least 1 level. */
2452	const unsigned int	bno_level = pag ? pag->pagf_bno_level : 1;
2453	const unsigned int	cnt_level = pag ? pag->pagf_cnt_level : 1;
2454	const unsigned int	rmap_level = pag ? pag->pagf_rmap_level : 1;
2455	unsigned int		min_free;
2456
2457	ASSERT(mp->m_alloc_maxlevels > 0);
2458
2459	/*
2460	 * For a btree shorter than the maximum height, the worst case is that
2461	 * every level gets split and a new level is added, then while inserting
2462	 * another entry to refill the AGFL, every level under the old root gets
2463	 * split again. This is:
2464	 *
2465	 *   (full height split reservation) + (AGFL refill split height)
2466	 * = (current height + 1) + (current height - 1)
2467	 * = (new height) + (new height - 2)
2468	 * = 2 * new height - 2
2469	 *
2470	 * For a btree of maximum height, the worst case is that every level
2471	 * under the root gets split, then while inserting another entry to
2472	 * refill the AGFL, every level under the root gets split again. This is
2473	 * also:
2474	 *
2475	 *   2 * (current height - 1)
2476	 * = 2 * (new height - 1)
2477	 * = 2 * new height - 2
2478	 */
2479
2480	/* space needed by-bno freespace btree */
2481	min_free = min(bno_level + 1, mp->m_alloc_maxlevels) * 2 - 2;
 
2482	/* space needed by-size freespace btree */
2483	min_free += min(cnt_level + 1, mp->m_alloc_maxlevels) * 2 - 2;
 
2484	/* space needed reverse mapping used space btree */
2485	if (xfs_has_rmapbt(mp))
2486		min_free += min(rmap_level + 1, mp->m_rmap_maxlevels) * 2 - 2;
 
 
2487	return min_free;
2488}
2489
2490/*
2491 * Check if the operation we are fixing up the freelist for should go ahead or
2492 * not. If we are freeing blocks, we always allow it, otherwise the allocation
2493 * is dependent on whether the size and shape of free space available will
2494 * permit the requested allocation to take place.
2495 */
2496static bool
2497xfs_alloc_space_available(
2498	struct xfs_alloc_arg	*args,
2499	xfs_extlen_t		min_free,
2500	int			flags)
2501{
2502	struct xfs_perag	*pag = args->pag;
2503	xfs_extlen_t		alloc_len, longest;
2504	xfs_extlen_t		reservation; /* blocks that are still reserved */
2505	int			available;
2506	xfs_extlen_t		agflcount;
2507
2508	if (flags & XFS_ALLOC_FLAG_FREEING)
2509		return true;
2510
2511	reservation = xfs_ag_resv_needed(pag, args->resv);
2512
2513	/* do we have enough contiguous free space for the allocation? */
2514	alloc_len = args->minlen + (args->alignment - 1) + args->minalignslop;
2515	longest = xfs_alloc_longest_free_extent(pag, min_free, reservation);
2516	if (longest < alloc_len)
2517		return false;
2518
2519	/*
2520	 * Do we have enough free space remaining for the allocation? Don't
2521	 * account extra agfl blocks because we are about to defer free them,
2522	 * making them unavailable until the current transaction commits.
2523	 */
2524	agflcount = min_t(xfs_extlen_t, pag->pagf_flcount, min_free);
2525	available = (int)(pag->pagf_freeblks + agflcount -
2526			  reservation - min_free - args->minleft);
2527	if (available < (int)max(args->total, alloc_len))
2528		return false;
2529
2530	/*
2531	 * Clamp maxlen to the amount of free space available for the actual
2532	 * extent allocation.
2533	 */
2534	if (available < (int)args->maxlen && !(flags & XFS_ALLOC_FLAG_CHECK)) {
2535		args->maxlen = available;
2536		ASSERT(args->maxlen > 0);
2537		ASSERT(args->maxlen >= args->minlen);
2538	}
2539
2540	return true;
2541}
2542
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2543/*
2544 * Check the agfl fields of the agf for inconsistency or corruption.
2545 *
2546 * The original purpose was to detect an agfl header padding mismatch between
2547 * current and early v5 kernels. This problem manifests as a 1-slot size
2548 * difference between the on-disk flcount and the active [first, last] range of
2549 * a wrapped agfl.
2550 *
2551 * However, we need to use these same checks to catch agfl count corruptions
2552 * unrelated to padding. This could occur on any v4 or v5 filesystem, so either
2553 * way, we need to reset the agfl and warn the user.
2554 *
2555 * Return true if a reset is required before the agfl can be used, false
2556 * otherwise.
2557 */
2558static bool
2559xfs_agfl_needs_reset(
2560	struct xfs_mount	*mp,
2561	struct xfs_agf		*agf)
2562{
2563	uint32_t		f = be32_to_cpu(agf->agf_flfirst);
2564	uint32_t		l = be32_to_cpu(agf->agf_fllast);
2565	uint32_t		c = be32_to_cpu(agf->agf_flcount);
2566	int			agfl_size = xfs_agfl_size(mp);
2567	int			active;
2568
2569	/*
2570	 * The agf read verifier catches severe corruption of these fields.
2571	 * Repeat some sanity checks to cover a packed -> unpacked mismatch if
2572	 * the verifier allows it.
2573	 */
2574	if (f >= agfl_size || l >= agfl_size)
2575		return true;
2576	if (c > agfl_size)
2577		return true;
2578
2579	/*
2580	 * Check consistency between the on-disk count and the active range. An
2581	 * agfl padding mismatch manifests as an inconsistent flcount.
2582	 */
2583	if (c && l >= f)
2584		active = l - f + 1;
2585	else if (c)
2586		active = agfl_size - f + l + 1;
2587	else
2588		active = 0;
2589
2590	return active != c;
2591}
2592
2593/*
2594 * Reset the agfl to an empty state. Ignore/drop any existing blocks since the
2595 * agfl content cannot be trusted. Warn the user that a repair is required to
2596 * recover leaked blocks.
2597 *
2598 * The purpose of this mechanism is to handle filesystems affected by the agfl
2599 * header padding mismatch problem. A reset keeps the filesystem online with a
2600 * relatively minor free space accounting inconsistency rather than suffer the
2601 * inevitable crash from use of an invalid agfl block.
2602 */
2603static void
2604xfs_agfl_reset(
2605	struct xfs_trans	*tp,
2606	struct xfs_buf		*agbp,
2607	struct xfs_perag	*pag)
2608{
2609	struct xfs_mount	*mp = tp->t_mountp;
2610	struct xfs_agf		*agf = agbp->b_addr;
2611
2612	ASSERT(xfs_perag_agfl_needs_reset(pag));
2613	trace_xfs_agfl_reset(mp, agf, 0, _RET_IP_);
2614
2615	xfs_warn(mp,
2616	       "WARNING: Reset corrupted AGFL on AG %u. %d blocks leaked. "
2617	       "Please unmount and run xfs_repair.",
2618		pag_agno(pag), pag->pagf_flcount);
2619
2620	agf->agf_flfirst = 0;
2621	agf->agf_fllast = cpu_to_be32(xfs_agfl_size(mp) - 1);
2622	agf->agf_flcount = 0;
2623	xfs_alloc_log_agf(tp, agbp, XFS_AGF_FLFIRST | XFS_AGF_FLLAST |
2624				    XFS_AGF_FLCOUNT);
2625
2626	pag->pagf_flcount = 0;
2627	clear_bit(XFS_AGSTATE_AGFL_NEEDS_RESET, &pag->pag_opstate);
2628}
2629
2630/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2631 * Add the extent to the list of extents to be free at transaction end.
2632 * The list is maintained sorted (by block number).
2633 */
2634static int
2635xfs_defer_extent_free(
2636	struct xfs_trans		*tp,
2637	xfs_fsblock_t			bno,
2638	xfs_filblks_t			len,
2639	const struct xfs_owner_info	*oinfo,
2640	enum xfs_ag_resv_type		type,
2641	unsigned int			free_flags,
2642	struct xfs_defer_pending	**dfpp)
2643{
2644	struct xfs_extent_free_item	*xefi;
2645	struct xfs_mount		*mp = tp->t_mountp;
 
 
 
2646
 
 
2647	ASSERT(len <= XFS_MAX_BMBT_EXTLEN);
2648	ASSERT(!isnullstartblock(bno));
2649	ASSERT(!(free_flags & ~XFS_FREE_EXTENT_ALL_FLAGS));
 
 
 
 
 
 
 
 
2650
2651	if (free_flags & XFS_FREE_EXTENT_REALTIME) {
2652		if (type != XFS_AG_RESV_NONE) {
2653			ASSERT(type == XFS_AG_RESV_NONE);
2654			return -EFSCORRUPTED;
2655		}
2656		if (XFS_IS_CORRUPT(mp, !xfs_verify_rtbext(mp, bno, len)))
2657			return -EFSCORRUPTED;
2658	} else {
2659		if (XFS_IS_CORRUPT(mp, !xfs_verify_fsbext(mp, bno, len)))
2660			return -EFSCORRUPTED;
2661	}
2662
2663	xefi = kmem_cache_zalloc(xfs_extfree_item_cache,
2664			       GFP_KERNEL | __GFP_NOFAIL);
2665	xefi->xefi_startblock = bno;
2666	xefi->xefi_blockcount = (xfs_extlen_t)len;
2667	xefi->xefi_agresv = type;
2668	if (free_flags & XFS_FREE_EXTENT_SKIP_DISCARD)
2669		xefi->xefi_flags |= XFS_EFI_SKIP_DISCARD;
2670	if (free_flags & XFS_FREE_EXTENT_REALTIME)
2671		xefi->xefi_flags |= XFS_EFI_REALTIME;
2672	if (oinfo) {
2673		ASSERT(oinfo->oi_offset == 0);
2674
2675		if (oinfo->oi_flags & XFS_OWNER_INFO_ATTR_FORK)
2676			xefi->xefi_flags |= XFS_EFI_ATTR_FORK;
2677		if (oinfo->oi_flags & XFS_OWNER_INFO_BMBT_BLOCK)
2678			xefi->xefi_flags |= XFS_EFI_BMBT_BLOCK;
2679		xefi->xefi_owner = oinfo->oi_owner;
2680	} else {
2681		xefi->xefi_owner = XFS_RMAP_OWN_NULL;
2682	}
 
 
 
2683
2684	xfs_extent_free_defer_add(tp, xefi, dfpp);
 
2685	return 0;
2686}
2687
2688int
2689xfs_free_extent_later(
2690	struct xfs_trans		*tp,
2691	xfs_fsblock_t			bno,
2692	xfs_filblks_t			len,
2693	const struct xfs_owner_info	*oinfo,
2694	enum xfs_ag_resv_type		type,
2695	unsigned int			free_flags)
2696{
2697	struct xfs_defer_pending	*dontcare = NULL;
2698
2699	return xfs_defer_extent_free(tp, bno, len, oinfo, type, free_flags,
2700			&dontcare);
2701}
2702
2703/*
2704 * Set up automatic freeing of unwritten space in the filesystem.
2705 *
2706 * This function attached a paused deferred extent free item to the
2707 * transaction.  Pausing means that the EFI will be logged in the next
2708 * transaction commit, but the pending EFI will not be finished until the
2709 * pending item is unpaused.
2710 *
2711 * If the system goes down after the EFI has been persisted to the log but
2712 * before the pending item is unpaused, log recovery will find the EFI, fail to
2713 * find the EFD, and free the space.
2714 *
2715 * If the pending item is unpaused, the next transaction commit will log an EFD
2716 * without freeing the space.
2717 *
2718 * Caller must ensure that the tp, fsbno, len, oinfo, and resv flags of the
2719 * @args structure are set to the relevant values.
2720 */
2721int
2722xfs_alloc_schedule_autoreap(
2723	const struct xfs_alloc_arg	*args,
2724	unsigned int			free_flags,
2725	struct xfs_alloc_autoreap	*aarp)
2726{
2727	int				error;
2728
2729	error = xfs_defer_extent_free(args->tp, args->fsbno, args->len,
2730			&args->oinfo, args->resv, free_flags, &aarp->dfp);
2731	if (error)
2732		return error;
2733
2734	xfs_defer_item_pause(args->tp, aarp->dfp);
2735	return 0;
2736}
2737
2738/*
2739 * Cancel automatic freeing of unwritten space in the filesystem.
2740 *
2741 * Earlier, we created a paused deferred extent free item and attached it to
2742 * this transaction so that we could automatically roll back a new space
2743 * allocation if the system went down.  Now we want to cancel the paused work
2744 * item by marking the EFI stale so we don't actually free the space, unpausing
2745 * the pending item and logging an EFD.
2746 *
2747 * The caller generally should have already mapped the space into the ondisk
2748 * filesystem.  If the reserved space was partially used, the caller must call
2749 * xfs_free_extent_later to create a new EFI to free the unused space.
2750 */
2751void
2752xfs_alloc_cancel_autoreap(
2753	struct xfs_trans		*tp,
2754	struct xfs_alloc_autoreap	*aarp)
2755{
2756	struct xfs_defer_pending	*dfp = aarp->dfp;
2757	struct xfs_extent_free_item	*xefi;
2758
2759	if (!dfp)
2760		return;
2761
2762	list_for_each_entry(xefi, &dfp->dfp_work, xefi_list)
2763		xefi->xefi_flags |= XFS_EFI_CANCELLED;
2764
2765	xfs_defer_item_unpause(tp, dfp);
2766}
2767
2768/*
2769 * Commit automatic freeing of unwritten space in the filesystem.
2770 *
2771 * This unpauses an earlier _schedule_autoreap and commits to freeing the
2772 * allocated space.  Call this if none of the reserved space was used.
2773 */
2774void
2775xfs_alloc_commit_autoreap(
2776	struct xfs_trans		*tp,
2777	struct xfs_alloc_autoreap	*aarp)
2778{
2779	if (aarp->dfp)
2780		xfs_defer_item_unpause(tp, aarp->dfp);
2781}
2782
 
2783/*
2784 * Check if an AGF has a free extent record whose length is equal to
2785 * args->minlen.
2786 */
2787STATIC int
2788xfs_exact_minlen_extent_available(
2789	struct xfs_alloc_arg	*args,
2790	struct xfs_buf		*agbp,
2791	int			*stat)
2792{
2793	struct xfs_btree_cur	*cnt_cur;
2794	xfs_agblock_t		fbno;
2795	xfs_extlen_t		flen;
2796	int			error = 0;
2797
2798	cnt_cur = xfs_cntbt_init_cursor(args->mp, args->tp, agbp,
2799					args->pag);
2800	error = xfs_alloc_lookup_ge(cnt_cur, 0, args->minlen, stat);
2801	if (error)
2802		goto out;
2803
2804	if (*stat == 0) {
2805		xfs_btree_mark_sick(cnt_cur);
2806		error = -EFSCORRUPTED;
2807		goto out;
2808	}
2809
2810	error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen, stat);
2811	if (error)
2812		goto out;
2813
2814	if (*stat == 1 && flen != args->minlen)
2815		*stat = 0;
2816
2817out:
2818	xfs_btree_del_cursor(cnt_cur, error);
2819
2820	return error;
2821}
 
2822
2823/*
2824 * Decide whether to use this allocation group for this allocation.
2825 * If so, fix up the btree freelist's size.
2826 */
2827int			/* error */
2828xfs_alloc_fix_freelist(
2829	struct xfs_alloc_arg	*args,	/* allocation argument structure */
2830	uint32_t		alloc_flags)
2831{
2832	struct xfs_mount	*mp = args->mp;
2833	struct xfs_perag	*pag = args->pag;
2834	struct xfs_trans	*tp = args->tp;
2835	struct xfs_buf		*agbp = NULL;
2836	struct xfs_buf		*agflbp = NULL;
2837	struct xfs_alloc_arg	targs;	/* local allocation arguments */
2838	xfs_agblock_t		bno;	/* freelist block */
2839	xfs_extlen_t		need;	/* total blocks needed in freelist */
2840	int			error = 0;
2841
2842	/* deferred ops (AGFL block frees) require permanent transactions */
2843	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
2844
2845	if (!xfs_perag_initialised_agf(pag)) {
2846		error = xfs_alloc_read_agf(pag, tp, alloc_flags, &agbp);
2847		if (error) {
2848			/* Couldn't lock the AGF so skip this AG. */
2849			if (error == -EAGAIN)
2850				error = 0;
2851			goto out_no_agbp;
2852		}
2853	}
2854
2855	/*
2856	 * If this is a metadata preferred pag and we are user data then try
2857	 * somewhere else if we are not being asked to try harder at this
2858	 * point
2859	 */
2860	if (xfs_perag_prefers_metadata(pag) &&
2861	    (args->datatype & XFS_ALLOC_USERDATA) &&
2862	    (alloc_flags & XFS_ALLOC_FLAG_TRYLOCK)) {
2863		ASSERT(!(alloc_flags & XFS_ALLOC_FLAG_FREEING));
2864		goto out_agbp_relse;
2865	}
2866
2867	need = xfs_alloc_min_freelist(mp, pag);
2868	if (!xfs_alloc_space_available(args, need, alloc_flags |
2869			XFS_ALLOC_FLAG_CHECK))
2870		goto out_agbp_relse;
2871
2872	/*
2873	 * Get the a.g. freespace buffer.
2874	 * Can fail if we're not blocking on locks, and it's held.
2875	 */
2876	if (!agbp) {
2877		error = xfs_alloc_read_agf(pag, tp, alloc_flags, &agbp);
2878		if (error) {
2879			/* Couldn't lock the AGF so skip this AG. */
2880			if (error == -EAGAIN)
2881				error = 0;
2882			goto out_no_agbp;
2883		}
2884	}
2885
2886	/* reset a padding mismatched agfl before final free space check */
2887	if (xfs_perag_agfl_needs_reset(pag))
2888		xfs_agfl_reset(tp, agbp, pag);
2889
2890	/* If there isn't enough total space or single-extent, reject it. */
2891	need = xfs_alloc_min_freelist(mp, pag);
2892	if (!xfs_alloc_space_available(args, need, alloc_flags))
2893		goto out_agbp_relse;
2894
2895	if (IS_ENABLED(CONFIG_XFS_DEBUG) && args->alloc_minlen_only) {
 
2896		int stat;
2897
2898		error = xfs_exact_minlen_extent_available(args, agbp, &stat);
2899		if (error || !stat)
2900			goto out_agbp_relse;
2901	}
2902
2903	/*
2904	 * Make the freelist shorter if it's too long.
2905	 *
2906	 * Note that from this point onwards, we will always release the agf and
2907	 * agfl buffers on error. This handles the case where we error out and
2908	 * the buffers are clean or may not have been joined to the transaction
2909	 * and hence need to be released manually. If they have been joined to
2910	 * the transaction, then xfs_trans_brelse() will handle them
2911	 * appropriately based on the recursion count and dirty state of the
2912	 * buffer.
2913	 *
2914	 * XXX (dgc): When we have lots of free space, does this buy us
2915	 * anything other than extra overhead when we need to put more blocks
2916	 * back on the free list? Maybe we should only do this when space is
2917	 * getting low or the AGFL is more than half full?
2918	 *
2919	 * The NOSHRINK flag prevents the AGFL from being shrunk if it's too
2920	 * big; the NORMAP flag prevents AGFL expand/shrink operations from
2921	 * updating the rmapbt.  Both flags are used in xfs_repair while we're
2922	 * rebuilding the rmapbt, and neither are used by the kernel.  They're
2923	 * both required to ensure that rmaps are correctly recorded for the
2924	 * regenerated AGFL, bnobt, and cntbt.  See repair/phase5.c and
2925	 * repair/rmap.c in xfsprogs for details.
2926	 */
2927	memset(&targs, 0, sizeof(targs));
2928	/* struct copy below */
2929	if (alloc_flags & XFS_ALLOC_FLAG_NORMAP)
2930		targs.oinfo = XFS_RMAP_OINFO_SKIP_UPDATE;
2931	else
2932		targs.oinfo = XFS_RMAP_OINFO_AG;
2933	while (!(alloc_flags & XFS_ALLOC_FLAG_NOSHRINK) &&
2934			pag->pagf_flcount > need) {
2935		error = xfs_alloc_get_freelist(pag, tp, agbp, &bno, 0);
2936		if (error)
2937			goto out_agbp_relse;
2938
2939		/*
2940		 * Defer the AGFL block free.
2941		 *
2942		 * This helps to prevent log reservation overruns due to too
2943		 * many allocation operations in a transaction. AGFL frees are
2944		 * prone to this problem because for one they are always freed
2945		 * one at a time.  Further, an immediate AGFL block free can
2946		 * cause a btree join and require another block free before the
2947		 * real allocation can proceed.
2948		 * Deferring the free disconnects freeing up the AGFL slot from
2949		 * freeing the block.
2950		 */
2951		error = xfs_free_extent_later(tp, xfs_agbno_to_fsb(pag, bno),
2952				1, &targs.oinfo, XFS_AG_RESV_AGFL, 0);
2953		if (error)
2954			goto out_agbp_relse;
2955	}
2956
2957	targs.tp = tp;
2958	targs.mp = mp;
2959	targs.agbp = agbp;
2960	targs.agno = args->agno;
2961	targs.alignment = targs.minlen = targs.prod = 1;
2962	targs.pag = pag;
2963	error = xfs_alloc_read_agfl(pag, tp, &agflbp);
2964	if (error)
2965		goto out_agbp_relse;
2966
2967	/* Make the freelist longer if it's too short. */
2968	while (pag->pagf_flcount < need) {
2969		targs.agbno = 0;
2970		targs.maxlen = need - pag->pagf_flcount;
2971		targs.resv = XFS_AG_RESV_AGFL;
2972
2973		/* Allocate as many blocks as possible at once. */
2974		error = xfs_alloc_ag_vextent_size(&targs, alloc_flags);
2975		if (error)
2976			goto out_agflbp_relse;
2977
2978		/*
2979		 * Stop if we run out.  Won't happen if callers are obeying
2980		 * the restrictions correctly.  Can happen for free calls
2981		 * on a completely full ag.
2982		 */
2983		if (targs.agbno == NULLAGBLOCK) {
2984			if (alloc_flags & XFS_ALLOC_FLAG_FREEING)
2985				break;
2986			goto out_agflbp_relse;
2987		}
2988
2989		if (!xfs_rmap_should_skip_owner_update(&targs.oinfo)) {
2990			error = xfs_rmap_alloc(tp, agbp, pag,
2991				       targs.agbno, targs.len, &targs.oinfo);
2992			if (error)
2993				goto out_agflbp_relse;
2994		}
2995		error = xfs_alloc_update_counters(tp, agbp,
2996						  -((long)(targs.len)));
2997		if (error)
2998			goto out_agflbp_relse;
2999
3000		/*
3001		 * Put each allocated block on the list.
3002		 */
3003		for (bno = targs.agbno; bno < targs.agbno + targs.len; bno++) {
3004			error = xfs_alloc_put_freelist(pag, tp, agbp,
3005							agflbp, bno, 0);
3006			if (error)
3007				goto out_agflbp_relse;
3008		}
3009	}
3010	xfs_trans_brelse(tp, agflbp);
3011	args->agbp = agbp;
3012	return 0;
3013
3014out_agflbp_relse:
3015	xfs_trans_brelse(tp, agflbp);
3016out_agbp_relse:
3017	if (agbp)
3018		xfs_trans_brelse(tp, agbp);
3019out_no_agbp:
3020	args->agbp = NULL;
3021	return error;
3022}
3023
3024/*
3025 * Get a block from the freelist.
3026 * Returns with the buffer for the block gotten.
3027 */
3028int
3029xfs_alloc_get_freelist(
3030	struct xfs_perag	*pag,
3031	struct xfs_trans	*tp,
3032	struct xfs_buf		*agbp,
3033	xfs_agblock_t		*bnop,
3034	int			btreeblk)
3035{
3036	struct xfs_agf		*agf = agbp->b_addr;
3037	struct xfs_buf		*agflbp;
3038	xfs_agblock_t		bno;
3039	__be32			*agfl_bno;
3040	int			error;
3041	uint32_t		logflags;
3042	struct xfs_mount	*mp = tp->t_mountp;
3043
3044	/*
3045	 * Freelist is empty, give up.
3046	 */
3047	if (!agf->agf_flcount) {
3048		*bnop = NULLAGBLOCK;
3049		return 0;
3050	}
3051	/*
3052	 * Read the array of free blocks.
3053	 */
3054	error = xfs_alloc_read_agfl(pag, tp, &agflbp);
3055	if (error)
3056		return error;
3057
3058
3059	/*
3060	 * Get the block number and update the data structures.
3061	 */
3062	agfl_bno = xfs_buf_to_agfl_bno(agflbp);
3063	bno = be32_to_cpu(agfl_bno[be32_to_cpu(agf->agf_flfirst)]);
3064	if (XFS_IS_CORRUPT(tp->t_mountp, !xfs_verify_agbno(pag, bno)))
3065		return -EFSCORRUPTED;
3066
3067	be32_add_cpu(&agf->agf_flfirst, 1);
3068	xfs_trans_brelse(tp, agflbp);
3069	if (be32_to_cpu(agf->agf_flfirst) == xfs_agfl_size(mp))
3070		agf->agf_flfirst = 0;
3071
3072	ASSERT(!xfs_perag_agfl_needs_reset(pag));
3073	be32_add_cpu(&agf->agf_flcount, -1);
3074	pag->pagf_flcount--;
3075
3076	logflags = XFS_AGF_FLFIRST | XFS_AGF_FLCOUNT;
3077	if (btreeblk) {
3078		be32_add_cpu(&agf->agf_btreeblks, 1);
3079		pag->pagf_btreeblks++;
3080		logflags |= XFS_AGF_BTREEBLKS;
3081	}
3082
3083	xfs_alloc_log_agf(tp, agbp, logflags);
3084	*bnop = bno;
3085
3086	return 0;
3087}
3088
3089/*
3090 * Log the given fields from the agf structure.
3091 */
3092void
3093xfs_alloc_log_agf(
3094	struct xfs_trans	*tp,
3095	struct xfs_buf		*bp,
3096	uint32_t		fields)
3097{
3098	int	first;		/* first byte offset */
3099	int	last;		/* last byte offset */
3100	static const short	offsets[] = {
3101		offsetof(xfs_agf_t, agf_magicnum),
3102		offsetof(xfs_agf_t, agf_versionnum),
3103		offsetof(xfs_agf_t, agf_seqno),
3104		offsetof(xfs_agf_t, agf_length),
3105		offsetof(xfs_agf_t, agf_bno_root),   /* also cnt/rmap root */
3106		offsetof(xfs_agf_t, agf_bno_level),  /* also cnt/rmap levels */
3107		offsetof(xfs_agf_t, agf_flfirst),
3108		offsetof(xfs_agf_t, agf_fllast),
3109		offsetof(xfs_agf_t, agf_flcount),
3110		offsetof(xfs_agf_t, agf_freeblks),
3111		offsetof(xfs_agf_t, agf_longest),
3112		offsetof(xfs_agf_t, agf_btreeblks),
3113		offsetof(xfs_agf_t, agf_uuid),
3114		offsetof(xfs_agf_t, agf_rmap_blocks),
3115		offsetof(xfs_agf_t, agf_refcount_blocks),
3116		offsetof(xfs_agf_t, agf_refcount_root),
3117		offsetof(xfs_agf_t, agf_refcount_level),
3118		/* needed so that we don't log the whole rest of the structure: */
3119		offsetof(xfs_agf_t, agf_spare64),
3120		sizeof(xfs_agf_t)
3121	};
3122
3123	trace_xfs_agf(tp->t_mountp, bp->b_addr, fields, _RET_IP_);
3124
3125	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_AGF_BUF);
3126
3127	xfs_btree_offsets(fields, offsets, XFS_AGF_NUM_BITS, &first, &last);
3128	xfs_trans_log_buf(tp, bp, (uint)first, (uint)last);
3129}
3130
3131/*
3132 * Put the block on the freelist for the allocation group.
3133 */
3134int
3135xfs_alloc_put_freelist(
3136	struct xfs_perag	*pag,
3137	struct xfs_trans	*tp,
3138	struct xfs_buf		*agbp,
3139	struct xfs_buf		*agflbp,
3140	xfs_agblock_t		bno,
3141	int			btreeblk)
3142{
3143	struct xfs_mount	*mp = tp->t_mountp;
3144	struct xfs_agf		*agf = agbp->b_addr;
3145	__be32			*blockp;
3146	int			error;
3147	uint32_t		logflags;
3148	__be32			*agfl_bno;
3149	int			startoff;
3150
3151	if (!agflbp) {
3152		error = xfs_alloc_read_agfl(pag, tp, &agflbp);
3153		if (error)
3154			return error;
3155	}
3156
3157	be32_add_cpu(&agf->agf_fllast, 1);
3158	if (be32_to_cpu(agf->agf_fllast) == xfs_agfl_size(mp))
3159		agf->agf_fllast = 0;
3160
3161	ASSERT(!xfs_perag_agfl_needs_reset(pag));
3162	be32_add_cpu(&agf->agf_flcount, 1);
3163	pag->pagf_flcount++;
3164
3165	logflags = XFS_AGF_FLLAST | XFS_AGF_FLCOUNT;
3166	if (btreeblk) {
3167		be32_add_cpu(&agf->agf_btreeblks, -1);
3168		pag->pagf_btreeblks--;
3169		logflags |= XFS_AGF_BTREEBLKS;
3170	}
3171
 
 
3172	ASSERT(be32_to_cpu(agf->agf_flcount) <= xfs_agfl_size(mp));
3173
3174	agfl_bno = xfs_buf_to_agfl_bno(agflbp);
3175	blockp = &agfl_bno[be32_to_cpu(agf->agf_fllast)];
3176	*blockp = cpu_to_be32(bno);
3177	startoff = (char *)blockp - (char *)agflbp->b_addr;
3178
3179	xfs_alloc_log_agf(tp, agbp, logflags);
3180
3181	xfs_trans_buf_set_type(tp, agflbp, XFS_BLFT_AGFL_BUF);
3182	xfs_trans_log_buf(tp, agflbp, startoff,
3183			  startoff + sizeof(xfs_agblock_t) - 1);
3184	return 0;
3185}
3186
3187/*
3188 * Check that this AGF/AGI header's sequence number and length matches the AG
3189 * number and size in fsblocks.
3190 */
3191xfs_failaddr_t
3192xfs_validate_ag_length(
3193	struct xfs_buf		*bp,
3194	uint32_t		seqno,
3195	uint32_t		length)
3196{
3197	struct xfs_mount	*mp = bp->b_mount;
3198	/*
3199	 * During growfs operations, the perag is not fully initialised,
3200	 * so we can't use it for any useful checking. growfs ensures we can't
3201	 * use it by using uncached buffers that don't have the perag attached
3202	 * so we can detect and avoid this problem.
3203	 */
3204	if (bp->b_pag && seqno != pag_agno(bp->b_pag))
3205		return __this_address;
3206
3207	/*
3208	 * Only the last AG in the filesystem is allowed to be shorter
3209	 * than the AG size recorded in the superblock.
3210	 */
3211	if (length != mp->m_sb.sb_agblocks) {
3212		/*
3213		 * During growfs, the new last AG can get here before we
3214		 * have updated the superblock. Give it a pass on the seqno
3215		 * check.
3216		 */
3217		if (bp->b_pag && seqno != mp->m_sb.sb_agcount - 1)
3218			return __this_address;
3219		if (length < XFS_MIN_AG_BLOCKS)
3220			return __this_address;
3221		if (length > mp->m_sb.sb_agblocks)
3222			return __this_address;
3223	}
3224
3225	return NULL;
3226}
3227
3228/*
3229 * Verify the AGF is consistent.
3230 *
3231 * We do not verify the AGFL indexes in the AGF are fully consistent here
3232 * because of issues with variable on-disk structure sizes. Instead, we check
3233 * the agfl indexes for consistency when we initialise the perag from the AGF
3234 * information after a read completes.
3235 *
3236 * If the index is inconsistent, then we mark the perag as needing an AGFL
3237 * reset. The first AGFL update performed then resets the AGFL indexes and
3238 * refills the AGFL with known good free blocks, allowing the filesystem to
3239 * continue operating normally at the cost of a few leaked free space blocks.
3240 */
3241static xfs_failaddr_t
3242xfs_agf_verify(
3243	struct xfs_buf		*bp)
3244{
3245	struct xfs_mount	*mp = bp->b_mount;
3246	struct xfs_agf		*agf = bp->b_addr;
3247	xfs_failaddr_t		fa;
3248	uint32_t		agf_seqno = be32_to_cpu(agf->agf_seqno);
3249	uint32_t		agf_length = be32_to_cpu(agf->agf_length);
3250
3251	if (xfs_has_crc(mp)) {
3252		if (!uuid_equal(&agf->agf_uuid, &mp->m_sb.sb_meta_uuid))
3253			return __this_address;
3254		if (!xfs_log_check_lsn(mp, be64_to_cpu(agf->agf_lsn)))
3255			return __this_address;
3256	}
3257
3258	if (!xfs_verify_magic(bp, agf->agf_magicnum))
3259		return __this_address;
3260
3261	if (!XFS_AGF_GOOD_VERSION(be32_to_cpu(agf->agf_versionnum)))
3262		return __this_address;
3263
3264	/*
3265	 * Both agf_seqno and agf_length need to validated before anything else
3266	 * block number related in the AGF or AGFL can be checked.
3267	 */
3268	fa = xfs_validate_ag_length(bp, agf_seqno, agf_length);
3269	if (fa)
3270		return fa;
3271
3272	if (be32_to_cpu(agf->agf_flfirst) >= xfs_agfl_size(mp))
3273		return __this_address;
3274	if (be32_to_cpu(agf->agf_fllast) >= xfs_agfl_size(mp))
3275		return __this_address;
3276	if (be32_to_cpu(agf->agf_flcount) > xfs_agfl_size(mp))
3277		return __this_address;
3278
3279	if (be32_to_cpu(agf->agf_freeblks) < be32_to_cpu(agf->agf_longest) ||
3280	    be32_to_cpu(agf->agf_freeblks) > agf_length)
3281		return __this_address;
3282
3283	if (be32_to_cpu(agf->agf_bno_level) < 1 ||
3284	    be32_to_cpu(agf->agf_cnt_level) < 1 ||
3285	    be32_to_cpu(agf->agf_bno_level) > mp->m_alloc_maxlevels ||
3286	    be32_to_cpu(agf->agf_cnt_level) > mp->m_alloc_maxlevels)
 
 
3287		return __this_address;
3288
3289	if (xfs_has_lazysbcount(mp) &&
3290	    be32_to_cpu(agf->agf_btreeblks) > agf_length)
3291		return __this_address;
3292
3293	if (xfs_has_rmapbt(mp)) {
3294		if (be32_to_cpu(agf->agf_rmap_blocks) > agf_length)
3295			return __this_address;
3296
3297		if (be32_to_cpu(agf->agf_rmap_level) < 1 ||
3298		    be32_to_cpu(agf->agf_rmap_level) > mp->m_rmap_maxlevels)
 
3299			return __this_address;
3300	}
3301
3302	if (xfs_has_reflink(mp)) {
3303		if (be32_to_cpu(agf->agf_refcount_blocks) > agf_length)
3304			return __this_address;
3305
3306		if (be32_to_cpu(agf->agf_refcount_level) < 1 ||
3307		    be32_to_cpu(agf->agf_refcount_level) > mp->m_refc_maxlevels)
3308			return __this_address;
3309	}
3310
3311	return NULL;
3312}
3313
3314static void
3315xfs_agf_read_verify(
3316	struct xfs_buf	*bp)
3317{
3318	struct xfs_mount *mp = bp->b_mount;
3319	xfs_failaddr_t	fa;
3320
3321	if (xfs_has_crc(mp) &&
3322	    !xfs_buf_verify_cksum(bp, XFS_AGF_CRC_OFF))
3323		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
3324	else {
3325		fa = xfs_agf_verify(bp);
3326		if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_ALLOC_READ_AGF))
3327			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
3328	}
3329}
3330
3331static void
3332xfs_agf_write_verify(
3333	struct xfs_buf	*bp)
3334{
3335	struct xfs_mount	*mp = bp->b_mount;
3336	struct xfs_buf_log_item	*bip = bp->b_log_item;
3337	struct xfs_agf		*agf = bp->b_addr;
3338	xfs_failaddr_t		fa;
3339
3340	fa = xfs_agf_verify(bp);
3341	if (fa) {
3342		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
3343		return;
3344	}
3345
3346	if (!xfs_has_crc(mp))
3347		return;
3348
3349	if (bip)
3350		agf->agf_lsn = cpu_to_be64(bip->bli_item.li_lsn);
3351
3352	xfs_buf_update_cksum(bp, XFS_AGF_CRC_OFF);
3353}
3354
3355const struct xfs_buf_ops xfs_agf_buf_ops = {
3356	.name = "xfs_agf",
3357	.magic = { cpu_to_be32(XFS_AGF_MAGIC), cpu_to_be32(XFS_AGF_MAGIC) },
3358	.verify_read = xfs_agf_read_verify,
3359	.verify_write = xfs_agf_write_verify,
3360	.verify_struct = xfs_agf_verify,
3361};
3362
3363/*
3364 * Read in the allocation group header (free/alloc section).
3365 */
3366int
3367xfs_read_agf(
3368	struct xfs_perag	*pag,
3369	struct xfs_trans	*tp,
3370	int			flags,
3371	struct xfs_buf		**agfbpp)
3372{
3373	struct xfs_mount	*mp = pag_mount(pag);
3374	int			error;
3375
3376	trace_xfs_read_agf(pag);
3377
3378	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
3379			XFS_AG_DADDR(mp, pag_agno(pag), XFS_AGF_DADDR(mp)),
3380			XFS_FSS_TO_BB(mp, 1), flags, agfbpp, &xfs_agf_buf_ops);
3381	if (xfs_metadata_is_sick(error))
3382		xfs_ag_mark_sick(pag, XFS_SICK_AG_AGF);
3383	if (error)
3384		return error;
3385
3386	xfs_buf_set_ref(*agfbpp, XFS_AGF_REF);
3387	return 0;
3388}
3389
3390/*
3391 * Read in the allocation group header (free/alloc section) and initialise the
3392 * perag structure if necessary. If the caller provides @agfbpp, then return the
3393 * locked buffer to the caller, otherwise free it.
3394 */
3395int
3396xfs_alloc_read_agf(
3397	struct xfs_perag	*pag,
3398	struct xfs_trans	*tp,
3399	int			flags,
3400	struct xfs_buf		**agfbpp)
3401{
3402	struct xfs_mount	*mp = pag_mount(pag);
3403	struct xfs_buf		*agfbp;
3404	struct xfs_agf		*agf;
3405	int			error;
3406	int			allocbt_blks;
3407
3408	trace_xfs_alloc_read_agf(pag);
3409
3410	/* We don't support trylock when freeing. */
3411	ASSERT((flags & (XFS_ALLOC_FLAG_FREEING | XFS_ALLOC_FLAG_TRYLOCK)) !=
3412			(XFS_ALLOC_FLAG_FREEING | XFS_ALLOC_FLAG_TRYLOCK));
3413	error = xfs_read_agf(pag, tp,
3414			(flags & XFS_ALLOC_FLAG_TRYLOCK) ? XBF_TRYLOCK : 0,
3415			&agfbp);
3416	if (error)
3417		return error;
3418
3419	agf = agfbp->b_addr;
3420	if (!xfs_perag_initialised_agf(pag)) {
3421		pag->pagf_freeblks = be32_to_cpu(agf->agf_freeblks);
3422		pag->pagf_btreeblks = be32_to_cpu(agf->agf_btreeblks);
3423		pag->pagf_flcount = be32_to_cpu(agf->agf_flcount);
3424		pag->pagf_longest = be32_to_cpu(agf->agf_longest);
3425		pag->pagf_bno_level = be32_to_cpu(agf->agf_bno_level);
3426		pag->pagf_cnt_level = be32_to_cpu(agf->agf_cnt_level);
3427		pag->pagf_rmap_level = be32_to_cpu(agf->agf_rmap_level);
 
 
 
3428		pag->pagf_refcount_level = be32_to_cpu(agf->agf_refcount_level);
3429		if (xfs_agfl_needs_reset(mp, agf))
3430			set_bit(XFS_AGSTATE_AGFL_NEEDS_RESET, &pag->pag_opstate);
3431		else
3432			clear_bit(XFS_AGSTATE_AGFL_NEEDS_RESET, &pag->pag_opstate);
3433
3434		/*
3435		 * Update the in-core allocbt counter. Filter out the rmapbt
3436		 * subset of the btreeblks counter because the rmapbt is managed
3437		 * by perag reservation. Subtract one for the rmapbt root block
3438		 * because the rmap counter includes it while the btreeblks
3439		 * counter only tracks non-root blocks.
3440		 */
3441		allocbt_blks = pag->pagf_btreeblks;
3442		if (xfs_has_rmapbt(mp))
3443			allocbt_blks -= be32_to_cpu(agf->agf_rmap_blocks) - 1;
3444		if (allocbt_blks > 0)
3445			atomic64_add(allocbt_blks, &mp->m_allocbt_blks);
 
3446
3447		set_bit(XFS_AGSTATE_AGF_INIT, &pag->pag_opstate);
3448	}
3449#ifdef DEBUG
3450	else if (!xfs_is_shutdown(mp)) {
3451		ASSERT(pag->pagf_freeblks == be32_to_cpu(agf->agf_freeblks));
3452		ASSERT(pag->pagf_btreeblks == be32_to_cpu(agf->agf_btreeblks));
3453		ASSERT(pag->pagf_flcount == be32_to_cpu(agf->agf_flcount));
3454		ASSERT(pag->pagf_longest == be32_to_cpu(agf->agf_longest));
3455		ASSERT(pag->pagf_bno_level == be32_to_cpu(agf->agf_bno_level));
3456		ASSERT(pag->pagf_cnt_level == be32_to_cpu(agf->agf_cnt_level));
 
 
3457	}
3458#endif
3459	if (agfbpp)
3460		*agfbpp = agfbp;
3461	else
3462		xfs_trans_brelse(tp, agfbp);
3463	return 0;
3464}
3465
3466/*
3467 * Pre-proces allocation arguments to set initial state that we don't require
3468 * callers to set up correctly, as well as bounds check the allocation args
3469 * that are set up.
3470 */
3471static int
3472xfs_alloc_vextent_check_args(
3473	struct xfs_alloc_arg	*args,
3474	xfs_fsblock_t		target,
3475	xfs_agnumber_t		*minimum_agno)
3476{
3477	struct xfs_mount	*mp = args->mp;
3478	xfs_agblock_t		agsize;
3479
3480	args->fsbno = NULLFSBLOCK;
3481
3482	*minimum_agno = 0;
3483	if (args->tp->t_highest_agno != NULLAGNUMBER)
3484		*minimum_agno = args->tp->t_highest_agno;
3485
3486	/*
3487	 * Just fix this up, for the case where the last a.g. is shorter
3488	 * (or there's only one a.g.) and the caller couldn't easily figure
3489	 * that out (xfs_bmap_alloc).
3490	 */
3491	agsize = mp->m_sb.sb_agblocks;
3492	if (args->maxlen > agsize)
3493		args->maxlen = agsize;
3494	if (args->alignment == 0)
3495		args->alignment = 1;
3496
3497	ASSERT(args->minlen > 0);
3498	ASSERT(args->maxlen > 0);
3499	ASSERT(args->alignment > 0);
3500	ASSERT(args->resv != XFS_AG_RESV_AGFL);
3501
3502	ASSERT(XFS_FSB_TO_AGNO(mp, target) < mp->m_sb.sb_agcount);
3503	ASSERT(XFS_FSB_TO_AGBNO(mp, target) < agsize);
3504	ASSERT(args->minlen <= args->maxlen);
3505	ASSERT(args->minlen <= agsize);
3506	ASSERT(args->mod < args->prod);
3507
3508	if (XFS_FSB_TO_AGNO(mp, target) >= mp->m_sb.sb_agcount ||
3509	    XFS_FSB_TO_AGBNO(mp, target) >= agsize ||
3510	    args->minlen > args->maxlen || args->minlen > agsize ||
3511	    args->mod >= args->prod) {
3512		trace_xfs_alloc_vextent_badargs(args);
3513		return -ENOSPC;
3514	}
3515
3516	if (args->agno != NULLAGNUMBER && *minimum_agno > args->agno) {
3517		trace_xfs_alloc_vextent_skip_deadlock(args);
3518		return -ENOSPC;
3519	}
3520	return 0;
3521
3522}
3523
3524/*
3525 * Prepare an AG for allocation. If the AG is not prepared to accept the
3526 * allocation, return failure.
3527 *
3528 * XXX(dgc): The complexity of "need_pag" will go away as all caller paths are
3529 * modified to hold their own perag references.
3530 */
3531static int
3532xfs_alloc_vextent_prepare_ag(
3533	struct xfs_alloc_arg	*args,
3534	uint32_t		alloc_flags)
3535{
3536	bool			need_pag = !args->pag;
3537	int			error;
3538
3539	if (need_pag)
3540		args->pag = xfs_perag_get(args->mp, args->agno);
3541
3542	args->agbp = NULL;
3543	error = xfs_alloc_fix_freelist(args, alloc_flags);
3544	if (error) {
3545		trace_xfs_alloc_vextent_nofix(args);
3546		if (need_pag)
3547			xfs_perag_put(args->pag);
3548		args->agbno = NULLAGBLOCK;
3549		return error;
3550	}
3551	if (!args->agbp) {
3552		/* cannot allocate in this AG at all */
3553		trace_xfs_alloc_vextent_noagbp(args);
3554		args->agbno = NULLAGBLOCK;
3555		return 0;
3556	}
3557	args->wasfromfl = 0;
3558	return 0;
3559}
3560
3561/*
3562 * Post-process allocation results to account for the allocation if it succeed
3563 * and set the allocated block number correctly for the caller.
3564 *
3565 * XXX: we should really be returning ENOSPC for ENOSPC, not
3566 * hiding it behind a "successful" NULLFSBLOCK allocation.
3567 */
3568static int
3569xfs_alloc_vextent_finish(
3570	struct xfs_alloc_arg	*args,
3571	xfs_agnumber_t		minimum_agno,
3572	int			alloc_error,
3573	bool			drop_perag)
3574{
3575	struct xfs_mount	*mp = args->mp;
3576	int			error = 0;
3577
3578	/*
3579	 * We can end up here with a locked AGF. If we failed, the caller is
3580	 * likely going to try to allocate again with different parameters, and
3581	 * that can widen the AGs that are searched for free space. If we have
3582	 * to do BMBT block allocation, we have to do a new allocation.
3583	 *
3584	 * Hence leaving this function with the AGF locked opens up potential
3585	 * ABBA AGF deadlocks because a future allocation attempt in this
3586	 * transaction may attempt to lock a lower number AGF.
3587	 *
3588	 * We can't release the AGF until the transaction is commited, so at
3589	 * this point we must update the "first allocation" tracker to point at
3590	 * this AG if the tracker is empty or points to a lower AG. This allows
3591	 * the next allocation attempt to be modified appropriately to avoid
3592	 * deadlocks.
3593	 */
3594	if (args->agbp &&
3595	    (args->tp->t_highest_agno == NULLAGNUMBER ||
3596	     args->agno > minimum_agno))
3597		args->tp->t_highest_agno = args->agno;
3598
3599	/*
3600	 * If the allocation failed with an error or we had an ENOSPC result,
3601	 * preserve the returned error whilst also marking the allocation result
3602	 * as "no extent allocated". This ensures that callers that fail to
3603	 * capture the error will still treat it as a failed allocation.
3604	 */
3605	if (alloc_error || args->agbno == NULLAGBLOCK) {
3606		args->fsbno = NULLFSBLOCK;
3607		error = alloc_error;
3608		goto out_drop_perag;
3609	}
3610
3611	args->fsbno = xfs_agbno_to_fsb(args->pag, args->agbno);
3612
3613	ASSERT(args->len >= args->minlen);
3614	ASSERT(args->len <= args->maxlen);
3615	ASSERT(args->agbno % args->alignment == 0);
3616	XFS_AG_CHECK_DADDR(mp, XFS_FSB_TO_DADDR(mp, args->fsbno), args->len);
3617
3618	/* if not file data, insert new block into the reverse map btree */
3619	if (!xfs_rmap_should_skip_owner_update(&args->oinfo)) {
3620		error = xfs_rmap_alloc(args->tp, args->agbp, args->pag,
3621				       args->agbno, args->len, &args->oinfo);
3622		if (error)
3623			goto out_drop_perag;
3624	}
3625
3626	if (!args->wasfromfl) {
3627		error = xfs_alloc_update_counters(args->tp, args->agbp,
3628						  -((long)(args->len)));
3629		if (error)
3630			goto out_drop_perag;
3631
3632		ASSERT(!xfs_extent_busy_search(pag_group(args->pag),
3633				args->agbno, args->len));
3634	}
3635
3636	xfs_ag_resv_alloc_extent(args->pag, args->resv, args);
3637
3638	XFS_STATS_INC(mp, xs_allocx);
3639	XFS_STATS_ADD(mp, xs_allocb, args->len);
3640
3641	trace_xfs_alloc_vextent_finish(args);
3642
3643out_drop_perag:
3644	if (drop_perag && args->pag) {
3645		xfs_perag_rele(args->pag);
3646		args->pag = NULL;
3647	}
3648	return error;
3649}
3650
3651/*
3652 * Allocate within a single AG only. This uses a best-fit length algorithm so if
3653 * you need an exact sized allocation without locality constraints, this is the
3654 * fastest way to do it.
3655 *
3656 * Caller is expected to hold a perag reference in args->pag.
3657 */
3658int
3659xfs_alloc_vextent_this_ag(
3660	struct xfs_alloc_arg	*args,
3661	xfs_agnumber_t		agno)
3662{
 
3663	xfs_agnumber_t		minimum_agno;
3664	uint32_t		alloc_flags = 0;
3665	int			error;
3666
3667	ASSERT(args->pag != NULL);
3668	ASSERT(pag_agno(args->pag) == agno);
3669
3670	args->agno = agno;
3671	args->agbno = 0;
3672
3673	trace_xfs_alloc_vextent_this_ag(args);
3674
3675	error = xfs_alloc_vextent_check_args(args,
3676			xfs_agbno_to_fsb(args->pag, 0), &minimum_agno);
3677	if (error) {
3678		if (error == -ENOSPC)
3679			return 0;
3680		return error;
3681	}
3682
3683	error = xfs_alloc_vextent_prepare_ag(args, alloc_flags);
3684	if (!error && args->agbp)
3685		error = xfs_alloc_ag_vextent_size(args, alloc_flags);
3686
3687	return xfs_alloc_vextent_finish(args, minimum_agno, error, false);
3688}
3689
3690/*
3691 * Iterate all AGs trying to allocate an extent starting from @start_ag.
3692 *
3693 * If the incoming allocation type is XFS_ALLOCTYPE_NEAR_BNO, it means the
3694 * allocation attempts in @start_agno have locality information. If we fail to
3695 * allocate in that AG, then we revert to anywhere-in-AG for all the other AGs
3696 * we attempt to allocation in as there is no locality optimisation possible for
3697 * those allocations.
3698 *
3699 * On return, args->pag may be left referenced if we finish before the "all
3700 * failed" return point. The allocation finish still needs the perag, and
3701 * so the caller will release it once they've finished the allocation.
3702 *
3703 * When we wrap the AG iteration at the end of the filesystem, we have to be
3704 * careful not to wrap into AGs below ones we already have locked in the
3705 * transaction if we are doing a blocking iteration. This will result in an
3706 * out-of-order locking of AGFs and hence can cause deadlocks.
3707 */
3708static int
3709xfs_alloc_vextent_iterate_ags(
3710	struct xfs_alloc_arg	*args,
3711	xfs_agnumber_t		minimum_agno,
3712	xfs_agnumber_t		start_agno,
3713	xfs_agblock_t		target_agbno,
3714	uint32_t		alloc_flags)
3715{
3716	struct xfs_mount	*mp = args->mp;
3717	xfs_agnumber_t		restart_agno = minimum_agno;
3718	xfs_agnumber_t		agno;
3719	int			error = 0;
3720
3721	if (alloc_flags & XFS_ALLOC_FLAG_TRYLOCK)
3722		restart_agno = 0;
3723restart:
3724	for_each_perag_wrap_range(mp, start_agno, restart_agno,
3725			mp->m_sb.sb_agcount, agno, args->pag) {
3726		args->agno = agno;
3727		error = xfs_alloc_vextent_prepare_ag(args, alloc_flags);
3728		if (error)
3729			break;
3730		if (!args->agbp) {
3731			trace_xfs_alloc_vextent_loopfailed(args);
3732			continue;
3733		}
3734
3735		/*
3736		 * Allocation is supposed to succeed now, so break out of the
3737		 * loop regardless of whether we succeed or not.
3738		 */
3739		if (args->agno == start_agno && target_agbno) {
3740			args->agbno = target_agbno;
3741			error = xfs_alloc_ag_vextent_near(args, alloc_flags);
3742		} else {
3743			args->agbno = 0;
3744			error = xfs_alloc_ag_vextent_size(args, alloc_flags);
3745		}
3746		break;
3747	}
3748	if (error) {
3749		xfs_perag_rele(args->pag);
3750		args->pag = NULL;
3751		return error;
3752	}
3753	if (args->agbp)
3754		return 0;
3755
3756	/*
3757	 * We didn't find an AG we can alloation from. If we were given
3758	 * constraining flags by the caller, drop them and retry the allocation
3759	 * without any constraints being set.
3760	 */
3761	if (alloc_flags & XFS_ALLOC_FLAG_TRYLOCK) {
3762		alloc_flags &= ~XFS_ALLOC_FLAG_TRYLOCK;
3763		restart_agno = minimum_agno;
3764		goto restart;
3765	}
3766
3767	ASSERT(args->pag == NULL);
3768	trace_xfs_alloc_vextent_allfailed(args);
3769	return 0;
3770}
3771
3772/*
3773 * Iterate from the AGs from the start AG to the end of the filesystem, trying
3774 * to allocate blocks. It starts with a near allocation attempt in the initial
3775 * AG, then falls back to anywhere-in-ag after the first AG fails. It will wrap
3776 * back to zero if allowed by previous allocations in this transaction,
3777 * otherwise will wrap back to the start AG and run a second blocking pass to
3778 * the end of the filesystem.
3779 */
3780int
3781xfs_alloc_vextent_start_ag(
3782	struct xfs_alloc_arg	*args,
3783	xfs_fsblock_t		target)
3784{
3785	struct xfs_mount	*mp = args->mp;
3786	xfs_agnumber_t		minimum_agno;
3787	xfs_agnumber_t		start_agno;
3788	xfs_agnumber_t		rotorstep = xfs_rotorstep;
3789	bool			bump_rotor = false;
3790	uint32_t		alloc_flags = XFS_ALLOC_FLAG_TRYLOCK;
3791	int			error;
3792
3793	ASSERT(args->pag == NULL);
3794
3795	args->agno = NULLAGNUMBER;
3796	args->agbno = NULLAGBLOCK;
3797
3798	trace_xfs_alloc_vextent_start_ag(args);
3799
3800	error = xfs_alloc_vextent_check_args(args, target, &minimum_agno);
3801	if (error) {
3802		if (error == -ENOSPC)
3803			return 0;
3804		return error;
3805	}
3806
3807	if ((args->datatype & XFS_ALLOC_INITIAL_USER_DATA) &&
3808	    xfs_is_inode32(mp)) {
3809		target = XFS_AGB_TO_FSB(mp,
3810				((mp->m_agfrotor / rotorstep) %
3811				mp->m_sb.sb_agcount), 0);
3812		bump_rotor = 1;
3813	}
3814
3815	start_agno = max(minimum_agno, XFS_FSB_TO_AGNO(mp, target));
3816	error = xfs_alloc_vextent_iterate_ags(args, minimum_agno, start_agno,
3817			XFS_FSB_TO_AGBNO(mp, target), alloc_flags);
3818
3819	if (bump_rotor) {
3820		if (args->agno == start_agno)
3821			mp->m_agfrotor = (mp->m_agfrotor + 1) %
3822				(mp->m_sb.sb_agcount * rotorstep);
3823		else
3824			mp->m_agfrotor = (args->agno * rotorstep + 1) %
3825				(mp->m_sb.sb_agcount * rotorstep);
3826	}
3827
3828	return xfs_alloc_vextent_finish(args, minimum_agno, error, true);
3829}
3830
3831/*
3832 * Iterate from the agno indicated via @target through to the end of the
3833 * filesystem attempting blocking allocation. This does not wrap or try a second
3834 * pass, so will not recurse into AGs lower than indicated by the target.
3835 */
3836int
3837xfs_alloc_vextent_first_ag(
3838	struct xfs_alloc_arg	*args,
3839	xfs_fsblock_t		target)
3840 {
3841	struct xfs_mount	*mp = args->mp;
3842	xfs_agnumber_t		minimum_agno;
3843	xfs_agnumber_t		start_agno;
3844	uint32_t		alloc_flags = XFS_ALLOC_FLAG_TRYLOCK;
3845	int			error;
3846
3847	ASSERT(args->pag == NULL);
3848
3849	args->agno = NULLAGNUMBER;
3850	args->agbno = NULLAGBLOCK;
3851
3852	trace_xfs_alloc_vextent_first_ag(args);
3853
3854	error = xfs_alloc_vextent_check_args(args, target, &minimum_agno);
3855	if (error) {
3856		if (error == -ENOSPC)
3857			return 0;
3858		return error;
3859	}
3860
3861	start_agno = max(minimum_agno, XFS_FSB_TO_AGNO(mp, target));
3862	error = xfs_alloc_vextent_iterate_ags(args, minimum_agno, start_agno,
3863			XFS_FSB_TO_AGBNO(mp, target), alloc_flags);
3864	return xfs_alloc_vextent_finish(args, minimum_agno, error, true);
3865}
3866
3867/*
3868 * Allocate at the exact block target or fail. Caller is expected to hold a
3869 * perag reference in args->pag.
3870 */
3871int
3872xfs_alloc_vextent_exact_bno(
3873	struct xfs_alloc_arg	*args,
3874	xfs_fsblock_t		target)
3875{
3876	struct xfs_mount	*mp = args->mp;
3877	xfs_agnumber_t		minimum_agno;
3878	int			error;
3879
3880	ASSERT(args->pag != NULL);
3881	ASSERT(pag_agno(args->pag) == XFS_FSB_TO_AGNO(mp, target));
3882
3883	args->agno = XFS_FSB_TO_AGNO(mp, target);
3884	args->agbno = XFS_FSB_TO_AGBNO(mp, target);
3885
3886	trace_xfs_alloc_vextent_exact_bno(args);
3887
3888	error = xfs_alloc_vextent_check_args(args, target, &minimum_agno);
3889	if (error) {
3890		if (error == -ENOSPC)
3891			return 0;
3892		return error;
3893	}
3894
3895	error = xfs_alloc_vextent_prepare_ag(args, 0);
3896	if (!error && args->agbp)
3897		error = xfs_alloc_ag_vextent_exact(args);
3898
3899	return xfs_alloc_vextent_finish(args, minimum_agno, error, false);
3900}
3901
3902/*
3903 * Allocate an extent as close to the target as possible. If there are not
3904 * viable candidates in the AG, then fail the allocation.
3905 *
3906 * Caller may or may not have a per-ag reference in args->pag.
3907 */
3908int
3909xfs_alloc_vextent_near_bno(
3910	struct xfs_alloc_arg	*args,
3911	xfs_fsblock_t		target)
3912{
3913	struct xfs_mount	*mp = args->mp;
3914	xfs_agnumber_t		minimum_agno;
3915	bool			needs_perag = args->pag == NULL;
3916	uint32_t		alloc_flags = 0;
3917	int			error;
3918
3919	if (!needs_perag)
3920		ASSERT(pag_agno(args->pag) == XFS_FSB_TO_AGNO(mp, target));
3921
3922	args->agno = XFS_FSB_TO_AGNO(mp, target);
3923	args->agbno = XFS_FSB_TO_AGBNO(mp, target);
3924
3925	trace_xfs_alloc_vextent_near_bno(args);
3926
3927	error = xfs_alloc_vextent_check_args(args, target, &minimum_agno);
3928	if (error) {
3929		if (error == -ENOSPC)
3930			return 0;
3931		return error;
3932	}
3933
3934	if (needs_perag)
3935		args->pag = xfs_perag_grab(mp, args->agno);
3936
3937	error = xfs_alloc_vextent_prepare_ag(args, alloc_flags);
3938	if (!error && args->agbp)
3939		error = xfs_alloc_ag_vextent_near(args, alloc_flags);
3940
3941	return xfs_alloc_vextent_finish(args, minimum_agno, error, needs_perag);
3942}
3943
3944/* Ensure that the freelist is at full capacity. */
3945int
3946xfs_free_extent_fix_freelist(
3947	struct xfs_trans	*tp,
3948	struct xfs_perag	*pag,
3949	struct xfs_buf		**agbp)
3950{
3951	struct xfs_alloc_arg	args;
3952	int			error;
3953
3954	memset(&args, 0, sizeof(struct xfs_alloc_arg));
3955	args.tp = tp;
3956	args.mp = tp->t_mountp;
3957	args.agno = pag_agno(pag);
3958	args.pag = pag;
3959
3960	/*
3961	 * validate that the block number is legal - the enables us to detect
3962	 * and handle a silent filesystem corruption rather than crashing.
3963	 */
3964	if (args.agno >= args.mp->m_sb.sb_agcount)
3965		return -EFSCORRUPTED;
3966
3967	error = xfs_alloc_fix_freelist(&args, XFS_ALLOC_FLAG_FREEING);
3968	if (error)
3969		return error;
3970
3971	*agbp = args.agbp;
3972	return 0;
3973}
3974
3975/*
3976 * Free an extent.
3977 * Just break up the extent address and hand off to xfs_free_ag_extent
3978 * after fixing up the freelist.
3979 */
3980int
3981__xfs_free_extent(
3982	struct xfs_trans		*tp,
3983	struct xfs_perag		*pag,
3984	xfs_agblock_t			agbno,
3985	xfs_extlen_t			len,
3986	const struct xfs_owner_info	*oinfo,
3987	enum xfs_ag_resv_type		type,
3988	bool				skip_discard)
3989{
3990	struct xfs_mount		*mp = tp->t_mountp;
3991	struct xfs_buf			*agbp;
3992	struct xfs_agf			*agf;
3993	int				error;
3994	unsigned int			busy_flags = 0;
3995
3996	ASSERT(len != 0);
3997	ASSERT(type != XFS_AG_RESV_AGFL);
3998
3999	if (XFS_TEST_ERROR(false, mp,
4000			XFS_ERRTAG_FREE_EXTENT))
4001		return -EIO;
4002
4003	error = xfs_free_extent_fix_freelist(tp, pag, &agbp);
4004	if (error) {
4005		if (xfs_metadata_is_sick(error))
4006			xfs_ag_mark_sick(pag, XFS_SICK_AG_BNOBT);
4007		return error;
4008	}
4009
4010	agf = agbp->b_addr;
4011
4012	if (XFS_IS_CORRUPT(mp, agbno >= mp->m_sb.sb_agblocks)) {
4013		xfs_ag_mark_sick(pag, XFS_SICK_AG_BNOBT);
4014		error = -EFSCORRUPTED;
4015		goto err_release;
4016	}
4017
4018	/* validate the extent size is legal now we have the agf locked */
4019	if (XFS_IS_CORRUPT(mp, agbno + len > be32_to_cpu(agf->agf_length))) {
4020		xfs_ag_mark_sick(pag, XFS_SICK_AG_BNOBT);
4021		error = -EFSCORRUPTED;
4022		goto err_release;
4023	}
4024
4025	error = xfs_free_ag_extent(tp, agbp, agbno, len, oinfo, type);
 
4026	if (error)
4027		goto err_release;
4028
4029	if (skip_discard)
4030		busy_flags |= XFS_EXTENT_BUSY_SKIP_DISCARD;
4031	xfs_extent_busy_insert(tp, pag_group(pag), agbno, len, busy_flags);
4032	return 0;
4033
4034err_release:
4035	xfs_trans_brelse(tp, agbp);
4036	return error;
4037}
4038
4039struct xfs_alloc_query_range_info {
4040	xfs_alloc_query_range_fn	fn;
4041	void				*priv;
4042};
4043
4044/* Format btree record and pass to our callback. */
4045STATIC int
4046xfs_alloc_query_range_helper(
4047	struct xfs_btree_cur		*cur,
4048	const union xfs_btree_rec	*rec,
4049	void				*priv)
4050{
4051	struct xfs_alloc_query_range_info	*query = priv;
4052	struct xfs_alloc_rec_incore		irec;
4053	xfs_failaddr_t				fa;
4054
4055	xfs_alloc_btrec_to_irec(rec, &irec);
4056	fa = xfs_alloc_check_irec(to_perag(cur->bc_group), &irec);
4057	if (fa)
4058		return xfs_alloc_complain_bad_rec(cur, fa, &irec);
4059
4060	return query->fn(cur, &irec, query->priv);
4061}
4062
4063/* Find all free space within a given range of blocks. */
4064int
4065xfs_alloc_query_range(
4066	struct xfs_btree_cur			*cur,
4067	const struct xfs_alloc_rec_incore	*low_rec,
4068	const struct xfs_alloc_rec_incore	*high_rec,
4069	xfs_alloc_query_range_fn		fn,
4070	void					*priv)
4071{
4072	union xfs_btree_irec			low_brec = { .a = *low_rec };
4073	union xfs_btree_irec			high_brec = { .a = *high_rec };
4074	struct xfs_alloc_query_range_info	query = { .priv = priv, .fn = fn };
4075
4076	ASSERT(xfs_btree_is_bno(cur->bc_ops));
4077	return xfs_btree_query_range(cur, &low_brec, &high_brec,
4078			xfs_alloc_query_range_helper, &query);
4079}
4080
4081/* Find all free space records. */
4082int
4083xfs_alloc_query_all(
4084	struct xfs_btree_cur			*cur,
4085	xfs_alloc_query_range_fn		fn,
4086	void					*priv)
4087{
4088	struct xfs_alloc_query_range_info	query;
4089
4090	ASSERT(xfs_btree_is_bno(cur->bc_ops));
4091	query.priv = priv;
4092	query.fn = fn;
4093	return xfs_btree_query_all(cur, xfs_alloc_query_range_helper, &query);
4094}
4095
4096/*
4097 * Scan part of the keyspace of the free space and tell us if the area has no
4098 * records, is fully mapped by records, or is partially filled.
4099 */
4100int
4101xfs_alloc_has_records(
4102	struct xfs_btree_cur	*cur,
4103	xfs_agblock_t		bno,
4104	xfs_extlen_t		len,
4105	enum xbtree_recpacking	*outcome)
4106{
4107	union xfs_btree_irec	low;
4108	union xfs_btree_irec	high;
4109
4110	memset(&low, 0, sizeof(low));
4111	low.a.ar_startblock = bno;
4112	memset(&high, 0xFF, sizeof(high));
4113	high.a.ar_startblock = bno + len - 1;
4114
4115	return xfs_btree_has_records(cur, &low, &high, NULL, outcome);
4116}
4117
4118/*
4119 * Walk all the blocks in the AGFL.  The @walk_fn can return any negative
4120 * error code or XFS_ITER_*.
4121 */
4122int
4123xfs_agfl_walk(
4124	struct xfs_mount	*mp,
4125	struct xfs_agf		*agf,
4126	struct xfs_buf		*agflbp,
4127	xfs_agfl_walk_fn	walk_fn,
4128	void			*priv)
4129{
4130	__be32			*agfl_bno;
4131	unsigned int		i;
4132	int			error;
4133
4134	agfl_bno = xfs_buf_to_agfl_bno(agflbp);
4135	i = be32_to_cpu(agf->agf_flfirst);
4136
4137	/* Nothing to walk in an empty AGFL. */
4138	if (agf->agf_flcount == cpu_to_be32(0))
4139		return 0;
4140
4141	/* Otherwise, walk from first to last, wrapping as needed. */
4142	for (;;) {
4143		error = walk_fn(mp, be32_to_cpu(agfl_bno[i]), priv);
4144		if (error)
4145			return error;
4146		if (i == be32_to_cpu(agf->agf_fllast))
4147			break;
4148		if (++i == xfs_agfl_size(mp))
4149			i = 0;
4150	}
4151
4152	return 0;
4153}
4154
4155int __init
4156xfs_extfree_intent_init_cache(void)
4157{
4158	xfs_extfree_item_cache = kmem_cache_create("xfs_extfree_intent",
4159			sizeof(struct xfs_extent_free_item),
4160			0, 0, NULL);
4161
4162	return xfs_extfree_item_cache != NULL ? 0 : -ENOMEM;
4163}
4164
4165void
4166xfs_extfree_intent_destroy_cache(void)
4167{
4168	kmem_cache_destroy(xfs_extfree_item_cache);
4169	xfs_extfree_item_cache = NULL;
4170}