Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_format.h"
9#include "xfs_log_format.h"
10#include "xfs_shared.h"
11#include "xfs_trans_resv.h"
12#include "xfs_bit.h"
13#include "xfs_mount.h"
14#include "xfs_defer.h"
15#include "xfs_btree.h"
16#include "xfs_rmap.h"
17#include "xfs_alloc_btree.h"
18#include "xfs_alloc.h"
19#include "xfs_extent_busy.h"
20#include "xfs_errortag.h"
21#include "xfs_error.h"
22#include "xfs_trace.h"
23#include "xfs_trans.h"
24#include "xfs_buf_item.h"
25#include "xfs_log.h"
26#include "xfs_ag.h"
27#include "xfs_ag_resv.h"
28#include "xfs_bmap.h"
29
30struct kmem_cache *xfs_extfree_item_cache;
31
32struct workqueue_struct *xfs_alloc_wq;
33
34#define XFS_ABSDIFF(a,b) (((a) <= (b)) ? ((b) - (a)) : ((a) - (b)))
35
36#define XFSA_FIXUP_BNO_OK 1
37#define XFSA_FIXUP_CNT_OK 2
38
39/*
40 * Size of the AGFL. For CRC-enabled filesystes we steal a couple of slots in
41 * the beginning of the block for a proper header with the location information
42 * and CRC.
43 */
44unsigned int
45xfs_agfl_size(
46 struct xfs_mount *mp)
47{
48 unsigned int size = mp->m_sb.sb_sectsize;
49
50 if (xfs_has_crc(mp))
51 size -= sizeof(struct xfs_agfl);
52
53 return size / sizeof(xfs_agblock_t);
54}
55
56unsigned int
57xfs_refc_block(
58 struct xfs_mount *mp)
59{
60 if (xfs_has_rmapbt(mp))
61 return XFS_RMAP_BLOCK(mp) + 1;
62 if (xfs_has_finobt(mp))
63 return XFS_FIBT_BLOCK(mp) + 1;
64 return XFS_IBT_BLOCK(mp) + 1;
65}
66
67xfs_extlen_t
68xfs_prealloc_blocks(
69 struct xfs_mount *mp)
70{
71 if (xfs_has_reflink(mp))
72 return xfs_refc_block(mp) + 1;
73 if (xfs_has_rmapbt(mp))
74 return XFS_RMAP_BLOCK(mp) + 1;
75 if (xfs_has_finobt(mp))
76 return XFS_FIBT_BLOCK(mp) + 1;
77 return XFS_IBT_BLOCK(mp) + 1;
78}
79
80/*
81 * The number of blocks per AG that we withhold from xfs_mod_fdblocks to
82 * guarantee that we can refill the AGFL prior to allocating space in a nearly
83 * full AG. Although the space described by the free space btrees, the
84 * blocks used by the freesp btrees themselves, and the blocks owned by the
85 * AGFL are counted in the ondisk fdblocks, it's a mistake to let the ondisk
86 * free space in the AG drop so low that the free space btrees cannot refill an
87 * empty AGFL up to the minimum level. Rather than grind through empty AGs
88 * until the fs goes down, we subtract this many AG blocks from the incore
89 * fdblocks to ensure user allocation does not overcommit the space the
90 * filesystem needs for the AGFLs. The rmap btree uses a per-AG reservation to
91 * withhold space from xfs_mod_fdblocks, so we do not account for that here.
92 */
93#define XFS_ALLOCBT_AGFL_RESERVE 4
94
95/*
96 * Compute the number of blocks that we set aside to guarantee the ability to
97 * refill the AGFL and handle a full bmap btree split.
98 *
99 * In order to avoid ENOSPC-related deadlock caused by out-of-order locking of
100 * AGF buffer (PV 947395), we place constraints on the relationship among
101 * actual allocations for data blocks, freelist blocks, and potential file data
102 * bmap btree blocks. However, these restrictions may result in no actual space
103 * allocated for a delayed extent, for example, a data block in a certain AG is
104 * allocated but there is no additional block for the additional bmap btree
105 * block due to a split of the bmap btree of the file. The result of this may
106 * lead to an infinite loop when the file gets flushed to disk and all delayed
107 * extents need to be actually allocated. To get around this, we explicitly set
108 * aside a few blocks which will not be reserved in delayed allocation.
109 *
110 * For each AG, we need to reserve enough blocks to replenish a totally empty
111 * AGFL and 4 more to handle a potential split of the file's bmap btree.
112 */
113unsigned int
114xfs_alloc_set_aside(
115 struct xfs_mount *mp)
116{
117 return mp->m_sb.sb_agcount * (XFS_ALLOCBT_AGFL_RESERVE + 4);
118}
119
120/*
121 * When deciding how much space to allocate out of an AG, we limit the
122 * allocation maximum size to the size the AG. However, we cannot use all the
123 * blocks in the AG - some are permanently used by metadata. These
124 * blocks are generally:
125 * - the AG superblock, AGF, AGI and AGFL
126 * - the AGF (bno and cnt) and AGI btree root blocks, and optionally
127 * the AGI free inode and rmap btree root blocks.
128 * - blocks on the AGFL according to xfs_alloc_set_aside() limits
129 * - the rmapbt root block
130 *
131 * The AG headers are sector sized, so the amount of space they take up is
132 * dependent on filesystem geometry. The others are all single blocks.
133 */
134unsigned int
135xfs_alloc_ag_max_usable(
136 struct xfs_mount *mp)
137{
138 unsigned int blocks;
139
140 blocks = XFS_BB_TO_FSB(mp, XFS_FSS_TO_BB(mp, 4)); /* ag headers */
141 blocks += XFS_ALLOCBT_AGFL_RESERVE;
142 blocks += 3; /* AGF, AGI btree root blocks */
143 if (xfs_has_finobt(mp))
144 blocks++; /* finobt root block */
145 if (xfs_has_rmapbt(mp))
146 blocks++; /* rmap root block */
147 if (xfs_has_reflink(mp))
148 blocks++; /* refcount root block */
149
150 return mp->m_sb.sb_agblocks - blocks;
151}
152
153/*
154 * Lookup the record equal to [bno, len] in the btree given by cur.
155 */
156STATIC int /* error */
157xfs_alloc_lookup_eq(
158 struct xfs_btree_cur *cur, /* btree cursor */
159 xfs_agblock_t bno, /* starting block of extent */
160 xfs_extlen_t len, /* length of extent */
161 int *stat) /* success/failure */
162{
163 int error;
164
165 cur->bc_rec.a.ar_startblock = bno;
166 cur->bc_rec.a.ar_blockcount = len;
167 error = xfs_btree_lookup(cur, XFS_LOOKUP_EQ, stat);
168 cur->bc_ag.abt.active = (*stat == 1);
169 return error;
170}
171
172/*
173 * Lookup the first record greater than or equal to [bno, len]
174 * in the btree given by cur.
175 */
176int /* error */
177xfs_alloc_lookup_ge(
178 struct xfs_btree_cur *cur, /* btree cursor */
179 xfs_agblock_t bno, /* starting block of extent */
180 xfs_extlen_t len, /* length of extent */
181 int *stat) /* success/failure */
182{
183 int error;
184
185 cur->bc_rec.a.ar_startblock = bno;
186 cur->bc_rec.a.ar_blockcount = len;
187 error = xfs_btree_lookup(cur, XFS_LOOKUP_GE, stat);
188 cur->bc_ag.abt.active = (*stat == 1);
189 return error;
190}
191
192/*
193 * Lookup the first record less than or equal to [bno, len]
194 * in the btree given by cur.
195 */
196int /* error */
197xfs_alloc_lookup_le(
198 struct xfs_btree_cur *cur, /* btree cursor */
199 xfs_agblock_t bno, /* starting block of extent */
200 xfs_extlen_t len, /* length of extent */
201 int *stat) /* success/failure */
202{
203 int error;
204 cur->bc_rec.a.ar_startblock = bno;
205 cur->bc_rec.a.ar_blockcount = len;
206 error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, stat);
207 cur->bc_ag.abt.active = (*stat == 1);
208 return error;
209}
210
211static inline bool
212xfs_alloc_cur_active(
213 struct xfs_btree_cur *cur)
214{
215 return cur && cur->bc_ag.abt.active;
216}
217
218/*
219 * Update the record referred to by cur to the value given
220 * by [bno, len].
221 * This either works (return 0) or gets an EFSCORRUPTED error.
222 */
223STATIC int /* error */
224xfs_alloc_update(
225 struct xfs_btree_cur *cur, /* btree cursor */
226 xfs_agblock_t bno, /* starting block of extent */
227 xfs_extlen_t len) /* length of extent */
228{
229 union xfs_btree_rec rec;
230
231 rec.alloc.ar_startblock = cpu_to_be32(bno);
232 rec.alloc.ar_blockcount = cpu_to_be32(len);
233 return xfs_btree_update(cur, &rec);
234}
235
236/* Convert the ondisk btree record to its incore representation. */
237void
238xfs_alloc_btrec_to_irec(
239 const union xfs_btree_rec *rec,
240 struct xfs_alloc_rec_incore *irec)
241{
242 irec->ar_startblock = be32_to_cpu(rec->alloc.ar_startblock);
243 irec->ar_blockcount = be32_to_cpu(rec->alloc.ar_blockcount);
244}
245
246/* Simple checks for free space records. */
247xfs_failaddr_t
248xfs_alloc_check_irec(
249 struct xfs_perag *pag,
250 const struct xfs_alloc_rec_incore *irec)
251{
252 if (irec->ar_blockcount == 0)
253 return __this_address;
254
255 /* check for valid extent range, including overflow */
256 if (!xfs_verify_agbext(pag, irec->ar_startblock, irec->ar_blockcount))
257 return __this_address;
258
259 return NULL;
260}
261
262static inline int
263xfs_alloc_complain_bad_rec(
264 struct xfs_btree_cur *cur,
265 xfs_failaddr_t fa,
266 const struct xfs_alloc_rec_incore *irec)
267{
268 struct xfs_mount *mp = cur->bc_mp;
269
270 xfs_warn(mp,
271 "%s Freespace BTree record corruption in AG %d detected at %pS!",
272 cur->bc_btnum == XFS_BTNUM_BNO ? "Block" : "Size",
273 cur->bc_ag.pag->pag_agno, fa);
274 xfs_warn(mp,
275 "start block 0x%x block count 0x%x", irec->ar_startblock,
276 irec->ar_blockcount);
277 return -EFSCORRUPTED;
278}
279
280/*
281 * Get the data from the pointed-to record.
282 */
283int /* error */
284xfs_alloc_get_rec(
285 struct xfs_btree_cur *cur, /* btree cursor */
286 xfs_agblock_t *bno, /* output: starting block of extent */
287 xfs_extlen_t *len, /* output: length of extent */
288 int *stat) /* output: success/failure */
289{
290 struct xfs_alloc_rec_incore irec;
291 union xfs_btree_rec *rec;
292 xfs_failaddr_t fa;
293 int error;
294
295 error = xfs_btree_get_rec(cur, &rec, stat);
296 if (error || !(*stat))
297 return error;
298
299 xfs_alloc_btrec_to_irec(rec, &irec);
300 fa = xfs_alloc_check_irec(cur->bc_ag.pag, &irec);
301 if (fa)
302 return xfs_alloc_complain_bad_rec(cur, fa, &irec);
303
304 *bno = irec.ar_startblock;
305 *len = irec.ar_blockcount;
306 return 0;
307}
308
309/*
310 * Compute aligned version of the found extent.
311 * Takes alignment and min length into account.
312 */
313STATIC bool
314xfs_alloc_compute_aligned(
315 xfs_alloc_arg_t *args, /* allocation argument structure */
316 xfs_agblock_t foundbno, /* starting block in found extent */
317 xfs_extlen_t foundlen, /* length in found extent */
318 xfs_agblock_t *resbno, /* result block number */
319 xfs_extlen_t *reslen, /* result length */
320 unsigned *busy_gen)
321{
322 xfs_agblock_t bno = foundbno;
323 xfs_extlen_t len = foundlen;
324 xfs_extlen_t diff;
325 bool busy;
326
327 /* Trim busy sections out of found extent */
328 busy = xfs_extent_busy_trim(args, &bno, &len, busy_gen);
329
330 /*
331 * If we have a largish extent that happens to start before min_agbno,
332 * see if we can shift it into range...
333 */
334 if (bno < args->min_agbno && bno + len > args->min_agbno) {
335 diff = args->min_agbno - bno;
336 if (len > diff) {
337 bno += diff;
338 len -= diff;
339 }
340 }
341
342 if (args->alignment > 1 && len >= args->minlen) {
343 xfs_agblock_t aligned_bno = roundup(bno, args->alignment);
344
345 diff = aligned_bno - bno;
346
347 *resbno = aligned_bno;
348 *reslen = diff >= len ? 0 : len - diff;
349 } else {
350 *resbno = bno;
351 *reslen = len;
352 }
353
354 return busy;
355}
356
357/*
358 * Compute best start block and diff for "near" allocations.
359 * freelen >= wantlen already checked by caller.
360 */
361STATIC xfs_extlen_t /* difference value (absolute) */
362xfs_alloc_compute_diff(
363 xfs_agblock_t wantbno, /* target starting block */
364 xfs_extlen_t wantlen, /* target length */
365 xfs_extlen_t alignment, /* target alignment */
366 int datatype, /* are we allocating data? */
367 xfs_agblock_t freebno, /* freespace's starting block */
368 xfs_extlen_t freelen, /* freespace's length */
369 xfs_agblock_t *newbnop) /* result: best start block from free */
370{
371 xfs_agblock_t freeend; /* end of freespace extent */
372 xfs_agblock_t newbno1; /* return block number */
373 xfs_agblock_t newbno2; /* other new block number */
374 xfs_extlen_t newlen1=0; /* length with newbno1 */
375 xfs_extlen_t newlen2=0; /* length with newbno2 */
376 xfs_agblock_t wantend; /* end of target extent */
377 bool userdata = datatype & XFS_ALLOC_USERDATA;
378
379 ASSERT(freelen >= wantlen);
380 freeend = freebno + freelen;
381 wantend = wantbno + wantlen;
382 /*
383 * We want to allocate from the start of a free extent if it is past
384 * the desired block or if we are allocating user data and the free
385 * extent is before desired block. The second case is there to allow
386 * for contiguous allocation from the remaining free space if the file
387 * grows in the short term.
388 */
389 if (freebno >= wantbno || (userdata && freeend < wantend)) {
390 if ((newbno1 = roundup(freebno, alignment)) >= freeend)
391 newbno1 = NULLAGBLOCK;
392 } else if (freeend >= wantend && alignment > 1) {
393 newbno1 = roundup(wantbno, alignment);
394 newbno2 = newbno1 - alignment;
395 if (newbno1 >= freeend)
396 newbno1 = NULLAGBLOCK;
397 else
398 newlen1 = XFS_EXTLEN_MIN(wantlen, freeend - newbno1);
399 if (newbno2 < freebno)
400 newbno2 = NULLAGBLOCK;
401 else
402 newlen2 = XFS_EXTLEN_MIN(wantlen, freeend - newbno2);
403 if (newbno1 != NULLAGBLOCK && newbno2 != NULLAGBLOCK) {
404 if (newlen1 < newlen2 ||
405 (newlen1 == newlen2 &&
406 XFS_ABSDIFF(newbno1, wantbno) >
407 XFS_ABSDIFF(newbno2, wantbno)))
408 newbno1 = newbno2;
409 } else if (newbno2 != NULLAGBLOCK)
410 newbno1 = newbno2;
411 } else if (freeend >= wantend) {
412 newbno1 = wantbno;
413 } else if (alignment > 1) {
414 newbno1 = roundup(freeend - wantlen, alignment);
415 if (newbno1 > freeend - wantlen &&
416 newbno1 - alignment >= freebno)
417 newbno1 -= alignment;
418 else if (newbno1 >= freeend)
419 newbno1 = NULLAGBLOCK;
420 } else
421 newbno1 = freeend - wantlen;
422 *newbnop = newbno1;
423 return newbno1 == NULLAGBLOCK ? 0 : XFS_ABSDIFF(newbno1, wantbno);
424}
425
426/*
427 * Fix up the length, based on mod and prod.
428 * len should be k * prod + mod for some k.
429 * If len is too small it is returned unchanged.
430 * If len hits maxlen it is left alone.
431 */
432STATIC void
433xfs_alloc_fix_len(
434 xfs_alloc_arg_t *args) /* allocation argument structure */
435{
436 xfs_extlen_t k;
437 xfs_extlen_t rlen;
438
439 ASSERT(args->mod < args->prod);
440 rlen = args->len;
441 ASSERT(rlen >= args->minlen);
442 ASSERT(rlen <= args->maxlen);
443 if (args->prod <= 1 || rlen < args->mod || rlen == args->maxlen ||
444 (args->mod == 0 && rlen < args->prod))
445 return;
446 k = rlen % args->prod;
447 if (k == args->mod)
448 return;
449 if (k > args->mod)
450 rlen = rlen - (k - args->mod);
451 else
452 rlen = rlen - args->prod + (args->mod - k);
453 /* casts to (int) catch length underflows */
454 if ((int)rlen < (int)args->minlen)
455 return;
456 ASSERT(rlen >= args->minlen && rlen <= args->maxlen);
457 ASSERT(rlen % args->prod == args->mod);
458 ASSERT(args->pag->pagf_freeblks + args->pag->pagf_flcount >=
459 rlen + args->minleft);
460 args->len = rlen;
461}
462
463/*
464 * Update the two btrees, logically removing from freespace the extent
465 * starting at rbno, rlen blocks. The extent is contained within the
466 * actual (current) free extent fbno for flen blocks.
467 * Flags are passed in indicating whether the cursors are set to the
468 * relevant records.
469 */
470STATIC int /* error code */
471xfs_alloc_fixup_trees(
472 struct xfs_btree_cur *cnt_cur, /* cursor for by-size btree */
473 struct xfs_btree_cur *bno_cur, /* cursor for by-block btree */
474 xfs_agblock_t fbno, /* starting block of free extent */
475 xfs_extlen_t flen, /* length of free extent */
476 xfs_agblock_t rbno, /* starting block of returned extent */
477 xfs_extlen_t rlen, /* length of returned extent */
478 int flags) /* flags, XFSA_FIXUP_... */
479{
480 int error; /* error code */
481 int i; /* operation results */
482 xfs_agblock_t nfbno1; /* first new free startblock */
483 xfs_agblock_t nfbno2; /* second new free startblock */
484 xfs_extlen_t nflen1=0; /* first new free length */
485 xfs_extlen_t nflen2=0; /* second new free length */
486 struct xfs_mount *mp;
487
488 mp = cnt_cur->bc_mp;
489
490 /*
491 * Look up the record in the by-size tree if necessary.
492 */
493 if (flags & XFSA_FIXUP_CNT_OK) {
494#ifdef DEBUG
495 if ((error = xfs_alloc_get_rec(cnt_cur, &nfbno1, &nflen1, &i)))
496 return error;
497 if (XFS_IS_CORRUPT(mp,
498 i != 1 ||
499 nfbno1 != fbno ||
500 nflen1 != flen))
501 return -EFSCORRUPTED;
502#endif
503 } else {
504 if ((error = xfs_alloc_lookup_eq(cnt_cur, fbno, flen, &i)))
505 return error;
506 if (XFS_IS_CORRUPT(mp, i != 1))
507 return -EFSCORRUPTED;
508 }
509 /*
510 * Look up the record in the by-block tree if necessary.
511 */
512 if (flags & XFSA_FIXUP_BNO_OK) {
513#ifdef DEBUG
514 if ((error = xfs_alloc_get_rec(bno_cur, &nfbno1, &nflen1, &i)))
515 return error;
516 if (XFS_IS_CORRUPT(mp,
517 i != 1 ||
518 nfbno1 != fbno ||
519 nflen1 != flen))
520 return -EFSCORRUPTED;
521#endif
522 } else {
523 if ((error = xfs_alloc_lookup_eq(bno_cur, fbno, flen, &i)))
524 return error;
525 if (XFS_IS_CORRUPT(mp, i != 1))
526 return -EFSCORRUPTED;
527 }
528
529#ifdef DEBUG
530 if (bno_cur->bc_nlevels == 1 && cnt_cur->bc_nlevels == 1) {
531 struct xfs_btree_block *bnoblock;
532 struct xfs_btree_block *cntblock;
533
534 bnoblock = XFS_BUF_TO_BLOCK(bno_cur->bc_levels[0].bp);
535 cntblock = XFS_BUF_TO_BLOCK(cnt_cur->bc_levels[0].bp);
536
537 if (XFS_IS_CORRUPT(mp,
538 bnoblock->bb_numrecs !=
539 cntblock->bb_numrecs))
540 return -EFSCORRUPTED;
541 }
542#endif
543
544 /*
545 * Deal with all four cases: the allocated record is contained
546 * within the freespace record, so we can have new freespace
547 * at either (or both) end, or no freespace remaining.
548 */
549 if (rbno == fbno && rlen == flen)
550 nfbno1 = nfbno2 = NULLAGBLOCK;
551 else if (rbno == fbno) {
552 nfbno1 = rbno + rlen;
553 nflen1 = flen - rlen;
554 nfbno2 = NULLAGBLOCK;
555 } else if (rbno + rlen == fbno + flen) {
556 nfbno1 = fbno;
557 nflen1 = flen - rlen;
558 nfbno2 = NULLAGBLOCK;
559 } else {
560 nfbno1 = fbno;
561 nflen1 = rbno - fbno;
562 nfbno2 = rbno + rlen;
563 nflen2 = (fbno + flen) - nfbno2;
564 }
565 /*
566 * Delete the entry from the by-size btree.
567 */
568 if ((error = xfs_btree_delete(cnt_cur, &i)))
569 return error;
570 if (XFS_IS_CORRUPT(mp, i != 1))
571 return -EFSCORRUPTED;
572 /*
573 * Add new by-size btree entry(s).
574 */
575 if (nfbno1 != NULLAGBLOCK) {
576 if ((error = xfs_alloc_lookup_eq(cnt_cur, nfbno1, nflen1, &i)))
577 return error;
578 if (XFS_IS_CORRUPT(mp, i != 0))
579 return -EFSCORRUPTED;
580 if ((error = xfs_btree_insert(cnt_cur, &i)))
581 return error;
582 if (XFS_IS_CORRUPT(mp, i != 1))
583 return -EFSCORRUPTED;
584 }
585 if (nfbno2 != NULLAGBLOCK) {
586 if ((error = xfs_alloc_lookup_eq(cnt_cur, nfbno2, nflen2, &i)))
587 return error;
588 if (XFS_IS_CORRUPT(mp, i != 0))
589 return -EFSCORRUPTED;
590 if ((error = xfs_btree_insert(cnt_cur, &i)))
591 return error;
592 if (XFS_IS_CORRUPT(mp, i != 1))
593 return -EFSCORRUPTED;
594 }
595 /*
596 * Fix up the by-block btree entry(s).
597 */
598 if (nfbno1 == NULLAGBLOCK) {
599 /*
600 * No remaining freespace, just delete the by-block tree entry.
601 */
602 if ((error = xfs_btree_delete(bno_cur, &i)))
603 return error;
604 if (XFS_IS_CORRUPT(mp, i != 1))
605 return -EFSCORRUPTED;
606 } else {
607 /*
608 * Update the by-block entry to start later|be shorter.
609 */
610 if ((error = xfs_alloc_update(bno_cur, nfbno1, nflen1)))
611 return error;
612 }
613 if (nfbno2 != NULLAGBLOCK) {
614 /*
615 * 2 resulting free entries, need to add one.
616 */
617 if ((error = xfs_alloc_lookup_eq(bno_cur, nfbno2, nflen2, &i)))
618 return error;
619 if (XFS_IS_CORRUPT(mp, i != 0))
620 return -EFSCORRUPTED;
621 if ((error = xfs_btree_insert(bno_cur, &i)))
622 return error;
623 if (XFS_IS_CORRUPT(mp, i != 1))
624 return -EFSCORRUPTED;
625 }
626 return 0;
627}
628
629/*
630 * We do not verify the AGFL contents against AGF-based index counters here,
631 * even though we may have access to the perag that contains shadow copies. We
632 * don't know if the AGF based counters have been checked, and if they have they
633 * still may be inconsistent because they haven't yet been reset on the first
634 * allocation after the AGF has been read in.
635 *
636 * This means we can only check that all agfl entries contain valid or null
637 * values because we can't reliably determine the active range to exclude
638 * NULLAGBNO as a valid value.
639 *
640 * However, we can't even do that for v4 format filesystems because there are
641 * old versions of mkfs out there that does not initialise the AGFL to known,
642 * verifiable values. HEnce we can't tell the difference between a AGFL block
643 * allocated by mkfs and a corrupted AGFL block here on v4 filesystems.
644 *
645 * As a result, we can only fully validate AGFL block numbers when we pull them
646 * from the freelist in xfs_alloc_get_freelist().
647 */
648static xfs_failaddr_t
649xfs_agfl_verify(
650 struct xfs_buf *bp)
651{
652 struct xfs_mount *mp = bp->b_mount;
653 struct xfs_agfl *agfl = XFS_BUF_TO_AGFL(bp);
654 __be32 *agfl_bno = xfs_buf_to_agfl_bno(bp);
655 int i;
656
657 if (!xfs_has_crc(mp))
658 return NULL;
659
660 if (!xfs_verify_magic(bp, agfl->agfl_magicnum))
661 return __this_address;
662 if (!uuid_equal(&agfl->agfl_uuid, &mp->m_sb.sb_meta_uuid))
663 return __this_address;
664 /*
665 * during growfs operations, the perag is not fully initialised,
666 * so we can't use it for any useful checking. growfs ensures we can't
667 * use it by using uncached buffers that don't have the perag attached
668 * so we can detect and avoid this problem.
669 */
670 if (bp->b_pag && be32_to_cpu(agfl->agfl_seqno) != bp->b_pag->pag_agno)
671 return __this_address;
672
673 for (i = 0; i < xfs_agfl_size(mp); i++) {
674 if (be32_to_cpu(agfl_bno[i]) != NULLAGBLOCK &&
675 be32_to_cpu(agfl_bno[i]) >= mp->m_sb.sb_agblocks)
676 return __this_address;
677 }
678
679 if (!xfs_log_check_lsn(mp, be64_to_cpu(XFS_BUF_TO_AGFL(bp)->agfl_lsn)))
680 return __this_address;
681 return NULL;
682}
683
684static void
685xfs_agfl_read_verify(
686 struct xfs_buf *bp)
687{
688 struct xfs_mount *mp = bp->b_mount;
689 xfs_failaddr_t fa;
690
691 /*
692 * There is no verification of non-crc AGFLs because mkfs does not
693 * initialise the AGFL to zero or NULL. Hence the only valid part of the
694 * AGFL is what the AGF says is active. We can't get to the AGF, so we
695 * can't verify just those entries are valid.
696 */
697 if (!xfs_has_crc(mp))
698 return;
699
700 if (!xfs_buf_verify_cksum(bp, XFS_AGFL_CRC_OFF))
701 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
702 else {
703 fa = xfs_agfl_verify(bp);
704 if (fa)
705 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
706 }
707}
708
709static void
710xfs_agfl_write_verify(
711 struct xfs_buf *bp)
712{
713 struct xfs_mount *mp = bp->b_mount;
714 struct xfs_buf_log_item *bip = bp->b_log_item;
715 xfs_failaddr_t fa;
716
717 /* no verification of non-crc AGFLs */
718 if (!xfs_has_crc(mp))
719 return;
720
721 fa = xfs_agfl_verify(bp);
722 if (fa) {
723 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
724 return;
725 }
726
727 if (bip)
728 XFS_BUF_TO_AGFL(bp)->agfl_lsn = cpu_to_be64(bip->bli_item.li_lsn);
729
730 xfs_buf_update_cksum(bp, XFS_AGFL_CRC_OFF);
731}
732
733const struct xfs_buf_ops xfs_agfl_buf_ops = {
734 .name = "xfs_agfl",
735 .magic = { cpu_to_be32(XFS_AGFL_MAGIC), cpu_to_be32(XFS_AGFL_MAGIC) },
736 .verify_read = xfs_agfl_read_verify,
737 .verify_write = xfs_agfl_write_verify,
738 .verify_struct = xfs_agfl_verify,
739};
740
741/*
742 * Read in the allocation group free block array.
743 */
744int
745xfs_alloc_read_agfl(
746 struct xfs_perag *pag,
747 struct xfs_trans *tp,
748 struct xfs_buf **bpp)
749{
750 struct xfs_mount *mp = pag->pag_mount;
751 struct xfs_buf *bp;
752 int error;
753
754 error = xfs_trans_read_buf(
755 mp, tp, mp->m_ddev_targp,
756 XFS_AG_DADDR(mp, pag->pag_agno, XFS_AGFL_DADDR(mp)),
757 XFS_FSS_TO_BB(mp, 1), 0, &bp, &xfs_agfl_buf_ops);
758 if (error)
759 return error;
760 xfs_buf_set_ref(bp, XFS_AGFL_REF);
761 *bpp = bp;
762 return 0;
763}
764
765STATIC int
766xfs_alloc_update_counters(
767 struct xfs_trans *tp,
768 struct xfs_buf *agbp,
769 long len)
770{
771 struct xfs_agf *agf = agbp->b_addr;
772
773 agbp->b_pag->pagf_freeblks += len;
774 be32_add_cpu(&agf->agf_freeblks, len);
775
776 if (unlikely(be32_to_cpu(agf->agf_freeblks) >
777 be32_to_cpu(agf->agf_length))) {
778 xfs_buf_mark_corrupt(agbp);
779 return -EFSCORRUPTED;
780 }
781
782 xfs_alloc_log_agf(tp, agbp, XFS_AGF_FREEBLKS);
783 return 0;
784}
785
786/*
787 * Block allocation algorithm and data structures.
788 */
789struct xfs_alloc_cur {
790 struct xfs_btree_cur *cnt; /* btree cursors */
791 struct xfs_btree_cur *bnolt;
792 struct xfs_btree_cur *bnogt;
793 xfs_extlen_t cur_len;/* current search length */
794 xfs_agblock_t rec_bno;/* extent startblock */
795 xfs_extlen_t rec_len;/* extent length */
796 xfs_agblock_t bno; /* alloc bno */
797 xfs_extlen_t len; /* alloc len */
798 xfs_extlen_t diff; /* diff from search bno */
799 unsigned int busy_gen;/* busy state */
800 bool busy;
801};
802
803/*
804 * Set up cursors, etc. in the extent allocation cursor. This function can be
805 * called multiple times to reset an initialized structure without having to
806 * reallocate cursors.
807 */
808static int
809xfs_alloc_cur_setup(
810 struct xfs_alloc_arg *args,
811 struct xfs_alloc_cur *acur)
812{
813 int error;
814 int i;
815
816 acur->cur_len = args->maxlen;
817 acur->rec_bno = 0;
818 acur->rec_len = 0;
819 acur->bno = 0;
820 acur->len = 0;
821 acur->diff = -1;
822 acur->busy = false;
823 acur->busy_gen = 0;
824
825 /*
826 * Perform an initial cntbt lookup to check for availability of maxlen
827 * extents. If this fails, we'll return -ENOSPC to signal the caller to
828 * attempt a small allocation.
829 */
830 if (!acur->cnt)
831 acur->cnt = xfs_allocbt_init_cursor(args->mp, args->tp,
832 args->agbp, args->pag, XFS_BTNUM_CNT);
833 error = xfs_alloc_lookup_ge(acur->cnt, 0, args->maxlen, &i);
834 if (error)
835 return error;
836
837 /*
838 * Allocate the bnobt left and right search cursors.
839 */
840 if (!acur->bnolt)
841 acur->bnolt = xfs_allocbt_init_cursor(args->mp, args->tp,
842 args->agbp, args->pag, XFS_BTNUM_BNO);
843 if (!acur->bnogt)
844 acur->bnogt = xfs_allocbt_init_cursor(args->mp, args->tp,
845 args->agbp, args->pag, XFS_BTNUM_BNO);
846 return i == 1 ? 0 : -ENOSPC;
847}
848
849static void
850xfs_alloc_cur_close(
851 struct xfs_alloc_cur *acur,
852 bool error)
853{
854 int cur_error = XFS_BTREE_NOERROR;
855
856 if (error)
857 cur_error = XFS_BTREE_ERROR;
858
859 if (acur->cnt)
860 xfs_btree_del_cursor(acur->cnt, cur_error);
861 if (acur->bnolt)
862 xfs_btree_del_cursor(acur->bnolt, cur_error);
863 if (acur->bnogt)
864 xfs_btree_del_cursor(acur->bnogt, cur_error);
865 acur->cnt = acur->bnolt = acur->bnogt = NULL;
866}
867
868/*
869 * Check an extent for allocation and track the best available candidate in the
870 * allocation structure. The cursor is deactivated if it has entered an out of
871 * range state based on allocation arguments. Optionally return the extent
872 * extent geometry and allocation status if requested by the caller.
873 */
874static int
875xfs_alloc_cur_check(
876 struct xfs_alloc_arg *args,
877 struct xfs_alloc_cur *acur,
878 struct xfs_btree_cur *cur,
879 int *new)
880{
881 int error, i;
882 xfs_agblock_t bno, bnoa, bnew;
883 xfs_extlen_t len, lena, diff = -1;
884 bool busy;
885 unsigned busy_gen = 0;
886 bool deactivate = false;
887 bool isbnobt = cur->bc_btnum == XFS_BTNUM_BNO;
888
889 *new = 0;
890
891 error = xfs_alloc_get_rec(cur, &bno, &len, &i);
892 if (error)
893 return error;
894 if (XFS_IS_CORRUPT(args->mp, i != 1))
895 return -EFSCORRUPTED;
896
897 /*
898 * Check minlen and deactivate a cntbt cursor if out of acceptable size
899 * range (i.e., walking backwards looking for a minlen extent).
900 */
901 if (len < args->minlen) {
902 deactivate = !isbnobt;
903 goto out;
904 }
905
906 busy = xfs_alloc_compute_aligned(args, bno, len, &bnoa, &lena,
907 &busy_gen);
908 acur->busy |= busy;
909 if (busy)
910 acur->busy_gen = busy_gen;
911 /* deactivate a bnobt cursor outside of locality range */
912 if (bnoa < args->min_agbno || bnoa > args->max_agbno) {
913 deactivate = isbnobt;
914 goto out;
915 }
916 if (lena < args->minlen)
917 goto out;
918
919 args->len = XFS_EXTLEN_MIN(lena, args->maxlen);
920 xfs_alloc_fix_len(args);
921 ASSERT(args->len >= args->minlen);
922 if (args->len < acur->len)
923 goto out;
924
925 /*
926 * We have an aligned record that satisfies minlen and beats or matches
927 * the candidate extent size. Compare locality for near allocation mode.
928 */
929 diff = xfs_alloc_compute_diff(args->agbno, args->len,
930 args->alignment, args->datatype,
931 bnoa, lena, &bnew);
932 if (bnew == NULLAGBLOCK)
933 goto out;
934
935 /*
936 * Deactivate a bnobt cursor with worse locality than the current best.
937 */
938 if (diff > acur->diff) {
939 deactivate = isbnobt;
940 goto out;
941 }
942
943 ASSERT(args->len > acur->len ||
944 (args->len == acur->len && diff <= acur->diff));
945 acur->rec_bno = bno;
946 acur->rec_len = len;
947 acur->bno = bnew;
948 acur->len = args->len;
949 acur->diff = diff;
950 *new = 1;
951
952 /*
953 * We're done if we found a perfect allocation. This only deactivates
954 * the current cursor, but this is just an optimization to terminate a
955 * cntbt search that otherwise runs to the edge of the tree.
956 */
957 if (acur->diff == 0 && acur->len == args->maxlen)
958 deactivate = true;
959out:
960 if (deactivate)
961 cur->bc_ag.abt.active = false;
962 trace_xfs_alloc_cur_check(args->mp, cur->bc_btnum, bno, len, diff,
963 *new);
964 return 0;
965}
966
967/*
968 * Complete an allocation of a candidate extent. Remove the extent from both
969 * trees and update the args structure.
970 */
971STATIC int
972xfs_alloc_cur_finish(
973 struct xfs_alloc_arg *args,
974 struct xfs_alloc_cur *acur)
975{
976 struct xfs_agf __maybe_unused *agf = args->agbp->b_addr;
977 int error;
978
979 ASSERT(acur->cnt && acur->bnolt);
980 ASSERT(acur->bno >= acur->rec_bno);
981 ASSERT(acur->bno + acur->len <= acur->rec_bno + acur->rec_len);
982 ASSERT(acur->rec_bno + acur->rec_len <= be32_to_cpu(agf->agf_length));
983
984 error = xfs_alloc_fixup_trees(acur->cnt, acur->bnolt, acur->rec_bno,
985 acur->rec_len, acur->bno, acur->len, 0);
986 if (error)
987 return error;
988
989 args->agbno = acur->bno;
990 args->len = acur->len;
991 args->wasfromfl = 0;
992
993 trace_xfs_alloc_cur(args);
994 return 0;
995}
996
997/*
998 * Locality allocation lookup algorithm. This expects a cntbt cursor and uses
999 * bno optimized lookup to search for extents with ideal size and locality.
1000 */
1001STATIC int
1002xfs_alloc_cntbt_iter(
1003 struct xfs_alloc_arg *args,
1004 struct xfs_alloc_cur *acur)
1005{
1006 struct xfs_btree_cur *cur = acur->cnt;
1007 xfs_agblock_t bno;
1008 xfs_extlen_t len, cur_len;
1009 int error;
1010 int i;
1011
1012 if (!xfs_alloc_cur_active(cur))
1013 return 0;
1014
1015 /* locality optimized lookup */
1016 cur_len = acur->cur_len;
1017 error = xfs_alloc_lookup_ge(cur, args->agbno, cur_len, &i);
1018 if (error)
1019 return error;
1020 if (i == 0)
1021 return 0;
1022 error = xfs_alloc_get_rec(cur, &bno, &len, &i);
1023 if (error)
1024 return error;
1025
1026 /* check the current record and update search length from it */
1027 error = xfs_alloc_cur_check(args, acur, cur, &i);
1028 if (error)
1029 return error;
1030 ASSERT(len >= acur->cur_len);
1031 acur->cur_len = len;
1032
1033 /*
1034 * We looked up the first record >= [agbno, len] above. The agbno is a
1035 * secondary key and so the current record may lie just before or after
1036 * agbno. If it is past agbno, check the previous record too so long as
1037 * the length matches as it may be closer. Don't check a smaller record
1038 * because that could deactivate our cursor.
1039 */
1040 if (bno > args->agbno) {
1041 error = xfs_btree_decrement(cur, 0, &i);
1042 if (!error && i) {
1043 error = xfs_alloc_get_rec(cur, &bno, &len, &i);
1044 if (!error && i && len == acur->cur_len)
1045 error = xfs_alloc_cur_check(args, acur, cur,
1046 &i);
1047 }
1048 if (error)
1049 return error;
1050 }
1051
1052 /*
1053 * Increment the search key until we find at least one allocation
1054 * candidate or if the extent we found was larger. Otherwise, double the
1055 * search key to optimize the search. Efficiency is more important here
1056 * than absolute best locality.
1057 */
1058 cur_len <<= 1;
1059 if (!acur->len || acur->cur_len >= cur_len)
1060 acur->cur_len++;
1061 else
1062 acur->cur_len = cur_len;
1063
1064 return error;
1065}
1066
1067/*
1068 * Deal with the case where only small freespaces remain. Either return the
1069 * contents of the last freespace record, or allocate space from the freelist if
1070 * there is nothing in the tree.
1071 */
1072STATIC int /* error */
1073xfs_alloc_ag_vextent_small(
1074 struct xfs_alloc_arg *args, /* allocation argument structure */
1075 struct xfs_btree_cur *ccur, /* optional by-size cursor */
1076 xfs_agblock_t *fbnop, /* result block number */
1077 xfs_extlen_t *flenp, /* result length */
1078 int *stat) /* status: 0-freelist, 1-normal/none */
1079{
1080 struct xfs_agf *agf = args->agbp->b_addr;
1081 int error = 0;
1082 xfs_agblock_t fbno = NULLAGBLOCK;
1083 xfs_extlen_t flen = 0;
1084 int i = 0;
1085
1086 /*
1087 * If a cntbt cursor is provided, try to allocate the largest record in
1088 * the tree. Try the AGFL if the cntbt is empty, otherwise fail the
1089 * allocation. Make sure to respect minleft even when pulling from the
1090 * freelist.
1091 */
1092 if (ccur)
1093 error = xfs_btree_decrement(ccur, 0, &i);
1094 if (error)
1095 goto error;
1096 if (i) {
1097 error = xfs_alloc_get_rec(ccur, &fbno, &flen, &i);
1098 if (error)
1099 goto error;
1100 if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1101 error = -EFSCORRUPTED;
1102 goto error;
1103 }
1104 goto out;
1105 }
1106
1107 if (args->minlen != 1 || args->alignment != 1 ||
1108 args->resv == XFS_AG_RESV_AGFL ||
1109 be32_to_cpu(agf->agf_flcount) <= args->minleft)
1110 goto out;
1111
1112 error = xfs_alloc_get_freelist(args->pag, args->tp, args->agbp,
1113 &fbno, 0);
1114 if (error)
1115 goto error;
1116 if (fbno == NULLAGBLOCK)
1117 goto out;
1118
1119 xfs_extent_busy_reuse(args->mp, args->pag, fbno, 1,
1120 (args->datatype & XFS_ALLOC_NOBUSY));
1121
1122 if (args->datatype & XFS_ALLOC_USERDATA) {
1123 struct xfs_buf *bp;
1124
1125 error = xfs_trans_get_buf(args->tp, args->mp->m_ddev_targp,
1126 XFS_AGB_TO_DADDR(args->mp, args->agno, fbno),
1127 args->mp->m_bsize, 0, &bp);
1128 if (error)
1129 goto error;
1130 xfs_trans_binval(args->tp, bp);
1131 }
1132 *fbnop = args->agbno = fbno;
1133 *flenp = args->len = 1;
1134 if (XFS_IS_CORRUPT(args->mp, fbno >= be32_to_cpu(agf->agf_length))) {
1135 error = -EFSCORRUPTED;
1136 goto error;
1137 }
1138 args->wasfromfl = 1;
1139 trace_xfs_alloc_small_freelist(args);
1140
1141 /*
1142 * If we're feeding an AGFL block to something that doesn't live in the
1143 * free space, we need to clear out the OWN_AG rmap.
1144 */
1145 error = xfs_rmap_free(args->tp, args->agbp, args->pag, fbno, 1,
1146 &XFS_RMAP_OINFO_AG);
1147 if (error)
1148 goto error;
1149
1150 *stat = 0;
1151 return 0;
1152
1153out:
1154 /*
1155 * Can't do the allocation, give up.
1156 */
1157 if (flen < args->minlen) {
1158 args->agbno = NULLAGBLOCK;
1159 trace_xfs_alloc_small_notenough(args);
1160 flen = 0;
1161 }
1162 *fbnop = fbno;
1163 *flenp = flen;
1164 *stat = 1;
1165 trace_xfs_alloc_small_done(args);
1166 return 0;
1167
1168error:
1169 trace_xfs_alloc_small_error(args);
1170 return error;
1171}
1172
1173/*
1174 * Allocate a variable extent at exactly agno/bno.
1175 * Extent's length (returned in *len) will be between minlen and maxlen,
1176 * and of the form k * prod + mod unless there's nothing that large.
1177 * Return the starting a.g. block (bno), or NULLAGBLOCK if we can't do it.
1178 */
1179STATIC int /* error */
1180xfs_alloc_ag_vextent_exact(
1181 xfs_alloc_arg_t *args) /* allocation argument structure */
1182{
1183 struct xfs_agf __maybe_unused *agf = args->agbp->b_addr;
1184 struct xfs_btree_cur *bno_cur;/* by block-number btree cursor */
1185 struct xfs_btree_cur *cnt_cur;/* by count btree cursor */
1186 int error;
1187 xfs_agblock_t fbno; /* start block of found extent */
1188 xfs_extlen_t flen; /* length of found extent */
1189 xfs_agblock_t tbno; /* start block of busy extent */
1190 xfs_extlen_t tlen; /* length of busy extent */
1191 xfs_agblock_t tend; /* end block of busy extent */
1192 int i; /* success/failure of operation */
1193 unsigned busy_gen;
1194
1195 ASSERT(args->alignment == 1);
1196
1197 /*
1198 * Allocate/initialize a cursor for the by-number freespace btree.
1199 */
1200 bno_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp,
1201 args->pag, XFS_BTNUM_BNO);
1202
1203 /*
1204 * Lookup bno and minlen in the btree (minlen is irrelevant, really).
1205 * Look for the closest free block <= bno, it must contain bno
1206 * if any free block does.
1207 */
1208 error = xfs_alloc_lookup_le(bno_cur, args->agbno, args->minlen, &i);
1209 if (error)
1210 goto error0;
1211 if (!i)
1212 goto not_found;
1213
1214 /*
1215 * Grab the freespace record.
1216 */
1217 error = xfs_alloc_get_rec(bno_cur, &fbno, &flen, &i);
1218 if (error)
1219 goto error0;
1220 if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1221 error = -EFSCORRUPTED;
1222 goto error0;
1223 }
1224 ASSERT(fbno <= args->agbno);
1225
1226 /*
1227 * Check for overlapping busy extents.
1228 */
1229 tbno = fbno;
1230 tlen = flen;
1231 xfs_extent_busy_trim(args, &tbno, &tlen, &busy_gen);
1232
1233 /*
1234 * Give up if the start of the extent is busy, or the freespace isn't
1235 * long enough for the minimum request.
1236 */
1237 if (tbno > args->agbno)
1238 goto not_found;
1239 if (tlen < args->minlen)
1240 goto not_found;
1241 tend = tbno + tlen;
1242 if (tend < args->agbno + args->minlen)
1243 goto not_found;
1244
1245 /*
1246 * End of extent will be smaller of the freespace end and the
1247 * maximal requested end.
1248 *
1249 * Fix the length according to mod and prod if given.
1250 */
1251 args->len = XFS_AGBLOCK_MIN(tend, args->agbno + args->maxlen)
1252 - args->agbno;
1253 xfs_alloc_fix_len(args);
1254 ASSERT(args->agbno + args->len <= tend);
1255
1256 /*
1257 * We are allocating agbno for args->len
1258 * Allocate/initialize a cursor for the by-size btree.
1259 */
1260 cnt_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp,
1261 args->pag, XFS_BTNUM_CNT);
1262 ASSERT(args->agbno + args->len <= be32_to_cpu(agf->agf_length));
1263 error = xfs_alloc_fixup_trees(cnt_cur, bno_cur, fbno, flen, args->agbno,
1264 args->len, XFSA_FIXUP_BNO_OK);
1265 if (error) {
1266 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR);
1267 goto error0;
1268 }
1269
1270 xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
1271 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1272
1273 args->wasfromfl = 0;
1274 trace_xfs_alloc_exact_done(args);
1275 return 0;
1276
1277not_found:
1278 /* Didn't find it, return null. */
1279 xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
1280 args->agbno = NULLAGBLOCK;
1281 trace_xfs_alloc_exact_notfound(args);
1282 return 0;
1283
1284error0:
1285 xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR);
1286 trace_xfs_alloc_exact_error(args);
1287 return error;
1288}
1289
1290/*
1291 * Search a given number of btree records in a given direction. Check each
1292 * record against the good extent we've already found.
1293 */
1294STATIC int
1295xfs_alloc_walk_iter(
1296 struct xfs_alloc_arg *args,
1297 struct xfs_alloc_cur *acur,
1298 struct xfs_btree_cur *cur,
1299 bool increment,
1300 bool find_one, /* quit on first candidate */
1301 int count, /* rec count (-1 for infinite) */
1302 int *stat)
1303{
1304 int error;
1305 int i;
1306
1307 *stat = 0;
1308
1309 /*
1310 * Search so long as the cursor is active or we find a better extent.
1311 * The cursor is deactivated if it extends beyond the range of the
1312 * current allocation candidate.
1313 */
1314 while (xfs_alloc_cur_active(cur) && count) {
1315 error = xfs_alloc_cur_check(args, acur, cur, &i);
1316 if (error)
1317 return error;
1318 if (i == 1) {
1319 *stat = 1;
1320 if (find_one)
1321 break;
1322 }
1323 if (!xfs_alloc_cur_active(cur))
1324 break;
1325
1326 if (increment)
1327 error = xfs_btree_increment(cur, 0, &i);
1328 else
1329 error = xfs_btree_decrement(cur, 0, &i);
1330 if (error)
1331 return error;
1332 if (i == 0)
1333 cur->bc_ag.abt.active = false;
1334
1335 if (count > 0)
1336 count--;
1337 }
1338
1339 return 0;
1340}
1341
1342/*
1343 * Search the by-bno and by-size btrees in parallel in search of an extent with
1344 * ideal locality based on the NEAR mode ->agbno locality hint.
1345 */
1346STATIC int
1347xfs_alloc_ag_vextent_locality(
1348 struct xfs_alloc_arg *args,
1349 struct xfs_alloc_cur *acur,
1350 int *stat)
1351{
1352 struct xfs_btree_cur *fbcur = NULL;
1353 int error;
1354 int i;
1355 bool fbinc;
1356
1357 ASSERT(acur->len == 0);
1358
1359 *stat = 0;
1360
1361 error = xfs_alloc_lookup_ge(acur->cnt, args->agbno, acur->cur_len, &i);
1362 if (error)
1363 return error;
1364 error = xfs_alloc_lookup_le(acur->bnolt, args->agbno, 0, &i);
1365 if (error)
1366 return error;
1367 error = xfs_alloc_lookup_ge(acur->bnogt, args->agbno, 0, &i);
1368 if (error)
1369 return error;
1370
1371 /*
1372 * Search the bnobt and cntbt in parallel. Search the bnobt left and
1373 * right and lookup the closest extent to the locality hint for each
1374 * extent size key in the cntbt. The entire search terminates
1375 * immediately on a bnobt hit because that means we've found best case
1376 * locality. Otherwise the search continues until the cntbt cursor runs
1377 * off the end of the tree. If no allocation candidate is found at this
1378 * point, give up on locality, walk backwards from the end of the cntbt
1379 * and take the first available extent.
1380 *
1381 * The parallel tree searches balance each other out to provide fairly
1382 * consistent performance for various situations. The bnobt search can
1383 * have pathological behavior in the worst case scenario of larger
1384 * allocation requests and fragmented free space. On the other hand, the
1385 * bnobt is able to satisfy most smaller allocation requests much more
1386 * quickly than the cntbt. The cntbt search can sift through fragmented
1387 * free space and sets of free extents for larger allocation requests
1388 * more quickly than the bnobt. Since the locality hint is just a hint
1389 * and we don't want to scan the entire bnobt for perfect locality, the
1390 * cntbt search essentially bounds the bnobt search such that we can
1391 * find good enough locality at reasonable performance in most cases.
1392 */
1393 while (xfs_alloc_cur_active(acur->bnolt) ||
1394 xfs_alloc_cur_active(acur->bnogt) ||
1395 xfs_alloc_cur_active(acur->cnt)) {
1396
1397 trace_xfs_alloc_cur_lookup(args);
1398
1399 /*
1400 * Search the bnobt left and right. In the case of a hit, finish
1401 * the search in the opposite direction and we're done.
1402 */
1403 error = xfs_alloc_walk_iter(args, acur, acur->bnolt, false,
1404 true, 1, &i);
1405 if (error)
1406 return error;
1407 if (i == 1) {
1408 trace_xfs_alloc_cur_left(args);
1409 fbcur = acur->bnogt;
1410 fbinc = true;
1411 break;
1412 }
1413 error = xfs_alloc_walk_iter(args, acur, acur->bnogt, true, true,
1414 1, &i);
1415 if (error)
1416 return error;
1417 if (i == 1) {
1418 trace_xfs_alloc_cur_right(args);
1419 fbcur = acur->bnolt;
1420 fbinc = false;
1421 break;
1422 }
1423
1424 /*
1425 * Check the extent with best locality based on the current
1426 * extent size search key and keep track of the best candidate.
1427 */
1428 error = xfs_alloc_cntbt_iter(args, acur);
1429 if (error)
1430 return error;
1431 if (!xfs_alloc_cur_active(acur->cnt)) {
1432 trace_xfs_alloc_cur_lookup_done(args);
1433 break;
1434 }
1435 }
1436
1437 /*
1438 * If we failed to find anything due to busy extents, return empty
1439 * handed so the caller can flush and retry. If no busy extents were
1440 * found, walk backwards from the end of the cntbt as a last resort.
1441 */
1442 if (!xfs_alloc_cur_active(acur->cnt) && !acur->len && !acur->busy) {
1443 error = xfs_btree_decrement(acur->cnt, 0, &i);
1444 if (error)
1445 return error;
1446 if (i) {
1447 acur->cnt->bc_ag.abt.active = true;
1448 fbcur = acur->cnt;
1449 fbinc = false;
1450 }
1451 }
1452
1453 /*
1454 * Search in the opposite direction for a better entry in the case of
1455 * a bnobt hit or walk backwards from the end of the cntbt.
1456 */
1457 if (fbcur) {
1458 error = xfs_alloc_walk_iter(args, acur, fbcur, fbinc, true, -1,
1459 &i);
1460 if (error)
1461 return error;
1462 }
1463
1464 if (acur->len)
1465 *stat = 1;
1466
1467 return 0;
1468}
1469
1470/* Check the last block of the cnt btree for allocations. */
1471static int
1472xfs_alloc_ag_vextent_lastblock(
1473 struct xfs_alloc_arg *args,
1474 struct xfs_alloc_cur *acur,
1475 xfs_agblock_t *bno,
1476 xfs_extlen_t *len,
1477 bool *allocated)
1478{
1479 int error;
1480 int i;
1481
1482#ifdef DEBUG
1483 /* Randomly don't execute the first algorithm. */
1484 if (get_random_u32_below(2))
1485 return 0;
1486#endif
1487
1488 /*
1489 * Start from the entry that lookup found, sequence through all larger
1490 * free blocks. If we're actually pointing at a record smaller than
1491 * maxlen, go to the start of this block, and skip all those smaller
1492 * than minlen.
1493 */
1494 if (*len || args->alignment > 1) {
1495 acur->cnt->bc_levels[0].ptr = 1;
1496 do {
1497 error = xfs_alloc_get_rec(acur->cnt, bno, len, &i);
1498 if (error)
1499 return error;
1500 if (XFS_IS_CORRUPT(args->mp, i != 1))
1501 return -EFSCORRUPTED;
1502 if (*len >= args->minlen)
1503 break;
1504 error = xfs_btree_increment(acur->cnt, 0, &i);
1505 if (error)
1506 return error;
1507 } while (i);
1508 ASSERT(*len >= args->minlen);
1509 if (!i)
1510 return 0;
1511 }
1512
1513 error = xfs_alloc_walk_iter(args, acur, acur->cnt, true, false, -1, &i);
1514 if (error)
1515 return error;
1516
1517 /*
1518 * It didn't work. We COULD be in a case where there's a good record
1519 * somewhere, so try again.
1520 */
1521 if (acur->len == 0)
1522 return 0;
1523
1524 trace_xfs_alloc_near_first(args);
1525 *allocated = true;
1526 return 0;
1527}
1528
1529/*
1530 * Allocate a variable extent near bno in the allocation group agno.
1531 * Extent's length (returned in len) will be between minlen and maxlen,
1532 * and of the form k * prod + mod unless there's nothing that large.
1533 * Return the starting a.g. block, or NULLAGBLOCK if we can't do it.
1534 */
1535STATIC int
1536xfs_alloc_ag_vextent_near(
1537 struct xfs_alloc_arg *args,
1538 uint32_t alloc_flags)
1539{
1540 struct xfs_alloc_cur acur = {};
1541 int error; /* error code */
1542 int i; /* result code, temporary */
1543 xfs_agblock_t bno;
1544 xfs_extlen_t len;
1545
1546 /* handle uninitialized agbno range so caller doesn't have to */
1547 if (!args->min_agbno && !args->max_agbno)
1548 args->max_agbno = args->mp->m_sb.sb_agblocks - 1;
1549 ASSERT(args->min_agbno <= args->max_agbno);
1550
1551 /* clamp agbno to the range if it's outside */
1552 if (args->agbno < args->min_agbno)
1553 args->agbno = args->min_agbno;
1554 if (args->agbno > args->max_agbno)
1555 args->agbno = args->max_agbno;
1556
1557 /* Retry once quickly if we find busy extents before blocking. */
1558 alloc_flags |= XFS_ALLOC_FLAG_TRYFLUSH;
1559restart:
1560 len = 0;
1561
1562 /*
1563 * Set up cursors and see if there are any free extents as big as
1564 * maxlen. If not, pick the last entry in the tree unless the tree is
1565 * empty.
1566 */
1567 error = xfs_alloc_cur_setup(args, &acur);
1568 if (error == -ENOSPC) {
1569 error = xfs_alloc_ag_vextent_small(args, acur.cnt, &bno,
1570 &len, &i);
1571 if (error)
1572 goto out;
1573 if (i == 0 || len == 0) {
1574 trace_xfs_alloc_near_noentry(args);
1575 goto out;
1576 }
1577 ASSERT(i == 1);
1578 } else if (error) {
1579 goto out;
1580 }
1581
1582 /*
1583 * First algorithm.
1584 * If the requested extent is large wrt the freespaces available
1585 * in this a.g., then the cursor will be pointing to a btree entry
1586 * near the right edge of the tree. If it's in the last btree leaf
1587 * block, then we just examine all the entries in that block
1588 * that are big enough, and pick the best one.
1589 */
1590 if (xfs_btree_islastblock(acur.cnt, 0)) {
1591 bool allocated = false;
1592
1593 error = xfs_alloc_ag_vextent_lastblock(args, &acur, &bno, &len,
1594 &allocated);
1595 if (error)
1596 goto out;
1597 if (allocated)
1598 goto alloc_finish;
1599 }
1600
1601 /*
1602 * Second algorithm. Combined cntbt and bnobt search to find ideal
1603 * locality.
1604 */
1605 error = xfs_alloc_ag_vextent_locality(args, &acur, &i);
1606 if (error)
1607 goto out;
1608
1609 /*
1610 * If we couldn't get anything, give up.
1611 */
1612 if (!acur.len) {
1613 if (acur.busy) {
1614 /*
1615 * Our only valid extents must have been busy. Flush and
1616 * retry the allocation again. If we get an -EAGAIN
1617 * error, we're being told that a deadlock was avoided
1618 * and the current transaction needs committing before
1619 * the allocation can be retried.
1620 */
1621 trace_xfs_alloc_near_busy(args);
1622 error = xfs_extent_busy_flush(args->tp, args->pag,
1623 acur.busy_gen, alloc_flags);
1624 if (error)
1625 goto out;
1626
1627 alloc_flags &= ~XFS_ALLOC_FLAG_TRYFLUSH;
1628 goto restart;
1629 }
1630 trace_xfs_alloc_size_neither(args);
1631 args->agbno = NULLAGBLOCK;
1632 goto out;
1633 }
1634
1635alloc_finish:
1636 /* fix up btrees on a successful allocation */
1637 error = xfs_alloc_cur_finish(args, &acur);
1638
1639out:
1640 xfs_alloc_cur_close(&acur, error);
1641 return error;
1642}
1643
1644/*
1645 * Allocate a variable extent anywhere in the allocation group agno.
1646 * Extent's length (returned in len) will be between minlen and maxlen,
1647 * and of the form k * prod + mod unless there's nothing that large.
1648 * Return the starting a.g. block, or NULLAGBLOCK if we can't do it.
1649 */
1650static int
1651xfs_alloc_ag_vextent_size(
1652 struct xfs_alloc_arg *args,
1653 uint32_t alloc_flags)
1654{
1655 struct xfs_agf *agf = args->agbp->b_addr;
1656 struct xfs_btree_cur *bno_cur;
1657 struct xfs_btree_cur *cnt_cur;
1658 xfs_agblock_t fbno; /* start of found freespace */
1659 xfs_extlen_t flen; /* length of found freespace */
1660 xfs_agblock_t rbno; /* returned block number */
1661 xfs_extlen_t rlen; /* length of returned extent */
1662 bool busy;
1663 unsigned busy_gen;
1664 int error;
1665 int i;
1666
1667 /* Retry once quickly if we find busy extents before blocking. */
1668 alloc_flags |= XFS_ALLOC_FLAG_TRYFLUSH;
1669restart:
1670 /*
1671 * Allocate and initialize a cursor for the by-size btree.
1672 */
1673 cnt_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp,
1674 args->pag, XFS_BTNUM_CNT);
1675 bno_cur = NULL;
1676
1677 /*
1678 * Look for an entry >= maxlen+alignment-1 blocks.
1679 */
1680 if ((error = xfs_alloc_lookup_ge(cnt_cur, 0,
1681 args->maxlen + args->alignment - 1, &i)))
1682 goto error0;
1683
1684 /*
1685 * If none then we have to settle for a smaller extent. In the case that
1686 * there are no large extents, this will return the last entry in the
1687 * tree unless the tree is empty. In the case that there are only busy
1688 * large extents, this will return the largest small extent unless there
1689 * are no smaller extents available.
1690 */
1691 if (!i) {
1692 error = xfs_alloc_ag_vextent_small(args, cnt_cur,
1693 &fbno, &flen, &i);
1694 if (error)
1695 goto error0;
1696 if (i == 0 || flen == 0) {
1697 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1698 trace_xfs_alloc_size_noentry(args);
1699 return 0;
1700 }
1701 ASSERT(i == 1);
1702 busy = xfs_alloc_compute_aligned(args, fbno, flen, &rbno,
1703 &rlen, &busy_gen);
1704 } else {
1705 /*
1706 * Search for a non-busy extent that is large enough.
1707 */
1708 for (;;) {
1709 error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen, &i);
1710 if (error)
1711 goto error0;
1712 if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1713 error = -EFSCORRUPTED;
1714 goto error0;
1715 }
1716
1717 busy = xfs_alloc_compute_aligned(args, fbno, flen,
1718 &rbno, &rlen, &busy_gen);
1719
1720 if (rlen >= args->maxlen)
1721 break;
1722
1723 error = xfs_btree_increment(cnt_cur, 0, &i);
1724 if (error)
1725 goto error0;
1726 if (i)
1727 continue;
1728
1729 /*
1730 * Our only valid extents must have been busy. Flush and
1731 * retry the allocation again. If we get an -EAGAIN
1732 * error, we're being told that a deadlock was avoided
1733 * and the current transaction needs committing before
1734 * the allocation can be retried.
1735 */
1736 trace_xfs_alloc_size_busy(args);
1737 error = xfs_extent_busy_flush(args->tp, args->pag,
1738 busy_gen, alloc_flags);
1739 if (error)
1740 goto error0;
1741
1742 alloc_flags &= ~XFS_ALLOC_FLAG_TRYFLUSH;
1743 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1744 goto restart;
1745 }
1746 }
1747
1748 /*
1749 * In the first case above, we got the last entry in the
1750 * by-size btree. Now we check to see if the space hits maxlen
1751 * once aligned; if not, we search left for something better.
1752 * This can't happen in the second case above.
1753 */
1754 rlen = XFS_EXTLEN_MIN(args->maxlen, rlen);
1755 if (XFS_IS_CORRUPT(args->mp,
1756 rlen != 0 &&
1757 (rlen > flen ||
1758 rbno + rlen > fbno + flen))) {
1759 error = -EFSCORRUPTED;
1760 goto error0;
1761 }
1762 if (rlen < args->maxlen) {
1763 xfs_agblock_t bestfbno;
1764 xfs_extlen_t bestflen;
1765 xfs_agblock_t bestrbno;
1766 xfs_extlen_t bestrlen;
1767
1768 bestrlen = rlen;
1769 bestrbno = rbno;
1770 bestflen = flen;
1771 bestfbno = fbno;
1772 for (;;) {
1773 if ((error = xfs_btree_decrement(cnt_cur, 0, &i)))
1774 goto error0;
1775 if (i == 0)
1776 break;
1777 if ((error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen,
1778 &i)))
1779 goto error0;
1780 if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1781 error = -EFSCORRUPTED;
1782 goto error0;
1783 }
1784 if (flen < bestrlen)
1785 break;
1786 busy = xfs_alloc_compute_aligned(args, fbno, flen,
1787 &rbno, &rlen, &busy_gen);
1788 rlen = XFS_EXTLEN_MIN(args->maxlen, rlen);
1789 if (XFS_IS_CORRUPT(args->mp,
1790 rlen != 0 &&
1791 (rlen > flen ||
1792 rbno + rlen > fbno + flen))) {
1793 error = -EFSCORRUPTED;
1794 goto error0;
1795 }
1796 if (rlen > bestrlen) {
1797 bestrlen = rlen;
1798 bestrbno = rbno;
1799 bestflen = flen;
1800 bestfbno = fbno;
1801 if (rlen == args->maxlen)
1802 break;
1803 }
1804 }
1805 if ((error = xfs_alloc_lookup_eq(cnt_cur, bestfbno, bestflen,
1806 &i)))
1807 goto error0;
1808 if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1809 error = -EFSCORRUPTED;
1810 goto error0;
1811 }
1812 rlen = bestrlen;
1813 rbno = bestrbno;
1814 flen = bestflen;
1815 fbno = bestfbno;
1816 }
1817 args->wasfromfl = 0;
1818 /*
1819 * Fix up the length.
1820 */
1821 args->len = rlen;
1822 if (rlen < args->minlen) {
1823 if (busy) {
1824 /*
1825 * Our only valid extents must have been busy. Flush and
1826 * retry the allocation again. If we get an -EAGAIN
1827 * error, we're being told that a deadlock was avoided
1828 * and the current transaction needs committing before
1829 * the allocation can be retried.
1830 */
1831 trace_xfs_alloc_size_busy(args);
1832 error = xfs_extent_busy_flush(args->tp, args->pag,
1833 busy_gen, alloc_flags);
1834 if (error)
1835 goto error0;
1836
1837 alloc_flags &= ~XFS_ALLOC_FLAG_TRYFLUSH;
1838 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1839 goto restart;
1840 }
1841 goto out_nominleft;
1842 }
1843 xfs_alloc_fix_len(args);
1844
1845 rlen = args->len;
1846 if (XFS_IS_CORRUPT(args->mp, rlen > flen)) {
1847 error = -EFSCORRUPTED;
1848 goto error0;
1849 }
1850 /*
1851 * Allocate and initialize a cursor for the by-block tree.
1852 */
1853 bno_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp,
1854 args->pag, XFS_BTNUM_BNO);
1855 if ((error = xfs_alloc_fixup_trees(cnt_cur, bno_cur, fbno, flen,
1856 rbno, rlen, XFSA_FIXUP_CNT_OK)))
1857 goto error0;
1858 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1859 xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
1860 cnt_cur = bno_cur = NULL;
1861 args->len = rlen;
1862 args->agbno = rbno;
1863 if (XFS_IS_CORRUPT(args->mp,
1864 args->agbno + args->len >
1865 be32_to_cpu(agf->agf_length))) {
1866 error = -EFSCORRUPTED;
1867 goto error0;
1868 }
1869 trace_xfs_alloc_size_done(args);
1870 return 0;
1871
1872error0:
1873 trace_xfs_alloc_size_error(args);
1874 if (cnt_cur)
1875 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR);
1876 if (bno_cur)
1877 xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR);
1878 return error;
1879
1880out_nominleft:
1881 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1882 trace_xfs_alloc_size_nominleft(args);
1883 args->agbno = NULLAGBLOCK;
1884 return 0;
1885}
1886
1887/*
1888 * Free the extent starting at agno/bno for length.
1889 */
1890STATIC int
1891xfs_free_ag_extent(
1892 struct xfs_trans *tp,
1893 struct xfs_buf *agbp,
1894 xfs_agnumber_t agno,
1895 xfs_agblock_t bno,
1896 xfs_extlen_t len,
1897 const struct xfs_owner_info *oinfo,
1898 enum xfs_ag_resv_type type)
1899{
1900 struct xfs_mount *mp;
1901 struct xfs_btree_cur *bno_cur;
1902 struct xfs_btree_cur *cnt_cur;
1903 xfs_agblock_t gtbno; /* start of right neighbor */
1904 xfs_extlen_t gtlen; /* length of right neighbor */
1905 xfs_agblock_t ltbno; /* start of left neighbor */
1906 xfs_extlen_t ltlen; /* length of left neighbor */
1907 xfs_agblock_t nbno; /* new starting block of freesp */
1908 xfs_extlen_t nlen; /* new length of freespace */
1909 int haveleft; /* have a left neighbor */
1910 int haveright; /* have a right neighbor */
1911 int i;
1912 int error;
1913 struct xfs_perag *pag = agbp->b_pag;
1914
1915 bno_cur = cnt_cur = NULL;
1916 mp = tp->t_mountp;
1917
1918 if (!xfs_rmap_should_skip_owner_update(oinfo)) {
1919 error = xfs_rmap_free(tp, agbp, pag, bno, len, oinfo);
1920 if (error)
1921 goto error0;
1922 }
1923
1924 /*
1925 * Allocate and initialize a cursor for the by-block btree.
1926 */
1927 bno_cur = xfs_allocbt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_BNO);
1928 /*
1929 * Look for a neighboring block on the left (lower block numbers)
1930 * that is contiguous with this space.
1931 */
1932 if ((error = xfs_alloc_lookup_le(bno_cur, bno, len, &haveleft)))
1933 goto error0;
1934 if (haveleft) {
1935 /*
1936 * There is a block to our left.
1937 */
1938 if ((error = xfs_alloc_get_rec(bno_cur, <bno, <len, &i)))
1939 goto error0;
1940 if (XFS_IS_CORRUPT(mp, i != 1)) {
1941 error = -EFSCORRUPTED;
1942 goto error0;
1943 }
1944 /*
1945 * It's not contiguous, though.
1946 */
1947 if (ltbno + ltlen < bno)
1948 haveleft = 0;
1949 else {
1950 /*
1951 * If this failure happens the request to free this
1952 * space was invalid, it's (partly) already free.
1953 * Very bad.
1954 */
1955 if (XFS_IS_CORRUPT(mp, ltbno + ltlen > bno)) {
1956 error = -EFSCORRUPTED;
1957 goto error0;
1958 }
1959 }
1960 }
1961 /*
1962 * Look for a neighboring block on the right (higher block numbers)
1963 * that is contiguous with this space.
1964 */
1965 if ((error = xfs_btree_increment(bno_cur, 0, &haveright)))
1966 goto error0;
1967 if (haveright) {
1968 /*
1969 * There is a block to our right.
1970 */
1971 if ((error = xfs_alloc_get_rec(bno_cur, >bno, >len, &i)))
1972 goto error0;
1973 if (XFS_IS_CORRUPT(mp, i != 1)) {
1974 error = -EFSCORRUPTED;
1975 goto error0;
1976 }
1977 /*
1978 * It's not contiguous, though.
1979 */
1980 if (bno + len < gtbno)
1981 haveright = 0;
1982 else {
1983 /*
1984 * If this failure happens the request to free this
1985 * space was invalid, it's (partly) already free.
1986 * Very bad.
1987 */
1988 if (XFS_IS_CORRUPT(mp, bno + len > gtbno)) {
1989 error = -EFSCORRUPTED;
1990 goto error0;
1991 }
1992 }
1993 }
1994 /*
1995 * Now allocate and initialize a cursor for the by-size tree.
1996 */
1997 cnt_cur = xfs_allocbt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_CNT);
1998 /*
1999 * Have both left and right contiguous neighbors.
2000 * Merge all three into a single free block.
2001 */
2002 if (haveleft && haveright) {
2003 /*
2004 * Delete the old by-size entry on the left.
2005 */
2006 if ((error = xfs_alloc_lookup_eq(cnt_cur, ltbno, ltlen, &i)))
2007 goto error0;
2008 if (XFS_IS_CORRUPT(mp, i != 1)) {
2009 error = -EFSCORRUPTED;
2010 goto error0;
2011 }
2012 if ((error = xfs_btree_delete(cnt_cur, &i)))
2013 goto error0;
2014 if (XFS_IS_CORRUPT(mp, i != 1)) {
2015 error = -EFSCORRUPTED;
2016 goto error0;
2017 }
2018 /*
2019 * Delete the old by-size entry on the right.
2020 */
2021 if ((error = xfs_alloc_lookup_eq(cnt_cur, gtbno, gtlen, &i)))
2022 goto error0;
2023 if (XFS_IS_CORRUPT(mp, i != 1)) {
2024 error = -EFSCORRUPTED;
2025 goto error0;
2026 }
2027 if ((error = xfs_btree_delete(cnt_cur, &i)))
2028 goto error0;
2029 if (XFS_IS_CORRUPT(mp, i != 1)) {
2030 error = -EFSCORRUPTED;
2031 goto error0;
2032 }
2033 /*
2034 * Delete the old by-block entry for the right block.
2035 */
2036 if ((error = xfs_btree_delete(bno_cur, &i)))
2037 goto error0;
2038 if (XFS_IS_CORRUPT(mp, i != 1)) {
2039 error = -EFSCORRUPTED;
2040 goto error0;
2041 }
2042 /*
2043 * Move the by-block cursor back to the left neighbor.
2044 */
2045 if ((error = xfs_btree_decrement(bno_cur, 0, &i)))
2046 goto error0;
2047 if (XFS_IS_CORRUPT(mp, i != 1)) {
2048 error = -EFSCORRUPTED;
2049 goto error0;
2050 }
2051#ifdef DEBUG
2052 /*
2053 * Check that this is the right record: delete didn't
2054 * mangle the cursor.
2055 */
2056 {
2057 xfs_agblock_t xxbno;
2058 xfs_extlen_t xxlen;
2059
2060 if ((error = xfs_alloc_get_rec(bno_cur, &xxbno, &xxlen,
2061 &i)))
2062 goto error0;
2063 if (XFS_IS_CORRUPT(mp,
2064 i != 1 ||
2065 xxbno != ltbno ||
2066 xxlen != ltlen)) {
2067 error = -EFSCORRUPTED;
2068 goto error0;
2069 }
2070 }
2071#endif
2072 /*
2073 * Update remaining by-block entry to the new, joined block.
2074 */
2075 nbno = ltbno;
2076 nlen = len + ltlen + gtlen;
2077 if ((error = xfs_alloc_update(bno_cur, nbno, nlen)))
2078 goto error0;
2079 }
2080 /*
2081 * Have only a left contiguous neighbor.
2082 * Merge it together with the new freespace.
2083 */
2084 else if (haveleft) {
2085 /*
2086 * Delete the old by-size entry on the left.
2087 */
2088 if ((error = xfs_alloc_lookup_eq(cnt_cur, ltbno, ltlen, &i)))
2089 goto error0;
2090 if (XFS_IS_CORRUPT(mp, i != 1)) {
2091 error = -EFSCORRUPTED;
2092 goto error0;
2093 }
2094 if ((error = xfs_btree_delete(cnt_cur, &i)))
2095 goto error0;
2096 if (XFS_IS_CORRUPT(mp, i != 1)) {
2097 error = -EFSCORRUPTED;
2098 goto error0;
2099 }
2100 /*
2101 * Back up the by-block cursor to the left neighbor, and
2102 * update its length.
2103 */
2104 if ((error = xfs_btree_decrement(bno_cur, 0, &i)))
2105 goto error0;
2106 if (XFS_IS_CORRUPT(mp, i != 1)) {
2107 error = -EFSCORRUPTED;
2108 goto error0;
2109 }
2110 nbno = ltbno;
2111 nlen = len + ltlen;
2112 if ((error = xfs_alloc_update(bno_cur, nbno, nlen)))
2113 goto error0;
2114 }
2115 /*
2116 * Have only a right contiguous neighbor.
2117 * Merge it together with the new freespace.
2118 */
2119 else if (haveright) {
2120 /*
2121 * Delete the old by-size entry on the right.
2122 */
2123 if ((error = xfs_alloc_lookup_eq(cnt_cur, gtbno, gtlen, &i)))
2124 goto error0;
2125 if (XFS_IS_CORRUPT(mp, i != 1)) {
2126 error = -EFSCORRUPTED;
2127 goto error0;
2128 }
2129 if ((error = xfs_btree_delete(cnt_cur, &i)))
2130 goto error0;
2131 if (XFS_IS_CORRUPT(mp, i != 1)) {
2132 error = -EFSCORRUPTED;
2133 goto error0;
2134 }
2135 /*
2136 * Update the starting block and length of the right
2137 * neighbor in the by-block tree.
2138 */
2139 nbno = bno;
2140 nlen = len + gtlen;
2141 if ((error = xfs_alloc_update(bno_cur, nbno, nlen)))
2142 goto error0;
2143 }
2144 /*
2145 * No contiguous neighbors.
2146 * Insert the new freespace into the by-block tree.
2147 */
2148 else {
2149 nbno = bno;
2150 nlen = len;
2151 if ((error = xfs_btree_insert(bno_cur, &i)))
2152 goto error0;
2153 if (XFS_IS_CORRUPT(mp, i != 1)) {
2154 error = -EFSCORRUPTED;
2155 goto error0;
2156 }
2157 }
2158 xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
2159 bno_cur = NULL;
2160 /*
2161 * In all cases we need to insert the new freespace in the by-size tree.
2162 */
2163 if ((error = xfs_alloc_lookup_eq(cnt_cur, nbno, nlen, &i)))
2164 goto error0;
2165 if (XFS_IS_CORRUPT(mp, i != 0)) {
2166 error = -EFSCORRUPTED;
2167 goto error0;
2168 }
2169 if ((error = xfs_btree_insert(cnt_cur, &i)))
2170 goto error0;
2171 if (XFS_IS_CORRUPT(mp, i != 1)) {
2172 error = -EFSCORRUPTED;
2173 goto error0;
2174 }
2175 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
2176 cnt_cur = NULL;
2177
2178 /*
2179 * Update the freespace totals in the ag and superblock.
2180 */
2181 error = xfs_alloc_update_counters(tp, agbp, len);
2182 xfs_ag_resv_free_extent(agbp->b_pag, type, tp, len);
2183 if (error)
2184 goto error0;
2185
2186 XFS_STATS_INC(mp, xs_freex);
2187 XFS_STATS_ADD(mp, xs_freeb, len);
2188
2189 trace_xfs_free_extent(mp, agno, bno, len, type, haveleft, haveright);
2190
2191 return 0;
2192
2193 error0:
2194 trace_xfs_free_extent(mp, agno, bno, len, type, -1, -1);
2195 if (bno_cur)
2196 xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR);
2197 if (cnt_cur)
2198 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR);
2199 return error;
2200}
2201
2202/*
2203 * Visible (exported) allocation/free functions.
2204 * Some of these are used just by xfs_alloc_btree.c and this file.
2205 */
2206
2207/*
2208 * Compute and fill in value of m_alloc_maxlevels.
2209 */
2210void
2211xfs_alloc_compute_maxlevels(
2212 xfs_mount_t *mp) /* file system mount structure */
2213{
2214 mp->m_alloc_maxlevels = xfs_btree_compute_maxlevels(mp->m_alloc_mnr,
2215 (mp->m_sb.sb_agblocks + 1) / 2);
2216 ASSERT(mp->m_alloc_maxlevels <= xfs_allocbt_maxlevels_ondisk());
2217}
2218
2219/*
2220 * Find the length of the longest extent in an AG. The 'need' parameter
2221 * specifies how much space we're going to need for the AGFL and the
2222 * 'reserved' parameter tells us how many blocks in this AG are reserved for
2223 * other callers.
2224 */
2225xfs_extlen_t
2226xfs_alloc_longest_free_extent(
2227 struct xfs_perag *pag,
2228 xfs_extlen_t need,
2229 xfs_extlen_t reserved)
2230{
2231 xfs_extlen_t delta = 0;
2232
2233 /*
2234 * If the AGFL needs a recharge, we'll have to subtract that from the
2235 * longest extent.
2236 */
2237 if (need > pag->pagf_flcount)
2238 delta = need - pag->pagf_flcount;
2239
2240 /*
2241 * If we cannot maintain others' reservations with space from the
2242 * not-longest freesp extents, we'll have to subtract /that/ from
2243 * the longest extent too.
2244 */
2245 if (pag->pagf_freeblks - pag->pagf_longest < reserved)
2246 delta += reserved - (pag->pagf_freeblks - pag->pagf_longest);
2247
2248 /*
2249 * If the longest extent is long enough to satisfy all the
2250 * reservations and AGFL rules in place, we can return this extent.
2251 */
2252 if (pag->pagf_longest > delta)
2253 return min_t(xfs_extlen_t, pag->pag_mount->m_ag_max_usable,
2254 pag->pagf_longest - delta);
2255
2256 /* Otherwise, let the caller try for 1 block if there's space. */
2257 return pag->pagf_flcount > 0 || pag->pagf_longest > 0;
2258}
2259
2260/*
2261 * Compute the minimum length of the AGFL in the given AG. If @pag is NULL,
2262 * return the largest possible minimum length.
2263 */
2264unsigned int
2265xfs_alloc_min_freelist(
2266 struct xfs_mount *mp,
2267 struct xfs_perag *pag)
2268{
2269 /* AG btrees have at least 1 level. */
2270 static const uint8_t fake_levels[XFS_BTNUM_AGF] = {1, 1, 1};
2271 const uint8_t *levels = pag ? pag->pagf_levels : fake_levels;
2272 unsigned int min_free;
2273
2274 ASSERT(mp->m_alloc_maxlevels > 0);
2275
2276 /*
2277 * For a btree shorter than the maximum height, the worst case is that
2278 * every level gets split and a new level is added, then while inserting
2279 * another entry to refill the AGFL, every level under the old root gets
2280 * split again. This is:
2281 *
2282 * (full height split reservation) + (AGFL refill split height)
2283 * = (current height + 1) + (current height - 1)
2284 * = (new height) + (new height - 2)
2285 * = 2 * new height - 2
2286 *
2287 * For a btree of maximum height, the worst case is that every level
2288 * under the root gets split, then while inserting another entry to
2289 * refill the AGFL, every level under the root gets split again. This is
2290 * also:
2291 *
2292 * 2 * (current height - 1)
2293 * = 2 * (new height - 1)
2294 * = 2 * new height - 2
2295 */
2296
2297 /* space needed by-bno freespace btree */
2298 min_free = min_t(unsigned int, levels[XFS_BTNUM_BNOi] + 1,
2299 mp->m_alloc_maxlevels) * 2 - 2;
2300 /* space needed by-size freespace btree */
2301 min_free += min_t(unsigned int, levels[XFS_BTNUM_CNTi] + 1,
2302 mp->m_alloc_maxlevels) * 2 - 2;
2303 /* space needed reverse mapping used space btree */
2304 if (xfs_has_rmapbt(mp))
2305 min_free += min_t(unsigned int, levels[XFS_BTNUM_RMAPi] + 1,
2306 mp->m_rmap_maxlevels) * 2 - 2;
2307
2308 return min_free;
2309}
2310
2311/*
2312 * Check if the operation we are fixing up the freelist for should go ahead or
2313 * not. If we are freeing blocks, we always allow it, otherwise the allocation
2314 * is dependent on whether the size and shape of free space available will
2315 * permit the requested allocation to take place.
2316 */
2317static bool
2318xfs_alloc_space_available(
2319 struct xfs_alloc_arg *args,
2320 xfs_extlen_t min_free,
2321 int flags)
2322{
2323 struct xfs_perag *pag = args->pag;
2324 xfs_extlen_t alloc_len, longest;
2325 xfs_extlen_t reservation; /* blocks that are still reserved */
2326 int available;
2327 xfs_extlen_t agflcount;
2328
2329 if (flags & XFS_ALLOC_FLAG_FREEING)
2330 return true;
2331
2332 reservation = xfs_ag_resv_needed(pag, args->resv);
2333
2334 /* do we have enough contiguous free space for the allocation? */
2335 alloc_len = args->minlen + (args->alignment - 1) + args->minalignslop;
2336 longest = xfs_alloc_longest_free_extent(pag, min_free, reservation);
2337 if (longest < alloc_len)
2338 return false;
2339
2340 /*
2341 * Do we have enough free space remaining for the allocation? Don't
2342 * account extra agfl blocks because we are about to defer free them,
2343 * making them unavailable until the current transaction commits.
2344 */
2345 agflcount = min_t(xfs_extlen_t, pag->pagf_flcount, min_free);
2346 available = (int)(pag->pagf_freeblks + agflcount -
2347 reservation - min_free - args->minleft);
2348 if (available < (int)max(args->total, alloc_len))
2349 return false;
2350
2351 /*
2352 * Clamp maxlen to the amount of free space available for the actual
2353 * extent allocation.
2354 */
2355 if (available < (int)args->maxlen && !(flags & XFS_ALLOC_FLAG_CHECK)) {
2356 args->maxlen = available;
2357 ASSERT(args->maxlen > 0);
2358 ASSERT(args->maxlen >= args->minlen);
2359 }
2360
2361 return true;
2362}
2363
2364int
2365xfs_free_agfl_block(
2366 struct xfs_trans *tp,
2367 xfs_agnumber_t agno,
2368 xfs_agblock_t agbno,
2369 struct xfs_buf *agbp,
2370 struct xfs_owner_info *oinfo)
2371{
2372 int error;
2373 struct xfs_buf *bp;
2374
2375 error = xfs_free_ag_extent(tp, agbp, agno, agbno, 1, oinfo,
2376 XFS_AG_RESV_AGFL);
2377 if (error)
2378 return error;
2379
2380 error = xfs_trans_get_buf(tp, tp->t_mountp->m_ddev_targp,
2381 XFS_AGB_TO_DADDR(tp->t_mountp, agno, agbno),
2382 tp->t_mountp->m_bsize, 0, &bp);
2383 if (error)
2384 return error;
2385 xfs_trans_binval(tp, bp);
2386
2387 return 0;
2388}
2389
2390/*
2391 * Check the agfl fields of the agf for inconsistency or corruption.
2392 *
2393 * The original purpose was to detect an agfl header padding mismatch between
2394 * current and early v5 kernels. This problem manifests as a 1-slot size
2395 * difference between the on-disk flcount and the active [first, last] range of
2396 * a wrapped agfl.
2397 *
2398 * However, we need to use these same checks to catch agfl count corruptions
2399 * unrelated to padding. This could occur on any v4 or v5 filesystem, so either
2400 * way, we need to reset the agfl and warn the user.
2401 *
2402 * Return true if a reset is required before the agfl can be used, false
2403 * otherwise.
2404 */
2405static bool
2406xfs_agfl_needs_reset(
2407 struct xfs_mount *mp,
2408 struct xfs_agf *agf)
2409{
2410 uint32_t f = be32_to_cpu(agf->agf_flfirst);
2411 uint32_t l = be32_to_cpu(agf->agf_fllast);
2412 uint32_t c = be32_to_cpu(agf->agf_flcount);
2413 int agfl_size = xfs_agfl_size(mp);
2414 int active;
2415
2416 /*
2417 * The agf read verifier catches severe corruption of these fields.
2418 * Repeat some sanity checks to cover a packed -> unpacked mismatch if
2419 * the verifier allows it.
2420 */
2421 if (f >= agfl_size || l >= agfl_size)
2422 return true;
2423 if (c > agfl_size)
2424 return true;
2425
2426 /*
2427 * Check consistency between the on-disk count and the active range. An
2428 * agfl padding mismatch manifests as an inconsistent flcount.
2429 */
2430 if (c && l >= f)
2431 active = l - f + 1;
2432 else if (c)
2433 active = agfl_size - f + l + 1;
2434 else
2435 active = 0;
2436
2437 return active != c;
2438}
2439
2440/*
2441 * Reset the agfl to an empty state. Ignore/drop any existing blocks since the
2442 * agfl content cannot be trusted. Warn the user that a repair is required to
2443 * recover leaked blocks.
2444 *
2445 * The purpose of this mechanism is to handle filesystems affected by the agfl
2446 * header padding mismatch problem. A reset keeps the filesystem online with a
2447 * relatively minor free space accounting inconsistency rather than suffer the
2448 * inevitable crash from use of an invalid agfl block.
2449 */
2450static void
2451xfs_agfl_reset(
2452 struct xfs_trans *tp,
2453 struct xfs_buf *agbp,
2454 struct xfs_perag *pag)
2455{
2456 struct xfs_mount *mp = tp->t_mountp;
2457 struct xfs_agf *agf = agbp->b_addr;
2458
2459 ASSERT(xfs_perag_agfl_needs_reset(pag));
2460 trace_xfs_agfl_reset(mp, agf, 0, _RET_IP_);
2461
2462 xfs_warn(mp,
2463 "WARNING: Reset corrupted AGFL on AG %u. %d blocks leaked. "
2464 "Please unmount and run xfs_repair.",
2465 pag->pag_agno, pag->pagf_flcount);
2466
2467 agf->agf_flfirst = 0;
2468 agf->agf_fllast = cpu_to_be32(xfs_agfl_size(mp) - 1);
2469 agf->agf_flcount = 0;
2470 xfs_alloc_log_agf(tp, agbp, XFS_AGF_FLFIRST | XFS_AGF_FLLAST |
2471 XFS_AGF_FLCOUNT);
2472
2473 pag->pagf_flcount = 0;
2474 clear_bit(XFS_AGSTATE_AGFL_NEEDS_RESET, &pag->pag_opstate);
2475}
2476
2477/*
2478 * Defer an AGFL block free. This is effectively equivalent to
2479 * xfs_free_extent_later() with some special handling particular to AGFL blocks.
2480 *
2481 * Deferring AGFL frees helps prevent log reservation overruns due to too many
2482 * allocation operations in a transaction. AGFL frees are prone to this problem
2483 * because for one they are always freed one at a time. Further, an immediate
2484 * AGFL block free can cause a btree join and require another block free before
2485 * the real allocation can proceed. Deferring the free disconnects freeing up
2486 * the AGFL slot from freeing the block.
2487 */
2488static int
2489xfs_defer_agfl_block(
2490 struct xfs_trans *tp,
2491 xfs_agnumber_t agno,
2492 xfs_agblock_t agbno,
2493 struct xfs_owner_info *oinfo)
2494{
2495 struct xfs_mount *mp = tp->t_mountp;
2496 struct xfs_extent_free_item *xefi;
2497 xfs_fsblock_t fsbno = XFS_AGB_TO_FSB(mp, agno, agbno);
2498
2499 ASSERT(xfs_extfree_item_cache != NULL);
2500 ASSERT(oinfo != NULL);
2501
2502 if (XFS_IS_CORRUPT(mp, !xfs_verify_fsbno(mp, fsbno)))
2503 return -EFSCORRUPTED;
2504
2505 xefi = kmem_cache_zalloc(xfs_extfree_item_cache,
2506 GFP_KERNEL | __GFP_NOFAIL);
2507 xefi->xefi_startblock = fsbno;
2508 xefi->xefi_blockcount = 1;
2509 xefi->xefi_owner = oinfo->oi_owner;
2510 xefi->xefi_agresv = XFS_AG_RESV_AGFL;
2511
2512 trace_xfs_agfl_free_defer(mp, agno, 0, agbno, 1);
2513
2514 xfs_extent_free_get_group(mp, xefi);
2515 xfs_defer_add(tp, &xefi->xefi_list, &xfs_agfl_free_defer_type);
2516 return 0;
2517}
2518
2519/*
2520 * Add the extent to the list of extents to be free at transaction end.
2521 * The list is maintained sorted (by block number).
2522 */
2523static int
2524xfs_defer_extent_free(
2525 struct xfs_trans *tp,
2526 xfs_fsblock_t bno,
2527 xfs_filblks_t len,
2528 const struct xfs_owner_info *oinfo,
2529 enum xfs_ag_resv_type type,
2530 bool skip_discard,
2531 struct xfs_defer_pending **dfpp)
2532{
2533 struct xfs_extent_free_item *xefi;
2534 struct xfs_mount *mp = tp->t_mountp;
2535#ifdef DEBUG
2536 xfs_agnumber_t agno;
2537 xfs_agblock_t agbno;
2538
2539 ASSERT(bno != NULLFSBLOCK);
2540 ASSERT(len > 0);
2541 ASSERT(len <= XFS_MAX_BMBT_EXTLEN);
2542 ASSERT(!isnullstartblock(bno));
2543 agno = XFS_FSB_TO_AGNO(mp, bno);
2544 agbno = XFS_FSB_TO_AGBNO(mp, bno);
2545 ASSERT(agno < mp->m_sb.sb_agcount);
2546 ASSERT(agbno < mp->m_sb.sb_agblocks);
2547 ASSERT(len < mp->m_sb.sb_agblocks);
2548 ASSERT(agbno + len <= mp->m_sb.sb_agblocks);
2549#endif
2550 ASSERT(xfs_extfree_item_cache != NULL);
2551 ASSERT(type != XFS_AG_RESV_AGFL);
2552
2553 if (XFS_IS_CORRUPT(mp, !xfs_verify_fsbext(mp, bno, len)))
2554 return -EFSCORRUPTED;
2555
2556 xefi = kmem_cache_zalloc(xfs_extfree_item_cache,
2557 GFP_KERNEL | __GFP_NOFAIL);
2558 xefi->xefi_startblock = bno;
2559 xefi->xefi_blockcount = (xfs_extlen_t)len;
2560 xefi->xefi_agresv = type;
2561 if (skip_discard)
2562 xefi->xefi_flags |= XFS_EFI_SKIP_DISCARD;
2563 if (oinfo) {
2564 ASSERT(oinfo->oi_offset == 0);
2565
2566 if (oinfo->oi_flags & XFS_OWNER_INFO_ATTR_FORK)
2567 xefi->xefi_flags |= XFS_EFI_ATTR_FORK;
2568 if (oinfo->oi_flags & XFS_OWNER_INFO_BMBT_BLOCK)
2569 xefi->xefi_flags |= XFS_EFI_BMBT_BLOCK;
2570 xefi->xefi_owner = oinfo->oi_owner;
2571 } else {
2572 xefi->xefi_owner = XFS_RMAP_OWN_NULL;
2573 }
2574 trace_xfs_bmap_free_defer(mp,
2575 XFS_FSB_TO_AGNO(tp->t_mountp, bno), 0,
2576 XFS_FSB_TO_AGBNO(tp->t_mountp, bno), len);
2577
2578 xfs_extent_free_get_group(mp, xefi);
2579 *dfpp = xfs_defer_add(tp, &xefi->xefi_list, &xfs_extent_free_defer_type);
2580 return 0;
2581}
2582
2583int
2584xfs_free_extent_later(
2585 struct xfs_trans *tp,
2586 xfs_fsblock_t bno,
2587 xfs_filblks_t len,
2588 const struct xfs_owner_info *oinfo,
2589 enum xfs_ag_resv_type type,
2590 bool skip_discard)
2591{
2592 struct xfs_defer_pending *dontcare = NULL;
2593
2594 return xfs_defer_extent_free(tp, bno, len, oinfo, type, skip_discard,
2595 &dontcare);
2596}
2597
2598/*
2599 * Set up automatic freeing of unwritten space in the filesystem.
2600 *
2601 * This function attached a paused deferred extent free item to the
2602 * transaction. Pausing means that the EFI will be logged in the next
2603 * transaction commit, but the pending EFI will not be finished until the
2604 * pending item is unpaused.
2605 *
2606 * If the system goes down after the EFI has been persisted to the log but
2607 * before the pending item is unpaused, log recovery will find the EFI, fail to
2608 * find the EFD, and free the space.
2609 *
2610 * If the pending item is unpaused, the next transaction commit will log an EFD
2611 * without freeing the space.
2612 *
2613 * Caller must ensure that the tp, fsbno, len, oinfo, and resv flags of the
2614 * @args structure are set to the relevant values.
2615 */
2616int
2617xfs_alloc_schedule_autoreap(
2618 const struct xfs_alloc_arg *args,
2619 bool skip_discard,
2620 struct xfs_alloc_autoreap *aarp)
2621{
2622 int error;
2623
2624 error = xfs_defer_extent_free(args->tp, args->fsbno, args->len,
2625 &args->oinfo, args->resv, skip_discard, &aarp->dfp);
2626 if (error)
2627 return error;
2628
2629 xfs_defer_item_pause(args->tp, aarp->dfp);
2630 return 0;
2631}
2632
2633/*
2634 * Cancel automatic freeing of unwritten space in the filesystem.
2635 *
2636 * Earlier, we created a paused deferred extent free item and attached it to
2637 * this transaction so that we could automatically roll back a new space
2638 * allocation if the system went down. Now we want to cancel the paused work
2639 * item by marking the EFI stale so we don't actually free the space, unpausing
2640 * the pending item and logging an EFD.
2641 *
2642 * The caller generally should have already mapped the space into the ondisk
2643 * filesystem. If the reserved space was partially used, the caller must call
2644 * xfs_free_extent_later to create a new EFI to free the unused space.
2645 */
2646void
2647xfs_alloc_cancel_autoreap(
2648 struct xfs_trans *tp,
2649 struct xfs_alloc_autoreap *aarp)
2650{
2651 struct xfs_defer_pending *dfp = aarp->dfp;
2652 struct xfs_extent_free_item *xefi;
2653
2654 if (!dfp)
2655 return;
2656
2657 list_for_each_entry(xefi, &dfp->dfp_work, xefi_list)
2658 xefi->xefi_flags |= XFS_EFI_CANCELLED;
2659
2660 xfs_defer_item_unpause(tp, dfp);
2661}
2662
2663/*
2664 * Commit automatic freeing of unwritten space in the filesystem.
2665 *
2666 * This unpauses an earlier _schedule_autoreap and commits to freeing the
2667 * allocated space. Call this if none of the reserved space was used.
2668 */
2669void
2670xfs_alloc_commit_autoreap(
2671 struct xfs_trans *tp,
2672 struct xfs_alloc_autoreap *aarp)
2673{
2674 if (aarp->dfp)
2675 xfs_defer_item_unpause(tp, aarp->dfp);
2676}
2677
2678#ifdef DEBUG
2679/*
2680 * Check if an AGF has a free extent record whose length is equal to
2681 * args->minlen.
2682 */
2683STATIC int
2684xfs_exact_minlen_extent_available(
2685 struct xfs_alloc_arg *args,
2686 struct xfs_buf *agbp,
2687 int *stat)
2688{
2689 struct xfs_btree_cur *cnt_cur;
2690 xfs_agblock_t fbno;
2691 xfs_extlen_t flen;
2692 int error = 0;
2693
2694 cnt_cur = xfs_allocbt_init_cursor(args->mp, args->tp, agbp,
2695 args->pag, XFS_BTNUM_CNT);
2696 error = xfs_alloc_lookup_ge(cnt_cur, 0, args->minlen, stat);
2697 if (error)
2698 goto out;
2699
2700 if (*stat == 0) {
2701 error = -EFSCORRUPTED;
2702 goto out;
2703 }
2704
2705 error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen, stat);
2706 if (error)
2707 goto out;
2708
2709 if (*stat == 1 && flen != args->minlen)
2710 *stat = 0;
2711
2712out:
2713 xfs_btree_del_cursor(cnt_cur, error);
2714
2715 return error;
2716}
2717#endif
2718
2719/*
2720 * Decide whether to use this allocation group for this allocation.
2721 * If so, fix up the btree freelist's size.
2722 */
2723int /* error */
2724xfs_alloc_fix_freelist(
2725 struct xfs_alloc_arg *args, /* allocation argument structure */
2726 uint32_t alloc_flags)
2727{
2728 struct xfs_mount *mp = args->mp;
2729 struct xfs_perag *pag = args->pag;
2730 struct xfs_trans *tp = args->tp;
2731 struct xfs_buf *agbp = NULL;
2732 struct xfs_buf *agflbp = NULL;
2733 struct xfs_alloc_arg targs; /* local allocation arguments */
2734 xfs_agblock_t bno; /* freelist block */
2735 xfs_extlen_t need; /* total blocks needed in freelist */
2736 int error = 0;
2737
2738 /* deferred ops (AGFL block frees) require permanent transactions */
2739 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
2740
2741 if (!xfs_perag_initialised_agf(pag)) {
2742 error = xfs_alloc_read_agf(pag, tp, alloc_flags, &agbp);
2743 if (error) {
2744 /* Couldn't lock the AGF so skip this AG. */
2745 if (error == -EAGAIN)
2746 error = 0;
2747 goto out_no_agbp;
2748 }
2749 }
2750
2751 /*
2752 * If this is a metadata preferred pag and we are user data then try
2753 * somewhere else if we are not being asked to try harder at this
2754 * point
2755 */
2756 if (xfs_perag_prefers_metadata(pag) &&
2757 (args->datatype & XFS_ALLOC_USERDATA) &&
2758 (alloc_flags & XFS_ALLOC_FLAG_TRYLOCK)) {
2759 ASSERT(!(alloc_flags & XFS_ALLOC_FLAG_FREEING));
2760 goto out_agbp_relse;
2761 }
2762
2763 need = xfs_alloc_min_freelist(mp, pag);
2764 if (!xfs_alloc_space_available(args, need, alloc_flags |
2765 XFS_ALLOC_FLAG_CHECK))
2766 goto out_agbp_relse;
2767
2768 /*
2769 * Get the a.g. freespace buffer.
2770 * Can fail if we're not blocking on locks, and it's held.
2771 */
2772 if (!agbp) {
2773 error = xfs_alloc_read_agf(pag, tp, alloc_flags, &agbp);
2774 if (error) {
2775 /* Couldn't lock the AGF so skip this AG. */
2776 if (error == -EAGAIN)
2777 error = 0;
2778 goto out_no_agbp;
2779 }
2780 }
2781
2782 /* reset a padding mismatched agfl before final free space check */
2783 if (xfs_perag_agfl_needs_reset(pag))
2784 xfs_agfl_reset(tp, agbp, pag);
2785
2786 /* If there isn't enough total space or single-extent, reject it. */
2787 need = xfs_alloc_min_freelist(mp, pag);
2788 if (!xfs_alloc_space_available(args, need, alloc_flags))
2789 goto out_agbp_relse;
2790
2791#ifdef DEBUG
2792 if (args->alloc_minlen_only) {
2793 int stat;
2794
2795 error = xfs_exact_minlen_extent_available(args, agbp, &stat);
2796 if (error || !stat)
2797 goto out_agbp_relse;
2798 }
2799#endif
2800 /*
2801 * Make the freelist shorter if it's too long.
2802 *
2803 * Note that from this point onwards, we will always release the agf and
2804 * agfl buffers on error. This handles the case where we error out and
2805 * the buffers are clean or may not have been joined to the transaction
2806 * and hence need to be released manually. If they have been joined to
2807 * the transaction, then xfs_trans_brelse() will handle them
2808 * appropriately based on the recursion count and dirty state of the
2809 * buffer.
2810 *
2811 * XXX (dgc): When we have lots of free space, does this buy us
2812 * anything other than extra overhead when we need to put more blocks
2813 * back on the free list? Maybe we should only do this when space is
2814 * getting low or the AGFL is more than half full?
2815 *
2816 * The NOSHRINK flag prevents the AGFL from being shrunk if it's too
2817 * big; the NORMAP flag prevents AGFL expand/shrink operations from
2818 * updating the rmapbt. Both flags are used in xfs_repair while we're
2819 * rebuilding the rmapbt, and neither are used by the kernel. They're
2820 * both required to ensure that rmaps are correctly recorded for the
2821 * regenerated AGFL, bnobt, and cntbt. See repair/phase5.c and
2822 * repair/rmap.c in xfsprogs for details.
2823 */
2824 memset(&targs, 0, sizeof(targs));
2825 /* struct copy below */
2826 if (alloc_flags & XFS_ALLOC_FLAG_NORMAP)
2827 targs.oinfo = XFS_RMAP_OINFO_SKIP_UPDATE;
2828 else
2829 targs.oinfo = XFS_RMAP_OINFO_AG;
2830 while (!(alloc_flags & XFS_ALLOC_FLAG_NOSHRINK) &&
2831 pag->pagf_flcount > need) {
2832 error = xfs_alloc_get_freelist(pag, tp, agbp, &bno, 0);
2833 if (error)
2834 goto out_agbp_relse;
2835
2836 /* defer agfl frees */
2837 error = xfs_defer_agfl_block(tp, args->agno, bno, &targs.oinfo);
2838 if (error)
2839 goto out_agbp_relse;
2840 }
2841
2842 targs.tp = tp;
2843 targs.mp = mp;
2844 targs.agbp = agbp;
2845 targs.agno = args->agno;
2846 targs.alignment = targs.minlen = targs.prod = 1;
2847 targs.pag = pag;
2848 error = xfs_alloc_read_agfl(pag, tp, &agflbp);
2849 if (error)
2850 goto out_agbp_relse;
2851
2852 /* Make the freelist longer if it's too short. */
2853 while (pag->pagf_flcount < need) {
2854 targs.agbno = 0;
2855 targs.maxlen = need - pag->pagf_flcount;
2856 targs.resv = XFS_AG_RESV_AGFL;
2857
2858 /* Allocate as many blocks as possible at once. */
2859 error = xfs_alloc_ag_vextent_size(&targs, alloc_flags);
2860 if (error)
2861 goto out_agflbp_relse;
2862
2863 /*
2864 * Stop if we run out. Won't happen if callers are obeying
2865 * the restrictions correctly. Can happen for free calls
2866 * on a completely full ag.
2867 */
2868 if (targs.agbno == NULLAGBLOCK) {
2869 if (alloc_flags & XFS_ALLOC_FLAG_FREEING)
2870 break;
2871 goto out_agflbp_relse;
2872 }
2873
2874 if (!xfs_rmap_should_skip_owner_update(&targs.oinfo)) {
2875 error = xfs_rmap_alloc(tp, agbp, pag,
2876 targs.agbno, targs.len, &targs.oinfo);
2877 if (error)
2878 goto out_agflbp_relse;
2879 }
2880 error = xfs_alloc_update_counters(tp, agbp,
2881 -((long)(targs.len)));
2882 if (error)
2883 goto out_agflbp_relse;
2884
2885 /*
2886 * Put each allocated block on the list.
2887 */
2888 for (bno = targs.agbno; bno < targs.agbno + targs.len; bno++) {
2889 error = xfs_alloc_put_freelist(pag, tp, agbp,
2890 agflbp, bno, 0);
2891 if (error)
2892 goto out_agflbp_relse;
2893 }
2894 }
2895 xfs_trans_brelse(tp, agflbp);
2896 args->agbp = agbp;
2897 return 0;
2898
2899out_agflbp_relse:
2900 xfs_trans_brelse(tp, agflbp);
2901out_agbp_relse:
2902 if (agbp)
2903 xfs_trans_brelse(tp, agbp);
2904out_no_agbp:
2905 args->agbp = NULL;
2906 return error;
2907}
2908
2909/*
2910 * Get a block from the freelist.
2911 * Returns with the buffer for the block gotten.
2912 */
2913int
2914xfs_alloc_get_freelist(
2915 struct xfs_perag *pag,
2916 struct xfs_trans *tp,
2917 struct xfs_buf *agbp,
2918 xfs_agblock_t *bnop,
2919 int btreeblk)
2920{
2921 struct xfs_agf *agf = agbp->b_addr;
2922 struct xfs_buf *agflbp;
2923 xfs_agblock_t bno;
2924 __be32 *agfl_bno;
2925 int error;
2926 uint32_t logflags;
2927 struct xfs_mount *mp = tp->t_mountp;
2928
2929 /*
2930 * Freelist is empty, give up.
2931 */
2932 if (!agf->agf_flcount) {
2933 *bnop = NULLAGBLOCK;
2934 return 0;
2935 }
2936 /*
2937 * Read the array of free blocks.
2938 */
2939 error = xfs_alloc_read_agfl(pag, tp, &agflbp);
2940 if (error)
2941 return error;
2942
2943
2944 /*
2945 * Get the block number and update the data structures.
2946 */
2947 agfl_bno = xfs_buf_to_agfl_bno(agflbp);
2948 bno = be32_to_cpu(agfl_bno[be32_to_cpu(agf->agf_flfirst)]);
2949 if (XFS_IS_CORRUPT(tp->t_mountp, !xfs_verify_agbno(pag, bno)))
2950 return -EFSCORRUPTED;
2951
2952 be32_add_cpu(&agf->agf_flfirst, 1);
2953 xfs_trans_brelse(tp, agflbp);
2954 if (be32_to_cpu(agf->agf_flfirst) == xfs_agfl_size(mp))
2955 agf->agf_flfirst = 0;
2956
2957 ASSERT(!xfs_perag_agfl_needs_reset(pag));
2958 be32_add_cpu(&agf->agf_flcount, -1);
2959 pag->pagf_flcount--;
2960
2961 logflags = XFS_AGF_FLFIRST | XFS_AGF_FLCOUNT;
2962 if (btreeblk) {
2963 be32_add_cpu(&agf->agf_btreeblks, 1);
2964 pag->pagf_btreeblks++;
2965 logflags |= XFS_AGF_BTREEBLKS;
2966 }
2967
2968 xfs_alloc_log_agf(tp, agbp, logflags);
2969 *bnop = bno;
2970
2971 return 0;
2972}
2973
2974/*
2975 * Log the given fields from the agf structure.
2976 */
2977void
2978xfs_alloc_log_agf(
2979 struct xfs_trans *tp,
2980 struct xfs_buf *bp,
2981 uint32_t fields)
2982{
2983 int first; /* first byte offset */
2984 int last; /* last byte offset */
2985 static const short offsets[] = {
2986 offsetof(xfs_agf_t, agf_magicnum),
2987 offsetof(xfs_agf_t, agf_versionnum),
2988 offsetof(xfs_agf_t, agf_seqno),
2989 offsetof(xfs_agf_t, agf_length),
2990 offsetof(xfs_agf_t, agf_roots[0]),
2991 offsetof(xfs_agf_t, agf_levels[0]),
2992 offsetof(xfs_agf_t, agf_flfirst),
2993 offsetof(xfs_agf_t, agf_fllast),
2994 offsetof(xfs_agf_t, agf_flcount),
2995 offsetof(xfs_agf_t, agf_freeblks),
2996 offsetof(xfs_agf_t, agf_longest),
2997 offsetof(xfs_agf_t, agf_btreeblks),
2998 offsetof(xfs_agf_t, agf_uuid),
2999 offsetof(xfs_agf_t, agf_rmap_blocks),
3000 offsetof(xfs_agf_t, agf_refcount_blocks),
3001 offsetof(xfs_agf_t, agf_refcount_root),
3002 offsetof(xfs_agf_t, agf_refcount_level),
3003 /* needed so that we don't log the whole rest of the structure: */
3004 offsetof(xfs_agf_t, agf_spare64),
3005 sizeof(xfs_agf_t)
3006 };
3007
3008 trace_xfs_agf(tp->t_mountp, bp->b_addr, fields, _RET_IP_);
3009
3010 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_AGF_BUF);
3011
3012 xfs_btree_offsets(fields, offsets, XFS_AGF_NUM_BITS, &first, &last);
3013 xfs_trans_log_buf(tp, bp, (uint)first, (uint)last);
3014}
3015
3016/*
3017 * Put the block on the freelist for the allocation group.
3018 */
3019int
3020xfs_alloc_put_freelist(
3021 struct xfs_perag *pag,
3022 struct xfs_trans *tp,
3023 struct xfs_buf *agbp,
3024 struct xfs_buf *agflbp,
3025 xfs_agblock_t bno,
3026 int btreeblk)
3027{
3028 struct xfs_mount *mp = tp->t_mountp;
3029 struct xfs_agf *agf = agbp->b_addr;
3030 __be32 *blockp;
3031 int error;
3032 uint32_t logflags;
3033 __be32 *agfl_bno;
3034 int startoff;
3035
3036 if (!agflbp) {
3037 error = xfs_alloc_read_agfl(pag, tp, &agflbp);
3038 if (error)
3039 return error;
3040 }
3041
3042 be32_add_cpu(&agf->agf_fllast, 1);
3043 if (be32_to_cpu(agf->agf_fllast) == xfs_agfl_size(mp))
3044 agf->agf_fllast = 0;
3045
3046 ASSERT(!xfs_perag_agfl_needs_reset(pag));
3047 be32_add_cpu(&agf->agf_flcount, 1);
3048 pag->pagf_flcount++;
3049
3050 logflags = XFS_AGF_FLLAST | XFS_AGF_FLCOUNT;
3051 if (btreeblk) {
3052 be32_add_cpu(&agf->agf_btreeblks, -1);
3053 pag->pagf_btreeblks--;
3054 logflags |= XFS_AGF_BTREEBLKS;
3055 }
3056
3057 xfs_alloc_log_agf(tp, agbp, logflags);
3058
3059 ASSERT(be32_to_cpu(agf->agf_flcount) <= xfs_agfl_size(mp));
3060
3061 agfl_bno = xfs_buf_to_agfl_bno(agflbp);
3062 blockp = &agfl_bno[be32_to_cpu(agf->agf_fllast)];
3063 *blockp = cpu_to_be32(bno);
3064 startoff = (char *)blockp - (char *)agflbp->b_addr;
3065
3066 xfs_alloc_log_agf(tp, agbp, logflags);
3067
3068 xfs_trans_buf_set_type(tp, agflbp, XFS_BLFT_AGFL_BUF);
3069 xfs_trans_log_buf(tp, agflbp, startoff,
3070 startoff + sizeof(xfs_agblock_t) - 1);
3071 return 0;
3072}
3073
3074/*
3075 * Check that this AGF/AGI header's sequence number and length matches the AG
3076 * number and size in fsblocks.
3077 */
3078xfs_failaddr_t
3079xfs_validate_ag_length(
3080 struct xfs_buf *bp,
3081 uint32_t seqno,
3082 uint32_t length)
3083{
3084 struct xfs_mount *mp = bp->b_mount;
3085 /*
3086 * During growfs operations, the perag is not fully initialised,
3087 * so we can't use it for any useful checking. growfs ensures we can't
3088 * use it by using uncached buffers that don't have the perag attached
3089 * so we can detect and avoid this problem.
3090 */
3091 if (bp->b_pag && seqno != bp->b_pag->pag_agno)
3092 return __this_address;
3093
3094 /*
3095 * Only the last AG in the filesystem is allowed to be shorter
3096 * than the AG size recorded in the superblock.
3097 */
3098 if (length != mp->m_sb.sb_agblocks) {
3099 /*
3100 * During growfs, the new last AG can get here before we
3101 * have updated the superblock. Give it a pass on the seqno
3102 * check.
3103 */
3104 if (bp->b_pag && seqno != mp->m_sb.sb_agcount - 1)
3105 return __this_address;
3106 if (length < XFS_MIN_AG_BLOCKS)
3107 return __this_address;
3108 if (length > mp->m_sb.sb_agblocks)
3109 return __this_address;
3110 }
3111
3112 return NULL;
3113}
3114
3115/*
3116 * Verify the AGF is consistent.
3117 *
3118 * We do not verify the AGFL indexes in the AGF are fully consistent here
3119 * because of issues with variable on-disk structure sizes. Instead, we check
3120 * the agfl indexes for consistency when we initialise the perag from the AGF
3121 * information after a read completes.
3122 *
3123 * If the index is inconsistent, then we mark the perag as needing an AGFL
3124 * reset. The first AGFL update performed then resets the AGFL indexes and
3125 * refills the AGFL with known good free blocks, allowing the filesystem to
3126 * continue operating normally at the cost of a few leaked free space blocks.
3127 */
3128static xfs_failaddr_t
3129xfs_agf_verify(
3130 struct xfs_buf *bp)
3131{
3132 struct xfs_mount *mp = bp->b_mount;
3133 struct xfs_agf *agf = bp->b_addr;
3134 xfs_failaddr_t fa;
3135 uint32_t agf_seqno = be32_to_cpu(agf->agf_seqno);
3136 uint32_t agf_length = be32_to_cpu(agf->agf_length);
3137
3138 if (xfs_has_crc(mp)) {
3139 if (!uuid_equal(&agf->agf_uuid, &mp->m_sb.sb_meta_uuid))
3140 return __this_address;
3141 if (!xfs_log_check_lsn(mp, be64_to_cpu(agf->agf_lsn)))
3142 return __this_address;
3143 }
3144
3145 if (!xfs_verify_magic(bp, agf->agf_magicnum))
3146 return __this_address;
3147
3148 if (!XFS_AGF_GOOD_VERSION(be32_to_cpu(agf->agf_versionnum)))
3149 return __this_address;
3150
3151 /*
3152 * Both agf_seqno and agf_length need to validated before anything else
3153 * block number related in the AGF or AGFL can be checked.
3154 */
3155 fa = xfs_validate_ag_length(bp, agf_seqno, agf_length);
3156 if (fa)
3157 return fa;
3158
3159 if (be32_to_cpu(agf->agf_flfirst) >= xfs_agfl_size(mp))
3160 return __this_address;
3161 if (be32_to_cpu(agf->agf_fllast) >= xfs_agfl_size(mp))
3162 return __this_address;
3163 if (be32_to_cpu(agf->agf_flcount) > xfs_agfl_size(mp))
3164 return __this_address;
3165
3166 if (be32_to_cpu(agf->agf_freeblks) < be32_to_cpu(agf->agf_longest) ||
3167 be32_to_cpu(agf->agf_freeblks) > agf_length)
3168 return __this_address;
3169
3170 if (be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]) < 1 ||
3171 be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]) < 1 ||
3172 be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]) >
3173 mp->m_alloc_maxlevels ||
3174 be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]) >
3175 mp->m_alloc_maxlevels)
3176 return __this_address;
3177
3178 if (xfs_has_lazysbcount(mp) &&
3179 be32_to_cpu(agf->agf_btreeblks) > agf_length)
3180 return __this_address;
3181
3182 if (xfs_has_rmapbt(mp)) {
3183 if (be32_to_cpu(agf->agf_rmap_blocks) > agf_length)
3184 return __this_address;
3185
3186 if (be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAP]) < 1 ||
3187 be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAP]) >
3188 mp->m_rmap_maxlevels)
3189 return __this_address;
3190 }
3191
3192 if (xfs_has_reflink(mp)) {
3193 if (be32_to_cpu(agf->agf_refcount_blocks) > agf_length)
3194 return __this_address;
3195
3196 if (be32_to_cpu(agf->agf_refcount_level) < 1 ||
3197 be32_to_cpu(agf->agf_refcount_level) > mp->m_refc_maxlevels)
3198 return __this_address;
3199 }
3200
3201 return NULL;
3202}
3203
3204static void
3205xfs_agf_read_verify(
3206 struct xfs_buf *bp)
3207{
3208 struct xfs_mount *mp = bp->b_mount;
3209 xfs_failaddr_t fa;
3210
3211 if (xfs_has_crc(mp) &&
3212 !xfs_buf_verify_cksum(bp, XFS_AGF_CRC_OFF))
3213 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
3214 else {
3215 fa = xfs_agf_verify(bp);
3216 if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_ALLOC_READ_AGF))
3217 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
3218 }
3219}
3220
3221static void
3222xfs_agf_write_verify(
3223 struct xfs_buf *bp)
3224{
3225 struct xfs_mount *mp = bp->b_mount;
3226 struct xfs_buf_log_item *bip = bp->b_log_item;
3227 struct xfs_agf *agf = bp->b_addr;
3228 xfs_failaddr_t fa;
3229
3230 fa = xfs_agf_verify(bp);
3231 if (fa) {
3232 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
3233 return;
3234 }
3235
3236 if (!xfs_has_crc(mp))
3237 return;
3238
3239 if (bip)
3240 agf->agf_lsn = cpu_to_be64(bip->bli_item.li_lsn);
3241
3242 xfs_buf_update_cksum(bp, XFS_AGF_CRC_OFF);
3243}
3244
3245const struct xfs_buf_ops xfs_agf_buf_ops = {
3246 .name = "xfs_agf",
3247 .magic = { cpu_to_be32(XFS_AGF_MAGIC), cpu_to_be32(XFS_AGF_MAGIC) },
3248 .verify_read = xfs_agf_read_verify,
3249 .verify_write = xfs_agf_write_verify,
3250 .verify_struct = xfs_agf_verify,
3251};
3252
3253/*
3254 * Read in the allocation group header (free/alloc section).
3255 */
3256int
3257xfs_read_agf(
3258 struct xfs_perag *pag,
3259 struct xfs_trans *tp,
3260 int flags,
3261 struct xfs_buf **agfbpp)
3262{
3263 struct xfs_mount *mp = pag->pag_mount;
3264 int error;
3265
3266 trace_xfs_read_agf(pag->pag_mount, pag->pag_agno);
3267
3268 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
3269 XFS_AG_DADDR(mp, pag->pag_agno, XFS_AGF_DADDR(mp)),
3270 XFS_FSS_TO_BB(mp, 1), flags, agfbpp, &xfs_agf_buf_ops);
3271 if (error)
3272 return error;
3273
3274 xfs_buf_set_ref(*agfbpp, XFS_AGF_REF);
3275 return 0;
3276}
3277
3278/*
3279 * Read in the allocation group header (free/alloc section) and initialise the
3280 * perag structure if necessary. If the caller provides @agfbpp, then return the
3281 * locked buffer to the caller, otherwise free it.
3282 */
3283int
3284xfs_alloc_read_agf(
3285 struct xfs_perag *pag,
3286 struct xfs_trans *tp,
3287 int flags,
3288 struct xfs_buf **agfbpp)
3289{
3290 struct xfs_buf *agfbp;
3291 struct xfs_agf *agf;
3292 int error;
3293 int allocbt_blks;
3294
3295 trace_xfs_alloc_read_agf(pag->pag_mount, pag->pag_agno);
3296
3297 /* We don't support trylock when freeing. */
3298 ASSERT((flags & (XFS_ALLOC_FLAG_FREEING | XFS_ALLOC_FLAG_TRYLOCK)) !=
3299 (XFS_ALLOC_FLAG_FREEING | XFS_ALLOC_FLAG_TRYLOCK));
3300 error = xfs_read_agf(pag, tp,
3301 (flags & XFS_ALLOC_FLAG_TRYLOCK) ? XBF_TRYLOCK : 0,
3302 &agfbp);
3303 if (error)
3304 return error;
3305
3306 agf = agfbp->b_addr;
3307 if (!xfs_perag_initialised_agf(pag)) {
3308 pag->pagf_freeblks = be32_to_cpu(agf->agf_freeblks);
3309 pag->pagf_btreeblks = be32_to_cpu(agf->agf_btreeblks);
3310 pag->pagf_flcount = be32_to_cpu(agf->agf_flcount);
3311 pag->pagf_longest = be32_to_cpu(agf->agf_longest);
3312 pag->pagf_levels[XFS_BTNUM_BNOi] =
3313 be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNOi]);
3314 pag->pagf_levels[XFS_BTNUM_CNTi] =
3315 be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNTi]);
3316 pag->pagf_levels[XFS_BTNUM_RMAPi] =
3317 be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAPi]);
3318 pag->pagf_refcount_level = be32_to_cpu(agf->agf_refcount_level);
3319 if (xfs_agfl_needs_reset(pag->pag_mount, agf))
3320 set_bit(XFS_AGSTATE_AGFL_NEEDS_RESET, &pag->pag_opstate);
3321 else
3322 clear_bit(XFS_AGSTATE_AGFL_NEEDS_RESET, &pag->pag_opstate);
3323
3324 /*
3325 * Update the in-core allocbt counter. Filter out the rmapbt
3326 * subset of the btreeblks counter because the rmapbt is managed
3327 * by perag reservation. Subtract one for the rmapbt root block
3328 * because the rmap counter includes it while the btreeblks
3329 * counter only tracks non-root blocks.
3330 */
3331 allocbt_blks = pag->pagf_btreeblks;
3332 if (xfs_has_rmapbt(pag->pag_mount))
3333 allocbt_blks -= be32_to_cpu(agf->agf_rmap_blocks) - 1;
3334 if (allocbt_blks > 0)
3335 atomic64_add(allocbt_blks,
3336 &pag->pag_mount->m_allocbt_blks);
3337
3338 set_bit(XFS_AGSTATE_AGF_INIT, &pag->pag_opstate);
3339 }
3340#ifdef DEBUG
3341 else if (!xfs_is_shutdown(pag->pag_mount)) {
3342 ASSERT(pag->pagf_freeblks == be32_to_cpu(agf->agf_freeblks));
3343 ASSERT(pag->pagf_btreeblks == be32_to_cpu(agf->agf_btreeblks));
3344 ASSERT(pag->pagf_flcount == be32_to_cpu(agf->agf_flcount));
3345 ASSERT(pag->pagf_longest == be32_to_cpu(agf->agf_longest));
3346 ASSERT(pag->pagf_levels[XFS_BTNUM_BNOi] ==
3347 be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNOi]));
3348 ASSERT(pag->pagf_levels[XFS_BTNUM_CNTi] ==
3349 be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNTi]));
3350 }
3351#endif
3352 if (agfbpp)
3353 *agfbpp = agfbp;
3354 else
3355 xfs_trans_brelse(tp, agfbp);
3356 return 0;
3357}
3358
3359/*
3360 * Pre-proces allocation arguments to set initial state that we don't require
3361 * callers to set up correctly, as well as bounds check the allocation args
3362 * that are set up.
3363 */
3364static int
3365xfs_alloc_vextent_check_args(
3366 struct xfs_alloc_arg *args,
3367 xfs_fsblock_t target,
3368 xfs_agnumber_t *minimum_agno)
3369{
3370 struct xfs_mount *mp = args->mp;
3371 xfs_agblock_t agsize;
3372
3373 args->fsbno = NULLFSBLOCK;
3374
3375 *minimum_agno = 0;
3376 if (args->tp->t_highest_agno != NULLAGNUMBER)
3377 *minimum_agno = args->tp->t_highest_agno;
3378
3379 /*
3380 * Just fix this up, for the case where the last a.g. is shorter
3381 * (or there's only one a.g.) and the caller couldn't easily figure
3382 * that out (xfs_bmap_alloc).
3383 */
3384 agsize = mp->m_sb.sb_agblocks;
3385 if (args->maxlen > agsize)
3386 args->maxlen = agsize;
3387 if (args->alignment == 0)
3388 args->alignment = 1;
3389
3390 ASSERT(args->minlen > 0);
3391 ASSERT(args->maxlen > 0);
3392 ASSERT(args->alignment > 0);
3393 ASSERT(args->resv != XFS_AG_RESV_AGFL);
3394
3395 ASSERT(XFS_FSB_TO_AGNO(mp, target) < mp->m_sb.sb_agcount);
3396 ASSERT(XFS_FSB_TO_AGBNO(mp, target) < agsize);
3397 ASSERT(args->minlen <= args->maxlen);
3398 ASSERT(args->minlen <= agsize);
3399 ASSERT(args->mod < args->prod);
3400
3401 if (XFS_FSB_TO_AGNO(mp, target) >= mp->m_sb.sb_agcount ||
3402 XFS_FSB_TO_AGBNO(mp, target) >= agsize ||
3403 args->minlen > args->maxlen || args->minlen > agsize ||
3404 args->mod >= args->prod) {
3405 trace_xfs_alloc_vextent_badargs(args);
3406 return -ENOSPC;
3407 }
3408
3409 if (args->agno != NULLAGNUMBER && *minimum_agno > args->agno) {
3410 trace_xfs_alloc_vextent_skip_deadlock(args);
3411 return -ENOSPC;
3412 }
3413 return 0;
3414
3415}
3416
3417/*
3418 * Prepare an AG for allocation. If the AG is not prepared to accept the
3419 * allocation, return failure.
3420 *
3421 * XXX(dgc): The complexity of "need_pag" will go away as all caller paths are
3422 * modified to hold their own perag references.
3423 */
3424static int
3425xfs_alloc_vextent_prepare_ag(
3426 struct xfs_alloc_arg *args,
3427 uint32_t alloc_flags)
3428{
3429 bool need_pag = !args->pag;
3430 int error;
3431
3432 if (need_pag)
3433 args->pag = xfs_perag_get(args->mp, args->agno);
3434
3435 args->agbp = NULL;
3436 error = xfs_alloc_fix_freelist(args, alloc_flags);
3437 if (error) {
3438 trace_xfs_alloc_vextent_nofix(args);
3439 if (need_pag)
3440 xfs_perag_put(args->pag);
3441 args->agbno = NULLAGBLOCK;
3442 return error;
3443 }
3444 if (!args->agbp) {
3445 /* cannot allocate in this AG at all */
3446 trace_xfs_alloc_vextent_noagbp(args);
3447 args->agbno = NULLAGBLOCK;
3448 return 0;
3449 }
3450 args->wasfromfl = 0;
3451 return 0;
3452}
3453
3454/*
3455 * Post-process allocation results to account for the allocation if it succeed
3456 * and set the allocated block number correctly for the caller.
3457 *
3458 * XXX: we should really be returning ENOSPC for ENOSPC, not
3459 * hiding it behind a "successful" NULLFSBLOCK allocation.
3460 */
3461static int
3462xfs_alloc_vextent_finish(
3463 struct xfs_alloc_arg *args,
3464 xfs_agnumber_t minimum_agno,
3465 int alloc_error,
3466 bool drop_perag)
3467{
3468 struct xfs_mount *mp = args->mp;
3469 int error = 0;
3470
3471 /*
3472 * We can end up here with a locked AGF. If we failed, the caller is
3473 * likely going to try to allocate again with different parameters, and
3474 * that can widen the AGs that are searched for free space. If we have
3475 * to do BMBT block allocation, we have to do a new allocation.
3476 *
3477 * Hence leaving this function with the AGF locked opens up potential
3478 * ABBA AGF deadlocks because a future allocation attempt in this
3479 * transaction may attempt to lock a lower number AGF.
3480 *
3481 * We can't release the AGF until the transaction is commited, so at
3482 * this point we must update the "first allocation" tracker to point at
3483 * this AG if the tracker is empty or points to a lower AG. This allows
3484 * the next allocation attempt to be modified appropriately to avoid
3485 * deadlocks.
3486 */
3487 if (args->agbp &&
3488 (args->tp->t_highest_agno == NULLAGNUMBER ||
3489 args->agno > minimum_agno))
3490 args->tp->t_highest_agno = args->agno;
3491
3492 /*
3493 * If the allocation failed with an error or we had an ENOSPC result,
3494 * preserve the returned error whilst also marking the allocation result
3495 * as "no extent allocated". This ensures that callers that fail to
3496 * capture the error will still treat it as a failed allocation.
3497 */
3498 if (alloc_error || args->agbno == NULLAGBLOCK) {
3499 args->fsbno = NULLFSBLOCK;
3500 error = alloc_error;
3501 goto out_drop_perag;
3502 }
3503
3504 args->fsbno = XFS_AGB_TO_FSB(mp, args->agno, args->agbno);
3505
3506 ASSERT(args->len >= args->minlen);
3507 ASSERT(args->len <= args->maxlen);
3508 ASSERT(args->agbno % args->alignment == 0);
3509 XFS_AG_CHECK_DADDR(mp, XFS_FSB_TO_DADDR(mp, args->fsbno), args->len);
3510
3511 /* if not file data, insert new block into the reverse map btree */
3512 if (!xfs_rmap_should_skip_owner_update(&args->oinfo)) {
3513 error = xfs_rmap_alloc(args->tp, args->agbp, args->pag,
3514 args->agbno, args->len, &args->oinfo);
3515 if (error)
3516 goto out_drop_perag;
3517 }
3518
3519 if (!args->wasfromfl) {
3520 error = xfs_alloc_update_counters(args->tp, args->agbp,
3521 -((long)(args->len)));
3522 if (error)
3523 goto out_drop_perag;
3524
3525 ASSERT(!xfs_extent_busy_search(mp, args->pag, args->agbno,
3526 args->len));
3527 }
3528
3529 xfs_ag_resv_alloc_extent(args->pag, args->resv, args);
3530
3531 XFS_STATS_INC(mp, xs_allocx);
3532 XFS_STATS_ADD(mp, xs_allocb, args->len);
3533
3534 trace_xfs_alloc_vextent_finish(args);
3535
3536out_drop_perag:
3537 if (drop_perag && args->pag) {
3538 xfs_perag_rele(args->pag);
3539 args->pag = NULL;
3540 }
3541 return error;
3542}
3543
3544/*
3545 * Allocate within a single AG only. This uses a best-fit length algorithm so if
3546 * you need an exact sized allocation without locality constraints, this is the
3547 * fastest way to do it.
3548 *
3549 * Caller is expected to hold a perag reference in args->pag.
3550 */
3551int
3552xfs_alloc_vextent_this_ag(
3553 struct xfs_alloc_arg *args,
3554 xfs_agnumber_t agno)
3555{
3556 struct xfs_mount *mp = args->mp;
3557 xfs_agnumber_t minimum_agno;
3558 uint32_t alloc_flags = 0;
3559 int error;
3560
3561 ASSERT(args->pag != NULL);
3562 ASSERT(args->pag->pag_agno == agno);
3563
3564 args->agno = agno;
3565 args->agbno = 0;
3566
3567 trace_xfs_alloc_vextent_this_ag(args);
3568
3569 error = xfs_alloc_vextent_check_args(args, XFS_AGB_TO_FSB(mp, agno, 0),
3570 &minimum_agno);
3571 if (error) {
3572 if (error == -ENOSPC)
3573 return 0;
3574 return error;
3575 }
3576
3577 error = xfs_alloc_vextent_prepare_ag(args, alloc_flags);
3578 if (!error && args->agbp)
3579 error = xfs_alloc_ag_vextent_size(args, alloc_flags);
3580
3581 return xfs_alloc_vextent_finish(args, minimum_agno, error, false);
3582}
3583
3584/*
3585 * Iterate all AGs trying to allocate an extent starting from @start_ag.
3586 *
3587 * If the incoming allocation type is XFS_ALLOCTYPE_NEAR_BNO, it means the
3588 * allocation attempts in @start_agno have locality information. If we fail to
3589 * allocate in that AG, then we revert to anywhere-in-AG for all the other AGs
3590 * we attempt to allocation in as there is no locality optimisation possible for
3591 * those allocations.
3592 *
3593 * On return, args->pag may be left referenced if we finish before the "all
3594 * failed" return point. The allocation finish still needs the perag, and
3595 * so the caller will release it once they've finished the allocation.
3596 *
3597 * When we wrap the AG iteration at the end of the filesystem, we have to be
3598 * careful not to wrap into AGs below ones we already have locked in the
3599 * transaction if we are doing a blocking iteration. This will result in an
3600 * out-of-order locking of AGFs and hence can cause deadlocks.
3601 */
3602static int
3603xfs_alloc_vextent_iterate_ags(
3604 struct xfs_alloc_arg *args,
3605 xfs_agnumber_t minimum_agno,
3606 xfs_agnumber_t start_agno,
3607 xfs_agblock_t target_agbno,
3608 uint32_t alloc_flags)
3609{
3610 struct xfs_mount *mp = args->mp;
3611 xfs_agnumber_t restart_agno = minimum_agno;
3612 xfs_agnumber_t agno;
3613 int error = 0;
3614
3615 if (alloc_flags & XFS_ALLOC_FLAG_TRYLOCK)
3616 restart_agno = 0;
3617restart:
3618 for_each_perag_wrap_range(mp, start_agno, restart_agno,
3619 mp->m_sb.sb_agcount, agno, args->pag) {
3620 args->agno = agno;
3621 error = xfs_alloc_vextent_prepare_ag(args, alloc_flags);
3622 if (error)
3623 break;
3624 if (!args->agbp) {
3625 trace_xfs_alloc_vextent_loopfailed(args);
3626 continue;
3627 }
3628
3629 /*
3630 * Allocation is supposed to succeed now, so break out of the
3631 * loop regardless of whether we succeed or not.
3632 */
3633 if (args->agno == start_agno && target_agbno) {
3634 args->agbno = target_agbno;
3635 error = xfs_alloc_ag_vextent_near(args, alloc_flags);
3636 } else {
3637 args->agbno = 0;
3638 error = xfs_alloc_ag_vextent_size(args, alloc_flags);
3639 }
3640 break;
3641 }
3642 if (error) {
3643 xfs_perag_rele(args->pag);
3644 args->pag = NULL;
3645 return error;
3646 }
3647 if (args->agbp)
3648 return 0;
3649
3650 /*
3651 * We didn't find an AG we can alloation from. If we were given
3652 * constraining flags by the caller, drop them and retry the allocation
3653 * without any constraints being set.
3654 */
3655 if (alloc_flags & XFS_ALLOC_FLAG_TRYLOCK) {
3656 alloc_flags &= ~XFS_ALLOC_FLAG_TRYLOCK;
3657 restart_agno = minimum_agno;
3658 goto restart;
3659 }
3660
3661 ASSERT(args->pag == NULL);
3662 trace_xfs_alloc_vextent_allfailed(args);
3663 return 0;
3664}
3665
3666/*
3667 * Iterate from the AGs from the start AG to the end of the filesystem, trying
3668 * to allocate blocks. It starts with a near allocation attempt in the initial
3669 * AG, then falls back to anywhere-in-ag after the first AG fails. It will wrap
3670 * back to zero if allowed by previous allocations in this transaction,
3671 * otherwise will wrap back to the start AG and run a second blocking pass to
3672 * the end of the filesystem.
3673 */
3674int
3675xfs_alloc_vextent_start_ag(
3676 struct xfs_alloc_arg *args,
3677 xfs_fsblock_t target)
3678{
3679 struct xfs_mount *mp = args->mp;
3680 xfs_agnumber_t minimum_agno;
3681 xfs_agnumber_t start_agno;
3682 xfs_agnumber_t rotorstep = xfs_rotorstep;
3683 bool bump_rotor = false;
3684 uint32_t alloc_flags = XFS_ALLOC_FLAG_TRYLOCK;
3685 int error;
3686
3687 ASSERT(args->pag == NULL);
3688
3689 args->agno = NULLAGNUMBER;
3690 args->agbno = NULLAGBLOCK;
3691
3692 trace_xfs_alloc_vextent_start_ag(args);
3693
3694 error = xfs_alloc_vextent_check_args(args, target, &minimum_agno);
3695 if (error) {
3696 if (error == -ENOSPC)
3697 return 0;
3698 return error;
3699 }
3700
3701 if ((args->datatype & XFS_ALLOC_INITIAL_USER_DATA) &&
3702 xfs_is_inode32(mp)) {
3703 target = XFS_AGB_TO_FSB(mp,
3704 ((mp->m_agfrotor / rotorstep) %
3705 mp->m_sb.sb_agcount), 0);
3706 bump_rotor = 1;
3707 }
3708
3709 start_agno = max(minimum_agno, XFS_FSB_TO_AGNO(mp, target));
3710 error = xfs_alloc_vextent_iterate_ags(args, minimum_agno, start_agno,
3711 XFS_FSB_TO_AGBNO(mp, target), alloc_flags);
3712
3713 if (bump_rotor) {
3714 if (args->agno == start_agno)
3715 mp->m_agfrotor = (mp->m_agfrotor + 1) %
3716 (mp->m_sb.sb_agcount * rotorstep);
3717 else
3718 mp->m_agfrotor = (args->agno * rotorstep + 1) %
3719 (mp->m_sb.sb_agcount * rotorstep);
3720 }
3721
3722 return xfs_alloc_vextent_finish(args, minimum_agno, error, true);
3723}
3724
3725/*
3726 * Iterate from the agno indicated via @target through to the end of the
3727 * filesystem attempting blocking allocation. This does not wrap or try a second
3728 * pass, so will not recurse into AGs lower than indicated by the target.
3729 */
3730int
3731xfs_alloc_vextent_first_ag(
3732 struct xfs_alloc_arg *args,
3733 xfs_fsblock_t target)
3734 {
3735 struct xfs_mount *mp = args->mp;
3736 xfs_agnumber_t minimum_agno;
3737 xfs_agnumber_t start_agno;
3738 uint32_t alloc_flags = XFS_ALLOC_FLAG_TRYLOCK;
3739 int error;
3740
3741 ASSERT(args->pag == NULL);
3742
3743 args->agno = NULLAGNUMBER;
3744 args->agbno = NULLAGBLOCK;
3745
3746 trace_xfs_alloc_vextent_first_ag(args);
3747
3748 error = xfs_alloc_vextent_check_args(args, target, &minimum_agno);
3749 if (error) {
3750 if (error == -ENOSPC)
3751 return 0;
3752 return error;
3753 }
3754
3755 start_agno = max(minimum_agno, XFS_FSB_TO_AGNO(mp, target));
3756 error = xfs_alloc_vextent_iterate_ags(args, minimum_agno, start_agno,
3757 XFS_FSB_TO_AGBNO(mp, target), alloc_flags);
3758 return xfs_alloc_vextent_finish(args, minimum_agno, error, true);
3759}
3760
3761/*
3762 * Allocate at the exact block target or fail. Caller is expected to hold a
3763 * perag reference in args->pag.
3764 */
3765int
3766xfs_alloc_vextent_exact_bno(
3767 struct xfs_alloc_arg *args,
3768 xfs_fsblock_t target)
3769{
3770 struct xfs_mount *mp = args->mp;
3771 xfs_agnumber_t minimum_agno;
3772 int error;
3773
3774 ASSERT(args->pag != NULL);
3775 ASSERT(args->pag->pag_agno == XFS_FSB_TO_AGNO(mp, target));
3776
3777 args->agno = XFS_FSB_TO_AGNO(mp, target);
3778 args->agbno = XFS_FSB_TO_AGBNO(mp, target);
3779
3780 trace_xfs_alloc_vextent_exact_bno(args);
3781
3782 error = xfs_alloc_vextent_check_args(args, target, &minimum_agno);
3783 if (error) {
3784 if (error == -ENOSPC)
3785 return 0;
3786 return error;
3787 }
3788
3789 error = xfs_alloc_vextent_prepare_ag(args, 0);
3790 if (!error && args->agbp)
3791 error = xfs_alloc_ag_vextent_exact(args);
3792
3793 return xfs_alloc_vextent_finish(args, minimum_agno, error, false);
3794}
3795
3796/*
3797 * Allocate an extent as close to the target as possible. If there are not
3798 * viable candidates in the AG, then fail the allocation.
3799 *
3800 * Caller may or may not have a per-ag reference in args->pag.
3801 */
3802int
3803xfs_alloc_vextent_near_bno(
3804 struct xfs_alloc_arg *args,
3805 xfs_fsblock_t target)
3806{
3807 struct xfs_mount *mp = args->mp;
3808 xfs_agnumber_t minimum_agno;
3809 bool needs_perag = args->pag == NULL;
3810 uint32_t alloc_flags = 0;
3811 int error;
3812
3813 if (!needs_perag)
3814 ASSERT(args->pag->pag_agno == XFS_FSB_TO_AGNO(mp, target));
3815
3816 args->agno = XFS_FSB_TO_AGNO(mp, target);
3817 args->agbno = XFS_FSB_TO_AGBNO(mp, target);
3818
3819 trace_xfs_alloc_vextent_near_bno(args);
3820
3821 error = xfs_alloc_vextent_check_args(args, target, &minimum_agno);
3822 if (error) {
3823 if (error == -ENOSPC)
3824 return 0;
3825 return error;
3826 }
3827
3828 if (needs_perag)
3829 args->pag = xfs_perag_grab(mp, args->agno);
3830
3831 error = xfs_alloc_vextent_prepare_ag(args, alloc_flags);
3832 if (!error && args->agbp)
3833 error = xfs_alloc_ag_vextent_near(args, alloc_flags);
3834
3835 return xfs_alloc_vextent_finish(args, minimum_agno, error, needs_perag);
3836}
3837
3838/* Ensure that the freelist is at full capacity. */
3839int
3840xfs_free_extent_fix_freelist(
3841 struct xfs_trans *tp,
3842 struct xfs_perag *pag,
3843 struct xfs_buf **agbp)
3844{
3845 struct xfs_alloc_arg args;
3846 int error;
3847
3848 memset(&args, 0, sizeof(struct xfs_alloc_arg));
3849 args.tp = tp;
3850 args.mp = tp->t_mountp;
3851 args.agno = pag->pag_agno;
3852 args.pag = pag;
3853
3854 /*
3855 * validate that the block number is legal - the enables us to detect
3856 * and handle a silent filesystem corruption rather than crashing.
3857 */
3858 if (args.agno >= args.mp->m_sb.sb_agcount)
3859 return -EFSCORRUPTED;
3860
3861 error = xfs_alloc_fix_freelist(&args, XFS_ALLOC_FLAG_FREEING);
3862 if (error)
3863 return error;
3864
3865 *agbp = args.agbp;
3866 return 0;
3867}
3868
3869/*
3870 * Free an extent.
3871 * Just break up the extent address and hand off to xfs_free_ag_extent
3872 * after fixing up the freelist.
3873 */
3874int
3875__xfs_free_extent(
3876 struct xfs_trans *tp,
3877 struct xfs_perag *pag,
3878 xfs_agblock_t agbno,
3879 xfs_extlen_t len,
3880 const struct xfs_owner_info *oinfo,
3881 enum xfs_ag_resv_type type,
3882 bool skip_discard)
3883{
3884 struct xfs_mount *mp = tp->t_mountp;
3885 struct xfs_buf *agbp;
3886 struct xfs_agf *agf;
3887 int error;
3888 unsigned int busy_flags = 0;
3889
3890 ASSERT(len != 0);
3891 ASSERT(type != XFS_AG_RESV_AGFL);
3892
3893 if (XFS_TEST_ERROR(false, mp,
3894 XFS_ERRTAG_FREE_EXTENT))
3895 return -EIO;
3896
3897 error = xfs_free_extent_fix_freelist(tp, pag, &agbp);
3898 if (error)
3899 return error;
3900 agf = agbp->b_addr;
3901
3902 if (XFS_IS_CORRUPT(mp, agbno >= mp->m_sb.sb_agblocks)) {
3903 error = -EFSCORRUPTED;
3904 goto err_release;
3905 }
3906
3907 /* validate the extent size is legal now we have the agf locked */
3908 if (XFS_IS_CORRUPT(mp, agbno + len > be32_to_cpu(agf->agf_length))) {
3909 error = -EFSCORRUPTED;
3910 goto err_release;
3911 }
3912
3913 error = xfs_free_ag_extent(tp, agbp, pag->pag_agno, agbno, len, oinfo,
3914 type);
3915 if (error)
3916 goto err_release;
3917
3918 if (skip_discard)
3919 busy_flags |= XFS_EXTENT_BUSY_SKIP_DISCARD;
3920 xfs_extent_busy_insert(tp, pag, agbno, len, busy_flags);
3921 return 0;
3922
3923err_release:
3924 xfs_trans_brelse(tp, agbp);
3925 return error;
3926}
3927
3928struct xfs_alloc_query_range_info {
3929 xfs_alloc_query_range_fn fn;
3930 void *priv;
3931};
3932
3933/* Format btree record and pass to our callback. */
3934STATIC int
3935xfs_alloc_query_range_helper(
3936 struct xfs_btree_cur *cur,
3937 const union xfs_btree_rec *rec,
3938 void *priv)
3939{
3940 struct xfs_alloc_query_range_info *query = priv;
3941 struct xfs_alloc_rec_incore irec;
3942 xfs_failaddr_t fa;
3943
3944 xfs_alloc_btrec_to_irec(rec, &irec);
3945 fa = xfs_alloc_check_irec(cur->bc_ag.pag, &irec);
3946 if (fa)
3947 return xfs_alloc_complain_bad_rec(cur, fa, &irec);
3948
3949 return query->fn(cur, &irec, query->priv);
3950}
3951
3952/* Find all free space within a given range of blocks. */
3953int
3954xfs_alloc_query_range(
3955 struct xfs_btree_cur *cur,
3956 const struct xfs_alloc_rec_incore *low_rec,
3957 const struct xfs_alloc_rec_incore *high_rec,
3958 xfs_alloc_query_range_fn fn,
3959 void *priv)
3960{
3961 union xfs_btree_irec low_brec = { .a = *low_rec };
3962 union xfs_btree_irec high_brec = { .a = *high_rec };
3963 struct xfs_alloc_query_range_info query = { .priv = priv, .fn = fn };
3964
3965 ASSERT(cur->bc_btnum == XFS_BTNUM_BNO);
3966 return xfs_btree_query_range(cur, &low_brec, &high_brec,
3967 xfs_alloc_query_range_helper, &query);
3968}
3969
3970/* Find all free space records. */
3971int
3972xfs_alloc_query_all(
3973 struct xfs_btree_cur *cur,
3974 xfs_alloc_query_range_fn fn,
3975 void *priv)
3976{
3977 struct xfs_alloc_query_range_info query;
3978
3979 ASSERT(cur->bc_btnum == XFS_BTNUM_BNO);
3980 query.priv = priv;
3981 query.fn = fn;
3982 return xfs_btree_query_all(cur, xfs_alloc_query_range_helper, &query);
3983}
3984
3985/*
3986 * Scan part of the keyspace of the free space and tell us if the area has no
3987 * records, is fully mapped by records, or is partially filled.
3988 */
3989int
3990xfs_alloc_has_records(
3991 struct xfs_btree_cur *cur,
3992 xfs_agblock_t bno,
3993 xfs_extlen_t len,
3994 enum xbtree_recpacking *outcome)
3995{
3996 union xfs_btree_irec low;
3997 union xfs_btree_irec high;
3998
3999 memset(&low, 0, sizeof(low));
4000 low.a.ar_startblock = bno;
4001 memset(&high, 0xFF, sizeof(high));
4002 high.a.ar_startblock = bno + len - 1;
4003
4004 return xfs_btree_has_records(cur, &low, &high, NULL, outcome);
4005}
4006
4007/*
4008 * Walk all the blocks in the AGFL. The @walk_fn can return any negative
4009 * error code or XFS_ITER_*.
4010 */
4011int
4012xfs_agfl_walk(
4013 struct xfs_mount *mp,
4014 struct xfs_agf *agf,
4015 struct xfs_buf *agflbp,
4016 xfs_agfl_walk_fn walk_fn,
4017 void *priv)
4018{
4019 __be32 *agfl_bno;
4020 unsigned int i;
4021 int error;
4022
4023 agfl_bno = xfs_buf_to_agfl_bno(agflbp);
4024 i = be32_to_cpu(agf->agf_flfirst);
4025
4026 /* Nothing to walk in an empty AGFL. */
4027 if (agf->agf_flcount == cpu_to_be32(0))
4028 return 0;
4029
4030 /* Otherwise, walk from first to last, wrapping as needed. */
4031 for (;;) {
4032 error = walk_fn(mp, be32_to_cpu(agfl_bno[i]), priv);
4033 if (error)
4034 return error;
4035 if (i == be32_to_cpu(agf->agf_fllast))
4036 break;
4037 if (++i == xfs_agfl_size(mp))
4038 i = 0;
4039 }
4040
4041 return 0;
4042}
4043
4044int __init
4045xfs_extfree_intent_init_cache(void)
4046{
4047 xfs_extfree_item_cache = kmem_cache_create("xfs_extfree_intent",
4048 sizeof(struct xfs_extent_free_item),
4049 0, 0, NULL);
4050
4051 return xfs_extfree_item_cache != NULL ? 0 : -ENOMEM;
4052}
4053
4054void
4055xfs_extfree_intent_destroy_cache(void)
4056{
4057 kmem_cache_destroy(xfs_extfree_item_cache);
4058 xfs_extfree_item_cache = NULL;
4059}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_format.h"
9#include "xfs_log_format.h"
10#include "xfs_shared.h"
11#include "xfs_trans_resv.h"
12#include "xfs_bit.h"
13#include "xfs_mount.h"
14#include "xfs_defer.h"
15#include "xfs_btree.h"
16#include "xfs_rmap.h"
17#include "xfs_alloc_btree.h"
18#include "xfs_alloc.h"
19#include "xfs_extent_busy.h"
20#include "xfs_errortag.h"
21#include "xfs_error.h"
22#include "xfs_trace.h"
23#include "xfs_trans.h"
24#include "xfs_buf_item.h"
25#include "xfs_log.h"
26#include "xfs_ag.h"
27#include "xfs_ag_resv.h"
28#include "xfs_bmap.h"
29
30extern kmem_zone_t *xfs_bmap_free_item_zone;
31
32struct workqueue_struct *xfs_alloc_wq;
33
34#define XFS_ABSDIFF(a,b) (((a) <= (b)) ? ((b) - (a)) : ((a) - (b)))
35
36#define XFSA_FIXUP_BNO_OK 1
37#define XFSA_FIXUP_CNT_OK 2
38
39STATIC int xfs_alloc_ag_vextent_exact(xfs_alloc_arg_t *);
40STATIC int xfs_alloc_ag_vextent_near(xfs_alloc_arg_t *);
41STATIC int xfs_alloc_ag_vextent_size(xfs_alloc_arg_t *);
42
43/*
44 * Size of the AGFL. For CRC-enabled filesystes we steal a couple of slots in
45 * the beginning of the block for a proper header with the location information
46 * and CRC.
47 */
48unsigned int
49xfs_agfl_size(
50 struct xfs_mount *mp)
51{
52 unsigned int size = mp->m_sb.sb_sectsize;
53
54 if (xfs_sb_version_hascrc(&mp->m_sb))
55 size -= sizeof(struct xfs_agfl);
56
57 return size / sizeof(xfs_agblock_t);
58}
59
60unsigned int
61xfs_refc_block(
62 struct xfs_mount *mp)
63{
64 if (xfs_sb_version_hasrmapbt(&mp->m_sb))
65 return XFS_RMAP_BLOCK(mp) + 1;
66 if (xfs_sb_version_hasfinobt(&mp->m_sb))
67 return XFS_FIBT_BLOCK(mp) + 1;
68 return XFS_IBT_BLOCK(mp) + 1;
69}
70
71xfs_extlen_t
72xfs_prealloc_blocks(
73 struct xfs_mount *mp)
74{
75 if (xfs_sb_version_hasreflink(&mp->m_sb))
76 return xfs_refc_block(mp) + 1;
77 if (xfs_sb_version_hasrmapbt(&mp->m_sb))
78 return XFS_RMAP_BLOCK(mp) + 1;
79 if (xfs_sb_version_hasfinobt(&mp->m_sb))
80 return XFS_FIBT_BLOCK(mp) + 1;
81 return XFS_IBT_BLOCK(mp) + 1;
82}
83
84/*
85 * In order to avoid ENOSPC-related deadlock caused by out-of-order locking of
86 * AGF buffer (PV 947395), we place constraints on the relationship among
87 * actual allocations for data blocks, freelist blocks, and potential file data
88 * bmap btree blocks. However, these restrictions may result in no actual space
89 * allocated for a delayed extent, for example, a data block in a certain AG is
90 * allocated but there is no additional block for the additional bmap btree
91 * block due to a split of the bmap btree of the file. The result of this may
92 * lead to an infinite loop when the file gets flushed to disk and all delayed
93 * extents need to be actually allocated. To get around this, we explicitly set
94 * aside a few blocks which will not be reserved in delayed allocation.
95 *
96 * We need to reserve 4 fsbs _per AG_ for the freelist and 4 more to handle a
97 * potential split of the file's bmap btree.
98 */
99unsigned int
100xfs_alloc_set_aside(
101 struct xfs_mount *mp)
102{
103 return mp->m_sb.sb_agcount * (XFS_ALLOC_AGFL_RESERVE + 4);
104}
105
106/*
107 * When deciding how much space to allocate out of an AG, we limit the
108 * allocation maximum size to the size the AG. However, we cannot use all the
109 * blocks in the AG - some are permanently used by metadata. These
110 * blocks are generally:
111 * - the AG superblock, AGF, AGI and AGFL
112 * - the AGF (bno and cnt) and AGI btree root blocks, and optionally
113 * the AGI free inode and rmap btree root blocks.
114 * - blocks on the AGFL according to xfs_alloc_set_aside() limits
115 * - the rmapbt root block
116 *
117 * The AG headers are sector sized, so the amount of space they take up is
118 * dependent on filesystem geometry. The others are all single blocks.
119 */
120unsigned int
121xfs_alloc_ag_max_usable(
122 struct xfs_mount *mp)
123{
124 unsigned int blocks;
125
126 blocks = XFS_BB_TO_FSB(mp, XFS_FSS_TO_BB(mp, 4)); /* ag headers */
127 blocks += XFS_ALLOC_AGFL_RESERVE;
128 blocks += 3; /* AGF, AGI btree root blocks */
129 if (xfs_sb_version_hasfinobt(&mp->m_sb))
130 blocks++; /* finobt root block */
131 if (xfs_sb_version_hasrmapbt(&mp->m_sb))
132 blocks++; /* rmap root block */
133 if (xfs_sb_version_hasreflink(&mp->m_sb))
134 blocks++; /* refcount root block */
135
136 return mp->m_sb.sb_agblocks - blocks;
137}
138
139/*
140 * Lookup the record equal to [bno, len] in the btree given by cur.
141 */
142STATIC int /* error */
143xfs_alloc_lookup_eq(
144 struct xfs_btree_cur *cur, /* btree cursor */
145 xfs_agblock_t bno, /* starting block of extent */
146 xfs_extlen_t len, /* length of extent */
147 int *stat) /* success/failure */
148{
149 int error;
150
151 cur->bc_rec.a.ar_startblock = bno;
152 cur->bc_rec.a.ar_blockcount = len;
153 error = xfs_btree_lookup(cur, XFS_LOOKUP_EQ, stat);
154 cur->bc_ag.abt.active = (*stat == 1);
155 return error;
156}
157
158/*
159 * Lookup the first record greater than or equal to [bno, len]
160 * in the btree given by cur.
161 */
162int /* error */
163xfs_alloc_lookup_ge(
164 struct xfs_btree_cur *cur, /* btree cursor */
165 xfs_agblock_t bno, /* starting block of extent */
166 xfs_extlen_t len, /* length of extent */
167 int *stat) /* success/failure */
168{
169 int error;
170
171 cur->bc_rec.a.ar_startblock = bno;
172 cur->bc_rec.a.ar_blockcount = len;
173 error = xfs_btree_lookup(cur, XFS_LOOKUP_GE, stat);
174 cur->bc_ag.abt.active = (*stat == 1);
175 return error;
176}
177
178/*
179 * Lookup the first record less than or equal to [bno, len]
180 * in the btree given by cur.
181 */
182int /* error */
183xfs_alloc_lookup_le(
184 struct xfs_btree_cur *cur, /* btree cursor */
185 xfs_agblock_t bno, /* starting block of extent */
186 xfs_extlen_t len, /* length of extent */
187 int *stat) /* success/failure */
188{
189 int error;
190 cur->bc_rec.a.ar_startblock = bno;
191 cur->bc_rec.a.ar_blockcount = len;
192 error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, stat);
193 cur->bc_ag.abt.active = (*stat == 1);
194 return error;
195}
196
197static inline bool
198xfs_alloc_cur_active(
199 struct xfs_btree_cur *cur)
200{
201 return cur && cur->bc_ag.abt.active;
202}
203
204/*
205 * Update the record referred to by cur to the value given
206 * by [bno, len].
207 * This either works (return 0) or gets an EFSCORRUPTED error.
208 */
209STATIC int /* error */
210xfs_alloc_update(
211 struct xfs_btree_cur *cur, /* btree cursor */
212 xfs_agblock_t bno, /* starting block of extent */
213 xfs_extlen_t len) /* length of extent */
214{
215 union xfs_btree_rec rec;
216
217 rec.alloc.ar_startblock = cpu_to_be32(bno);
218 rec.alloc.ar_blockcount = cpu_to_be32(len);
219 return xfs_btree_update(cur, &rec);
220}
221
222/*
223 * Get the data from the pointed-to record.
224 */
225int /* error */
226xfs_alloc_get_rec(
227 struct xfs_btree_cur *cur, /* btree cursor */
228 xfs_agblock_t *bno, /* output: starting block of extent */
229 xfs_extlen_t *len, /* output: length of extent */
230 int *stat) /* output: success/failure */
231{
232 struct xfs_mount *mp = cur->bc_mp;
233 xfs_agnumber_t agno = cur->bc_ag.pag->pag_agno;
234 union xfs_btree_rec *rec;
235 int error;
236
237 error = xfs_btree_get_rec(cur, &rec, stat);
238 if (error || !(*stat))
239 return error;
240
241 *bno = be32_to_cpu(rec->alloc.ar_startblock);
242 *len = be32_to_cpu(rec->alloc.ar_blockcount);
243
244 if (*len == 0)
245 goto out_bad_rec;
246
247 /* check for valid extent range, including overflow */
248 if (!xfs_verify_agbno(mp, agno, *bno))
249 goto out_bad_rec;
250 if (*bno > *bno + *len)
251 goto out_bad_rec;
252 if (!xfs_verify_agbno(mp, agno, *bno + *len - 1))
253 goto out_bad_rec;
254
255 return 0;
256
257out_bad_rec:
258 xfs_warn(mp,
259 "%s Freespace BTree record corruption in AG %d detected!",
260 cur->bc_btnum == XFS_BTNUM_BNO ? "Block" : "Size", agno);
261 xfs_warn(mp,
262 "start block 0x%x block count 0x%x", *bno, *len);
263 return -EFSCORRUPTED;
264}
265
266/*
267 * Compute aligned version of the found extent.
268 * Takes alignment and min length into account.
269 */
270STATIC bool
271xfs_alloc_compute_aligned(
272 xfs_alloc_arg_t *args, /* allocation argument structure */
273 xfs_agblock_t foundbno, /* starting block in found extent */
274 xfs_extlen_t foundlen, /* length in found extent */
275 xfs_agblock_t *resbno, /* result block number */
276 xfs_extlen_t *reslen, /* result length */
277 unsigned *busy_gen)
278{
279 xfs_agblock_t bno = foundbno;
280 xfs_extlen_t len = foundlen;
281 xfs_extlen_t diff;
282 bool busy;
283
284 /* Trim busy sections out of found extent */
285 busy = xfs_extent_busy_trim(args, &bno, &len, busy_gen);
286
287 /*
288 * If we have a largish extent that happens to start before min_agbno,
289 * see if we can shift it into range...
290 */
291 if (bno < args->min_agbno && bno + len > args->min_agbno) {
292 diff = args->min_agbno - bno;
293 if (len > diff) {
294 bno += diff;
295 len -= diff;
296 }
297 }
298
299 if (args->alignment > 1 && len >= args->minlen) {
300 xfs_agblock_t aligned_bno = roundup(bno, args->alignment);
301
302 diff = aligned_bno - bno;
303
304 *resbno = aligned_bno;
305 *reslen = diff >= len ? 0 : len - diff;
306 } else {
307 *resbno = bno;
308 *reslen = len;
309 }
310
311 return busy;
312}
313
314/*
315 * Compute best start block and diff for "near" allocations.
316 * freelen >= wantlen already checked by caller.
317 */
318STATIC xfs_extlen_t /* difference value (absolute) */
319xfs_alloc_compute_diff(
320 xfs_agblock_t wantbno, /* target starting block */
321 xfs_extlen_t wantlen, /* target length */
322 xfs_extlen_t alignment, /* target alignment */
323 int datatype, /* are we allocating data? */
324 xfs_agblock_t freebno, /* freespace's starting block */
325 xfs_extlen_t freelen, /* freespace's length */
326 xfs_agblock_t *newbnop) /* result: best start block from free */
327{
328 xfs_agblock_t freeend; /* end of freespace extent */
329 xfs_agblock_t newbno1; /* return block number */
330 xfs_agblock_t newbno2; /* other new block number */
331 xfs_extlen_t newlen1=0; /* length with newbno1 */
332 xfs_extlen_t newlen2=0; /* length with newbno2 */
333 xfs_agblock_t wantend; /* end of target extent */
334 bool userdata = datatype & XFS_ALLOC_USERDATA;
335
336 ASSERT(freelen >= wantlen);
337 freeend = freebno + freelen;
338 wantend = wantbno + wantlen;
339 /*
340 * We want to allocate from the start of a free extent if it is past
341 * the desired block or if we are allocating user data and the free
342 * extent is before desired block. The second case is there to allow
343 * for contiguous allocation from the remaining free space if the file
344 * grows in the short term.
345 */
346 if (freebno >= wantbno || (userdata && freeend < wantend)) {
347 if ((newbno1 = roundup(freebno, alignment)) >= freeend)
348 newbno1 = NULLAGBLOCK;
349 } else if (freeend >= wantend && alignment > 1) {
350 newbno1 = roundup(wantbno, alignment);
351 newbno2 = newbno1 - alignment;
352 if (newbno1 >= freeend)
353 newbno1 = NULLAGBLOCK;
354 else
355 newlen1 = XFS_EXTLEN_MIN(wantlen, freeend - newbno1);
356 if (newbno2 < freebno)
357 newbno2 = NULLAGBLOCK;
358 else
359 newlen2 = XFS_EXTLEN_MIN(wantlen, freeend - newbno2);
360 if (newbno1 != NULLAGBLOCK && newbno2 != NULLAGBLOCK) {
361 if (newlen1 < newlen2 ||
362 (newlen1 == newlen2 &&
363 XFS_ABSDIFF(newbno1, wantbno) >
364 XFS_ABSDIFF(newbno2, wantbno)))
365 newbno1 = newbno2;
366 } else if (newbno2 != NULLAGBLOCK)
367 newbno1 = newbno2;
368 } else if (freeend >= wantend) {
369 newbno1 = wantbno;
370 } else if (alignment > 1) {
371 newbno1 = roundup(freeend - wantlen, alignment);
372 if (newbno1 > freeend - wantlen &&
373 newbno1 - alignment >= freebno)
374 newbno1 -= alignment;
375 else if (newbno1 >= freeend)
376 newbno1 = NULLAGBLOCK;
377 } else
378 newbno1 = freeend - wantlen;
379 *newbnop = newbno1;
380 return newbno1 == NULLAGBLOCK ? 0 : XFS_ABSDIFF(newbno1, wantbno);
381}
382
383/*
384 * Fix up the length, based on mod and prod.
385 * len should be k * prod + mod for some k.
386 * If len is too small it is returned unchanged.
387 * If len hits maxlen it is left alone.
388 */
389STATIC void
390xfs_alloc_fix_len(
391 xfs_alloc_arg_t *args) /* allocation argument structure */
392{
393 xfs_extlen_t k;
394 xfs_extlen_t rlen;
395
396 ASSERT(args->mod < args->prod);
397 rlen = args->len;
398 ASSERT(rlen >= args->minlen);
399 ASSERT(rlen <= args->maxlen);
400 if (args->prod <= 1 || rlen < args->mod || rlen == args->maxlen ||
401 (args->mod == 0 && rlen < args->prod))
402 return;
403 k = rlen % args->prod;
404 if (k == args->mod)
405 return;
406 if (k > args->mod)
407 rlen = rlen - (k - args->mod);
408 else
409 rlen = rlen - args->prod + (args->mod - k);
410 /* casts to (int) catch length underflows */
411 if ((int)rlen < (int)args->minlen)
412 return;
413 ASSERT(rlen >= args->minlen && rlen <= args->maxlen);
414 ASSERT(rlen % args->prod == args->mod);
415 ASSERT(args->pag->pagf_freeblks + args->pag->pagf_flcount >=
416 rlen + args->minleft);
417 args->len = rlen;
418}
419
420/*
421 * Update the two btrees, logically removing from freespace the extent
422 * starting at rbno, rlen blocks. The extent is contained within the
423 * actual (current) free extent fbno for flen blocks.
424 * Flags are passed in indicating whether the cursors are set to the
425 * relevant records.
426 */
427STATIC int /* error code */
428xfs_alloc_fixup_trees(
429 xfs_btree_cur_t *cnt_cur, /* cursor for by-size btree */
430 xfs_btree_cur_t *bno_cur, /* cursor for by-block btree */
431 xfs_agblock_t fbno, /* starting block of free extent */
432 xfs_extlen_t flen, /* length of free extent */
433 xfs_agblock_t rbno, /* starting block of returned extent */
434 xfs_extlen_t rlen, /* length of returned extent */
435 int flags) /* flags, XFSA_FIXUP_... */
436{
437 int error; /* error code */
438 int i; /* operation results */
439 xfs_agblock_t nfbno1; /* first new free startblock */
440 xfs_agblock_t nfbno2; /* second new free startblock */
441 xfs_extlen_t nflen1=0; /* first new free length */
442 xfs_extlen_t nflen2=0; /* second new free length */
443 struct xfs_mount *mp;
444
445 mp = cnt_cur->bc_mp;
446
447 /*
448 * Look up the record in the by-size tree if necessary.
449 */
450 if (flags & XFSA_FIXUP_CNT_OK) {
451#ifdef DEBUG
452 if ((error = xfs_alloc_get_rec(cnt_cur, &nfbno1, &nflen1, &i)))
453 return error;
454 if (XFS_IS_CORRUPT(mp,
455 i != 1 ||
456 nfbno1 != fbno ||
457 nflen1 != flen))
458 return -EFSCORRUPTED;
459#endif
460 } else {
461 if ((error = xfs_alloc_lookup_eq(cnt_cur, fbno, flen, &i)))
462 return error;
463 if (XFS_IS_CORRUPT(mp, i != 1))
464 return -EFSCORRUPTED;
465 }
466 /*
467 * Look up the record in the by-block tree if necessary.
468 */
469 if (flags & XFSA_FIXUP_BNO_OK) {
470#ifdef DEBUG
471 if ((error = xfs_alloc_get_rec(bno_cur, &nfbno1, &nflen1, &i)))
472 return error;
473 if (XFS_IS_CORRUPT(mp,
474 i != 1 ||
475 nfbno1 != fbno ||
476 nflen1 != flen))
477 return -EFSCORRUPTED;
478#endif
479 } else {
480 if ((error = xfs_alloc_lookup_eq(bno_cur, fbno, flen, &i)))
481 return error;
482 if (XFS_IS_CORRUPT(mp, i != 1))
483 return -EFSCORRUPTED;
484 }
485
486#ifdef DEBUG
487 if (bno_cur->bc_nlevels == 1 && cnt_cur->bc_nlevels == 1) {
488 struct xfs_btree_block *bnoblock;
489 struct xfs_btree_block *cntblock;
490
491 bnoblock = XFS_BUF_TO_BLOCK(bno_cur->bc_bufs[0]);
492 cntblock = XFS_BUF_TO_BLOCK(cnt_cur->bc_bufs[0]);
493
494 if (XFS_IS_CORRUPT(mp,
495 bnoblock->bb_numrecs !=
496 cntblock->bb_numrecs))
497 return -EFSCORRUPTED;
498 }
499#endif
500
501 /*
502 * Deal with all four cases: the allocated record is contained
503 * within the freespace record, so we can have new freespace
504 * at either (or both) end, or no freespace remaining.
505 */
506 if (rbno == fbno && rlen == flen)
507 nfbno1 = nfbno2 = NULLAGBLOCK;
508 else if (rbno == fbno) {
509 nfbno1 = rbno + rlen;
510 nflen1 = flen - rlen;
511 nfbno2 = NULLAGBLOCK;
512 } else if (rbno + rlen == fbno + flen) {
513 nfbno1 = fbno;
514 nflen1 = flen - rlen;
515 nfbno2 = NULLAGBLOCK;
516 } else {
517 nfbno1 = fbno;
518 nflen1 = rbno - fbno;
519 nfbno2 = rbno + rlen;
520 nflen2 = (fbno + flen) - nfbno2;
521 }
522 /*
523 * Delete the entry from the by-size btree.
524 */
525 if ((error = xfs_btree_delete(cnt_cur, &i)))
526 return error;
527 if (XFS_IS_CORRUPT(mp, i != 1))
528 return -EFSCORRUPTED;
529 /*
530 * Add new by-size btree entry(s).
531 */
532 if (nfbno1 != NULLAGBLOCK) {
533 if ((error = xfs_alloc_lookup_eq(cnt_cur, nfbno1, nflen1, &i)))
534 return error;
535 if (XFS_IS_CORRUPT(mp, i != 0))
536 return -EFSCORRUPTED;
537 if ((error = xfs_btree_insert(cnt_cur, &i)))
538 return error;
539 if (XFS_IS_CORRUPT(mp, i != 1))
540 return -EFSCORRUPTED;
541 }
542 if (nfbno2 != NULLAGBLOCK) {
543 if ((error = xfs_alloc_lookup_eq(cnt_cur, nfbno2, nflen2, &i)))
544 return error;
545 if (XFS_IS_CORRUPT(mp, i != 0))
546 return -EFSCORRUPTED;
547 if ((error = xfs_btree_insert(cnt_cur, &i)))
548 return error;
549 if (XFS_IS_CORRUPT(mp, i != 1))
550 return -EFSCORRUPTED;
551 }
552 /*
553 * Fix up the by-block btree entry(s).
554 */
555 if (nfbno1 == NULLAGBLOCK) {
556 /*
557 * No remaining freespace, just delete the by-block tree entry.
558 */
559 if ((error = xfs_btree_delete(bno_cur, &i)))
560 return error;
561 if (XFS_IS_CORRUPT(mp, i != 1))
562 return -EFSCORRUPTED;
563 } else {
564 /*
565 * Update the by-block entry to start later|be shorter.
566 */
567 if ((error = xfs_alloc_update(bno_cur, nfbno1, nflen1)))
568 return error;
569 }
570 if (nfbno2 != NULLAGBLOCK) {
571 /*
572 * 2 resulting free entries, need to add one.
573 */
574 if ((error = xfs_alloc_lookup_eq(bno_cur, nfbno2, nflen2, &i)))
575 return error;
576 if (XFS_IS_CORRUPT(mp, i != 0))
577 return -EFSCORRUPTED;
578 if ((error = xfs_btree_insert(bno_cur, &i)))
579 return error;
580 if (XFS_IS_CORRUPT(mp, i != 1))
581 return -EFSCORRUPTED;
582 }
583 return 0;
584}
585
586static xfs_failaddr_t
587xfs_agfl_verify(
588 struct xfs_buf *bp)
589{
590 struct xfs_mount *mp = bp->b_mount;
591 struct xfs_agfl *agfl = XFS_BUF_TO_AGFL(bp);
592 __be32 *agfl_bno = xfs_buf_to_agfl_bno(bp);
593 int i;
594
595 /*
596 * There is no verification of non-crc AGFLs because mkfs does not
597 * initialise the AGFL to zero or NULL. Hence the only valid part of the
598 * AGFL is what the AGF says is active. We can't get to the AGF, so we
599 * can't verify just those entries are valid.
600 */
601 if (!xfs_sb_version_hascrc(&mp->m_sb))
602 return NULL;
603
604 if (!xfs_verify_magic(bp, agfl->agfl_magicnum))
605 return __this_address;
606 if (!uuid_equal(&agfl->agfl_uuid, &mp->m_sb.sb_meta_uuid))
607 return __this_address;
608 /*
609 * during growfs operations, the perag is not fully initialised,
610 * so we can't use it for any useful checking. growfs ensures we can't
611 * use it by using uncached buffers that don't have the perag attached
612 * so we can detect and avoid this problem.
613 */
614 if (bp->b_pag && be32_to_cpu(agfl->agfl_seqno) != bp->b_pag->pag_agno)
615 return __this_address;
616
617 for (i = 0; i < xfs_agfl_size(mp); i++) {
618 if (be32_to_cpu(agfl_bno[i]) != NULLAGBLOCK &&
619 be32_to_cpu(agfl_bno[i]) >= mp->m_sb.sb_agblocks)
620 return __this_address;
621 }
622
623 if (!xfs_log_check_lsn(mp, be64_to_cpu(XFS_BUF_TO_AGFL(bp)->agfl_lsn)))
624 return __this_address;
625 return NULL;
626}
627
628static void
629xfs_agfl_read_verify(
630 struct xfs_buf *bp)
631{
632 struct xfs_mount *mp = bp->b_mount;
633 xfs_failaddr_t fa;
634
635 /*
636 * There is no verification of non-crc AGFLs because mkfs does not
637 * initialise the AGFL to zero or NULL. Hence the only valid part of the
638 * AGFL is what the AGF says is active. We can't get to the AGF, so we
639 * can't verify just those entries are valid.
640 */
641 if (!xfs_sb_version_hascrc(&mp->m_sb))
642 return;
643
644 if (!xfs_buf_verify_cksum(bp, XFS_AGFL_CRC_OFF))
645 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
646 else {
647 fa = xfs_agfl_verify(bp);
648 if (fa)
649 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
650 }
651}
652
653static void
654xfs_agfl_write_verify(
655 struct xfs_buf *bp)
656{
657 struct xfs_mount *mp = bp->b_mount;
658 struct xfs_buf_log_item *bip = bp->b_log_item;
659 xfs_failaddr_t fa;
660
661 /* no verification of non-crc AGFLs */
662 if (!xfs_sb_version_hascrc(&mp->m_sb))
663 return;
664
665 fa = xfs_agfl_verify(bp);
666 if (fa) {
667 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
668 return;
669 }
670
671 if (bip)
672 XFS_BUF_TO_AGFL(bp)->agfl_lsn = cpu_to_be64(bip->bli_item.li_lsn);
673
674 xfs_buf_update_cksum(bp, XFS_AGFL_CRC_OFF);
675}
676
677const struct xfs_buf_ops xfs_agfl_buf_ops = {
678 .name = "xfs_agfl",
679 .magic = { cpu_to_be32(XFS_AGFL_MAGIC), cpu_to_be32(XFS_AGFL_MAGIC) },
680 .verify_read = xfs_agfl_read_verify,
681 .verify_write = xfs_agfl_write_verify,
682 .verify_struct = xfs_agfl_verify,
683};
684
685/*
686 * Read in the allocation group free block array.
687 */
688int /* error */
689xfs_alloc_read_agfl(
690 xfs_mount_t *mp, /* mount point structure */
691 xfs_trans_t *tp, /* transaction pointer */
692 xfs_agnumber_t agno, /* allocation group number */
693 struct xfs_buf **bpp) /* buffer for the ag free block array */
694{
695 struct xfs_buf *bp; /* return value */
696 int error;
697
698 ASSERT(agno != NULLAGNUMBER);
699 error = xfs_trans_read_buf(
700 mp, tp, mp->m_ddev_targp,
701 XFS_AG_DADDR(mp, agno, XFS_AGFL_DADDR(mp)),
702 XFS_FSS_TO_BB(mp, 1), 0, &bp, &xfs_agfl_buf_ops);
703 if (error)
704 return error;
705 xfs_buf_set_ref(bp, XFS_AGFL_REF);
706 *bpp = bp;
707 return 0;
708}
709
710STATIC int
711xfs_alloc_update_counters(
712 struct xfs_trans *tp,
713 struct xfs_buf *agbp,
714 long len)
715{
716 struct xfs_agf *agf = agbp->b_addr;
717
718 agbp->b_pag->pagf_freeblks += len;
719 be32_add_cpu(&agf->agf_freeblks, len);
720
721 if (unlikely(be32_to_cpu(agf->agf_freeblks) >
722 be32_to_cpu(agf->agf_length))) {
723 xfs_buf_mark_corrupt(agbp);
724 return -EFSCORRUPTED;
725 }
726
727 xfs_alloc_log_agf(tp, agbp, XFS_AGF_FREEBLKS);
728 return 0;
729}
730
731/*
732 * Block allocation algorithm and data structures.
733 */
734struct xfs_alloc_cur {
735 struct xfs_btree_cur *cnt; /* btree cursors */
736 struct xfs_btree_cur *bnolt;
737 struct xfs_btree_cur *bnogt;
738 xfs_extlen_t cur_len;/* current search length */
739 xfs_agblock_t rec_bno;/* extent startblock */
740 xfs_extlen_t rec_len;/* extent length */
741 xfs_agblock_t bno; /* alloc bno */
742 xfs_extlen_t len; /* alloc len */
743 xfs_extlen_t diff; /* diff from search bno */
744 unsigned int busy_gen;/* busy state */
745 bool busy;
746};
747
748/*
749 * Set up cursors, etc. in the extent allocation cursor. This function can be
750 * called multiple times to reset an initialized structure without having to
751 * reallocate cursors.
752 */
753static int
754xfs_alloc_cur_setup(
755 struct xfs_alloc_arg *args,
756 struct xfs_alloc_cur *acur)
757{
758 int error;
759 int i;
760
761 ASSERT(args->alignment == 1 || args->type != XFS_ALLOCTYPE_THIS_BNO);
762
763 acur->cur_len = args->maxlen;
764 acur->rec_bno = 0;
765 acur->rec_len = 0;
766 acur->bno = 0;
767 acur->len = 0;
768 acur->diff = -1;
769 acur->busy = false;
770 acur->busy_gen = 0;
771
772 /*
773 * Perform an initial cntbt lookup to check for availability of maxlen
774 * extents. If this fails, we'll return -ENOSPC to signal the caller to
775 * attempt a small allocation.
776 */
777 if (!acur->cnt)
778 acur->cnt = xfs_allocbt_init_cursor(args->mp, args->tp,
779 args->agbp, args->pag, XFS_BTNUM_CNT);
780 error = xfs_alloc_lookup_ge(acur->cnt, 0, args->maxlen, &i);
781 if (error)
782 return error;
783
784 /*
785 * Allocate the bnobt left and right search cursors.
786 */
787 if (!acur->bnolt)
788 acur->bnolt = xfs_allocbt_init_cursor(args->mp, args->tp,
789 args->agbp, args->pag, XFS_BTNUM_BNO);
790 if (!acur->bnogt)
791 acur->bnogt = xfs_allocbt_init_cursor(args->mp, args->tp,
792 args->agbp, args->pag, XFS_BTNUM_BNO);
793 return i == 1 ? 0 : -ENOSPC;
794}
795
796static void
797xfs_alloc_cur_close(
798 struct xfs_alloc_cur *acur,
799 bool error)
800{
801 int cur_error = XFS_BTREE_NOERROR;
802
803 if (error)
804 cur_error = XFS_BTREE_ERROR;
805
806 if (acur->cnt)
807 xfs_btree_del_cursor(acur->cnt, cur_error);
808 if (acur->bnolt)
809 xfs_btree_del_cursor(acur->bnolt, cur_error);
810 if (acur->bnogt)
811 xfs_btree_del_cursor(acur->bnogt, cur_error);
812 acur->cnt = acur->bnolt = acur->bnogt = NULL;
813}
814
815/*
816 * Check an extent for allocation and track the best available candidate in the
817 * allocation structure. The cursor is deactivated if it has entered an out of
818 * range state based on allocation arguments. Optionally return the extent
819 * extent geometry and allocation status if requested by the caller.
820 */
821static int
822xfs_alloc_cur_check(
823 struct xfs_alloc_arg *args,
824 struct xfs_alloc_cur *acur,
825 struct xfs_btree_cur *cur,
826 int *new)
827{
828 int error, i;
829 xfs_agblock_t bno, bnoa, bnew;
830 xfs_extlen_t len, lena, diff = -1;
831 bool busy;
832 unsigned busy_gen = 0;
833 bool deactivate = false;
834 bool isbnobt = cur->bc_btnum == XFS_BTNUM_BNO;
835
836 *new = 0;
837
838 error = xfs_alloc_get_rec(cur, &bno, &len, &i);
839 if (error)
840 return error;
841 if (XFS_IS_CORRUPT(args->mp, i != 1))
842 return -EFSCORRUPTED;
843
844 /*
845 * Check minlen and deactivate a cntbt cursor if out of acceptable size
846 * range (i.e., walking backwards looking for a minlen extent).
847 */
848 if (len < args->minlen) {
849 deactivate = !isbnobt;
850 goto out;
851 }
852
853 busy = xfs_alloc_compute_aligned(args, bno, len, &bnoa, &lena,
854 &busy_gen);
855 acur->busy |= busy;
856 if (busy)
857 acur->busy_gen = busy_gen;
858 /* deactivate a bnobt cursor outside of locality range */
859 if (bnoa < args->min_agbno || bnoa > args->max_agbno) {
860 deactivate = isbnobt;
861 goto out;
862 }
863 if (lena < args->minlen)
864 goto out;
865
866 args->len = XFS_EXTLEN_MIN(lena, args->maxlen);
867 xfs_alloc_fix_len(args);
868 ASSERT(args->len >= args->minlen);
869 if (args->len < acur->len)
870 goto out;
871
872 /*
873 * We have an aligned record that satisfies minlen and beats or matches
874 * the candidate extent size. Compare locality for near allocation mode.
875 */
876 ASSERT(args->type == XFS_ALLOCTYPE_NEAR_BNO);
877 diff = xfs_alloc_compute_diff(args->agbno, args->len,
878 args->alignment, args->datatype,
879 bnoa, lena, &bnew);
880 if (bnew == NULLAGBLOCK)
881 goto out;
882
883 /*
884 * Deactivate a bnobt cursor with worse locality than the current best.
885 */
886 if (diff > acur->diff) {
887 deactivate = isbnobt;
888 goto out;
889 }
890
891 ASSERT(args->len > acur->len ||
892 (args->len == acur->len && diff <= acur->diff));
893 acur->rec_bno = bno;
894 acur->rec_len = len;
895 acur->bno = bnew;
896 acur->len = args->len;
897 acur->diff = diff;
898 *new = 1;
899
900 /*
901 * We're done if we found a perfect allocation. This only deactivates
902 * the current cursor, but this is just an optimization to terminate a
903 * cntbt search that otherwise runs to the edge of the tree.
904 */
905 if (acur->diff == 0 && acur->len == args->maxlen)
906 deactivate = true;
907out:
908 if (deactivate)
909 cur->bc_ag.abt.active = false;
910 trace_xfs_alloc_cur_check(args->mp, cur->bc_btnum, bno, len, diff,
911 *new);
912 return 0;
913}
914
915/*
916 * Complete an allocation of a candidate extent. Remove the extent from both
917 * trees and update the args structure.
918 */
919STATIC int
920xfs_alloc_cur_finish(
921 struct xfs_alloc_arg *args,
922 struct xfs_alloc_cur *acur)
923{
924 struct xfs_agf __maybe_unused *agf = args->agbp->b_addr;
925 int error;
926
927 ASSERT(acur->cnt && acur->bnolt);
928 ASSERT(acur->bno >= acur->rec_bno);
929 ASSERT(acur->bno + acur->len <= acur->rec_bno + acur->rec_len);
930 ASSERT(acur->rec_bno + acur->rec_len <= be32_to_cpu(agf->agf_length));
931
932 error = xfs_alloc_fixup_trees(acur->cnt, acur->bnolt, acur->rec_bno,
933 acur->rec_len, acur->bno, acur->len, 0);
934 if (error)
935 return error;
936
937 args->agbno = acur->bno;
938 args->len = acur->len;
939 args->wasfromfl = 0;
940
941 trace_xfs_alloc_cur(args);
942 return 0;
943}
944
945/*
946 * Locality allocation lookup algorithm. This expects a cntbt cursor and uses
947 * bno optimized lookup to search for extents with ideal size and locality.
948 */
949STATIC int
950xfs_alloc_cntbt_iter(
951 struct xfs_alloc_arg *args,
952 struct xfs_alloc_cur *acur)
953{
954 struct xfs_btree_cur *cur = acur->cnt;
955 xfs_agblock_t bno;
956 xfs_extlen_t len, cur_len;
957 int error;
958 int i;
959
960 if (!xfs_alloc_cur_active(cur))
961 return 0;
962
963 /* locality optimized lookup */
964 cur_len = acur->cur_len;
965 error = xfs_alloc_lookup_ge(cur, args->agbno, cur_len, &i);
966 if (error)
967 return error;
968 if (i == 0)
969 return 0;
970 error = xfs_alloc_get_rec(cur, &bno, &len, &i);
971 if (error)
972 return error;
973
974 /* check the current record and update search length from it */
975 error = xfs_alloc_cur_check(args, acur, cur, &i);
976 if (error)
977 return error;
978 ASSERT(len >= acur->cur_len);
979 acur->cur_len = len;
980
981 /*
982 * We looked up the first record >= [agbno, len] above. The agbno is a
983 * secondary key and so the current record may lie just before or after
984 * agbno. If it is past agbno, check the previous record too so long as
985 * the length matches as it may be closer. Don't check a smaller record
986 * because that could deactivate our cursor.
987 */
988 if (bno > args->agbno) {
989 error = xfs_btree_decrement(cur, 0, &i);
990 if (!error && i) {
991 error = xfs_alloc_get_rec(cur, &bno, &len, &i);
992 if (!error && i && len == acur->cur_len)
993 error = xfs_alloc_cur_check(args, acur, cur,
994 &i);
995 }
996 if (error)
997 return error;
998 }
999
1000 /*
1001 * Increment the search key until we find at least one allocation
1002 * candidate or if the extent we found was larger. Otherwise, double the
1003 * search key to optimize the search. Efficiency is more important here
1004 * than absolute best locality.
1005 */
1006 cur_len <<= 1;
1007 if (!acur->len || acur->cur_len >= cur_len)
1008 acur->cur_len++;
1009 else
1010 acur->cur_len = cur_len;
1011
1012 return error;
1013}
1014
1015/*
1016 * Deal with the case where only small freespaces remain. Either return the
1017 * contents of the last freespace record, or allocate space from the freelist if
1018 * there is nothing in the tree.
1019 */
1020STATIC int /* error */
1021xfs_alloc_ag_vextent_small(
1022 struct xfs_alloc_arg *args, /* allocation argument structure */
1023 struct xfs_btree_cur *ccur, /* optional by-size cursor */
1024 xfs_agblock_t *fbnop, /* result block number */
1025 xfs_extlen_t *flenp, /* result length */
1026 int *stat) /* status: 0-freelist, 1-normal/none */
1027{
1028 struct xfs_agf *agf = args->agbp->b_addr;
1029 int error = 0;
1030 xfs_agblock_t fbno = NULLAGBLOCK;
1031 xfs_extlen_t flen = 0;
1032 int i = 0;
1033
1034 /*
1035 * If a cntbt cursor is provided, try to allocate the largest record in
1036 * the tree. Try the AGFL if the cntbt is empty, otherwise fail the
1037 * allocation. Make sure to respect minleft even when pulling from the
1038 * freelist.
1039 */
1040 if (ccur)
1041 error = xfs_btree_decrement(ccur, 0, &i);
1042 if (error)
1043 goto error;
1044 if (i) {
1045 error = xfs_alloc_get_rec(ccur, &fbno, &flen, &i);
1046 if (error)
1047 goto error;
1048 if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1049 error = -EFSCORRUPTED;
1050 goto error;
1051 }
1052 goto out;
1053 }
1054
1055 if (args->minlen != 1 || args->alignment != 1 ||
1056 args->resv == XFS_AG_RESV_AGFL ||
1057 be32_to_cpu(agf->agf_flcount) <= args->minleft)
1058 goto out;
1059
1060 error = xfs_alloc_get_freelist(args->tp, args->agbp, &fbno, 0);
1061 if (error)
1062 goto error;
1063 if (fbno == NULLAGBLOCK)
1064 goto out;
1065
1066 xfs_extent_busy_reuse(args->mp, args->pag, fbno, 1,
1067 (args->datatype & XFS_ALLOC_NOBUSY));
1068
1069 if (args->datatype & XFS_ALLOC_USERDATA) {
1070 struct xfs_buf *bp;
1071
1072 error = xfs_trans_get_buf(args->tp, args->mp->m_ddev_targp,
1073 XFS_AGB_TO_DADDR(args->mp, args->agno, fbno),
1074 args->mp->m_bsize, 0, &bp);
1075 if (error)
1076 goto error;
1077 xfs_trans_binval(args->tp, bp);
1078 }
1079 *fbnop = args->agbno = fbno;
1080 *flenp = args->len = 1;
1081 if (XFS_IS_CORRUPT(args->mp, fbno >= be32_to_cpu(agf->agf_length))) {
1082 error = -EFSCORRUPTED;
1083 goto error;
1084 }
1085 args->wasfromfl = 1;
1086 trace_xfs_alloc_small_freelist(args);
1087
1088 /*
1089 * If we're feeding an AGFL block to something that doesn't live in the
1090 * free space, we need to clear out the OWN_AG rmap.
1091 */
1092 error = xfs_rmap_free(args->tp, args->agbp, args->pag, fbno, 1,
1093 &XFS_RMAP_OINFO_AG);
1094 if (error)
1095 goto error;
1096
1097 *stat = 0;
1098 return 0;
1099
1100out:
1101 /*
1102 * Can't do the allocation, give up.
1103 */
1104 if (flen < args->minlen) {
1105 args->agbno = NULLAGBLOCK;
1106 trace_xfs_alloc_small_notenough(args);
1107 flen = 0;
1108 }
1109 *fbnop = fbno;
1110 *flenp = flen;
1111 *stat = 1;
1112 trace_xfs_alloc_small_done(args);
1113 return 0;
1114
1115error:
1116 trace_xfs_alloc_small_error(args);
1117 return error;
1118}
1119
1120/*
1121 * Allocate a variable extent in the allocation group agno.
1122 * Type and bno are used to determine where in the allocation group the
1123 * extent will start.
1124 * Extent's length (returned in *len) will be between minlen and maxlen,
1125 * and of the form k * prod + mod unless there's nothing that large.
1126 * Return the starting a.g. block, or NULLAGBLOCK if we can't do it.
1127 */
1128STATIC int /* error */
1129xfs_alloc_ag_vextent(
1130 xfs_alloc_arg_t *args) /* argument structure for allocation */
1131{
1132 int error=0;
1133
1134 ASSERT(args->minlen > 0);
1135 ASSERT(args->maxlen > 0);
1136 ASSERT(args->minlen <= args->maxlen);
1137 ASSERT(args->mod < args->prod);
1138 ASSERT(args->alignment > 0);
1139
1140 /*
1141 * Branch to correct routine based on the type.
1142 */
1143 args->wasfromfl = 0;
1144 switch (args->type) {
1145 case XFS_ALLOCTYPE_THIS_AG:
1146 error = xfs_alloc_ag_vextent_size(args);
1147 break;
1148 case XFS_ALLOCTYPE_NEAR_BNO:
1149 error = xfs_alloc_ag_vextent_near(args);
1150 break;
1151 case XFS_ALLOCTYPE_THIS_BNO:
1152 error = xfs_alloc_ag_vextent_exact(args);
1153 break;
1154 default:
1155 ASSERT(0);
1156 /* NOTREACHED */
1157 }
1158
1159 if (error || args->agbno == NULLAGBLOCK)
1160 return error;
1161
1162 ASSERT(args->len >= args->minlen);
1163 ASSERT(args->len <= args->maxlen);
1164 ASSERT(!args->wasfromfl || args->resv != XFS_AG_RESV_AGFL);
1165 ASSERT(args->agbno % args->alignment == 0);
1166
1167 /* if not file data, insert new block into the reverse map btree */
1168 if (!xfs_rmap_should_skip_owner_update(&args->oinfo)) {
1169 error = xfs_rmap_alloc(args->tp, args->agbp, args->pag,
1170 args->agbno, args->len, &args->oinfo);
1171 if (error)
1172 return error;
1173 }
1174
1175 if (!args->wasfromfl) {
1176 error = xfs_alloc_update_counters(args->tp, args->agbp,
1177 -((long)(args->len)));
1178 if (error)
1179 return error;
1180
1181 ASSERT(!xfs_extent_busy_search(args->mp, args->pag,
1182 args->agbno, args->len));
1183 }
1184
1185 xfs_ag_resv_alloc_extent(args->pag, args->resv, args);
1186
1187 XFS_STATS_INC(args->mp, xs_allocx);
1188 XFS_STATS_ADD(args->mp, xs_allocb, args->len);
1189 return error;
1190}
1191
1192/*
1193 * Allocate a variable extent at exactly agno/bno.
1194 * Extent's length (returned in *len) will be between minlen and maxlen,
1195 * and of the form k * prod + mod unless there's nothing that large.
1196 * Return the starting a.g. block (bno), or NULLAGBLOCK if we can't do it.
1197 */
1198STATIC int /* error */
1199xfs_alloc_ag_vextent_exact(
1200 xfs_alloc_arg_t *args) /* allocation argument structure */
1201{
1202 struct xfs_agf __maybe_unused *agf = args->agbp->b_addr;
1203 xfs_btree_cur_t *bno_cur;/* by block-number btree cursor */
1204 xfs_btree_cur_t *cnt_cur;/* by count btree cursor */
1205 int error;
1206 xfs_agblock_t fbno; /* start block of found extent */
1207 xfs_extlen_t flen; /* length of found extent */
1208 xfs_agblock_t tbno; /* start block of busy extent */
1209 xfs_extlen_t tlen; /* length of busy extent */
1210 xfs_agblock_t tend; /* end block of busy extent */
1211 int i; /* success/failure of operation */
1212 unsigned busy_gen;
1213
1214 ASSERT(args->alignment == 1);
1215
1216 /*
1217 * Allocate/initialize a cursor for the by-number freespace btree.
1218 */
1219 bno_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp,
1220 args->pag, XFS_BTNUM_BNO);
1221
1222 /*
1223 * Lookup bno and minlen in the btree (minlen is irrelevant, really).
1224 * Look for the closest free block <= bno, it must contain bno
1225 * if any free block does.
1226 */
1227 error = xfs_alloc_lookup_le(bno_cur, args->agbno, args->minlen, &i);
1228 if (error)
1229 goto error0;
1230 if (!i)
1231 goto not_found;
1232
1233 /*
1234 * Grab the freespace record.
1235 */
1236 error = xfs_alloc_get_rec(bno_cur, &fbno, &flen, &i);
1237 if (error)
1238 goto error0;
1239 if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1240 error = -EFSCORRUPTED;
1241 goto error0;
1242 }
1243 ASSERT(fbno <= args->agbno);
1244
1245 /*
1246 * Check for overlapping busy extents.
1247 */
1248 tbno = fbno;
1249 tlen = flen;
1250 xfs_extent_busy_trim(args, &tbno, &tlen, &busy_gen);
1251
1252 /*
1253 * Give up if the start of the extent is busy, or the freespace isn't
1254 * long enough for the minimum request.
1255 */
1256 if (tbno > args->agbno)
1257 goto not_found;
1258 if (tlen < args->minlen)
1259 goto not_found;
1260 tend = tbno + tlen;
1261 if (tend < args->agbno + args->minlen)
1262 goto not_found;
1263
1264 /*
1265 * End of extent will be smaller of the freespace end and the
1266 * maximal requested end.
1267 *
1268 * Fix the length according to mod and prod if given.
1269 */
1270 args->len = XFS_AGBLOCK_MIN(tend, args->agbno + args->maxlen)
1271 - args->agbno;
1272 xfs_alloc_fix_len(args);
1273 ASSERT(args->agbno + args->len <= tend);
1274
1275 /*
1276 * We are allocating agbno for args->len
1277 * Allocate/initialize a cursor for the by-size btree.
1278 */
1279 cnt_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp,
1280 args->pag, XFS_BTNUM_CNT);
1281 ASSERT(args->agbno + args->len <= be32_to_cpu(agf->agf_length));
1282 error = xfs_alloc_fixup_trees(cnt_cur, bno_cur, fbno, flen, args->agbno,
1283 args->len, XFSA_FIXUP_BNO_OK);
1284 if (error) {
1285 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR);
1286 goto error0;
1287 }
1288
1289 xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
1290 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1291
1292 args->wasfromfl = 0;
1293 trace_xfs_alloc_exact_done(args);
1294 return 0;
1295
1296not_found:
1297 /* Didn't find it, return null. */
1298 xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
1299 args->agbno = NULLAGBLOCK;
1300 trace_xfs_alloc_exact_notfound(args);
1301 return 0;
1302
1303error0:
1304 xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR);
1305 trace_xfs_alloc_exact_error(args);
1306 return error;
1307}
1308
1309/*
1310 * Search a given number of btree records in a given direction. Check each
1311 * record against the good extent we've already found.
1312 */
1313STATIC int
1314xfs_alloc_walk_iter(
1315 struct xfs_alloc_arg *args,
1316 struct xfs_alloc_cur *acur,
1317 struct xfs_btree_cur *cur,
1318 bool increment,
1319 bool find_one, /* quit on first candidate */
1320 int count, /* rec count (-1 for infinite) */
1321 int *stat)
1322{
1323 int error;
1324 int i;
1325
1326 *stat = 0;
1327
1328 /*
1329 * Search so long as the cursor is active or we find a better extent.
1330 * The cursor is deactivated if it extends beyond the range of the
1331 * current allocation candidate.
1332 */
1333 while (xfs_alloc_cur_active(cur) && count) {
1334 error = xfs_alloc_cur_check(args, acur, cur, &i);
1335 if (error)
1336 return error;
1337 if (i == 1) {
1338 *stat = 1;
1339 if (find_one)
1340 break;
1341 }
1342 if (!xfs_alloc_cur_active(cur))
1343 break;
1344
1345 if (increment)
1346 error = xfs_btree_increment(cur, 0, &i);
1347 else
1348 error = xfs_btree_decrement(cur, 0, &i);
1349 if (error)
1350 return error;
1351 if (i == 0)
1352 cur->bc_ag.abt.active = false;
1353
1354 if (count > 0)
1355 count--;
1356 }
1357
1358 return 0;
1359}
1360
1361/*
1362 * Search the by-bno and by-size btrees in parallel in search of an extent with
1363 * ideal locality based on the NEAR mode ->agbno locality hint.
1364 */
1365STATIC int
1366xfs_alloc_ag_vextent_locality(
1367 struct xfs_alloc_arg *args,
1368 struct xfs_alloc_cur *acur,
1369 int *stat)
1370{
1371 struct xfs_btree_cur *fbcur = NULL;
1372 int error;
1373 int i;
1374 bool fbinc;
1375
1376 ASSERT(acur->len == 0);
1377 ASSERT(args->type == XFS_ALLOCTYPE_NEAR_BNO);
1378
1379 *stat = 0;
1380
1381 error = xfs_alloc_lookup_ge(acur->cnt, args->agbno, acur->cur_len, &i);
1382 if (error)
1383 return error;
1384 error = xfs_alloc_lookup_le(acur->bnolt, args->agbno, 0, &i);
1385 if (error)
1386 return error;
1387 error = xfs_alloc_lookup_ge(acur->bnogt, args->agbno, 0, &i);
1388 if (error)
1389 return error;
1390
1391 /*
1392 * Search the bnobt and cntbt in parallel. Search the bnobt left and
1393 * right and lookup the closest extent to the locality hint for each
1394 * extent size key in the cntbt. The entire search terminates
1395 * immediately on a bnobt hit because that means we've found best case
1396 * locality. Otherwise the search continues until the cntbt cursor runs
1397 * off the end of the tree. If no allocation candidate is found at this
1398 * point, give up on locality, walk backwards from the end of the cntbt
1399 * and take the first available extent.
1400 *
1401 * The parallel tree searches balance each other out to provide fairly
1402 * consistent performance for various situations. The bnobt search can
1403 * have pathological behavior in the worst case scenario of larger
1404 * allocation requests and fragmented free space. On the other hand, the
1405 * bnobt is able to satisfy most smaller allocation requests much more
1406 * quickly than the cntbt. The cntbt search can sift through fragmented
1407 * free space and sets of free extents for larger allocation requests
1408 * more quickly than the bnobt. Since the locality hint is just a hint
1409 * and we don't want to scan the entire bnobt for perfect locality, the
1410 * cntbt search essentially bounds the bnobt search such that we can
1411 * find good enough locality at reasonable performance in most cases.
1412 */
1413 while (xfs_alloc_cur_active(acur->bnolt) ||
1414 xfs_alloc_cur_active(acur->bnogt) ||
1415 xfs_alloc_cur_active(acur->cnt)) {
1416
1417 trace_xfs_alloc_cur_lookup(args);
1418
1419 /*
1420 * Search the bnobt left and right. In the case of a hit, finish
1421 * the search in the opposite direction and we're done.
1422 */
1423 error = xfs_alloc_walk_iter(args, acur, acur->bnolt, false,
1424 true, 1, &i);
1425 if (error)
1426 return error;
1427 if (i == 1) {
1428 trace_xfs_alloc_cur_left(args);
1429 fbcur = acur->bnogt;
1430 fbinc = true;
1431 break;
1432 }
1433 error = xfs_alloc_walk_iter(args, acur, acur->bnogt, true, true,
1434 1, &i);
1435 if (error)
1436 return error;
1437 if (i == 1) {
1438 trace_xfs_alloc_cur_right(args);
1439 fbcur = acur->bnolt;
1440 fbinc = false;
1441 break;
1442 }
1443
1444 /*
1445 * Check the extent with best locality based on the current
1446 * extent size search key and keep track of the best candidate.
1447 */
1448 error = xfs_alloc_cntbt_iter(args, acur);
1449 if (error)
1450 return error;
1451 if (!xfs_alloc_cur_active(acur->cnt)) {
1452 trace_xfs_alloc_cur_lookup_done(args);
1453 break;
1454 }
1455 }
1456
1457 /*
1458 * If we failed to find anything due to busy extents, return empty
1459 * handed so the caller can flush and retry. If no busy extents were
1460 * found, walk backwards from the end of the cntbt as a last resort.
1461 */
1462 if (!xfs_alloc_cur_active(acur->cnt) && !acur->len && !acur->busy) {
1463 error = xfs_btree_decrement(acur->cnt, 0, &i);
1464 if (error)
1465 return error;
1466 if (i) {
1467 acur->cnt->bc_ag.abt.active = true;
1468 fbcur = acur->cnt;
1469 fbinc = false;
1470 }
1471 }
1472
1473 /*
1474 * Search in the opposite direction for a better entry in the case of
1475 * a bnobt hit or walk backwards from the end of the cntbt.
1476 */
1477 if (fbcur) {
1478 error = xfs_alloc_walk_iter(args, acur, fbcur, fbinc, true, -1,
1479 &i);
1480 if (error)
1481 return error;
1482 }
1483
1484 if (acur->len)
1485 *stat = 1;
1486
1487 return 0;
1488}
1489
1490/* Check the last block of the cnt btree for allocations. */
1491static int
1492xfs_alloc_ag_vextent_lastblock(
1493 struct xfs_alloc_arg *args,
1494 struct xfs_alloc_cur *acur,
1495 xfs_agblock_t *bno,
1496 xfs_extlen_t *len,
1497 bool *allocated)
1498{
1499 int error;
1500 int i;
1501
1502#ifdef DEBUG
1503 /* Randomly don't execute the first algorithm. */
1504 if (prandom_u32() & 1)
1505 return 0;
1506#endif
1507
1508 /*
1509 * Start from the entry that lookup found, sequence through all larger
1510 * free blocks. If we're actually pointing at a record smaller than
1511 * maxlen, go to the start of this block, and skip all those smaller
1512 * than minlen.
1513 */
1514 if (*len || args->alignment > 1) {
1515 acur->cnt->bc_ptrs[0] = 1;
1516 do {
1517 error = xfs_alloc_get_rec(acur->cnt, bno, len, &i);
1518 if (error)
1519 return error;
1520 if (XFS_IS_CORRUPT(args->mp, i != 1))
1521 return -EFSCORRUPTED;
1522 if (*len >= args->minlen)
1523 break;
1524 error = xfs_btree_increment(acur->cnt, 0, &i);
1525 if (error)
1526 return error;
1527 } while (i);
1528 ASSERT(*len >= args->minlen);
1529 if (!i)
1530 return 0;
1531 }
1532
1533 error = xfs_alloc_walk_iter(args, acur, acur->cnt, true, false, -1, &i);
1534 if (error)
1535 return error;
1536
1537 /*
1538 * It didn't work. We COULD be in a case where there's a good record
1539 * somewhere, so try again.
1540 */
1541 if (acur->len == 0)
1542 return 0;
1543
1544 trace_xfs_alloc_near_first(args);
1545 *allocated = true;
1546 return 0;
1547}
1548
1549/*
1550 * Allocate a variable extent near bno in the allocation group agno.
1551 * Extent's length (returned in len) will be between minlen and maxlen,
1552 * and of the form k * prod + mod unless there's nothing that large.
1553 * Return the starting a.g. block, or NULLAGBLOCK if we can't do it.
1554 */
1555STATIC int
1556xfs_alloc_ag_vextent_near(
1557 struct xfs_alloc_arg *args)
1558{
1559 struct xfs_alloc_cur acur = {};
1560 int error; /* error code */
1561 int i; /* result code, temporary */
1562 xfs_agblock_t bno;
1563 xfs_extlen_t len;
1564
1565 /* handle uninitialized agbno range so caller doesn't have to */
1566 if (!args->min_agbno && !args->max_agbno)
1567 args->max_agbno = args->mp->m_sb.sb_agblocks - 1;
1568 ASSERT(args->min_agbno <= args->max_agbno);
1569
1570 /* clamp agbno to the range if it's outside */
1571 if (args->agbno < args->min_agbno)
1572 args->agbno = args->min_agbno;
1573 if (args->agbno > args->max_agbno)
1574 args->agbno = args->max_agbno;
1575
1576restart:
1577 len = 0;
1578
1579 /*
1580 * Set up cursors and see if there are any free extents as big as
1581 * maxlen. If not, pick the last entry in the tree unless the tree is
1582 * empty.
1583 */
1584 error = xfs_alloc_cur_setup(args, &acur);
1585 if (error == -ENOSPC) {
1586 error = xfs_alloc_ag_vextent_small(args, acur.cnt, &bno,
1587 &len, &i);
1588 if (error)
1589 goto out;
1590 if (i == 0 || len == 0) {
1591 trace_xfs_alloc_near_noentry(args);
1592 goto out;
1593 }
1594 ASSERT(i == 1);
1595 } else if (error) {
1596 goto out;
1597 }
1598
1599 /*
1600 * First algorithm.
1601 * If the requested extent is large wrt the freespaces available
1602 * in this a.g., then the cursor will be pointing to a btree entry
1603 * near the right edge of the tree. If it's in the last btree leaf
1604 * block, then we just examine all the entries in that block
1605 * that are big enough, and pick the best one.
1606 */
1607 if (xfs_btree_islastblock(acur.cnt, 0)) {
1608 bool allocated = false;
1609
1610 error = xfs_alloc_ag_vextent_lastblock(args, &acur, &bno, &len,
1611 &allocated);
1612 if (error)
1613 goto out;
1614 if (allocated)
1615 goto alloc_finish;
1616 }
1617
1618 /*
1619 * Second algorithm. Combined cntbt and bnobt search to find ideal
1620 * locality.
1621 */
1622 error = xfs_alloc_ag_vextent_locality(args, &acur, &i);
1623 if (error)
1624 goto out;
1625
1626 /*
1627 * If we couldn't get anything, give up.
1628 */
1629 if (!acur.len) {
1630 if (acur.busy) {
1631 trace_xfs_alloc_near_busy(args);
1632 xfs_extent_busy_flush(args->mp, args->pag,
1633 acur.busy_gen);
1634 goto restart;
1635 }
1636 trace_xfs_alloc_size_neither(args);
1637 args->agbno = NULLAGBLOCK;
1638 goto out;
1639 }
1640
1641alloc_finish:
1642 /* fix up btrees on a successful allocation */
1643 error = xfs_alloc_cur_finish(args, &acur);
1644
1645out:
1646 xfs_alloc_cur_close(&acur, error);
1647 return error;
1648}
1649
1650/*
1651 * Allocate a variable extent anywhere in the allocation group agno.
1652 * Extent's length (returned in len) will be between minlen and maxlen,
1653 * and of the form k * prod + mod unless there's nothing that large.
1654 * Return the starting a.g. block, or NULLAGBLOCK if we can't do it.
1655 */
1656STATIC int /* error */
1657xfs_alloc_ag_vextent_size(
1658 xfs_alloc_arg_t *args) /* allocation argument structure */
1659{
1660 struct xfs_agf *agf = args->agbp->b_addr;
1661 xfs_btree_cur_t *bno_cur; /* cursor for bno btree */
1662 xfs_btree_cur_t *cnt_cur; /* cursor for cnt btree */
1663 int error; /* error result */
1664 xfs_agblock_t fbno; /* start of found freespace */
1665 xfs_extlen_t flen; /* length of found freespace */
1666 int i; /* temp status variable */
1667 xfs_agblock_t rbno; /* returned block number */
1668 xfs_extlen_t rlen; /* length of returned extent */
1669 bool busy;
1670 unsigned busy_gen;
1671
1672restart:
1673 /*
1674 * Allocate and initialize a cursor for the by-size btree.
1675 */
1676 cnt_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp,
1677 args->pag, XFS_BTNUM_CNT);
1678 bno_cur = NULL;
1679
1680 /*
1681 * Look for an entry >= maxlen+alignment-1 blocks.
1682 */
1683 if ((error = xfs_alloc_lookup_ge(cnt_cur, 0,
1684 args->maxlen + args->alignment - 1, &i)))
1685 goto error0;
1686
1687 /*
1688 * If none then we have to settle for a smaller extent. In the case that
1689 * there are no large extents, this will return the last entry in the
1690 * tree unless the tree is empty. In the case that there are only busy
1691 * large extents, this will return the largest small extent unless there
1692 * are no smaller extents available.
1693 */
1694 if (!i) {
1695 error = xfs_alloc_ag_vextent_small(args, cnt_cur,
1696 &fbno, &flen, &i);
1697 if (error)
1698 goto error0;
1699 if (i == 0 || flen == 0) {
1700 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1701 trace_xfs_alloc_size_noentry(args);
1702 return 0;
1703 }
1704 ASSERT(i == 1);
1705 busy = xfs_alloc_compute_aligned(args, fbno, flen, &rbno,
1706 &rlen, &busy_gen);
1707 } else {
1708 /*
1709 * Search for a non-busy extent that is large enough.
1710 */
1711 for (;;) {
1712 error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen, &i);
1713 if (error)
1714 goto error0;
1715 if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1716 error = -EFSCORRUPTED;
1717 goto error0;
1718 }
1719
1720 busy = xfs_alloc_compute_aligned(args, fbno, flen,
1721 &rbno, &rlen, &busy_gen);
1722
1723 if (rlen >= args->maxlen)
1724 break;
1725
1726 error = xfs_btree_increment(cnt_cur, 0, &i);
1727 if (error)
1728 goto error0;
1729 if (i == 0) {
1730 /*
1731 * Our only valid extents must have been busy.
1732 * Make it unbusy by forcing the log out and
1733 * retrying.
1734 */
1735 xfs_btree_del_cursor(cnt_cur,
1736 XFS_BTREE_NOERROR);
1737 trace_xfs_alloc_size_busy(args);
1738 xfs_extent_busy_flush(args->mp,
1739 args->pag, busy_gen);
1740 goto restart;
1741 }
1742 }
1743 }
1744
1745 /*
1746 * In the first case above, we got the last entry in the
1747 * by-size btree. Now we check to see if the space hits maxlen
1748 * once aligned; if not, we search left for something better.
1749 * This can't happen in the second case above.
1750 */
1751 rlen = XFS_EXTLEN_MIN(args->maxlen, rlen);
1752 if (XFS_IS_CORRUPT(args->mp,
1753 rlen != 0 &&
1754 (rlen > flen ||
1755 rbno + rlen > fbno + flen))) {
1756 error = -EFSCORRUPTED;
1757 goto error0;
1758 }
1759 if (rlen < args->maxlen) {
1760 xfs_agblock_t bestfbno;
1761 xfs_extlen_t bestflen;
1762 xfs_agblock_t bestrbno;
1763 xfs_extlen_t bestrlen;
1764
1765 bestrlen = rlen;
1766 bestrbno = rbno;
1767 bestflen = flen;
1768 bestfbno = fbno;
1769 for (;;) {
1770 if ((error = xfs_btree_decrement(cnt_cur, 0, &i)))
1771 goto error0;
1772 if (i == 0)
1773 break;
1774 if ((error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen,
1775 &i)))
1776 goto error0;
1777 if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1778 error = -EFSCORRUPTED;
1779 goto error0;
1780 }
1781 if (flen < bestrlen)
1782 break;
1783 busy = xfs_alloc_compute_aligned(args, fbno, flen,
1784 &rbno, &rlen, &busy_gen);
1785 rlen = XFS_EXTLEN_MIN(args->maxlen, rlen);
1786 if (XFS_IS_CORRUPT(args->mp,
1787 rlen != 0 &&
1788 (rlen > flen ||
1789 rbno + rlen > fbno + flen))) {
1790 error = -EFSCORRUPTED;
1791 goto error0;
1792 }
1793 if (rlen > bestrlen) {
1794 bestrlen = rlen;
1795 bestrbno = rbno;
1796 bestflen = flen;
1797 bestfbno = fbno;
1798 if (rlen == args->maxlen)
1799 break;
1800 }
1801 }
1802 if ((error = xfs_alloc_lookup_eq(cnt_cur, bestfbno, bestflen,
1803 &i)))
1804 goto error0;
1805 if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1806 error = -EFSCORRUPTED;
1807 goto error0;
1808 }
1809 rlen = bestrlen;
1810 rbno = bestrbno;
1811 flen = bestflen;
1812 fbno = bestfbno;
1813 }
1814 args->wasfromfl = 0;
1815 /*
1816 * Fix up the length.
1817 */
1818 args->len = rlen;
1819 if (rlen < args->minlen) {
1820 if (busy) {
1821 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1822 trace_xfs_alloc_size_busy(args);
1823 xfs_extent_busy_flush(args->mp, args->pag, busy_gen);
1824 goto restart;
1825 }
1826 goto out_nominleft;
1827 }
1828 xfs_alloc_fix_len(args);
1829
1830 rlen = args->len;
1831 if (XFS_IS_CORRUPT(args->mp, rlen > flen)) {
1832 error = -EFSCORRUPTED;
1833 goto error0;
1834 }
1835 /*
1836 * Allocate and initialize a cursor for the by-block tree.
1837 */
1838 bno_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp,
1839 args->pag, XFS_BTNUM_BNO);
1840 if ((error = xfs_alloc_fixup_trees(cnt_cur, bno_cur, fbno, flen,
1841 rbno, rlen, XFSA_FIXUP_CNT_OK)))
1842 goto error0;
1843 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1844 xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
1845 cnt_cur = bno_cur = NULL;
1846 args->len = rlen;
1847 args->agbno = rbno;
1848 if (XFS_IS_CORRUPT(args->mp,
1849 args->agbno + args->len >
1850 be32_to_cpu(agf->agf_length))) {
1851 error = -EFSCORRUPTED;
1852 goto error0;
1853 }
1854 trace_xfs_alloc_size_done(args);
1855 return 0;
1856
1857error0:
1858 trace_xfs_alloc_size_error(args);
1859 if (cnt_cur)
1860 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR);
1861 if (bno_cur)
1862 xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR);
1863 return error;
1864
1865out_nominleft:
1866 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1867 trace_xfs_alloc_size_nominleft(args);
1868 args->agbno = NULLAGBLOCK;
1869 return 0;
1870}
1871
1872/*
1873 * Free the extent starting at agno/bno for length.
1874 */
1875STATIC int
1876xfs_free_ag_extent(
1877 struct xfs_trans *tp,
1878 struct xfs_buf *agbp,
1879 xfs_agnumber_t agno,
1880 xfs_agblock_t bno,
1881 xfs_extlen_t len,
1882 const struct xfs_owner_info *oinfo,
1883 enum xfs_ag_resv_type type)
1884{
1885 struct xfs_mount *mp;
1886 struct xfs_btree_cur *bno_cur;
1887 struct xfs_btree_cur *cnt_cur;
1888 xfs_agblock_t gtbno; /* start of right neighbor */
1889 xfs_extlen_t gtlen; /* length of right neighbor */
1890 xfs_agblock_t ltbno; /* start of left neighbor */
1891 xfs_extlen_t ltlen; /* length of left neighbor */
1892 xfs_agblock_t nbno; /* new starting block of freesp */
1893 xfs_extlen_t nlen; /* new length of freespace */
1894 int haveleft; /* have a left neighbor */
1895 int haveright; /* have a right neighbor */
1896 int i;
1897 int error;
1898 struct xfs_perag *pag = agbp->b_pag;
1899
1900 bno_cur = cnt_cur = NULL;
1901 mp = tp->t_mountp;
1902
1903 if (!xfs_rmap_should_skip_owner_update(oinfo)) {
1904 error = xfs_rmap_free(tp, agbp, pag, bno, len, oinfo);
1905 if (error)
1906 goto error0;
1907 }
1908
1909 /*
1910 * Allocate and initialize a cursor for the by-block btree.
1911 */
1912 bno_cur = xfs_allocbt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_BNO);
1913 /*
1914 * Look for a neighboring block on the left (lower block numbers)
1915 * that is contiguous with this space.
1916 */
1917 if ((error = xfs_alloc_lookup_le(bno_cur, bno, len, &haveleft)))
1918 goto error0;
1919 if (haveleft) {
1920 /*
1921 * There is a block to our left.
1922 */
1923 if ((error = xfs_alloc_get_rec(bno_cur, <bno, <len, &i)))
1924 goto error0;
1925 if (XFS_IS_CORRUPT(mp, i != 1)) {
1926 error = -EFSCORRUPTED;
1927 goto error0;
1928 }
1929 /*
1930 * It's not contiguous, though.
1931 */
1932 if (ltbno + ltlen < bno)
1933 haveleft = 0;
1934 else {
1935 /*
1936 * If this failure happens the request to free this
1937 * space was invalid, it's (partly) already free.
1938 * Very bad.
1939 */
1940 if (XFS_IS_CORRUPT(mp, ltbno + ltlen > bno)) {
1941 error = -EFSCORRUPTED;
1942 goto error0;
1943 }
1944 }
1945 }
1946 /*
1947 * Look for a neighboring block on the right (higher block numbers)
1948 * that is contiguous with this space.
1949 */
1950 if ((error = xfs_btree_increment(bno_cur, 0, &haveright)))
1951 goto error0;
1952 if (haveright) {
1953 /*
1954 * There is a block to our right.
1955 */
1956 if ((error = xfs_alloc_get_rec(bno_cur, >bno, >len, &i)))
1957 goto error0;
1958 if (XFS_IS_CORRUPT(mp, i != 1)) {
1959 error = -EFSCORRUPTED;
1960 goto error0;
1961 }
1962 /*
1963 * It's not contiguous, though.
1964 */
1965 if (bno + len < gtbno)
1966 haveright = 0;
1967 else {
1968 /*
1969 * If this failure happens the request to free this
1970 * space was invalid, it's (partly) already free.
1971 * Very bad.
1972 */
1973 if (XFS_IS_CORRUPT(mp, bno + len > gtbno)) {
1974 error = -EFSCORRUPTED;
1975 goto error0;
1976 }
1977 }
1978 }
1979 /*
1980 * Now allocate and initialize a cursor for the by-size tree.
1981 */
1982 cnt_cur = xfs_allocbt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_CNT);
1983 /*
1984 * Have both left and right contiguous neighbors.
1985 * Merge all three into a single free block.
1986 */
1987 if (haveleft && haveright) {
1988 /*
1989 * Delete the old by-size entry on the left.
1990 */
1991 if ((error = xfs_alloc_lookup_eq(cnt_cur, ltbno, ltlen, &i)))
1992 goto error0;
1993 if (XFS_IS_CORRUPT(mp, i != 1)) {
1994 error = -EFSCORRUPTED;
1995 goto error0;
1996 }
1997 if ((error = xfs_btree_delete(cnt_cur, &i)))
1998 goto error0;
1999 if (XFS_IS_CORRUPT(mp, i != 1)) {
2000 error = -EFSCORRUPTED;
2001 goto error0;
2002 }
2003 /*
2004 * Delete the old by-size entry on the right.
2005 */
2006 if ((error = xfs_alloc_lookup_eq(cnt_cur, gtbno, gtlen, &i)))
2007 goto error0;
2008 if (XFS_IS_CORRUPT(mp, i != 1)) {
2009 error = -EFSCORRUPTED;
2010 goto error0;
2011 }
2012 if ((error = xfs_btree_delete(cnt_cur, &i)))
2013 goto error0;
2014 if (XFS_IS_CORRUPT(mp, i != 1)) {
2015 error = -EFSCORRUPTED;
2016 goto error0;
2017 }
2018 /*
2019 * Delete the old by-block entry for the right block.
2020 */
2021 if ((error = xfs_btree_delete(bno_cur, &i)))
2022 goto error0;
2023 if (XFS_IS_CORRUPT(mp, i != 1)) {
2024 error = -EFSCORRUPTED;
2025 goto error0;
2026 }
2027 /*
2028 * Move the by-block cursor back to the left neighbor.
2029 */
2030 if ((error = xfs_btree_decrement(bno_cur, 0, &i)))
2031 goto error0;
2032 if (XFS_IS_CORRUPT(mp, i != 1)) {
2033 error = -EFSCORRUPTED;
2034 goto error0;
2035 }
2036#ifdef DEBUG
2037 /*
2038 * Check that this is the right record: delete didn't
2039 * mangle the cursor.
2040 */
2041 {
2042 xfs_agblock_t xxbno;
2043 xfs_extlen_t xxlen;
2044
2045 if ((error = xfs_alloc_get_rec(bno_cur, &xxbno, &xxlen,
2046 &i)))
2047 goto error0;
2048 if (XFS_IS_CORRUPT(mp,
2049 i != 1 ||
2050 xxbno != ltbno ||
2051 xxlen != ltlen)) {
2052 error = -EFSCORRUPTED;
2053 goto error0;
2054 }
2055 }
2056#endif
2057 /*
2058 * Update remaining by-block entry to the new, joined block.
2059 */
2060 nbno = ltbno;
2061 nlen = len + ltlen + gtlen;
2062 if ((error = xfs_alloc_update(bno_cur, nbno, nlen)))
2063 goto error0;
2064 }
2065 /*
2066 * Have only a left contiguous neighbor.
2067 * Merge it together with the new freespace.
2068 */
2069 else if (haveleft) {
2070 /*
2071 * Delete the old by-size entry on the left.
2072 */
2073 if ((error = xfs_alloc_lookup_eq(cnt_cur, ltbno, ltlen, &i)))
2074 goto error0;
2075 if (XFS_IS_CORRUPT(mp, i != 1)) {
2076 error = -EFSCORRUPTED;
2077 goto error0;
2078 }
2079 if ((error = xfs_btree_delete(cnt_cur, &i)))
2080 goto error0;
2081 if (XFS_IS_CORRUPT(mp, i != 1)) {
2082 error = -EFSCORRUPTED;
2083 goto error0;
2084 }
2085 /*
2086 * Back up the by-block cursor to the left neighbor, and
2087 * update its length.
2088 */
2089 if ((error = xfs_btree_decrement(bno_cur, 0, &i)))
2090 goto error0;
2091 if (XFS_IS_CORRUPT(mp, i != 1)) {
2092 error = -EFSCORRUPTED;
2093 goto error0;
2094 }
2095 nbno = ltbno;
2096 nlen = len + ltlen;
2097 if ((error = xfs_alloc_update(bno_cur, nbno, nlen)))
2098 goto error0;
2099 }
2100 /*
2101 * Have only a right contiguous neighbor.
2102 * Merge it together with the new freespace.
2103 */
2104 else if (haveright) {
2105 /*
2106 * Delete the old by-size entry on the right.
2107 */
2108 if ((error = xfs_alloc_lookup_eq(cnt_cur, gtbno, gtlen, &i)))
2109 goto error0;
2110 if (XFS_IS_CORRUPT(mp, i != 1)) {
2111 error = -EFSCORRUPTED;
2112 goto error0;
2113 }
2114 if ((error = xfs_btree_delete(cnt_cur, &i)))
2115 goto error0;
2116 if (XFS_IS_CORRUPT(mp, i != 1)) {
2117 error = -EFSCORRUPTED;
2118 goto error0;
2119 }
2120 /*
2121 * Update the starting block and length of the right
2122 * neighbor in the by-block tree.
2123 */
2124 nbno = bno;
2125 nlen = len + gtlen;
2126 if ((error = xfs_alloc_update(bno_cur, nbno, nlen)))
2127 goto error0;
2128 }
2129 /*
2130 * No contiguous neighbors.
2131 * Insert the new freespace into the by-block tree.
2132 */
2133 else {
2134 nbno = bno;
2135 nlen = len;
2136 if ((error = xfs_btree_insert(bno_cur, &i)))
2137 goto error0;
2138 if (XFS_IS_CORRUPT(mp, i != 1)) {
2139 error = -EFSCORRUPTED;
2140 goto error0;
2141 }
2142 }
2143 xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
2144 bno_cur = NULL;
2145 /*
2146 * In all cases we need to insert the new freespace in the by-size tree.
2147 */
2148 if ((error = xfs_alloc_lookup_eq(cnt_cur, nbno, nlen, &i)))
2149 goto error0;
2150 if (XFS_IS_CORRUPT(mp, i != 0)) {
2151 error = -EFSCORRUPTED;
2152 goto error0;
2153 }
2154 if ((error = xfs_btree_insert(cnt_cur, &i)))
2155 goto error0;
2156 if (XFS_IS_CORRUPT(mp, i != 1)) {
2157 error = -EFSCORRUPTED;
2158 goto error0;
2159 }
2160 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
2161 cnt_cur = NULL;
2162
2163 /*
2164 * Update the freespace totals in the ag and superblock.
2165 */
2166 error = xfs_alloc_update_counters(tp, agbp, len);
2167 xfs_ag_resv_free_extent(agbp->b_pag, type, tp, len);
2168 if (error)
2169 goto error0;
2170
2171 XFS_STATS_INC(mp, xs_freex);
2172 XFS_STATS_ADD(mp, xs_freeb, len);
2173
2174 trace_xfs_free_extent(mp, agno, bno, len, type, haveleft, haveright);
2175
2176 return 0;
2177
2178 error0:
2179 trace_xfs_free_extent(mp, agno, bno, len, type, -1, -1);
2180 if (bno_cur)
2181 xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR);
2182 if (cnt_cur)
2183 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR);
2184 return error;
2185}
2186
2187/*
2188 * Visible (exported) allocation/free functions.
2189 * Some of these are used just by xfs_alloc_btree.c and this file.
2190 */
2191
2192/*
2193 * Compute and fill in value of m_ag_maxlevels.
2194 */
2195void
2196xfs_alloc_compute_maxlevels(
2197 xfs_mount_t *mp) /* file system mount structure */
2198{
2199 mp->m_ag_maxlevels = xfs_btree_compute_maxlevels(mp->m_alloc_mnr,
2200 (mp->m_sb.sb_agblocks + 1) / 2);
2201}
2202
2203/*
2204 * Find the length of the longest extent in an AG. The 'need' parameter
2205 * specifies how much space we're going to need for the AGFL and the
2206 * 'reserved' parameter tells us how many blocks in this AG are reserved for
2207 * other callers.
2208 */
2209xfs_extlen_t
2210xfs_alloc_longest_free_extent(
2211 struct xfs_perag *pag,
2212 xfs_extlen_t need,
2213 xfs_extlen_t reserved)
2214{
2215 xfs_extlen_t delta = 0;
2216
2217 /*
2218 * If the AGFL needs a recharge, we'll have to subtract that from the
2219 * longest extent.
2220 */
2221 if (need > pag->pagf_flcount)
2222 delta = need - pag->pagf_flcount;
2223
2224 /*
2225 * If we cannot maintain others' reservations with space from the
2226 * not-longest freesp extents, we'll have to subtract /that/ from
2227 * the longest extent too.
2228 */
2229 if (pag->pagf_freeblks - pag->pagf_longest < reserved)
2230 delta += reserved - (pag->pagf_freeblks - pag->pagf_longest);
2231
2232 /*
2233 * If the longest extent is long enough to satisfy all the
2234 * reservations and AGFL rules in place, we can return this extent.
2235 */
2236 if (pag->pagf_longest > delta)
2237 return min_t(xfs_extlen_t, pag->pag_mount->m_ag_max_usable,
2238 pag->pagf_longest - delta);
2239
2240 /* Otherwise, let the caller try for 1 block if there's space. */
2241 return pag->pagf_flcount > 0 || pag->pagf_longest > 0;
2242}
2243
2244/*
2245 * Compute the minimum length of the AGFL in the given AG. If @pag is NULL,
2246 * return the largest possible minimum length.
2247 */
2248unsigned int
2249xfs_alloc_min_freelist(
2250 struct xfs_mount *mp,
2251 struct xfs_perag *pag)
2252{
2253 /* AG btrees have at least 1 level. */
2254 static const uint8_t fake_levels[XFS_BTNUM_AGF] = {1, 1, 1};
2255 const uint8_t *levels = pag ? pag->pagf_levels : fake_levels;
2256 unsigned int min_free;
2257
2258 ASSERT(mp->m_ag_maxlevels > 0);
2259
2260 /* space needed by-bno freespace btree */
2261 min_free = min_t(unsigned int, levels[XFS_BTNUM_BNOi] + 1,
2262 mp->m_ag_maxlevels);
2263 /* space needed by-size freespace btree */
2264 min_free += min_t(unsigned int, levels[XFS_BTNUM_CNTi] + 1,
2265 mp->m_ag_maxlevels);
2266 /* space needed reverse mapping used space btree */
2267 if (xfs_sb_version_hasrmapbt(&mp->m_sb))
2268 min_free += min_t(unsigned int, levels[XFS_BTNUM_RMAPi] + 1,
2269 mp->m_rmap_maxlevels);
2270
2271 return min_free;
2272}
2273
2274/*
2275 * Check if the operation we are fixing up the freelist for should go ahead or
2276 * not. If we are freeing blocks, we always allow it, otherwise the allocation
2277 * is dependent on whether the size and shape of free space available will
2278 * permit the requested allocation to take place.
2279 */
2280static bool
2281xfs_alloc_space_available(
2282 struct xfs_alloc_arg *args,
2283 xfs_extlen_t min_free,
2284 int flags)
2285{
2286 struct xfs_perag *pag = args->pag;
2287 xfs_extlen_t alloc_len, longest;
2288 xfs_extlen_t reservation; /* blocks that are still reserved */
2289 int available;
2290 xfs_extlen_t agflcount;
2291
2292 if (flags & XFS_ALLOC_FLAG_FREEING)
2293 return true;
2294
2295 reservation = xfs_ag_resv_needed(pag, args->resv);
2296
2297 /* do we have enough contiguous free space for the allocation? */
2298 alloc_len = args->minlen + (args->alignment - 1) + args->minalignslop;
2299 longest = xfs_alloc_longest_free_extent(pag, min_free, reservation);
2300 if (longest < alloc_len)
2301 return false;
2302
2303 /*
2304 * Do we have enough free space remaining for the allocation? Don't
2305 * account extra agfl blocks because we are about to defer free them,
2306 * making them unavailable until the current transaction commits.
2307 */
2308 agflcount = min_t(xfs_extlen_t, pag->pagf_flcount, min_free);
2309 available = (int)(pag->pagf_freeblks + agflcount -
2310 reservation - min_free - args->minleft);
2311 if (available < (int)max(args->total, alloc_len))
2312 return false;
2313
2314 /*
2315 * Clamp maxlen to the amount of free space available for the actual
2316 * extent allocation.
2317 */
2318 if (available < (int)args->maxlen && !(flags & XFS_ALLOC_FLAG_CHECK)) {
2319 args->maxlen = available;
2320 ASSERT(args->maxlen > 0);
2321 ASSERT(args->maxlen >= args->minlen);
2322 }
2323
2324 return true;
2325}
2326
2327int
2328xfs_free_agfl_block(
2329 struct xfs_trans *tp,
2330 xfs_agnumber_t agno,
2331 xfs_agblock_t agbno,
2332 struct xfs_buf *agbp,
2333 struct xfs_owner_info *oinfo)
2334{
2335 int error;
2336 struct xfs_buf *bp;
2337
2338 error = xfs_free_ag_extent(tp, agbp, agno, agbno, 1, oinfo,
2339 XFS_AG_RESV_AGFL);
2340 if (error)
2341 return error;
2342
2343 error = xfs_trans_get_buf(tp, tp->t_mountp->m_ddev_targp,
2344 XFS_AGB_TO_DADDR(tp->t_mountp, agno, agbno),
2345 tp->t_mountp->m_bsize, 0, &bp);
2346 if (error)
2347 return error;
2348 xfs_trans_binval(tp, bp);
2349
2350 return 0;
2351}
2352
2353/*
2354 * Check the agfl fields of the agf for inconsistency or corruption. The purpose
2355 * is to detect an agfl header padding mismatch between current and early v5
2356 * kernels. This problem manifests as a 1-slot size difference between the
2357 * on-disk flcount and the active [first, last] range of a wrapped agfl. This
2358 * may also catch variants of agfl count corruption unrelated to padding. Either
2359 * way, we'll reset the agfl and warn the user.
2360 *
2361 * Return true if a reset is required before the agfl can be used, false
2362 * otherwise.
2363 */
2364static bool
2365xfs_agfl_needs_reset(
2366 struct xfs_mount *mp,
2367 struct xfs_agf *agf)
2368{
2369 uint32_t f = be32_to_cpu(agf->agf_flfirst);
2370 uint32_t l = be32_to_cpu(agf->agf_fllast);
2371 uint32_t c = be32_to_cpu(agf->agf_flcount);
2372 int agfl_size = xfs_agfl_size(mp);
2373 int active;
2374
2375 /* no agfl header on v4 supers */
2376 if (!xfs_sb_version_hascrc(&mp->m_sb))
2377 return false;
2378
2379 /*
2380 * The agf read verifier catches severe corruption of these fields.
2381 * Repeat some sanity checks to cover a packed -> unpacked mismatch if
2382 * the verifier allows it.
2383 */
2384 if (f >= agfl_size || l >= agfl_size)
2385 return true;
2386 if (c > agfl_size)
2387 return true;
2388
2389 /*
2390 * Check consistency between the on-disk count and the active range. An
2391 * agfl padding mismatch manifests as an inconsistent flcount.
2392 */
2393 if (c && l >= f)
2394 active = l - f + 1;
2395 else if (c)
2396 active = agfl_size - f + l + 1;
2397 else
2398 active = 0;
2399
2400 return active != c;
2401}
2402
2403/*
2404 * Reset the agfl to an empty state. Ignore/drop any existing blocks since the
2405 * agfl content cannot be trusted. Warn the user that a repair is required to
2406 * recover leaked blocks.
2407 *
2408 * The purpose of this mechanism is to handle filesystems affected by the agfl
2409 * header padding mismatch problem. A reset keeps the filesystem online with a
2410 * relatively minor free space accounting inconsistency rather than suffer the
2411 * inevitable crash from use of an invalid agfl block.
2412 */
2413static void
2414xfs_agfl_reset(
2415 struct xfs_trans *tp,
2416 struct xfs_buf *agbp,
2417 struct xfs_perag *pag)
2418{
2419 struct xfs_mount *mp = tp->t_mountp;
2420 struct xfs_agf *agf = agbp->b_addr;
2421
2422 ASSERT(pag->pagf_agflreset);
2423 trace_xfs_agfl_reset(mp, agf, 0, _RET_IP_);
2424
2425 xfs_warn(mp,
2426 "WARNING: Reset corrupted AGFL on AG %u. %d blocks leaked. "
2427 "Please unmount and run xfs_repair.",
2428 pag->pag_agno, pag->pagf_flcount);
2429
2430 agf->agf_flfirst = 0;
2431 agf->agf_fllast = cpu_to_be32(xfs_agfl_size(mp) - 1);
2432 agf->agf_flcount = 0;
2433 xfs_alloc_log_agf(tp, agbp, XFS_AGF_FLFIRST | XFS_AGF_FLLAST |
2434 XFS_AGF_FLCOUNT);
2435
2436 pag->pagf_flcount = 0;
2437 pag->pagf_agflreset = false;
2438}
2439
2440/*
2441 * Defer an AGFL block free. This is effectively equivalent to
2442 * xfs_bmap_add_free() with some special handling particular to AGFL blocks.
2443 *
2444 * Deferring AGFL frees helps prevent log reservation overruns due to too many
2445 * allocation operations in a transaction. AGFL frees are prone to this problem
2446 * because for one they are always freed one at a time. Further, an immediate
2447 * AGFL block free can cause a btree join and require another block free before
2448 * the real allocation can proceed. Deferring the free disconnects freeing up
2449 * the AGFL slot from freeing the block.
2450 */
2451STATIC void
2452xfs_defer_agfl_block(
2453 struct xfs_trans *tp,
2454 xfs_agnumber_t agno,
2455 xfs_fsblock_t agbno,
2456 struct xfs_owner_info *oinfo)
2457{
2458 struct xfs_mount *mp = tp->t_mountp;
2459 struct xfs_extent_free_item *new; /* new element */
2460
2461 ASSERT(xfs_bmap_free_item_zone != NULL);
2462 ASSERT(oinfo != NULL);
2463
2464 new = kmem_cache_alloc(xfs_bmap_free_item_zone,
2465 GFP_KERNEL | __GFP_NOFAIL);
2466 new->xefi_startblock = XFS_AGB_TO_FSB(mp, agno, agbno);
2467 new->xefi_blockcount = 1;
2468 new->xefi_oinfo = *oinfo;
2469 new->xefi_skip_discard = false;
2470
2471 trace_xfs_agfl_free_defer(mp, agno, 0, agbno, 1);
2472
2473 xfs_defer_add(tp, XFS_DEFER_OPS_TYPE_AGFL_FREE, &new->xefi_list);
2474}
2475
2476#ifdef DEBUG
2477/*
2478 * Check if an AGF has a free extent record whose length is equal to
2479 * args->minlen.
2480 */
2481STATIC int
2482xfs_exact_minlen_extent_available(
2483 struct xfs_alloc_arg *args,
2484 struct xfs_buf *agbp,
2485 int *stat)
2486{
2487 struct xfs_btree_cur *cnt_cur;
2488 xfs_agblock_t fbno;
2489 xfs_extlen_t flen;
2490 int error = 0;
2491
2492 cnt_cur = xfs_allocbt_init_cursor(args->mp, args->tp, agbp,
2493 args->pag, XFS_BTNUM_CNT);
2494 error = xfs_alloc_lookup_ge(cnt_cur, 0, args->minlen, stat);
2495 if (error)
2496 goto out;
2497
2498 if (*stat == 0) {
2499 error = -EFSCORRUPTED;
2500 goto out;
2501 }
2502
2503 error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen, stat);
2504 if (error)
2505 goto out;
2506
2507 if (*stat == 1 && flen != args->minlen)
2508 *stat = 0;
2509
2510out:
2511 xfs_btree_del_cursor(cnt_cur, error);
2512
2513 return error;
2514}
2515#endif
2516
2517/*
2518 * Decide whether to use this allocation group for this allocation.
2519 * If so, fix up the btree freelist's size.
2520 */
2521int /* error */
2522xfs_alloc_fix_freelist(
2523 struct xfs_alloc_arg *args, /* allocation argument structure */
2524 int flags) /* XFS_ALLOC_FLAG_... */
2525{
2526 struct xfs_mount *mp = args->mp;
2527 struct xfs_perag *pag = args->pag;
2528 struct xfs_trans *tp = args->tp;
2529 struct xfs_buf *agbp = NULL;
2530 struct xfs_buf *agflbp = NULL;
2531 struct xfs_alloc_arg targs; /* local allocation arguments */
2532 xfs_agblock_t bno; /* freelist block */
2533 xfs_extlen_t need; /* total blocks needed in freelist */
2534 int error = 0;
2535
2536 /* deferred ops (AGFL block frees) require permanent transactions */
2537 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
2538
2539 if (!pag->pagf_init) {
2540 error = xfs_alloc_read_agf(mp, tp, args->agno, flags, &agbp);
2541 if (error) {
2542 /* Couldn't lock the AGF so skip this AG. */
2543 if (error == -EAGAIN)
2544 error = 0;
2545 goto out_no_agbp;
2546 }
2547 }
2548
2549 /*
2550 * If this is a metadata preferred pag and we are user data then try
2551 * somewhere else if we are not being asked to try harder at this
2552 * point
2553 */
2554 if (pag->pagf_metadata && (args->datatype & XFS_ALLOC_USERDATA) &&
2555 (flags & XFS_ALLOC_FLAG_TRYLOCK)) {
2556 ASSERT(!(flags & XFS_ALLOC_FLAG_FREEING));
2557 goto out_agbp_relse;
2558 }
2559
2560 need = xfs_alloc_min_freelist(mp, pag);
2561 if (!xfs_alloc_space_available(args, need, flags |
2562 XFS_ALLOC_FLAG_CHECK))
2563 goto out_agbp_relse;
2564
2565 /*
2566 * Get the a.g. freespace buffer.
2567 * Can fail if we're not blocking on locks, and it's held.
2568 */
2569 if (!agbp) {
2570 error = xfs_alloc_read_agf(mp, tp, args->agno, flags, &agbp);
2571 if (error) {
2572 /* Couldn't lock the AGF so skip this AG. */
2573 if (error == -EAGAIN)
2574 error = 0;
2575 goto out_no_agbp;
2576 }
2577 }
2578
2579 /* reset a padding mismatched agfl before final free space check */
2580 if (pag->pagf_agflreset)
2581 xfs_agfl_reset(tp, agbp, pag);
2582
2583 /* If there isn't enough total space or single-extent, reject it. */
2584 need = xfs_alloc_min_freelist(mp, pag);
2585 if (!xfs_alloc_space_available(args, need, flags))
2586 goto out_agbp_relse;
2587
2588#ifdef DEBUG
2589 if (args->alloc_minlen_only) {
2590 int stat;
2591
2592 error = xfs_exact_minlen_extent_available(args, agbp, &stat);
2593 if (error || !stat)
2594 goto out_agbp_relse;
2595 }
2596#endif
2597 /*
2598 * Make the freelist shorter if it's too long.
2599 *
2600 * Note that from this point onwards, we will always release the agf and
2601 * agfl buffers on error. This handles the case where we error out and
2602 * the buffers are clean or may not have been joined to the transaction
2603 * and hence need to be released manually. If they have been joined to
2604 * the transaction, then xfs_trans_brelse() will handle them
2605 * appropriately based on the recursion count and dirty state of the
2606 * buffer.
2607 *
2608 * XXX (dgc): When we have lots of free space, does this buy us
2609 * anything other than extra overhead when we need to put more blocks
2610 * back on the free list? Maybe we should only do this when space is
2611 * getting low or the AGFL is more than half full?
2612 *
2613 * The NOSHRINK flag prevents the AGFL from being shrunk if it's too
2614 * big; the NORMAP flag prevents AGFL expand/shrink operations from
2615 * updating the rmapbt. Both flags are used in xfs_repair while we're
2616 * rebuilding the rmapbt, and neither are used by the kernel. They're
2617 * both required to ensure that rmaps are correctly recorded for the
2618 * regenerated AGFL, bnobt, and cntbt. See repair/phase5.c and
2619 * repair/rmap.c in xfsprogs for details.
2620 */
2621 memset(&targs, 0, sizeof(targs));
2622 /* struct copy below */
2623 if (flags & XFS_ALLOC_FLAG_NORMAP)
2624 targs.oinfo = XFS_RMAP_OINFO_SKIP_UPDATE;
2625 else
2626 targs.oinfo = XFS_RMAP_OINFO_AG;
2627 while (!(flags & XFS_ALLOC_FLAG_NOSHRINK) && pag->pagf_flcount > need) {
2628 error = xfs_alloc_get_freelist(tp, agbp, &bno, 0);
2629 if (error)
2630 goto out_agbp_relse;
2631
2632 /* defer agfl frees */
2633 xfs_defer_agfl_block(tp, args->agno, bno, &targs.oinfo);
2634 }
2635
2636 targs.tp = tp;
2637 targs.mp = mp;
2638 targs.agbp = agbp;
2639 targs.agno = args->agno;
2640 targs.alignment = targs.minlen = targs.prod = 1;
2641 targs.type = XFS_ALLOCTYPE_THIS_AG;
2642 targs.pag = pag;
2643 error = xfs_alloc_read_agfl(mp, tp, targs.agno, &agflbp);
2644 if (error)
2645 goto out_agbp_relse;
2646
2647 /* Make the freelist longer if it's too short. */
2648 while (pag->pagf_flcount < need) {
2649 targs.agbno = 0;
2650 targs.maxlen = need - pag->pagf_flcount;
2651 targs.resv = XFS_AG_RESV_AGFL;
2652
2653 /* Allocate as many blocks as possible at once. */
2654 error = xfs_alloc_ag_vextent(&targs);
2655 if (error)
2656 goto out_agflbp_relse;
2657
2658 /*
2659 * Stop if we run out. Won't happen if callers are obeying
2660 * the restrictions correctly. Can happen for free calls
2661 * on a completely full ag.
2662 */
2663 if (targs.agbno == NULLAGBLOCK) {
2664 if (flags & XFS_ALLOC_FLAG_FREEING)
2665 break;
2666 goto out_agflbp_relse;
2667 }
2668 /*
2669 * Put each allocated block on the list.
2670 */
2671 for (bno = targs.agbno; bno < targs.agbno + targs.len; bno++) {
2672 error = xfs_alloc_put_freelist(tp, agbp,
2673 agflbp, bno, 0);
2674 if (error)
2675 goto out_agflbp_relse;
2676 }
2677 }
2678 xfs_trans_brelse(tp, agflbp);
2679 args->agbp = agbp;
2680 return 0;
2681
2682out_agflbp_relse:
2683 xfs_trans_brelse(tp, agflbp);
2684out_agbp_relse:
2685 if (agbp)
2686 xfs_trans_brelse(tp, agbp);
2687out_no_agbp:
2688 args->agbp = NULL;
2689 return error;
2690}
2691
2692/*
2693 * Get a block from the freelist.
2694 * Returns with the buffer for the block gotten.
2695 */
2696int
2697xfs_alloc_get_freelist(
2698 struct xfs_trans *tp,
2699 struct xfs_buf *agbp,
2700 xfs_agblock_t *bnop,
2701 int btreeblk)
2702{
2703 struct xfs_agf *agf = agbp->b_addr;
2704 struct xfs_buf *agflbp;
2705 xfs_agblock_t bno;
2706 __be32 *agfl_bno;
2707 int error;
2708 int logflags;
2709 struct xfs_mount *mp = tp->t_mountp;
2710 struct xfs_perag *pag;
2711
2712 /*
2713 * Freelist is empty, give up.
2714 */
2715 if (!agf->agf_flcount) {
2716 *bnop = NULLAGBLOCK;
2717 return 0;
2718 }
2719 /*
2720 * Read the array of free blocks.
2721 */
2722 error = xfs_alloc_read_agfl(mp, tp, be32_to_cpu(agf->agf_seqno),
2723 &agflbp);
2724 if (error)
2725 return error;
2726
2727
2728 /*
2729 * Get the block number and update the data structures.
2730 */
2731 agfl_bno = xfs_buf_to_agfl_bno(agflbp);
2732 bno = be32_to_cpu(agfl_bno[be32_to_cpu(agf->agf_flfirst)]);
2733 be32_add_cpu(&agf->agf_flfirst, 1);
2734 xfs_trans_brelse(tp, agflbp);
2735 if (be32_to_cpu(agf->agf_flfirst) == xfs_agfl_size(mp))
2736 agf->agf_flfirst = 0;
2737
2738 pag = agbp->b_pag;
2739 ASSERT(!pag->pagf_agflreset);
2740 be32_add_cpu(&agf->agf_flcount, -1);
2741 pag->pagf_flcount--;
2742
2743 logflags = XFS_AGF_FLFIRST | XFS_AGF_FLCOUNT;
2744 if (btreeblk) {
2745 be32_add_cpu(&agf->agf_btreeblks, 1);
2746 pag->pagf_btreeblks++;
2747 logflags |= XFS_AGF_BTREEBLKS;
2748 }
2749
2750 xfs_alloc_log_agf(tp, agbp, logflags);
2751 *bnop = bno;
2752
2753 return 0;
2754}
2755
2756/*
2757 * Log the given fields from the agf structure.
2758 */
2759void
2760xfs_alloc_log_agf(
2761 xfs_trans_t *tp, /* transaction pointer */
2762 struct xfs_buf *bp, /* buffer for a.g. freelist header */
2763 int fields) /* mask of fields to be logged (XFS_AGF_...) */
2764{
2765 int first; /* first byte offset */
2766 int last; /* last byte offset */
2767 static const short offsets[] = {
2768 offsetof(xfs_agf_t, agf_magicnum),
2769 offsetof(xfs_agf_t, agf_versionnum),
2770 offsetof(xfs_agf_t, agf_seqno),
2771 offsetof(xfs_agf_t, agf_length),
2772 offsetof(xfs_agf_t, agf_roots[0]),
2773 offsetof(xfs_agf_t, agf_levels[0]),
2774 offsetof(xfs_agf_t, agf_flfirst),
2775 offsetof(xfs_agf_t, agf_fllast),
2776 offsetof(xfs_agf_t, agf_flcount),
2777 offsetof(xfs_agf_t, agf_freeblks),
2778 offsetof(xfs_agf_t, agf_longest),
2779 offsetof(xfs_agf_t, agf_btreeblks),
2780 offsetof(xfs_agf_t, agf_uuid),
2781 offsetof(xfs_agf_t, agf_rmap_blocks),
2782 offsetof(xfs_agf_t, agf_refcount_blocks),
2783 offsetof(xfs_agf_t, agf_refcount_root),
2784 offsetof(xfs_agf_t, agf_refcount_level),
2785 /* needed so that we don't log the whole rest of the structure: */
2786 offsetof(xfs_agf_t, agf_spare64),
2787 sizeof(xfs_agf_t)
2788 };
2789
2790 trace_xfs_agf(tp->t_mountp, bp->b_addr, fields, _RET_IP_);
2791
2792 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_AGF_BUF);
2793
2794 xfs_btree_offsets(fields, offsets, XFS_AGF_NUM_BITS, &first, &last);
2795 xfs_trans_log_buf(tp, bp, (uint)first, (uint)last);
2796}
2797
2798/*
2799 * Interface for inode allocation to force the pag data to be initialized.
2800 */
2801int /* error */
2802xfs_alloc_pagf_init(
2803 xfs_mount_t *mp, /* file system mount structure */
2804 xfs_trans_t *tp, /* transaction pointer */
2805 xfs_agnumber_t agno, /* allocation group number */
2806 int flags) /* XFS_ALLOC_FLAGS_... */
2807{
2808 struct xfs_buf *bp;
2809 int error;
2810
2811 error = xfs_alloc_read_agf(mp, tp, agno, flags, &bp);
2812 if (!error)
2813 xfs_trans_brelse(tp, bp);
2814 return error;
2815}
2816
2817/*
2818 * Put the block on the freelist for the allocation group.
2819 */
2820int
2821xfs_alloc_put_freelist(
2822 struct xfs_trans *tp,
2823 struct xfs_buf *agbp,
2824 struct xfs_buf *agflbp,
2825 xfs_agblock_t bno,
2826 int btreeblk)
2827{
2828 struct xfs_mount *mp = tp->t_mountp;
2829 struct xfs_agf *agf = agbp->b_addr;
2830 struct xfs_perag *pag;
2831 __be32 *blockp;
2832 int error;
2833 int logflags;
2834 __be32 *agfl_bno;
2835 int startoff;
2836
2837 if (!agflbp && (error = xfs_alloc_read_agfl(mp, tp,
2838 be32_to_cpu(agf->agf_seqno), &agflbp)))
2839 return error;
2840 be32_add_cpu(&agf->agf_fllast, 1);
2841 if (be32_to_cpu(agf->agf_fllast) == xfs_agfl_size(mp))
2842 agf->agf_fllast = 0;
2843
2844 pag = agbp->b_pag;
2845 ASSERT(!pag->pagf_agflreset);
2846 be32_add_cpu(&agf->agf_flcount, 1);
2847 pag->pagf_flcount++;
2848
2849 logflags = XFS_AGF_FLLAST | XFS_AGF_FLCOUNT;
2850 if (btreeblk) {
2851 be32_add_cpu(&agf->agf_btreeblks, -1);
2852 pag->pagf_btreeblks--;
2853 logflags |= XFS_AGF_BTREEBLKS;
2854 }
2855
2856 xfs_alloc_log_agf(tp, agbp, logflags);
2857
2858 ASSERT(be32_to_cpu(agf->agf_flcount) <= xfs_agfl_size(mp));
2859
2860 agfl_bno = xfs_buf_to_agfl_bno(agflbp);
2861 blockp = &agfl_bno[be32_to_cpu(agf->agf_fllast)];
2862 *blockp = cpu_to_be32(bno);
2863 startoff = (char *)blockp - (char *)agflbp->b_addr;
2864
2865 xfs_alloc_log_agf(tp, agbp, logflags);
2866
2867 xfs_trans_buf_set_type(tp, agflbp, XFS_BLFT_AGFL_BUF);
2868 xfs_trans_log_buf(tp, agflbp, startoff,
2869 startoff + sizeof(xfs_agblock_t) - 1);
2870 return 0;
2871}
2872
2873static xfs_failaddr_t
2874xfs_agf_verify(
2875 struct xfs_buf *bp)
2876{
2877 struct xfs_mount *mp = bp->b_mount;
2878 struct xfs_agf *agf = bp->b_addr;
2879
2880 if (xfs_sb_version_hascrc(&mp->m_sb)) {
2881 if (!uuid_equal(&agf->agf_uuid, &mp->m_sb.sb_meta_uuid))
2882 return __this_address;
2883 if (!xfs_log_check_lsn(mp, be64_to_cpu(agf->agf_lsn)))
2884 return __this_address;
2885 }
2886
2887 if (!xfs_verify_magic(bp, agf->agf_magicnum))
2888 return __this_address;
2889
2890 if (!(XFS_AGF_GOOD_VERSION(be32_to_cpu(agf->agf_versionnum)) &&
2891 be32_to_cpu(agf->agf_freeblks) <= be32_to_cpu(agf->agf_length) &&
2892 be32_to_cpu(agf->agf_flfirst) < xfs_agfl_size(mp) &&
2893 be32_to_cpu(agf->agf_fllast) < xfs_agfl_size(mp) &&
2894 be32_to_cpu(agf->agf_flcount) <= xfs_agfl_size(mp)))
2895 return __this_address;
2896
2897 if (be32_to_cpu(agf->agf_length) > mp->m_sb.sb_dblocks)
2898 return __this_address;
2899
2900 if (be32_to_cpu(agf->agf_freeblks) < be32_to_cpu(agf->agf_longest) ||
2901 be32_to_cpu(agf->agf_freeblks) > be32_to_cpu(agf->agf_length))
2902 return __this_address;
2903
2904 if (be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]) < 1 ||
2905 be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]) < 1 ||
2906 be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]) > mp->m_ag_maxlevels ||
2907 be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]) > mp->m_ag_maxlevels)
2908 return __this_address;
2909
2910 if (xfs_sb_version_hasrmapbt(&mp->m_sb) &&
2911 (be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAP]) < 1 ||
2912 be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAP]) > mp->m_rmap_maxlevels))
2913 return __this_address;
2914
2915 if (xfs_sb_version_hasrmapbt(&mp->m_sb) &&
2916 be32_to_cpu(agf->agf_rmap_blocks) > be32_to_cpu(agf->agf_length))
2917 return __this_address;
2918
2919 /*
2920 * during growfs operations, the perag is not fully initialised,
2921 * so we can't use it for any useful checking. growfs ensures we can't
2922 * use it by using uncached buffers that don't have the perag attached
2923 * so we can detect and avoid this problem.
2924 */
2925 if (bp->b_pag && be32_to_cpu(agf->agf_seqno) != bp->b_pag->pag_agno)
2926 return __this_address;
2927
2928 if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
2929 be32_to_cpu(agf->agf_btreeblks) > be32_to_cpu(agf->agf_length))
2930 return __this_address;
2931
2932 if (xfs_sb_version_hasreflink(&mp->m_sb) &&
2933 be32_to_cpu(agf->agf_refcount_blocks) >
2934 be32_to_cpu(agf->agf_length))
2935 return __this_address;
2936
2937 if (xfs_sb_version_hasreflink(&mp->m_sb) &&
2938 (be32_to_cpu(agf->agf_refcount_level) < 1 ||
2939 be32_to_cpu(agf->agf_refcount_level) > mp->m_refc_maxlevels))
2940 return __this_address;
2941
2942 return NULL;
2943
2944}
2945
2946static void
2947xfs_agf_read_verify(
2948 struct xfs_buf *bp)
2949{
2950 struct xfs_mount *mp = bp->b_mount;
2951 xfs_failaddr_t fa;
2952
2953 if (xfs_sb_version_hascrc(&mp->m_sb) &&
2954 !xfs_buf_verify_cksum(bp, XFS_AGF_CRC_OFF))
2955 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
2956 else {
2957 fa = xfs_agf_verify(bp);
2958 if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_ALLOC_READ_AGF))
2959 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2960 }
2961}
2962
2963static void
2964xfs_agf_write_verify(
2965 struct xfs_buf *bp)
2966{
2967 struct xfs_mount *mp = bp->b_mount;
2968 struct xfs_buf_log_item *bip = bp->b_log_item;
2969 struct xfs_agf *agf = bp->b_addr;
2970 xfs_failaddr_t fa;
2971
2972 fa = xfs_agf_verify(bp);
2973 if (fa) {
2974 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2975 return;
2976 }
2977
2978 if (!xfs_sb_version_hascrc(&mp->m_sb))
2979 return;
2980
2981 if (bip)
2982 agf->agf_lsn = cpu_to_be64(bip->bli_item.li_lsn);
2983
2984 xfs_buf_update_cksum(bp, XFS_AGF_CRC_OFF);
2985}
2986
2987const struct xfs_buf_ops xfs_agf_buf_ops = {
2988 .name = "xfs_agf",
2989 .magic = { cpu_to_be32(XFS_AGF_MAGIC), cpu_to_be32(XFS_AGF_MAGIC) },
2990 .verify_read = xfs_agf_read_verify,
2991 .verify_write = xfs_agf_write_verify,
2992 .verify_struct = xfs_agf_verify,
2993};
2994
2995/*
2996 * Read in the allocation group header (free/alloc section).
2997 */
2998int /* error */
2999xfs_read_agf(
3000 struct xfs_mount *mp, /* mount point structure */
3001 struct xfs_trans *tp, /* transaction pointer */
3002 xfs_agnumber_t agno, /* allocation group number */
3003 int flags, /* XFS_BUF_ */
3004 struct xfs_buf **bpp) /* buffer for the ag freelist header */
3005{
3006 int error;
3007
3008 trace_xfs_read_agf(mp, agno);
3009
3010 ASSERT(agno != NULLAGNUMBER);
3011 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
3012 XFS_AG_DADDR(mp, agno, XFS_AGF_DADDR(mp)),
3013 XFS_FSS_TO_BB(mp, 1), flags, bpp, &xfs_agf_buf_ops);
3014 if (error)
3015 return error;
3016
3017 ASSERT(!(*bpp)->b_error);
3018 xfs_buf_set_ref(*bpp, XFS_AGF_REF);
3019 return 0;
3020}
3021
3022/*
3023 * Read in the allocation group header (free/alloc section).
3024 */
3025int /* error */
3026xfs_alloc_read_agf(
3027 struct xfs_mount *mp, /* mount point structure */
3028 struct xfs_trans *tp, /* transaction pointer */
3029 xfs_agnumber_t agno, /* allocation group number */
3030 int flags, /* XFS_ALLOC_FLAG_... */
3031 struct xfs_buf **bpp) /* buffer for the ag freelist header */
3032{
3033 struct xfs_agf *agf; /* ag freelist header */
3034 struct xfs_perag *pag; /* per allocation group data */
3035 int error;
3036 int allocbt_blks;
3037
3038 trace_xfs_alloc_read_agf(mp, agno);
3039
3040 /* We don't support trylock when freeing. */
3041 ASSERT((flags & (XFS_ALLOC_FLAG_FREEING | XFS_ALLOC_FLAG_TRYLOCK)) !=
3042 (XFS_ALLOC_FLAG_FREEING | XFS_ALLOC_FLAG_TRYLOCK));
3043 ASSERT(agno != NULLAGNUMBER);
3044 error = xfs_read_agf(mp, tp, agno,
3045 (flags & XFS_ALLOC_FLAG_TRYLOCK) ? XBF_TRYLOCK : 0,
3046 bpp);
3047 if (error)
3048 return error;
3049 ASSERT(!(*bpp)->b_error);
3050
3051 agf = (*bpp)->b_addr;
3052 pag = (*bpp)->b_pag;
3053 if (!pag->pagf_init) {
3054 pag->pagf_freeblks = be32_to_cpu(agf->agf_freeblks);
3055 pag->pagf_btreeblks = be32_to_cpu(agf->agf_btreeblks);
3056 pag->pagf_flcount = be32_to_cpu(agf->agf_flcount);
3057 pag->pagf_longest = be32_to_cpu(agf->agf_longest);
3058 pag->pagf_levels[XFS_BTNUM_BNOi] =
3059 be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNOi]);
3060 pag->pagf_levels[XFS_BTNUM_CNTi] =
3061 be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNTi]);
3062 pag->pagf_levels[XFS_BTNUM_RMAPi] =
3063 be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAPi]);
3064 pag->pagf_refcount_level = be32_to_cpu(agf->agf_refcount_level);
3065 pag->pagf_init = 1;
3066 pag->pagf_agflreset = xfs_agfl_needs_reset(mp, agf);
3067
3068 /*
3069 * Update the in-core allocbt counter. Filter out the rmapbt
3070 * subset of the btreeblks counter because the rmapbt is managed
3071 * by perag reservation. Subtract one for the rmapbt root block
3072 * because the rmap counter includes it while the btreeblks
3073 * counter only tracks non-root blocks.
3074 */
3075 allocbt_blks = pag->pagf_btreeblks;
3076 if (xfs_sb_version_hasrmapbt(&mp->m_sb))
3077 allocbt_blks -= be32_to_cpu(agf->agf_rmap_blocks) - 1;
3078 if (allocbt_blks > 0)
3079 atomic64_add(allocbt_blks, &mp->m_allocbt_blks);
3080 }
3081#ifdef DEBUG
3082 else if (!XFS_FORCED_SHUTDOWN(mp)) {
3083 ASSERT(pag->pagf_freeblks == be32_to_cpu(agf->agf_freeblks));
3084 ASSERT(pag->pagf_btreeblks == be32_to_cpu(agf->agf_btreeblks));
3085 ASSERT(pag->pagf_flcount == be32_to_cpu(agf->agf_flcount));
3086 ASSERT(pag->pagf_longest == be32_to_cpu(agf->agf_longest));
3087 ASSERT(pag->pagf_levels[XFS_BTNUM_BNOi] ==
3088 be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNOi]));
3089 ASSERT(pag->pagf_levels[XFS_BTNUM_CNTi] ==
3090 be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNTi]));
3091 }
3092#endif
3093 return 0;
3094}
3095
3096/*
3097 * Allocate an extent (variable-size).
3098 * Depending on the allocation type, we either look in a single allocation
3099 * group or loop over the allocation groups to find the result.
3100 */
3101int /* error */
3102xfs_alloc_vextent(
3103 struct xfs_alloc_arg *args) /* allocation argument structure */
3104{
3105 xfs_agblock_t agsize; /* allocation group size */
3106 int error;
3107 int flags; /* XFS_ALLOC_FLAG_... locking flags */
3108 struct xfs_mount *mp; /* mount structure pointer */
3109 xfs_agnumber_t sagno; /* starting allocation group number */
3110 xfs_alloctype_t type; /* input allocation type */
3111 int bump_rotor = 0;
3112 xfs_agnumber_t rotorstep = xfs_rotorstep; /* inode32 agf stepper */
3113
3114 mp = args->mp;
3115 type = args->otype = args->type;
3116 args->agbno = NULLAGBLOCK;
3117 /*
3118 * Just fix this up, for the case where the last a.g. is shorter
3119 * (or there's only one a.g.) and the caller couldn't easily figure
3120 * that out (xfs_bmap_alloc).
3121 */
3122 agsize = mp->m_sb.sb_agblocks;
3123 if (args->maxlen > agsize)
3124 args->maxlen = agsize;
3125 if (args->alignment == 0)
3126 args->alignment = 1;
3127 ASSERT(XFS_FSB_TO_AGNO(mp, args->fsbno) < mp->m_sb.sb_agcount);
3128 ASSERT(XFS_FSB_TO_AGBNO(mp, args->fsbno) < agsize);
3129 ASSERT(args->minlen <= args->maxlen);
3130 ASSERT(args->minlen <= agsize);
3131 ASSERT(args->mod < args->prod);
3132 if (XFS_FSB_TO_AGNO(mp, args->fsbno) >= mp->m_sb.sb_agcount ||
3133 XFS_FSB_TO_AGBNO(mp, args->fsbno) >= agsize ||
3134 args->minlen > args->maxlen || args->minlen > agsize ||
3135 args->mod >= args->prod) {
3136 args->fsbno = NULLFSBLOCK;
3137 trace_xfs_alloc_vextent_badargs(args);
3138 return 0;
3139 }
3140
3141 switch (type) {
3142 case XFS_ALLOCTYPE_THIS_AG:
3143 case XFS_ALLOCTYPE_NEAR_BNO:
3144 case XFS_ALLOCTYPE_THIS_BNO:
3145 /*
3146 * These three force us into a single a.g.
3147 */
3148 args->agno = XFS_FSB_TO_AGNO(mp, args->fsbno);
3149 args->pag = xfs_perag_get(mp, args->agno);
3150 error = xfs_alloc_fix_freelist(args, 0);
3151 if (error) {
3152 trace_xfs_alloc_vextent_nofix(args);
3153 goto error0;
3154 }
3155 if (!args->agbp) {
3156 trace_xfs_alloc_vextent_noagbp(args);
3157 break;
3158 }
3159 args->agbno = XFS_FSB_TO_AGBNO(mp, args->fsbno);
3160 if ((error = xfs_alloc_ag_vextent(args)))
3161 goto error0;
3162 break;
3163 case XFS_ALLOCTYPE_START_BNO:
3164 /*
3165 * Try near allocation first, then anywhere-in-ag after
3166 * the first a.g. fails.
3167 */
3168 if ((args->datatype & XFS_ALLOC_INITIAL_USER_DATA) &&
3169 (mp->m_flags & XFS_MOUNT_32BITINODES)) {
3170 args->fsbno = XFS_AGB_TO_FSB(mp,
3171 ((mp->m_agfrotor / rotorstep) %
3172 mp->m_sb.sb_agcount), 0);
3173 bump_rotor = 1;
3174 }
3175 args->agbno = XFS_FSB_TO_AGBNO(mp, args->fsbno);
3176 args->type = XFS_ALLOCTYPE_NEAR_BNO;
3177 fallthrough;
3178 case XFS_ALLOCTYPE_FIRST_AG:
3179 /*
3180 * Rotate through the allocation groups looking for a winner.
3181 */
3182 if (type == XFS_ALLOCTYPE_FIRST_AG) {
3183 /*
3184 * Start with allocation group given by bno.
3185 */
3186 args->agno = XFS_FSB_TO_AGNO(mp, args->fsbno);
3187 args->type = XFS_ALLOCTYPE_THIS_AG;
3188 sagno = 0;
3189 flags = 0;
3190 } else {
3191 /*
3192 * Start with the given allocation group.
3193 */
3194 args->agno = sagno = XFS_FSB_TO_AGNO(mp, args->fsbno);
3195 flags = XFS_ALLOC_FLAG_TRYLOCK;
3196 }
3197 /*
3198 * Loop over allocation groups twice; first time with
3199 * trylock set, second time without.
3200 */
3201 for (;;) {
3202 args->pag = xfs_perag_get(mp, args->agno);
3203 error = xfs_alloc_fix_freelist(args, flags);
3204 if (error) {
3205 trace_xfs_alloc_vextent_nofix(args);
3206 goto error0;
3207 }
3208 /*
3209 * If we get a buffer back then the allocation will fly.
3210 */
3211 if (args->agbp) {
3212 if ((error = xfs_alloc_ag_vextent(args)))
3213 goto error0;
3214 break;
3215 }
3216
3217 trace_xfs_alloc_vextent_loopfailed(args);
3218
3219 /*
3220 * Didn't work, figure out the next iteration.
3221 */
3222 if (args->agno == sagno &&
3223 type == XFS_ALLOCTYPE_START_BNO)
3224 args->type = XFS_ALLOCTYPE_THIS_AG;
3225 /*
3226 * For the first allocation, we can try any AG to get
3227 * space. However, if we already have allocated a
3228 * block, we don't want to try AGs whose number is below
3229 * sagno. Otherwise, we may end up with out-of-order
3230 * locking of AGF, which might cause deadlock.
3231 */
3232 if (++(args->agno) == mp->m_sb.sb_agcount) {
3233 if (args->tp->t_firstblock != NULLFSBLOCK)
3234 args->agno = sagno;
3235 else
3236 args->agno = 0;
3237 }
3238 /*
3239 * Reached the starting a.g., must either be done
3240 * or switch to non-trylock mode.
3241 */
3242 if (args->agno == sagno) {
3243 if (flags == 0) {
3244 args->agbno = NULLAGBLOCK;
3245 trace_xfs_alloc_vextent_allfailed(args);
3246 break;
3247 }
3248
3249 flags = 0;
3250 if (type == XFS_ALLOCTYPE_START_BNO) {
3251 args->agbno = XFS_FSB_TO_AGBNO(mp,
3252 args->fsbno);
3253 args->type = XFS_ALLOCTYPE_NEAR_BNO;
3254 }
3255 }
3256 xfs_perag_put(args->pag);
3257 }
3258 if (bump_rotor) {
3259 if (args->agno == sagno)
3260 mp->m_agfrotor = (mp->m_agfrotor + 1) %
3261 (mp->m_sb.sb_agcount * rotorstep);
3262 else
3263 mp->m_agfrotor = (args->agno * rotorstep + 1) %
3264 (mp->m_sb.sb_agcount * rotorstep);
3265 }
3266 break;
3267 default:
3268 ASSERT(0);
3269 /* NOTREACHED */
3270 }
3271 if (args->agbno == NULLAGBLOCK)
3272 args->fsbno = NULLFSBLOCK;
3273 else {
3274 args->fsbno = XFS_AGB_TO_FSB(mp, args->agno, args->agbno);
3275#ifdef DEBUG
3276 ASSERT(args->len >= args->minlen);
3277 ASSERT(args->len <= args->maxlen);
3278 ASSERT(args->agbno % args->alignment == 0);
3279 XFS_AG_CHECK_DADDR(mp, XFS_FSB_TO_DADDR(mp, args->fsbno),
3280 args->len);
3281#endif
3282
3283 }
3284 xfs_perag_put(args->pag);
3285 return 0;
3286error0:
3287 xfs_perag_put(args->pag);
3288 return error;
3289}
3290
3291/* Ensure that the freelist is at full capacity. */
3292int
3293xfs_free_extent_fix_freelist(
3294 struct xfs_trans *tp,
3295 struct xfs_perag *pag,
3296 struct xfs_buf **agbp)
3297{
3298 struct xfs_alloc_arg args;
3299 int error;
3300
3301 memset(&args, 0, sizeof(struct xfs_alloc_arg));
3302 args.tp = tp;
3303 args.mp = tp->t_mountp;
3304 args.agno = pag->pag_agno;
3305 args.pag = pag;
3306
3307 /*
3308 * validate that the block number is legal - the enables us to detect
3309 * and handle a silent filesystem corruption rather than crashing.
3310 */
3311 if (args.agno >= args.mp->m_sb.sb_agcount)
3312 return -EFSCORRUPTED;
3313
3314 error = xfs_alloc_fix_freelist(&args, XFS_ALLOC_FLAG_FREEING);
3315 if (error)
3316 return error;
3317
3318 *agbp = args.agbp;
3319 return 0;
3320}
3321
3322/*
3323 * Free an extent.
3324 * Just break up the extent address and hand off to xfs_free_ag_extent
3325 * after fixing up the freelist.
3326 */
3327int
3328__xfs_free_extent(
3329 struct xfs_trans *tp,
3330 xfs_fsblock_t bno,
3331 xfs_extlen_t len,
3332 const struct xfs_owner_info *oinfo,
3333 enum xfs_ag_resv_type type,
3334 bool skip_discard)
3335{
3336 struct xfs_mount *mp = tp->t_mountp;
3337 struct xfs_buf *agbp;
3338 xfs_agnumber_t agno = XFS_FSB_TO_AGNO(mp, bno);
3339 xfs_agblock_t agbno = XFS_FSB_TO_AGBNO(mp, bno);
3340 struct xfs_agf *agf;
3341 int error;
3342 unsigned int busy_flags = 0;
3343 struct xfs_perag *pag;
3344
3345 ASSERT(len != 0);
3346 ASSERT(type != XFS_AG_RESV_AGFL);
3347
3348 if (XFS_TEST_ERROR(false, mp,
3349 XFS_ERRTAG_FREE_EXTENT))
3350 return -EIO;
3351
3352 pag = xfs_perag_get(mp, agno);
3353 error = xfs_free_extent_fix_freelist(tp, pag, &agbp);
3354 if (error)
3355 goto err;
3356 agf = agbp->b_addr;
3357
3358 if (XFS_IS_CORRUPT(mp, agbno >= mp->m_sb.sb_agblocks)) {
3359 error = -EFSCORRUPTED;
3360 goto err_release;
3361 }
3362
3363 /* validate the extent size is legal now we have the agf locked */
3364 if (XFS_IS_CORRUPT(mp, agbno + len > be32_to_cpu(agf->agf_length))) {
3365 error = -EFSCORRUPTED;
3366 goto err_release;
3367 }
3368
3369 error = xfs_free_ag_extent(tp, agbp, agno, agbno, len, oinfo, type);
3370 if (error)
3371 goto err_release;
3372
3373 if (skip_discard)
3374 busy_flags |= XFS_EXTENT_BUSY_SKIP_DISCARD;
3375 xfs_extent_busy_insert(tp, pag, agbno, len, busy_flags);
3376 xfs_perag_put(pag);
3377 return 0;
3378
3379err_release:
3380 xfs_trans_brelse(tp, agbp);
3381err:
3382 xfs_perag_put(pag);
3383 return error;
3384}
3385
3386struct xfs_alloc_query_range_info {
3387 xfs_alloc_query_range_fn fn;
3388 void *priv;
3389};
3390
3391/* Format btree record and pass to our callback. */
3392STATIC int
3393xfs_alloc_query_range_helper(
3394 struct xfs_btree_cur *cur,
3395 union xfs_btree_rec *rec,
3396 void *priv)
3397{
3398 struct xfs_alloc_query_range_info *query = priv;
3399 struct xfs_alloc_rec_incore irec;
3400
3401 irec.ar_startblock = be32_to_cpu(rec->alloc.ar_startblock);
3402 irec.ar_blockcount = be32_to_cpu(rec->alloc.ar_blockcount);
3403 return query->fn(cur, &irec, query->priv);
3404}
3405
3406/* Find all free space within a given range of blocks. */
3407int
3408xfs_alloc_query_range(
3409 struct xfs_btree_cur *cur,
3410 struct xfs_alloc_rec_incore *low_rec,
3411 struct xfs_alloc_rec_incore *high_rec,
3412 xfs_alloc_query_range_fn fn,
3413 void *priv)
3414{
3415 union xfs_btree_irec low_brec;
3416 union xfs_btree_irec high_brec;
3417 struct xfs_alloc_query_range_info query;
3418
3419 ASSERT(cur->bc_btnum == XFS_BTNUM_BNO);
3420 low_brec.a = *low_rec;
3421 high_brec.a = *high_rec;
3422 query.priv = priv;
3423 query.fn = fn;
3424 return xfs_btree_query_range(cur, &low_brec, &high_brec,
3425 xfs_alloc_query_range_helper, &query);
3426}
3427
3428/* Find all free space records. */
3429int
3430xfs_alloc_query_all(
3431 struct xfs_btree_cur *cur,
3432 xfs_alloc_query_range_fn fn,
3433 void *priv)
3434{
3435 struct xfs_alloc_query_range_info query;
3436
3437 ASSERT(cur->bc_btnum == XFS_BTNUM_BNO);
3438 query.priv = priv;
3439 query.fn = fn;
3440 return xfs_btree_query_all(cur, xfs_alloc_query_range_helper, &query);
3441}
3442
3443/* Is there a record covering a given extent? */
3444int
3445xfs_alloc_has_record(
3446 struct xfs_btree_cur *cur,
3447 xfs_agblock_t bno,
3448 xfs_extlen_t len,
3449 bool *exists)
3450{
3451 union xfs_btree_irec low;
3452 union xfs_btree_irec high;
3453
3454 memset(&low, 0, sizeof(low));
3455 low.a.ar_startblock = bno;
3456 memset(&high, 0xFF, sizeof(high));
3457 high.a.ar_startblock = bno + len - 1;
3458
3459 return xfs_btree_has_record(cur, &low, &high, exists);
3460}
3461
3462/*
3463 * Walk all the blocks in the AGFL. The @walk_fn can return any negative
3464 * error code or XFS_ITER_*.
3465 */
3466int
3467xfs_agfl_walk(
3468 struct xfs_mount *mp,
3469 struct xfs_agf *agf,
3470 struct xfs_buf *agflbp,
3471 xfs_agfl_walk_fn walk_fn,
3472 void *priv)
3473{
3474 __be32 *agfl_bno;
3475 unsigned int i;
3476 int error;
3477
3478 agfl_bno = xfs_buf_to_agfl_bno(agflbp);
3479 i = be32_to_cpu(agf->agf_flfirst);
3480
3481 /* Nothing to walk in an empty AGFL. */
3482 if (agf->agf_flcount == cpu_to_be32(0))
3483 return 0;
3484
3485 /* Otherwise, walk from first to last, wrapping as needed. */
3486 for (;;) {
3487 error = walk_fn(mp, be32_to_cpu(agfl_bno[i]), priv);
3488 if (error)
3489 return error;
3490 if (i == be32_to_cpu(agf->agf_fllast))
3491 break;
3492 if (++i == xfs_agfl_size(mp))
3493 i = 0;
3494 }
3495
3496 return 0;
3497}