Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * NILFS module and super block management.
   4 *
   5 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
   6 *
   7 * Written by Ryusuke Konishi.
   8 */
   9/*
  10 *  linux/fs/ext2/super.c
  11 *
  12 * Copyright (C) 1992, 1993, 1994, 1995
  13 * Remy Card (card@masi.ibp.fr)
  14 * Laboratoire MASI - Institut Blaise Pascal
  15 * Universite Pierre et Marie Curie (Paris VI)
  16 *
  17 *  from
  18 *
  19 *  linux/fs/minix/inode.c
  20 *
  21 *  Copyright (C) 1991, 1992  Linus Torvalds
  22 *
  23 *  Big-endian to little-endian byte-swapping/bitmaps by
  24 *        David S. Miller (davem@caip.rutgers.edu), 1995
  25 */
  26
  27#include <linux/module.h>
  28#include <linux/string.h>
  29#include <linux/slab.h>
  30#include <linux/init.h>
  31#include <linux/blkdev.h>
  32#include <linux/parser.h>
  33#include <linux/crc32.h>
  34#include <linux/vfs.h>
  35#include <linux/writeback.h>
  36#include <linux/seq_file.h>
  37#include <linux/mount.h>
  38#include <linux/fs_context.h>
 
  39#include "nilfs.h"
  40#include "export.h"
  41#include "mdt.h"
  42#include "alloc.h"
  43#include "btree.h"
  44#include "btnode.h"
  45#include "page.h"
  46#include "cpfile.h"
  47#include "sufile.h" /* nilfs_sufile_resize(), nilfs_sufile_set_alloc_range() */
  48#include "ifile.h"
  49#include "dat.h"
  50#include "segment.h"
  51#include "segbuf.h"
  52
  53MODULE_AUTHOR("NTT Corp.");
  54MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
  55		   "(NILFS)");
  56MODULE_LICENSE("GPL");
  57
  58static struct kmem_cache *nilfs_inode_cachep;
  59struct kmem_cache *nilfs_transaction_cachep;
  60struct kmem_cache *nilfs_segbuf_cachep;
  61struct kmem_cache *nilfs_btree_path_cache;
  62
  63static int nilfs_setup_super(struct super_block *sb, int is_mount);
  64static int nilfs_remount(struct super_block *sb, int *flags, char *data);
  65
  66void __nilfs_msg(struct super_block *sb, const char *fmt, ...)
  67{
  68	struct va_format vaf;
  69	va_list args;
  70	int level;
  71
  72	va_start(args, fmt);
  73
  74	level = printk_get_level(fmt);
  75	vaf.fmt = printk_skip_level(fmt);
  76	vaf.va = &args;
  77
  78	if (sb)
  79		printk("%c%cNILFS (%s): %pV\n",
  80		       KERN_SOH_ASCII, level, sb->s_id, &vaf);
  81	else
  82		printk("%c%cNILFS: %pV\n",
  83		       KERN_SOH_ASCII, level, &vaf);
  84
  85	va_end(args);
  86}
  87
  88static void nilfs_set_error(struct super_block *sb)
  89{
  90	struct the_nilfs *nilfs = sb->s_fs_info;
  91	struct nilfs_super_block **sbp;
  92
  93	down_write(&nilfs->ns_sem);
  94	if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
  95		nilfs->ns_mount_state |= NILFS_ERROR_FS;
  96		sbp = nilfs_prepare_super(sb, 0);
  97		if (likely(sbp)) {
  98			sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
  99			if (sbp[1])
 100				sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
 101			nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
 102		}
 103	}
 104	up_write(&nilfs->ns_sem);
 105}
 106
 107/**
 108 * __nilfs_error() - report failure condition on a filesystem
 
 
 
 
 109 *
 110 * __nilfs_error() sets an ERROR_FS flag on the superblock as well as
 111 * reporting an error message.  This function should be called when
 112 * NILFS detects incoherences or defects of meta data on disk.
 113 *
 114 * This implements the body of nilfs_error() macro.  Normally,
 115 * nilfs_error() should be used.  As for sustainable errors such as a
 116 * single-shot I/O error, nilfs_err() should be used instead.
 117 *
 118 * Callers should not add a trailing newline since this will do it.
 119 */
 120void __nilfs_error(struct super_block *sb, const char *function,
 121		   const char *fmt, ...)
 122{
 123	struct the_nilfs *nilfs = sb->s_fs_info;
 124	struct va_format vaf;
 125	va_list args;
 126
 127	va_start(args, fmt);
 128
 129	vaf.fmt = fmt;
 130	vaf.va = &args;
 131
 132	printk(KERN_CRIT "NILFS error (device %s): %s: %pV\n",
 133	       sb->s_id, function, &vaf);
 134
 135	va_end(args);
 136
 137	if (!sb_rdonly(sb)) {
 138		nilfs_set_error(sb);
 139
 140		if (nilfs_test_opt(nilfs, ERRORS_RO)) {
 141			printk(KERN_CRIT "Remounting filesystem read-only\n");
 142			sb->s_flags |= SB_RDONLY;
 143		}
 144	}
 145
 146	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
 147		panic("NILFS (device %s): panic forced after error\n",
 148		      sb->s_id);
 149}
 150
 151struct inode *nilfs_alloc_inode(struct super_block *sb)
 152{
 153	struct nilfs_inode_info *ii;
 154
 155	ii = alloc_inode_sb(sb, nilfs_inode_cachep, GFP_NOFS);
 156	if (!ii)
 157		return NULL;
 158	ii->i_bh = NULL;
 159	ii->i_state = 0;
 
 160	ii->i_cno = 0;
 161	ii->i_assoc_inode = NULL;
 162	ii->i_bmap = &ii->i_bmap_data;
 163	return &ii->vfs_inode;
 164}
 165
 166static void nilfs_free_inode(struct inode *inode)
 167{
 168	if (nilfs_is_metadata_file_inode(inode))
 169		nilfs_mdt_destroy(inode);
 170
 171	kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
 172}
 173
 174static int nilfs_sync_super(struct super_block *sb, int flag)
 175{
 176	struct the_nilfs *nilfs = sb->s_fs_info;
 177	int err;
 178
 179 retry:
 180	set_buffer_dirty(nilfs->ns_sbh[0]);
 181	if (nilfs_test_opt(nilfs, BARRIER)) {
 182		err = __sync_dirty_buffer(nilfs->ns_sbh[0],
 183					  REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
 184	} else {
 185		err = sync_dirty_buffer(nilfs->ns_sbh[0]);
 186	}
 187
 188	if (unlikely(err)) {
 189		nilfs_err(sb, "unable to write superblock: err=%d", err);
 190		if (err == -EIO && nilfs->ns_sbh[1]) {
 191			/*
 192			 * sbp[0] points to newer log than sbp[1],
 193			 * so copy sbp[0] to sbp[1] to take over sbp[0].
 194			 */
 195			memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0],
 196			       nilfs->ns_sbsize);
 197			nilfs_fall_back_super_block(nilfs);
 198			goto retry;
 199		}
 200	} else {
 201		struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
 202
 203		nilfs->ns_sbwcount++;
 204
 205		/*
 206		 * The latest segment becomes trailable from the position
 207		 * written in superblock.
 208		 */
 209		clear_nilfs_discontinued(nilfs);
 210
 211		/* update GC protection for recent segments */
 212		if (nilfs->ns_sbh[1]) {
 213			if (flag == NILFS_SB_COMMIT_ALL) {
 214				set_buffer_dirty(nilfs->ns_sbh[1]);
 215				if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0)
 216					goto out;
 217			}
 218			if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) <
 219			    le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno))
 220				sbp = nilfs->ns_sbp[1];
 221		}
 222
 223		spin_lock(&nilfs->ns_last_segment_lock);
 224		nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
 225		spin_unlock(&nilfs->ns_last_segment_lock);
 226	}
 227 out:
 228	return err;
 229}
 230
 231void nilfs_set_log_cursor(struct nilfs_super_block *sbp,
 232			  struct the_nilfs *nilfs)
 233{
 234	sector_t nfreeblocks;
 235
 236	/* nilfs->ns_sem must be locked by the caller. */
 237	nilfs_count_free_blocks(nilfs, &nfreeblocks);
 238	sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks);
 239
 240	spin_lock(&nilfs->ns_last_segment_lock);
 241	sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
 242	sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
 243	sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
 244	spin_unlock(&nilfs->ns_last_segment_lock);
 245}
 246
 247struct nilfs_super_block **nilfs_prepare_super(struct super_block *sb,
 248					       int flip)
 249{
 250	struct the_nilfs *nilfs = sb->s_fs_info;
 251	struct nilfs_super_block **sbp = nilfs->ns_sbp;
 252
 253	/* nilfs->ns_sem must be locked by the caller. */
 254	if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
 255		if (sbp[1] &&
 256		    sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) {
 257			memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
 258		} else {
 259			nilfs_crit(sb, "superblock broke");
 260			return NULL;
 261		}
 262	} else if (sbp[1] &&
 263		   sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
 264		memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
 265	}
 266
 267	if (flip && sbp[1])
 268		nilfs_swap_super_block(nilfs);
 269
 270	return sbp;
 271}
 272
 273int nilfs_commit_super(struct super_block *sb, int flag)
 274{
 275	struct the_nilfs *nilfs = sb->s_fs_info;
 276	struct nilfs_super_block **sbp = nilfs->ns_sbp;
 277	time64_t t;
 278
 279	/* nilfs->ns_sem must be locked by the caller. */
 280	t = ktime_get_real_seconds();
 281	nilfs->ns_sbwtime = t;
 282	sbp[0]->s_wtime = cpu_to_le64(t);
 283	sbp[0]->s_sum = 0;
 284	sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
 285					     (unsigned char *)sbp[0],
 286					     nilfs->ns_sbsize));
 287	if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) {
 288		sbp[1]->s_wtime = sbp[0]->s_wtime;
 289		sbp[1]->s_sum = 0;
 290		sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
 291					    (unsigned char *)sbp[1],
 292					    nilfs->ns_sbsize));
 293	}
 294	clear_nilfs_sb_dirty(nilfs);
 295	nilfs->ns_flushed_device = 1;
 296	/* make sure store to ns_flushed_device cannot be reordered */
 297	smp_wmb();
 298	return nilfs_sync_super(sb, flag);
 299}
 300
 301/**
 302 * nilfs_cleanup_super() - write filesystem state for cleanup
 303 * @sb: super block instance to be unmounted or degraded to read-only
 304 *
 305 * This function restores state flags in the on-disk super block.
 306 * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the
 307 * filesystem was not clean previously.
 308 */
 309int nilfs_cleanup_super(struct super_block *sb)
 310{
 311	struct the_nilfs *nilfs = sb->s_fs_info;
 312	struct nilfs_super_block **sbp;
 313	int flag = NILFS_SB_COMMIT;
 314	int ret = -EIO;
 315
 316	sbp = nilfs_prepare_super(sb, 0);
 317	if (sbp) {
 318		sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
 319		nilfs_set_log_cursor(sbp[0], nilfs);
 320		if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) {
 321			/*
 322			 * make the "clean" flag also to the opposite
 323			 * super block if both super blocks point to
 324			 * the same checkpoint.
 325			 */
 326			sbp[1]->s_state = sbp[0]->s_state;
 327			flag = NILFS_SB_COMMIT_ALL;
 328		}
 329		ret = nilfs_commit_super(sb, flag);
 330	}
 331	return ret;
 332}
 333
 334/**
 335 * nilfs_move_2nd_super - relocate secondary super block
 336 * @sb: super block instance
 337 * @sb2off: new offset of the secondary super block (in bytes)
 338 */
 339static int nilfs_move_2nd_super(struct super_block *sb, loff_t sb2off)
 340{
 341	struct the_nilfs *nilfs = sb->s_fs_info;
 342	struct buffer_head *nsbh;
 343	struct nilfs_super_block *nsbp;
 344	sector_t blocknr, newblocknr;
 345	unsigned long offset;
 346	int sb2i;  /* array index of the secondary superblock */
 347	int ret = 0;
 348
 349	/* nilfs->ns_sem must be locked by the caller. */
 350	if (nilfs->ns_sbh[1] &&
 351	    nilfs->ns_sbh[1]->b_blocknr > nilfs->ns_first_data_block) {
 352		sb2i = 1;
 353		blocknr = nilfs->ns_sbh[1]->b_blocknr;
 354	} else if (nilfs->ns_sbh[0]->b_blocknr > nilfs->ns_first_data_block) {
 355		sb2i = 0;
 356		blocknr = nilfs->ns_sbh[0]->b_blocknr;
 357	} else {
 358		sb2i = -1;
 359		blocknr = 0;
 360	}
 361	if (sb2i >= 0 && (u64)blocknr << nilfs->ns_blocksize_bits == sb2off)
 362		goto out;  /* super block location is unchanged */
 363
 364	/* Get new super block buffer */
 365	newblocknr = sb2off >> nilfs->ns_blocksize_bits;
 366	offset = sb2off & (nilfs->ns_blocksize - 1);
 367	nsbh = sb_getblk(sb, newblocknr);
 368	if (!nsbh) {
 369		nilfs_warn(sb,
 370			   "unable to move secondary superblock to block %llu",
 371			   (unsigned long long)newblocknr);
 372		ret = -EIO;
 373		goto out;
 374	}
 375	nsbp = (void *)nsbh->b_data + offset;
 376
 377	lock_buffer(nsbh);
 378	if (sb2i >= 0) {
 379		/*
 380		 * The position of the second superblock only changes by 4KiB,
 381		 * which is larger than the maximum superblock data size
 382		 * (= 1KiB), so there is no need to use memmove() to allow
 383		 * overlap between source and destination.
 384		 */
 385		memcpy(nsbp, nilfs->ns_sbp[sb2i], nilfs->ns_sbsize);
 386
 387		/*
 388		 * Zero fill after copy to avoid overwriting in case of move
 389		 * within the same block.
 390		 */
 391		memset(nsbh->b_data, 0, offset);
 392		memset((void *)nsbp + nilfs->ns_sbsize, 0,
 393		       nsbh->b_size - offset - nilfs->ns_sbsize);
 394	} else {
 395		memset(nsbh->b_data, 0, nsbh->b_size);
 396	}
 397	set_buffer_uptodate(nsbh);
 398	unlock_buffer(nsbh);
 399
 400	if (sb2i >= 0) {
 401		brelse(nilfs->ns_sbh[sb2i]);
 402		nilfs->ns_sbh[sb2i] = nsbh;
 403		nilfs->ns_sbp[sb2i] = nsbp;
 404	} else if (nilfs->ns_sbh[0]->b_blocknr < nilfs->ns_first_data_block) {
 405		/* secondary super block will be restored to index 1 */
 406		nilfs->ns_sbh[1] = nsbh;
 407		nilfs->ns_sbp[1] = nsbp;
 408	} else {
 409		brelse(nsbh);
 410	}
 411out:
 412	return ret;
 413}
 414
 415/**
 416 * nilfs_resize_fs - resize the filesystem
 417 * @sb: super block instance
 418 * @newsize: new size of the filesystem (in bytes)
 419 */
 420int nilfs_resize_fs(struct super_block *sb, __u64 newsize)
 421{
 422	struct the_nilfs *nilfs = sb->s_fs_info;
 423	struct nilfs_super_block **sbp;
 424	__u64 devsize, newnsegs;
 425	loff_t sb2off;
 426	int ret;
 427
 428	ret = -ERANGE;
 429	devsize = bdev_nr_bytes(sb->s_bdev);
 430	if (newsize > devsize)
 431		goto out;
 432
 433	/*
 434	 * Prevent underflow in second superblock position calculation.
 435	 * The exact minimum size check is done in nilfs_sufile_resize().
 436	 */
 437	if (newsize < 4096) {
 438		ret = -ENOSPC;
 439		goto out;
 440	}
 441
 442	/*
 443	 * Write lock is required to protect some functions depending
 444	 * on the number of segments, the number of reserved segments,
 445	 * and so forth.
 446	 */
 447	down_write(&nilfs->ns_segctor_sem);
 448
 449	sb2off = NILFS_SB2_OFFSET_BYTES(newsize);
 450	newnsegs = sb2off >> nilfs->ns_blocksize_bits;
 451	do_div(newnsegs, nilfs->ns_blocks_per_segment);
 452
 453	ret = nilfs_sufile_resize(nilfs->ns_sufile, newnsegs);
 454	up_write(&nilfs->ns_segctor_sem);
 455	if (ret < 0)
 456		goto out;
 457
 458	ret = nilfs_construct_segment(sb);
 459	if (ret < 0)
 460		goto out;
 461
 462	down_write(&nilfs->ns_sem);
 463	nilfs_move_2nd_super(sb, sb2off);
 464	ret = -EIO;
 465	sbp = nilfs_prepare_super(sb, 0);
 466	if (likely(sbp)) {
 467		nilfs_set_log_cursor(sbp[0], nilfs);
 468		/*
 469		 * Drop NILFS_RESIZE_FS flag for compatibility with
 470		 * mount-time resize which may be implemented in a
 471		 * future release.
 472		 */
 473		sbp[0]->s_state = cpu_to_le16(le16_to_cpu(sbp[0]->s_state) &
 474					      ~NILFS_RESIZE_FS);
 475		sbp[0]->s_dev_size = cpu_to_le64(newsize);
 476		sbp[0]->s_nsegments = cpu_to_le64(nilfs->ns_nsegments);
 477		if (sbp[1])
 478			memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
 479		ret = nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
 480	}
 481	up_write(&nilfs->ns_sem);
 482
 483	/*
 484	 * Reset the range of allocatable segments last.  This order
 485	 * is important in the case of expansion because the secondary
 486	 * superblock must be protected from log write until migration
 487	 * completes.
 488	 */
 489	if (!ret)
 490		nilfs_sufile_set_alloc_range(nilfs->ns_sufile, 0, newnsegs - 1);
 491out:
 492	return ret;
 493}
 494
 495static void nilfs_put_super(struct super_block *sb)
 496{
 497	struct the_nilfs *nilfs = sb->s_fs_info;
 498
 499	nilfs_detach_log_writer(sb);
 500
 501	if (!sb_rdonly(sb)) {
 502		down_write(&nilfs->ns_sem);
 503		nilfs_cleanup_super(sb);
 504		up_write(&nilfs->ns_sem);
 505	}
 506
 507	nilfs_sysfs_delete_device_group(nilfs);
 508	iput(nilfs->ns_sufile);
 509	iput(nilfs->ns_cpfile);
 510	iput(nilfs->ns_dat);
 511
 512	destroy_nilfs(nilfs);
 513	sb->s_fs_info = NULL;
 514}
 515
 516static int nilfs_sync_fs(struct super_block *sb, int wait)
 517{
 518	struct the_nilfs *nilfs = sb->s_fs_info;
 519	struct nilfs_super_block **sbp;
 520	int err = 0;
 521
 522	/* This function is called when super block should be written back */
 523	if (wait)
 524		err = nilfs_construct_segment(sb);
 525
 526	down_write(&nilfs->ns_sem);
 527	if (nilfs_sb_dirty(nilfs)) {
 528		sbp = nilfs_prepare_super(sb, nilfs_sb_will_flip(nilfs));
 529		if (likely(sbp)) {
 530			nilfs_set_log_cursor(sbp[0], nilfs);
 531			nilfs_commit_super(sb, NILFS_SB_COMMIT);
 532		}
 533	}
 534	up_write(&nilfs->ns_sem);
 535
 536	if (!err)
 537		err = nilfs_flush_device(nilfs);
 538
 539	return err;
 540}
 541
 542int nilfs_attach_checkpoint(struct super_block *sb, __u64 cno, int curr_mnt,
 543			    struct nilfs_root **rootp)
 544{
 545	struct the_nilfs *nilfs = sb->s_fs_info;
 546	struct nilfs_root *root;
 547	struct nilfs_checkpoint *raw_cp;
 548	struct buffer_head *bh_cp;
 549	int err = -ENOMEM;
 550
 551	root = nilfs_find_or_create_root(
 552		nilfs, curr_mnt ? NILFS_CPTREE_CURRENT_CNO : cno);
 553	if (!root)
 554		return err;
 555
 556	if (root->ifile)
 557		goto reuse; /* already attached checkpoint */
 558
 559	down_read(&nilfs->ns_segctor_sem);
 560	err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
 561					  &bh_cp);
 562	up_read(&nilfs->ns_segctor_sem);
 563	if (unlikely(err)) {
 564		if (err == -ENOENT || err == -EINVAL) {
 565			nilfs_err(sb,
 566				  "Invalid checkpoint (checkpoint number=%llu)",
 567				  (unsigned long long)cno);
 568			err = -EINVAL;
 569		}
 570		goto failed;
 571	}
 572
 573	err = nilfs_ifile_read(sb, root, nilfs->ns_inode_size,
 574			       &raw_cp->cp_ifile_inode, &root->ifile);
 575	if (err)
 576		goto failed_bh;
 577
 578	atomic64_set(&root->inodes_count,
 579			le64_to_cpu(raw_cp->cp_inodes_count));
 580	atomic64_set(&root->blocks_count,
 581			le64_to_cpu(raw_cp->cp_blocks_count));
 582
 583	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
 584
 585 reuse:
 586	*rootp = root;
 587	return 0;
 588
 589 failed_bh:
 590	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
 591 failed:
 
 
 
 592	nilfs_put_root(root);
 593
 594	return err;
 595}
 596
 597static int nilfs_freeze(struct super_block *sb)
 598{
 599	struct the_nilfs *nilfs = sb->s_fs_info;
 600	int err;
 601
 602	if (sb_rdonly(sb))
 603		return 0;
 604
 605	/* Mark super block clean */
 606	down_write(&nilfs->ns_sem);
 607	err = nilfs_cleanup_super(sb);
 608	up_write(&nilfs->ns_sem);
 609	return err;
 610}
 611
 612static int nilfs_unfreeze(struct super_block *sb)
 613{
 614	struct the_nilfs *nilfs = sb->s_fs_info;
 615
 616	if (sb_rdonly(sb))
 617		return 0;
 618
 619	down_write(&nilfs->ns_sem);
 620	nilfs_setup_super(sb, false);
 621	up_write(&nilfs->ns_sem);
 622	return 0;
 623}
 624
 625static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
 626{
 627	struct super_block *sb = dentry->d_sb;
 628	struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
 629	struct the_nilfs *nilfs = root->nilfs;
 630	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
 631	unsigned long long blocks;
 632	unsigned long overhead;
 633	unsigned long nrsvblocks;
 634	sector_t nfreeblocks;
 635	u64 nmaxinodes, nfreeinodes;
 636	int err;
 637
 638	/*
 639	 * Compute all of the segment blocks
 640	 *
 641	 * The blocks before first segment and after last segment
 642	 * are excluded.
 643	 */
 644	blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
 645		- nilfs->ns_first_data_block;
 646	nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
 647
 648	/*
 649	 * Compute the overhead
 650	 *
 651	 * When distributing meta data blocks outside segment structure,
 652	 * We must count them as the overhead.
 653	 */
 654	overhead = 0;
 655
 656	err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
 657	if (unlikely(err))
 658		return err;
 659
 660	err = nilfs_ifile_count_free_inodes(root->ifile,
 661					    &nmaxinodes, &nfreeinodes);
 662	if (unlikely(err)) {
 663		nilfs_warn(sb, "failed to count free inodes: err=%d", err);
 664		if (err == -ERANGE) {
 665			/*
 666			 * If nilfs_palloc_count_max_entries() returns
 667			 * -ERANGE error code then we simply treat
 668			 * curent inodes count as maximum possible and
 669			 * zero as free inodes value.
 670			 */
 671			nmaxinodes = atomic64_read(&root->inodes_count);
 672			nfreeinodes = 0;
 673			err = 0;
 674		} else
 675			return err;
 676	}
 677
 678	buf->f_type = NILFS_SUPER_MAGIC;
 679	buf->f_bsize = sb->s_blocksize;
 680	buf->f_blocks = blocks - overhead;
 681	buf->f_bfree = nfreeblocks;
 682	buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
 683		(buf->f_bfree - nrsvblocks) : 0;
 684	buf->f_files = nmaxinodes;
 685	buf->f_ffree = nfreeinodes;
 686	buf->f_namelen = NILFS_NAME_LEN;
 687	buf->f_fsid = u64_to_fsid(id);
 688
 689	return 0;
 690}
 691
 692static int nilfs_show_options(struct seq_file *seq, struct dentry *dentry)
 693{
 694	struct super_block *sb = dentry->d_sb;
 695	struct the_nilfs *nilfs = sb->s_fs_info;
 696	struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
 697
 698	if (!nilfs_test_opt(nilfs, BARRIER))
 699		seq_puts(seq, ",nobarrier");
 700	if (root->cno != NILFS_CPTREE_CURRENT_CNO)
 701		seq_printf(seq, ",cp=%llu", (unsigned long long)root->cno);
 702	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
 703		seq_puts(seq, ",errors=panic");
 704	if (nilfs_test_opt(nilfs, ERRORS_CONT))
 705		seq_puts(seq, ",errors=continue");
 706	if (nilfs_test_opt(nilfs, STRICT_ORDER))
 707		seq_puts(seq, ",order=strict");
 708	if (nilfs_test_opt(nilfs, NORECOVERY))
 709		seq_puts(seq, ",norecovery");
 710	if (nilfs_test_opt(nilfs, DISCARD))
 711		seq_puts(seq, ",discard");
 712
 713	return 0;
 714}
 715
 716static const struct super_operations nilfs_sops = {
 717	.alloc_inode    = nilfs_alloc_inode,
 718	.free_inode     = nilfs_free_inode,
 719	.dirty_inode    = nilfs_dirty_inode,
 720	.evict_inode    = nilfs_evict_inode,
 721	.put_super      = nilfs_put_super,
 722	.sync_fs        = nilfs_sync_fs,
 723	.freeze_fs	= nilfs_freeze,
 724	.unfreeze_fs	= nilfs_unfreeze,
 725	.statfs         = nilfs_statfs,
 726	.remount_fs     = nilfs_remount,
 727	.show_options = nilfs_show_options
 728};
 729
 730enum {
 731	Opt_err_cont, Opt_err_panic, Opt_err_ro,
 732	Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery,
 733	Opt_discard, Opt_nodiscard, Opt_err,
 734};
 735
 736static match_table_t tokens = {
 737	{Opt_err_cont, "errors=continue"},
 738	{Opt_err_panic, "errors=panic"},
 739	{Opt_err_ro, "errors=remount-ro"},
 740	{Opt_barrier, "barrier"},
 741	{Opt_nobarrier, "nobarrier"},
 742	{Opt_snapshot, "cp=%u"},
 743	{Opt_order, "order=%s"},
 744	{Opt_norecovery, "norecovery"},
 745	{Opt_discard, "discard"},
 746	{Opt_nodiscard, "nodiscard"},
 747	{Opt_err, NULL}
 748};
 749
 750static int parse_options(char *options, struct super_block *sb, int is_remount)
 751{
 752	struct the_nilfs *nilfs = sb->s_fs_info;
 753	char *p;
 754	substring_t args[MAX_OPT_ARGS];
 755
 756	if (!options)
 757		return 1;
 758
 759	while ((p = strsep(&options, ",")) != NULL) {
 760		int token;
 761
 762		if (!*p)
 763			continue;
 
 
 764
 765		token = match_token(p, tokens, args);
 766		switch (token) {
 767		case Opt_barrier:
 768			nilfs_set_opt(nilfs, BARRIER);
 769			break;
 770		case Opt_nobarrier:
 
 
 
 
 
 
 
 
 771			nilfs_clear_opt(nilfs, BARRIER);
 772			break;
 773		case Opt_order:
 774			if (strcmp(args[0].from, "relaxed") == 0)
 775				/* Ordered data semantics */
 776				nilfs_clear_opt(nilfs, STRICT_ORDER);
 777			else if (strcmp(args[0].from, "strict") == 0)
 778				/* Strict in-order semantics */
 779				nilfs_set_opt(nilfs, STRICT_ORDER);
 780			else
 781				return 0;
 782			break;
 783		case Opt_err_panic:
 784			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_PANIC);
 785			break;
 786		case Opt_err_ro:
 787			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_RO);
 788			break;
 789		case Opt_err_cont:
 790			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_CONT);
 791			break;
 792		case Opt_snapshot:
 793			if (is_remount) {
 794				nilfs_err(sb,
 795					  "\"%s\" option is invalid for remount",
 796					  p);
 797				return 0;
 798			}
 799			break;
 800		case Opt_norecovery:
 801			nilfs_set_opt(nilfs, NORECOVERY);
 802			break;
 803		case Opt_discard:
 804			nilfs_set_opt(nilfs, DISCARD);
 805			break;
 806		case Opt_nodiscard:
 807			nilfs_clear_opt(nilfs, DISCARD);
 808			break;
 809		default:
 810			nilfs_err(sb, "unrecognized mount option \"%s\"", p);
 811			return 0;
 812		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 813	}
 814	return 1;
 815}
 816
 817static inline void
 818nilfs_set_default_options(struct super_block *sb,
 819			  struct nilfs_super_block *sbp)
 820{
 821	struct the_nilfs *nilfs = sb->s_fs_info;
 822
 823	nilfs->ns_mount_opt =
 824		NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER;
 825}
 826
 827static int nilfs_setup_super(struct super_block *sb, int is_mount)
 828{
 829	struct the_nilfs *nilfs = sb->s_fs_info;
 830	struct nilfs_super_block **sbp;
 831	int max_mnt_count;
 832	int mnt_count;
 833
 834	/* nilfs->ns_sem must be locked by the caller. */
 835	sbp = nilfs_prepare_super(sb, 0);
 836	if (!sbp)
 837		return -EIO;
 838
 839	if (!is_mount)
 840		goto skip_mount_setup;
 841
 842	max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count);
 843	mnt_count = le16_to_cpu(sbp[0]->s_mnt_count);
 844
 845	if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
 846		nilfs_warn(sb, "mounting fs with errors");
 847#if 0
 848	} else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
 849		nilfs_warn(sb, "maximal mount count reached");
 850#endif
 851	}
 852	if (!max_mnt_count)
 853		sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
 854
 855	sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1);
 856	sbp[0]->s_mtime = cpu_to_le64(ktime_get_real_seconds());
 857
 858skip_mount_setup:
 859	sbp[0]->s_state =
 860		cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS);
 861	/* synchronize sbp[1] with sbp[0] */
 862	if (sbp[1])
 863		memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
 864	return nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
 865}
 866
 867struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
 868						 u64 pos, int blocksize,
 869						 struct buffer_head **pbh)
 870{
 871	unsigned long long sb_index = pos;
 872	unsigned long offset;
 873
 874	offset = do_div(sb_index, blocksize);
 875	*pbh = sb_bread(sb, sb_index);
 876	if (!*pbh)
 877		return NULL;
 878	return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
 879}
 880
 881int nilfs_store_magic_and_option(struct super_block *sb,
 882				 struct nilfs_super_block *sbp,
 883				 char *data)
 884{
 885	struct the_nilfs *nilfs = sb->s_fs_info;
 886
 887	sb->s_magic = le16_to_cpu(sbp->s_magic);
 888
 889	/* FS independent flags */
 890#ifdef NILFS_ATIME_DISABLE
 891	sb->s_flags |= SB_NOATIME;
 892#endif
 893
 894	nilfs_set_default_options(sb, sbp);
 895
 896	nilfs->ns_resuid = le16_to_cpu(sbp->s_def_resuid);
 897	nilfs->ns_resgid = le16_to_cpu(sbp->s_def_resgid);
 898	nilfs->ns_interval = le32_to_cpu(sbp->s_c_interval);
 899	nilfs->ns_watermark = le32_to_cpu(sbp->s_c_block_max);
 900
 901	return !parse_options(data, sb, 0) ? -EINVAL : 0;
 902}
 903
 904int nilfs_check_feature_compatibility(struct super_block *sb,
 905				      struct nilfs_super_block *sbp)
 906{
 907	__u64 features;
 908
 909	features = le64_to_cpu(sbp->s_feature_incompat) &
 910		~NILFS_FEATURE_INCOMPAT_SUPP;
 911	if (features) {
 912		nilfs_err(sb,
 913			  "couldn't mount because of unsupported optional features (%llx)",
 914			  (unsigned long long)features);
 915		return -EINVAL;
 916	}
 917	features = le64_to_cpu(sbp->s_feature_compat_ro) &
 918		~NILFS_FEATURE_COMPAT_RO_SUPP;
 919	if (!sb_rdonly(sb) && features) {
 920		nilfs_err(sb,
 921			  "couldn't mount RDWR because of unsupported optional features (%llx)",
 922			  (unsigned long long)features);
 923		return -EINVAL;
 924	}
 925	return 0;
 926}
 927
 928static int nilfs_get_root_dentry(struct super_block *sb,
 929				 struct nilfs_root *root,
 930				 struct dentry **root_dentry)
 931{
 932	struct inode *inode;
 933	struct dentry *dentry;
 934	int ret = 0;
 935
 936	inode = nilfs_iget(sb, root, NILFS_ROOT_INO);
 937	if (IS_ERR(inode)) {
 938		ret = PTR_ERR(inode);
 939		nilfs_err(sb, "error %d getting root inode", ret);
 940		goto out;
 941	}
 942	if (!S_ISDIR(inode->i_mode) || !inode->i_blocks || !inode->i_size) {
 943		iput(inode);
 944		nilfs_err(sb, "corrupt root inode");
 945		ret = -EINVAL;
 946		goto out;
 947	}
 948
 949	if (root->cno == NILFS_CPTREE_CURRENT_CNO) {
 950		dentry = d_find_alias(inode);
 951		if (!dentry) {
 952			dentry = d_make_root(inode);
 953			if (!dentry) {
 954				ret = -ENOMEM;
 955				goto failed_dentry;
 956			}
 957		} else {
 958			iput(inode);
 959		}
 960	} else {
 961		dentry = d_obtain_root(inode);
 962		if (IS_ERR(dentry)) {
 963			ret = PTR_ERR(dentry);
 964			goto failed_dentry;
 965		}
 966	}
 967	*root_dentry = dentry;
 968 out:
 969	return ret;
 970
 971 failed_dentry:
 972	nilfs_err(sb, "error %d getting root dentry", ret);
 973	goto out;
 974}
 975
 976static int nilfs_attach_snapshot(struct super_block *s, __u64 cno,
 977				 struct dentry **root_dentry)
 978{
 979	struct the_nilfs *nilfs = s->s_fs_info;
 980	struct nilfs_root *root;
 981	int ret;
 982
 983	mutex_lock(&nilfs->ns_snapshot_mount_mutex);
 984
 985	down_read(&nilfs->ns_segctor_sem);
 986	ret = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile, cno);
 987	up_read(&nilfs->ns_segctor_sem);
 988	if (ret < 0) {
 989		ret = (ret == -ENOENT) ? -EINVAL : ret;
 990		goto out;
 991	} else if (!ret) {
 992		nilfs_err(s,
 993			  "The specified checkpoint is not a snapshot (checkpoint number=%llu)",
 994			  (unsigned long long)cno);
 995		ret = -EINVAL;
 996		goto out;
 997	}
 998
 999	ret = nilfs_attach_checkpoint(s, cno, false, &root);
1000	if (ret) {
1001		nilfs_err(s,
1002			  "error %d while loading snapshot (checkpoint number=%llu)",
1003			  ret, (unsigned long long)cno);
1004		goto out;
1005	}
1006	ret = nilfs_get_root_dentry(s, root, root_dentry);
1007	nilfs_put_root(root);
1008 out:
1009	mutex_unlock(&nilfs->ns_snapshot_mount_mutex);
1010	return ret;
1011}
1012
1013/**
1014 * nilfs_tree_is_busy() - try to shrink dentries of a checkpoint
1015 * @root_dentry: root dentry of the tree to be shrunk
1016 *
1017 * This function returns true if the tree was in-use.
1018 */
1019static bool nilfs_tree_is_busy(struct dentry *root_dentry)
1020{
1021	shrink_dcache_parent(root_dentry);
1022	return d_count(root_dentry) > 1;
1023}
1024
1025int nilfs_checkpoint_is_mounted(struct super_block *sb, __u64 cno)
1026{
1027	struct the_nilfs *nilfs = sb->s_fs_info;
1028	struct nilfs_root *root;
1029	struct inode *inode;
1030	struct dentry *dentry;
1031	int ret;
1032
1033	if (cno > nilfs->ns_cno)
1034		return false;
1035
1036	if (cno >= nilfs_last_cno(nilfs))
1037		return true;	/* protect recent checkpoints */
1038
1039	ret = false;
1040	root = nilfs_lookup_root(nilfs, cno);
1041	if (root) {
1042		inode = nilfs_ilookup(sb, root, NILFS_ROOT_INO);
1043		if (inode) {
1044			dentry = d_find_alias(inode);
1045			if (dentry) {
1046				ret = nilfs_tree_is_busy(dentry);
1047				dput(dentry);
1048			}
1049			iput(inode);
1050		}
1051		nilfs_put_root(root);
1052	}
1053	return ret;
1054}
1055
1056/**
1057 * nilfs_fill_super() - initialize a super block instance
1058 * @sb: super_block
1059 * @data: mount options
1060 * @silent: silent mode flag
1061 *
1062 * This function is called exclusively by nilfs->ns_mount_mutex.
1063 * So, the recovery process is protected from other simultaneous mounts.
1064 */
1065static int
1066nilfs_fill_super(struct super_block *sb, void *data, int silent)
1067{
1068	struct the_nilfs *nilfs;
1069	struct nilfs_root *fsroot;
 
1070	__u64 cno;
1071	int err;
1072
1073	nilfs = alloc_nilfs(sb);
1074	if (!nilfs)
1075		return -ENOMEM;
1076
1077	sb->s_fs_info = nilfs;
1078
1079	err = init_nilfs(nilfs, sb, (char *)data);
1080	if (err)
1081		goto failed_nilfs;
1082
 
 
 
1083	sb->s_op = &nilfs_sops;
1084	sb->s_export_op = &nilfs_export_ops;
1085	sb->s_root = NULL;
1086	sb->s_time_gran = 1;
1087	sb->s_max_links = NILFS_LINK_MAX;
1088
1089	sb->s_bdi = bdi_get(sb->s_bdev->bd_disk->bdi);
1090
1091	err = load_nilfs(nilfs, sb);
1092	if (err)
1093		goto failed_nilfs;
1094
 
 
 
 
1095	cno = nilfs_last_cno(nilfs);
1096	err = nilfs_attach_checkpoint(sb, cno, true, &fsroot);
1097	if (err) {
1098		nilfs_err(sb,
1099			  "error %d while loading last checkpoint (checkpoint number=%llu)",
1100			  err, (unsigned long long)cno);
1101		goto failed_unload;
1102	}
1103
1104	if (!sb_rdonly(sb)) {
1105		err = nilfs_attach_log_writer(sb, fsroot);
1106		if (err)
1107			goto failed_checkpoint;
1108	}
1109
1110	err = nilfs_get_root_dentry(sb, fsroot, &sb->s_root);
1111	if (err)
1112		goto failed_segctor;
1113
1114	nilfs_put_root(fsroot);
1115
1116	if (!sb_rdonly(sb)) {
1117		down_write(&nilfs->ns_sem);
1118		nilfs_setup_super(sb, true);
1119		up_write(&nilfs->ns_sem);
1120	}
1121
1122	return 0;
1123
1124 failed_segctor:
1125	nilfs_detach_log_writer(sb);
1126
1127 failed_checkpoint:
1128	nilfs_put_root(fsroot);
1129
1130 failed_unload:
1131	nilfs_sysfs_delete_device_group(nilfs);
1132	iput(nilfs->ns_sufile);
1133	iput(nilfs->ns_cpfile);
1134	iput(nilfs->ns_dat);
1135
1136 failed_nilfs:
1137	destroy_nilfs(nilfs);
1138	return err;
1139}
1140
1141static int nilfs_remount(struct super_block *sb, int *flags, char *data)
1142{
 
 
1143	struct the_nilfs *nilfs = sb->s_fs_info;
1144	unsigned long old_sb_flags;
1145	unsigned long old_mount_opt;
1146	int err;
1147
1148	sync_filesystem(sb);
1149	old_sb_flags = sb->s_flags;
1150	old_mount_opt = nilfs->ns_mount_opt;
1151
1152	if (!parse_options(data, sb, 1)) {
1153		err = -EINVAL;
1154		goto restore_opts;
1155	}
1156	sb->s_flags = (sb->s_flags & ~SB_POSIXACL);
1157
1158	err = -EINVAL;
1159
1160	if (!nilfs_valid_fs(nilfs)) {
1161		nilfs_warn(sb,
1162			   "couldn't remount because the filesystem is in an incomplete recovery state");
1163		goto restore_opts;
1164	}
1165
1166	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
1167		goto out;
1168	if (*flags & SB_RDONLY) {
1169		sb->s_flags |= SB_RDONLY;
1170
1171		/*
1172		 * Remounting a valid RW partition RDONLY, so set
1173		 * the RDONLY flag and then mark the partition as valid again.
1174		 */
1175		down_write(&nilfs->ns_sem);
1176		nilfs_cleanup_super(sb);
1177		up_write(&nilfs->ns_sem);
1178	} else {
1179		__u64 features;
1180		struct nilfs_root *root;
1181
1182		/*
1183		 * Mounting a RDONLY partition read-write, so reread and
1184		 * store the current valid flag.  (It may have been changed
1185		 * by fsck since we originally mounted the partition.)
1186		 */
1187		down_read(&nilfs->ns_sem);
1188		features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) &
1189			~NILFS_FEATURE_COMPAT_RO_SUPP;
1190		up_read(&nilfs->ns_sem);
1191		if (features) {
1192			nilfs_warn(sb,
1193				   "couldn't remount RDWR because of unsupported optional features (%llx)",
1194				   (unsigned long long)features);
1195			err = -EROFS;
1196			goto restore_opts;
1197		}
1198
1199		sb->s_flags &= ~SB_RDONLY;
1200
1201		root = NILFS_I(d_inode(sb->s_root))->i_root;
1202		err = nilfs_attach_log_writer(sb, root);
1203		if (err)
1204			goto restore_opts;
 
 
1205
1206		down_write(&nilfs->ns_sem);
1207		nilfs_setup_super(sb, true);
1208		up_write(&nilfs->ns_sem);
1209	}
1210 out:
1211	return 0;
1212
1213 restore_opts:
1214	sb->s_flags = old_sb_flags;
1215	nilfs->ns_mount_opt = old_mount_opt;
1216	return err;
1217}
1218
1219struct nilfs_super_data {
1220	__u64 cno;
1221	int flags;
1222};
1223
1224static int nilfs_parse_snapshot_option(const char *option,
1225				       const substring_t *arg,
1226				       struct nilfs_super_data *sd)
1227{
1228	unsigned long long val;
1229	const char *msg = NULL;
1230	int err;
1231
1232	if (!(sd->flags & SB_RDONLY)) {
1233		msg = "read-only option is not specified";
1234		goto parse_error;
1235	}
1236
1237	err = kstrtoull(arg->from, 0, &val);
1238	if (err) {
1239		if (err == -ERANGE)
1240			msg = "too large checkpoint number";
1241		else
1242			msg = "malformed argument";
1243		goto parse_error;
1244	} else if (val == 0) {
1245		msg = "invalid checkpoint number 0";
1246		goto parse_error;
1247	}
1248	sd->cno = val;
1249	return 0;
1250
1251parse_error:
1252	nilfs_err(NULL, "invalid option \"%s\": %s", option, msg);
1253	return 1;
1254}
1255
1256/**
1257 * nilfs_identify - pre-read mount options needed to identify mount instance
1258 * @data: mount options
1259 * @sd: nilfs_super_data
1260 */
1261static int nilfs_identify(char *data, struct nilfs_super_data *sd)
1262{
1263	char *p, *options = data;
1264	substring_t args[MAX_OPT_ARGS];
1265	int token;
1266	int ret = 0;
1267
1268	do {
1269		p = strsep(&options, ",");
1270		if (p != NULL && *p) {
1271			token = match_token(p, tokens, args);
1272			if (token == Opt_snapshot)
1273				ret = nilfs_parse_snapshot_option(p, &args[0],
1274								  sd);
1275		}
1276		if (!options)
1277			break;
1278		BUG_ON(options == data);
1279		*(options - 1) = ',';
1280	} while (!ret);
1281	return ret;
1282}
1283
1284static int nilfs_set_bdev_super(struct super_block *s, void *data)
1285{
1286	s->s_dev = *(dev_t *)data;
1287	return 0;
1288}
1289
1290static int nilfs_test_bdev_super(struct super_block *s, void *data)
1291{
1292	return !(s->s_iflags & SB_I_RETIRED) && s->s_dev == *(dev_t *)data;
1293}
1294
1295static struct dentry *
1296nilfs_mount(struct file_system_type *fs_type, int flags,
1297	     const char *dev_name, void *data)
1298{
1299	struct nilfs_super_data sd = { .flags = flags };
1300	struct super_block *s;
1301	dev_t dev;
1302	int err;
1303
1304	if (nilfs_identify(data, &sd))
1305		return ERR_PTR(-EINVAL);
 
 
 
 
1306
1307	err = lookup_bdev(dev_name, &dev);
1308	if (err)
1309		return ERR_PTR(err);
1310
1311	s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, flags,
1312		 &dev);
1313	if (IS_ERR(s))
1314		return ERR_CAST(s);
1315
1316	if (!s->s_root) {
1317		err = setup_bdev_super(s, flags, NULL);
1318		if (!err)
1319			err = nilfs_fill_super(s, data,
1320					       flags & SB_SILENT ? 1 : 0);
1321		if (err)
1322			goto failed_super;
1323
1324		s->s_flags |= SB_ACTIVE;
1325	} else if (!sd.cno) {
1326		if (nilfs_tree_is_busy(s->s_root)) {
1327			if ((flags ^ s->s_flags) & SB_RDONLY) {
1328				nilfs_err(s,
1329					  "the device already has a %s mount.",
1330					  sb_rdonly(s) ? "read-only" : "read/write");
1331				err = -EBUSY;
1332				goto failed_super;
1333			}
1334		} else {
1335			/*
1336			 * Try remount to setup mount states if the current
1337			 * tree is not mounted and only snapshots use this sb.
 
 
 
1338			 */
1339			err = nilfs_remount(s, &flags, data);
1340			if (err)
 
 
 
1341				goto failed_super;
 
 
1342		}
1343	}
1344
1345	if (sd.cno) {
1346		struct dentry *root_dentry;
1347
1348		err = nilfs_attach_snapshot(s, sd.cno, &root_dentry);
1349		if (err)
1350			goto failed_super;
1351		return root_dentry;
 
1352	}
1353
1354	return dget(s->s_root);
 
1355
1356 failed_super:
1357	deactivate_locked_super(s);
1358	return ERR_PTR(err);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1359}
1360
1361struct file_system_type nilfs_fs_type = {
1362	.owner    = THIS_MODULE,
1363	.name     = "nilfs2",
1364	.mount    = nilfs_mount,
1365	.kill_sb  = kill_block_super,
1366	.fs_flags = FS_REQUIRES_DEV,
 
 
1367};
1368MODULE_ALIAS_FS("nilfs2");
1369
1370static void nilfs_inode_init_once(void *obj)
1371{
1372	struct nilfs_inode_info *ii = obj;
1373
1374	INIT_LIST_HEAD(&ii->i_dirty);
1375#ifdef CONFIG_NILFS_XATTR
1376	init_rwsem(&ii->xattr_sem);
1377#endif
1378	inode_init_once(&ii->vfs_inode);
1379}
1380
1381static void nilfs_segbuf_init_once(void *obj)
1382{
1383	memset(obj, 0, sizeof(struct nilfs_segment_buffer));
1384}
1385
1386static void nilfs_destroy_cachep(void)
1387{
1388	/*
1389	 * Make sure all delayed rcu free inodes are flushed before we
1390	 * destroy cache.
1391	 */
1392	rcu_barrier();
1393
1394	kmem_cache_destroy(nilfs_inode_cachep);
1395	kmem_cache_destroy(nilfs_transaction_cachep);
1396	kmem_cache_destroy(nilfs_segbuf_cachep);
1397	kmem_cache_destroy(nilfs_btree_path_cache);
1398}
1399
1400static int __init nilfs_init_cachep(void)
1401{
1402	nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
1403			sizeof(struct nilfs_inode_info), 0,
1404			SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT,
1405			nilfs_inode_init_once);
1406	if (!nilfs_inode_cachep)
1407		goto fail;
1408
1409	nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache",
1410			sizeof(struct nilfs_transaction_info), 0,
1411			SLAB_RECLAIM_ACCOUNT, NULL);
1412	if (!nilfs_transaction_cachep)
1413		goto fail;
1414
1415	nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache",
1416			sizeof(struct nilfs_segment_buffer), 0,
1417			SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once);
1418	if (!nilfs_segbuf_cachep)
1419		goto fail;
1420
1421	nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache",
1422			sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX,
1423			0, 0, NULL);
1424	if (!nilfs_btree_path_cache)
1425		goto fail;
1426
1427	return 0;
1428
1429fail:
1430	nilfs_destroy_cachep();
1431	return -ENOMEM;
1432}
1433
1434static int __init init_nilfs_fs(void)
1435{
1436	int err;
1437
1438	err = nilfs_init_cachep();
1439	if (err)
1440		goto fail;
1441
1442	err = nilfs_sysfs_init();
1443	if (err)
1444		goto free_cachep;
1445
1446	err = register_filesystem(&nilfs_fs_type);
1447	if (err)
1448		goto deinit_sysfs_entry;
1449
1450	printk(KERN_INFO "NILFS version 2 loaded\n");
1451	return 0;
1452
1453deinit_sysfs_entry:
1454	nilfs_sysfs_exit();
1455free_cachep:
1456	nilfs_destroy_cachep();
1457fail:
1458	return err;
1459}
1460
1461static void __exit exit_nilfs_fs(void)
1462{
1463	nilfs_destroy_cachep();
1464	nilfs_sysfs_exit();
1465	unregister_filesystem(&nilfs_fs_type);
1466}
1467
1468module_init(init_nilfs_fs)
1469module_exit(exit_nilfs_fs)
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * NILFS module and super block management.
   4 *
   5 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
   6 *
   7 * Written by Ryusuke Konishi.
   8 */
   9/*
  10 *  linux/fs/ext2/super.c
  11 *
  12 * Copyright (C) 1992, 1993, 1994, 1995
  13 * Remy Card (card@masi.ibp.fr)
  14 * Laboratoire MASI - Institut Blaise Pascal
  15 * Universite Pierre et Marie Curie (Paris VI)
  16 *
  17 *  from
  18 *
  19 *  linux/fs/minix/inode.c
  20 *
  21 *  Copyright (C) 1991, 1992  Linus Torvalds
  22 *
  23 *  Big-endian to little-endian byte-swapping/bitmaps by
  24 *        David S. Miller (davem@caip.rutgers.edu), 1995
  25 */
  26
  27#include <linux/module.h>
  28#include <linux/string.h>
  29#include <linux/slab.h>
  30#include <linux/init.h>
  31#include <linux/blkdev.h>
 
  32#include <linux/crc32.h>
  33#include <linux/vfs.h>
  34#include <linux/writeback.h>
  35#include <linux/seq_file.h>
  36#include <linux/mount.h>
  37#include <linux/fs_context.h>
  38#include <linux/fs_parser.h>
  39#include "nilfs.h"
  40#include "export.h"
  41#include "mdt.h"
  42#include "alloc.h"
  43#include "btree.h"
  44#include "btnode.h"
  45#include "page.h"
  46#include "cpfile.h"
  47#include "sufile.h" /* nilfs_sufile_resize(), nilfs_sufile_set_alloc_range() */
  48#include "ifile.h"
  49#include "dat.h"
  50#include "segment.h"
  51#include "segbuf.h"
  52
  53MODULE_AUTHOR("NTT Corp.");
  54MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
  55		   "(NILFS)");
  56MODULE_LICENSE("GPL");
  57
  58static struct kmem_cache *nilfs_inode_cachep;
  59struct kmem_cache *nilfs_transaction_cachep;
  60struct kmem_cache *nilfs_segbuf_cachep;
  61struct kmem_cache *nilfs_btree_path_cache;
  62
  63static int nilfs_setup_super(struct super_block *sb, int is_mount);
 
  64
  65void __nilfs_msg(struct super_block *sb, const char *fmt, ...)
  66{
  67	struct va_format vaf;
  68	va_list args;
  69	int level;
  70
  71	va_start(args, fmt);
  72
  73	level = printk_get_level(fmt);
  74	vaf.fmt = printk_skip_level(fmt);
  75	vaf.va = &args;
  76
  77	if (sb)
  78		printk("%c%cNILFS (%s): %pV\n",
  79		       KERN_SOH_ASCII, level, sb->s_id, &vaf);
  80	else
  81		printk("%c%cNILFS: %pV\n",
  82		       KERN_SOH_ASCII, level, &vaf);
  83
  84	va_end(args);
  85}
  86
  87static void nilfs_set_error(struct super_block *sb)
  88{
  89	struct the_nilfs *nilfs = sb->s_fs_info;
  90	struct nilfs_super_block **sbp;
  91
  92	down_write(&nilfs->ns_sem);
  93	if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
  94		nilfs->ns_mount_state |= NILFS_ERROR_FS;
  95		sbp = nilfs_prepare_super(sb, 0);
  96		if (likely(sbp)) {
  97			sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
  98			if (sbp[1])
  99				sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
 100			nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
 101		}
 102	}
 103	up_write(&nilfs->ns_sem);
 104}
 105
 106/**
 107 * __nilfs_error() - report failure condition on a filesystem
 108 * @sb:       super block instance
 109 * @function: name of calling function
 110 * @fmt:      format string for message to be output
 111 * @...:      optional arguments to @fmt
 112 *
 113 * __nilfs_error() sets an ERROR_FS flag on the superblock as well as
 114 * reporting an error message.  This function should be called when
 115 * NILFS detects incoherences or defects of meta data on disk.
 116 *
 117 * This implements the body of nilfs_error() macro.  Normally,
 118 * nilfs_error() should be used.  As for sustainable errors such as a
 119 * single-shot I/O error, nilfs_err() should be used instead.
 120 *
 121 * Callers should not add a trailing newline since this will do it.
 122 */
 123void __nilfs_error(struct super_block *sb, const char *function,
 124		   const char *fmt, ...)
 125{
 126	struct the_nilfs *nilfs = sb->s_fs_info;
 127	struct va_format vaf;
 128	va_list args;
 129
 130	va_start(args, fmt);
 131
 132	vaf.fmt = fmt;
 133	vaf.va = &args;
 134
 135	printk(KERN_CRIT "NILFS error (device %s): %s: %pV\n",
 136	       sb->s_id, function, &vaf);
 137
 138	va_end(args);
 139
 140	if (!sb_rdonly(sb)) {
 141		nilfs_set_error(sb);
 142
 143		if (nilfs_test_opt(nilfs, ERRORS_RO)) {
 144			printk(KERN_CRIT "Remounting filesystem read-only\n");
 145			sb->s_flags |= SB_RDONLY;
 146		}
 147	}
 148
 149	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
 150		panic("NILFS (device %s): panic forced after error\n",
 151		      sb->s_id);
 152}
 153
 154struct inode *nilfs_alloc_inode(struct super_block *sb)
 155{
 156	struct nilfs_inode_info *ii;
 157
 158	ii = alloc_inode_sb(sb, nilfs_inode_cachep, GFP_NOFS);
 159	if (!ii)
 160		return NULL;
 161	ii->i_bh = NULL;
 162	ii->i_state = 0;
 163	ii->i_type = 0;
 164	ii->i_cno = 0;
 165	ii->i_assoc_inode = NULL;
 166	ii->i_bmap = &ii->i_bmap_data;
 167	return &ii->vfs_inode;
 168}
 169
 170static void nilfs_free_inode(struct inode *inode)
 171{
 172	if (nilfs_is_metadata_file_inode(inode))
 173		nilfs_mdt_destroy(inode);
 174
 175	kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
 176}
 177
 178static int nilfs_sync_super(struct super_block *sb, int flag)
 179{
 180	struct the_nilfs *nilfs = sb->s_fs_info;
 181	int err;
 182
 183 retry:
 184	set_buffer_dirty(nilfs->ns_sbh[0]);
 185	if (nilfs_test_opt(nilfs, BARRIER)) {
 186		err = __sync_dirty_buffer(nilfs->ns_sbh[0],
 187					  REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
 188	} else {
 189		err = sync_dirty_buffer(nilfs->ns_sbh[0]);
 190	}
 191
 192	if (unlikely(err)) {
 193		nilfs_err(sb, "unable to write superblock: err=%d", err);
 194		if (err == -EIO && nilfs->ns_sbh[1]) {
 195			/*
 196			 * sbp[0] points to newer log than sbp[1],
 197			 * so copy sbp[0] to sbp[1] to take over sbp[0].
 198			 */
 199			memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0],
 200			       nilfs->ns_sbsize);
 201			nilfs_fall_back_super_block(nilfs);
 202			goto retry;
 203		}
 204	} else {
 205		struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
 206
 207		nilfs->ns_sbwcount++;
 208
 209		/*
 210		 * The latest segment becomes trailable from the position
 211		 * written in superblock.
 212		 */
 213		clear_nilfs_discontinued(nilfs);
 214
 215		/* update GC protection for recent segments */
 216		if (nilfs->ns_sbh[1]) {
 217			if (flag == NILFS_SB_COMMIT_ALL) {
 218				set_buffer_dirty(nilfs->ns_sbh[1]);
 219				if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0)
 220					goto out;
 221			}
 222			if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) <
 223			    le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno))
 224				sbp = nilfs->ns_sbp[1];
 225		}
 226
 227		spin_lock(&nilfs->ns_last_segment_lock);
 228		nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
 229		spin_unlock(&nilfs->ns_last_segment_lock);
 230	}
 231 out:
 232	return err;
 233}
 234
 235void nilfs_set_log_cursor(struct nilfs_super_block *sbp,
 236			  struct the_nilfs *nilfs)
 237{
 238	sector_t nfreeblocks;
 239
 240	/* nilfs->ns_sem must be locked by the caller. */
 241	nilfs_count_free_blocks(nilfs, &nfreeblocks);
 242	sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks);
 243
 244	spin_lock(&nilfs->ns_last_segment_lock);
 245	sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
 246	sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
 247	sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
 248	spin_unlock(&nilfs->ns_last_segment_lock);
 249}
 250
 251struct nilfs_super_block **nilfs_prepare_super(struct super_block *sb,
 252					       int flip)
 253{
 254	struct the_nilfs *nilfs = sb->s_fs_info;
 255	struct nilfs_super_block **sbp = nilfs->ns_sbp;
 256
 257	/* nilfs->ns_sem must be locked by the caller. */
 258	if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
 259		if (sbp[1] &&
 260		    sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) {
 261			memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
 262		} else {
 263			nilfs_crit(sb, "superblock broke");
 264			return NULL;
 265		}
 266	} else if (sbp[1] &&
 267		   sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
 268		memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
 269	}
 270
 271	if (flip && sbp[1])
 272		nilfs_swap_super_block(nilfs);
 273
 274	return sbp;
 275}
 276
 277int nilfs_commit_super(struct super_block *sb, int flag)
 278{
 279	struct the_nilfs *nilfs = sb->s_fs_info;
 280	struct nilfs_super_block **sbp = nilfs->ns_sbp;
 281	time64_t t;
 282
 283	/* nilfs->ns_sem must be locked by the caller. */
 284	t = ktime_get_real_seconds();
 285	nilfs->ns_sbwtime = t;
 286	sbp[0]->s_wtime = cpu_to_le64(t);
 287	sbp[0]->s_sum = 0;
 288	sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
 289					     (unsigned char *)sbp[0],
 290					     nilfs->ns_sbsize));
 291	if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) {
 292		sbp[1]->s_wtime = sbp[0]->s_wtime;
 293		sbp[1]->s_sum = 0;
 294		sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
 295					    (unsigned char *)sbp[1],
 296					    nilfs->ns_sbsize));
 297	}
 298	clear_nilfs_sb_dirty(nilfs);
 299	nilfs->ns_flushed_device = 1;
 300	/* make sure store to ns_flushed_device cannot be reordered */
 301	smp_wmb();
 302	return nilfs_sync_super(sb, flag);
 303}
 304
 305/**
 306 * nilfs_cleanup_super() - write filesystem state for cleanup
 307 * @sb: super block instance to be unmounted or degraded to read-only
 308 *
 309 * This function restores state flags in the on-disk super block.
 310 * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the
 311 * filesystem was not clean previously.
 312 */
 313int nilfs_cleanup_super(struct super_block *sb)
 314{
 315	struct the_nilfs *nilfs = sb->s_fs_info;
 316	struct nilfs_super_block **sbp;
 317	int flag = NILFS_SB_COMMIT;
 318	int ret = -EIO;
 319
 320	sbp = nilfs_prepare_super(sb, 0);
 321	if (sbp) {
 322		sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
 323		nilfs_set_log_cursor(sbp[0], nilfs);
 324		if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) {
 325			/*
 326			 * make the "clean" flag also to the opposite
 327			 * super block if both super blocks point to
 328			 * the same checkpoint.
 329			 */
 330			sbp[1]->s_state = sbp[0]->s_state;
 331			flag = NILFS_SB_COMMIT_ALL;
 332		}
 333		ret = nilfs_commit_super(sb, flag);
 334	}
 335	return ret;
 336}
 337
 338/**
 339 * nilfs_move_2nd_super - relocate secondary super block
 340 * @sb: super block instance
 341 * @sb2off: new offset of the secondary super block (in bytes)
 342 */
 343static int nilfs_move_2nd_super(struct super_block *sb, loff_t sb2off)
 344{
 345	struct the_nilfs *nilfs = sb->s_fs_info;
 346	struct buffer_head *nsbh;
 347	struct nilfs_super_block *nsbp;
 348	sector_t blocknr, newblocknr;
 349	unsigned long offset;
 350	int sb2i;  /* array index of the secondary superblock */
 351	int ret = 0;
 352
 353	/* nilfs->ns_sem must be locked by the caller. */
 354	if (nilfs->ns_sbh[1] &&
 355	    nilfs->ns_sbh[1]->b_blocknr > nilfs->ns_first_data_block) {
 356		sb2i = 1;
 357		blocknr = nilfs->ns_sbh[1]->b_blocknr;
 358	} else if (nilfs->ns_sbh[0]->b_blocknr > nilfs->ns_first_data_block) {
 359		sb2i = 0;
 360		blocknr = nilfs->ns_sbh[0]->b_blocknr;
 361	} else {
 362		sb2i = -1;
 363		blocknr = 0;
 364	}
 365	if (sb2i >= 0 && (u64)blocknr << nilfs->ns_blocksize_bits == sb2off)
 366		goto out;  /* super block location is unchanged */
 367
 368	/* Get new super block buffer */
 369	newblocknr = sb2off >> nilfs->ns_blocksize_bits;
 370	offset = sb2off & (nilfs->ns_blocksize - 1);
 371	nsbh = sb_getblk(sb, newblocknr);
 372	if (!nsbh) {
 373		nilfs_warn(sb,
 374			   "unable to move secondary superblock to block %llu",
 375			   (unsigned long long)newblocknr);
 376		ret = -EIO;
 377		goto out;
 378	}
 379	nsbp = (void *)nsbh->b_data + offset;
 380
 381	lock_buffer(nsbh);
 382	if (sb2i >= 0) {
 383		/*
 384		 * The position of the second superblock only changes by 4KiB,
 385		 * which is larger than the maximum superblock data size
 386		 * (= 1KiB), so there is no need to use memmove() to allow
 387		 * overlap between source and destination.
 388		 */
 389		memcpy(nsbp, nilfs->ns_sbp[sb2i], nilfs->ns_sbsize);
 390
 391		/*
 392		 * Zero fill after copy to avoid overwriting in case of move
 393		 * within the same block.
 394		 */
 395		memset(nsbh->b_data, 0, offset);
 396		memset((void *)nsbp + nilfs->ns_sbsize, 0,
 397		       nsbh->b_size - offset - nilfs->ns_sbsize);
 398	} else {
 399		memset(nsbh->b_data, 0, nsbh->b_size);
 400	}
 401	set_buffer_uptodate(nsbh);
 402	unlock_buffer(nsbh);
 403
 404	if (sb2i >= 0) {
 405		brelse(nilfs->ns_sbh[sb2i]);
 406		nilfs->ns_sbh[sb2i] = nsbh;
 407		nilfs->ns_sbp[sb2i] = nsbp;
 408	} else if (nilfs->ns_sbh[0]->b_blocknr < nilfs->ns_first_data_block) {
 409		/* secondary super block will be restored to index 1 */
 410		nilfs->ns_sbh[1] = nsbh;
 411		nilfs->ns_sbp[1] = nsbp;
 412	} else {
 413		brelse(nsbh);
 414	}
 415out:
 416	return ret;
 417}
 418
 419/**
 420 * nilfs_resize_fs - resize the filesystem
 421 * @sb: super block instance
 422 * @newsize: new size of the filesystem (in bytes)
 423 */
 424int nilfs_resize_fs(struct super_block *sb, __u64 newsize)
 425{
 426	struct the_nilfs *nilfs = sb->s_fs_info;
 427	struct nilfs_super_block **sbp;
 428	__u64 devsize, newnsegs;
 429	loff_t sb2off;
 430	int ret;
 431
 432	ret = -ERANGE;
 433	devsize = bdev_nr_bytes(sb->s_bdev);
 434	if (newsize > devsize)
 435		goto out;
 436
 437	/*
 438	 * Prevent underflow in second superblock position calculation.
 439	 * The exact minimum size check is done in nilfs_sufile_resize().
 440	 */
 441	if (newsize < 4096) {
 442		ret = -ENOSPC;
 443		goto out;
 444	}
 445
 446	/*
 447	 * Write lock is required to protect some functions depending
 448	 * on the number of segments, the number of reserved segments,
 449	 * and so forth.
 450	 */
 451	down_write(&nilfs->ns_segctor_sem);
 452
 453	sb2off = NILFS_SB2_OFFSET_BYTES(newsize);
 454	newnsegs = sb2off >> nilfs->ns_blocksize_bits;
 455	newnsegs = div64_ul(newnsegs, nilfs->ns_blocks_per_segment);
 456
 457	ret = nilfs_sufile_resize(nilfs->ns_sufile, newnsegs);
 458	up_write(&nilfs->ns_segctor_sem);
 459	if (ret < 0)
 460		goto out;
 461
 462	ret = nilfs_construct_segment(sb);
 463	if (ret < 0)
 464		goto out;
 465
 466	down_write(&nilfs->ns_sem);
 467	nilfs_move_2nd_super(sb, sb2off);
 468	ret = -EIO;
 469	sbp = nilfs_prepare_super(sb, 0);
 470	if (likely(sbp)) {
 471		nilfs_set_log_cursor(sbp[0], nilfs);
 472		/*
 473		 * Drop NILFS_RESIZE_FS flag for compatibility with
 474		 * mount-time resize which may be implemented in a
 475		 * future release.
 476		 */
 477		sbp[0]->s_state = cpu_to_le16(le16_to_cpu(sbp[0]->s_state) &
 478					      ~NILFS_RESIZE_FS);
 479		sbp[0]->s_dev_size = cpu_to_le64(newsize);
 480		sbp[0]->s_nsegments = cpu_to_le64(nilfs->ns_nsegments);
 481		if (sbp[1])
 482			memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
 483		ret = nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
 484	}
 485	up_write(&nilfs->ns_sem);
 486
 487	/*
 488	 * Reset the range of allocatable segments last.  This order
 489	 * is important in the case of expansion because the secondary
 490	 * superblock must be protected from log write until migration
 491	 * completes.
 492	 */
 493	if (!ret)
 494		nilfs_sufile_set_alloc_range(nilfs->ns_sufile, 0, newnsegs - 1);
 495out:
 496	return ret;
 497}
 498
 499static void nilfs_put_super(struct super_block *sb)
 500{
 501	struct the_nilfs *nilfs = sb->s_fs_info;
 502
 503	nilfs_detach_log_writer(sb);
 504
 505	if (!sb_rdonly(sb)) {
 506		down_write(&nilfs->ns_sem);
 507		nilfs_cleanup_super(sb);
 508		up_write(&nilfs->ns_sem);
 509	}
 510
 511	nilfs_sysfs_delete_device_group(nilfs);
 512	iput(nilfs->ns_sufile);
 513	iput(nilfs->ns_cpfile);
 514	iput(nilfs->ns_dat);
 515
 516	destroy_nilfs(nilfs);
 517	sb->s_fs_info = NULL;
 518}
 519
 520static int nilfs_sync_fs(struct super_block *sb, int wait)
 521{
 522	struct the_nilfs *nilfs = sb->s_fs_info;
 523	struct nilfs_super_block **sbp;
 524	int err = 0;
 525
 526	/* This function is called when super block should be written back */
 527	if (wait)
 528		err = nilfs_construct_segment(sb);
 529
 530	down_write(&nilfs->ns_sem);
 531	if (nilfs_sb_dirty(nilfs)) {
 532		sbp = nilfs_prepare_super(sb, nilfs_sb_will_flip(nilfs));
 533		if (likely(sbp)) {
 534			nilfs_set_log_cursor(sbp[0], nilfs);
 535			nilfs_commit_super(sb, NILFS_SB_COMMIT);
 536		}
 537	}
 538	up_write(&nilfs->ns_sem);
 539
 540	if (!err)
 541		err = nilfs_flush_device(nilfs);
 542
 543	return err;
 544}
 545
 546int nilfs_attach_checkpoint(struct super_block *sb, __u64 cno, int curr_mnt,
 547			    struct nilfs_root **rootp)
 548{
 549	struct the_nilfs *nilfs = sb->s_fs_info;
 550	struct nilfs_root *root;
 
 
 551	int err = -ENOMEM;
 552
 553	root = nilfs_find_or_create_root(
 554		nilfs, curr_mnt ? NILFS_CPTREE_CURRENT_CNO : cno);
 555	if (!root)
 556		return err;
 557
 558	if (root->ifile)
 559		goto reuse; /* already attached checkpoint */
 560
 561	down_read(&nilfs->ns_segctor_sem);
 562	err = nilfs_ifile_read(sb, root, cno, nilfs->ns_inode_size);
 
 563	up_read(&nilfs->ns_segctor_sem);
 564	if (unlikely(err))
 
 
 
 
 
 
 565		goto failed;
 
 
 
 
 
 
 
 
 
 
 
 
 
 566
 567 reuse:
 568	*rootp = root;
 569	return 0;
 570
 
 
 571 failed:
 572	if (err == -EINVAL)
 573		nilfs_err(sb, "Invalid checkpoint (checkpoint number=%llu)",
 574			  (unsigned long long)cno);
 575	nilfs_put_root(root);
 576
 577	return err;
 578}
 579
 580static int nilfs_freeze(struct super_block *sb)
 581{
 582	struct the_nilfs *nilfs = sb->s_fs_info;
 583	int err;
 584
 585	if (sb_rdonly(sb))
 586		return 0;
 587
 588	/* Mark super block clean */
 589	down_write(&nilfs->ns_sem);
 590	err = nilfs_cleanup_super(sb);
 591	up_write(&nilfs->ns_sem);
 592	return err;
 593}
 594
 595static int nilfs_unfreeze(struct super_block *sb)
 596{
 597	struct the_nilfs *nilfs = sb->s_fs_info;
 598
 599	if (sb_rdonly(sb))
 600		return 0;
 601
 602	down_write(&nilfs->ns_sem);
 603	nilfs_setup_super(sb, false);
 604	up_write(&nilfs->ns_sem);
 605	return 0;
 606}
 607
 608static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
 609{
 610	struct super_block *sb = dentry->d_sb;
 611	struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
 612	struct the_nilfs *nilfs = root->nilfs;
 613	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
 614	unsigned long long blocks;
 615	unsigned long overhead;
 616	unsigned long nrsvblocks;
 617	sector_t nfreeblocks;
 618	u64 nmaxinodes, nfreeinodes;
 619	int err;
 620
 621	/*
 622	 * Compute all of the segment blocks
 623	 *
 624	 * The blocks before first segment and after last segment
 625	 * are excluded.
 626	 */
 627	blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
 628		- nilfs->ns_first_data_block;
 629	nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
 630
 631	/*
 632	 * Compute the overhead
 633	 *
 634	 * When distributing meta data blocks outside segment structure,
 635	 * We must count them as the overhead.
 636	 */
 637	overhead = 0;
 638
 639	err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
 640	if (unlikely(err))
 641		return err;
 642
 643	err = nilfs_ifile_count_free_inodes(root->ifile,
 644					    &nmaxinodes, &nfreeinodes);
 645	if (unlikely(err)) {
 646		nilfs_warn(sb, "failed to count free inodes: err=%d", err);
 647		if (err == -ERANGE) {
 648			/*
 649			 * If nilfs_palloc_count_max_entries() returns
 650			 * -ERANGE error code then we simply treat
 651			 * curent inodes count as maximum possible and
 652			 * zero as free inodes value.
 653			 */
 654			nmaxinodes = atomic64_read(&root->inodes_count);
 655			nfreeinodes = 0;
 656			err = 0;
 657		} else
 658			return err;
 659	}
 660
 661	buf->f_type = NILFS_SUPER_MAGIC;
 662	buf->f_bsize = sb->s_blocksize;
 663	buf->f_blocks = blocks - overhead;
 664	buf->f_bfree = nfreeblocks;
 665	buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
 666		(buf->f_bfree - nrsvblocks) : 0;
 667	buf->f_files = nmaxinodes;
 668	buf->f_ffree = nfreeinodes;
 669	buf->f_namelen = NILFS_NAME_LEN;
 670	buf->f_fsid = u64_to_fsid(id);
 671
 672	return 0;
 673}
 674
 675static int nilfs_show_options(struct seq_file *seq, struct dentry *dentry)
 676{
 677	struct super_block *sb = dentry->d_sb;
 678	struct the_nilfs *nilfs = sb->s_fs_info;
 679	struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
 680
 681	if (!nilfs_test_opt(nilfs, BARRIER))
 682		seq_puts(seq, ",nobarrier");
 683	if (root->cno != NILFS_CPTREE_CURRENT_CNO)
 684		seq_printf(seq, ",cp=%llu", (unsigned long long)root->cno);
 685	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
 686		seq_puts(seq, ",errors=panic");
 687	if (nilfs_test_opt(nilfs, ERRORS_CONT))
 688		seq_puts(seq, ",errors=continue");
 689	if (nilfs_test_opt(nilfs, STRICT_ORDER))
 690		seq_puts(seq, ",order=strict");
 691	if (nilfs_test_opt(nilfs, NORECOVERY))
 692		seq_puts(seq, ",norecovery");
 693	if (nilfs_test_opt(nilfs, DISCARD))
 694		seq_puts(seq, ",discard");
 695
 696	return 0;
 697}
 698
 699static const struct super_operations nilfs_sops = {
 700	.alloc_inode    = nilfs_alloc_inode,
 701	.free_inode     = nilfs_free_inode,
 702	.dirty_inode    = nilfs_dirty_inode,
 703	.evict_inode    = nilfs_evict_inode,
 704	.put_super      = nilfs_put_super,
 705	.sync_fs        = nilfs_sync_fs,
 706	.freeze_fs	= nilfs_freeze,
 707	.unfreeze_fs	= nilfs_unfreeze,
 708	.statfs         = nilfs_statfs,
 
 709	.show_options = nilfs_show_options
 710};
 711
 712enum {
 713	Opt_err, Opt_barrier, Opt_snapshot, Opt_order, Opt_norecovery,
 714	Opt_discard,
 
 715};
 716
 717static const struct constant_table nilfs_param_err[] = {
 718	{"continue",	NILFS_MOUNT_ERRORS_CONT},
 719	{"panic",	NILFS_MOUNT_ERRORS_PANIC},
 720	{"remount-ro",	NILFS_MOUNT_ERRORS_RO},
 721	{}
 
 
 
 
 
 
 
 722};
 723
 724static const struct fs_parameter_spec nilfs_param_spec[] = {
 725	fsparam_enum	("errors", Opt_err, nilfs_param_err),
 726	fsparam_flag_no	("barrier", Opt_barrier),
 727	fsparam_u64	("cp", Opt_snapshot),
 728	fsparam_string	("order", Opt_order),
 729	fsparam_flag	("norecovery", Opt_norecovery),
 730	fsparam_flag_no	("discard", Opt_discard),
 731	{}
 732};
 
 
 733
 734struct nilfs_fs_context {
 735	unsigned long ns_mount_opt;
 736	__u64 cno;
 737};
 738
 739static int nilfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
 740{
 741	struct nilfs_fs_context *nilfs = fc->fs_private;
 742	int is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
 743	struct fs_parse_result result;
 744	int opt;
 745
 746	opt = fs_parse(fc, nilfs_param_spec, param, &result);
 747	if (opt < 0)
 748		return opt;
 749
 750	switch (opt) {
 751	case Opt_barrier:
 752		if (result.negated)
 753			nilfs_clear_opt(nilfs, BARRIER);
 754		else
 755			nilfs_set_opt(nilfs, BARRIER);
 756		break;
 757	case Opt_order:
 758		if (strcmp(param->string, "relaxed") == 0)
 759			/* Ordered data semantics */
 760			nilfs_clear_opt(nilfs, STRICT_ORDER);
 761		else if (strcmp(param->string, "strict") == 0)
 762			/* Strict in-order semantics */
 763			nilfs_set_opt(nilfs, STRICT_ORDER);
 764		else
 765			return -EINVAL;
 766		break;
 767	case Opt_err:
 768		nilfs->ns_mount_opt &= ~NILFS_MOUNT_ERROR_MODE;
 769		nilfs->ns_mount_opt |= result.uint_32;
 770		break;
 771	case Opt_snapshot:
 772		if (is_remount) {
 773			struct super_block *sb = fc->root->d_sb;
 774
 775			nilfs_err(sb,
 776				  "\"%s\" option is invalid for remount",
 777				  param->key);
 778			return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 779		}
 780		if (result.uint_64 == 0) {
 781			nilfs_err(NULL,
 782				  "invalid option \"cp=0\": invalid checkpoint number 0");
 783			return -EINVAL;
 784		}
 785		nilfs->cno = result.uint_64;
 786		break;
 787	case Opt_norecovery:
 788		nilfs_set_opt(nilfs, NORECOVERY);
 789		break;
 790	case Opt_discard:
 791		if (result.negated)
 792			nilfs_clear_opt(nilfs, DISCARD);
 793		else
 794			nilfs_set_opt(nilfs, DISCARD);
 795		break;
 796	default:
 797		return -EINVAL;
 798	}
 
 
 
 
 
 
 
 
 799
 800	return 0;
 
 801}
 802
 803static int nilfs_setup_super(struct super_block *sb, int is_mount)
 804{
 805	struct the_nilfs *nilfs = sb->s_fs_info;
 806	struct nilfs_super_block **sbp;
 807	int max_mnt_count;
 808	int mnt_count;
 809
 810	/* nilfs->ns_sem must be locked by the caller. */
 811	sbp = nilfs_prepare_super(sb, 0);
 812	if (!sbp)
 813		return -EIO;
 814
 815	if (!is_mount)
 816		goto skip_mount_setup;
 817
 818	max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count);
 819	mnt_count = le16_to_cpu(sbp[0]->s_mnt_count);
 820
 821	if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
 822		nilfs_warn(sb, "mounting fs with errors");
 823#if 0
 824	} else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
 825		nilfs_warn(sb, "maximal mount count reached");
 826#endif
 827	}
 828	if (!max_mnt_count)
 829		sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
 830
 831	sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1);
 832	sbp[0]->s_mtime = cpu_to_le64(ktime_get_real_seconds());
 833
 834skip_mount_setup:
 835	sbp[0]->s_state =
 836		cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS);
 837	/* synchronize sbp[1] with sbp[0] */
 838	if (sbp[1])
 839		memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
 840	return nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
 841}
 842
 843struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
 844						 u64 pos, int blocksize,
 845						 struct buffer_head **pbh)
 846{
 847	unsigned long long sb_index = pos;
 848	unsigned long offset;
 849
 850	offset = do_div(sb_index, blocksize);
 851	*pbh = sb_bread(sb, sb_index);
 852	if (!*pbh)
 853		return NULL;
 854	return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
 855}
 856
 857int nilfs_store_magic(struct super_block *sb,
 858		      struct nilfs_super_block *sbp)
 
 859{
 860	struct the_nilfs *nilfs = sb->s_fs_info;
 861
 862	sb->s_magic = le16_to_cpu(sbp->s_magic);
 863
 864	/* FS independent flags */
 865#ifdef NILFS_ATIME_DISABLE
 866	sb->s_flags |= SB_NOATIME;
 867#endif
 868
 
 
 869	nilfs->ns_resuid = le16_to_cpu(sbp->s_def_resuid);
 870	nilfs->ns_resgid = le16_to_cpu(sbp->s_def_resgid);
 871	nilfs->ns_interval = le32_to_cpu(sbp->s_c_interval);
 872	nilfs->ns_watermark = le32_to_cpu(sbp->s_c_block_max);
 873
 874	return 0;
 875}
 876
 877int nilfs_check_feature_compatibility(struct super_block *sb,
 878				      struct nilfs_super_block *sbp)
 879{
 880	__u64 features;
 881
 882	features = le64_to_cpu(sbp->s_feature_incompat) &
 883		~NILFS_FEATURE_INCOMPAT_SUPP;
 884	if (features) {
 885		nilfs_err(sb,
 886			  "couldn't mount because of unsupported optional features (%llx)",
 887			  (unsigned long long)features);
 888		return -EINVAL;
 889	}
 890	features = le64_to_cpu(sbp->s_feature_compat_ro) &
 891		~NILFS_FEATURE_COMPAT_RO_SUPP;
 892	if (!sb_rdonly(sb) && features) {
 893		nilfs_err(sb,
 894			  "couldn't mount RDWR because of unsupported optional features (%llx)",
 895			  (unsigned long long)features);
 896		return -EINVAL;
 897	}
 898	return 0;
 899}
 900
 901static int nilfs_get_root_dentry(struct super_block *sb,
 902				 struct nilfs_root *root,
 903				 struct dentry **root_dentry)
 904{
 905	struct inode *inode;
 906	struct dentry *dentry;
 907	int ret = 0;
 908
 909	inode = nilfs_iget(sb, root, NILFS_ROOT_INO);
 910	if (IS_ERR(inode)) {
 911		ret = PTR_ERR(inode);
 912		nilfs_err(sb, "error %d getting root inode", ret);
 913		goto out;
 914	}
 915	if (!S_ISDIR(inode->i_mode) || !inode->i_blocks || !inode->i_size) {
 916		iput(inode);
 917		nilfs_err(sb, "corrupt root inode");
 918		ret = -EINVAL;
 919		goto out;
 920	}
 921
 922	if (root->cno == NILFS_CPTREE_CURRENT_CNO) {
 923		dentry = d_find_alias(inode);
 924		if (!dentry) {
 925			dentry = d_make_root(inode);
 926			if (!dentry) {
 927				ret = -ENOMEM;
 928				goto failed_dentry;
 929			}
 930		} else {
 931			iput(inode);
 932		}
 933	} else {
 934		dentry = d_obtain_root(inode);
 935		if (IS_ERR(dentry)) {
 936			ret = PTR_ERR(dentry);
 937			goto failed_dentry;
 938		}
 939	}
 940	*root_dentry = dentry;
 941 out:
 942	return ret;
 943
 944 failed_dentry:
 945	nilfs_err(sb, "error %d getting root dentry", ret);
 946	goto out;
 947}
 948
 949static int nilfs_attach_snapshot(struct super_block *s, __u64 cno,
 950				 struct dentry **root_dentry)
 951{
 952	struct the_nilfs *nilfs = s->s_fs_info;
 953	struct nilfs_root *root;
 954	int ret;
 955
 956	mutex_lock(&nilfs->ns_snapshot_mount_mutex);
 957
 958	down_read(&nilfs->ns_segctor_sem);
 959	ret = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile, cno);
 960	up_read(&nilfs->ns_segctor_sem);
 961	if (ret < 0) {
 962		ret = (ret == -ENOENT) ? -EINVAL : ret;
 963		goto out;
 964	} else if (!ret) {
 965		nilfs_err(s,
 966			  "The specified checkpoint is not a snapshot (checkpoint number=%llu)",
 967			  (unsigned long long)cno);
 968		ret = -EINVAL;
 969		goto out;
 970	}
 971
 972	ret = nilfs_attach_checkpoint(s, cno, false, &root);
 973	if (ret) {
 974		nilfs_err(s,
 975			  "error %d while loading snapshot (checkpoint number=%llu)",
 976			  ret, (unsigned long long)cno);
 977		goto out;
 978	}
 979	ret = nilfs_get_root_dentry(s, root, root_dentry);
 980	nilfs_put_root(root);
 981 out:
 982	mutex_unlock(&nilfs->ns_snapshot_mount_mutex);
 983	return ret;
 984}
 985
 986/**
 987 * nilfs_tree_is_busy() - try to shrink dentries of a checkpoint
 988 * @root_dentry: root dentry of the tree to be shrunk
 989 *
 990 * This function returns true if the tree was in-use.
 991 */
 992static bool nilfs_tree_is_busy(struct dentry *root_dentry)
 993{
 994	shrink_dcache_parent(root_dentry);
 995	return d_count(root_dentry) > 1;
 996}
 997
 998int nilfs_checkpoint_is_mounted(struct super_block *sb, __u64 cno)
 999{
1000	struct the_nilfs *nilfs = sb->s_fs_info;
1001	struct nilfs_root *root;
1002	struct inode *inode;
1003	struct dentry *dentry;
1004	int ret;
1005
1006	if (cno > nilfs->ns_cno)
1007		return false;
1008
1009	if (cno >= nilfs_last_cno(nilfs))
1010		return true;	/* protect recent checkpoints */
1011
1012	ret = false;
1013	root = nilfs_lookup_root(nilfs, cno);
1014	if (root) {
1015		inode = nilfs_ilookup(sb, root, NILFS_ROOT_INO);
1016		if (inode) {
1017			dentry = d_find_alias(inode);
1018			if (dentry) {
1019				ret = nilfs_tree_is_busy(dentry);
1020				dput(dentry);
1021			}
1022			iput(inode);
1023		}
1024		nilfs_put_root(root);
1025	}
1026	return ret;
1027}
1028
1029/**
1030 * nilfs_fill_super() - initialize a super block instance
1031 * @sb: super_block
1032 * @fc: filesystem context
 
1033 *
1034 * This function is called exclusively by nilfs->ns_mount_mutex.
1035 * So, the recovery process is protected from other simultaneous mounts.
1036 */
1037static int
1038nilfs_fill_super(struct super_block *sb, struct fs_context *fc)
1039{
1040	struct the_nilfs *nilfs;
1041	struct nilfs_root *fsroot;
1042	struct nilfs_fs_context *ctx = fc->fs_private;
1043	__u64 cno;
1044	int err;
1045
1046	nilfs = alloc_nilfs(sb);
1047	if (!nilfs)
1048		return -ENOMEM;
1049
1050	sb->s_fs_info = nilfs;
1051
1052	err = init_nilfs(nilfs, sb);
1053	if (err)
1054		goto failed_nilfs;
1055
1056	/* Copy in parsed mount options */
1057	nilfs->ns_mount_opt = ctx->ns_mount_opt;
1058
1059	sb->s_op = &nilfs_sops;
1060	sb->s_export_op = &nilfs_export_ops;
1061	sb->s_root = NULL;
1062	sb->s_time_gran = 1;
1063	sb->s_max_links = NILFS_LINK_MAX;
1064
1065	sb->s_bdi = bdi_get(sb->s_bdev->bd_disk->bdi);
1066
1067	err = load_nilfs(nilfs, sb);
1068	if (err)
1069		goto failed_nilfs;
1070
1071	super_set_uuid(sb, nilfs->ns_sbp[0]->s_uuid,
1072		       sizeof(nilfs->ns_sbp[0]->s_uuid));
1073	super_set_sysfs_name_bdev(sb);
1074
1075	cno = nilfs_last_cno(nilfs);
1076	err = nilfs_attach_checkpoint(sb, cno, true, &fsroot);
1077	if (err) {
1078		nilfs_err(sb,
1079			  "error %d while loading last checkpoint (checkpoint number=%llu)",
1080			  err, (unsigned long long)cno);
1081		goto failed_unload;
1082	}
1083
1084	if (!sb_rdonly(sb)) {
1085		err = nilfs_attach_log_writer(sb, fsroot);
1086		if (err)
1087			goto failed_checkpoint;
1088	}
1089
1090	err = nilfs_get_root_dentry(sb, fsroot, &sb->s_root);
1091	if (err)
1092		goto failed_segctor;
1093
1094	nilfs_put_root(fsroot);
1095
1096	if (!sb_rdonly(sb)) {
1097		down_write(&nilfs->ns_sem);
1098		nilfs_setup_super(sb, true);
1099		up_write(&nilfs->ns_sem);
1100	}
1101
1102	return 0;
1103
1104 failed_segctor:
1105	nilfs_detach_log_writer(sb);
1106
1107 failed_checkpoint:
1108	nilfs_put_root(fsroot);
1109
1110 failed_unload:
1111	nilfs_sysfs_delete_device_group(nilfs);
1112	iput(nilfs->ns_sufile);
1113	iput(nilfs->ns_cpfile);
1114	iput(nilfs->ns_dat);
1115
1116 failed_nilfs:
1117	destroy_nilfs(nilfs);
1118	return err;
1119}
1120
1121static int nilfs_reconfigure(struct fs_context *fc)
1122{
1123	struct nilfs_fs_context *ctx = fc->fs_private;
1124	struct super_block *sb = fc->root->d_sb;
1125	struct the_nilfs *nilfs = sb->s_fs_info;
 
 
1126	int err;
1127
1128	sync_filesystem(sb);
 
 
 
 
 
 
 
 
1129
1130	err = -EINVAL;
1131
1132	if (!nilfs_valid_fs(nilfs)) {
1133		nilfs_warn(sb,
1134			   "couldn't remount because the filesystem is in an incomplete recovery state");
1135		goto ignore_opts;
1136	}
1137	if ((bool)(fc->sb_flags & SB_RDONLY) == sb_rdonly(sb))
 
1138		goto out;
1139	if (fc->sb_flags & SB_RDONLY) {
1140		sb->s_flags |= SB_RDONLY;
1141
1142		/*
1143		 * Remounting a valid RW partition RDONLY, so set
1144		 * the RDONLY flag and then mark the partition as valid again.
1145		 */
1146		down_write(&nilfs->ns_sem);
1147		nilfs_cleanup_super(sb);
1148		up_write(&nilfs->ns_sem);
1149	} else {
1150		__u64 features;
1151		struct nilfs_root *root;
1152
1153		/*
1154		 * Mounting a RDONLY partition read-write, so reread and
1155		 * store the current valid flag.  (It may have been changed
1156		 * by fsck since we originally mounted the partition.)
1157		 */
1158		down_read(&nilfs->ns_sem);
1159		features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) &
1160			~NILFS_FEATURE_COMPAT_RO_SUPP;
1161		up_read(&nilfs->ns_sem);
1162		if (features) {
1163			nilfs_warn(sb,
1164				   "couldn't remount RDWR because of unsupported optional features (%llx)",
1165				   (unsigned long long)features);
1166			err = -EROFS;
1167			goto ignore_opts;
1168		}
1169
1170		sb->s_flags &= ~SB_RDONLY;
1171
1172		root = NILFS_I(d_inode(sb->s_root))->i_root;
1173		err = nilfs_attach_log_writer(sb, root);
1174		if (err) {
1175			sb->s_flags |= SB_RDONLY;
1176			goto ignore_opts;
1177		}
1178
1179		down_write(&nilfs->ns_sem);
1180		nilfs_setup_super(sb, true);
1181		up_write(&nilfs->ns_sem);
1182	}
1183 out:
1184	sb->s_flags = (sb->s_flags & ~SB_POSIXACL);
1185	/* Copy over parsed remount options */
1186	nilfs->ns_mount_opt = ctx->ns_mount_opt;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1187
 
 
 
1188	return 0;
 
1189
1190 ignore_opts:
1191	return err;
 
1192}
1193
1194static int
1195nilfs_get_tree(struct fs_context *fc)
 
1196{
1197	struct nilfs_fs_context *ctx = fc->fs_private;
1198	struct super_block *s;
1199	dev_t dev;
1200	int err;
1201
1202	if (ctx->cno && !(fc->sb_flags & SB_RDONLY)) {
1203		nilfs_err(NULL,
1204			  "invalid option \"cp=%llu\": read-only option is not specified",
1205			  ctx->cno);
1206		return -EINVAL;
1207	}
1208
1209	err = lookup_bdev(fc->source, &dev);
1210	if (err)
1211		return err;
1212
1213	s = sget_dev(fc, dev);
 
1214	if (IS_ERR(s))
1215		return PTR_ERR(s);
1216
1217	if (!s->s_root) {
1218		err = setup_bdev_super(s, fc->sb_flags, fc);
1219		if (!err)
1220			err = nilfs_fill_super(s, fc);
 
1221		if (err)
1222			goto failed_super;
1223
1224		s->s_flags |= SB_ACTIVE;
1225	} else if (!ctx->cno) {
1226		if (nilfs_tree_is_busy(s->s_root)) {
1227			if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) {
1228				nilfs_err(s,
1229					  "the device already has a %s mount.",
1230					  sb_rdonly(s) ? "read-only" : "read/write");
1231				err = -EBUSY;
1232				goto failed_super;
1233			}
1234		} else {
1235			/*
1236			 * Try reconfigure to setup mount states if the current
1237			 * tree is not mounted and only snapshots use this sb.
1238			 *
1239			 * Since nilfs_reconfigure() requires fc->root to be
1240			 * set, set it first and release it on failure.
1241			 */
1242			fc->root = dget(s->s_root);
1243			err = nilfs_reconfigure(fc);
1244			if (err) {
1245				dput(fc->root);
1246				fc->root = NULL;  /* prevent double release */
1247				goto failed_super;
1248			}
1249			return 0;
1250		}
1251	}
1252
1253	if (ctx->cno) {
1254		struct dentry *root_dentry;
1255
1256		err = nilfs_attach_snapshot(s, ctx->cno, &root_dentry);
1257		if (err)
1258			goto failed_super;
1259		fc->root = root_dentry;
1260		return 0;
1261	}
1262
1263	fc->root = dget(s->s_root);
1264	return 0;
1265
1266 failed_super:
1267	deactivate_locked_super(s);
1268	return err;
1269}
1270
1271static void nilfs_free_fc(struct fs_context *fc)
1272{
1273	kfree(fc->fs_private);
1274}
1275
1276static const struct fs_context_operations nilfs_context_ops = {
1277	.parse_param	= nilfs_parse_param,
1278	.get_tree	= nilfs_get_tree,
1279	.reconfigure	= nilfs_reconfigure,
1280	.free		= nilfs_free_fc,
1281};
1282
1283static int nilfs_init_fs_context(struct fs_context *fc)
1284{
1285	struct nilfs_fs_context *ctx;
1286
1287	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1288	if (!ctx)
1289		return -ENOMEM;
1290
1291	ctx->ns_mount_opt = NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER;
1292	fc->fs_private = ctx;
1293	fc->ops = &nilfs_context_ops;
1294
1295	return 0;
1296}
1297
1298struct file_system_type nilfs_fs_type = {
1299	.owner    = THIS_MODULE,
1300	.name     = "nilfs2",
 
1301	.kill_sb  = kill_block_super,
1302	.fs_flags = FS_REQUIRES_DEV,
1303	.init_fs_context = nilfs_init_fs_context,
1304	.parameters = nilfs_param_spec,
1305};
1306MODULE_ALIAS_FS("nilfs2");
1307
1308static void nilfs_inode_init_once(void *obj)
1309{
1310	struct nilfs_inode_info *ii = obj;
1311
1312	INIT_LIST_HEAD(&ii->i_dirty);
1313#ifdef CONFIG_NILFS_XATTR
1314	init_rwsem(&ii->xattr_sem);
1315#endif
1316	inode_init_once(&ii->vfs_inode);
1317}
1318
1319static void nilfs_segbuf_init_once(void *obj)
1320{
1321	memset(obj, 0, sizeof(struct nilfs_segment_buffer));
1322}
1323
1324static void nilfs_destroy_cachep(void)
1325{
1326	/*
1327	 * Make sure all delayed rcu free inodes are flushed before we
1328	 * destroy cache.
1329	 */
1330	rcu_barrier();
1331
1332	kmem_cache_destroy(nilfs_inode_cachep);
1333	kmem_cache_destroy(nilfs_transaction_cachep);
1334	kmem_cache_destroy(nilfs_segbuf_cachep);
1335	kmem_cache_destroy(nilfs_btree_path_cache);
1336}
1337
1338static int __init nilfs_init_cachep(void)
1339{
1340	nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
1341			sizeof(struct nilfs_inode_info), 0,
1342			SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT,
1343			nilfs_inode_init_once);
1344	if (!nilfs_inode_cachep)
1345		goto fail;
1346
1347	nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache",
1348			sizeof(struct nilfs_transaction_info), 0,
1349			SLAB_RECLAIM_ACCOUNT, NULL);
1350	if (!nilfs_transaction_cachep)
1351		goto fail;
1352
1353	nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache",
1354			sizeof(struct nilfs_segment_buffer), 0,
1355			SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once);
1356	if (!nilfs_segbuf_cachep)
1357		goto fail;
1358
1359	nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache",
1360			sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX,
1361			0, 0, NULL);
1362	if (!nilfs_btree_path_cache)
1363		goto fail;
1364
1365	return 0;
1366
1367fail:
1368	nilfs_destroy_cachep();
1369	return -ENOMEM;
1370}
1371
1372static int __init init_nilfs_fs(void)
1373{
1374	int err;
1375
1376	err = nilfs_init_cachep();
1377	if (err)
1378		goto fail;
1379
1380	err = nilfs_sysfs_init();
1381	if (err)
1382		goto free_cachep;
1383
1384	err = register_filesystem(&nilfs_fs_type);
1385	if (err)
1386		goto deinit_sysfs_entry;
1387
1388	printk(KERN_INFO "NILFS version 2 loaded\n");
1389	return 0;
1390
1391deinit_sysfs_entry:
1392	nilfs_sysfs_exit();
1393free_cachep:
1394	nilfs_destroy_cachep();
1395fail:
1396	return err;
1397}
1398
1399static void __exit exit_nilfs_fs(void)
1400{
1401	nilfs_destroy_cachep();
1402	nilfs_sysfs_exit();
1403	unregister_filesystem(&nilfs_fs_type);
1404}
1405
1406module_init(init_nilfs_fs)
1407module_exit(exit_nilfs_fs)