Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Written for linux by Johan Myreen as a translation from
4 * the assembly version by Linus (with diacriticals added)
5 *
6 * Some additional features added by Christoph Niemann (ChN), March 1993
7 *
8 * Loadable keymaps by Risto Kankkunen, May 1993
9 *
10 * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993
11 * Added decr/incr_console, dynamic keymaps, Unicode support,
12 * dynamic function/string keys, led setting, Sept 1994
13 * `Sticky' modifier keys, 951006.
14 *
15 * 11-11-96: SAK should now work in the raw mode (Martin Mares)
16 *
17 * Modified to provide 'generic' keyboard support by Hamish Macdonald
18 * Merge with the m68k keyboard driver and split-off of the PC low-level
19 * parts by Geert Uytterhoeven, May 1997
20 *
21 * 27-05-97: Added support for the Magic SysRq Key (Martin Mares)
22 * 30-07-98: Dead keys redone, aeb@cwi.nl.
23 * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik)
24 */
25
26#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27
28#include <linux/consolemap.h>
29#include <linux/init.h>
30#include <linux/input.h>
31#include <linux/jiffies.h>
32#include <linux/kbd_diacr.h>
33#include <linux/kbd_kern.h>
34#include <linux/leds.h>
35#include <linux/mm.h>
36#include <linux/module.h>
37#include <linux/nospec.h>
38#include <linux/notifier.h>
39#include <linux/reboot.h>
40#include <linux/sched/debug.h>
41#include <linux/sched/signal.h>
42#include <linux/slab.h>
43#include <linux/spinlock.h>
44#include <linux/string.h>
45#include <linux/tty_flip.h>
46#include <linux/tty.h>
47#include <linux/uaccess.h>
48#include <linux/vt_kern.h>
49
50#include <asm/irq_regs.h>
51
52/*
53 * Exported functions/variables
54 */
55
56#define KBD_DEFMODE (BIT(VC_REPEAT) | BIT(VC_META))
57
58#if defined(CONFIG_X86) || defined(CONFIG_PARISC)
59#include <asm/kbdleds.h>
60#else
61static inline int kbd_defleds(void)
62{
63 return 0;
64}
65#endif
66
67#define KBD_DEFLOCK 0
68
69/*
70 * Handler Tables.
71 */
72
73#define K_HANDLERS\
74 k_self, k_fn, k_spec, k_pad,\
75 k_dead, k_cons, k_cur, k_shift,\
76 k_meta, k_ascii, k_lock, k_lowercase,\
77 k_slock, k_dead2, k_brl, k_ignore
78
79typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value,
80 char up_flag);
81static k_handler_fn K_HANDLERS;
82static k_handler_fn *k_handler[16] = { K_HANDLERS };
83
84#define FN_HANDLERS\
85 fn_null, fn_enter, fn_show_ptregs, fn_show_mem,\
86 fn_show_state, fn_send_intr, fn_lastcons, fn_caps_toggle,\
87 fn_num, fn_hold, fn_scroll_forw, fn_scroll_back,\
88 fn_boot_it, fn_caps_on, fn_compose, fn_SAK,\
89 fn_dec_console, fn_inc_console, fn_spawn_con, fn_bare_num
90
91typedef void (fn_handler_fn)(struct vc_data *vc);
92static fn_handler_fn FN_HANDLERS;
93static fn_handler_fn *fn_handler[] = { FN_HANDLERS };
94
95/*
96 * Variables exported for vt_ioctl.c
97 */
98
99struct vt_spawn_console vt_spawn_con = {
100 .lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock),
101 .pid = NULL,
102 .sig = 0,
103};
104
105
106/*
107 * Internal Data.
108 */
109
110static struct kbd_struct kbd_table[MAX_NR_CONSOLES];
111static struct kbd_struct *kbd = kbd_table;
112
113/* maximum values each key_handler can handle */
114static const unsigned char max_vals[] = {
115 [ KT_LATIN ] = 255,
116 [ KT_FN ] = ARRAY_SIZE(func_table) - 1,
117 [ KT_SPEC ] = ARRAY_SIZE(fn_handler) - 1,
118 [ KT_PAD ] = NR_PAD - 1,
119 [ KT_DEAD ] = NR_DEAD - 1,
120 [ KT_CONS ] = 255,
121 [ KT_CUR ] = 3,
122 [ KT_SHIFT ] = NR_SHIFT - 1,
123 [ KT_META ] = 255,
124 [ KT_ASCII ] = NR_ASCII - 1,
125 [ KT_LOCK ] = NR_LOCK - 1,
126 [ KT_LETTER ] = 255,
127 [ KT_SLOCK ] = NR_LOCK - 1,
128 [ KT_DEAD2 ] = 255,
129 [ KT_BRL ] = NR_BRL - 1,
130};
131
132static const int NR_TYPES = ARRAY_SIZE(max_vals);
133
134static void kbd_bh(struct tasklet_struct *unused);
135static DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh);
136
137static struct input_handler kbd_handler;
138static DEFINE_SPINLOCK(kbd_event_lock);
139static DEFINE_SPINLOCK(led_lock);
140static DEFINE_SPINLOCK(func_buf_lock); /* guard 'func_buf' and friends */
141static DECLARE_BITMAP(key_down, KEY_CNT); /* keyboard key bitmap */
142static unsigned char shift_down[NR_SHIFT]; /* shift state counters.. */
143static bool dead_key_next;
144
145/* Handles a number being assembled on the number pad */
146static bool npadch_active;
147static unsigned int npadch_value;
148
149static unsigned int diacr;
150static bool rep; /* flag telling character repeat */
151
152static int shift_state = 0;
153
154static unsigned int ledstate = -1U; /* undefined */
155static unsigned char ledioctl;
156static bool vt_switch;
157
158/*
159 * Notifier list for console keyboard events
160 */
161static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list);
162
163int register_keyboard_notifier(struct notifier_block *nb)
164{
165 return atomic_notifier_chain_register(&keyboard_notifier_list, nb);
166}
167EXPORT_SYMBOL_GPL(register_keyboard_notifier);
168
169int unregister_keyboard_notifier(struct notifier_block *nb)
170{
171 return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb);
172}
173EXPORT_SYMBOL_GPL(unregister_keyboard_notifier);
174
175/*
176 * Translation of scancodes to keycodes. We set them on only the first
177 * keyboard in the list that accepts the scancode and keycode.
178 * Explanation for not choosing the first attached keyboard anymore:
179 * USB keyboards for example have two event devices: one for all "normal"
180 * keys and one for extra function keys (like "volume up", "make coffee",
181 * etc.). So this means that scancodes for the extra function keys won't
182 * be valid for the first event device, but will be for the second.
183 */
184
185struct getset_keycode_data {
186 struct input_keymap_entry ke;
187 int error;
188};
189
190static int getkeycode_helper(struct input_handle *handle, void *data)
191{
192 struct getset_keycode_data *d = data;
193
194 d->error = input_get_keycode(handle->dev, &d->ke);
195
196 return d->error == 0; /* stop as soon as we successfully get one */
197}
198
199static int getkeycode(unsigned int scancode)
200{
201 struct getset_keycode_data d = {
202 .ke = {
203 .flags = 0,
204 .len = sizeof(scancode),
205 .keycode = 0,
206 },
207 .error = -ENODEV,
208 };
209
210 memcpy(d.ke.scancode, &scancode, sizeof(scancode));
211
212 input_handler_for_each_handle(&kbd_handler, &d, getkeycode_helper);
213
214 return d.error ?: d.ke.keycode;
215}
216
217static int setkeycode_helper(struct input_handle *handle, void *data)
218{
219 struct getset_keycode_data *d = data;
220
221 d->error = input_set_keycode(handle->dev, &d->ke);
222
223 return d->error == 0; /* stop as soon as we successfully set one */
224}
225
226static int setkeycode(unsigned int scancode, unsigned int keycode)
227{
228 struct getset_keycode_data d = {
229 .ke = {
230 .flags = 0,
231 .len = sizeof(scancode),
232 .keycode = keycode,
233 },
234 .error = -ENODEV,
235 };
236
237 memcpy(d.ke.scancode, &scancode, sizeof(scancode));
238
239 input_handler_for_each_handle(&kbd_handler, &d, setkeycode_helper);
240
241 return d.error;
242}
243
244/*
245 * Making beeps and bells. Note that we prefer beeps to bells, but when
246 * shutting the sound off we do both.
247 */
248
249static int kd_sound_helper(struct input_handle *handle, void *data)
250{
251 unsigned int *hz = data;
252 struct input_dev *dev = handle->dev;
253
254 if (test_bit(EV_SND, dev->evbit)) {
255 if (test_bit(SND_TONE, dev->sndbit)) {
256 input_inject_event(handle, EV_SND, SND_TONE, *hz);
257 if (*hz)
258 return 0;
259 }
260 if (test_bit(SND_BELL, dev->sndbit))
261 input_inject_event(handle, EV_SND, SND_BELL, *hz ? 1 : 0);
262 }
263
264 return 0;
265}
266
267static void kd_nosound(struct timer_list *unused)
268{
269 static unsigned int zero;
270
271 input_handler_for_each_handle(&kbd_handler, &zero, kd_sound_helper);
272}
273
274static DEFINE_TIMER(kd_mksound_timer, kd_nosound);
275
276void kd_mksound(unsigned int hz, unsigned int ticks)
277{
278 del_timer_sync(&kd_mksound_timer);
279
280 input_handler_for_each_handle(&kbd_handler, &hz, kd_sound_helper);
281
282 if (hz && ticks)
283 mod_timer(&kd_mksound_timer, jiffies + ticks);
284}
285EXPORT_SYMBOL(kd_mksound);
286
287/*
288 * Setting the keyboard rate.
289 */
290
291static int kbd_rate_helper(struct input_handle *handle, void *data)
292{
293 struct input_dev *dev = handle->dev;
294 struct kbd_repeat *rpt = data;
295
296 if (test_bit(EV_REP, dev->evbit)) {
297
298 if (rpt[0].delay > 0)
299 input_inject_event(handle,
300 EV_REP, REP_DELAY, rpt[0].delay);
301 if (rpt[0].period > 0)
302 input_inject_event(handle,
303 EV_REP, REP_PERIOD, rpt[0].period);
304
305 rpt[1].delay = dev->rep[REP_DELAY];
306 rpt[1].period = dev->rep[REP_PERIOD];
307 }
308
309 return 0;
310}
311
312int kbd_rate(struct kbd_repeat *rpt)
313{
314 struct kbd_repeat data[2] = { *rpt };
315
316 input_handler_for_each_handle(&kbd_handler, data, kbd_rate_helper);
317 *rpt = data[1]; /* Copy currently used settings */
318
319 return 0;
320}
321
322/*
323 * Helper Functions.
324 */
325static void put_queue(struct vc_data *vc, int ch)
326{
327 tty_insert_flip_char(&vc->port, ch, 0);
328 tty_flip_buffer_push(&vc->port);
329}
330
331static void puts_queue(struct vc_data *vc, const char *cp)
332{
333 tty_insert_flip_string(&vc->port, cp, strlen(cp));
334 tty_flip_buffer_push(&vc->port);
335}
336
337static void applkey(struct vc_data *vc, int key, char mode)
338{
339 static char buf[] = { 0x1b, 'O', 0x00, 0x00 };
340
341 buf[1] = (mode ? 'O' : '[');
342 buf[2] = key;
343 puts_queue(vc, buf);
344}
345
346/*
347 * Many other routines do put_queue, but I think either
348 * they produce ASCII, or they produce some user-assigned
349 * string, and in both cases we might assume that it is
350 * in utf-8 already.
351 */
352static void to_utf8(struct vc_data *vc, uint c)
353{
354 if (c < 0x80)
355 /* 0******* */
356 put_queue(vc, c);
357 else if (c < 0x800) {
358 /* 110***** 10****** */
359 put_queue(vc, 0xc0 | (c >> 6));
360 put_queue(vc, 0x80 | (c & 0x3f));
361 } else if (c < 0x10000) {
362 if (c >= 0xD800 && c < 0xE000)
363 return;
364 if (c == 0xFFFF)
365 return;
366 /* 1110**** 10****** 10****** */
367 put_queue(vc, 0xe0 | (c >> 12));
368 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
369 put_queue(vc, 0x80 | (c & 0x3f));
370 } else if (c < 0x110000) {
371 /* 11110*** 10****** 10****** 10****** */
372 put_queue(vc, 0xf0 | (c >> 18));
373 put_queue(vc, 0x80 | ((c >> 12) & 0x3f));
374 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
375 put_queue(vc, 0x80 | (c & 0x3f));
376 }
377}
378
379/* FIXME: review locking for vt.c callers */
380static void set_leds(void)
381{
382 tasklet_schedule(&keyboard_tasklet);
383}
384
385/*
386 * Called after returning from RAW mode or when changing consoles - recompute
387 * shift_down[] and shift_state from key_down[] maybe called when keymap is
388 * undefined, so that shiftkey release is seen. The caller must hold the
389 * kbd_event_lock.
390 */
391
392static void do_compute_shiftstate(void)
393{
394 unsigned int k, sym, val;
395
396 shift_state = 0;
397 memset(shift_down, 0, sizeof(shift_down));
398
399 for_each_set_bit(k, key_down, min(NR_KEYS, KEY_CNT)) {
400 sym = U(key_maps[0][k]);
401 if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK)
402 continue;
403
404 val = KVAL(sym);
405 if (val == KVAL(K_CAPSSHIFT))
406 val = KVAL(K_SHIFT);
407
408 shift_down[val]++;
409 shift_state |= BIT(val);
410 }
411}
412
413/* We still have to export this method to vt.c */
414void vt_set_leds_compute_shiftstate(void)
415{
416 unsigned long flags;
417
418 /*
419 * When VT is switched, the keyboard led needs to be set once.
420 * Ensure that after the switch is completed, the state of the
421 * keyboard LED is consistent with the state of the keyboard lock.
422 */
423 vt_switch = true;
424 set_leds();
425
426 spin_lock_irqsave(&kbd_event_lock, flags);
427 do_compute_shiftstate();
428 spin_unlock_irqrestore(&kbd_event_lock, flags);
429}
430
431/*
432 * We have a combining character DIACR here, followed by the character CH.
433 * If the combination occurs in the table, return the corresponding value.
434 * Otherwise, if CH is a space or equals DIACR, return DIACR.
435 * Otherwise, conclude that DIACR was not combining after all,
436 * queue it and return CH.
437 */
438static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch)
439{
440 unsigned int d = diacr;
441 unsigned int i;
442
443 diacr = 0;
444
445 if ((d & ~0xff) == BRL_UC_ROW) {
446 if ((ch & ~0xff) == BRL_UC_ROW)
447 return d | ch;
448 } else {
449 for (i = 0; i < accent_table_size; i++)
450 if (accent_table[i].diacr == d && accent_table[i].base == ch)
451 return accent_table[i].result;
452 }
453
454 if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d)
455 return d;
456
457 if (kbd->kbdmode == VC_UNICODE)
458 to_utf8(vc, d);
459 else {
460 int c = conv_uni_to_8bit(d);
461 if (c != -1)
462 put_queue(vc, c);
463 }
464
465 return ch;
466}
467
468/*
469 * Special function handlers
470 */
471static void fn_enter(struct vc_data *vc)
472{
473 if (diacr) {
474 if (kbd->kbdmode == VC_UNICODE)
475 to_utf8(vc, diacr);
476 else {
477 int c = conv_uni_to_8bit(diacr);
478 if (c != -1)
479 put_queue(vc, c);
480 }
481 diacr = 0;
482 }
483
484 put_queue(vc, '\r');
485 if (vc_kbd_mode(kbd, VC_CRLF))
486 put_queue(vc, '\n');
487}
488
489static void fn_caps_toggle(struct vc_data *vc)
490{
491 if (rep)
492 return;
493
494 chg_vc_kbd_led(kbd, VC_CAPSLOCK);
495}
496
497static void fn_caps_on(struct vc_data *vc)
498{
499 if (rep)
500 return;
501
502 set_vc_kbd_led(kbd, VC_CAPSLOCK);
503}
504
505static void fn_show_ptregs(struct vc_data *vc)
506{
507 struct pt_regs *regs = get_irq_regs();
508
509 if (regs)
510 show_regs(regs);
511}
512
513static void fn_hold(struct vc_data *vc)
514{
515 struct tty_struct *tty = vc->port.tty;
516
517 if (rep || !tty)
518 return;
519
520 /*
521 * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty);
522 * these routines are also activated by ^S/^Q.
523 * (And SCROLLOCK can also be set by the ioctl KDSKBLED.)
524 */
525 if (tty->flow.stopped)
526 start_tty(tty);
527 else
528 stop_tty(tty);
529}
530
531static void fn_num(struct vc_data *vc)
532{
533 if (vc_kbd_mode(kbd, VC_APPLIC))
534 applkey(vc, 'P', 1);
535 else
536 fn_bare_num(vc);
537}
538
539/*
540 * Bind this to Shift-NumLock if you work in application keypad mode
541 * but want to be able to change the NumLock flag.
542 * Bind this to NumLock if you prefer that the NumLock key always
543 * changes the NumLock flag.
544 */
545static void fn_bare_num(struct vc_data *vc)
546{
547 if (!rep)
548 chg_vc_kbd_led(kbd, VC_NUMLOCK);
549}
550
551static void fn_lastcons(struct vc_data *vc)
552{
553 /* switch to the last used console, ChN */
554 set_console(last_console);
555}
556
557static void fn_dec_console(struct vc_data *vc)
558{
559 int i, cur = fg_console;
560
561 /* Currently switching? Queue this next switch relative to that. */
562 if (want_console != -1)
563 cur = want_console;
564
565 for (i = cur - 1; i != cur; i--) {
566 if (i == -1)
567 i = MAX_NR_CONSOLES - 1;
568 if (vc_cons_allocated(i))
569 break;
570 }
571 set_console(i);
572}
573
574static void fn_inc_console(struct vc_data *vc)
575{
576 int i, cur = fg_console;
577
578 /* Currently switching? Queue this next switch relative to that. */
579 if (want_console != -1)
580 cur = want_console;
581
582 for (i = cur+1; i != cur; i++) {
583 if (i == MAX_NR_CONSOLES)
584 i = 0;
585 if (vc_cons_allocated(i))
586 break;
587 }
588 set_console(i);
589}
590
591static void fn_send_intr(struct vc_data *vc)
592{
593 tty_insert_flip_char(&vc->port, 0, TTY_BREAK);
594 tty_flip_buffer_push(&vc->port);
595}
596
597static void fn_scroll_forw(struct vc_data *vc)
598{
599 scrollfront(vc, 0);
600}
601
602static void fn_scroll_back(struct vc_data *vc)
603{
604 scrollback(vc);
605}
606
607static void fn_show_mem(struct vc_data *vc)
608{
609 show_mem();
610}
611
612static void fn_show_state(struct vc_data *vc)
613{
614 show_state();
615}
616
617static void fn_boot_it(struct vc_data *vc)
618{
619 ctrl_alt_del();
620}
621
622static void fn_compose(struct vc_data *vc)
623{
624 dead_key_next = true;
625}
626
627static void fn_spawn_con(struct vc_data *vc)
628{
629 spin_lock(&vt_spawn_con.lock);
630 if (vt_spawn_con.pid)
631 if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) {
632 put_pid(vt_spawn_con.pid);
633 vt_spawn_con.pid = NULL;
634 }
635 spin_unlock(&vt_spawn_con.lock);
636}
637
638static void fn_SAK(struct vc_data *vc)
639{
640 struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work;
641 schedule_work(SAK_work);
642}
643
644static void fn_null(struct vc_data *vc)
645{
646 do_compute_shiftstate();
647}
648
649/*
650 * Special key handlers
651 */
652static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag)
653{
654}
655
656static void k_spec(struct vc_data *vc, unsigned char value, char up_flag)
657{
658 if (up_flag)
659 return;
660 if (value >= ARRAY_SIZE(fn_handler))
661 return;
662 if ((kbd->kbdmode == VC_RAW ||
663 kbd->kbdmode == VC_MEDIUMRAW ||
664 kbd->kbdmode == VC_OFF) &&
665 value != KVAL(K_SAK))
666 return; /* SAK is allowed even in raw mode */
667 fn_handler[value](vc);
668}
669
670static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag)
671{
672 pr_err("k_lowercase was called - impossible\n");
673}
674
675static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag)
676{
677 if (up_flag)
678 return; /* no action, if this is a key release */
679
680 if (diacr)
681 value = handle_diacr(vc, value);
682
683 if (dead_key_next) {
684 dead_key_next = false;
685 diacr = value;
686 return;
687 }
688 if (kbd->kbdmode == VC_UNICODE)
689 to_utf8(vc, value);
690 else {
691 int c = conv_uni_to_8bit(value);
692 if (c != -1)
693 put_queue(vc, c);
694 }
695}
696
697/*
698 * Handle dead key. Note that we now may have several
699 * dead keys modifying the same character. Very useful
700 * for Vietnamese.
701 */
702static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag)
703{
704 if (up_flag)
705 return;
706
707 diacr = (diacr ? handle_diacr(vc, value) : value);
708}
709
710static void k_self(struct vc_data *vc, unsigned char value, char up_flag)
711{
712 k_unicode(vc, conv_8bit_to_uni(value), up_flag);
713}
714
715static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag)
716{
717 k_deadunicode(vc, value, up_flag);
718}
719
720/*
721 * Obsolete - for backwards compatibility only
722 */
723static void k_dead(struct vc_data *vc, unsigned char value, char up_flag)
724{
725 static const unsigned char ret_diacr[NR_DEAD] = {
726 '`', /* dead_grave */
727 '\'', /* dead_acute */
728 '^', /* dead_circumflex */
729 '~', /* dead_tilda */
730 '"', /* dead_diaeresis */
731 ',', /* dead_cedilla */
732 '_', /* dead_macron */
733 'U', /* dead_breve */
734 '.', /* dead_abovedot */
735 '*', /* dead_abovering */
736 '=', /* dead_doubleacute */
737 'c', /* dead_caron */
738 'k', /* dead_ogonek */
739 'i', /* dead_iota */
740 '#', /* dead_voiced_sound */
741 'o', /* dead_semivoiced_sound */
742 '!', /* dead_belowdot */
743 '?', /* dead_hook */
744 '+', /* dead_horn */
745 '-', /* dead_stroke */
746 ')', /* dead_abovecomma */
747 '(', /* dead_abovereversedcomma */
748 ':', /* dead_doublegrave */
749 'n', /* dead_invertedbreve */
750 ';', /* dead_belowcomma */
751 '$', /* dead_currency */
752 '@', /* dead_greek */
753 };
754
755 k_deadunicode(vc, ret_diacr[value], up_flag);
756}
757
758static void k_cons(struct vc_data *vc, unsigned char value, char up_flag)
759{
760 if (up_flag)
761 return;
762
763 set_console(value);
764}
765
766static void k_fn(struct vc_data *vc, unsigned char value, char up_flag)
767{
768 if (up_flag)
769 return;
770
771 if ((unsigned)value < ARRAY_SIZE(func_table)) {
772 unsigned long flags;
773
774 spin_lock_irqsave(&func_buf_lock, flags);
775 if (func_table[value])
776 puts_queue(vc, func_table[value]);
777 spin_unlock_irqrestore(&func_buf_lock, flags);
778
779 } else
780 pr_err("k_fn called with value=%d\n", value);
781}
782
783static void k_cur(struct vc_data *vc, unsigned char value, char up_flag)
784{
785 static const char cur_chars[] = "BDCA";
786
787 if (up_flag)
788 return;
789
790 applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE));
791}
792
793static void k_pad(struct vc_data *vc, unsigned char value, char up_flag)
794{
795 static const char pad_chars[] = "0123456789+-*/\015,.?()#";
796 static const char app_map[] = "pqrstuvwxylSRQMnnmPQS";
797
798 if (up_flag)
799 return; /* no action, if this is a key release */
800
801 /* kludge... shift forces cursor/number keys */
802 if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) {
803 applkey(vc, app_map[value], 1);
804 return;
805 }
806
807 if (!vc_kbd_led(kbd, VC_NUMLOCK)) {
808
809 switch (value) {
810 case KVAL(K_PCOMMA):
811 case KVAL(K_PDOT):
812 k_fn(vc, KVAL(K_REMOVE), 0);
813 return;
814 case KVAL(K_P0):
815 k_fn(vc, KVAL(K_INSERT), 0);
816 return;
817 case KVAL(K_P1):
818 k_fn(vc, KVAL(K_SELECT), 0);
819 return;
820 case KVAL(K_P2):
821 k_cur(vc, KVAL(K_DOWN), 0);
822 return;
823 case KVAL(K_P3):
824 k_fn(vc, KVAL(K_PGDN), 0);
825 return;
826 case KVAL(K_P4):
827 k_cur(vc, KVAL(K_LEFT), 0);
828 return;
829 case KVAL(K_P6):
830 k_cur(vc, KVAL(K_RIGHT), 0);
831 return;
832 case KVAL(K_P7):
833 k_fn(vc, KVAL(K_FIND), 0);
834 return;
835 case KVAL(K_P8):
836 k_cur(vc, KVAL(K_UP), 0);
837 return;
838 case KVAL(K_P9):
839 k_fn(vc, KVAL(K_PGUP), 0);
840 return;
841 case KVAL(K_P5):
842 applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC));
843 return;
844 }
845 }
846
847 put_queue(vc, pad_chars[value]);
848 if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF))
849 put_queue(vc, '\n');
850}
851
852static void k_shift(struct vc_data *vc, unsigned char value, char up_flag)
853{
854 int old_state = shift_state;
855
856 if (rep)
857 return;
858 /*
859 * Mimic typewriter:
860 * a CapsShift key acts like Shift but undoes CapsLock
861 */
862 if (value == KVAL(K_CAPSSHIFT)) {
863 value = KVAL(K_SHIFT);
864 if (!up_flag)
865 clr_vc_kbd_led(kbd, VC_CAPSLOCK);
866 }
867
868 if (up_flag) {
869 /*
870 * handle the case that two shift or control
871 * keys are depressed simultaneously
872 */
873 if (shift_down[value])
874 shift_down[value]--;
875 } else
876 shift_down[value]++;
877
878 if (shift_down[value])
879 shift_state |= BIT(value);
880 else
881 shift_state &= ~BIT(value);
882
883 /* kludge */
884 if (up_flag && shift_state != old_state && npadch_active) {
885 if (kbd->kbdmode == VC_UNICODE)
886 to_utf8(vc, npadch_value);
887 else
888 put_queue(vc, npadch_value & 0xff);
889 npadch_active = false;
890 }
891}
892
893static void k_meta(struct vc_data *vc, unsigned char value, char up_flag)
894{
895 if (up_flag)
896 return;
897
898 if (vc_kbd_mode(kbd, VC_META)) {
899 put_queue(vc, '\033');
900 put_queue(vc, value);
901 } else
902 put_queue(vc, value | BIT(7));
903}
904
905static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag)
906{
907 unsigned int base;
908
909 if (up_flag)
910 return;
911
912 if (value < 10) {
913 /* decimal input of code, while Alt depressed */
914 base = 10;
915 } else {
916 /* hexadecimal input of code, while AltGr depressed */
917 value -= 10;
918 base = 16;
919 }
920
921 if (!npadch_active) {
922 npadch_value = 0;
923 npadch_active = true;
924 }
925
926 npadch_value = npadch_value * base + value;
927}
928
929static void k_lock(struct vc_data *vc, unsigned char value, char up_flag)
930{
931 if (up_flag || rep)
932 return;
933
934 chg_vc_kbd_lock(kbd, value);
935}
936
937static void k_slock(struct vc_data *vc, unsigned char value, char up_flag)
938{
939 k_shift(vc, value, up_flag);
940 if (up_flag || rep)
941 return;
942
943 chg_vc_kbd_slock(kbd, value);
944 /* try to make Alt, oops, AltGr and such work */
945 if (!key_maps[kbd->lockstate ^ kbd->slockstate]) {
946 kbd->slockstate = 0;
947 chg_vc_kbd_slock(kbd, value);
948 }
949}
950
951/* by default, 300ms interval for combination release */
952static unsigned brl_timeout = 300;
953MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)");
954module_param(brl_timeout, uint, 0644);
955
956static unsigned brl_nbchords = 1;
957MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)");
958module_param(brl_nbchords, uint, 0644);
959
960static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag)
961{
962 static unsigned long chords;
963 static unsigned committed;
964
965 if (!brl_nbchords)
966 k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag);
967 else {
968 committed |= pattern;
969 chords++;
970 if (chords == brl_nbchords) {
971 k_unicode(vc, BRL_UC_ROW | committed, up_flag);
972 chords = 0;
973 committed = 0;
974 }
975 }
976}
977
978static void k_brl(struct vc_data *vc, unsigned char value, char up_flag)
979{
980 static unsigned pressed, committing;
981 static unsigned long releasestart;
982
983 if (kbd->kbdmode != VC_UNICODE) {
984 if (!up_flag)
985 pr_warn("keyboard mode must be unicode for braille patterns\n");
986 return;
987 }
988
989 if (!value) {
990 k_unicode(vc, BRL_UC_ROW, up_flag);
991 return;
992 }
993
994 if (value > 8)
995 return;
996
997 if (!up_flag) {
998 pressed |= BIT(value - 1);
999 if (!brl_timeout)
1000 committing = pressed;
1001 } else if (brl_timeout) {
1002 if (!committing ||
1003 time_after(jiffies,
1004 releasestart + msecs_to_jiffies(brl_timeout))) {
1005 committing = pressed;
1006 releasestart = jiffies;
1007 }
1008 pressed &= ~BIT(value - 1);
1009 if (!pressed && committing) {
1010 k_brlcommit(vc, committing, 0);
1011 committing = 0;
1012 }
1013 } else {
1014 if (committing) {
1015 k_brlcommit(vc, committing, 0);
1016 committing = 0;
1017 }
1018 pressed &= ~BIT(value - 1);
1019 }
1020}
1021
1022#if IS_ENABLED(CONFIG_INPUT_LEDS) && IS_ENABLED(CONFIG_LEDS_TRIGGERS)
1023
1024struct kbd_led_trigger {
1025 struct led_trigger trigger;
1026 unsigned int mask;
1027};
1028
1029static int kbd_led_trigger_activate(struct led_classdev *cdev)
1030{
1031 struct kbd_led_trigger *trigger =
1032 container_of(cdev->trigger, struct kbd_led_trigger, trigger);
1033
1034 tasklet_disable(&keyboard_tasklet);
1035 if (ledstate != -1U)
1036 led_trigger_event(&trigger->trigger,
1037 ledstate & trigger->mask ?
1038 LED_FULL : LED_OFF);
1039 tasklet_enable(&keyboard_tasklet);
1040
1041 return 0;
1042}
1043
1044#define KBD_LED_TRIGGER(_led_bit, _name) { \
1045 .trigger = { \
1046 .name = _name, \
1047 .activate = kbd_led_trigger_activate, \
1048 }, \
1049 .mask = BIT(_led_bit), \
1050 }
1051
1052#define KBD_LOCKSTATE_TRIGGER(_led_bit, _name) \
1053 KBD_LED_TRIGGER((_led_bit) + 8, _name)
1054
1055static struct kbd_led_trigger kbd_led_triggers[] = {
1056 KBD_LED_TRIGGER(VC_SCROLLOCK, "kbd-scrolllock"),
1057 KBD_LED_TRIGGER(VC_NUMLOCK, "kbd-numlock"),
1058 KBD_LED_TRIGGER(VC_CAPSLOCK, "kbd-capslock"),
1059 KBD_LED_TRIGGER(VC_KANALOCK, "kbd-kanalock"),
1060
1061 KBD_LOCKSTATE_TRIGGER(VC_SHIFTLOCK, "kbd-shiftlock"),
1062 KBD_LOCKSTATE_TRIGGER(VC_ALTGRLOCK, "kbd-altgrlock"),
1063 KBD_LOCKSTATE_TRIGGER(VC_CTRLLOCK, "kbd-ctrllock"),
1064 KBD_LOCKSTATE_TRIGGER(VC_ALTLOCK, "kbd-altlock"),
1065 KBD_LOCKSTATE_TRIGGER(VC_SHIFTLLOCK, "kbd-shiftllock"),
1066 KBD_LOCKSTATE_TRIGGER(VC_SHIFTRLOCK, "kbd-shiftrlock"),
1067 KBD_LOCKSTATE_TRIGGER(VC_CTRLLLOCK, "kbd-ctrlllock"),
1068 KBD_LOCKSTATE_TRIGGER(VC_CTRLRLOCK, "kbd-ctrlrlock"),
1069};
1070
1071static void kbd_propagate_led_state(unsigned int old_state,
1072 unsigned int new_state)
1073{
1074 struct kbd_led_trigger *trigger;
1075 unsigned int changed = old_state ^ new_state;
1076 int i;
1077
1078 for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1079 trigger = &kbd_led_triggers[i];
1080
1081 if (changed & trigger->mask)
1082 led_trigger_event(&trigger->trigger,
1083 new_state & trigger->mask ?
1084 LED_FULL : LED_OFF);
1085 }
1086}
1087
1088static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1089{
1090 unsigned int led_state = *(unsigned int *)data;
1091
1092 if (test_bit(EV_LED, handle->dev->evbit))
1093 kbd_propagate_led_state(~led_state, led_state);
1094
1095 return 0;
1096}
1097
1098static void kbd_init_leds(void)
1099{
1100 int error;
1101 int i;
1102
1103 for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1104 error = led_trigger_register(&kbd_led_triggers[i].trigger);
1105 if (error)
1106 pr_err("error %d while registering trigger %s\n",
1107 error, kbd_led_triggers[i].trigger.name);
1108 }
1109}
1110
1111#else
1112
1113static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1114{
1115 unsigned int leds = *(unsigned int *)data;
1116
1117 if (test_bit(EV_LED, handle->dev->evbit)) {
1118 input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & BIT(0)));
1119 input_inject_event(handle, EV_LED, LED_NUML, !!(leds & BIT(1)));
1120 input_inject_event(handle, EV_LED, LED_CAPSL, !!(leds & BIT(2)));
1121 input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
1122 }
1123
1124 return 0;
1125}
1126
1127static void kbd_propagate_led_state(unsigned int old_state,
1128 unsigned int new_state)
1129{
1130 input_handler_for_each_handle(&kbd_handler, &new_state,
1131 kbd_update_leds_helper);
1132}
1133
1134static void kbd_init_leds(void)
1135{
1136}
1137
1138#endif
1139
1140/*
1141 * The leds display either (i) the status of NumLock, CapsLock, ScrollLock,
1142 * or (ii) whatever pattern of lights people want to show using KDSETLED,
1143 * or (iii) specified bits of specified words in kernel memory.
1144 */
1145static unsigned char getledstate(void)
1146{
1147 return ledstate & 0xff;
1148}
1149
1150void setledstate(struct kbd_struct *kb, unsigned int led)
1151{
1152 unsigned long flags;
1153 spin_lock_irqsave(&led_lock, flags);
1154 if (!(led & ~7)) {
1155 ledioctl = led;
1156 kb->ledmode = LED_SHOW_IOCTL;
1157 } else
1158 kb->ledmode = LED_SHOW_FLAGS;
1159
1160 set_leds();
1161 spin_unlock_irqrestore(&led_lock, flags);
1162}
1163
1164static inline unsigned char getleds(void)
1165{
1166 struct kbd_struct *kb = kbd_table + fg_console;
1167
1168 if (kb->ledmode == LED_SHOW_IOCTL)
1169 return ledioctl;
1170
1171 return kb->ledflagstate;
1172}
1173
1174/**
1175 * vt_get_leds - helper for braille console
1176 * @console: console to read
1177 * @flag: flag we want to check
1178 *
1179 * Check the status of a keyboard led flag and report it back
1180 */
1181int vt_get_leds(unsigned int console, int flag)
1182{
1183 struct kbd_struct *kb = &kbd_table[console];
1184 int ret;
1185 unsigned long flags;
1186
1187 spin_lock_irqsave(&led_lock, flags);
1188 ret = vc_kbd_led(kb, flag);
1189 spin_unlock_irqrestore(&led_lock, flags);
1190
1191 return ret;
1192}
1193EXPORT_SYMBOL_GPL(vt_get_leds);
1194
1195/**
1196 * vt_set_led_state - set LED state of a console
1197 * @console: console to set
1198 * @leds: LED bits
1199 *
1200 * Set the LEDs on a console. This is a wrapper for the VT layer
1201 * so that we can keep kbd knowledge internal
1202 */
1203void vt_set_led_state(unsigned int console, int leds)
1204{
1205 struct kbd_struct *kb = &kbd_table[console];
1206 setledstate(kb, leds);
1207}
1208
1209/**
1210 * vt_kbd_con_start - Keyboard side of console start
1211 * @console: console
1212 *
1213 * Handle console start. This is a wrapper for the VT layer
1214 * so that we can keep kbd knowledge internal
1215 *
1216 * FIXME: We eventually need to hold the kbd lock here to protect
1217 * the LED updating. We can't do it yet because fn_hold calls stop_tty
1218 * and start_tty under the kbd_event_lock, while normal tty paths
1219 * don't hold the lock. We probably need to split out an LED lock
1220 * but not during an -rc release!
1221 */
1222void vt_kbd_con_start(unsigned int console)
1223{
1224 struct kbd_struct *kb = &kbd_table[console];
1225 unsigned long flags;
1226 spin_lock_irqsave(&led_lock, flags);
1227 clr_vc_kbd_led(kb, VC_SCROLLOCK);
1228 set_leds();
1229 spin_unlock_irqrestore(&led_lock, flags);
1230}
1231
1232/**
1233 * vt_kbd_con_stop - Keyboard side of console stop
1234 * @console: console
1235 *
1236 * Handle console stop. This is a wrapper for the VT layer
1237 * so that we can keep kbd knowledge internal
1238 */
1239void vt_kbd_con_stop(unsigned int console)
1240{
1241 struct kbd_struct *kb = &kbd_table[console];
1242 unsigned long flags;
1243 spin_lock_irqsave(&led_lock, flags);
1244 set_vc_kbd_led(kb, VC_SCROLLOCK);
1245 set_leds();
1246 spin_unlock_irqrestore(&led_lock, flags);
1247}
1248
1249/*
1250 * This is the tasklet that updates LED state of LEDs using standard
1251 * keyboard triggers. The reason we use tasklet is that we need to
1252 * handle the scenario when keyboard handler is not registered yet
1253 * but we already getting updates from the VT to update led state.
1254 */
1255static void kbd_bh(struct tasklet_struct *unused)
1256{
1257 unsigned int leds;
1258 unsigned long flags;
1259
1260 spin_lock_irqsave(&led_lock, flags);
1261 leds = getleds();
1262 leds |= (unsigned int)kbd->lockstate << 8;
1263 spin_unlock_irqrestore(&led_lock, flags);
1264
1265 if (vt_switch) {
1266 ledstate = ~leds;
1267 vt_switch = false;
1268 }
1269
1270 if (leds != ledstate) {
1271 kbd_propagate_led_state(ledstate, leds);
1272 ledstate = leds;
1273 }
1274}
1275
1276#if defined(CONFIG_X86) || defined(CONFIG_ALPHA) ||\
1277 defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\
1278 defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\
1279 (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC))
1280
1281static inline bool kbd_is_hw_raw(const struct input_dev *dev)
1282{
1283 if (!test_bit(EV_MSC, dev->evbit) || !test_bit(MSC_RAW, dev->mscbit))
1284 return false;
1285
1286 return dev->id.bustype == BUS_I8042 &&
1287 dev->id.vendor == 0x0001 && dev->id.product == 0x0001;
1288}
1289
1290static const unsigned short x86_keycodes[256] =
1291 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
1292 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
1293 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
1294 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
1295 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
1296 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92,
1297 284,285,309, 0,312, 91,327,328,329,331,333,335,336,337,338,339,
1298 367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349,
1299 360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355,
1300 103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361,
1301 291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114,
1302 264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116,
1303 377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307,
1304 308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330,
1305 332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 };
1306
1307#ifdef CONFIG_SPARC
1308static int sparc_l1_a_state;
1309extern void sun_do_break(void);
1310#endif
1311
1312static int emulate_raw(struct vc_data *vc, unsigned int keycode,
1313 unsigned char up_flag)
1314{
1315 int code;
1316
1317 switch (keycode) {
1318
1319 case KEY_PAUSE:
1320 put_queue(vc, 0xe1);
1321 put_queue(vc, 0x1d | up_flag);
1322 put_queue(vc, 0x45 | up_flag);
1323 break;
1324
1325 case KEY_HANGEUL:
1326 if (!up_flag)
1327 put_queue(vc, 0xf2);
1328 break;
1329
1330 case KEY_HANJA:
1331 if (!up_flag)
1332 put_queue(vc, 0xf1);
1333 break;
1334
1335 case KEY_SYSRQ:
1336 /*
1337 * Real AT keyboards (that's what we're trying
1338 * to emulate here) emit 0xe0 0x2a 0xe0 0x37 when
1339 * pressing PrtSc/SysRq alone, but simply 0x54
1340 * when pressing Alt+PrtSc/SysRq.
1341 */
1342 if (test_bit(KEY_LEFTALT, key_down) ||
1343 test_bit(KEY_RIGHTALT, key_down)) {
1344 put_queue(vc, 0x54 | up_flag);
1345 } else {
1346 put_queue(vc, 0xe0);
1347 put_queue(vc, 0x2a | up_flag);
1348 put_queue(vc, 0xe0);
1349 put_queue(vc, 0x37 | up_flag);
1350 }
1351 break;
1352
1353 default:
1354 if (keycode > 255)
1355 return -1;
1356
1357 code = x86_keycodes[keycode];
1358 if (!code)
1359 return -1;
1360
1361 if (code & 0x100)
1362 put_queue(vc, 0xe0);
1363 put_queue(vc, (code & 0x7f) | up_flag);
1364
1365 break;
1366 }
1367
1368 return 0;
1369}
1370
1371#else
1372
1373static inline bool kbd_is_hw_raw(const struct input_dev *dev)
1374{
1375 return false;
1376}
1377
1378static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag)
1379{
1380 if (keycode > 127)
1381 return -1;
1382
1383 put_queue(vc, keycode | up_flag);
1384 return 0;
1385}
1386#endif
1387
1388static void kbd_rawcode(unsigned char data)
1389{
1390 struct vc_data *vc = vc_cons[fg_console].d;
1391
1392 kbd = &kbd_table[vc->vc_num];
1393 if (kbd->kbdmode == VC_RAW)
1394 put_queue(vc, data);
1395}
1396
1397static void kbd_keycode(unsigned int keycode, int down, bool hw_raw)
1398{
1399 struct vc_data *vc = vc_cons[fg_console].d;
1400 unsigned short keysym, *key_map;
1401 unsigned char type;
1402 bool raw_mode;
1403 struct tty_struct *tty;
1404 int shift_final;
1405 struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down };
1406 int rc;
1407
1408 tty = vc->port.tty;
1409
1410 if (tty && (!tty->driver_data)) {
1411 /* No driver data? Strange. Okay we fix it then. */
1412 tty->driver_data = vc;
1413 }
1414
1415 kbd = &kbd_table[vc->vc_num];
1416
1417#ifdef CONFIG_SPARC
1418 if (keycode == KEY_STOP)
1419 sparc_l1_a_state = down;
1420#endif
1421
1422 rep = (down == 2);
1423
1424 raw_mode = (kbd->kbdmode == VC_RAW);
1425 if (raw_mode && !hw_raw)
1426 if (emulate_raw(vc, keycode, !down << 7))
1427 if (keycode < BTN_MISC && printk_ratelimit())
1428 pr_warn("can't emulate rawmode for keycode %d\n",
1429 keycode);
1430
1431#ifdef CONFIG_SPARC
1432 if (keycode == KEY_A && sparc_l1_a_state) {
1433 sparc_l1_a_state = false;
1434 sun_do_break();
1435 }
1436#endif
1437
1438 if (kbd->kbdmode == VC_MEDIUMRAW) {
1439 /*
1440 * This is extended medium raw mode, with keys above 127
1441 * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing
1442 * the 'up' flag if needed. 0 is reserved, so this shouldn't
1443 * interfere with anything else. The two bytes after 0 will
1444 * always have the up flag set not to interfere with older
1445 * applications. This allows for 16384 different keycodes,
1446 * which should be enough.
1447 */
1448 if (keycode < 128) {
1449 put_queue(vc, keycode | (!down << 7));
1450 } else {
1451 put_queue(vc, !down << 7);
1452 put_queue(vc, (keycode >> 7) | BIT(7));
1453 put_queue(vc, keycode | BIT(7));
1454 }
1455 raw_mode = true;
1456 }
1457
1458 assign_bit(keycode, key_down, down);
1459
1460 if (rep &&
1461 (!vc_kbd_mode(kbd, VC_REPEAT) ||
1462 (tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) {
1463 /*
1464 * Don't repeat a key if the input buffers are not empty and the
1465 * characters get aren't echoed locally. This makes key repeat
1466 * usable with slow applications and under heavy loads.
1467 */
1468 return;
1469 }
1470
1471 param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate;
1472 param.ledstate = kbd->ledflagstate;
1473 key_map = key_maps[shift_final];
1474
1475 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1476 KBD_KEYCODE, ¶m);
1477 if (rc == NOTIFY_STOP || !key_map) {
1478 atomic_notifier_call_chain(&keyboard_notifier_list,
1479 KBD_UNBOUND_KEYCODE, ¶m);
1480 do_compute_shiftstate();
1481 kbd->slockstate = 0;
1482 return;
1483 }
1484
1485 if (keycode < NR_KEYS)
1486 keysym = key_map[keycode];
1487 else if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8)
1488 keysym = U(K(KT_BRL, keycode - KEY_BRL_DOT1 + 1));
1489 else
1490 return;
1491
1492 type = KTYP(keysym);
1493
1494 if (type < 0xf0) {
1495 param.value = keysym;
1496 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1497 KBD_UNICODE, ¶m);
1498 if (rc != NOTIFY_STOP)
1499 if (down && !raw_mode)
1500 k_unicode(vc, keysym, !down);
1501 return;
1502 }
1503
1504 type -= 0xf0;
1505
1506 if (type == KT_LETTER) {
1507 type = KT_LATIN;
1508 if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
1509 key_map = key_maps[shift_final ^ BIT(KG_SHIFT)];
1510 if (key_map)
1511 keysym = key_map[keycode];
1512 }
1513 }
1514
1515 param.value = keysym;
1516 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1517 KBD_KEYSYM, ¶m);
1518 if (rc == NOTIFY_STOP)
1519 return;
1520
1521 if ((raw_mode || kbd->kbdmode == VC_OFF) && type != KT_SPEC && type != KT_SHIFT)
1522 return;
1523
1524 (*k_handler[type])(vc, keysym & 0xff, !down);
1525
1526 param.ledstate = kbd->ledflagstate;
1527 atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, ¶m);
1528
1529 if (type != KT_SLOCK)
1530 kbd->slockstate = 0;
1531}
1532
1533static void kbd_event(struct input_handle *handle, unsigned int event_type,
1534 unsigned int event_code, int value)
1535{
1536 /* We are called with interrupts disabled, just take the lock */
1537 spin_lock(&kbd_event_lock);
1538
1539 if (event_type == EV_MSC && event_code == MSC_RAW &&
1540 kbd_is_hw_raw(handle->dev))
1541 kbd_rawcode(value);
1542 if (event_type == EV_KEY && event_code <= KEY_MAX)
1543 kbd_keycode(event_code, value, kbd_is_hw_raw(handle->dev));
1544
1545 spin_unlock(&kbd_event_lock);
1546
1547 tasklet_schedule(&keyboard_tasklet);
1548 do_poke_blanked_console = 1;
1549 schedule_console_callback();
1550}
1551
1552static bool kbd_match(struct input_handler *handler, struct input_dev *dev)
1553{
1554 if (test_bit(EV_SND, dev->evbit))
1555 return true;
1556
1557 if (test_bit(EV_KEY, dev->evbit)) {
1558 if (find_next_bit(dev->keybit, BTN_MISC, KEY_RESERVED) <
1559 BTN_MISC)
1560 return true;
1561 if (find_next_bit(dev->keybit, KEY_BRL_DOT10 + 1,
1562 KEY_BRL_DOT1) <= KEY_BRL_DOT10)
1563 return true;
1564 }
1565
1566 return false;
1567}
1568
1569/*
1570 * When a keyboard (or other input device) is found, the kbd_connect
1571 * function is called. The function then looks at the device, and if it
1572 * likes it, it can open it and get events from it. In this (kbd_connect)
1573 * function, we should decide which VT to bind that keyboard to initially.
1574 */
1575static int kbd_connect(struct input_handler *handler, struct input_dev *dev,
1576 const struct input_device_id *id)
1577{
1578 struct input_handle *handle;
1579 int error;
1580
1581 handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
1582 if (!handle)
1583 return -ENOMEM;
1584
1585 handle->dev = dev;
1586 handle->handler = handler;
1587 handle->name = "kbd";
1588
1589 error = input_register_handle(handle);
1590 if (error)
1591 goto err_free_handle;
1592
1593 error = input_open_device(handle);
1594 if (error)
1595 goto err_unregister_handle;
1596
1597 return 0;
1598
1599 err_unregister_handle:
1600 input_unregister_handle(handle);
1601 err_free_handle:
1602 kfree(handle);
1603 return error;
1604}
1605
1606static void kbd_disconnect(struct input_handle *handle)
1607{
1608 input_close_device(handle);
1609 input_unregister_handle(handle);
1610 kfree(handle);
1611}
1612
1613/*
1614 * Start keyboard handler on the new keyboard by refreshing LED state to
1615 * match the rest of the system.
1616 */
1617static void kbd_start(struct input_handle *handle)
1618{
1619 tasklet_disable(&keyboard_tasklet);
1620
1621 if (ledstate != -1U)
1622 kbd_update_leds_helper(handle, &ledstate);
1623
1624 tasklet_enable(&keyboard_tasklet);
1625}
1626
1627static const struct input_device_id kbd_ids[] = {
1628 {
1629 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1630 .evbit = { BIT_MASK(EV_KEY) },
1631 },
1632
1633 {
1634 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1635 .evbit = { BIT_MASK(EV_SND) },
1636 },
1637
1638 { }, /* Terminating entry */
1639};
1640
1641MODULE_DEVICE_TABLE(input, kbd_ids);
1642
1643static struct input_handler kbd_handler = {
1644 .event = kbd_event,
1645 .match = kbd_match,
1646 .connect = kbd_connect,
1647 .disconnect = kbd_disconnect,
1648 .start = kbd_start,
1649 .name = "kbd",
1650 .id_table = kbd_ids,
1651};
1652
1653int __init kbd_init(void)
1654{
1655 int i;
1656 int error;
1657
1658 for (i = 0; i < MAX_NR_CONSOLES; i++) {
1659 kbd_table[i].ledflagstate = kbd_defleds();
1660 kbd_table[i].default_ledflagstate = kbd_defleds();
1661 kbd_table[i].ledmode = LED_SHOW_FLAGS;
1662 kbd_table[i].lockstate = KBD_DEFLOCK;
1663 kbd_table[i].slockstate = 0;
1664 kbd_table[i].modeflags = KBD_DEFMODE;
1665 kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
1666 }
1667
1668 kbd_init_leds();
1669
1670 error = input_register_handler(&kbd_handler);
1671 if (error)
1672 return error;
1673
1674 tasklet_enable(&keyboard_tasklet);
1675 tasklet_schedule(&keyboard_tasklet);
1676
1677 return 0;
1678}
1679
1680/* Ioctl support code */
1681
1682/**
1683 * vt_do_diacrit - diacritical table updates
1684 * @cmd: ioctl request
1685 * @udp: pointer to user data for ioctl
1686 * @perm: permissions check computed by caller
1687 *
1688 * Update the diacritical tables atomically and safely. Lock them
1689 * against simultaneous keypresses
1690 */
1691int vt_do_diacrit(unsigned int cmd, void __user *udp, int perm)
1692{
1693 unsigned long flags;
1694 int asize;
1695 int ret = 0;
1696
1697 switch (cmd) {
1698 case KDGKBDIACR:
1699 {
1700 struct kbdiacrs __user *a = udp;
1701 struct kbdiacr *dia;
1702 int i;
1703
1704 dia = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacr),
1705 GFP_KERNEL);
1706 if (!dia)
1707 return -ENOMEM;
1708
1709 /* Lock the diacriticals table, make a copy and then
1710 copy it after we unlock */
1711 spin_lock_irqsave(&kbd_event_lock, flags);
1712
1713 asize = accent_table_size;
1714 for (i = 0; i < asize; i++) {
1715 dia[i].diacr = conv_uni_to_8bit(
1716 accent_table[i].diacr);
1717 dia[i].base = conv_uni_to_8bit(
1718 accent_table[i].base);
1719 dia[i].result = conv_uni_to_8bit(
1720 accent_table[i].result);
1721 }
1722 spin_unlock_irqrestore(&kbd_event_lock, flags);
1723
1724 if (put_user(asize, &a->kb_cnt))
1725 ret = -EFAULT;
1726 else if (copy_to_user(a->kbdiacr, dia,
1727 asize * sizeof(struct kbdiacr)))
1728 ret = -EFAULT;
1729 kfree(dia);
1730 return ret;
1731 }
1732 case KDGKBDIACRUC:
1733 {
1734 struct kbdiacrsuc __user *a = udp;
1735 void *buf;
1736
1737 buf = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacruc),
1738 GFP_KERNEL);
1739 if (buf == NULL)
1740 return -ENOMEM;
1741
1742 /* Lock the diacriticals table, make a copy and then
1743 copy it after we unlock */
1744 spin_lock_irqsave(&kbd_event_lock, flags);
1745
1746 asize = accent_table_size;
1747 memcpy(buf, accent_table, asize * sizeof(struct kbdiacruc));
1748
1749 spin_unlock_irqrestore(&kbd_event_lock, flags);
1750
1751 if (put_user(asize, &a->kb_cnt))
1752 ret = -EFAULT;
1753 else if (copy_to_user(a->kbdiacruc, buf,
1754 asize*sizeof(struct kbdiacruc)))
1755 ret = -EFAULT;
1756 kfree(buf);
1757 return ret;
1758 }
1759
1760 case KDSKBDIACR:
1761 {
1762 struct kbdiacrs __user *a = udp;
1763 struct kbdiacr *dia = NULL;
1764 unsigned int ct;
1765 int i;
1766
1767 if (!perm)
1768 return -EPERM;
1769 if (get_user(ct, &a->kb_cnt))
1770 return -EFAULT;
1771 if (ct >= MAX_DIACR)
1772 return -EINVAL;
1773
1774 if (ct) {
1775 dia = memdup_array_user(a->kbdiacr,
1776 ct, sizeof(struct kbdiacr));
1777 if (IS_ERR(dia))
1778 return PTR_ERR(dia);
1779 }
1780
1781 spin_lock_irqsave(&kbd_event_lock, flags);
1782 accent_table_size = ct;
1783 for (i = 0; i < ct; i++) {
1784 accent_table[i].diacr =
1785 conv_8bit_to_uni(dia[i].diacr);
1786 accent_table[i].base =
1787 conv_8bit_to_uni(dia[i].base);
1788 accent_table[i].result =
1789 conv_8bit_to_uni(dia[i].result);
1790 }
1791 spin_unlock_irqrestore(&kbd_event_lock, flags);
1792 kfree(dia);
1793 return 0;
1794 }
1795
1796 case KDSKBDIACRUC:
1797 {
1798 struct kbdiacrsuc __user *a = udp;
1799 unsigned int ct;
1800 void *buf = NULL;
1801
1802 if (!perm)
1803 return -EPERM;
1804
1805 if (get_user(ct, &a->kb_cnt))
1806 return -EFAULT;
1807
1808 if (ct >= MAX_DIACR)
1809 return -EINVAL;
1810
1811 if (ct) {
1812 buf = memdup_array_user(a->kbdiacruc,
1813 ct, sizeof(struct kbdiacruc));
1814 if (IS_ERR(buf))
1815 return PTR_ERR(buf);
1816 }
1817 spin_lock_irqsave(&kbd_event_lock, flags);
1818 if (ct)
1819 memcpy(accent_table, buf,
1820 ct * sizeof(struct kbdiacruc));
1821 accent_table_size = ct;
1822 spin_unlock_irqrestore(&kbd_event_lock, flags);
1823 kfree(buf);
1824 return 0;
1825 }
1826 }
1827 return ret;
1828}
1829
1830/**
1831 * vt_do_kdskbmode - set keyboard mode ioctl
1832 * @console: the console to use
1833 * @arg: the requested mode
1834 *
1835 * Update the keyboard mode bits while holding the correct locks.
1836 * Return 0 for success or an error code.
1837 */
1838int vt_do_kdskbmode(unsigned int console, unsigned int arg)
1839{
1840 struct kbd_struct *kb = &kbd_table[console];
1841 int ret = 0;
1842 unsigned long flags;
1843
1844 spin_lock_irqsave(&kbd_event_lock, flags);
1845 switch(arg) {
1846 case K_RAW:
1847 kb->kbdmode = VC_RAW;
1848 break;
1849 case K_MEDIUMRAW:
1850 kb->kbdmode = VC_MEDIUMRAW;
1851 break;
1852 case K_XLATE:
1853 kb->kbdmode = VC_XLATE;
1854 do_compute_shiftstate();
1855 break;
1856 case K_UNICODE:
1857 kb->kbdmode = VC_UNICODE;
1858 do_compute_shiftstate();
1859 break;
1860 case K_OFF:
1861 kb->kbdmode = VC_OFF;
1862 break;
1863 default:
1864 ret = -EINVAL;
1865 }
1866 spin_unlock_irqrestore(&kbd_event_lock, flags);
1867 return ret;
1868}
1869
1870/**
1871 * vt_do_kdskbmeta - set keyboard meta state
1872 * @console: the console to use
1873 * @arg: the requested meta state
1874 *
1875 * Update the keyboard meta bits while holding the correct locks.
1876 * Return 0 for success or an error code.
1877 */
1878int vt_do_kdskbmeta(unsigned int console, unsigned int arg)
1879{
1880 struct kbd_struct *kb = &kbd_table[console];
1881 int ret = 0;
1882 unsigned long flags;
1883
1884 spin_lock_irqsave(&kbd_event_lock, flags);
1885 switch(arg) {
1886 case K_METABIT:
1887 clr_vc_kbd_mode(kb, VC_META);
1888 break;
1889 case K_ESCPREFIX:
1890 set_vc_kbd_mode(kb, VC_META);
1891 break;
1892 default:
1893 ret = -EINVAL;
1894 }
1895 spin_unlock_irqrestore(&kbd_event_lock, flags);
1896 return ret;
1897}
1898
1899int vt_do_kbkeycode_ioctl(int cmd, struct kbkeycode __user *user_kbkc,
1900 int perm)
1901{
1902 struct kbkeycode tmp;
1903 int kc = 0;
1904
1905 if (copy_from_user(&tmp, user_kbkc, sizeof(struct kbkeycode)))
1906 return -EFAULT;
1907 switch (cmd) {
1908 case KDGETKEYCODE:
1909 kc = getkeycode(tmp.scancode);
1910 if (kc >= 0)
1911 kc = put_user(kc, &user_kbkc->keycode);
1912 break;
1913 case KDSETKEYCODE:
1914 if (!perm)
1915 return -EPERM;
1916 kc = setkeycode(tmp.scancode, tmp.keycode);
1917 break;
1918 }
1919 return kc;
1920}
1921
1922static unsigned short vt_kdgkbent(unsigned char kbdmode, unsigned char idx,
1923 unsigned char map)
1924{
1925 unsigned short *key_map, val;
1926 unsigned long flags;
1927
1928 /* Ensure another thread doesn't free it under us */
1929 spin_lock_irqsave(&kbd_event_lock, flags);
1930 key_map = key_maps[map];
1931 if (key_map) {
1932 val = U(key_map[idx]);
1933 if (kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES)
1934 val = K_HOLE;
1935 } else
1936 val = idx ? K_HOLE : K_NOSUCHMAP;
1937 spin_unlock_irqrestore(&kbd_event_lock, flags);
1938
1939 return val;
1940}
1941
1942static int vt_kdskbent(unsigned char kbdmode, unsigned char idx,
1943 unsigned char map, unsigned short val)
1944{
1945 unsigned long flags;
1946 unsigned short *key_map, *new_map, oldval;
1947
1948 if (!idx && val == K_NOSUCHMAP) {
1949 spin_lock_irqsave(&kbd_event_lock, flags);
1950 /* deallocate map */
1951 key_map = key_maps[map];
1952 if (map && key_map) {
1953 key_maps[map] = NULL;
1954 if (key_map[0] == U(K_ALLOCATED)) {
1955 kfree(key_map);
1956 keymap_count--;
1957 }
1958 }
1959 spin_unlock_irqrestore(&kbd_event_lock, flags);
1960
1961 return 0;
1962 }
1963
1964 if (KTYP(val) < NR_TYPES) {
1965 if (KVAL(val) > max_vals[KTYP(val)])
1966 return -EINVAL;
1967 } else if (kbdmode != VC_UNICODE)
1968 return -EINVAL;
1969
1970 /* ++Geert: non-PC keyboards may generate keycode zero */
1971#if !defined(__mc68000__) && !defined(__powerpc__)
1972 /* assignment to entry 0 only tests validity of args */
1973 if (!idx)
1974 return 0;
1975#endif
1976
1977 new_map = kmalloc(sizeof(plain_map), GFP_KERNEL);
1978 if (!new_map)
1979 return -ENOMEM;
1980
1981 spin_lock_irqsave(&kbd_event_lock, flags);
1982 key_map = key_maps[map];
1983 if (key_map == NULL) {
1984 int j;
1985
1986 if (keymap_count >= MAX_NR_OF_USER_KEYMAPS &&
1987 !capable(CAP_SYS_RESOURCE)) {
1988 spin_unlock_irqrestore(&kbd_event_lock, flags);
1989 kfree(new_map);
1990 return -EPERM;
1991 }
1992 key_maps[map] = new_map;
1993 key_map = new_map;
1994 key_map[0] = U(K_ALLOCATED);
1995 for (j = 1; j < NR_KEYS; j++)
1996 key_map[j] = U(K_HOLE);
1997 keymap_count++;
1998 } else
1999 kfree(new_map);
2000
2001 oldval = U(key_map[idx]);
2002 if (val == oldval)
2003 goto out;
2004
2005 /* Attention Key */
2006 if ((oldval == K_SAK || val == K_SAK) && !capable(CAP_SYS_ADMIN)) {
2007 spin_unlock_irqrestore(&kbd_event_lock, flags);
2008 return -EPERM;
2009 }
2010
2011 key_map[idx] = U(val);
2012 if (!map && (KTYP(oldval) == KT_SHIFT || KTYP(val) == KT_SHIFT))
2013 do_compute_shiftstate();
2014out:
2015 spin_unlock_irqrestore(&kbd_event_lock, flags);
2016
2017 return 0;
2018}
2019
2020int vt_do_kdsk_ioctl(int cmd, struct kbentry __user *user_kbe, int perm,
2021 unsigned int console)
2022{
2023 struct kbd_struct *kb = &kbd_table[console];
2024 struct kbentry kbe;
2025
2026 if (copy_from_user(&kbe, user_kbe, sizeof(struct kbentry)))
2027 return -EFAULT;
2028
2029 switch (cmd) {
2030 case KDGKBENT:
2031 return put_user(vt_kdgkbent(kb->kbdmode, kbe.kb_index,
2032 kbe.kb_table),
2033 &user_kbe->kb_value);
2034 case KDSKBENT:
2035 if (!perm || !capable(CAP_SYS_TTY_CONFIG))
2036 return -EPERM;
2037 return vt_kdskbent(kb->kbdmode, kbe.kb_index, kbe.kb_table,
2038 kbe.kb_value);
2039 }
2040 return 0;
2041}
2042
2043static char *vt_kdskbsent(char *kbs, unsigned char cur)
2044{
2045 static DECLARE_BITMAP(is_kmalloc, MAX_NR_FUNC);
2046 char *cur_f = func_table[cur];
2047
2048 if (cur_f && strlen(cur_f) >= strlen(kbs)) {
2049 strcpy(cur_f, kbs);
2050 return kbs;
2051 }
2052
2053 func_table[cur] = kbs;
2054
2055 return __test_and_set_bit(cur, is_kmalloc) ? cur_f : NULL;
2056}
2057
2058int vt_do_kdgkb_ioctl(int cmd, struct kbsentry __user *user_kdgkb, int perm)
2059{
2060 unsigned char kb_func;
2061 unsigned long flags;
2062 char *kbs;
2063 int ret;
2064
2065 if (get_user(kb_func, &user_kdgkb->kb_func))
2066 return -EFAULT;
2067
2068 kb_func = array_index_nospec(kb_func, MAX_NR_FUNC);
2069
2070 switch (cmd) {
2071 case KDGKBSENT: {
2072 /* size should have been a struct member */
2073 ssize_t len = sizeof(user_kdgkb->kb_string);
2074
2075 kbs = kmalloc(len, GFP_KERNEL);
2076 if (!kbs)
2077 return -ENOMEM;
2078
2079 spin_lock_irqsave(&func_buf_lock, flags);
2080 len = strscpy(kbs, func_table[kb_func] ? : "", len);
2081 spin_unlock_irqrestore(&func_buf_lock, flags);
2082
2083 if (len < 0) {
2084 ret = -ENOSPC;
2085 break;
2086 }
2087 ret = copy_to_user(user_kdgkb->kb_string, kbs, len + 1) ?
2088 -EFAULT : 0;
2089 break;
2090 }
2091 case KDSKBSENT:
2092 if (!perm || !capable(CAP_SYS_TTY_CONFIG))
2093 return -EPERM;
2094
2095 kbs = strndup_user(user_kdgkb->kb_string,
2096 sizeof(user_kdgkb->kb_string));
2097 if (IS_ERR(kbs))
2098 return PTR_ERR(kbs);
2099
2100 spin_lock_irqsave(&func_buf_lock, flags);
2101 kbs = vt_kdskbsent(kbs, kb_func);
2102 spin_unlock_irqrestore(&func_buf_lock, flags);
2103
2104 ret = 0;
2105 break;
2106 }
2107
2108 kfree(kbs);
2109
2110 return ret;
2111}
2112
2113int vt_do_kdskled(unsigned int console, int cmd, unsigned long arg, int perm)
2114{
2115 struct kbd_struct *kb = &kbd_table[console];
2116 unsigned long flags;
2117 unsigned char ucval;
2118
2119 switch(cmd) {
2120 /* the ioctls below read/set the flags usually shown in the leds */
2121 /* don't use them - they will go away without warning */
2122 case KDGKBLED:
2123 spin_lock_irqsave(&kbd_event_lock, flags);
2124 ucval = kb->ledflagstate | (kb->default_ledflagstate << 4);
2125 spin_unlock_irqrestore(&kbd_event_lock, flags);
2126 return put_user(ucval, (char __user *)arg);
2127
2128 case KDSKBLED:
2129 if (!perm)
2130 return -EPERM;
2131 if (arg & ~0x77)
2132 return -EINVAL;
2133 spin_lock_irqsave(&led_lock, flags);
2134 kb->ledflagstate = (arg & 7);
2135 kb->default_ledflagstate = ((arg >> 4) & 7);
2136 set_leds();
2137 spin_unlock_irqrestore(&led_lock, flags);
2138 return 0;
2139
2140 /* the ioctls below only set the lights, not the functions */
2141 /* for those, see KDGKBLED and KDSKBLED above */
2142 case KDGETLED:
2143 ucval = getledstate();
2144 return put_user(ucval, (char __user *)arg);
2145
2146 case KDSETLED:
2147 if (!perm)
2148 return -EPERM;
2149 setledstate(kb, arg);
2150 return 0;
2151 }
2152 return -ENOIOCTLCMD;
2153}
2154
2155int vt_do_kdgkbmode(unsigned int console)
2156{
2157 struct kbd_struct *kb = &kbd_table[console];
2158 /* This is a spot read so needs no locking */
2159 switch (kb->kbdmode) {
2160 case VC_RAW:
2161 return K_RAW;
2162 case VC_MEDIUMRAW:
2163 return K_MEDIUMRAW;
2164 case VC_UNICODE:
2165 return K_UNICODE;
2166 case VC_OFF:
2167 return K_OFF;
2168 default:
2169 return K_XLATE;
2170 }
2171}
2172
2173/**
2174 * vt_do_kdgkbmeta - report meta status
2175 * @console: console to report
2176 *
2177 * Report the meta flag status of this console
2178 */
2179int vt_do_kdgkbmeta(unsigned int console)
2180{
2181 struct kbd_struct *kb = &kbd_table[console];
2182 /* Again a spot read so no locking */
2183 return vc_kbd_mode(kb, VC_META) ? K_ESCPREFIX : K_METABIT;
2184}
2185
2186/**
2187 * vt_reset_unicode - reset the unicode status
2188 * @console: console being reset
2189 *
2190 * Restore the unicode console state to its default
2191 */
2192void vt_reset_unicode(unsigned int console)
2193{
2194 unsigned long flags;
2195
2196 spin_lock_irqsave(&kbd_event_lock, flags);
2197 kbd_table[console].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
2198 spin_unlock_irqrestore(&kbd_event_lock, flags);
2199}
2200
2201/**
2202 * vt_get_shift_state - shift bit state
2203 *
2204 * Report the shift bits from the keyboard state. We have to export
2205 * this to support some oddities in the vt layer.
2206 */
2207int vt_get_shift_state(void)
2208{
2209 /* Don't lock as this is a transient report */
2210 return shift_state;
2211}
2212
2213/**
2214 * vt_reset_keyboard - reset keyboard state
2215 * @console: console to reset
2216 *
2217 * Reset the keyboard bits for a console as part of a general console
2218 * reset event
2219 */
2220void vt_reset_keyboard(unsigned int console)
2221{
2222 struct kbd_struct *kb = &kbd_table[console];
2223 unsigned long flags;
2224
2225 spin_lock_irqsave(&kbd_event_lock, flags);
2226 set_vc_kbd_mode(kb, VC_REPEAT);
2227 clr_vc_kbd_mode(kb, VC_CKMODE);
2228 clr_vc_kbd_mode(kb, VC_APPLIC);
2229 clr_vc_kbd_mode(kb, VC_CRLF);
2230 kb->lockstate = 0;
2231 kb->slockstate = 0;
2232 spin_lock(&led_lock);
2233 kb->ledmode = LED_SHOW_FLAGS;
2234 kb->ledflagstate = kb->default_ledflagstate;
2235 spin_unlock(&led_lock);
2236 /* do not do set_leds here because this causes an endless tasklet loop
2237 when the keyboard hasn't been initialized yet */
2238 spin_unlock_irqrestore(&kbd_event_lock, flags);
2239}
2240
2241/**
2242 * vt_get_kbd_mode_bit - read keyboard status bits
2243 * @console: console to read from
2244 * @bit: mode bit to read
2245 *
2246 * Report back a vt mode bit. We do this without locking so the
2247 * caller must be sure that there are no synchronization needs
2248 */
2249
2250int vt_get_kbd_mode_bit(unsigned int console, int bit)
2251{
2252 struct kbd_struct *kb = &kbd_table[console];
2253 return vc_kbd_mode(kb, bit);
2254}
2255
2256/**
2257 * vt_set_kbd_mode_bit - read keyboard status bits
2258 * @console: console to read from
2259 * @bit: mode bit to read
2260 *
2261 * Set a vt mode bit. We do this without locking so the
2262 * caller must be sure that there are no synchronization needs
2263 */
2264
2265void vt_set_kbd_mode_bit(unsigned int console, int bit)
2266{
2267 struct kbd_struct *kb = &kbd_table[console];
2268 unsigned long flags;
2269
2270 spin_lock_irqsave(&kbd_event_lock, flags);
2271 set_vc_kbd_mode(kb, bit);
2272 spin_unlock_irqrestore(&kbd_event_lock, flags);
2273}
2274
2275/**
2276 * vt_clr_kbd_mode_bit - read keyboard status bits
2277 * @console: console to read from
2278 * @bit: mode bit to read
2279 *
2280 * Report back a vt mode bit. We do this without locking so the
2281 * caller must be sure that there are no synchronization needs
2282 */
2283
2284void vt_clr_kbd_mode_bit(unsigned int console, int bit)
2285{
2286 struct kbd_struct *kb = &kbd_table[console];
2287 unsigned long flags;
2288
2289 spin_lock_irqsave(&kbd_event_lock, flags);
2290 clr_vc_kbd_mode(kb, bit);
2291 spin_unlock_irqrestore(&kbd_event_lock, flags);
2292}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Written for linux by Johan Myreen as a translation from
4 * the assembly version by Linus (with diacriticals added)
5 *
6 * Some additional features added by Christoph Niemann (ChN), March 1993
7 *
8 * Loadable keymaps by Risto Kankkunen, May 1993
9 *
10 * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993
11 * Added decr/incr_console, dynamic keymaps, Unicode support,
12 * dynamic function/string keys, led setting, Sept 1994
13 * `Sticky' modifier keys, 951006.
14 *
15 * 11-11-96: SAK should now work in the raw mode (Martin Mares)
16 *
17 * Modified to provide 'generic' keyboard support by Hamish Macdonald
18 * Merge with the m68k keyboard driver and split-off of the PC low-level
19 * parts by Geert Uytterhoeven, May 1997
20 *
21 * 27-05-97: Added support for the Magic SysRq Key (Martin Mares)
22 * 30-07-98: Dead keys redone, aeb@cwi.nl.
23 * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik)
24 */
25
26#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27
28#include <linux/consolemap.h>
29#include <linux/init.h>
30#include <linux/input.h>
31#include <linux/jiffies.h>
32#include <linux/kbd_diacr.h>
33#include <linux/kbd_kern.h>
34#include <linux/leds.h>
35#include <linux/mm.h>
36#include <linux/module.h>
37#include <linux/nospec.h>
38#include <linux/notifier.h>
39#include <linux/reboot.h>
40#include <linux/sched/debug.h>
41#include <linux/sched/signal.h>
42#include <linux/slab.h>
43#include <linux/spinlock.h>
44#include <linux/string.h>
45#include <linux/tty_flip.h>
46#include <linux/tty.h>
47#include <linux/uaccess.h>
48#include <linux/vt_kern.h>
49
50#include <asm/irq_regs.h>
51
52/*
53 * Exported functions/variables
54 */
55
56#define KBD_DEFMODE (BIT(VC_REPEAT) | BIT(VC_META))
57
58#if defined(CONFIG_X86) || defined(CONFIG_PARISC)
59#include <asm/kbdleds.h>
60#else
61static inline int kbd_defleds(void)
62{
63 return 0;
64}
65#endif
66
67#define KBD_DEFLOCK 0
68
69/*
70 * Handler Tables.
71 */
72
73#define K_HANDLERS\
74 k_self, k_fn, k_spec, k_pad,\
75 k_dead, k_cons, k_cur, k_shift,\
76 k_meta, k_ascii, k_lock, k_lowercase,\
77 k_slock, k_dead2, k_brl, k_ignore
78
79typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value,
80 char up_flag);
81static k_handler_fn K_HANDLERS;
82static k_handler_fn *k_handler[16] = { K_HANDLERS };
83
84#define FN_HANDLERS\
85 fn_null, fn_enter, fn_show_ptregs, fn_show_mem,\
86 fn_show_state, fn_send_intr, fn_lastcons, fn_caps_toggle,\
87 fn_num, fn_hold, fn_scroll_forw, fn_scroll_back,\
88 fn_boot_it, fn_caps_on, fn_compose, fn_SAK,\
89 fn_dec_console, fn_inc_console, fn_spawn_con, fn_bare_num
90
91typedef void (fn_handler_fn)(struct vc_data *vc);
92static fn_handler_fn FN_HANDLERS;
93static fn_handler_fn *fn_handler[] = { FN_HANDLERS };
94
95/*
96 * Variables exported for vt_ioctl.c
97 */
98
99struct vt_spawn_console vt_spawn_con = {
100 .lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock),
101 .pid = NULL,
102 .sig = 0,
103};
104
105
106/*
107 * Internal Data.
108 */
109
110static struct kbd_struct kbd_table[MAX_NR_CONSOLES];
111static struct kbd_struct *kbd = kbd_table;
112
113/* maximum values each key_handler can handle */
114static const unsigned char max_vals[] = {
115 [ KT_LATIN ] = 255,
116 [ KT_FN ] = ARRAY_SIZE(func_table) - 1,
117 [ KT_SPEC ] = ARRAY_SIZE(fn_handler) - 1,
118 [ KT_PAD ] = NR_PAD - 1,
119 [ KT_DEAD ] = NR_DEAD - 1,
120 [ KT_CONS ] = 255,
121 [ KT_CUR ] = 3,
122 [ KT_SHIFT ] = NR_SHIFT - 1,
123 [ KT_META ] = 255,
124 [ KT_ASCII ] = NR_ASCII - 1,
125 [ KT_LOCK ] = NR_LOCK - 1,
126 [ KT_LETTER ] = 255,
127 [ KT_SLOCK ] = NR_LOCK - 1,
128 [ KT_DEAD2 ] = 255,
129 [ KT_BRL ] = NR_BRL - 1,
130};
131
132static const int NR_TYPES = ARRAY_SIZE(max_vals);
133
134static void kbd_bh(struct tasklet_struct *unused);
135static DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh);
136
137static struct input_handler kbd_handler;
138static DEFINE_SPINLOCK(kbd_event_lock);
139static DEFINE_SPINLOCK(led_lock);
140static DEFINE_SPINLOCK(func_buf_lock); /* guard 'func_buf' and friends */
141static DECLARE_BITMAP(key_down, KEY_CNT); /* keyboard key bitmap */
142static unsigned char shift_down[NR_SHIFT]; /* shift state counters.. */
143static bool dead_key_next;
144
145/* Handles a number being assembled on the number pad */
146static bool npadch_active;
147static unsigned int npadch_value;
148
149static unsigned int diacr;
150static bool rep; /* flag telling character repeat */
151
152static int shift_state = 0;
153
154static unsigned int ledstate = -1U; /* undefined */
155static unsigned char ledioctl;
156static bool vt_switch;
157
158/*
159 * Notifier list for console keyboard events
160 */
161static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list);
162
163int register_keyboard_notifier(struct notifier_block *nb)
164{
165 return atomic_notifier_chain_register(&keyboard_notifier_list, nb);
166}
167EXPORT_SYMBOL_GPL(register_keyboard_notifier);
168
169int unregister_keyboard_notifier(struct notifier_block *nb)
170{
171 return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb);
172}
173EXPORT_SYMBOL_GPL(unregister_keyboard_notifier);
174
175/*
176 * Translation of scancodes to keycodes. We set them on only the first
177 * keyboard in the list that accepts the scancode and keycode.
178 * Explanation for not choosing the first attached keyboard anymore:
179 * USB keyboards for example have two event devices: one for all "normal"
180 * keys and one for extra function keys (like "volume up", "make coffee",
181 * etc.). So this means that scancodes for the extra function keys won't
182 * be valid for the first event device, but will be for the second.
183 */
184
185struct getset_keycode_data {
186 struct input_keymap_entry ke;
187 int error;
188};
189
190static int getkeycode_helper(struct input_handle *handle, void *data)
191{
192 struct getset_keycode_data *d = data;
193
194 d->error = input_get_keycode(handle->dev, &d->ke);
195
196 return d->error == 0; /* stop as soon as we successfully get one */
197}
198
199static int getkeycode(unsigned int scancode)
200{
201 struct getset_keycode_data d = {
202 .ke = {
203 .flags = 0,
204 .len = sizeof(scancode),
205 .keycode = 0,
206 },
207 .error = -ENODEV,
208 };
209
210 memcpy(d.ke.scancode, &scancode, sizeof(scancode));
211
212 input_handler_for_each_handle(&kbd_handler, &d, getkeycode_helper);
213
214 return d.error ?: d.ke.keycode;
215}
216
217static int setkeycode_helper(struct input_handle *handle, void *data)
218{
219 struct getset_keycode_data *d = data;
220
221 d->error = input_set_keycode(handle->dev, &d->ke);
222
223 return d->error == 0; /* stop as soon as we successfully set one */
224}
225
226static int setkeycode(unsigned int scancode, unsigned int keycode)
227{
228 struct getset_keycode_data d = {
229 .ke = {
230 .flags = 0,
231 .len = sizeof(scancode),
232 .keycode = keycode,
233 },
234 .error = -ENODEV,
235 };
236
237 memcpy(d.ke.scancode, &scancode, sizeof(scancode));
238
239 input_handler_for_each_handle(&kbd_handler, &d, setkeycode_helper);
240
241 return d.error;
242}
243
244/*
245 * Making beeps and bells. Note that we prefer beeps to bells, but when
246 * shutting the sound off we do both.
247 */
248
249static int kd_sound_helper(struct input_handle *handle, void *data)
250{
251 unsigned int *hz = data;
252 struct input_dev *dev = handle->dev;
253
254 if (test_bit(EV_SND, dev->evbit)) {
255 if (test_bit(SND_TONE, dev->sndbit)) {
256 input_inject_event(handle, EV_SND, SND_TONE, *hz);
257 if (*hz)
258 return 0;
259 }
260 if (test_bit(SND_BELL, dev->sndbit))
261 input_inject_event(handle, EV_SND, SND_BELL, *hz ? 1 : 0);
262 }
263
264 return 0;
265}
266
267static void kd_nosound(struct timer_list *unused)
268{
269 static unsigned int zero;
270
271 input_handler_for_each_handle(&kbd_handler, &zero, kd_sound_helper);
272}
273
274static DEFINE_TIMER(kd_mksound_timer, kd_nosound);
275
276void kd_mksound(unsigned int hz, unsigned int ticks)
277{
278 del_timer_sync(&kd_mksound_timer);
279
280 input_handler_for_each_handle(&kbd_handler, &hz, kd_sound_helper);
281
282 if (hz && ticks)
283 mod_timer(&kd_mksound_timer, jiffies + ticks);
284}
285EXPORT_SYMBOL(kd_mksound);
286
287/*
288 * Setting the keyboard rate.
289 */
290
291static int kbd_rate_helper(struct input_handle *handle, void *data)
292{
293 struct input_dev *dev = handle->dev;
294 struct kbd_repeat *rpt = data;
295
296 if (test_bit(EV_REP, dev->evbit)) {
297
298 if (rpt[0].delay > 0)
299 input_inject_event(handle,
300 EV_REP, REP_DELAY, rpt[0].delay);
301 if (rpt[0].period > 0)
302 input_inject_event(handle,
303 EV_REP, REP_PERIOD, rpt[0].period);
304
305 rpt[1].delay = dev->rep[REP_DELAY];
306 rpt[1].period = dev->rep[REP_PERIOD];
307 }
308
309 return 0;
310}
311
312int kbd_rate(struct kbd_repeat *rpt)
313{
314 struct kbd_repeat data[2] = { *rpt };
315
316 input_handler_for_each_handle(&kbd_handler, data, kbd_rate_helper);
317 *rpt = data[1]; /* Copy currently used settings */
318
319 return 0;
320}
321
322/*
323 * Helper Functions.
324 */
325static void put_queue(struct vc_data *vc, int ch)
326{
327 tty_insert_flip_char(&vc->port, ch, 0);
328 tty_flip_buffer_push(&vc->port);
329}
330
331static void puts_queue(struct vc_data *vc, const char *cp)
332{
333 tty_insert_flip_string(&vc->port, cp, strlen(cp));
334 tty_flip_buffer_push(&vc->port);
335}
336
337static void applkey(struct vc_data *vc, int key, char mode)
338{
339 static char buf[] = { 0x1b, 'O', 0x00, 0x00 };
340
341 buf[1] = (mode ? 'O' : '[');
342 buf[2] = key;
343 puts_queue(vc, buf);
344}
345
346/*
347 * Many other routines do put_queue, but I think either
348 * they produce ASCII, or they produce some user-assigned
349 * string, and in both cases we might assume that it is
350 * in utf-8 already.
351 */
352static void to_utf8(struct vc_data *vc, uint c)
353{
354 if (c < 0x80)
355 /* 0******* */
356 put_queue(vc, c);
357 else if (c < 0x800) {
358 /* 110***** 10****** */
359 put_queue(vc, 0xc0 | (c >> 6));
360 put_queue(vc, 0x80 | (c & 0x3f));
361 } else if (c < 0x10000) {
362 if (c >= 0xD800 && c < 0xE000)
363 return;
364 if (c == 0xFFFF)
365 return;
366 /* 1110**** 10****** 10****** */
367 put_queue(vc, 0xe0 | (c >> 12));
368 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
369 put_queue(vc, 0x80 | (c & 0x3f));
370 } else if (c < 0x110000) {
371 /* 11110*** 10****** 10****** 10****** */
372 put_queue(vc, 0xf0 | (c >> 18));
373 put_queue(vc, 0x80 | ((c >> 12) & 0x3f));
374 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
375 put_queue(vc, 0x80 | (c & 0x3f));
376 }
377}
378
379/* FIXME: review locking for vt.c callers */
380static void set_leds(void)
381{
382 tasklet_schedule(&keyboard_tasklet);
383}
384
385/*
386 * Called after returning from RAW mode or when changing consoles - recompute
387 * shift_down[] and shift_state from key_down[] maybe called when keymap is
388 * undefined, so that shiftkey release is seen. The caller must hold the
389 * kbd_event_lock.
390 */
391
392static void do_compute_shiftstate(void)
393{
394 unsigned int k, sym, val;
395
396 shift_state = 0;
397 memset(shift_down, 0, sizeof(shift_down));
398
399 for_each_set_bit(k, key_down, min(NR_KEYS, KEY_CNT)) {
400 sym = U(key_maps[0][k]);
401 if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK)
402 continue;
403
404 val = KVAL(sym);
405 if (val == KVAL(K_CAPSSHIFT))
406 val = KVAL(K_SHIFT);
407
408 shift_down[val]++;
409 shift_state |= BIT(val);
410 }
411}
412
413/* We still have to export this method to vt.c */
414void vt_set_leds_compute_shiftstate(void)
415{
416 unsigned long flags;
417
418 /*
419 * When VT is switched, the keyboard led needs to be set once.
420 * Ensure that after the switch is completed, the state of the
421 * keyboard LED is consistent with the state of the keyboard lock.
422 */
423 vt_switch = true;
424 set_leds();
425
426 spin_lock_irqsave(&kbd_event_lock, flags);
427 do_compute_shiftstate();
428 spin_unlock_irqrestore(&kbd_event_lock, flags);
429}
430
431/*
432 * We have a combining character DIACR here, followed by the character CH.
433 * If the combination occurs in the table, return the corresponding value.
434 * Otherwise, if CH is a space or equals DIACR, return DIACR.
435 * Otherwise, conclude that DIACR was not combining after all,
436 * queue it and return CH.
437 */
438static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch)
439{
440 unsigned int d = diacr;
441 unsigned int i;
442
443 diacr = 0;
444
445 if ((d & ~0xff) == BRL_UC_ROW) {
446 if ((ch & ~0xff) == BRL_UC_ROW)
447 return d | ch;
448 } else {
449 for (i = 0; i < accent_table_size; i++)
450 if (accent_table[i].diacr == d && accent_table[i].base == ch)
451 return accent_table[i].result;
452 }
453
454 if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d)
455 return d;
456
457 if (kbd->kbdmode == VC_UNICODE)
458 to_utf8(vc, d);
459 else {
460 int c = conv_uni_to_8bit(d);
461 if (c != -1)
462 put_queue(vc, c);
463 }
464
465 return ch;
466}
467
468/*
469 * Special function handlers
470 */
471static void fn_enter(struct vc_data *vc)
472{
473 if (diacr) {
474 if (kbd->kbdmode == VC_UNICODE)
475 to_utf8(vc, diacr);
476 else {
477 int c = conv_uni_to_8bit(diacr);
478 if (c != -1)
479 put_queue(vc, c);
480 }
481 diacr = 0;
482 }
483
484 put_queue(vc, '\r');
485 if (vc_kbd_mode(kbd, VC_CRLF))
486 put_queue(vc, '\n');
487}
488
489static void fn_caps_toggle(struct vc_data *vc)
490{
491 if (rep)
492 return;
493
494 chg_vc_kbd_led(kbd, VC_CAPSLOCK);
495}
496
497static void fn_caps_on(struct vc_data *vc)
498{
499 if (rep)
500 return;
501
502 set_vc_kbd_led(kbd, VC_CAPSLOCK);
503}
504
505static void fn_show_ptregs(struct vc_data *vc)
506{
507 struct pt_regs *regs = get_irq_regs();
508
509 if (regs)
510 show_regs(regs);
511}
512
513static void fn_hold(struct vc_data *vc)
514{
515 struct tty_struct *tty = vc->port.tty;
516
517 if (rep || !tty)
518 return;
519
520 /*
521 * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty);
522 * these routines are also activated by ^S/^Q.
523 * (And SCROLLOCK can also be set by the ioctl KDSKBLED.)
524 */
525 if (tty->flow.stopped)
526 start_tty(tty);
527 else
528 stop_tty(tty);
529}
530
531static void fn_num(struct vc_data *vc)
532{
533 if (vc_kbd_mode(kbd, VC_APPLIC))
534 applkey(vc, 'P', 1);
535 else
536 fn_bare_num(vc);
537}
538
539/*
540 * Bind this to Shift-NumLock if you work in application keypad mode
541 * but want to be able to change the NumLock flag.
542 * Bind this to NumLock if you prefer that the NumLock key always
543 * changes the NumLock flag.
544 */
545static void fn_bare_num(struct vc_data *vc)
546{
547 if (!rep)
548 chg_vc_kbd_led(kbd, VC_NUMLOCK);
549}
550
551static void fn_lastcons(struct vc_data *vc)
552{
553 /* switch to the last used console, ChN */
554 set_console(last_console);
555}
556
557static void fn_dec_console(struct vc_data *vc)
558{
559 int i, cur = fg_console;
560
561 /* Currently switching? Queue this next switch relative to that. */
562 if (want_console != -1)
563 cur = want_console;
564
565 for (i = cur - 1; i != cur; i--) {
566 if (i == -1)
567 i = MAX_NR_CONSOLES - 1;
568 if (vc_cons_allocated(i))
569 break;
570 }
571 set_console(i);
572}
573
574static void fn_inc_console(struct vc_data *vc)
575{
576 int i, cur = fg_console;
577
578 /* Currently switching? Queue this next switch relative to that. */
579 if (want_console != -1)
580 cur = want_console;
581
582 for (i = cur+1; i != cur; i++) {
583 if (i == MAX_NR_CONSOLES)
584 i = 0;
585 if (vc_cons_allocated(i))
586 break;
587 }
588 set_console(i);
589}
590
591static void fn_send_intr(struct vc_data *vc)
592{
593 tty_insert_flip_char(&vc->port, 0, TTY_BREAK);
594 tty_flip_buffer_push(&vc->port);
595}
596
597static void fn_scroll_forw(struct vc_data *vc)
598{
599 scrollfront(vc, 0);
600}
601
602static void fn_scroll_back(struct vc_data *vc)
603{
604 scrollback(vc);
605}
606
607static void fn_show_mem(struct vc_data *vc)
608{
609 show_mem();
610}
611
612static void fn_show_state(struct vc_data *vc)
613{
614 show_state();
615}
616
617static void fn_boot_it(struct vc_data *vc)
618{
619 ctrl_alt_del();
620}
621
622static void fn_compose(struct vc_data *vc)
623{
624 dead_key_next = true;
625}
626
627static void fn_spawn_con(struct vc_data *vc)
628{
629 spin_lock(&vt_spawn_con.lock);
630 if (vt_spawn_con.pid)
631 if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) {
632 put_pid(vt_spawn_con.pid);
633 vt_spawn_con.pid = NULL;
634 }
635 spin_unlock(&vt_spawn_con.lock);
636}
637
638static void fn_SAK(struct vc_data *vc)
639{
640 struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work;
641 schedule_work(SAK_work);
642}
643
644static void fn_null(struct vc_data *vc)
645{
646 do_compute_shiftstate();
647}
648
649/*
650 * Special key handlers
651 */
652static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag)
653{
654}
655
656static void k_spec(struct vc_data *vc, unsigned char value, char up_flag)
657{
658 if (up_flag)
659 return;
660 if (value >= ARRAY_SIZE(fn_handler))
661 return;
662 if ((kbd->kbdmode == VC_RAW ||
663 kbd->kbdmode == VC_MEDIUMRAW ||
664 kbd->kbdmode == VC_OFF) &&
665 value != KVAL(K_SAK))
666 return; /* SAK is allowed even in raw mode */
667 fn_handler[value](vc);
668}
669
670static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag)
671{
672 pr_err("k_lowercase was called - impossible\n");
673}
674
675static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag)
676{
677 if (up_flag)
678 return; /* no action, if this is a key release */
679
680 if (diacr)
681 value = handle_diacr(vc, value);
682
683 if (dead_key_next) {
684 dead_key_next = false;
685 diacr = value;
686 return;
687 }
688 if (kbd->kbdmode == VC_UNICODE)
689 to_utf8(vc, value);
690 else {
691 int c = conv_uni_to_8bit(value);
692 if (c != -1)
693 put_queue(vc, c);
694 }
695}
696
697/*
698 * Handle dead key. Note that we now may have several
699 * dead keys modifying the same character. Very useful
700 * for Vietnamese.
701 */
702static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag)
703{
704 if (up_flag)
705 return;
706
707 diacr = (diacr ? handle_diacr(vc, value) : value);
708}
709
710static void k_self(struct vc_data *vc, unsigned char value, char up_flag)
711{
712 k_unicode(vc, conv_8bit_to_uni(value), up_flag);
713}
714
715static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag)
716{
717 k_deadunicode(vc, value, up_flag);
718}
719
720/*
721 * Obsolete - for backwards compatibility only
722 */
723static void k_dead(struct vc_data *vc, unsigned char value, char up_flag)
724{
725 static const unsigned char ret_diacr[NR_DEAD] = {
726 '`', /* dead_grave */
727 '\'', /* dead_acute */
728 '^', /* dead_circumflex */
729 '~', /* dead_tilda */
730 '"', /* dead_diaeresis */
731 ',', /* dead_cedilla */
732 '_', /* dead_macron */
733 'U', /* dead_breve */
734 '.', /* dead_abovedot */
735 '*', /* dead_abovering */
736 '=', /* dead_doubleacute */
737 'c', /* dead_caron */
738 'k', /* dead_ogonek */
739 'i', /* dead_iota */
740 '#', /* dead_voiced_sound */
741 'o', /* dead_semivoiced_sound */
742 '!', /* dead_belowdot */
743 '?', /* dead_hook */
744 '+', /* dead_horn */
745 '-', /* dead_stroke */
746 ')', /* dead_abovecomma */
747 '(', /* dead_abovereversedcomma */
748 ':', /* dead_doublegrave */
749 'n', /* dead_invertedbreve */
750 ';', /* dead_belowcomma */
751 '$', /* dead_currency */
752 '@', /* dead_greek */
753 };
754
755 k_deadunicode(vc, ret_diacr[value], up_flag);
756}
757
758static void k_cons(struct vc_data *vc, unsigned char value, char up_flag)
759{
760 if (up_flag)
761 return;
762
763 set_console(value);
764}
765
766static void k_fn(struct vc_data *vc, unsigned char value, char up_flag)
767{
768 if (up_flag)
769 return;
770
771 if ((unsigned)value < ARRAY_SIZE(func_table)) {
772 unsigned long flags;
773
774 spin_lock_irqsave(&func_buf_lock, flags);
775 if (func_table[value])
776 puts_queue(vc, func_table[value]);
777 spin_unlock_irqrestore(&func_buf_lock, flags);
778
779 } else
780 pr_err("k_fn called with value=%d\n", value);
781}
782
783static void k_cur(struct vc_data *vc, unsigned char value, char up_flag)
784{
785 static const char cur_chars[] = "BDCA";
786
787 if (up_flag)
788 return;
789
790 applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE));
791}
792
793static void k_pad(struct vc_data *vc, unsigned char value, char up_flag)
794{
795 static const char pad_chars[] = "0123456789+-*/\015,.?()#";
796 static const char app_map[] = "pqrstuvwxylSRQMnnmPQS";
797
798 if (up_flag)
799 return; /* no action, if this is a key release */
800
801 /* kludge... shift forces cursor/number keys */
802 if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) {
803 applkey(vc, app_map[value], 1);
804 return;
805 }
806
807 if (!vc_kbd_led(kbd, VC_NUMLOCK)) {
808
809 switch (value) {
810 case KVAL(K_PCOMMA):
811 case KVAL(K_PDOT):
812 k_fn(vc, KVAL(K_REMOVE), 0);
813 return;
814 case KVAL(K_P0):
815 k_fn(vc, KVAL(K_INSERT), 0);
816 return;
817 case KVAL(K_P1):
818 k_fn(vc, KVAL(K_SELECT), 0);
819 return;
820 case KVAL(K_P2):
821 k_cur(vc, KVAL(K_DOWN), 0);
822 return;
823 case KVAL(K_P3):
824 k_fn(vc, KVAL(K_PGDN), 0);
825 return;
826 case KVAL(K_P4):
827 k_cur(vc, KVAL(K_LEFT), 0);
828 return;
829 case KVAL(K_P6):
830 k_cur(vc, KVAL(K_RIGHT), 0);
831 return;
832 case KVAL(K_P7):
833 k_fn(vc, KVAL(K_FIND), 0);
834 return;
835 case KVAL(K_P8):
836 k_cur(vc, KVAL(K_UP), 0);
837 return;
838 case KVAL(K_P9):
839 k_fn(vc, KVAL(K_PGUP), 0);
840 return;
841 case KVAL(K_P5):
842 applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC));
843 return;
844 }
845 }
846
847 put_queue(vc, pad_chars[value]);
848 if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF))
849 put_queue(vc, '\n');
850}
851
852static void k_shift(struct vc_data *vc, unsigned char value, char up_flag)
853{
854 int old_state = shift_state;
855
856 if (rep)
857 return;
858 /*
859 * Mimic typewriter:
860 * a CapsShift key acts like Shift but undoes CapsLock
861 */
862 if (value == KVAL(K_CAPSSHIFT)) {
863 value = KVAL(K_SHIFT);
864 if (!up_flag)
865 clr_vc_kbd_led(kbd, VC_CAPSLOCK);
866 }
867
868 if (up_flag) {
869 /*
870 * handle the case that two shift or control
871 * keys are depressed simultaneously
872 */
873 if (shift_down[value])
874 shift_down[value]--;
875 } else
876 shift_down[value]++;
877
878 if (shift_down[value])
879 shift_state |= BIT(value);
880 else
881 shift_state &= ~BIT(value);
882
883 /* kludge */
884 if (up_flag && shift_state != old_state && npadch_active) {
885 if (kbd->kbdmode == VC_UNICODE)
886 to_utf8(vc, npadch_value);
887 else
888 put_queue(vc, npadch_value & 0xff);
889 npadch_active = false;
890 }
891}
892
893static void k_meta(struct vc_data *vc, unsigned char value, char up_flag)
894{
895 if (up_flag)
896 return;
897
898 if (vc_kbd_mode(kbd, VC_META)) {
899 put_queue(vc, '\033');
900 put_queue(vc, value);
901 } else
902 put_queue(vc, value | BIT(7));
903}
904
905static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag)
906{
907 unsigned int base;
908
909 if (up_flag)
910 return;
911
912 if (value < 10) {
913 /* decimal input of code, while Alt depressed */
914 base = 10;
915 } else {
916 /* hexadecimal input of code, while AltGr depressed */
917 value -= 10;
918 base = 16;
919 }
920
921 if (!npadch_active) {
922 npadch_value = 0;
923 npadch_active = true;
924 }
925
926 npadch_value = npadch_value * base + value;
927}
928
929static void k_lock(struct vc_data *vc, unsigned char value, char up_flag)
930{
931 if (up_flag || rep)
932 return;
933
934 chg_vc_kbd_lock(kbd, value);
935}
936
937static void k_slock(struct vc_data *vc, unsigned char value, char up_flag)
938{
939 k_shift(vc, value, up_flag);
940 if (up_flag || rep)
941 return;
942
943 chg_vc_kbd_slock(kbd, value);
944 /* try to make Alt, oops, AltGr and such work */
945 if (!key_maps[kbd->lockstate ^ kbd->slockstate]) {
946 kbd->slockstate = 0;
947 chg_vc_kbd_slock(kbd, value);
948 }
949}
950
951/* by default, 300ms interval for combination release */
952static unsigned brl_timeout = 300;
953MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)");
954module_param(brl_timeout, uint, 0644);
955
956static unsigned brl_nbchords = 1;
957MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)");
958module_param(brl_nbchords, uint, 0644);
959
960static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag)
961{
962 static unsigned long chords;
963 static unsigned committed;
964
965 if (!brl_nbchords)
966 k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag);
967 else {
968 committed |= pattern;
969 chords++;
970 if (chords == brl_nbchords) {
971 k_unicode(vc, BRL_UC_ROW | committed, up_flag);
972 chords = 0;
973 committed = 0;
974 }
975 }
976}
977
978static void k_brl(struct vc_data *vc, unsigned char value, char up_flag)
979{
980 static unsigned pressed, committing;
981 static unsigned long releasestart;
982
983 if (kbd->kbdmode != VC_UNICODE) {
984 if (!up_flag)
985 pr_warn("keyboard mode must be unicode for braille patterns\n");
986 return;
987 }
988
989 if (!value) {
990 k_unicode(vc, BRL_UC_ROW, up_flag);
991 return;
992 }
993
994 if (value > 8)
995 return;
996
997 if (!up_flag) {
998 pressed |= BIT(value - 1);
999 if (!brl_timeout)
1000 committing = pressed;
1001 } else if (brl_timeout) {
1002 if (!committing ||
1003 time_after(jiffies,
1004 releasestart + msecs_to_jiffies(brl_timeout))) {
1005 committing = pressed;
1006 releasestart = jiffies;
1007 }
1008 pressed &= ~BIT(value - 1);
1009 if (!pressed && committing) {
1010 k_brlcommit(vc, committing, 0);
1011 committing = 0;
1012 }
1013 } else {
1014 if (committing) {
1015 k_brlcommit(vc, committing, 0);
1016 committing = 0;
1017 }
1018 pressed &= ~BIT(value - 1);
1019 }
1020}
1021
1022#if IS_ENABLED(CONFIG_INPUT_LEDS) && IS_ENABLED(CONFIG_LEDS_TRIGGERS)
1023
1024struct kbd_led_trigger {
1025 struct led_trigger trigger;
1026 unsigned int mask;
1027};
1028
1029static int kbd_led_trigger_activate(struct led_classdev *cdev)
1030{
1031 struct kbd_led_trigger *trigger =
1032 container_of(cdev->trigger, struct kbd_led_trigger, trigger);
1033
1034 tasklet_disable(&keyboard_tasklet);
1035 if (ledstate != -1U)
1036 led_set_brightness(cdev, ledstate & trigger->mask ? LED_FULL : LED_OFF);
1037 tasklet_enable(&keyboard_tasklet);
1038
1039 return 0;
1040}
1041
1042#define KBD_LED_TRIGGER(_led_bit, _name) { \
1043 .trigger = { \
1044 .name = _name, \
1045 .activate = kbd_led_trigger_activate, \
1046 }, \
1047 .mask = BIT(_led_bit), \
1048 }
1049
1050#define KBD_LOCKSTATE_TRIGGER(_led_bit, _name) \
1051 KBD_LED_TRIGGER((_led_bit) + 8, _name)
1052
1053static struct kbd_led_trigger kbd_led_triggers[] = {
1054 KBD_LED_TRIGGER(VC_SCROLLOCK, "kbd-scrolllock"),
1055 KBD_LED_TRIGGER(VC_NUMLOCK, "kbd-numlock"),
1056 KBD_LED_TRIGGER(VC_CAPSLOCK, "kbd-capslock"),
1057 KBD_LED_TRIGGER(VC_KANALOCK, "kbd-kanalock"),
1058
1059 KBD_LOCKSTATE_TRIGGER(VC_SHIFTLOCK, "kbd-shiftlock"),
1060 KBD_LOCKSTATE_TRIGGER(VC_ALTGRLOCK, "kbd-altgrlock"),
1061 KBD_LOCKSTATE_TRIGGER(VC_CTRLLOCK, "kbd-ctrllock"),
1062 KBD_LOCKSTATE_TRIGGER(VC_ALTLOCK, "kbd-altlock"),
1063 KBD_LOCKSTATE_TRIGGER(VC_SHIFTLLOCK, "kbd-shiftllock"),
1064 KBD_LOCKSTATE_TRIGGER(VC_SHIFTRLOCK, "kbd-shiftrlock"),
1065 KBD_LOCKSTATE_TRIGGER(VC_CTRLLLOCK, "kbd-ctrlllock"),
1066 KBD_LOCKSTATE_TRIGGER(VC_CTRLRLOCK, "kbd-ctrlrlock"),
1067};
1068
1069static void kbd_propagate_led_state(unsigned int old_state,
1070 unsigned int new_state)
1071{
1072 struct kbd_led_trigger *trigger;
1073 unsigned int changed = old_state ^ new_state;
1074 int i;
1075
1076 for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1077 trigger = &kbd_led_triggers[i];
1078
1079 if (changed & trigger->mask)
1080 led_trigger_event(&trigger->trigger,
1081 new_state & trigger->mask ?
1082 LED_FULL : LED_OFF);
1083 }
1084}
1085
1086static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1087{
1088 unsigned int led_state = *(unsigned int *)data;
1089
1090 if (test_bit(EV_LED, handle->dev->evbit))
1091 kbd_propagate_led_state(~led_state, led_state);
1092
1093 return 0;
1094}
1095
1096static void kbd_init_leds(void)
1097{
1098 int error;
1099 int i;
1100
1101 for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1102 error = led_trigger_register(&kbd_led_triggers[i].trigger);
1103 if (error)
1104 pr_err("error %d while registering trigger %s\n",
1105 error, kbd_led_triggers[i].trigger.name);
1106 }
1107}
1108
1109#else
1110
1111static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1112{
1113 unsigned int leds = *(unsigned int *)data;
1114
1115 if (test_bit(EV_LED, handle->dev->evbit)) {
1116 input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & BIT(0)));
1117 input_inject_event(handle, EV_LED, LED_NUML, !!(leds & BIT(1)));
1118 input_inject_event(handle, EV_LED, LED_CAPSL, !!(leds & BIT(2)));
1119 input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
1120 }
1121
1122 return 0;
1123}
1124
1125static void kbd_propagate_led_state(unsigned int old_state,
1126 unsigned int new_state)
1127{
1128 input_handler_for_each_handle(&kbd_handler, &new_state,
1129 kbd_update_leds_helper);
1130}
1131
1132static void kbd_init_leds(void)
1133{
1134}
1135
1136#endif
1137
1138/*
1139 * The leds display either (i) the status of NumLock, CapsLock, ScrollLock,
1140 * or (ii) whatever pattern of lights people want to show using KDSETLED,
1141 * or (iii) specified bits of specified words in kernel memory.
1142 */
1143static unsigned char getledstate(void)
1144{
1145 return ledstate & 0xff;
1146}
1147
1148void setledstate(struct kbd_struct *kb, unsigned int led)
1149{
1150 unsigned long flags;
1151 spin_lock_irqsave(&led_lock, flags);
1152 if (!(led & ~7)) {
1153 ledioctl = led;
1154 kb->ledmode = LED_SHOW_IOCTL;
1155 } else
1156 kb->ledmode = LED_SHOW_FLAGS;
1157
1158 set_leds();
1159 spin_unlock_irqrestore(&led_lock, flags);
1160}
1161
1162static inline unsigned char getleds(void)
1163{
1164 struct kbd_struct *kb = kbd_table + fg_console;
1165
1166 if (kb->ledmode == LED_SHOW_IOCTL)
1167 return ledioctl;
1168
1169 return kb->ledflagstate;
1170}
1171
1172/**
1173 * vt_get_leds - helper for braille console
1174 * @console: console to read
1175 * @flag: flag we want to check
1176 *
1177 * Check the status of a keyboard led flag and report it back
1178 */
1179int vt_get_leds(unsigned int console, int flag)
1180{
1181 struct kbd_struct *kb = &kbd_table[console];
1182 int ret;
1183 unsigned long flags;
1184
1185 spin_lock_irqsave(&led_lock, flags);
1186 ret = vc_kbd_led(kb, flag);
1187 spin_unlock_irqrestore(&led_lock, flags);
1188
1189 return ret;
1190}
1191EXPORT_SYMBOL_GPL(vt_get_leds);
1192
1193/**
1194 * vt_set_led_state - set LED state of a console
1195 * @console: console to set
1196 * @leds: LED bits
1197 *
1198 * Set the LEDs on a console. This is a wrapper for the VT layer
1199 * so that we can keep kbd knowledge internal
1200 */
1201void vt_set_led_state(unsigned int console, int leds)
1202{
1203 struct kbd_struct *kb = &kbd_table[console];
1204 setledstate(kb, leds);
1205}
1206
1207/**
1208 * vt_kbd_con_start - Keyboard side of console start
1209 * @console: console
1210 *
1211 * Handle console start. This is a wrapper for the VT layer
1212 * so that we can keep kbd knowledge internal
1213 *
1214 * FIXME: We eventually need to hold the kbd lock here to protect
1215 * the LED updating. We can't do it yet because fn_hold calls stop_tty
1216 * and start_tty under the kbd_event_lock, while normal tty paths
1217 * don't hold the lock. We probably need to split out an LED lock
1218 * but not during an -rc release!
1219 */
1220void vt_kbd_con_start(unsigned int console)
1221{
1222 struct kbd_struct *kb = &kbd_table[console];
1223 unsigned long flags;
1224 spin_lock_irqsave(&led_lock, flags);
1225 clr_vc_kbd_led(kb, VC_SCROLLOCK);
1226 set_leds();
1227 spin_unlock_irqrestore(&led_lock, flags);
1228}
1229
1230/**
1231 * vt_kbd_con_stop - Keyboard side of console stop
1232 * @console: console
1233 *
1234 * Handle console stop. This is a wrapper for the VT layer
1235 * so that we can keep kbd knowledge internal
1236 */
1237void vt_kbd_con_stop(unsigned int console)
1238{
1239 struct kbd_struct *kb = &kbd_table[console];
1240 unsigned long flags;
1241 spin_lock_irqsave(&led_lock, flags);
1242 set_vc_kbd_led(kb, VC_SCROLLOCK);
1243 set_leds();
1244 spin_unlock_irqrestore(&led_lock, flags);
1245}
1246
1247/*
1248 * This is the tasklet that updates LED state of LEDs using standard
1249 * keyboard triggers. The reason we use tasklet is that we need to
1250 * handle the scenario when keyboard handler is not registered yet
1251 * but we already getting updates from the VT to update led state.
1252 */
1253static void kbd_bh(struct tasklet_struct *unused)
1254{
1255 unsigned int leds;
1256 unsigned long flags;
1257
1258 spin_lock_irqsave(&led_lock, flags);
1259 leds = getleds();
1260 leds |= (unsigned int)kbd->lockstate << 8;
1261 spin_unlock_irqrestore(&led_lock, flags);
1262
1263 if (vt_switch) {
1264 ledstate = ~leds;
1265 vt_switch = false;
1266 }
1267
1268 if (leds != ledstate) {
1269 kbd_propagate_led_state(ledstate, leds);
1270 ledstate = leds;
1271 }
1272}
1273
1274#if defined(CONFIG_X86) || defined(CONFIG_ALPHA) ||\
1275 defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\
1276 defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\
1277 (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC))
1278
1279static inline bool kbd_is_hw_raw(const struct input_dev *dev)
1280{
1281 if (!test_bit(EV_MSC, dev->evbit) || !test_bit(MSC_RAW, dev->mscbit))
1282 return false;
1283
1284 return dev->id.bustype == BUS_I8042 &&
1285 dev->id.vendor == 0x0001 && dev->id.product == 0x0001;
1286}
1287
1288static const unsigned short x86_keycodes[256] =
1289 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
1290 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
1291 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
1292 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
1293 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
1294 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92,
1295 284,285,309, 0,312, 91,327,328,329,331,333,335,336,337,338,339,
1296 367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349,
1297 360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355,
1298 103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361,
1299 291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114,
1300 264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116,
1301 377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307,
1302 308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330,
1303 332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 };
1304
1305#ifdef CONFIG_SPARC
1306static int sparc_l1_a_state;
1307extern void sun_do_break(void);
1308#endif
1309
1310static int emulate_raw(struct vc_data *vc, unsigned int keycode,
1311 unsigned char up_flag)
1312{
1313 int code;
1314
1315 switch (keycode) {
1316
1317 case KEY_PAUSE:
1318 put_queue(vc, 0xe1);
1319 put_queue(vc, 0x1d | up_flag);
1320 put_queue(vc, 0x45 | up_flag);
1321 break;
1322
1323 case KEY_HANGEUL:
1324 if (!up_flag)
1325 put_queue(vc, 0xf2);
1326 break;
1327
1328 case KEY_HANJA:
1329 if (!up_flag)
1330 put_queue(vc, 0xf1);
1331 break;
1332
1333 case KEY_SYSRQ:
1334 /*
1335 * Real AT keyboards (that's what we're trying
1336 * to emulate here) emit 0xe0 0x2a 0xe0 0x37 when
1337 * pressing PrtSc/SysRq alone, but simply 0x54
1338 * when pressing Alt+PrtSc/SysRq.
1339 */
1340 if (test_bit(KEY_LEFTALT, key_down) ||
1341 test_bit(KEY_RIGHTALT, key_down)) {
1342 put_queue(vc, 0x54 | up_flag);
1343 } else {
1344 put_queue(vc, 0xe0);
1345 put_queue(vc, 0x2a | up_flag);
1346 put_queue(vc, 0xe0);
1347 put_queue(vc, 0x37 | up_flag);
1348 }
1349 break;
1350
1351 default:
1352 if (keycode > 255)
1353 return -1;
1354
1355 code = x86_keycodes[keycode];
1356 if (!code)
1357 return -1;
1358
1359 if (code & 0x100)
1360 put_queue(vc, 0xe0);
1361 put_queue(vc, (code & 0x7f) | up_flag);
1362
1363 break;
1364 }
1365
1366 return 0;
1367}
1368
1369#else
1370
1371static inline bool kbd_is_hw_raw(const struct input_dev *dev)
1372{
1373 return false;
1374}
1375
1376static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag)
1377{
1378 if (keycode > 127)
1379 return -1;
1380
1381 put_queue(vc, keycode | up_flag);
1382 return 0;
1383}
1384#endif
1385
1386static void kbd_rawcode(unsigned char data)
1387{
1388 struct vc_data *vc = vc_cons[fg_console].d;
1389
1390 kbd = &kbd_table[vc->vc_num];
1391 if (kbd->kbdmode == VC_RAW)
1392 put_queue(vc, data);
1393}
1394
1395static void kbd_keycode(unsigned int keycode, int down, bool hw_raw)
1396{
1397 struct vc_data *vc = vc_cons[fg_console].d;
1398 unsigned short keysym, *key_map;
1399 unsigned char type;
1400 bool raw_mode;
1401 struct tty_struct *tty;
1402 int shift_final;
1403 struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down };
1404 int rc;
1405
1406 tty = vc->port.tty;
1407
1408 if (tty && (!tty->driver_data)) {
1409 /* No driver data? Strange. Okay we fix it then. */
1410 tty->driver_data = vc;
1411 }
1412
1413 kbd = &kbd_table[vc->vc_num];
1414
1415#ifdef CONFIG_SPARC
1416 if (keycode == KEY_STOP)
1417 sparc_l1_a_state = down;
1418#endif
1419
1420 rep = (down == 2);
1421
1422 raw_mode = (kbd->kbdmode == VC_RAW);
1423 if (raw_mode && !hw_raw)
1424 if (emulate_raw(vc, keycode, !down << 7))
1425 if (keycode < BTN_MISC && printk_ratelimit())
1426 pr_warn("can't emulate rawmode for keycode %d\n",
1427 keycode);
1428
1429#ifdef CONFIG_SPARC
1430 if (keycode == KEY_A && sparc_l1_a_state) {
1431 sparc_l1_a_state = false;
1432 sun_do_break();
1433 }
1434#endif
1435
1436 if (kbd->kbdmode == VC_MEDIUMRAW) {
1437 /*
1438 * This is extended medium raw mode, with keys above 127
1439 * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing
1440 * the 'up' flag if needed. 0 is reserved, so this shouldn't
1441 * interfere with anything else. The two bytes after 0 will
1442 * always have the up flag set not to interfere with older
1443 * applications. This allows for 16384 different keycodes,
1444 * which should be enough.
1445 */
1446 if (keycode < 128) {
1447 put_queue(vc, keycode | (!down << 7));
1448 } else {
1449 put_queue(vc, !down << 7);
1450 put_queue(vc, (keycode >> 7) | BIT(7));
1451 put_queue(vc, keycode | BIT(7));
1452 }
1453 raw_mode = true;
1454 }
1455
1456 assign_bit(keycode, key_down, down);
1457
1458 if (rep &&
1459 (!vc_kbd_mode(kbd, VC_REPEAT) ||
1460 (tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) {
1461 /*
1462 * Don't repeat a key if the input buffers are not empty and the
1463 * characters get aren't echoed locally. This makes key repeat
1464 * usable with slow applications and under heavy loads.
1465 */
1466 return;
1467 }
1468
1469 param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate;
1470 param.ledstate = kbd->ledflagstate;
1471 key_map = key_maps[shift_final];
1472
1473 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1474 KBD_KEYCODE, ¶m);
1475 if (rc == NOTIFY_STOP || !key_map) {
1476 atomic_notifier_call_chain(&keyboard_notifier_list,
1477 KBD_UNBOUND_KEYCODE, ¶m);
1478 do_compute_shiftstate();
1479 kbd->slockstate = 0;
1480 return;
1481 }
1482
1483 if (keycode < NR_KEYS)
1484 keysym = key_map[keycode];
1485 else if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8)
1486 keysym = U(K(KT_BRL, keycode - KEY_BRL_DOT1 + 1));
1487 else
1488 return;
1489
1490 type = KTYP(keysym);
1491
1492 if (type < 0xf0) {
1493 param.value = keysym;
1494 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1495 KBD_UNICODE, ¶m);
1496 if (rc != NOTIFY_STOP)
1497 if (down && !raw_mode)
1498 k_unicode(vc, keysym, !down);
1499 return;
1500 }
1501
1502 type -= 0xf0;
1503
1504 if (type == KT_LETTER) {
1505 type = KT_LATIN;
1506 if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
1507 key_map = key_maps[shift_final ^ BIT(KG_SHIFT)];
1508 if (key_map)
1509 keysym = key_map[keycode];
1510 }
1511 }
1512
1513 param.value = keysym;
1514 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1515 KBD_KEYSYM, ¶m);
1516 if (rc == NOTIFY_STOP)
1517 return;
1518
1519 if ((raw_mode || kbd->kbdmode == VC_OFF) && type != KT_SPEC && type != KT_SHIFT)
1520 return;
1521
1522 (*k_handler[type])(vc, keysym & 0xff, !down);
1523
1524 param.ledstate = kbd->ledflagstate;
1525 atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, ¶m);
1526
1527 if (type != KT_SLOCK)
1528 kbd->slockstate = 0;
1529}
1530
1531static void kbd_event(struct input_handle *handle, unsigned int event_type,
1532 unsigned int event_code, int value)
1533{
1534 /* We are called with interrupts disabled, just take the lock */
1535 spin_lock(&kbd_event_lock);
1536
1537 if (event_type == EV_MSC && event_code == MSC_RAW &&
1538 kbd_is_hw_raw(handle->dev))
1539 kbd_rawcode(value);
1540 if (event_type == EV_KEY && event_code <= KEY_MAX)
1541 kbd_keycode(event_code, value, kbd_is_hw_raw(handle->dev));
1542
1543 spin_unlock(&kbd_event_lock);
1544
1545 tasklet_schedule(&keyboard_tasklet);
1546 do_poke_blanked_console = 1;
1547 schedule_console_callback();
1548}
1549
1550static bool kbd_match(struct input_handler *handler, struct input_dev *dev)
1551{
1552 if (test_bit(EV_SND, dev->evbit))
1553 return true;
1554
1555 if (test_bit(EV_KEY, dev->evbit)) {
1556 if (find_next_bit(dev->keybit, BTN_MISC, KEY_RESERVED) <
1557 BTN_MISC)
1558 return true;
1559 if (find_next_bit(dev->keybit, KEY_BRL_DOT10 + 1,
1560 KEY_BRL_DOT1) <= KEY_BRL_DOT10)
1561 return true;
1562 }
1563
1564 return false;
1565}
1566
1567/*
1568 * When a keyboard (or other input device) is found, the kbd_connect
1569 * function is called. The function then looks at the device, and if it
1570 * likes it, it can open it and get events from it. In this (kbd_connect)
1571 * function, we should decide which VT to bind that keyboard to initially.
1572 */
1573static int kbd_connect(struct input_handler *handler, struct input_dev *dev,
1574 const struct input_device_id *id)
1575{
1576 struct input_handle *handle;
1577 int error;
1578
1579 handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
1580 if (!handle)
1581 return -ENOMEM;
1582
1583 handle->dev = dev;
1584 handle->handler = handler;
1585 handle->name = "kbd";
1586
1587 error = input_register_handle(handle);
1588 if (error)
1589 goto err_free_handle;
1590
1591 error = input_open_device(handle);
1592 if (error)
1593 goto err_unregister_handle;
1594
1595 return 0;
1596
1597 err_unregister_handle:
1598 input_unregister_handle(handle);
1599 err_free_handle:
1600 kfree(handle);
1601 return error;
1602}
1603
1604static void kbd_disconnect(struct input_handle *handle)
1605{
1606 input_close_device(handle);
1607 input_unregister_handle(handle);
1608 kfree(handle);
1609}
1610
1611/*
1612 * Start keyboard handler on the new keyboard by refreshing LED state to
1613 * match the rest of the system.
1614 */
1615static void kbd_start(struct input_handle *handle)
1616{
1617 tasklet_disable(&keyboard_tasklet);
1618
1619 if (ledstate != -1U)
1620 kbd_update_leds_helper(handle, &ledstate);
1621
1622 tasklet_enable(&keyboard_tasklet);
1623}
1624
1625static const struct input_device_id kbd_ids[] = {
1626 {
1627 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1628 .evbit = { BIT_MASK(EV_KEY) },
1629 },
1630
1631 {
1632 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1633 .evbit = { BIT_MASK(EV_SND) },
1634 },
1635
1636 { }, /* Terminating entry */
1637};
1638
1639MODULE_DEVICE_TABLE(input, kbd_ids);
1640
1641static struct input_handler kbd_handler = {
1642 .event = kbd_event,
1643 .match = kbd_match,
1644 .connect = kbd_connect,
1645 .disconnect = kbd_disconnect,
1646 .start = kbd_start,
1647 .name = "kbd",
1648 .id_table = kbd_ids,
1649};
1650
1651int __init kbd_init(void)
1652{
1653 int i;
1654 int error;
1655
1656 for (i = 0; i < MAX_NR_CONSOLES; i++) {
1657 kbd_table[i].ledflagstate = kbd_defleds();
1658 kbd_table[i].default_ledflagstate = kbd_defleds();
1659 kbd_table[i].ledmode = LED_SHOW_FLAGS;
1660 kbd_table[i].lockstate = KBD_DEFLOCK;
1661 kbd_table[i].slockstate = 0;
1662 kbd_table[i].modeflags = KBD_DEFMODE;
1663 kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
1664 }
1665
1666 kbd_init_leds();
1667
1668 error = input_register_handler(&kbd_handler);
1669 if (error)
1670 return error;
1671
1672 tasklet_enable(&keyboard_tasklet);
1673 tasklet_schedule(&keyboard_tasklet);
1674
1675 return 0;
1676}
1677
1678/* Ioctl support code */
1679
1680/**
1681 * vt_do_diacrit - diacritical table updates
1682 * @cmd: ioctl request
1683 * @udp: pointer to user data for ioctl
1684 * @perm: permissions check computed by caller
1685 *
1686 * Update the diacritical tables atomically and safely. Lock them
1687 * against simultaneous keypresses
1688 */
1689int vt_do_diacrit(unsigned int cmd, void __user *udp, int perm)
1690{
1691 unsigned long flags;
1692 int asize;
1693 int ret = 0;
1694
1695 switch (cmd) {
1696 case KDGKBDIACR:
1697 {
1698 struct kbdiacrs __user *a = udp;
1699 struct kbdiacr *dia;
1700 int i;
1701
1702 dia = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacr),
1703 GFP_KERNEL);
1704 if (!dia)
1705 return -ENOMEM;
1706
1707 /* Lock the diacriticals table, make a copy and then
1708 copy it after we unlock */
1709 spin_lock_irqsave(&kbd_event_lock, flags);
1710
1711 asize = accent_table_size;
1712 for (i = 0; i < asize; i++) {
1713 dia[i].diacr = conv_uni_to_8bit(
1714 accent_table[i].diacr);
1715 dia[i].base = conv_uni_to_8bit(
1716 accent_table[i].base);
1717 dia[i].result = conv_uni_to_8bit(
1718 accent_table[i].result);
1719 }
1720 spin_unlock_irqrestore(&kbd_event_lock, flags);
1721
1722 if (put_user(asize, &a->kb_cnt))
1723 ret = -EFAULT;
1724 else if (copy_to_user(a->kbdiacr, dia,
1725 asize * sizeof(struct kbdiacr)))
1726 ret = -EFAULT;
1727 kfree(dia);
1728 return ret;
1729 }
1730 case KDGKBDIACRUC:
1731 {
1732 struct kbdiacrsuc __user *a = udp;
1733 void *buf;
1734
1735 buf = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacruc),
1736 GFP_KERNEL);
1737 if (buf == NULL)
1738 return -ENOMEM;
1739
1740 /* Lock the diacriticals table, make a copy and then
1741 copy it after we unlock */
1742 spin_lock_irqsave(&kbd_event_lock, flags);
1743
1744 asize = accent_table_size;
1745 memcpy(buf, accent_table, asize * sizeof(struct kbdiacruc));
1746
1747 spin_unlock_irqrestore(&kbd_event_lock, flags);
1748
1749 if (put_user(asize, &a->kb_cnt))
1750 ret = -EFAULT;
1751 else if (copy_to_user(a->kbdiacruc, buf,
1752 asize*sizeof(struct kbdiacruc)))
1753 ret = -EFAULT;
1754 kfree(buf);
1755 return ret;
1756 }
1757
1758 case KDSKBDIACR:
1759 {
1760 struct kbdiacrs __user *a = udp;
1761 struct kbdiacr *dia = NULL;
1762 unsigned int ct;
1763 int i;
1764
1765 if (!perm)
1766 return -EPERM;
1767 if (get_user(ct, &a->kb_cnt))
1768 return -EFAULT;
1769 if (ct >= MAX_DIACR)
1770 return -EINVAL;
1771
1772 if (ct) {
1773 dia = memdup_array_user(a->kbdiacr,
1774 ct, sizeof(struct kbdiacr));
1775 if (IS_ERR(dia))
1776 return PTR_ERR(dia);
1777 }
1778
1779 spin_lock_irqsave(&kbd_event_lock, flags);
1780 accent_table_size = ct;
1781 for (i = 0; i < ct; i++) {
1782 accent_table[i].diacr =
1783 conv_8bit_to_uni(dia[i].diacr);
1784 accent_table[i].base =
1785 conv_8bit_to_uni(dia[i].base);
1786 accent_table[i].result =
1787 conv_8bit_to_uni(dia[i].result);
1788 }
1789 spin_unlock_irqrestore(&kbd_event_lock, flags);
1790 kfree(dia);
1791 return 0;
1792 }
1793
1794 case KDSKBDIACRUC:
1795 {
1796 struct kbdiacrsuc __user *a = udp;
1797 unsigned int ct;
1798 void *buf = NULL;
1799
1800 if (!perm)
1801 return -EPERM;
1802
1803 if (get_user(ct, &a->kb_cnt))
1804 return -EFAULT;
1805
1806 if (ct >= MAX_DIACR)
1807 return -EINVAL;
1808
1809 if (ct) {
1810 buf = memdup_array_user(a->kbdiacruc,
1811 ct, sizeof(struct kbdiacruc));
1812 if (IS_ERR(buf))
1813 return PTR_ERR(buf);
1814 }
1815 spin_lock_irqsave(&kbd_event_lock, flags);
1816 if (ct)
1817 memcpy(accent_table, buf,
1818 ct * sizeof(struct kbdiacruc));
1819 accent_table_size = ct;
1820 spin_unlock_irqrestore(&kbd_event_lock, flags);
1821 kfree(buf);
1822 return 0;
1823 }
1824 }
1825 return ret;
1826}
1827
1828/**
1829 * vt_do_kdskbmode - set keyboard mode ioctl
1830 * @console: the console to use
1831 * @arg: the requested mode
1832 *
1833 * Update the keyboard mode bits while holding the correct locks.
1834 * Return 0 for success or an error code.
1835 */
1836int vt_do_kdskbmode(unsigned int console, unsigned int arg)
1837{
1838 struct kbd_struct *kb = &kbd_table[console];
1839 int ret = 0;
1840 unsigned long flags;
1841
1842 spin_lock_irqsave(&kbd_event_lock, flags);
1843 switch(arg) {
1844 case K_RAW:
1845 kb->kbdmode = VC_RAW;
1846 break;
1847 case K_MEDIUMRAW:
1848 kb->kbdmode = VC_MEDIUMRAW;
1849 break;
1850 case K_XLATE:
1851 kb->kbdmode = VC_XLATE;
1852 do_compute_shiftstate();
1853 break;
1854 case K_UNICODE:
1855 kb->kbdmode = VC_UNICODE;
1856 do_compute_shiftstate();
1857 break;
1858 case K_OFF:
1859 kb->kbdmode = VC_OFF;
1860 break;
1861 default:
1862 ret = -EINVAL;
1863 }
1864 spin_unlock_irqrestore(&kbd_event_lock, flags);
1865 return ret;
1866}
1867
1868/**
1869 * vt_do_kdskbmeta - set keyboard meta state
1870 * @console: the console to use
1871 * @arg: the requested meta state
1872 *
1873 * Update the keyboard meta bits while holding the correct locks.
1874 * Return 0 for success or an error code.
1875 */
1876int vt_do_kdskbmeta(unsigned int console, unsigned int arg)
1877{
1878 struct kbd_struct *kb = &kbd_table[console];
1879 int ret = 0;
1880 unsigned long flags;
1881
1882 spin_lock_irqsave(&kbd_event_lock, flags);
1883 switch(arg) {
1884 case K_METABIT:
1885 clr_vc_kbd_mode(kb, VC_META);
1886 break;
1887 case K_ESCPREFIX:
1888 set_vc_kbd_mode(kb, VC_META);
1889 break;
1890 default:
1891 ret = -EINVAL;
1892 }
1893 spin_unlock_irqrestore(&kbd_event_lock, flags);
1894 return ret;
1895}
1896
1897int vt_do_kbkeycode_ioctl(int cmd, struct kbkeycode __user *user_kbkc,
1898 int perm)
1899{
1900 struct kbkeycode tmp;
1901 int kc = 0;
1902
1903 if (copy_from_user(&tmp, user_kbkc, sizeof(struct kbkeycode)))
1904 return -EFAULT;
1905 switch (cmd) {
1906 case KDGETKEYCODE:
1907 kc = getkeycode(tmp.scancode);
1908 if (kc >= 0)
1909 kc = put_user(kc, &user_kbkc->keycode);
1910 break;
1911 case KDSETKEYCODE:
1912 if (!perm)
1913 return -EPERM;
1914 kc = setkeycode(tmp.scancode, tmp.keycode);
1915 break;
1916 }
1917 return kc;
1918}
1919
1920static unsigned short vt_kdgkbent(unsigned char kbdmode, unsigned char idx,
1921 unsigned char map)
1922{
1923 unsigned short *key_map, val;
1924 unsigned long flags;
1925
1926 /* Ensure another thread doesn't free it under us */
1927 spin_lock_irqsave(&kbd_event_lock, flags);
1928 key_map = key_maps[map];
1929 if (key_map) {
1930 val = U(key_map[idx]);
1931 if (kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES)
1932 val = K_HOLE;
1933 } else
1934 val = idx ? K_HOLE : K_NOSUCHMAP;
1935 spin_unlock_irqrestore(&kbd_event_lock, flags);
1936
1937 return val;
1938}
1939
1940static int vt_kdskbent(unsigned char kbdmode, unsigned char idx,
1941 unsigned char map, unsigned short val)
1942{
1943 unsigned long flags;
1944 unsigned short *key_map, *new_map, oldval;
1945
1946 if (!idx && val == K_NOSUCHMAP) {
1947 spin_lock_irqsave(&kbd_event_lock, flags);
1948 /* deallocate map */
1949 key_map = key_maps[map];
1950 if (map && key_map) {
1951 key_maps[map] = NULL;
1952 if (key_map[0] == U(K_ALLOCATED)) {
1953 kfree(key_map);
1954 keymap_count--;
1955 }
1956 }
1957 spin_unlock_irqrestore(&kbd_event_lock, flags);
1958
1959 return 0;
1960 }
1961
1962 if (KTYP(val) < NR_TYPES) {
1963 if (KVAL(val) > max_vals[KTYP(val)])
1964 return -EINVAL;
1965 } else if (kbdmode != VC_UNICODE)
1966 return -EINVAL;
1967
1968 /* ++Geert: non-PC keyboards may generate keycode zero */
1969#if !defined(__mc68000__) && !defined(__powerpc__)
1970 /* assignment to entry 0 only tests validity of args */
1971 if (!idx)
1972 return 0;
1973#endif
1974
1975 new_map = kmalloc(sizeof(plain_map), GFP_KERNEL);
1976 if (!new_map)
1977 return -ENOMEM;
1978
1979 spin_lock_irqsave(&kbd_event_lock, flags);
1980 key_map = key_maps[map];
1981 if (key_map == NULL) {
1982 int j;
1983
1984 if (keymap_count >= MAX_NR_OF_USER_KEYMAPS &&
1985 !capable(CAP_SYS_RESOURCE)) {
1986 spin_unlock_irqrestore(&kbd_event_lock, flags);
1987 kfree(new_map);
1988 return -EPERM;
1989 }
1990 key_maps[map] = new_map;
1991 key_map = new_map;
1992 key_map[0] = U(K_ALLOCATED);
1993 for (j = 1; j < NR_KEYS; j++)
1994 key_map[j] = U(K_HOLE);
1995 keymap_count++;
1996 } else
1997 kfree(new_map);
1998
1999 oldval = U(key_map[idx]);
2000 if (val == oldval)
2001 goto out;
2002
2003 /* Attention Key */
2004 if ((oldval == K_SAK || val == K_SAK) && !capable(CAP_SYS_ADMIN)) {
2005 spin_unlock_irqrestore(&kbd_event_lock, flags);
2006 return -EPERM;
2007 }
2008
2009 key_map[idx] = U(val);
2010 if (!map && (KTYP(oldval) == KT_SHIFT || KTYP(val) == KT_SHIFT))
2011 do_compute_shiftstate();
2012out:
2013 spin_unlock_irqrestore(&kbd_event_lock, flags);
2014
2015 return 0;
2016}
2017
2018int vt_do_kdsk_ioctl(int cmd, struct kbentry __user *user_kbe, int perm,
2019 unsigned int console)
2020{
2021 struct kbd_struct *kb = &kbd_table[console];
2022 struct kbentry kbe;
2023
2024 if (copy_from_user(&kbe, user_kbe, sizeof(struct kbentry)))
2025 return -EFAULT;
2026
2027 switch (cmd) {
2028 case KDGKBENT:
2029 return put_user(vt_kdgkbent(kb->kbdmode, kbe.kb_index,
2030 kbe.kb_table),
2031 &user_kbe->kb_value);
2032 case KDSKBENT:
2033 if (!perm || !capable(CAP_SYS_TTY_CONFIG))
2034 return -EPERM;
2035 return vt_kdskbent(kb->kbdmode, kbe.kb_index, kbe.kb_table,
2036 kbe.kb_value);
2037 }
2038 return 0;
2039}
2040
2041static char *vt_kdskbsent(char *kbs, unsigned char cur)
2042{
2043 static DECLARE_BITMAP(is_kmalloc, MAX_NR_FUNC);
2044 char *cur_f = func_table[cur];
2045
2046 if (cur_f && strlen(cur_f) >= strlen(kbs)) {
2047 strcpy(cur_f, kbs);
2048 return kbs;
2049 }
2050
2051 func_table[cur] = kbs;
2052
2053 return __test_and_set_bit(cur, is_kmalloc) ? cur_f : NULL;
2054}
2055
2056int vt_do_kdgkb_ioctl(int cmd, struct kbsentry __user *user_kdgkb, int perm)
2057{
2058 unsigned char kb_func;
2059 unsigned long flags;
2060 char *kbs;
2061 int ret;
2062
2063 if (get_user(kb_func, &user_kdgkb->kb_func))
2064 return -EFAULT;
2065
2066 kb_func = array_index_nospec(kb_func, MAX_NR_FUNC);
2067
2068 switch (cmd) {
2069 case KDGKBSENT: {
2070 /* size should have been a struct member */
2071 ssize_t len = sizeof(user_kdgkb->kb_string);
2072
2073 kbs = kmalloc(len, GFP_KERNEL);
2074 if (!kbs)
2075 return -ENOMEM;
2076
2077 spin_lock_irqsave(&func_buf_lock, flags);
2078 len = strscpy(kbs, func_table[kb_func] ? : "", len);
2079 spin_unlock_irqrestore(&func_buf_lock, flags);
2080
2081 if (len < 0) {
2082 ret = -ENOSPC;
2083 break;
2084 }
2085 ret = copy_to_user(user_kdgkb->kb_string, kbs, len + 1) ?
2086 -EFAULT : 0;
2087 break;
2088 }
2089 case KDSKBSENT:
2090 if (!perm || !capable(CAP_SYS_TTY_CONFIG))
2091 return -EPERM;
2092
2093 kbs = strndup_user(user_kdgkb->kb_string,
2094 sizeof(user_kdgkb->kb_string));
2095 if (IS_ERR(kbs))
2096 return PTR_ERR(kbs);
2097
2098 spin_lock_irqsave(&func_buf_lock, flags);
2099 kbs = vt_kdskbsent(kbs, kb_func);
2100 spin_unlock_irqrestore(&func_buf_lock, flags);
2101
2102 ret = 0;
2103 break;
2104 }
2105
2106 kfree(kbs);
2107
2108 return ret;
2109}
2110
2111int vt_do_kdskled(unsigned int console, int cmd, unsigned long arg, int perm)
2112{
2113 struct kbd_struct *kb = &kbd_table[console];
2114 unsigned long flags;
2115 unsigned char ucval;
2116
2117 switch(cmd) {
2118 /* the ioctls below read/set the flags usually shown in the leds */
2119 /* don't use them - they will go away without warning */
2120 case KDGKBLED:
2121 spin_lock_irqsave(&kbd_event_lock, flags);
2122 ucval = kb->ledflagstate | (kb->default_ledflagstate << 4);
2123 spin_unlock_irqrestore(&kbd_event_lock, flags);
2124 return put_user(ucval, (char __user *)arg);
2125
2126 case KDSKBLED:
2127 if (!perm)
2128 return -EPERM;
2129 if (arg & ~0x77)
2130 return -EINVAL;
2131 spin_lock_irqsave(&led_lock, flags);
2132 kb->ledflagstate = (arg & 7);
2133 kb->default_ledflagstate = ((arg >> 4) & 7);
2134 set_leds();
2135 spin_unlock_irqrestore(&led_lock, flags);
2136 return 0;
2137
2138 /* the ioctls below only set the lights, not the functions */
2139 /* for those, see KDGKBLED and KDSKBLED above */
2140 case KDGETLED:
2141 ucval = getledstate();
2142 return put_user(ucval, (char __user *)arg);
2143
2144 case KDSETLED:
2145 if (!perm)
2146 return -EPERM;
2147 setledstate(kb, arg);
2148 return 0;
2149 }
2150 return -ENOIOCTLCMD;
2151}
2152
2153int vt_do_kdgkbmode(unsigned int console)
2154{
2155 struct kbd_struct *kb = &kbd_table[console];
2156 /* This is a spot read so needs no locking */
2157 switch (kb->kbdmode) {
2158 case VC_RAW:
2159 return K_RAW;
2160 case VC_MEDIUMRAW:
2161 return K_MEDIUMRAW;
2162 case VC_UNICODE:
2163 return K_UNICODE;
2164 case VC_OFF:
2165 return K_OFF;
2166 default:
2167 return K_XLATE;
2168 }
2169}
2170
2171/**
2172 * vt_do_kdgkbmeta - report meta status
2173 * @console: console to report
2174 *
2175 * Report the meta flag status of this console
2176 */
2177int vt_do_kdgkbmeta(unsigned int console)
2178{
2179 struct kbd_struct *kb = &kbd_table[console];
2180 /* Again a spot read so no locking */
2181 return vc_kbd_mode(kb, VC_META) ? K_ESCPREFIX : K_METABIT;
2182}
2183
2184/**
2185 * vt_reset_unicode - reset the unicode status
2186 * @console: console being reset
2187 *
2188 * Restore the unicode console state to its default
2189 */
2190void vt_reset_unicode(unsigned int console)
2191{
2192 unsigned long flags;
2193
2194 spin_lock_irqsave(&kbd_event_lock, flags);
2195 kbd_table[console].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
2196 spin_unlock_irqrestore(&kbd_event_lock, flags);
2197}
2198
2199/**
2200 * vt_get_shift_state - shift bit state
2201 *
2202 * Report the shift bits from the keyboard state. We have to export
2203 * this to support some oddities in the vt layer.
2204 */
2205int vt_get_shift_state(void)
2206{
2207 /* Don't lock as this is a transient report */
2208 return shift_state;
2209}
2210
2211/**
2212 * vt_reset_keyboard - reset keyboard state
2213 * @console: console to reset
2214 *
2215 * Reset the keyboard bits for a console as part of a general console
2216 * reset event
2217 */
2218void vt_reset_keyboard(unsigned int console)
2219{
2220 struct kbd_struct *kb = &kbd_table[console];
2221 unsigned long flags;
2222
2223 spin_lock_irqsave(&kbd_event_lock, flags);
2224 set_vc_kbd_mode(kb, VC_REPEAT);
2225 clr_vc_kbd_mode(kb, VC_CKMODE);
2226 clr_vc_kbd_mode(kb, VC_APPLIC);
2227 clr_vc_kbd_mode(kb, VC_CRLF);
2228 kb->lockstate = 0;
2229 kb->slockstate = 0;
2230 spin_lock(&led_lock);
2231 kb->ledmode = LED_SHOW_FLAGS;
2232 kb->ledflagstate = kb->default_ledflagstate;
2233 spin_unlock(&led_lock);
2234 /* do not do set_leds here because this causes an endless tasklet loop
2235 when the keyboard hasn't been initialized yet */
2236 spin_unlock_irqrestore(&kbd_event_lock, flags);
2237}
2238
2239/**
2240 * vt_get_kbd_mode_bit - read keyboard status bits
2241 * @console: console to read from
2242 * @bit: mode bit to read
2243 *
2244 * Report back a vt mode bit. We do this without locking so the
2245 * caller must be sure that there are no synchronization needs
2246 */
2247
2248int vt_get_kbd_mode_bit(unsigned int console, int bit)
2249{
2250 struct kbd_struct *kb = &kbd_table[console];
2251 return vc_kbd_mode(kb, bit);
2252}
2253
2254/**
2255 * vt_set_kbd_mode_bit - read keyboard status bits
2256 * @console: console to read from
2257 * @bit: mode bit to read
2258 *
2259 * Set a vt mode bit. We do this without locking so the
2260 * caller must be sure that there are no synchronization needs
2261 */
2262
2263void vt_set_kbd_mode_bit(unsigned int console, int bit)
2264{
2265 struct kbd_struct *kb = &kbd_table[console];
2266 unsigned long flags;
2267
2268 spin_lock_irqsave(&kbd_event_lock, flags);
2269 set_vc_kbd_mode(kb, bit);
2270 spin_unlock_irqrestore(&kbd_event_lock, flags);
2271}
2272
2273/**
2274 * vt_clr_kbd_mode_bit - read keyboard status bits
2275 * @console: console to read from
2276 * @bit: mode bit to read
2277 *
2278 * Report back a vt mode bit. We do this without locking so the
2279 * caller must be sure that there are no synchronization needs
2280 */
2281
2282void vt_clr_kbd_mode_bit(unsigned int console, int bit)
2283{
2284 struct kbd_struct *kb = &kbd_table[console];
2285 unsigned long flags;
2286
2287 spin_lock_irqsave(&kbd_event_lock, flags);
2288 clr_vc_kbd_mode(kb, bit);
2289 spin_unlock_irqrestore(&kbd_event_lock, flags);
2290}