Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Written for linux by Johan Myreen as a translation from
4 * the assembly version by Linus (with diacriticals added)
5 *
6 * Some additional features added by Christoph Niemann (ChN), March 1993
7 *
8 * Loadable keymaps by Risto Kankkunen, May 1993
9 *
10 * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993
11 * Added decr/incr_console, dynamic keymaps, Unicode support,
12 * dynamic function/string keys, led setting, Sept 1994
13 * `Sticky' modifier keys, 951006.
14 *
15 * 11-11-96: SAK should now work in the raw mode (Martin Mares)
16 *
17 * Modified to provide 'generic' keyboard support by Hamish Macdonald
18 * Merge with the m68k keyboard driver and split-off of the PC low-level
19 * parts by Geert Uytterhoeven, May 1997
20 *
21 * 27-05-97: Added support for the Magic SysRq Key (Martin Mares)
22 * 30-07-98: Dead keys redone, aeb@cwi.nl.
23 * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik)
24 */
25
26#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27
28#include <linux/consolemap.h>
29#include <linux/init.h>
30#include <linux/input.h>
31#include <linux/jiffies.h>
32#include <linux/kbd_diacr.h>
33#include <linux/kbd_kern.h>
34#include <linux/leds.h>
35#include <linux/mm.h>
36#include <linux/module.h>
37#include <linux/nospec.h>
38#include <linux/notifier.h>
39#include <linux/reboot.h>
40#include <linux/sched/debug.h>
41#include <linux/sched/signal.h>
42#include <linux/slab.h>
43#include <linux/spinlock.h>
44#include <linux/string.h>
45#include <linux/tty_flip.h>
46#include <linux/tty.h>
47#include <linux/uaccess.h>
48#include <linux/vt_kern.h>
49
50#include <asm/irq_regs.h>
51
52/*
53 * Exported functions/variables
54 */
55
56#define KBD_DEFMODE (BIT(VC_REPEAT) | BIT(VC_META))
57
58#if defined(CONFIG_X86) || defined(CONFIG_PARISC)
59#include <asm/kbdleds.h>
60#else
61static inline int kbd_defleds(void)
62{
63 return 0;
64}
65#endif
66
67#define KBD_DEFLOCK 0
68
69/*
70 * Handler Tables.
71 */
72
73#define K_HANDLERS\
74 k_self, k_fn, k_spec, k_pad,\
75 k_dead, k_cons, k_cur, k_shift,\
76 k_meta, k_ascii, k_lock, k_lowercase,\
77 k_slock, k_dead2, k_brl, k_ignore
78
79typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value,
80 char up_flag);
81static k_handler_fn K_HANDLERS;
82static k_handler_fn *k_handler[16] = { K_HANDLERS };
83
84#define FN_HANDLERS\
85 fn_null, fn_enter, fn_show_ptregs, fn_show_mem,\
86 fn_show_state, fn_send_intr, fn_lastcons, fn_caps_toggle,\
87 fn_num, fn_hold, fn_scroll_forw, fn_scroll_back,\
88 fn_boot_it, fn_caps_on, fn_compose, fn_SAK,\
89 fn_dec_console, fn_inc_console, fn_spawn_con, fn_bare_num
90
91typedef void (fn_handler_fn)(struct vc_data *vc);
92static fn_handler_fn FN_HANDLERS;
93static fn_handler_fn *fn_handler[] = { FN_HANDLERS };
94
95/*
96 * Variables exported for vt_ioctl.c
97 */
98
99struct vt_spawn_console vt_spawn_con = {
100 .lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock),
101 .pid = NULL,
102 .sig = 0,
103};
104
105
106/*
107 * Internal Data.
108 */
109
110static struct kbd_struct kbd_table[MAX_NR_CONSOLES];
111static struct kbd_struct *kbd = kbd_table;
112
113/* maximum values each key_handler can handle */
114static const unsigned char max_vals[] = {
115 [ KT_LATIN ] = 255,
116 [ KT_FN ] = ARRAY_SIZE(func_table) - 1,
117 [ KT_SPEC ] = ARRAY_SIZE(fn_handler) - 1,
118 [ KT_PAD ] = NR_PAD - 1,
119 [ KT_DEAD ] = NR_DEAD - 1,
120 [ KT_CONS ] = 255,
121 [ KT_CUR ] = 3,
122 [ KT_SHIFT ] = NR_SHIFT - 1,
123 [ KT_META ] = 255,
124 [ KT_ASCII ] = NR_ASCII - 1,
125 [ KT_LOCK ] = NR_LOCK - 1,
126 [ KT_LETTER ] = 255,
127 [ KT_SLOCK ] = NR_LOCK - 1,
128 [ KT_DEAD2 ] = 255,
129 [ KT_BRL ] = NR_BRL - 1,
130};
131
132static const int NR_TYPES = ARRAY_SIZE(max_vals);
133
134static void kbd_bh(struct tasklet_struct *unused);
135static DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh);
136
137static struct input_handler kbd_handler;
138static DEFINE_SPINLOCK(kbd_event_lock);
139static DEFINE_SPINLOCK(led_lock);
140static DEFINE_SPINLOCK(func_buf_lock); /* guard 'func_buf' and friends */
141static DECLARE_BITMAP(key_down, KEY_CNT); /* keyboard key bitmap */
142static unsigned char shift_down[NR_SHIFT]; /* shift state counters.. */
143static bool dead_key_next;
144
145/* Handles a number being assembled on the number pad */
146static bool npadch_active;
147static unsigned int npadch_value;
148
149static unsigned int diacr;
150static bool rep; /* flag telling character repeat */
151
152static int shift_state = 0;
153
154static unsigned int ledstate = -1U; /* undefined */
155static unsigned char ledioctl;
156static bool vt_switch;
157
158/*
159 * Notifier list for console keyboard events
160 */
161static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list);
162
163int register_keyboard_notifier(struct notifier_block *nb)
164{
165 return atomic_notifier_chain_register(&keyboard_notifier_list, nb);
166}
167EXPORT_SYMBOL_GPL(register_keyboard_notifier);
168
169int unregister_keyboard_notifier(struct notifier_block *nb)
170{
171 return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb);
172}
173EXPORT_SYMBOL_GPL(unregister_keyboard_notifier);
174
175/*
176 * Translation of scancodes to keycodes. We set them on only the first
177 * keyboard in the list that accepts the scancode and keycode.
178 * Explanation for not choosing the first attached keyboard anymore:
179 * USB keyboards for example have two event devices: one for all "normal"
180 * keys and one for extra function keys (like "volume up", "make coffee",
181 * etc.). So this means that scancodes for the extra function keys won't
182 * be valid for the first event device, but will be for the second.
183 */
184
185struct getset_keycode_data {
186 struct input_keymap_entry ke;
187 int error;
188};
189
190static int getkeycode_helper(struct input_handle *handle, void *data)
191{
192 struct getset_keycode_data *d = data;
193
194 d->error = input_get_keycode(handle->dev, &d->ke);
195
196 return d->error == 0; /* stop as soon as we successfully get one */
197}
198
199static int getkeycode(unsigned int scancode)
200{
201 struct getset_keycode_data d = {
202 .ke = {
203 .flags = 0,
204 .len = sizeof(scancode),
205 .keycode = 0,
206 },
207 .error = -ENODEV,
208 };
209
210 memcpy(d.ke.scancode, &scancode, sizeof(scancode));
211
212 input_handler_for_each_handle(&kbd_handler, &d, getkeycode_helper);
213
214 return d.error ?: d.ke.keycode;
215}
216
217static int setkeycode_helper(struct input_handle *handle, void *data)
218{
219 struct getset_keycode_data *d = data;
220
221 d->error = input_set_keycode(handle->dev, &d->ke);
222
223 return d->error == 0; /* stop as soon as we successfully set one */
224}
225
226static int setkeycode(unsigned int scancode, unsigned int keycode)
227{
228 struct getset_keycode_data d = {
229 .ke = {
230 .flags = 0,
231 .len = sizeof(scancode),
232 .keycode = keycode,
233 },
234 .error = -ENODEV,
235 };
236
237 memcpy(d.ke.scancode, &scancode, sizeof(scancode));
238
239 input_handler_for_each_handle(&kbd_handler, &d, setkeycode_helper);
240
241 return d.error;
242}
243
244/*
245 * Making beeps and bells. Note that we prefer beeps to bells, but when
246 * shutting the sound off we do both.
247 */
248
249static int kd_sound_helper(struct input_handle *handle, void *data)
250{
251 unsigned int *hz = data;
252 struct input_dev *dev = handle->dev;
253
254 if (test_bit(EV_SND, dev->evbit)) {
255 if (test_bit(SND_TONE, dev->sndbit)) {
256 input_inject_event(handle, EV_SND, SND_TONE, *hz);
257 if (*hz)
258 return 0;
259 }
260 if (test_bit(SND_BELL, dev->sndbit))
261 input_inject_event(handle, EV_SND, SND_BELL, *hz ? 1 : 0);
262 }
263
264 return 0;
265}
266
267static void kd_nosound(struct timer_list *unused)
268{
269 static unsigned int zero;
270
271 input_handler_for_each_handle(&kbd_handler, &zero, kd_sound_helper);
272}
273
274static DEFINE_TIMER(kd_mksound_timer, kd_nosound);
275
276void kd_mksound(unsigned int hz, unsigned int ticks)
277{
278 del_timer_sync(&kd_mksound_timer);
279
280 input_handler_for_each_handle(&kbd_handler, &hz, kd_sound_helper);
281
282 if (hz && ticks)
283 mod_timer(&kd_mksound_timer, jiffies + ticks);
284}
285EXPORT_SYMBOL(kd_mksound);
286
287/*
288 * Setting the keyboard rate.
289 */
290
291static int kbd_rate_helper(struct input_handle *handle, void *data)
292{
293 struct input_dev *dev = handle->dev;
294 struct kbd_repeat *rpt = data;
295
296 if (test_bit(EV_REP, dev->evbit)) {
297
298 if (rpt[0].delay > 0)
299 input_inject_event(handle,
300 EV_REP, REP_DELAY, rpt[0].delay);
301 if (rpt[0].period > 0)
302 input_inject_event(handle,
303 EV_REP, REP_PERIOD, rpt[0].period);
304
305 rpt[1].delay = dev->rep[REP_DELAY];
306 rpt[1].period = dev->rep[REP_PERIOD];
307 }
308
309 return 0;
310}
311
312int kbd_rate(struct kbd_repeat *rpt)
313{
314 struct kbd_repeat data[2] = { *rpt };
315
316 input_handler_for_each_handle(&kbd_handler, data, kbd_rate_helper);
317 *rpt = data[1]; /* Copy currently used settings */
318
319 return 0;
320}
321
322/*
323 * Helper Functions.
324 */
325static void put_queue(struct vc_data *vc, int ch)
326{
327 tty_insert_flip_char(&vc->port, ch, 0);
328 tty_flip_buffer_push(&vc->port);
329}
330
331static void puts_queue(struct vc_data *vc, const char *cp)
332{
333 tty_insert_flip_string(&vc->port, cp, strlen(cp));
334 tty_flip_buffer_push(&vc->port);
335}
336
337static void applkey(struct vc_data *vc, int key, char mode)
338{
339 static char buf[] = { 0x1b, 'O', 0x00, 0x00 };
340
341 buf[1] = (mode ? 'O' : '[');
342 buf[2] = key;
343 puts_queue(vc, buf);
344}
345
346/*
347 * Many other routines do put_queue, but I think either
348 * they produce ASCII, or they produce some user-assigned
349 * string, and in both cases we might assume that it is
350 * in utf-8 already.
351 */
352static void to_utf8(struct vc_data *vc, uint c)
353{
354 if (c < 0x80)
355 /* 0******* */
356 put_queue(vc, c);
357 else if (c < 0x800) {
358 /* 110***** 10****** */
359 put_queue(vc, 0xc0 | (c >> 6));
360 put_queue(vc, 0x80 | (c & 0x3f));
361 } else if (c < 0x10000) {
362 if (c >= 0xD800 && c < 0xE000)
363 return;
364 if (c == 0xFFFF)
365 return;
366 /* 1110**** 10****** 10****** */
367 put_queue(vc, 0xe0 | (c >> 12));
368 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
369 put_queue(vc, 0x80 | (c & 0x3f));
370 } else if (c < 0x110000) {
371 /* 11110*** 10****** 10****** 10****** */
372 put_queue(vc, 0xf0 | (c >> 18));
373 put_queue(vc, 0x80 | ((c >> 12) & 0x3f));
374 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
375 put_queue(vc, 0x80 | (c & 0x3f));
376 }
377}
378
379/* FIXME: review locking for vt.c callers */
380static void set_leds(void)
381{
382 tasklet_schedule(&keyboard_tasklet);
383}
384
385/*
386 * Called after returning from RAW mode or when changing consoles - recompute
387 * shift_down[] and shift_state from key_down[] maybe called when keymap is
388 * undefined, so that shiftkey release is seen. The caller must hold the
389 * kbd_event_lock.
390 */
391
392static void do_compute_shiftstate(void)
393{
394 unsigned int k, sym, val;
395
396 shift_state = 0;
397 memset(shift_down, 0, sizeof(shift_down));
398
399 for_each_set_bit(k, key_down, min(NR_KEYS, KEY_CNT)) {
400 sym = U(key_maps[0][k]);
401 if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK)
402 continue;
403
404 val = KVAL(sym);
405 if (val == KVAL(K_CAPSSHIFT))
406 val = KVAL(K_SHIFT);
407
408 shift_down[val]++;
409 shift_state |= BIT(val);
410 }
411}
412
413/* We still have to export this method to vt.c */
414void vt_set_leds_compute_shiftstate(void)
415{
416 unsigned long flags;
417
418 /*
419 * When VT is switched, the keyboard led needs to be set once.
420 * Ensure that after the switch is completed, the state of the
421 * keyboard LED is consistent with the state of the keyboard lock.
422 */
423 vt_switch = true;
424 set_leds();
425
426 spin_lock_irqsave(&kbd_event_lock, flags);
427 do_compute_shiftstate();
428 spin_unlock_irqrestore(&kbd_event_lock, flags);
429}
430
431/*
432 * We have a combining character DIACR here, followed by the character CH.
433 * If the combination occurs in the table, return the corresponding value.
434 * Otherwise, if CH is a space or equals DIACR, return DIACR.
435 * Otherwise, conclude that DIACR was not combining after all,
436 * queue it and return CH.
437 */
438static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch)
439{
440 unsigned int d = diacr;
441 unsigned int i;
442
443 diacr = 0;
444
445 if ((d & ~0xff) == BRL_UC_ROW) {
446 if ((ch & ~0xff) == BRL_UC_ROW)
447 return d | ch;
448 } else {
449 for (i = 0; i < accent_table_size; i++)
450 if (accent_table[i].diacr == d && accent_table[i].base == ch)
451 return accent_table[i].result;
452 }
453
454 if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d)
455 return d;
456
457 if (kbd->kbdmode == VC_UNICODE)
458 to_utf8(vc, d);
459 else {
460 int c = conv_uni_to_8bit(d);
461 if (c != -1)
462 put_queue(vc, c);
463 }
464
465 return ch;
466}
467
468/*
469 * Special function handlers
470 */
471static void fn_enter(struct vc_data *vc)
472{
473 if (diacr) {
474 if (kbd->kbdmode == VC_UNICODE)
475 to_utf8(vc, diacr);
476 else {
477 int c = conv_uni_to_8bit(diacr);
478 if (c != -1)
479 put_queue(vc, c);
480 }
481 diacr = 0;
482 }
483
484 put_queue(vc, '\r');
485 if (vc_kbd_mode(kbd, VC_CRLF))
486 put_queue(vc, '\n');
487}
488
489static void fn_caps_toggle(struct vc_data *vc)
490{
491 if (rep)
492 return;
493
494 chg_vc_kbd_led(kbd, VC_CAPSLOCK);
495}
496
497static void fn_caps_on(struct vc_data *vc)
498{
499 if (rep)
500 return;
501
502 set_vc_kbd_led(kbd, VC_CAPSLOCK);
503}
504
505static void fn_show_ptregs(struct vc_data *vc)
506{
507 struct pt_regs *regs = get_irq_regs();
508
509 if (regs)
510 show_regs(regs);
511}
512
513static void fn_hold(struct vc_data *vc)
514{
515 struct tty_struct *tty = vc->port.tty;
516
517 if (rep || !tty)
518 return;
519
520 /*
521 * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty);
522 * these routines are also activated by ^S/^Q.
523 * (And SCROLLOCK can also be set by the ioctl KDSKBLED.)
524 */
525 if (tty->flow.stopped)
526 start_tty(tty);
527 else
528 stop_tty(tty);
529}
530
531static void fn_num(struct vc_data *vc)
532{
533 if (vc_kbd_mode(kbd, VC_APPLIC))
534 applkey(vc, 'P', 1);
535 else
536 fn_bare_num(vc);
537}
538
539/*
540 * Bind this to Shift-NumLock if you work in application keypad mode
541 * but want to be able to change the NumLock flag.
542 * Bind this to NumLock if you prefer that the NumLock key always
543 * changes the NumLock flag.
544 */
545static void fn_bare_num(struct vc_data *vc)
546{
547 if (!rep)
548 chg_vc_kbd_led(kbd, VC_NUMLOCK);
549}
550
551static void fn_lastcons(struct vc_data *vc)
552{
553 /* switch to the last used console, ChN */
554 set_console(last_console);
555}
556
557static void fn_dec_console(struct vc_data *vc)
558{
559 int i, cur = fg_console;
560
561 /* Currently switching? Queue this next switch relative to that. */
562 if (want_console != -1)
563 cur = want_console;
564
565 for (i = cur - 1; i != cur; i--) {
566 if (i == -1)
567 i = MAX_NR_CONSOLES - 1;
568 if (vc_cons_allocated(i))
569 break;
570 }
571 set_console(i);
572}
573
574static void fn_inc_console(struct vc_data *vc)
575{
576 int i, cur = fg_console;
577
578 /* Currently switching? Queue this next switch relative to that. */
579 if (want_console != -1)
580 cur = want_console;
581
582 for (i = cur+1; i != cur; i++) {
583 if (i == MAX_NR_CONSOLES)
584 i = 0;
585 if (vc_cons_allocated(i))
586 break;
587 }
588 set_console(i);
589}
590
591static void fn_send_intr(struct vc_data *vc)
592{
593 tty_insert_flip_char(&vc->port, 0, TTY_BREAK);
594 tty_flip_buffer_push(&vc->port);
595}
596
597static void fn_scroll_forw(struct vc_data *vc)
598{
599 scrollfront(vc, 0);
600}
601
602static void fn_scroll_back(struct vc_data *vc)
603{
604 scrollback(vc);
605}
606
607static void fn_show_mem(struct vc_data *vc)
608{
609 show_mem();
610}
611
612static void fn_show_state(struct vc_data *vc)
613{
614 show_state();
615}
616
617static void fn_boot_it(struct vc_data *vc)
618{
619 ctrl_alt_del();
620}
621
622static void fn_compose(struct vc_data *vc)
623{
624 dead_key_next = true;
625}
626
627static void fn_spawn_con(struct vc_data *vc)
628{
629 spin_lock(&vt_spawn_con.lock);
630 if (vt_spawn_con.pid)
631 if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) {
632 put_pid(vt_spawn_con.pid);
633 vt_spawn_con.pid = NULL;
634 }
635 spin_unlock(&vt_spawn_con.lock);
636}
637
638static void fn_SAK(struct vc_data *vc)
639{
640 struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work;
641 schedule_work(SAK_work);
642}
643
644static void fn_null(struct vc_data *vc)
645{
646 do_compute_shiftstate();
647}
648
649/*
650 * Special key handlers
651 */
652static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag)
653{
654}
655
656static void k_spec(struct vc_data *vc, unsigned char value, char up_flag)
657{
658 if (up_flag)
659 return;
660 if (value >= ARRAY_SIZE(fn_handler))
661 return;
662 if ((kbd->kbdmode == VC_RAW ||
663 kbd->kbdmode == VC_MEDIUMRAW ||
664 kbd->kbdmode == VC_OFF) &&
665 value != KVAL(K_SAK))
666 return; /* SAK is allowed even in raw mode */
667 fn_handler[value](vc);
668}
669
670static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag)
671{
672 pr_err("k_lowercase was called - impossible\n");
673}
674
675static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag)
676{
677 if (up_flag)
678 return; /* no action, if this is a key release */
679
680 if (diacr)
681 value = handle_diacr(vc, value);
682
683 if (dead_key_next) {
684 dead_key_next = false;
685 diacr = value;
686 return;
687 }
688 if (kbd->kbdmode == VC_UNICODE)
689 to_utf8(vc, value);
690 else {
691 int c = conv_uni_to_8bit(value);
692 if (c != -1)
693 put_queue(vc, c);
694 }
695}
696
697/*
698 * Handle dead key. Note that we now may have several
699 * dead keys modifying the same character. Very useful
700 * for Vietnamese.
701 */
702static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag)
703{
704 if (up_flag)
705 return;
706
707 diacr = (diacr ? handle_diacr(vc, value) : value);
708}
709
710static void k_self(struct vc_data *vc, unsigned char value, char up_flag)
711{
712 k_unicode(vc, conv_8bit_to_uni(value), up_flag);
713}
714
715static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag)
716{
717 k_deadunicode(vc, value, up_flag);
718}
719
720/*
721 * Obsolete - for backwards compatibility only
722 */
723static void k_dead(struct vc_data *vc, unsigned char value, char up_flag)
724{
725 static const unsigned char ret_diacr[NR_DEAD] = {
726 '`', /* dead_grave */
727 '\'', /* dead_acute */
728 '^', /* dead_circumflex */
729 '~', /* dead_tilda */
730 '"', /* dead_diaeresis */
731 ',', /* dead_cedilla */
732 '_', /* dead_macron */
733 'U', /* dead_breve */
734 '.', /* dead_abovedot */
735 '*', /* dead_abovering */
736 '=', /* dead_doubleacute */
737 'c', /* dead_caron */
738 'k', /* dead_ogonek */
739 'i', /* dead_iota */
740 '#', /* dead_voiced_sound */
741 'o', /* dead_semivoiced_sound */
742 '!', /* dead_belowdot */
743 '?', /* dead_hook */
744 '+', /* dead_horn */
745 '-', /* dead_stroke */
746 ')', /* dead_abovecomma */
747 '(', /* dead_abovereversedcomma */
748 ':', /* dead_doublegrave */
749 'n', /* dead_invertedbreve */
750 ';', /* dead_belowcomma */
751 '$', /* dead_currency */
752 '@', /* dead_greek */
753 };
754
755 k_deadunicode(vc, ret_diacr[value], up_flag);
756}
757
758static void k_cons(struct vc_data *vc, unsigned char value, char up_flag)
759{
760 if (up_flag)
761 return;
762
763 set_console(value);
764}
765
766static void k_fn(struct vc_data *vc, unsigned char value, char up_flag)
767{
768 if (up_flag)
769 return;
770
771 if ((unsigned)value < ARRAY_SIZE(func_table)) {
772 unsigned long flags;
773
774 spin_lock_irqsave(&func_buf_lock, flags);
775 if (func_table[value])
776 puts_queue(vc, func_table[value]);
777 spin_unlock_irqrestore(&func_buf_lock, flags);
778
779 } else
780 pr_err("k_fn called with value=%d\n", value);
781}
782
783static void k_cur(struct vc_data *vc, unsigned char value, char up_flag)
784{
785 static const char cur_chars[] = "BDCA";
786
787 if (up_flag)
788 return;
789
790 applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE));
791}
792
793static void k_pad(struct vc_data *vc, unsigned char value, char up_flag)
794{
795 static const char pad_chars[] = "0123456789+-*/\015,.?()#";
796 static const char app_map[] = "pqrstuvwxylSRQMnnmPQS";
797
798 if (up_flag)
799 return; /* no action, if this is a key release */
800
801 /* kludge... shift forces cursor/number keys */
802 if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) {
803 applkey(vc, app_map[value], 1);
804 return;
805 }
806
807 if (!vc_kbd_led(kbd, VC_NUMLOCK)) {
808
809 switch (value) {
810 case KVAL(K_PCOMMA):
811 case KVAL(K_PDOT):
812 k_fn(vc, KVAL(K_REMOVE), 0);
813 return;
814 case KVAL(K_P0):
815 k_fn(vc, KVAL(K_INSERT), 0);
816 return;
817 case KVAL(K_P1):
818 k_fn(vc, KVAL(K_SELECT), 0);
819 return;
820 case KVAL(K_P2):
821 k_cur(vc, KVAL(K_DOWN), 0);
822 return;
823 case KVAL(K_P3):
824 k_fn(vc, KVAL(K_PGDN), 0);
825 return;
826 case KVAL(K_P4):
827 k_cur(vc, KVAL(K_LEFT), 0);
828 return;
829 case KVAL(K_P6):
830 k_cur(vc, KVAL(K_RIGHT), 0);
831 return;
832 case KVAL(K_P7):
833 k_fn(vc, KVAL(K_FIND), 0);
834 return;
835 case KVAL(K_P8):
836 k_cur(vc, KVAL(K_UP), 0);
837 return;
838 case KVAL(K_P9):
839 k_fn(vc, KVAL(K_PGUP), 0);
840 return;
841 case KVAL(K_P5):
842 applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC));
843 return;
844 }
845 }
846
847 put_queue(vc, pad_chars[value]);
848 if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF))
849 put_queue(vc, '\n');
850}
851
852static void k_shift(struct vc_data *vc, unsigned char value, char up_flag)
853{
854 int old_state = shift_state;
855
856 if (rep)
857 return;
858 /*
859 * Mimic typewriter:
860 * a CapsShift key acts like Shift but undoes CapsLock
861 */
862 if (value == KVAL(K_CAPSSHIFT)) {
863 value = KVAL(K_SHIFT);
864 if (!up_flag)
865 clr_vc_kbd_led(kbd, VC_CAPSLOCK);
866 }
867
868 if (up_flag) {
869 /*
870 * handle the case that two shift or control
871 * keys are depressed simultaneously
872 */
873 if (shift_down[value])
874 shift_down[value]--;
875 } else
876 shift_down[value]++;
877
878 if (shift_down[value])
879 shift_state |= BIT(value);
880 else
881 shift_state &= ~BIT(value);
882
883 /* kludge */
884 if (up_flag && shift_state != old_state && npadch_active) {
885 if (kbd->kbdmode == VC_UNICODE)
886 to_utf8(vc, npadch_value);
887 else
888 put_queue(vc, npadch_value & 0xff);
889 npadch_active = false;
890 }
891}
892
893static void k_meta(struct vc_data *vc, unsigned char value, char up_flag)
894{
895 if (up_flag)
896 return;
897
898 if (vc_kbd_mode(kbd, VC_META)) {
899 put_queue(vc, '\033');
900 put_queue(vc, value);
901 } else
902 put_queue(vc, value | BIT(7));
903}
904
905static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag)
906{
907 unsigned int base;
908
909 if (up_flag)
910 return;
911
912 if (value < 10) {
913 /* decimal input of code, while Alt depressed */
914 base = 10;
915 } else {
916 /* hexadecimal input of code, while AltGr depressed */
917 value -= 10;
918 base = 16;
919 }
920
921 if (!npadch_active) {
922 npadch_value = 0;
923 npadch_active = true;
924 }
925
926 npadch_value = npadch_value * base + value;
927}
928
929static void k_lock(struct vc_data *vc, unsigned char value, char up_flag)
930{
931 if (up_flag || rep)
932 return;
933
934 chg_vc_kbd_lock(kbd, value);
935}
936
937static void k_slock(struct vc_data *vc, unsigned char value, char up_flag)
938{
939 k_shift(vc, value, up_flag);
940 if (up_flag || rep)
941 return;
942
943 chg_vc_kbd_slock(kbd, value);
944 /* try to make Alt, oops, AltGr and such work */
945 if (!key_maps[kbd->lockstate ^ kbd->slockstate]) {
946 kbd->slockstate = 0;
947 chg_vc_kbd_slock(kbd, value);
948 }
949}
950
951/* by default, 300ms interval for combination release */
952static unsigned brl_timeout = 300;
953MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)");
954module_param(brl_timeout, uint, 0644);
955
956static unsigned brl_nbchords = 1;
957MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)");
958module_param(brl_nbchords, uint, 0644);
959
960static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag)
961{
962 static unsigned long chords;
963 static unsigned committed;
964
965 if (!brl_nbchords)
966 k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag);
967 else {
968 committed |= pattern;
969 chords++;
970 if (chords == brl_nbchords) {
971 k_unicode(vc, BRL_UC_ROW | committed, up_flag);
972 chords = 0;
973 committed = 0;
974 }
975 }
976}
977
978static void k_brl(struct vc_data *vc, unsigned char value, char up_flag)
979{
980 static unsigned pressed, committing;
981 static unsigned long releasestart;
982
983 if (kbd->kbdmode != VC_UNICODE) {
984 if (!up_flag)
985 pr_warn("keyboard mode must be unicode for braille patterns\n");
986 return;
987 }
988
989 if (!value) {
990 k_unicode(vc, BRL_UC_ROW, up_flag);
991 return;
992 }
993
994 if (value > 8)
995 return;
996
997 if (!up_flag) {
998 pressed |= BIT(value - 1);
999 if (!brl_timeout)
1000 committing = pressed;
1001 } else if (brl_timeout) {
1002 if (!committing ||
1003 time_after(jiffies,
1004 releasestart + msecs_to_jiffies(brl_timeout))) {
1005 committing = pressed;
1006 releasestart = jiffies;
1007 }
1008 pressed &= ~BIT(value - 1);
1009 if (!pressed && committing) {
1010 k_brlcommit(vc, committing, 0);
1011 committing = 0;
1012 }
1013 } else {
1014 if (committing) {
1015 k_brlcommit(vc, committing, 0);
1016 committing = 0;
1017 }
1018 pressed &= ~BIT(value - 1);
1019 }
1020}
1021
1022#if IS_ENABLED(CONFIG_INPUT_LEDS) && IS_ENABLED(CONFIG_LEDS_TRIGGERS)
1023
1024struct kbd_led_trigger {
1025 struct led_trigger trigger;
1026 unsigned int mask;
1027};
1028
1029static int kbd_led_trigger_activate(struct led_classdev *cdev)
1030{
1031 struct kbd_led_trigger *trigger =
1032 container_of(cdev->trigger, struct kbd_led_trigger, trigger);
1033
1034 tasklet_disable(&keyboard_tasklet);
1035 if (ledstate != -1U)
1036 led_trigger_event(&trigger->trigger,
1037 ledstate & trigger->mask ?
1038 LED_FULL : LED_OFF);
1039 tasklet_enable(&keyboard_tasklet);
1040
1041 return 0;
1042}
1043
1044#define KBD_LED_TRIGGER(_led_bit, _name) { \
1045 .trigger = { \
1046 .name = _name, \
1047 .activate = kbd_led_trigger_activate, \
1048 }, \
1049 .mask = BIT(_led_bit), \
1050 }
1051
1052#define KBD_LOCKSTATE_TRIGGER(_led_bit, _name) \
1053 KBD_LED_TRIGGER((_led_bit) + 8, _name)
1054
1055static struct kbd_led_trigger kbd_led_triggers[] = {
1056 KBD_LED_TRIGGER(VC_SCROLLOCK, "kbd-scrolllock"),
1057 KBD_LED_TRIGGER(VC_NUMLOCK, "kbd-numlock"),
1058 KBD_LED_TRIGGER(VC_CAPSLOCK, "kbd-capslock"),
1059 KBD_LED_TRIGGER(VC_KANALOCK, "kbd-kanalock"),
1060
1061 KBD_LOCKSTATE_TRIGGER(VC_SHIFTLOCK, "kbd-shiftlock"),
1062 KBD_LOCKSTATE_TRIGGER(VC_ALTGRLOCK, "kbd-altgrlock"),
1063 KBD_LOCKSTATE_TRIGGER(VC_CTRLLOCK, "kbd-ctrllock"),
1064 KBD_LOCKSTATE_TRIGGER(VC_ALTLOCK, "kbd-altlock"),
1065 KBD_LOCKSTATE_TRIGGER(VC_SHIFTLLOCK, "kbd-shiftllock"),
1066 KBD_LOCKSTATE_TRIGGER(VC_SHIFTRLOCK, "kbd-shiftrlock"),
1067 KBD_LOCKSTATE_TRIGGER(VC_CTRLLLOCK, "kbd-ctrlllock"),
1068 KBD_LOCKSTATE_TRIGGER(VC_CTRLRLOCK, "kbd-ctrlrlock"),
1069};
1070
1071static void kbd_propagate_led_state(unsigned int old_state,
1072 unsigned int new_state)
1073{
1074 struct kbd_led_trigger *trigger;
1075 unsigned int changed = old_state ^ new_state;
1076 int i;
1077
1078 for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1079 trigger = &kbd_led_triggers[i];
1080
1081 if (changed & trigger->mask)
1082 led_trigger_event(&trigger->trigger,
1083 new_state & trigger->mask ?
1084 LED_FULL : LED_OFF);
1085 }
1086}
1087
1088static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1089{
1090 unsigned int led_state = *(unsigned int *)data;
1091
1092 if (test_bit(EV_LED, handle->dev->evbit))
1093 kbd_propagate_led_state(~led_state, led_state);
1094
1095 return 0;
1096}
1097
1098static void kbd_init_leds(void)
1099{
1100 int error;
1101 int i;
1102
1103 for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1104 error = led_trigger_register(&kbd_led_triggers[i].trigger);
1105 if (error)
1106 pr_err("error %d while registering trigger %s\n",
1107 error, kbd_led_triggers[i].trigger.name);
1108 }
1109}
1110
1111#else
1112
1113static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1114{
1115 unsigned int leds = *(unsigned int *)data;
1116
1117 if (test_bit(EV_LED, handle->dev->evbit)) {
1118 input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & BIT(0)));
1119 input_inject_event(handle, EV_LED, LED_NUML, !!(leds & BIT(1)));
1120 input_inject_event(handle, EV_LED, LED_CAPSL, !!(leds & BIT(2)));
1121 input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
1122 }
1123
1124 return 0;
1125}
1126
1127static void kbd_propagate_led_state(unsigned int old_state,
1128 unsigned int new_state)
1129{
1130 input_handler_for_each_handle(&kbd_handler, &new_state,
1131 kbd_update_leds_helper);
1132}
1133
1134static void kbd_init_leds(void)
1135{
1136}
1137
1138#endif
1139
1140/*
1141 * The leds display either (i) the status of NumLock, CapsLock, ScrollLock,
1142 * or (ii) whatever pattern of lights people want to show using KDSETLED,
1143 * or (iii) specified bits of specified words in kernel memory.
1144 */
1145static unsigned char getledstate(void)
1146{
1147 return ledstate & 0xff;
1148}
1149
1150void setledstate(struct kbd_struct *kb, unsigned int led)
1151{
1152 unsigned long flags;
1153 spin_lock_irqsave(&led_lock, flags);
1154 if (!(led & ~7)) {
1155 ledioctl = led;
1156 kb->ledmode = LED_SHOW_IOCTL;
1157 } else
1158 kb->ledmode = LED_SHOW_FLAGS;
1159
1160 set_leds();
1161 spin_unlock_irqrestore(&led_lock, flags);
1162}
1163
1164static inline unsigned char getleds(void)
1165{
1166 struct kbd_struct *kb = kbd_table + fg_console;
1167
1168 if (kb->ledmode == LED_SHOW_IOCTL)
1169 return ledioctl;
1170
1171 return kb->ledflagstate;
1172}
1173
1174/**
1175 * vt_get_leds - helper for braille console
1176 * @console: console to read
1177 * @flag: flag we want to check
1178 *
1179 * Check the status of a keyboard led flag and report it back
1180 */
1181int vt_get_leds(unsigned int console, int flag)
1182{
1183 struct kbd_struct *kb = &kbd_table[console];
1184 int ret;
1185 unsigned long flags;
1186
1187 spin_lock_irqsave(&led_lock, flags);
1188 ret = vc_kbd_led(kb, flag);
1189 spin_unlock_irqrestore(&led_lock, flags);
1190
1191 return ret;
1192}
1193EXPORT_SYMBOL_GPL(vt_get_leds);
1194
1195/**
1196 * vt_set_led_state - set LED state of a console
1197 * @console: console to set
1198 * @leds: LED bits
1199 *
1200 * Set the LEDs on a console. This is a wrapper for the VT layer
1201 * so that we can keep kbd knowledge internal
1202 */
1203void vt_set_led_state(unsigned int console, int leds)
1204{
1205 struct kbd_struct *kb = &kbd_table[console];
1206 setledstate(kb, leds);
1207}
1208
1209/**
1210 * vt_kbd_con_start - Keyboard side of console start
1211 * @console: console
1212 *
1213 * Handle console start. This is a wrapper for the VT layer
1214 * so that we can keep kbd knowledge internal
1215 *
1216 * FIXME: We eventually need to hold the kbd lock here to protect
1217 * the LED updating. We can't do it yet because fn_hold calls stop_tty
1218 * and start_tty under the kbd_event_lock, while normal tty paths
1219 * don't hold the lock. We probably need to split out an LED lock
1220 * but not during an -rc release!
1221 */
1222void vt_kbd_con_start(unsigned int console)
1223{
1224 struct kbd_struct *kb = &kbd_table[console];
1225 unsigned long flags;
1226 spin_lock_irqsave(&led_lock, flags);
1227 clr_vc_kbd_led(kb, VC_SCROLLOCK);
1228 set_leds();
1229 spin_unlock_irqrestore(&led_lock, flags);
1230}
1231
1232/**
1233 * vt_kbd_con_stop - Keyboard side of console stop
1234 * @console: console
1235 *
1236 * Handle console stop. This is a wrapper for the VT layer
1237 * so that we can keep kbd knowledge internal
1238 */
1239void vt_kbd_con_stop(unsigned int console)
1240{
1241 struct kbd_struct *kb = &kbd_table[console];
1242 unsigned long flags;
1243 spin_lock_irqsave(&led_lock, flags);
1244 set_vc_kbd_led(kb, VC_SCROLLOCK);
1245 set_leds();
1246 spin_unlock_irqrestore(&led_lock, flags);
1247}
1248
1249/*
1250 * This is the tasklet that updates LED state of LEDs using standard
1251 * keyboard triggers. The reason we use tasklet is that we need to
1252 * handle the scenario when keyboard handler is not registered yet
1253 * but we already getting updates from the VT to update led state.
1254 */
1255static void kbd_bh(struct tasklet_struct *unused)
1256{
1257 unsigned int leds;
1258 unsigned long flags;
1259
1260 spin_lock_irqsave(&led_lock, flags);
1261 leds = getleds();
1262 leds |= (unsigned int)kbd->lockstate << 8;
1263 spin_unlock_irqrestore(&led_lock, flags);
1264
1265 if (vt_switch) {
1266 ledstate = ~leds;
1267 vt_switch = false;
1268 }
1269
1270 if (leds != ledstate) {
1271 kbd_propagate_led_state(ledstate, leds);
1272 ledstate = leds;
1273 }
1274}
1275
1276#if defined(CONFIG_X86) || defined(CONFIG_ALPHA) ||\
1277 defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\
1278 defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\
1279 (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC))
1280
1281static inline bool kbd_is_hw_raw(const struct input_dev *dev)
1282{
1283 if (!test_bit(EV_MSC, dev->evbit) || !test_bit(MSC_RAW, dev->mscbit))
1284 return false;
1285
1286 return dev->id.bustype == BUS_I8042 &&
1287 dev->id.vendor == 0x0001 && dev->id.product == 0x0001;
1288}
1289
1290static const unsigned short x86_keycodes[256] =
1291 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
1292 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
1293 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
1294 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
1295 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
1296 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92,
1297 284,285,309, 0,312, 91,327,328,329,331,333,335,336,337,338,339,
1298 367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349,
1299 360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355,
1300 103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361,
1301 291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114,
1302 264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116,
1303 377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307,
1304 308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330,
1305 332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 };
1306
1307#ifdef CONFIG_SPARC
1308static int sparc_l1_a_state;
1309extern void sun_do_break(void);
1310#endif
1311
1312static int emulate_raw(struct vc_data *vc, unsigned int keycode,
1313 unsigned char up_flag)
1314{
1315 int code;
1316
1317 switch (keycode) {
1318
1319 case KEY_PAUSE:
1320 put_queue(vc, 0xe1);
1321 put_queue(vc, 0x1d | up_flag);
1322 put_queue(vc, 0x45 | up_flag);
1323 break;
1324
1325 case KEY_HANGEUL:
1326 if (!up_flag)
1327 put_queue(vc, 0xf2);
1328 break;
1329
1330 case KEY_HANJA:
1331 if (!up_flag)
1332 put_queue(vc, 0xf1);
1333 break;
1334
1335 case KEY_SYSRQ:
1336 /*
1337 * Real AT keyboards (that's what we're trying
1338 * to emulate here) emit 0xe0 0x2a 0xe0 0x37 when
1339 * pressing PrtSc/SysRq alone, but simply 0x54
1340 * when pressing Alt+PrtSc/SysRq.
1341 */
1342 if (test_bit(KEY_LEFTALT, key_down) ||
1343 test_bit(KEY_RIGHTALT, key_down)) {
1344 put_queue(vc, 0x54 | up_flag);
1345 } else {
1346 put_queue(vc, 0xe0);
1347 put_queue(vc, 0x2a | up_flag);
1348 put_queue(vc, 0xe0);
1349 put_queue(vc, 0x37 | up_flag);
1350 }
1351 break;
1352
1353 default:
1354 if (keycode > 255)
1355 return -1;
1356
1357 code = x86_keycodes[keycode];
1358 if (!code)
1359 return -1;
1360
1361 if (code & 0x100)
1362 put_queue(vc, 0xe0);
1363 put_queue(vc, (code & 0x7f) | up_flag);
1364
1365 break;
1366 }
1367
1368 return 0;
1369}
1370
1371#else
1372
1373static inline bool kbd_is_hw_raw(const struct input_dev *dev)
1374{
1375 return false;
1376}
1377
1378static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag)
1379{
1380 if (keycode > 127)
1381 return -1;
1382
1383 put_queue(vc, keycode | up_flag);
1384 return 0;
1385}
1386#endif
1387
1388static void kbd_rawcode(unsigned char data)
1389{
1390 struct vc_data *vc = vc_cons[fg_console].d;
1391
1392 kbd = &kbd_table[vc->vc_num];
1393 if (kbd->kbdmode == VC_RAW)
1394 put_queue(vc, data);
1395}
1396
1397static void kbd_keycode(unsigned int keycode, int down, bool hw_raw)
1398{
1399 struct vc_data *vc = vc_cons[fg_console].d;
1400 unsigned short keysym, *key_map;
1401 unsigned char type;
1402 bool raw_mode;
1403 struct tty_struct *tty;
1404 int shift_final;
1405 struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down };
1406 int rc;
1407
1408 tty = vc->port.tty;
1409
1410 if (tty && (!tty->driver_data)) {
1411 /* No driver data? Strange. Okay we fix it then. */
1412 tty->driver_data = vc;
1413 }
1414
1415 kbd = &kbd_table[vc->vc_num];
1416
1417#ifdef CONFIG_SPARC
1418 if (keycode == KEY_STOP)
1419 sparc_l1_a_state = down;
1420#endif
1421
1422 rep = (down == 2);
1423
1424 raw_mode = (kbd->kbdmode == VC_RAW);
1425 if (raw_mode && !hw_raw)
1426 if (emulate_raw(vc, keycode, !down << 7))
1427 if (keycode < BTN_MISC && printk_ratelimit())
1428 pr_warn("can't emulate rawmode for keycode %d\n",
1429 keycode);
1430
1431#ifdef CONFIG_SPARC
1432 if (keycode == KEY_A && sparc_l1_a_state) {
1433 sparc_l1_a_state = false;
1434 sun_do_break();
1435 }
1436#endif
1437
1438 if (kbd->kbdmode == VC_MEDIUMRAW) {
1439 /*
1440 * This is extended medium raw mode, with keys above 127
1441 * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing
1442 * the 'up' flag if needed. 0 is reserved, so this shouldn't
1443 * interfere with anything else. The two bytes after 0 will
1444 * always have the up flag set not to interfere with older
1445 * applications. This allows for 16384 different keycodes,
1446 * which should be enough.
1447 */
1448 if (keycode < 128) {
1449 put_queue(vc, keycode | (!down << 7));
1450 } else {
1451 put_queue(vc, !down << 7);
1452 put_queue(vc, (keycode >> 7) | BIT(7));
1453 put_queue(vc, keycode | BIT(7));
1454 }
1455 raw_mode = true;
1456 }
1457
1458 assign_bit(keycode, key_down, down);
1459
1460 if (rep &&
1461 (!vc_kbd_mode(kbd, VC_REPEAT) ||
1462 (tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) {
1463 /*
1464 * Don't repeat a key if the input buffers are not empty and the
1465 * characters get aren't echoed locally. This makes key repeat
1466 * usable with slow applications and under heavy loads.
1467 */
1468 return;
1469 }
1470
1471 param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate;
1472 param.ledstate = kbd->ledflagstate;
1473 key_map = key_maps[shift_final];
1474
1475 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1476 KBD_KEYCODE, ¶m);
1477 if (rc == NOTIFY_STOP || !key_map) {
1478 atomic_notifier_call_chain(&keyboard_notifier_list,
1479 KBD_UNBOUND_KEYCODE, ¶m);
1480 do_compute_shiftstate();
1481 kbd->slockstate = 0;
1482 return;
1483 }
1484
1485 if (keycode < NR_KEYS)
1486 keysym = key_map[keycode];
1487 else if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8)
1488 keysym = U(K(KT_BRL, keycode - KEY_BRL_DOT1 + 1));
1489 else
1490 return;
1491
1492 type = KTYP(keysym);
1493
1494 if (type < 0xf0) {
1495 param.value = keysym;
1496 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1497 KBD_UNICODE, ¶m);
1498 if (rc != NOTIFY_STOP)
1499 if (down && !raw_mode)
1500 k_unicode(vc, keysym, !down);
1501 return;
1502 }
1503
1504 type -= 0xf0;
1505
1506 if (type == KT_LETTER) {
1507 type = KT_LATIN;
1508 if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
1509 key_map = key_maps[shift_final ^ BIT(KG_SHIFT)];
1510 if (key_map)
1511 keysym = key_map[keycode];
1512 }
1513 }
1514
1515 param.value = keysym;
1516 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1517 KBD_KEYSYM, ¶m);
1518 if (rc == NOTIFY_STOP)
1519 return;
1520
1521 if ((raw_mode || kbd->kbdmode == VC_OFF) && type != KT_SPEC && type != KT_SHIFT)
1522 return;
1523
1524 (*k_handler[type])(vc, keysym & 0xff, !down);
1525
1526 param.ledstate = kbd->ledflagstate;
1527 atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, ¶m);
1528
1529 if (type != KT_SLOCK)
1530 kbd->slockstate = 0;
1531}
1532
1533static void kbd_event(struct input_handle *handle, unsigned int event_type,
1534 unsigned int event_code, int value)
1535{
1536 /* We are called with interrupts disabled, just take the lock */
1537 spin_lock(&kbd_event_lock);
1538
1539 if (event_type == EV_MSC && event_code == MSC_RAW &&
1540 kbd_is_hw_raw(handle->dev))
1541 kbd_rawcode(value);
1542 if (event_type == EV_KEY && event_code <= KEY_MAX)
1543 kbd_keycode(event_code, value, kbd_is_hw_raw(handle->dev));
1544
1545 spin_unlock(&kbd_event_lock);
1546
1547 tasklet_schedule(&keyboard_tasklet);
1548 do_poke_blanked_console = 1;
1549 schedule_console_callback();
1550}
1551
1552static bool kbd_match(struct input_handler *handler, struct input_dev *dev)
1553{
1554 if (test_bit(EV_SND, dev->evbit))
1555 return true;
1556
1557 if (test_bit(EV_KEY, dev->evbit)) {
1558 if (find_next_bit(dev->keybit, BTN_MISC, KEY_RESERVED) <
1559 BTN_MISC)
1560 return true;
1561 if (find_next_bit(dev->keybit, KEY_BRL_DOT10 + 1,
1562 KEY_BRL_DOT1) <= KEY_BRL_DOT10)
1563 return true;
1564 }
1565
1566 return false;
1567}
1568
1569/*
1570 * When a keyboard (or other input device) is found, the kbd_connect
1571 * function is called. The function then looks at the device, and if it
1572 * likes it, it can open it and get events from it. In this (kbd_connect)
1573 * function, we should decide which VT to bind that keyboard to initially.
1574 */
1575static int kbd_connect(struct input_handler *handler, struct input_dev *dev,
1576 const struct input_device_id *id)
1577{
1578 struct input_handle *handle;
1579 int error;
1580
1581 handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
1582 if (!handle)
1583 return -ENOMEM;
1584
1585 handle->dev = dev;
1586 handle->handler = handler;
1587 handle->name = "kbd";
1588
1589 error = input_register_handle(handle);
1590 if (error)
1591 goto err_free_handle;
1592
1593 error = input_open_device(handle);
1594 if (error)
1595 goto err_unregister_handle;
1596
1597 return 0;
1598
1599 err_unregister_handle:
1600 input_unregister_handle(handle);
1601 err_free_handle:
1602 kfree(handle);
1603 return error;
1604}
1605
1606static void kbd_disconnect(struct input_handle *handle)
1607{
1608 input_close_device(handle);
1609 input_unregister_handle(handle);
1610 kfree(handle);
1611}
1612
1613/*
1614 * Start keyboard handler on the new keyboard by refreshing LED state to
1615 * match the rest of the system.
1616 */
1617static void kbd_start(struct input_handle *handle)
1618{
1619 tasklet_disable(&keyboard_tasklet);
1620
1621 if (ledstate != -1U)
1622 kbd_update_leds_helper(handle, &ledstate);
1623
1624 tasklet_enable(&keyboard_tasklet);
1625}
1626
1627static const struct input_device_id kbd_ids[] = {
1628 {
1629 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1630 .evbit = { BIT_MASK(EV_KEY) },
1631 },
1632
1633 {
1634 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1635 .evbit = { BIT_MASK(EV_SND) },
1636 },
1637
1638 { }, /* Terminating entry */
1639};
1640
1641MODULE_DEVICE_TABLE(input, kbd_ids);
1642
1643static struct input_handler kbd_handler = {
1644 .event = kbd_event,
1645 .match = kbd_match,
1646 .connect = kbd_connect,
1647 .disconnect = kbd_disconnect,
1648 .start = kbd_start,
1649 .name = "kbd",
1650 .id_table = kbd_ids,
1651};
1652
1653int __init kbd_init(void)
1654{
1655 int i;
1656 int error;
1657
1658 for (i = 0; i < MAX_NR_CONSOLES; i++) {
1659 kbd_table[i].ledflagstate = kbd_defleds();
1660 kbd_table[i].default_ledflagstate = kbd_defleds();
1661 kbd_table[i].ledmode = LED_SHOW_FLAGS;
1662 kbd_table[i].lockstate = KBD_DEFLOCK;
1663 kbd_table[i].slockstate = 0;
1664 kbd_table[i].modeflags = KBD_DEFMODE;
1665 kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
1666 }
1667
1668 kbd_init_leds();
1669
1670 error = input_register_handler(&kbd_handler);
1671 if (error)
1672 return error;
1673
1674 tasklet_enable(&keyboard_tasklet);
1675 tasklet_schedule(&keyboard_tasklet);
1676
1677 return 0;
1678}
1679
1680/* Ioctl support code */
1681
1682/**
1683 * vt_do_diacrit - diacritical table updates
1684 * @cmd: ioctl request
1685 * @udp: pointer to user data for ioctl
1686 * @perm: permissions check computed by caller
1687 *
1688 * Update the diacritical tables atomically and safely. Lock them
1689 * against simultaneous keypresses
1690 */
1691int vt_do_diacrit(unsigned int cmd, void __user *udp, int perm)
1692{
1693 unsigned long flags;
1694 int asize;
1695 int ret = 0;
1696
1697 switch (cmd) {
1698 case KDGKBDIACR:
1699 {
1700 struct kbdiacrs __user *a = udp;
1701 struct kbdiacr *dia;
1702 int i;
1703
1704 dia = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacr),
1705 GFP_KERNEL);
1706 if (!dia)
1707 return -ENOMEM;
1708
1709 /* Lock the diacriticals table, make a copy and then
1710 copy it after we unlock */
1711 spin_lock_irqsave(&kbd_event_lock, flags);
1712
1713 asize = accent_table_size;
1714 for (i = 0; i < asize; i++) {
1715 dia[i].diacr = conv_uni_to_8bit(
1716 accent_table[i].diacr);
1717 dia[i].base = conv_uni_to_8bit(
1718 accent_table[i].base);
1719 dia[i].result = conv_uni_to_8bit(
1720 accent_table[i].result);
1721 }
1722 spin_unlock_irqrestore(&kbd_event_lock, flags);
1723
1724 if (put_user(asize, &a->kb_cnt))
1725 ret = -EFAULT;
1726 else if (copy_to_user(a->kbdiacr, dia,
1727 asize * sizeof(struct kbdiacr)))
1728 ret = -EFAULT;
1729 kfree(dia);
1730 return ret;
1731 }
1732 case KDGKBDIACRUC:
1733 {
1734 struct kbdiacrsuc __user *a = udp;
1735 void *buf;
1736
1737 buf = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacruc),
1738 GFP_KERNEL);
1739 if (buf == NULL)
1740 return -ENOMEM;
1741
1742 /* Lock the diacriticals table, make a copy and then
1743 copy it after we unlock */
1744 spin_lock_irqsave(&kbd_event_lock, flags);
1745
1746 asize = accent_table_size;
1747 memcpy(buf, accent_table, asize * sizeof(struct kbdiacruc));
1748
1749 spin_unlock_irqrestore(&kbd_event_lock, flags);
1750
1751 if (put_user(asize, &a->kb_cnt))
1752 ret = -EFAULT;
1753 else if (copy_to_user(a->kbdiacruc, buf,
1754 asize*sizeof(struct kbdiacruc)))
1755 ret = -EFAULT;
1756 kfree(buf);
1757 return ret;
1758 }
1759
1760 case KDSKBDIACR:
1761 {
1762 struct kbdiacrs __user *a = udp;
1763 struct kbdiacr *dia = NULL;
1764 unsigned int ct;
1765 int i;
1766
1767 if (!perm)
1768 return -EPERM;
1769 if (get_user(ct, &a->kb_cnt))
1770 return -EFAULT;
1771 if (ct >= MAX_DIACR)
1772 return -EINVAL;
1773
1774 if (ct) {
1775 dia = memdup_array_user(a->kbdiacr,
1776 ct, sizeof(struct kbdiacr));
1777 if (IS_ERR(dia))
1778 return PTR_ERR(dia);
1779 }
1780
1781 spin_lock_irqsave(&kbd_event_lock, flags);
1782 accent_table_size = ct;
1783 for (i = 0; i < ct; i++) {
1784 accent_table[i].diacr =
1785 conv_8bit_to_uni(dia[i].diacr);
1786 accent_table[i].base =
1787 conv_8bit_to_uni(dia[i].base);
1788 accent_table[i].result =
1789 conv_8bit_to_uni(dia[i].result);
1790 }
1791 spin_unlock_irqrestore(&kbd_event_lock, flags);
1792 kfree(dia);
1793 return 0;
1794 }
1795
1796 case KDSKBDIACRUC:
1797 {
1798 struct kbdiacrsuc __user *a = udp;
1799 unsigned int ct;
1800 void *buf = NULL;
1801
1802 if (!perm)
1803 return -EPERM;
1804
1805 if (get_user(ct, &a->kb_cnt))
1806 return -EFAULT;
1807
1808 if (ct >= MAX_DIACR)
1809 return -EINVAL;
1810
1811 if (ct) {
1812 buf = memdup_array_user(a->kbdiacruc,
1813 ct, sizeof(struct kbdiacruc));
1814 if (IS_ERR(buf))
1815 return PTR_ERR(buf);
1816 }
1817 spin_lock_irqsave(&kbd_event_lock, flags);
1818 if (ct)
1819 memcpy(accent_table, buf,
1820 ct * sizeof(struct kbdiacruc));
1821 accent_table_size = ct;
1822 spin_unlock_irqrestore(&kbd_event_lock, flags);
1823 kfree(buf);
1824 return 0;
1825 }
1826 }
1827 return ret;
1828}
1829
1830/**
1831 * vt_do_kdskbmode - set keyboard mode ioctl
1832 * @console: the console to use
1833 * @arg: the requested mode
1834 *
1835 * Update the keyboard mode bits while holding the correct locks.
1836 * Return 0 for success or an error code.
1837 */
1838int vt_do_kdskbmode(unsigned int console, unsigned int arg)
1839{
1840 struct kbd_struct *kb = &kbd_table[console];
1841 int ret = 0;
1842 unsigned long flags;
1843
1844 spin_lock_irqsave(&kbd_event_lock, flags);
1845 switch(arg) {
1846 case K_RAW:
1847 kb->kbdmode = VC_RAW;
1848 break;
1849 case K_MEDIUMRAW:
1850 kb->kbdmode = VC_MEDIUMRAW;
1851 break;
1852 case K_XLATE:
1853 kb->kbdmode = VC_XLATE;
1854 do_compute_shiftstate();
1855 break;
1856 case K_UNICODE:
1857 kb->kbdmode = VC_UNICODE;
1858 do_compute_shiftstate();
1859 break;
1860 case K_OFF:
1861 kb->kbdmode = VC_OFF;
1862 break;
1863 default:
1864 ret = -EINVAL;
1865 }
1866 spin_unlock_irqrestore(&kbd_event_lock, flags);
1867 return ret;
1868}
1869
1870/**
1871 * vt_do_kdskbmeta - set keyboard meta state
1872 * @console: the console to use
1873 * @arg: the requested meta state
1874 *
1875 * Update the keyboard meta bits while holding the correct locks.
1876 * Return 0 for success or an error code.
1877 */
1878int vt_do_kdskbmeta(unsigned int console, unsigned int arg)
1879{
1880 struct kbd_struct *kb = &kbd_table[console];
1881 int ret = 0;
1882 unsigned long flags;
1883
1884 spin_lock_irqsave(&kbd_event_lock, flags);
1885 switch(arg) {
1886 case K_METABIT:
1887 clr_vc_kbd_mode(kb, VC_META);
1888 break;
1889 case K_ESCPREFIX:
1890 set_vc_kbd_mode(kb, VC_META);
1891 break;
1892 default:
1893 ret = -EINVAL;
1894 }
1895 spin_unlock_irqrestore(&kbd_event_lock, flags);
1896 return ret;
1897}
1898
1899int vt_do_kbkeycode_ioctl(int cmd, struct kbkeycode __user *user_kbkc,
1900 int perm)
1901{
1902 struct kbkeycode tmp;
1903 int kc = 0;
1904
1905 if (copy_from_user(&tmp, user_kbkc, sizeof(struct kbkeycode)))
1906 return -EFAULT;
1907 switch (cmd) {
1908 case KDGETKEYCODE:
1909 kc = getkeycode(tmp.scancode);
1910 if (kc >= 0)
1911 kc = put_user(kc, &user_kbkc->keycode);
1912 break;
1913 case KDSETKEYCODE:
1914 if (!perm)
1915 return -EPERM;
1916 kc = setkeycode(tmp.scancode, tmp.keycode);
1917 break;
1918 }
1919 return kc;
1920}
1921
1922static unsigned short vt_kdgkbent(unsigned char kbdmode, unsigned char idx,
1923 unsigned char map)
1924{
1925 unsigned short *key_map, val;
1926 unsigned long flags;
1927
1928 /* Ensure another thread doesn't free it under us */
1929 spin_lock_irqsave(&kbd_event_lock, flags);
1930 key_map = key_maps[map];
1931 if (key_map) {
1932 val = U(key_map[idx]);
1933 if (kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES)
1934 val = K_HOLE;
1935 } else
1936 val = idx ? K_HOLE : K_NOSUCHMAP;
1937 spin_unlock_irqrestore(&kbd_event_lock, flags);
1938
1939 return val;
1940}
1941
1942static int vt_kdskbent(unsigned char kbdmode, unsigned char idx,
1943 unsigned char map, unsigned short val)
1944{
1945 unsigned long flags;
1946 unsigned short *key_map, *new_map, oldval;
1947
1948 if (!idx && val == K_NOSUCHMAP) {
1949 spin_lock_irqsave(&kbd_event_lock, flags);
1950 /* deallocate map */
1951 key_map = key_maps[map];
1952 if (map && key_map) {
1953 key_maps[map] = NULL;
1954 if (key_map[0] == U(K_ALLOCATED)) {
1955 kfree(key_map);
1956 keymap_count--;
1957 }
1958 }
1959 spin_unlock_irqrestore(&kbd_event_lock, flags);
1960
1961 return 0;
1962 }
1963
1964 if (KTYP(val) < NR_TYPES) {
1965 if (KVAL(val) > max_vals[KTYP(val)])
1966 return -EINVAL;
1967 } else if (kbdmode != VC_UNICODE)
1968 return -EINVAL;
1969
1970 /* ++Geert: non-PC keyboards may generate keycode zero */
1971#if !defined(__mc68000__) && !defined(__powerpc__)
1972 /* assignment to entry 0 only tests validity of args */
1973 if (!idx)
1974 return 0;
1975#endif
1976
1977 new_map = kmalloc(sizeof(plain_map), GFP_KERNEL);
1978 if (!new_map)
1979 return -ENOMEM;
1980
1981 spin_lock_irqsave(&kbd_event_lock, flags);
1982 key_map = key_maps[map];
1983 if (key_map == NULL) {
1984 int j;
1985
1986 if (keymap_count >= MAX_NR_OF_USER_KEYMAPS &&
1987 !capable(CAP_SYS_RESOURCE)) {
1988 spin_unlock_irqrestore(&kbd_event_lock, flags);
1989 kfree(new_map);
1990 return -EPERM;
1991 }
1992 key_maps[map] = new_map;
1993 key_map = new_map;
1994 key_map[0] = U(K_ALLOCATED);
1995 for (j = 1; j < NR_KEYS; j++)
1996 key_map[j] = U(K_HOLE);
1997 keymap_count++;
1998 } else
1999 kfree(new_map);
2000
2001 oldval = U(key_map[idx]);
2002 if (val == oldval)
2003 goto out;
2004
2005 /* Attention Key */
2006 if ((oldval == K_SAK || val == K_SAK) && !capable(CAP_SYS_ADMIN)) {
2007 spin_unlock_irqrestore(&kbd_event_lock, flags);
2008 return -EPERM;
2009 }
2010
2011 key_map[idx] = U(val);
2012 if (!map && (KTYP(oldval) == KT_SHIFT || KTYP(val) == KT_SHIFT))
2013 do_compute_shiftstate();
2014out:
2015 spin_unlock_irqrestore(&kbd_event_lock, flags);
2016
2017 return 0;
2018}
2019
2020int vt_do_kdsk_ioctl(int cmd, struct kbentry __user *user_kbe, int perm,
2021 unsigned int console)
2022{
2023 struct kbd_struct *kb = &kbd_table[console];
2024 struct kbentry kbe;
2025
2026 if (copy_from_user(&kbe, user_kbe, sizeof(struct kbentry)))
2027 return -EFAULT;
2028
2029 switch (cmd) {
2030 case KDGKBENT:
2031 return put_user(vt_kdgkbent(kb->kbdmode, kbe.kb_index,
2032 kbe.kb_table),
2033 &user_kbe->kb_value);
2034 case KDSKBENT:
2035 if (!perm || !capable(CAP_SYS_TTY_CONFIG))
2036 return -EPERM;
2037 return vt_kdskbent(kb->kbdmode, kbe.kb_index, kbe.kb_table,
2038 kbe.kb_value);
2039 }
2040 return 0;
2041}
2042
2043static char *vt_kdskbsent(char *kbs, unsigned char cur)
2044{
2045 static DECLARE_BITMAP(is_kmalloc, MAX_NR_FUNC);
2046 char *cur_f = func_table[cur];
2047
2048 if (cur_f && strlen(cur_f) >= strlen(kbs)) {
2049 strcpy(cur_f, kbs);
2050 return kbs;
2051 }
2052
2053 func_table[cur] = kbs;
2054
2055 return __test_and_set_bit(cur, is_kmalloc) ? cur_f : NULL;
2056}
2057
2058int vt_do_kdgkb_ioctl(int cmd, struct kbsentry __user *user_kdgkb, int perm)
2059{
2060 unsigned char kb_func;
2061 unsigned long flags;
2062 char *kbs;
2063 int ret;
2064
2065 if (get_user(kb_func, &user_kdgkb->kb_func))
2066 return -EFAULT;
2067
2068 kb_func = array_index_nospec(kb_func, MAX_NR_FUNC);
2069
2070 switch (cmd) {
2071 case KDGKBSENT: {
2072 /* size should have been a struct member */
2073 ssize_t len = sizeof(user_kdgkb->kb_string);
2074
2075 kbs = kmalloc(len, GFP_KERNEL);
2076 if (!kbs)
2077 return -ENOMEM;
2078
2079 spin_lock_irqsave(&func_buf_lock, flags);
2080 len = strscpy(kbs, func_table[kb_func] ? : "", len);
2081 spin_unlock_irqrestore(&func_buf_lock, flags);
2082
2083 if (len < 0) {
2084 ret = -ENOSPC;
2085 break;
2086 }
2087 ret = copy_to_user(user_kdgkb->kb_string, kbs, len + 1) ?
2088 -EFAULT : 0;
2089 break;
2090 }
2091 case KDSKBSENT:
2092 if (!perm || !capable(CAP_SYS_TTY_CONFIG))
2093 return -EPERM;
2094
2095 kbs = strndup_user(user_kdgkb->kb_string,
2096 sizeof(user_kdgkb->kb_string));
2097 if (IS_ERR(kbs))
2098 return PTR_ERR(kbs);
2099
2100 spin_lock_irqsave(&func_buf_lock, flags);
2101 kbs = vt_kdskbsent(kbs, kb_func);
2102 spin_unlock_irqrestore(&func_buf_lock, flags);
2103
2104 ret = 0;
2105 break;
2106 }
2107
2108 kfree(kbs);
2109
2110 return ret;
2111}
2112
2113int vt_do_kdskled(unsigned int console, int cmd, unsigned long arg, int perm)
2114{
2115 struct kbd_struct *kb = &kbd_table[console];
2116 unsigned long flags;
2117 unsigned char ucval;
2118
2119 switch(cmd) {
2120 /* the ioctls below read/set the flags usually shown in the leds */
2121 /* don't use them - they will go away without warning */
2122 case KDGKBLED:
2123 spin_lock_irqsave(&kbd_event_lock, flags);
2124 ucval = kb->ledflagstate | (kb->default_ledflagstate << 4);
2125 spin_unlock_irqrestore(&kbd_event_lock, flags);
2126 return put_user(ucval, (char __user *)arg);
2127
2128 case KDSKBLED:
2129 if (!perm)
2130 return -EPERM;
2131 if (arg & ~0x77)
2132 return -EINVAL;
2133 spin_lock_irqsave(&led_lock, flags);
2134 kb->ledflagstate = (arg & 7);
2135 kb->default_ledflagstate = ((arg >> 4) & 7);
2136 set_leds();
2137 spin_unlock_irqrestore(&led_lock, flags);
2138 return 0;
2139
2140 /* the ioctls below only set the lights, not the functions */
2141 /* for those, see KDGKBLED and KDSKBLED above */
2142 case KDGETLED:
2143 ucval = getledstate();
2144 return put_user(ucval, (char __user *)arg);
2145
2146 case KDSETLED:
2147 if (!perm)
2148 return -EPERM;
2149 setledstate(kb, arg);
2150 return 0;
2151 }
2152 return -ENOIOCTLCMD;
2153}
2154
2155int vt_do_kdgkbmode(unsigned int console)
2156{
2157 struct kbd_struct *kb = &kbd_table[console];
2158 /* This is a spot read so needs no locking */
2159 switch (kb->kbdmode) {
2160 case VC_RAW:
2161 return K_RAW;
2162 case VC_MEDIUMRAW:
2163 return K_MEDIUMRAW;
2164 case VC_UNICODE:
2165 return K_UNICODE;
2166 case VC_OFF:
2167 return K_OFF;
2168 default:
2169 return K_XLATE;
2170 }
2171}
2172
2173/**
2174 * vt_do_kdgkbmeta - report meta status
2175 * @console: console to report
2176 *
2177 * Report the meta flag status of this console
2178 */
2179int vt_do_kdgkbmeta(unsigned int console)
2180{
2181 struct kbd_struct *kb = &kbd_table[console];
2182 /* Again a spot read so no locking */
2183 return vc_kbd_mode(kb, VC_META) ? K_ESCPREFIX : K_METABIT;
2184}
2185
2186/**
2187 * vt_reset_unicode - reset the unicode status
2188 * @console: console being reset
2189 *
2190 * Restore the unicode console state to its default
2191 */
2192void vt_reset_unicode(unsigned int console)
2193{
2194 unsigned long flags;
2195
2196 spin_lock_irqsave(&kbd_event_lock, flags);
2197 kbd_table[console].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
2198 spin_unlock_irqrestore(&kbd_event_lock, flags);
2199}
2200
2201/**
2202 * vt_get_shift_state - shift bit state
2203 *
2204 * Report the shift bits from the keyboard state. We have to export
2205 * this to support some oddities in the vt layer.
2206 */
2207int vt_get_shift_state(void)
2208{
2209 /* Don't lock as this is a transient report */
2210 return shift_state;
2211}
2212
2213/**
2214 * vt_reset_keyboard - reset keyboard state
2215 * @console: console to reset
2216 *
2217 * Reset the keyboard bits for a console as part of a general console
2218 * reset event
2219 */
2220void vt_reset_keyboard(unsigned int console)
2221{
2222 struct kbd_struct *kb = &kbd_table[console];
2223 unsigned long flags;
2224
2225 spin_lock_irqsave(&kbd_event_lock, flags);
2226 set_vc_kbd_mode(kb, VC_REPEAT);
2227 clr_vc_kbd_mode(kb, VC_CKMODE);
2228 clr_vc_kbd_mode(kb, VC_APPLIC);
2229 clr_vc_kbd_mode(kb, VC_CRLF);
2230 kb->lockstate = 0;
2231 kb->slockstate = 0;
2232 spin_lock(&led_lock);
2233 kb->ledmode = LED_SHOW_FLAGS;
2234 kb->ledflagstate = kb->default_ledflagstate;
2235 spin_unlock(&led_lock);
2236 /* do not do set_leds here because this causes an endless tasklet loop
2237 when the keyboard hasn't been initialized yet */
2238 spin_unlock_irqrestore(&kbd_event_lock, flags);
2239}
2240
2241/**
2242 * vt_get_kbd_mode_bit - read keyboard status bits
2243 * @console: console to read from
2244 * @bit: mode bit to read
2245 *
2246 * Report back a vt mode bit. We do this without locking so the
2247 * caller must be sure that there are no synchronization needs
2248 */
2249
2250int vt_get_kbd_mode_bit(unsigned int console, int bit)
2251{
2252 struct kbd_struct *kb = &kbd_table[console];
2253 return vc_kbd_mode(kb, bit);
2254}
2255
2256/**
2257 * vt_set_kbd_mode_bit - read keyboard status bits
2258 * @console: console to read from
2259 * @bit: mode bit to read
2260 *
2261 * Set a vt mode bit. We do this without locking so the
2262 * caller must be sure that there are no synchronization needs
2263 */
2264
2265void vt_set_kbd_mode_bit(unsigned int console, int bit)
2266{
2267 struct kbd_struct *kb = &kbd_table[console];
2268 unsigned long flags;
2269
2270 spin_lock_irqsave(&kbd_event_lock, flags);
2271 set_vc_kbd_mode(kb, bit);
2272 spin_unlock_irqrestore(&kbd_event_lock, flags);
2273}
2274
2275/**
2276 * vt_clr_kbd_mode_bit - read keyboard status bits
2277 * @console: console to read from
2278 * @bit: mode bit to read
2279 *
2280 * Report back a vt mode bit. We do this without locking so the
2281 * caller must be sure that there are no synchronization needs
2282 */
2283
2284void vt_clr_kbd_mode_bit(unsigned int console, int bit)
2285{
2286 struct kbd_struct *kb = &kbd_table[console];
2287 unsigned long flags;
2288
2289 spin_lock_irqsave(&kbd_event_lock, flags);
2290 clr_vc_kbd_mode(kb, bit);
2291 spin_unlock_irqrestore(&kbd_event_lock, flags);
2292}
1/*
2 * Written for linux by Johan Myreen as a translation from
3 * the assembly version by Linus (with diacriticals added)
4 *
5 * Some additional features added by Christoph Niemann (ChN), March 1993
6 *
7 * Loadable keymaps by Risto Kankkunen, May 1993
8 *
9 * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993
10 * Added decr/incr_console, dynamic keymaps, Unicode support,
11 * dynamic function/string keys, led setting, Sept 1994
12 * `Sticky' modifier keys, 951006.
13 *
14 * 11-11-96: SAK should now work in the raw mode (Martin Mares)
15 *
16 * Modified to provide 'generic' keyboard support by Hamish Macdonald
17 * Merge with the m68k keyboard driver and split-off of the PC low-level
18 * parts by Geert Uytterhoeven, May 1997
19 *
20 * 27-05-97: Added support for the Magic SysRq Key (Martin Mares)
21 * 30-07-98: Dead keys redone, aeb@cwi.nl.
22 * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik)
23 */
24
25#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
26
27#include <linux/consolemap.h>
28#include <linux/module.h>
29#include <linux/sched.h>
30#include <linux/tty.h>
31#include <linux/tty_flip.h>
32#include <linux/mm.h>
33#include <linux/string.h>
34#include <linux/init.h>
35#include <linux/slab.h>
36#include <linux/leds.h>
37
38#include <linux/kbd_kern.h>
39#include <linux/kbd_diacr.h>
40#include <linux/vt_kern.h>
41#include <linux/input.h>
42#include <linux/reboot.h>
43#include <linux/notifier.h>
44#include <linux/jiffies.h>
45#include <linux/uaccess.h>
46
47#include <asm/irq_regs.h>
48
49extern void ctrl_alt_del(void);
50
51/*
52 * Exported functions/variables
53 */
54
55#define KBD_DEFMODE ((1 << VC_REPEAT) | (1 << VC_META))
56
57#if defined(CONFIG_X86) || defined(CONFIG_PARISC)
58#include <asm/kbdleds.h>
59#else
60static inline int kbd_defleds(void)
61{
62 return 0;
63}
64#endif
65
66#define KBD_DEFLOCK 0
67
68/*
69 * Handler Tables.
70 */
71
72#define K_HANDLERS\
73 k_self, k_fn, k_spec, k_pad,\
74 k_dead, k_cons, k_cur, k_shift,\
75 k_meta, k_ascii, k_lock, k_lowercase,\
76 k_slock, k_dead2, k_brl, k_ignore
77
78typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value,
79 char up_flag);
80static k_handler_fn K_HANDLERS;
81static k_handler_fn *k_handler[16] = { K_HANDLERS };
82
83#define FN_HANDLERS\
84 fn_null, fn_enter, fn_show_ptregs, fn_show_mem,\
85 fn_show_state, fn_send_intr, fn_lastcons, fn_caps_toggle,\
86 fn_num, fn_hold, fn_scroll_forw, fn_scroll_back,\
87 fn_boot_it, fn_caps_on, fn_compose, fn_SAK,\
88 fn_dec_console, fn_inc_console, fn_spawn_con, fn_bare_num
89
90typedef void (fn_handler_fn)(struct vc_data *vc);
91static fn_handler_fn FN_HANDLERS;
92static fn_handler_fn *fn_handler[] = { FN_HANDLERS };
93
94/*
95 * Variables exported for vt_ioctl.c
96 */
97
98struct vt_spawn_console vt_spawn_con = {
99 .lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock),
100 .pid = NULL,
101 .sig = 0,
102};
103
104
105/*
106 * Internal Data.
107 */
108
109static struct kbd_struct kbd_table[MAX_NR_CONSOLES];
110static struct kbd_struct *kbd = kbd_table;
111
112/* maximum values each key_handler can handle */
113static const int max_vals[] = {
114 255, ARRAY_SIZE(func_table) - 1, ARRAY_SIZE(fn_handler) - 1, NR_PAD - 1,
115 NR_DEAD - 1, 255, 3, NR_SHIFT - 1, 255, NR_ASCII - 1, NR_LOCK - 1,
116 255, NR_LOCK - 1, 255, NR_BRL - 1
117};
118
119static const int NR_TYPES = ARRAY_SIZE(max_vals);
120
121static struct input_handler kbd_handler;
122static DEFINE_SPINLOCK(kbd_event_lock);
123static DEFINE_SPINLOCK(led_lock);
124static unsigned long key_down[BITS_TO_LONGS(KEY_CNT)]; /* keyboard key bitmap */
125static unsigned char shift_down[NR_SHIFT]; /* shift state counters.. */
126static bool dead_key_next;
127static int npadch = -1; /* -1 or number assembled on pad */
128static unsigned int diacr;
129static char rep; /* flag telling character repeat */
130
131static int shift_state = 0;
132
133static unsigned int ledstate = -1U; /* undefined */
134static unsigned char ledioctl;
135
136/*
137 * Notifier list for console keyboard events
138 */
139static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list);
140
141int register_keyboard_notifier(struct notifier_block *nb)
142{
143 return atomic_notifier_chain_register(&keyboard_notifier_list, nb);
144}
145EXPORT_SYMBOL_GPL(register_keyboard_notifier);
146
147int unregister_keyboard_notifier(struct notifier_block *nb)
148{
149 return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb);
150}
151EXPORT_SYMBOL_GPL(unregister_keyboard_notifier);
152
153/*
154 * Translation of scancodes to keycodes. We set them on only the first
155 * keyboard in the list that accepts the scancode and keycode.
156 * Explanation for not choosing the first attached keyboard anymore:
157 * USB keyboards for example have two event devices: one for all "normal"
158 * keys and one for extra function keys (like "volume up", "make coffee",
159 * etc.). So this means that scancodes for the extra function keys won't
160 * be valid for the first event device, but will be for the second.
161 */
162
163struct getset_keycode_data {
164 struct input_keymap_entry ke;
165 int error;
166};
167
168static int getkeycode_helper(struct input_handle *handle, void *data)
169{
170 struct getset_keycode_data *d = data;
171
172 d->error = input_get_keycode(handle->dev, &d->ke);
173
174 return d->error == 0; /* stop as soon as we successfully get one */
175}
176
177static int getkeycode(unsigned int scancode)
178{
179 struct getset_keycode_data d = {
180 .ke = {
181 .flags = 0,
182 .len = sizeof(scancode),
183 .keycode = 0,
184 },
185 .error = -ENODEV,
186 };
187
188 memcpy(d.ke.scancode, &scancode, sizeof(scancode));
189
190 input_handler_for_each_handle(&kbd_handler, &d, getkeycode_helper);
191
192 return d.error ?: d.ke.keycode;
193}
194
195static int setkeycode_helper(struct input_handle *handle, void *data)
196{
197 struct getset_keycode_data *d = data;
198
199 d->error = input_set_keycode(handle->dev, &d->ke);
200
201 return d->error == 0; /* stop as soon as we successfully set one */
202}
203
204static int setkeycode(unsigned int scancode, unsigned int keycode)
205{
206 struct getset_keycode_data d = {
207 .ke = {
208 .flags = 0,
209 .len = sizeof(scancode),
210 .keycode = keycode,
211 },
212 .error = -ENODEV,
213 };
214
215 memcpy(d.ke.scancode, &scancode, sizeof(scancode));
216
217 input_handler_for_each_handle(&kbd_handler, &d, setkeycode_helper);
218
219 return d.error;
220}
221
222/*
223 * Making beeps and bells. Note that we prefer beeps to bells, but when
224 * shutting the sound off we do both.
225 */
226
227static int kd_sound_helper(struct input_handle *handle, void *data)
228{
229 unsigned int *hz = data;
230 struct input_dev *dev = handle->dev;
231
232 if (test_bit(EV_SND, dev->evbit)) {
233 if (test_bit(SND_TONE, dev->sndbit)) {
234 input_inject_event(handle, EV_SND, SND_TONE, *hz);
235 if (*hz)
236 return 0;
237 }
238 if (test_bit(SND_BELL, dev->sndbit))
239 input_inject_event(handle, EV_SND, SND_BELL, *hz ? 1 : 0);
240 }
241
242 return 0;
243}
244
245static void kd_nosound(unsigned long ignored)
246{
247 static unsigned int zero;
248
249 input_handler_for_each_handle(&kbd_handler, &zero, kd_sound_helper);
250}
251
252static DEFINE_TIMER(kd_mksound_timer, kd_nosound, 0, 0);
253
254void kd_mksound(unsigned int hz, unsigned int ticks)
255{
256 del_timer_sync(&kd_mksound_timer);
257
258 input_handler_for_each_handle(&kbd_handler, &hz, kd_sound_helper);
259
260 if (hz && ticks)
261 mod_timer(&kd_mksound_timer, jiffies + ticks);
262}
263EXPORT_SYMBOL(kd_mksound);
264
265/*
266 * Setting the keyboard rate.
267 */
268
269static int kbd_rate_helper(struct input_handle *handle, void *data)
270{
271 struct input_dev *dev = handle->dev;
272 struct kbd_repeat *rpt = data;
273
274 if (test_bit(EV_REP, dev->evbit)) {
275
276 if (rpt[0].delay > 0)
277 input_inject_event(handle,
278 EV_REP, REP_DELAY, rpt[0].delay);
279 if (rpt[0].period > 0)
280 input_inject_event(handle,
281 EV_REP, REP_PERIOD, rpt[0].period);
282
283 rpt[1].delay = dev->rep[REP_DELAY];
284 rpt[1].period = dev->rep[REP_PERIOD];
285 }
286
287 return 0;
288}
289
290int kbd_rate(struct kbd_repeat *rpt)
291{
292 struct kbd_repeat data[2] = { *rpt };
293
294 input_handler_for_each_handle(&kbd_handler, data, kbd_rate_helper);
295 *rpt = data[1]; /* Copy currently used settings */
296
297 return 0;
298}
299
300/*
301 * Helper Functions.
302 */
303static void put_queue(struct vc_data *vc, int ch)
304{
305 tty_insert_flip_char(&vc->port, ch, 0);
306 tty_schedule_flip(&vc->port);
307}
308
309static void puts_queue(struct vc_data *vc, char *cp)
310{
311 while (*cp) {
312 tty_insert_flip_char(&vc->port, *cp, 0);
313 cp++;
314 }
315 tty_schedule_flip(&vc->port);
316}
317
318static void applkey(struct vc_data *vc, int key, char mode)
319{
320 static char buf[] = { 0x1b, 'O', 0x00, 0x00 };
321
322 buf[1] = (mode ? 'O' : '[');
323 buf[2] = key;
324 puts_queue(vc, buf);
325}
326
327/*
328 * Many other routines do put_queue, but I think either
329 * they produce ASCII, or they produce some user-assigned
330 * string, and in both cases we might assume that it is
331 * in utf-8 already.
332 */
333static void to_utf8(struct vc_data *vc, uint c)
334{
335 if (c < 0x80)
336 /* 0******* */
337 put_queue(vc, c);
338 else if (c < 0x800) {
339 /* 110***** 10****** */
340 put_queue(vc, 0xc0 | (c >> 6));
341 put_queue(vc, 0x80 | (c & 0x3f));
342 } else if (c < 0x10000) {
343 if (c >= 0xD800 && c < 0xE000)
344 return;
345 if (c == 0xFFFF)
346 return;
347 /* 1110**** 10****** 10****** */
348 put_queue(vc, 0xe0 | (c >> 12));
349 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
350 put_queue(vc, 0x80 | (c & 0x3f));
351 } else if (c < 0x110000) {
352 /* 11110*** 10****** 10****** 10****** */
353 put_queue(vc, 0xf0 | (c >> 18));
354 put_queue(vc, 0x80 | ((c >> 12) & 0x3f));
355 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
356 put_queue(vc, 0x80 | (c & 0x3f));
357 }
358}
359
360/*
361 * Called after returning from RAW mode or when changing consoles - recompute
362 * shift_down[] and shift_state from key_down[] maybe called when keymap is
363 * undefined, so that shiftkey release is seen. The caller must hold the
364 * kbd_event_lock.
365 */
366
367static void do_compute_shiftstate(void)
368{
369 unsigned int i, j, k, sym, val;
370
371 shift_state = 0;
372 memset(shift_down, 0, sizeof(shift_down));
373
374 for (i = 0; i < ARRAY_SIZE(key_down); i++) {
375
376 if (!key_down[i])
377 continue;
378
379 k = i * BITS_PER_LONG;
380
381 for (j = 0; j < BITS_PER_LONG; j++, k++) {
382
383 if (!test_bit(k, key_down))
384 continue;
385
386 sym = U(key_maps[0][k]);
387 if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK)
388 continue;
389
390 val = KVAL(sym);
391 if (val == KVAL(K_CAPSSHIFT))
392 val = KVAL(K_SHIFT);
393
394 shift_down[val]++;
395 shift_state |= (1 << val);
396 }
397 }
398}
399
400/* We still have to export this method to vt.c */
401void compute_shiftstate(void)
402{
403 unsigned long flags;
404 spin_lock_irqsave(&kbd_event_lock, flags);
405 do_compute_shiftstate();
406 spin_unlock_irqrestore(&kbd_event_lock, flags);
407}
408
409/*
410 * We have a combining character DIACR here, followed by the character CH.
411 * If the combination occurs in the table, return the corresponding value.
412 * Otherwise, if CH is a space or equals DIACR, return DIACR.
413 * Otherwise, conclude that DIACR was not combining after all,
414 * queue it and return CH.
415 */
416static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch)
417{
418 unsigned int d = diacr;
419 unsigned int i;
420
421 diacr = 0;
422
423 if ((d & ~0xff) == BRL_UC_ROW) {
424 if ((ch & ~0xff) == BRL_UC_ROW)
425 return d | ch;
426 } else {
427 for (i = 0; i < accent_table_size; i++)
428 if (accent_table[i].diacr == d && accent_table[i].base == ch)
429 return accent_table[i].result;
430 }
431
432 if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d)
433 return d;
434
435 if (kbd->kbdmode == VC_UNICODE)
436 to_utf8(vc, d);
437 else {
438 int c = conv_uni_to_8bit(d);
439 if (c != -1)
440 put_queue(vc, c);
441 }
442
443 return ch;
444}
445
446/*
447 * Special function handlers
448 */
449static void fn_enter(struct vc_data *vc)
450{
451 if (diacr) {
452 if (kbd->kbdmode == VC_UNICODE)
453 to_utf8(vc, diacr);
454 else {
455 int c = conv_uni_to_8bit(diacr);
456 if (c != -1)
457 put_queue(vc, c);
458 }
459 diacr = 0;
460 }
461
462 put_queue(vc, 13);
463 if (vc_kbd_mode(kbd, VC_CRLF))
464 put_queue(vc, 10);
465}
466
467static void fn_caps_toggle(struct vc_data *vc)
468{
469 if (rep)
470 return;
471
472 chg_vc_kbd_led(kbd, VC_CAPSLOCK);
473}
474
475static void fn_caps_on(struct vc_data *vc)
476{
477 if (rep)
478 return;
479
480 set_vc_kbd_led(kbd, VC_CAPSLOCK);
481}
482
483static void fn_show_ptregs(struct vc_data *vc)
484{
485 struct pt_regs *regs = get_irq_regs();
486
487 if (regs)
488 show_regs(regs);
489}
490
491static void fn_hold(struct vc_data *vc)
492{
493 struct tty_struct *tty = vc->port.tty;
494
495 if (rep || !tty)
496 return;
497
498 /*
499 * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty);
500 * these routines are also activated by ^S/^Q.
501 * (And SCROLLOCK can also be set by the ioctl KDSKBLED.)
502 */
503 if (tty->stopped)
504 start_tty(tty);
505 else
506 stop_tty(tty);
507}
508
509static void fn_num(struct vc_data *vc)
510{
511 if (vc_kbd_mode(kbd, VC_APPLIC))
512 applkey(vc, 'P', 1);
513 else
514 fn_bare_num(vc);
515}
516
517/*
518 * Bind this to Shift-NumLock if you work in application keypad mode
519 * but want to be able to change the NumLock flag.
520 * Bind this to NumLock if you prefer that the NumLock key always
521 * changes the NumLock flag.
522 */
523static void fn_bare_num(struct vc_data *vc)
524{
525 if (!rep)
526 chg_vc_kbd_led(kbd, VC_NUMLOCK);
527}
528
529static void fn_lastcons(struct vc_data *vc)
530{
531 /* switch to the last used console, ChN */
532 set_console(last_console);
533}
534
535static void fn_dec_console(struct vc_data *vc)
536{
537 int i, cur = fg_console;
538
539 /* Currently switching? Queue this next switch relative to that. */
540 if (want_console != -1)
541 cur = want_console;
542
543 for (i = cur - 1; i != cur; i--) {
544 if (i == -1)
545 i = MAX_NR_CONSOLES - 1;
546 if (vc_cons_allocated(i))
547 break;
548 }
549 set_console(i);
550}
551
552static void fn_inc_console(struct vc_data *vc)
553{
554 int i, cur = fg_console;
555
556 /* Currently switching? Queue this next switch relative to that. */
557 if (want_console != -1)
558 cur = want_console;
559
560 for (i = cur+1; i != cur; i++) {
561 if (i == MAX_NR_CONSOLES)
562 i = 0;
563 if (vc_cons_allocated(i))
564 break;
565 }
566 set_console(i);
567}
568
569static void fn_send_intr(struct vc_data *vc)
570{
571 tty_insert_flip_char(&vc->port, 0, TTY_BREAK);
572 tty_schedule_flip(&vc->port);
573}
574
575static void fn_scroll_forw(struct vc_data *vc)
576{
577 scrollfront(vc, 0);
578}
579
580static void fn_scroll_back(struct vc_data *vc)
581{
582 scrollback(vc, 0);
583}
584
585static void fn_show_mem(struct vc_data *vc)
586{
587 show_mem(0);
588}
589
590static void fn_show_state(struct vc_data *vc)
591{
592 show_state();
593}
594
595static void fn_boot_it(struct vc_data *vc)
596{
597 ctrl_alt_del();
598}
599
600static void fn_compose(struct vc_data *vc)
601{
602 dead_key_next = true;
603}
604
605static void fn_spawn_con(struct vc_data *vc)
606{
607 spin_lock(&vt_spawn_con.lock);
608 if (vt_spawn_con.pid)
609 if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) {
610 put_pid(vt_spawn_con.pid);
611 vt_spawn_con.pid = NULL;
612 }
613 spin_unlock(&vt_spawn_con.lock);
614}
615
616static void fn_SAK(struct vc_data *vc)
617{
618 struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work;
619 schedule_work(SAK_work);
620}
621
622static void fn_null(struct vc_data *vc)
623{
624 do_compute_shiftstate();
625}
626
627/*
628 * Special key handlers
629 */
630static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag)
631{
632}
633
634static void k_spec(struct vc_data *vc, unsigned char value, char up_flag)
635{
636 if (up_flag)
637 return;
638 if (value >= ARRAY_SIZE(fn_handler))
639 return;
640 if ((kbd->kbdmode == VC_RAW ||
641 kbd->kbdmode == VC_MEDIUMRAW ||
642 kbd->kbdmode == VC_OFF) &&
643 value != KVAL(K_SAK))
644 return; /* SAK is allowed even in raw mode */
645 fn_handler[value](vc);
646}
647
648static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag)
649{
650 pr_err("k_lowercase was called - impossible\n");
651}
652
653static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag)
654{
655 if (up_flag)
656 return; /* no action, if this is a key release */
657
658 if (diacr)
659 value = handle_diacr(vc, value);
660
661 if (dead_key_next) {
662 dead_key_next = false;
663 diacr = value;
664 return;
665 }
666 if (kbd->kbdmode == VC_UNICODE)
667 to_utf8(vc, value);
668 else {
669 int c = conv_uni_to_8bit(value);
670 if (c != -1)
671 put_queue(vc, c);
672 }
673}
674
675/*
676 * Handle dead key. Note that we now may have several
677 * dead keys modifying the same character. Very useful
678 * for Vietnamese.
679 */
680static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag)
681{
682 if (up_flag)
683 return;
684
685 diacr = (diacr ? handle_diacr(vc, value) : value);
686}
687
688static void k_self(struct vc_data *vc, unsigned char value, char up_flag)
689{
690 k_unicode(vc, conv_8bit_to_uni(value), up_flag);
691}
692
693static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag)
694{
695 k_deadunicode(vc, value, up_flag);
696}
697
698/*
699 * Obsolete - for backwards compatibility only
700 */
701static void k_dead(struct vc_data *vc, unsigned char value, char up_flag)
702{
703 static const unsigned char ret_diacr[NR_DEAD] = {'`', '\'', '^', '~', '"', ',' };
704
705 k_deadunicode(vc, ret_diacr[value], up_flag);
706}
707
708static void k_cons(struct vc_data *vc, unsigned char value, char up_flag)
709{
710 if (up_flag)
711 return;
712
713 set_console(value);
714}
715
716static void k_fn(struct vc_data *vc, unsigned char value, char up_flag)
717{
718 if (up_flag)
719 return;
720
721 if ((unsigned)value < ARRAY_SIZE(func_table)) {
722 if (func_table[value])
723 puts_queue(vc, func_table[value]);
724 } else
725 pr_err("k_fn called with value=%d\n", value);
726}
727
728static void k_cur(struct vc_data *vc, unsigned char value, char up_flag)
729{
730 static const char cur_chars[] = "BDCA";
731
732 if (up_flag)
733 return;
734
735 applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE));
736}
737
738static void k_pad(struct vc_data *vc, unsigned char value, char up_flag)
739{
740 static const char pad_chars[] = "0123456789+-*/\015,.?()#";
741 static const char app_map[] = "pqrstuvwxylSRQMnnmPQS";
742
743 if (up_flag)
744 return; /* no action, if this is a key release */
745
746 /* kludge... shift forces cursor/number keys */
747 if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) {
748 applkey(vc, app_map[value], 1);
749 return;
750 }
751
752 if (!vc_kbd_led(kbd, VC_NUMLOCK)) {
753
754 switch (value) {
755 case KVAL(K_PCOMMA):
756 case KVAL(K_PDOT):
757 k_fn(vc, KVAL(K_REMOVE), 0);
758 return;
759 case KVAL(K_P0):
760 k_fn(vc, KVAL(K_INSERT), 0);
761 return;
762 case KVAL(K_P1):
763 k_fn(vc, KVAL(K_SELECT), 0);
764 return;
765 case KVAL(K_P2):
766 k_cur(vc, KVAL(K_DOWN), 0);
767 return;
768 case KVAL(K_P3):
769 k_fn(vc, KVAL(K_PGDN), 0);
770 return;
771 case KVAL(K_P4):
772 k_cur(vc, KVAL(K_LEFT), 0);
773 return;
774 case KVAL(K_P6):
775 k_cur(vc, KVAL(K_RIGHT), 0);
776 return;
777 case KVAL(K_P7):
778 k_fn(vc, KVAL(K_FIND), 0);
779 return;
780 case KVAL(K_P8):
781 k_cur(vc, KVAL(K_UP), 0);
782 return;
783 case KVAL(K_P9):
784 k_fn(vc, KVAL(K_PGUP), 0);
785 return;
786 case KVAL(K_P5):
787 applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC));
788 return;
789 }
790 }
791
792 put_queue(vc, pad_chars[value]);
793 if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF))
794 put_queue(vc, 10);
795}
796
797static void k_shift(struct vc_data *vc, unsigned char value, char up_flag)
798{
799 int old_state = shift_state;
800
801 if (rep)
802 return;
803 /*
804 * Mimic typewriter:
805 * a CapsShift key acts like Shift but undoes CapsLock
806 */
807 if (value == KVAL(K_CAPSSHIFT)) {
808 value = KVAL(K_SHIFT);
809 if (!up_flag)
810 clr_vc_kbd_led(kbd, VC_CAPSLOCK);
811 }
812
813 if (up_flag) {
814 /*
815 * handle the case that two shift or control
816 * keys are depressed simultaneously
817 */
818 if (shift_down[value])
819 shift_down[value]--;
820 } else
821 shift_down[value]++;
822
823 if (shift_down[value])
824 shift_state |= (1 << value);
825 else
826 shift_state &= ~(1 << value);
827
828 /* kludge */
829 if (up_flag && shift_state != old_state && npadch != -1) {
830 if (kbd->kbdmode == VC_UNICODE)
831 to_utf8(vc, npadch);
832 else
833 put_queue(vc, npadch & 0xff);
834 npadch = -1;
835 }
836}
837
838static void k_meta(struct vc_data *vc, unsigned char value, char up_flag)
839{
840 if (up_flag)
841 return;
842
843 if (vc_kbd_mode(kbd, VC_META)) {
844 put_queue(vc, '\033');
845 put_queue(vc, value);
846 } else
847 put_queue(vc, value | 0x80);
848}
849
850static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag)
851{
852 int base;
853
854 if (up_flag)
855 return;
856
857 if (value < 10) {
858 /* decimal input of code, while Alt depressed */
859 base = 10;
860 } else {
861 /* hexadecimal input of code, while AltGr depressed */
862 value -= 10;
863 base = 16;
864 }
865
866 if (npadch == -1)
867 npadch = value;
868 else
869 npadch = npadch * base + value;
870}
871
872static void k_lock(struct vc_data *vc, unsigned char value, char up_flag)
873{
874 if (up_flag || rep)
875 return;
876
877 chg_vc_kbd_lock(kbd, value);
878}
879
880static void k_slock(struct vc_data *vc, unsigned char value, char up_flag)
881{
882 k_shift(vc, value, up_flag);
883 if (up_flag || rep)
884 return;
885
886 chg_vc_kbd_slock(kbd, value);
887 /* try to make Alt, oops, AltGr and such work */
888 if (!key_maps[kbd->lockstate ^ kbd->slockstate]) {
889 kbd->slockstate = 0;
890 chg_vc_kbd_slock(kbd, value);
891 }
892}
893
894/* by default, 300ms interval for combination release */
895static unsigned brl_timeout = 300;
896MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)");
897module_param(brl_timeout, uint, 0644);
898
899static unsigned brl_nbchords = 1;
900MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)");
901module_param(brl_nbchords, uint, 0644);
902
903static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag)
904{
905 static unsigned long chords;
906 static unsigned committed;
907
908 if (!brl_nbchords)
909 k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag);
910 else {
911 committed |= pattern;
912 chords++;
913 if (chords == brl_nbchords) {
914 k_unicode(vc, BRL_UC_ROW | committed, up_flag);
915 chords = 0;
916 committed = 0;
917 }
918 }
919}
920
921static void k_brl(struct vc_data *vc, unsigned char value, char up_flag)
922{
923 static unsigned pressed, committing;
924 static unsigned long releasestart;
925
926 if (kbd->kbdmode != VC_UNICODE) {
927 if (!up_flag)
928 pr_warn("keyboard mode must be unicode for braille patterns\n");
929 return;
930 }
931
932 if (!value) {
933 k_unicode(vc, BRL_UC_ROW, up_flag);
934 return;
935 }
936
937 if (value > 8)
938 return;
939
940 if (!up_flag) {
941 pressed |= 1 << (value - 1);
942 if (!brl_timeout)
943 committing = pressed;
944 } else if (brl_timeout) {
945 if (!committing ||
946 time_after(jiffies,
947 releasestart + msecs_to_jiffies(brl_timeout))) {
948 committing = pressed;
949 releasestart = jiffies;
950 }
951 pressed &= ~(1 << (value - 1));
952 if (!pressed && committing) {
953 k_brlcommit(vc, committing, 0);
954 committing = 0;
955 }
956 } else {
957 if (committing) {
958 k_brlcommit(vc, committing, 0);
959 committing = 0;
960 }
961 pressed &= ~(1 << (value - 1));
962 }
963}
964
965#if IS_ENABLED(CONFIG_INPUT_LEDS) && IS_ENABLED(CONFIG_LEDS_TRIGGERS)
966
967struct kbd_led_trigger {
968 struct led_trigger trigger;
969 unsigned int mask;
970};
971
972static void kbd_led_trigger_activate(struct led_classdev *cdev)
973{
974 struct kbd_led_trigger *trigger =
975 container_of(cdev->trigger, struct kbd_led_trigger, trigger);
976
977 tasklet_disable(&keyboard_tasklet);
978 if (ledstate != -1U)
979 led_trigger_event(&trigger->trigger,
980 ledstate & trigger->mask ?
981 LED_FULL : LED_OFF);
982 tasklet_enable(&keyboard_tasklet);
983}
984
985#define KBD_LED_TRIGGER(_led_bit, _name) { \
986 .trigger = { \
987 .name = _name, \
988 .activate = kbd_led_trigger_activate, \
989 }, \
990 .mask = BIT(_led_bit), \
991 }
992
993#define KBD_LOCKSTATE_TRIGGER(_led_bit, _name) \
994 KBD_LED_TRIGGER((_led_bit) + 8, _name)
995
996static struct kbd_led_trigger kbd_led_triggers[] = {
997 KBD_LED_TRIGGER(VC_SCROLLOCK, "kbd-scrollock"),
998 KBD_LED_TRIGGER(VC_NUMLOCK, "kbd-numlock"),
999 KBD_LED_TRIGGER(VC_CAPSLOCK, "kbd-capslock"),
1000 KBD_LED_TRIGGER(VC_KANALOCK, "kbd-kanalock"),
1001
1002 KBD_LOCKSTATE_TRIGGER(VC_SHIFTLOCK, "kbd-shiftlock"),
1003 KBD_LOCKSTATE_TRIGGER(VC_ALTGRLOCK, "kbd-altgrlock"),
1004 KBD_LOCKSTATE_TRIGGER(VC_CTRLLOCK, "kbd-ctrllock"),
1005 KBD_LOCKSTATE_TRIGGER(VC_ALTLOCK, "kbd-altlock"),
1006 KBD_LOCKSTATE_TRIGGER(VC_SHIFTLLOCK, "kbd-shiftllock"),
1007 KBD_LOCKSTATE_TRIGGER(VC_SHIFTRLOCK, "kbd-shiftrlock"),
1008 KBD_LOCKSTATE_TRIGGER(VC_CTRLLLOCK, "kbd-ctrlllock"),
1009 KBD_LOCKSTATE_TRIGGER(VC_CTRLRLOCK, "kbd-ctrlrlock"),
1010};
1011
1012static void kbd_propagate_led_state(unsigned int old_state,
1013 unsigned int new_state)
1014{
1015 struct kbd_led_trigger *trigger;
1016 unsigned int changed = old_state ^ new_state;
1017 int i;
1018
1019 for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1020 trigger = &kbd_led_triggers[i];
1021
1022 if (changed & trigger->mask)
1023 led_trigger_event(&trigger->trigger,
1024 new_state & trigger->mask ?
1025 LED_FULL : LED_OFF);
1026 }
1027}
1028
1029static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1030{
1031 unsigned int led_state = *(unsigned int *)data;
1032
1033 if (test_bit(EV_LED, handle->dev->evbit))
1034 kbd_propagate_led_state(~led_state, led_state);
1035
1036 return 0;
1037}
1038
1039static void kbd_init_leds(void)
1040{
1041 int error;
1042 int i;
1043
1044 for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1045 error = led_trigger_register(&kbd_led_triggers[i].trigger);
1046 if (error)
1047 pr_err("error %d while registering trigger %s\n",
1048 error, kbd_led_triggers[i].trigger.name);
1049 }
1050}
1051
1052#else
1053
1054static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1055{
1056 unsigned int leds = *(unsigned int *)data;
1057
1058 if (test_bit(EV_LED, handle->dev->evbit)) {
1059 input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & 0x01));
1060 input_inject_event(handle, EV_LED, LED_NUML, !!(leds & 0x02));
1061 input_inject_event(handle, EV_LED, LED_CAPSL, !!(leds & 0x04));
1062 input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
1063 }
1064
1065 return 0;
1066}
1067
1068static void kbd_propagate_led_state(unsigned int old_state,
1069 unsigned int new_state)
1070{
1071 input_handler_for_each_handle(&kbd_handler, &new_state,
1072 kbd_update_leds_helper);
1073}
1074
1075static void kbd_init_leds(void)
1076{
1077}
1078
1079#endif
1080
1081/*
1082 * The leds display either (i) the status of NumLock, CapsLock, ScrollLock,
1083 * or (ii) whatever pattern of lights people want to show using KDSETLED,
1084 * or (iii) specified bits of specified words in kernel memory.
1085 */
1086static unsigned char getledstate(void)
1087{
1088 return ledstate & 0xff;
1089}
1090
1091void setledstate(struct kbd_struct *kb, unsigned int led)
1092{
1093 unsigned long flags;
1094 spin_lock_irqsave(&led_lock, flags);
1095 if (!(led & ~7)) {
1096 ledioctl = led;
1097 kb->ledmode = LED_SHOW_IOCTL;
1098 } else
1099 kb->ledmode = LED_SHOW_FLAGS;
1100
1101 set_leds();
1102 spin_unlock_irqrestore(&led_lock, flags);
1103}
1104
1105static inline unsigned char getleds(void)
1106{
1107 struct kbd_struct *kb = kbd_table + fg_console;
1108
1109 if (kb->ledmode == LED_SHOW_IOCTL)
1110 return ledioctl;
1111
1112 return kb->ledflagstate;
1113}
1114
1115/**
1116 * vt_get_leds - helper for braille console
1117 * @console: console to read
1118 * @flag: flag we want to check
1119 *
1120 * Check the status of a keyboard led flag and report it back
1121 */
1122int vt_get_leds(int console, int flag)
1123{
1124 struct kbd_struct *kb = kbd_table + console;
1125 int ret;
1126 unsigned long flags;
1127
1128 spin_lock_irqsave(&led_lock, flags);
1129 ret = vc_kbd_led(kb, flag);
1130 spin_unlock_irqrestore(&led_lock, flags);
1131
1132 return ret;
1133}
1134EXPORT_SYMBOL_GPL(vt_get_leds);
1135
1136/**
1137 * vt_set_led_state - set LED state of a console
1138 * @console: console to set
1139 * @leds: LED bits
1140 *
1141 * Set the LEDs on a console. This is a wrapper for the VT layer
1142 * so that we can keep kbd knowledge internal
1143 */
1144void vt_set_led_state(int console, int leds)
1145{
1146 struct kbd_struct *kb = kbd_table + console;
1147 setledstate(kb, leds);
1148}
1149
1150/**
1151 * vt_kbd_con_start - Keyboard side of console start
1152 * @console: console
1153 *
1154 * Handle console start. This is a wrapper for the VT layer
1155 * so that we can keep kbd knowledge internal
1156 *
1157 * FIXME: We eventually need to hold the kbd lock here to protect
1158 * the LED updating. We can't do it yet because fn_hold calls stop_tty
1159 * and start_tty under the kbd_event_lock, while normal tty paths
1160 * don't hold the lock. We probably need to split out an LED lock
1161 * but not during an -rc release!
1162 */
1163void vt_kbd_con_start(int console)
1164{
1165 struct kbd_struct *kb = kbd_table + console;
1166 unsigned long flags;
1167 spin_lock_irqsave(&led_lock, flags);
1168 clr_vc_kbd_led(kb, VC_SCROLLOCK);
1169 set_leds();
1170 spin_unlock_irqrestore(&led_lock, flags);
1171}
1172
1173/**
1174 * vt_kbd_con_stop - Keyboard side of console stop
1175 * @console: console
1176 *
1177 * Handle console stop. This is a wrapper for the VT layer
1178 * so that we can keep kbd knowledge internal
1179 */
1180void vt_kbd_con_stop(int console)
1181{
1182 struct kbd_struct *kb = kbd_table + console;
1183 unsigned long flags;
1184 spin_lock_irqsave(&led_lock, flags);
1185 set_vc_kbd_led(kb, VC_SCROLLOCK);
1186 set_leds();
1187 spin_unlock_irqrestore(&led_lock, flags);
1188}
1189
1190/*
1191 * This is the tasklet that updates LED state of LEDs using standard
1192 * keyboard triggers. The reason we use tasklet is that we need to
1193 * handle the scenario when keyboard handler is not registered yet
1194 * but we already getting updates from the VT to update led state.
1195 */
1196static void kbd_bh(unsigned long dummy)
1197{
1198 unsigned int leds;
1199 unsigned long flags;
1200
1201 spin_lock_irqsave(&led_lock, flags);
1202 leds = getleds();
1203 leds |= (unsigned int)kbd->lockstate << 8;
1204 spin_unlock_irqrestore(&led_lock, flags);
1205
1206 if (leds != ledstate) {
1207 kbd_propagate_led_state(ledstate, leds);
1208 ledstate = leds;
1209 }
1210}
1211
1212DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh, 0);
1213
1214#if defined(CONFIG_X86) || defined(CONFIG_IA64) || defined(CONFIG_ALPHA) ||\
1215 defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\
1216 defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\
1217 (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC)) ||\
1218 defined(CONFIG_AVR32)
1219
1220#define HW_RAW(dev) (test_bit(EV_MSC, dev->evbit) && test_bit(MSC_RAW, dev->mscbit) &&\
1221 ((dev)->id.bustype == BUS_I8042) && ((dev)->id.vendor == 0x0001) && ((dev)->id.product == 0x0001))
1222
1223static const unsigned short x86_keycodes[256] =
1224 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
1225 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
1226 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
1227 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
1228 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
1229 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92,
1230 284,285,309, 0,312, 91,327,328,329,331,333,335,336,337,338,339,
1231 367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349,
1232 360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355,
1233 103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361,
1234 291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114,
1235 264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116,
1236 377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307,
1237 308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330,
1238 332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 };
1239
1240#ifdef CONFIG_SPARC
1241static int sparc_l1_a_state;
1242extern void sun_do_break(void);
1243#endif
1244
1245static int emulate_raw(struct vc_data *vc, unsigned int keycode,
1246 unsigned char up_flag)
1247{
1248 int code;
1249
1250 switch (keycode) {
1251
1252 case KEY_PAUSE:
1253 put_queue(vc, 0xe1);
1254 put_queue(vc, 0x1d | up_flag);
1255 put_queue(vc, 0x45 | up_flag);
1256 break;
1257
1258 case KEY_HANGEUL:
1259 if (!up_flag)
1260 put_queue(vc, 0xf2);
1261 break;
1262
1263 case KEY_HANJA:
1264 if (!up_flag)
1265 put_queue(vc, 0xf1);
1266 break;
1267
1268 case KEY_SYSRQ:
1269 /*
1270 * Real AT keyboards (that's what we're trying
1271 * to emulate here emit 0xe0 0x2a 0xe0 0x37 when
1272 * pressing PrtSc/SysRq alone, but simply 0x54
1273 * when pressing Alt+PrtSc/SysRq.
1274 */
1275 if (test_bit(KEY_LEFTALT, key_down) ||
1276 test_bit(KEY_RIGHTALT, key_down)) {
1277 put_queue(vc, 0x54 | up_flag);
1278 } else {
1279 put_queue(vc, 0xe0);
1280 put_queue(vc, 0x2a | up_flag);
1281 put_queue(vc, 0xe0);
1282 put_queue(vc, 0x37 | up_flag);
1283 }
1284 break;
1285
1286 default:
1287 if (keycode > 255)
1288 return -1;
1289
1290 code = x86_keycodes[keycode];
1291 if (!code)
1292 return -1;
1293
1294 if (code & 0x100)
1295 put_queue(vc, 0xe0);
1296 put_queue(vc, (code & 0x7f) | up_flag);
1297
1298 break;
1299 }
1300
1301 return 0;
1302}
1303
1304#else
1305
1306#define HW_RAW(dev) 0
1307
1308static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag)
1309{
1310 if (keycode > 127)
1311 return -1;
1312
1313 put_queue(vc, keycode | up_flag);
1314 return 0;
1315}
1316#endif
1317
1318static void kbd_rawcode(unsigned char data)
1319{
1320 struct vc_data *vc = vc_cons[fg_console].d;
1321
1322 kbd = kbd_table + vc->vc_num;
1323 if (kbd->kbdmode == VC_RAW)
1324 put_queue(vc, data);
1325}
1326
1327static void kbd_keycode(unsigned int keycode, int down, int hw_raw)
1328{
1329 struct vc_data *vc = vc_cons[fg_console].d;
1330 unsigned short keysym, *key_map;
1331 unsigned char type;
1332 bool raw_mode;
1333 struct tty_struct *tty;
1334 int shift_final;
1335 struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down };
1336 int rc;
1337
1338 tty = vc->port.tty;
1339
1340 if (tty && (!tty->driver_data)) {
1341 /* No driver data? Strange. Okay we fix it then. */
1342 tty->driver_data = vc;
1343 }
1344
1345 kbd = kbd_table + vc->vc_num;
1346
1347#ifdef CONFIG_SPARC
1348 if (keycode == KEY_STOP)
1349 sparc_l1_a_state = down;
1350#endif
1351
1352 rep = (down == 2);
1353
1354 raw_mode = (kbd->kbdmode == VC_RAW);
1355 if (raw_mode && !hw_raw)
1356 if (emulate_raw(vc, keycode, !down << 7))
1357 if (keycode < BTN_MISC && printk_ratelimit())
1358 pr_warn("can't emulate rawmode for keycode %d\n",
1359 keycode);
1360
1361#ifdef CONFIG_SPARC
1362 if (keycode == KEY_A && sparc_l1_a_state) {
1363 sparc_l1_a_state = false;
1364 sun_do_break();
1365 }
1366#endif
1367
1368 if (kbd->kbdmode == VC_MEDIUMRAW) {
1369 /*
1370 * This is extended medium raw mode, with keys above 127
1371 * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing
1372 * the 'up' flag if needed. 0 is reserved, so this shouldn't
1373 * interfere with anything else. The two bytes after 0 will
1374 * always have the up flag set not to interfere with older
1375 * applications. This allows for 16384 different keycodes,
1376 * which should be enough.
1377 */
1378 if (keycode < 128) {
1379 put_queue(vc, keycode | (!down << 7));
1380 } else {
1381 put_queue(vc, !down << 7);
1382 put_queue(vc, (keycode >> 7) | 0x80);
1383 put_queue(vc, keycode | 0x80);
1384 }
1385 raw_mode = true;
1386 }
1387
1388 if (down)
1389 set_bit(keycode, key_down);
1390 else
1391 clear_bit(keycode, key_down);
1392
1393 if (rep &&
1394 (!vc_kbd_mode(kbd, VC_REPEAT) ||
1395 (tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) {
1396 /*
1397 * Don't repeat a key if the input buffers are not empty and the
1398 * characters get aren't echoed locally. This makes key repeat
1399 * usable with slow applications and under heavy loads.
1400 */
1401 return;
1402 }
1403
1404 param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate;
1405 param.ledstate = kbd->ledflagstate;
1406 key_map = key_maps[shift_final];
1407
1408 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1409 KBD_KEYCODE, ¶m);
1410 if (rc == NOTIFY_STOP || !key_map) {
1411 atomic_notifier_call_chain(&keyboard_notifier_list,
1412 KBD_UNBOUND_KEYCODE, ¶m);
1413 do_compute_shiftstate();
1414 kbd->slockstate = 0;
1415 return;
1416 }
1417
1418 if (keycode < NR_KEYS)
1419 keysym = key_map[keycode];
1420 else if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8)
1421 keysym = U(K(KT_BRL, keycode - KEY_BRL_DOT1 + 1));
1422 else
1423 return;
1424
1425 type = KTYP(keysym);
1426
1427 if (type < 0xf0) {
1428 param.value = keysym;
1429 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1430 KBD_UNICODE, ¶m);
1431 if (rc != NOTIFY_STOP)
1432 if (down && !raw_mode)
1433 to_utf8(vc, keysym);
1434 return;
1435 }
1436
1437 type -= 0xf0;
1438
1439 if (type == KT_LETTER) {
1440 type = KT_LATIN;
1441 if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
1442 key_map = key_maps[shift_final ^ (1 << KG_SHIFT)];
1443 if (key_map)
1444 keysym = key_map[keycode];
1445 }
1446 }
1447
1448 param.value = keysym;
1449 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1450 KBD_KEYSYM, ¶m);
1451 if (rc == NOTIFY_STOP)
1452 return;
1453
1454 if ((raw_mode || kbd->kbdmode == VC_OFF) && type != KT_SPEC && type != KT_SHIFT)
1455 return;
1456
1457 (*k_handler[type])(vc, keysym & 0xff, !down);
1458
1459 param.ledstate = kbd->ledflagstate;
1460 atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, ¶m);
1461
1462 if (type != KT_SLOCK)
1463 kbd->slockstate = 0;
1464}
1465
1466static void kbd_event(struct input_handle *handle, unsigned int event_type,
1467 unsigned int event_code, int value)
1468{
1469 /* We are called with interrupts disabled, just take the lock */
1470 spin_lock(&kbd_event_lock);
1471
1472 if (event_type == EV_MSC && event_code == MSC_RAW && HW_RAW(handle->dev))
1473 kbd_rawcode(value);
1474 if (event_type == EV_KEY)
1475 kbd_keycode(event_code, value, HW_RAW(handle->dev));
1476
1477 spin_unlock(&kbd_event_lock);
1478
1479 tasklet_schedule(&keyboard_tasklet);
1480 do_poke_blanked_console = 1;
1481 schedule_console_callback();
1482}
1483
1484static bool kbd_match(struct input_handler *handler, struct input_dev *dev)
1485{
1486 int i;
1487
1488 if (test_bit(EV_SND, dev->evbit))
1489 return true;
1490
1491 if (test_bit(EV_KEY, dev->evbit)) {
1492 for (i = KEY_RESERVED; i < BTN_MISC; i++)
1493 if (test_bit(i, dev->keybit))
1494 return true;
1495 for (i = KEY_BRL_DOT1; i <= KEY_BRL_DOT10; i++)
1496 if (test_bit(i, dev->keybit))
1497 return true;
1498 }
1499
1500 return false;
1501}
1502
1503/*
1504 * When a keyboard (or other input device) is found, the kbd_connect
1505 * function is called. The function then looks at the device, and if it
1506 * likes it, it can open it and get events from it. In this (kbd_connect)
1507 * function, we should decide which VT to bind that keyboard to initially.
1508 */
1509static int kbd_connect(struct input_handler *handler, struct input_dev *dev,
1510 const struct input_device_id *id)
1511{
1512 struct input_handle *handle;
1513 int error;
1514
1515 handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
1516 if (!handle)
1517 return -ENOMEM;
1518
1519 handle->dev = dev;
1520 handle->handler = handler;
1521 handle->name = "kbd";
1522
1523 error = input_register_handle(handle);
1524 if (error)
1525 goto err_free_handle;
1526
1527 error = input_open_device(handle);
1528 if (error)
1529 goto err_unregister_handle;
1530
1531 return 0;
1532
1533 err_unregister_handle:
1534 input_unregister_handle(handle);
1535 err_free_handle:
1536 kfree(handle);
1537 return error;
1538}
1539
1540static void kbd_disconnect(struct input_handle *handle)
1541{
1542 input_close_device(handle);
1543 input_unregister_handle(handle);
1544 kfree(handle);
1545}
1546
1547/*
1548 * Start keyboard handler on the new keyboard by refreshing LED state to
1549 * match the rest of the system.
1550 */
1551static void kbd_start(struct input_handle *handle)
1552{
1553 tasklet_disable(&keyboard_tasklet);
1554
1555 if (ledstate != -1U)
1556 kbd_update_leds_helper(handle, &ledstate);
1557
1558 tasklet_enable(&keyboard_tasklet);
1559}
1560
1561static const struct input_device_id kbd_ids[] = {
1562 {
1563 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1564 .evbit = { BIT_MASK(EV_KEY) },
1565 },
1566
1567 {
1568 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1569 .evbit = { BIT_MASK(EV_SND) },
1570 },
1571
1572 { }, /* Terminating entry */
1573};
1574
1575MODULE_DEVICE_TABLE(input, kbd_ids);
1576
1577static struct input_handler kbd_handler = {
1578 .event = kbd_event,
1579 .match = kbd_match,
1580 .connect = kbd_connect,
1581 .disconnect = kbd_disconnect,
1582 .start = kbd_start,
1583 .name = "kbd",
1584 .id_table = kbd_ids,
1585};
1586
1587int __init kbd_init(void)
1588{
1589 int i;
1590 int error;
1591
1592 for (i = 0; i < MAX_NR_CONSOLES; i++) {
1593 kbd_table[i].ledflagstate = kbd_defleds();
1594 kbd_table[i].default_ledflagstate = kbd_defleds();
1595 kbd_table[i].ledmode = LED_SHOW_FLAGS;
1596 kbd_table[i].lockstate = KBD_DEFLOCK;
1597 kbd_table[i].slockstate = 0;
1598 kbd_table[i].modeflags = KBD_DEFMODE;
1599 kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
1600 }
1601
1602 kbd_init_leds();
1603
1604 error = input_register_handler(&kbd_handler);
1605 if (error)
1606 return error;
1607
1608 tasklet_enable(&keyboard_tasklet);
1609 tasklet_schedule(&keyboard_tasklet);
1610
1611 return 0;
1612}
1613
1614/* Ioctl support code */
1615
1616/**
1617 * vt_do_diacrit - diacritical table updates
1618 * @cmd: ioctl request
1619 * @udp: pointer to user data for ioctl
1620 * @perm: permissions check computed by caller
1621 *
1622 * Update the diacritical tables atomically and safely. Lock them
1623 * against simultaneous keypresses
1624 */
1625int vt_do_diacrit(unsigned int cmd, void __user *udp, int perm)
1626{
1627 unsigned long flags;
1628 int asize;
1629 int ret = 0;
1630
1631 switch (cmd) {
1632 case KDGKBDIACR:
1633 {
1634 struct kbdiacrs __user *a = udp;
1635 struct kbdiacr *dia;
1636 int i;
1637
1638 dia = kmalloc(MAX_DIACR * sizeof(struct kbdiacr),
1639 GFP_KERNEL);
1640 if (!dia)
1641 return -ENOMEM;
1642
1643 /* Lock the diacriticals table, make a copy and then
1644 copy it after we unlock */
1645 spin_lock_irqsave(&kbd_event_lock, flags);
1646
1647 asize = accent_table_size;
1648 for (i = 0; i < asize; i++) {
1649 dia[i].diacr = conv_uni_to_8bit(
1650 accent_table[i].diacr);
1651 dia[i].base = conv_uni_to_8bit(
1652 accent_table[i].base);
1653 dia[i].result = conv_uni_to_8bit(
1654 accent_table[i].result);
1655 }
1656 spin_unlock_irqrestore(&kbd_event_lock, flags);
1657
1658 if (put_user(asize, &a->kb_cnt))
1659 ret = -EFAULT;
1660 else if (copy_to_user(a->kbdiacr, dia,
1661 asize * sizeof(struct kbdiacr)))
1662 ret = -EFAULT;
1663 kfree(dia);
1664 return ret;
1665 }
1666 case KDGKBDIACRUC:
1667 {
1668 struct kbdiacrsuc __user *a = udp;
1669 void *buf;
1670
1671 buf = kmalloc(MAX_DIACR * sizeof(struct kbdiacruc),
1672 GFP_KERNEL);
1673 if (buf == NULL)
1674 return -ENOMEM;
1675
1676 /* Lock the diacriticals table, make a copy and then
1677 copy it after we unlock */
1678 spin_lock_irqsave(&kbd_event_lock, flags);
1679
1680 asize = accent_table_size;
1681 memcpy(buf, accent_table, asize * sizeof(struct kbdiacruc));
1682
1683 spin_unlock_irqrestore(&kbd_event_lock, flags);
1684
1685 if (put_user(asize, &a->kb_cnt))
1686 ret = -EFAULT;
1687 else if (copy_to_user(a->kbdiacruc, buf,
1688 asize*sizeof(struct kbdiacruc)))
1689 ret = -EFAULT;
1690 kfree(buf);
1691 return ret;
1692 }
1693
1694 case KDSKBDIACR:
1695 {
1696 struct kbdiacrs __user *a = udp;
1697 struct kbdiacr *dia = NULL;
1698 unsigned int ct;
1699 int i;
1700
1701 if (!perm)
1702 return -EPERM;
1703 if (get_user(ct, &a->kb_cnt))
1704 return -EFAULT;
1705 if (ct >= MAX_DIACR)
1706 return -EINVAL;
1707
1708 if (ct) {
1709
1710 dia = memdup_user(a->kbdiacr,
1711 sizeof(struct kbdiacr) * ct);
1712 if (IS_ERR(dia))
1713 return PTR_ERR(dia);
1714
1715 }
1716
1717 spin_lock_irqsave(&kbd_event_lock, flags);
1718 accent_table_size = ct;
1719 for (i = 0; i < ct; i++) {
1720 accent_table[i].diacr =
1721 conv_8bit_to_uni(dia[i].diacr);
1722 accent_table[i].base =
1723 conv_8bit_to_uni(dia[i].base);
1724 accent_table[i].result =
1725 conv_8bit_to_uni(dia[i].result);
1726 }
1727 spin_unlock_irqrestore(&kbd_event_lock, flags);
1728 kfree(dia);
1729 return 0;
1730 }
1731
1732 case KDSKBDIACRUC:
1733 {
1734 struct kbdiacrsuc __user *a = udp;
1735 unsigned int ct;
1736 void *buf = NULL;
1737
1738 if (!perm)
1739 return -EPERM;
1740
1741 if (get_user(ct, &a->kb_cnt))
1742 return -EFAULT;
1743
1744 if (ct >= MAX_DIACR)
1745 return -EINVAL;
1746
1747 if (ct) {
1748 buf = kmalloc(ct * sizeof(struct kbdiacruc),
1749 GFP_KERNEL);
1750 if (buf == NULL)
1751 return -ENOMEM;
1752
1753 if (copy_from_user(buf, a->kbdiacruc,
1754 ct * sizeof(struct kbdiacruc))) {
1755 kfree(buf);
1756 return -EFAULT;
1757 }
1758 }
1759 spin_lock_irqsave(&kbd_event_lock, flags);
1760 if (ct)
1761 memcpy(accent_table, buf,
1762 ct * sizeof(struct kbdiacruc));
1763 accent_table_size = ct;
1764 spin_unlock_irqrestore(&kbd_event_lock, flags);
1765 kfree(buf);
1766 return 0;
1767 }
1768 }
1769 return ret;
1770}
1771
1772/**
1773 * vt_do_kdskbmode - set keyboard mode ioctl
1774 * @console: the console to use
1775 * @arg: the requested mode
1776 *
1777 * Update the keyboard mode bits while holding the correct locks.
1778 * Return 0 for success or an error code.
1779 */
1780int vt_do_kdskbmode(int console, unsigned int arg)
1781{
1782 struct kbd_struct *kb = kbd_table + console;
1783 int ret = 0;
1784 unsigned long flags;
1785
1786 spin_lock_irqsave(&kbd_event_lock, flags);
1787 switch(arg) {
1788 case K_RAW:
1789 kb->kbdmode = VC_RAW;
1790 break;
1791 case K_MEDIUMRAW:
1792 kb->kbdmode = VC_MEDIUMRAW;
1793 break;
1794 case K_XLATE:
1795 kb->kbdmode = VC_XLATE;
1796 do_compute_shiftstate();
1797 break;
1798 case K_UNICODE:
1799 kb->kbdmode = VC_UNICODE;
1800 do_compute_shiftstate();
1801 break;
1802 case K_OFF:
1803 kb->kbdmode = VC_OFF;
1804 break;
1805 default:
1806 ret = -EINVAL;
1807 }
1808 spin_unlock_irqrestore(&kbd_event_lock, flags);
1809 return ret;
1810}
1811
1812/**
1813 * vt_do_kdskbmeta - set keyboard meta state
1814 * @console: the console to use
1815 * @arg: the requested meta state
1816 *
1817 * Update the keyboard meta bits while holding the correct locks.
1818 * Return 0 for success or an error code.
1819 */
1820int vt_do_kdskbmeta(int console, unsigned int arg)
1821{
1822 struct kbd_struct *kb = kbd_table + console;
1823 int ret = 0;
1824 unsigned long flags;
1825
1826 spin_lock_irqsave(&kbd_event_lock, flags);
1827 switch(arg) {
1828 case K_METABIT:
1829 clr_vc_kbd_mode(kb, VC_META);
1830 break;
1831 case K_ESCPREFIX:
1832 set_vc_kbd_mode(kb, VC_META);
1833 break;
1834 default:
1835 ret = -EINVAL;
1836 }
1837 spin_unlock_irqrestore(&kbd_event_lock, flags);
1838 return ret;
1839}
1840
1841int vt_do_kbkeycode_ioctl(int cmd, struct kbkeycode __user *user_kbkc,
1842 int perm)
1843{
1844 struct kbkeycode tmp;
1845 int kc = 0;
1846
1847 if (copy_from_user(&tmp, user_kbkc, sizeof(struct kbkeycode)))
1848 return -EFAULT;
1849 switch (cmd) {
1850 case KDGETKEYCODE:
1851 kc = getkeycode(tmp.scancode);
1852 if (kc >= 0)
1853 kc = put_user(kc, &user_kbkc->keycode);
1854 break;
1855 case KDSETKEYCODE:
1856 if (!perm)
1857 return -EPERM;
1858 kc = setkeycode(tmp.scancode, tmp.keycode);
1859 break;
1860 }
1861 return kc;
1862}
1863
1864#define i (tmp.kb_index)
1865#define s (tmp.kb_table)
1866#define v (tmp.kb_value)
1867
1868int vt_do_kdsk_ioctl(int cmd, struct kbentry __user *user_kbe, int perm,
1869 int console)
1870{
1871 struct kbd_struct *kb = kbd_table + console;
1872 struct kbentry tmp;
1873 ushort *key_map, *new_map, val, ov;
1874 unsigned long flags;
1875
1876 if (copy_from_user(&tmp, user_kbe, sizeof(struct kbentry)))
1877 return -EFAULT;
1878
1879 if (!capable(CAP_SYS_TTY_CONFIG))
1880 perm = 0;
1881
1882 switch (cmd) {
1883 case KDGKBENT:
1884 /* Ensure another thread doesn't free it under us */
1885 spin_lock_irqsave(&kbd_event_lock, flags);
1886 key_map = key_maps[s];
1887 if (key_map) {
1888 val = U(key_map[i]);
1889 if (kb->kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES)
1890 val = K_HOLE;
1891 } else
1892 val = (i ? K_HOLE : K_NOSUCHMAP);
1893 spin_unlock_irqrestore(&kbd_event_lock, flags);
1894 return put_user(val, &user_kbe->kb_value);
1895 case KDSKBENT:
1896 if (!perm)
1897 return -EPERM;
1898 if (!i && v == K_NOSUCHMAP) {
1899 spin_lock_irqsave(&kbd_event_lock, flags);
1900 /* deallocate map */
1901 key_map = key_maps[s];
1902 if (s && key_map) {
1903 key_maps[s] = NULL;
1904 if (key_map[0] == U(K_ALLOCATED)) {
1905 kfree(key_map);
1906 keymap_count--;
1907 }
1908 }
1909 spin_unlock_irqrestore(&kbd_event_lock, flags);
1910 break;
1911 }
1912
1913 if (KTYP(v) < NR_TYPES) {
1914 if (KVAL(v) > max_vals[KTYP(v)])
1915 return -EINVAL;
1916 } else
1917 if (kb->kbdmode != VC_UNICODE)
1918 return -EINVAL;
1919
1920 /* ++Geert: non-PC keyboards may generate keycode zero */
1921#if !defined(__mc68000__) && !defined(__powerpc__)
1922 /* assignment to entry 0 only tests validity of args */
1923 if (!i)
1924 break;
1925#endif
1926
1927 new_map = kmalloc(sizeof(plain_map), GFP_KERNEL);
1928 if (!new_map)
1929 return -ENOMEM;
1930 spin_lock_irqsave(&kbd_event_lock, flags);
1931 key_map = key_maps[s];
1932 if (key_map == NULL) {
1933 int j;
1934
1935 if (keymap_count >= MAX_NR_OF_USER_KEYMAPS &&
1936 !capable(CAP_SYS_RESOURCE)) {
1937 spin_unlock_irqrestore(&kbd_event_lock, flags);
1938 kfree(new_map);
1939 return -EPERM;
1940 }
1941 key_maps[s] = new_map;
1942 key_map = new_map;
1943 key_map[0] = U(K_ALLOCATED);
1944 for (j = 1; j < NR_KEYS; j++)
1945 key_map[j] = U(K_HOLE);
1946 keymap_count++;
1947 } else
1948 kfree(new_map);
1949
1950 ov = U(key_map[i]);
1951 if (v == ov)
1952 goto out;
1953 /*
1954 * Attention Key.
1955 */
1956 if (((ov == K_SAK) || (v == K_SAK)) && !capable(CAP_SYS_ADMIN)) {
1957 spin_unlock_irqrestore(&kbd_event_lock, flags);
1958 return -EPERM;
1959 }
1960 key_map[i] = U(v);
1961 if (!s && (KTYP(ov) == KT_SHIFT || KTYP(v) == KT_SHIFT))
1962 do_compute_shiftstate();
1963out:
1964 spin_unlock_irqrestore(&kbd_event_lock, flags);
1965 break;
1966 }
1967 return 0;
1968}
1969#undef i
1970#undef s
1971#undef v
1972
1973/* FIXME: This one needs untangling and locking */
1974int vt_do_kdgkb_ioctl(int cmd, struct kbsentry __user *user_kdgkb, int perm)
1975{
1976 struct kbsentry *kbs;
1977 char *p;
1978 u_char *q;
1979 u_char __user *up;
1980 int sz;
1981 int delta;
1982 char *first_free, *fj, *fnw;
1983 int i, j, k;
1984 int ret;
1985
1986 if (!capable(CAP_SYS_TTY_CONFIG))
1987 perm = 0;
1988
1989 kbs = kmalloc(sizeof(*kbs), GFP_KERNEL);
1990 if (!kbs) {
1991 ret = -ENOMEM;
1992 goto reterr;
1993 }
1994
1995 /* we mostly copy too much here (512bytes), but who cares ;) */
1996 if (copy_from_user(kbs, user_kdgkb, sizeof(struct kbsentry))) {
1997 ret = -EFAULT;
1998 goto reterr;
1999 }
2000 kbs->kb_string[sizeof(kbs->kb_string)-1] = '\0';
2001 i = kbs->kb_func;
2002
2003 switch (cmd) {
2004 case KDGKBSENT:
2005 sz = sizeof(kbs->kb_string) - 1; /* sz should have been
2006 a struct member */
2007 up = user_kdgkb->kb_string;
2008 p = func_table[i];
2009 if(p)
2010 for ( ; *p && sz; p++, sz--)
2011 if (put_user(*p, up++)) {
2012 ret = -EFAULT;
2013 goto reterr;
2014 }
2015 if (put_user('\0', up)) {
2016 ret = -EFAULT;
2017 goto reterr;
2018 }
2019 kfree(kbs);
2020 return ((p && *p) ? -EOVERFLOW : 0);
2021 case KDSKBSENT:
2022 if (!perm) {
2023 ret = -EPERM;
2024 goto reterr;
2025 }
2026
2027 q = func_table[i];
2028 first_free = funcbufptr + (funcbufsize - funcbufleft);
2029 for (j = i+1; j < MAX_NR_FUNC && !func_table[j]; j++)
2030 ;
2031 if (j < MAX_NR_FUNC)
2032 fj = func_table[j];
2033 else
2034 fj = first_free;
2035
2036 delta = (q ? -strlen(q) : 1) + strlen(kbs->kb_string);
2037 if (delta <= funcbufleft) { /* it fits in current buf */
2038 if (j < MAX_NR_FUNC) {
2039 memmove(fj + delta, fj, first_free - fj);
2040 for (k = j; k < MAX_NR_FUNC; k++)
2041 if (func_table[k])
2042 func_table[k] += delta;
2043 }
2044 if (!q)
2045 func_table[i] = fj;
2046 funcbufleft -= delta;
2047 } else { /* allocate a larger buffer */
2048 sz = 256;
2049 while (sz < funcbufsize - funcbufleft + delta)
2050 sz <<= 1;
2051 fnw = kmalloc(sz, GFP_KERNEL);
2052 if(!fnw) {
2053 ret = -ENOMEM;
2054 goto reterr;
2055 }
2056
2057 if (!q)
2058 func_table[i] = fj;
2059 if (fj > funcbufptr)
2060 memmove(fnw, funcbufptr, fj - funcbufptr);
2061 for (k = 0; k < j; k++)
2062 if (func_table[k])
2063 func_table[k] = fnw + (func_table[k] - funcbufptr);
2064
2065 if (first_free > fj) {
2066 memmove(fnw + (fj - funcbufptr) + delta, fj, first_free - fj);
2067 for (k = j; k < MAX_NR_FUNC; k++)
2068 if (func_table[k])
2069 func_table[k] = fnw + (func_table[k] - funcbufptr) + delta;
2070 }
2071 if (funcbufptr != func_buf)
2072 kfree(funcbufptr);
2073 funcbufptr = fnw;
2074 funcbufleft = funcbufleft - delta + sz - funcbufsize;
2075 funcbufsize = sz;
2076 }
2077 strcpy(func_table[i], kbs->kb_string);
2078 break;
2079 }
2080 ret = 0;
2081reterr:
2082 kfree(kbs);
2083 return ret;
2084}
2085
2086int vt_do_kdskled(int console, int cmd, unsigned long arg, int perm)
2087{
2088 struct kbd_struct *kb = kbd_table + console;
2089 unsigned long flags;
2090 unsigned char ucval;
2091
2092 switch(cmd) {
2093 /* the ioctls below read/set the flags usually shown in the leds */
2094 /* don't use them - they will go away without warning */
2095 case KDGKBLED:
2096 spin_lock_irqsave(&kbd_event_lock, flags);
2097 ucval = kb->ledflagstate | (kb->default_ledflagstate << 4);
2098 spin_unlock_irqrestore(&kbd_event_lock, flags);
2099 return put_user(ucval, (char __user *)arg);
2100
2101 case KDSKBLED:
2102 if (!perm)
2103 return -EPERM;
2104 if (arg & ~0x77)
2105 return -EINVAL;
2106 spin_lock_irqsave(&led_lock, flags);
2107 kb->ledflagstate = (arg & 7);
2108 kb->default_ledflagstate = ((arg >> 4) & 7);
2109 set_leds();
2110 spin_unlock_irqrestore(&led_lock, flags);
2111 return 0;
2112
2113 /* the ioctls below only set the lights, not the functions */
2114 /* for those, see KDGKBLED and KDSKBLED above */
2115 case KDGETLED:
2116 ucval = getledstate();
2117 return put_user(ucval, (char __user *)arg);
2118
2119 case KDSETLED:
2120 if (!perm)
2121 return -EPERM;
2122 setledstate(kb, arg);
2123 return 0;
2124 }
2125 return -ENOIOCTLCMD;
2126}
2127
2128int vt_do_kdgkbmode(int console)
2129{
2130 struct kbd_struct *kb = kbd_table + console;
2131 /* This is a spot read so needs no locking */
2132 switch (kb->kbdmode) {
2133 case VC_RAW:
2134 return K_RAW;
2135 case VC_MEDIUMRAW:
2136 return K_MEDIUMRAW;
2137 case VC_UNICODE:
2138 return K_UNICODE;
2139 case VC_OFF:
2140 return K_OFF;
2141 default:
2142 return K_XLATE;
2143 }
2144}
2145
2146/**
2147 * vt_do_kdgkbmeta - report meta status
2148 * @console: console to report
2149 *
2150 * Report the meta flag status of this console
2151 */
2152int vt_do_kdgkbmeta(int console)
2153{
2154 struct kbd_struct *kb = kbd_table + console;
2155 /* Again a spot read so no locking */
2156 return vc_kbd_mode(kb, VC_META) ? K_ESCPREFIX : K_METABIT;
2157}
2158
2159/**
2160 * vt_reset_unicode - reset the unicode status
2161 * @console: console being reset
2162 *
2163 * Restore the unicode console state to its default
2164 */
2165void vt_reset_unicode(int console)
2166{
2167 unsigned long flags;
2168
2169 spin_lock_irqsave(&kbd_event_lock, flags);
2170 kbd_table[console].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
2171 spin_unlock_irqrestore(&kbd_event_lock, flags);
2172}
2173
2174/**
2175 * vt_get_shiftstate - shift bit state
2176 *
2177 * Report the shift bits from the keyboard state. We have to export
2178 * this to support some oddities in the vt layer.
2179 */
2180int vt_get_shift_state(void)
2181{
2182 /* Don't lock as this is a transient report */
2183 return shift_state;
2184}
2185
2186/**
2187 * vt_reset_keyboard - reset keyboard state
2188 * @console: console to reset
2189 *
2190 * Reset the keyboard bits for a console as part of a general console
2191 * reset event
2192 */
2193void vt_reset_keyboard(int console)
2194{
2195 struct kbd_struct *kb = kbd_table + console;
2196 unsigned long flags;
2197
2198 spin_lock_irqsave(&kbd_event_lock, flags);
2199 set_vc_kbd_mode(kb, VC_REPEAT);
2200 clr_vc_kbd_mode(kb, VC_CKMODE);
2201 clr_vc_kbd_mode(kb, VC_APPLIC);
2202 clr_vc_kbd_mode(kb, VC_CRLF);
2203 kb->lockstate = 0;
2204 kb->slockstate = 0;
2205 spin_lock(&led_lock);
2206 kb->ledmode = LED_SHOW_FLAGS;
2207 kb->ledflagstate = kb->default_ledflagstate;
2208 spin_unlock(&led_lock);
2209 /* do not do set_leds here because this causes an endless tasklet loop
2210 when the keyboard hasn't been initialized yet */
2211 spin_unlock_irqrestore(&kbd_event_lock, flags);
2212}
2213
2214/**
2215 * vt_get_kbd_mode_bit - read keyboard status bits
2216 * @console: console to read from
2217 * @bit: mode bit to read
2218 *
2219 * Report back a vt mode bit. We do this without locking so the
2220 * caller must be sure that there are no synchronization needs
2221 */
2222
2223int vt_get_kbd_mode_bit(int console, int bit)
2224{
2225 struct kbd_struct *kb = kbd_table + console;
2226 return vc_kbd_mode(kb, bit);
2227}
2228
2229/**
2230 * vt_set_kbd_mode_bit - read keyboard status bits
2231 * @console: console to read from
2232 * @bit: mode bit to read
2233 *
2234 * Set a vt mode bit. We do this without locking so the
2235 * caller must be sure that there are no synchronization needs
2236 */
2237
2238void vt_set_kbd_mode_bit(int console, int bit)
2239{
2240 struct kbd_struct *kb = kbd_table + console;
2241 unsigned long flags;
2242
2243 spin_lock_irqsave(&kbd_event_lock, flags);
2244 set_vc_kbd_mode(kb, bit);
2245 spin_unlock_irqrestore(&kbd_event_lock, flags);
2246}
2247
2248/**
2249 * vt_clr_kbd_mode_bit - read keyboard status bits
2250 * @console: console to read from
2251 * @bit: mode bit to read
2252 *
2253 * Report back a vt mode bit. We do this without locking so the
2254 * caller must be sure that there are no synchronization needs
2255 */
2256
2257void vt_clr_kbd_mode_bit(int console, int bit)
2258{
2259 struct kbd_struct *kb = kbd_table + console;
2260 unsigned long flags;
2261
2262 spin_lock_irqsave(&kbd_event_lock, flags);
2263 clr_vc_kbd_mode(kb, bit);
2264 spin_unlock_irqrestore(&kbd_event_lock, flags);
2265}