Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Thunderbolt driver - bus logic (NHI independent)
   4 *
   5 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
   6 * Copyright (C) 2019, Intel Corporation
   7 */
   8
   9#include <linux/slab.h>
  10#include <linux/errno.h>
  11#include <linux/delay.h>
  12#include <linux/pm_runtime.h>
  13#include <linux/platform_data/x86/apple.h>
  14
  15#include "tb.h"
  16#include "tb_regs.h"
  17#include "tunnel.h"
  18
  19#define TB_TIMEOUT		100	/* ms */
 
  20
  21/*
  22 * Minimum bandwidth (in Mb/s) that is needed in the single transmitter/receiver
  23 * direction. This is 40G - 10% guard band bandwidth.
  24 */
  25#define TB_ASYM_MIN		(40000 * 90 / 100)
  26
  27/*
  28 * Threshold bandwidth (in Mb/s) that is used to switch the links to
  29 * asymmetric and back. This is selected as 45G which means when the
  30 * request is higher than this, we switch the link to asymmetric, and
  31 * when it is less than this we switch it back. The 45G is selected so
  32 * that we still have 27G (of the total 72G) for bulk PCIe traffic when
  33 * switching back to symmetric.
  34 */
  35#define TB_ASYM_THRESHOLD	45000
  36
  37#define MAX_GROUPS		7	/* max Group_ID is 7 */
  38
  39static unsigned int asym_threshold = TB_ASYM_THRESHOLD;
  40module_param_named(asym_threshold, asym_threshold, uint, 0444);
  41MODULE_PARM_DESC(asym_threshold,
  42		"threshold (Mb/s) when to Gen 4 switch link symmetry. 0 disables. (default: "
  43		__MODULE_STRING(TB_ASYM_THRESHOLD) ")");
  44
  45/**
  46 * struct tb_cm - Simple Thunderbolt connection manager
  47 * @tunnel_list: List of active tunnels
  48 * @dp_resources: List of available DP resources for DP tunneling
  49 * @hotplug_active: tb_handle_hotplug will stop progressing plug
  50 *		    events and exit if this is not set (it needs to
  51 *		    acquire the lock one more time). Used to drain wq
  52 *		    after cfg has been paused.
  53 * @remove_work: Work used to remove any unplugged routers after
  54 *		 runtime resume
  55 * @groups: Bandwidth groups used in this domain.
  56 */
  57struct tb_cm {
  58	struct list_head tunnel_list;
  59	struct list_head dp_resources;
  60	bool hotplug_active;
  61	struct delayed_work remove_work;
  62	struct tb_bandwidth_group groups[MAX_GROUPS];
  63};
  64
  65static inline struct tb *tcm_to_tb(struct tb_cm *tcm)
  66{
  67	return ((void *)tcm - sizeof(struct tb));
  68}
  69
  70struct tb_hotplug_event {
  71	struct work_struct work;
  72	struct tb *tb;
  73	u64 route;
  74	u8 port;
  75	bool unplug;
  76};
  77
  78static void tb_init_bandwidth_groups(struct tb_cm *tcm)
  79{
  80	int i;
  81
  82	for (i = 0; i < ARRAY_SIZE(tcm->groups); i++) {
  83		struct tb_bandwidth_group *group = &tcm->groups[i];
  84
  85		group->tb = tcm_to_tb(tcm);
  86		group->index = i + 1;
  87		INIT_LIST_HEAD(&group->ports);
  88	}
  89}
  90
  91static void tb_bandwidth_group_attach_port(struct tb_bandwidth_group *group,
  92					   struct tb_port *in)
  93{
  94	if (!group || WARN_ON(in->group))
  95		return;
  96
  97	in->group = group;
  98	list_add_tail(&in->group_list, &group->ports);
  99
 100	tb_port_dbg(in, "attached to bandwidth group %d\n", group->index);
 101}
 102
 103static struct tb_bandwidth_group *tb_find_free_bandwidth_group(struct tb_cm *tcm)
 104{
 105	int i;
 106
 107	for (i = 0; i < ARRAY_SIZE(tcm->groups); i++) {
 108		struct tb_bandwidth_group *group = &tcm->groups[i];
 109
 110		if (list_empty(&group->ports))
 111			return group;
 112	}
 113
 114	return NULL;
 115}
 116
 117static struct tb_bandwidth_group *
 118tb_attach_bandwidth_group(struct tb_cm *tcm, struct tb_port *in,
 119			  struct tb_port *out)
 120{
 121	struct tb_bandwidth_group *group;
 122	struct tb_tunnel *tunnel;
 123
 124	/*
 125	 * Find all DP tunnels that go through all the same USB4 links
 126	 * as this one. Because we always setup tunnels the same way we
 127	 * can just check for the routers at both ends of the tunnels
 128	 * and if they are the same we have a match.
 129	 */
 130	list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
 131		if (!tb_tunnel_is_dp(tunnel))
 132			continue;
 133
 134		if (tunnel->src_port->sw == in->sw &&
 135		    tunnel->dst_port->sw == out->sw) {
 136			group = tunnel->src_port->group;
 137			if (group) {
 138				tb_bandwidth_group_attach_port(group, in);
 139				return group;
 140			}
 141		}
 142	}
 143
 144	/* Pick up next available group then */
 145	group = tb_find_free_bandwidth_group(tcm);
 146	if (group)
 147		tb_bandwidth_group_attach_port(group, in);
 148	else
 149		tb_port_warn(in, "no available bandwidth groups\n");
 150
 151	return group;
 152}
 153
 154static void tb_discover_bandwidth_group(struct tb_cm *tcm, struct tb_port *in,
 155					struct tb_port *out)
 156{
 157	if (usb4_dp_port_bandwidth_mode_enabled(in)) {
 158		int index, i;
 159
 160		index = usb4_dp_port_group_id(in);
 161		for (i = 0; i < ARRAY_SIZE(tcm->groups); i++) {
 162			if (tcm->groups[i].index == index) {
 163				tb_bandwidth_group_attach_port(&tcm->groups[i], in);
 164				return;
 165			}
 166		}
 167	}
 168
 169	tb_attach_bandwidth_group(tcm, in, out);
 170}
 171
 172static void tb_detach_bandwidth_group(struct tb_port *in)
 173{
 174	struct tb_bandwidth_group *group = in->group;
 175
 176	if (group) {
 177		in->group = NULL;
 178		list_del_init(&in->group_list);
 179
 180		tb_port_dbg(in, "detached from bandwidth group %d\n", group->index);
 181	}
 182}
 183
 184static void tb_handle_hotplug(struct work_struct *work);
 185
 186static void tb_queue_hotplug(struct tb *tb, u64 route, u8 port, bool unplug)
 187{
 188	struct tb_hotplug_event *ev;
 189
 190	ev = kmalloc(sizeof(*ev), GFP_KERNEL);
 191	if (!ev)
 192		return;
 193
 194	ev->tb = tb;
 195	ev->route = route;
 196	ev->port = port;
 197	ev->unplug = unplug;
 198	INIT_WORK(&ev->work, tb_handle_hotplug);
 199	queue_work(tb->wq, &ev->work);
 200}
 201
 202/* enumeration & hot plug handling */
 203
 204static void tb_add_dp_resources(struct tb_switch *sw)
 205{
 206	struct tb_cm *tcm = tb_priv(sw->tb);
 207	struct tb_port *port;
 208
 209	tb_switch_for_each_port(sw, port) {
 210		if (!tb_port_is_dpin(port))
 211			continue;
 212
 213		if (!tb_switch_query_dp_resource(sw, port))
 214			continue;
 215
 216		/*
 217		 * If DP IN on device router exist, position it at the
 218		 * beginning of the DP resources list, so that it is used
 219		 * before DP IN of the host router. This way external GPU(s)
 220		 * will be prioritized when pairing DP IN to a DP OUT.
 221		 */
 222		if (tb_route(sw))
 223			list_add(&port->list, &tcm->dp_resources);
 224		else
 225			list_add_tail(&port->list, &tcm->dp_resources);
 226
 227		tb_port_dbg(port, "DP IN resource available\n");
 228	}
 229}
 230
 231static void tb_remove_dp_resources(struct tb_switch *sw)
 232{
 233	struct tb_cm *tcm = tb_priv(sw->tb);
 234	struct tb_port *port, *tmp;
 235
 236	/* Clear children resources first */
 237	tb_switch_for_each_port(sw, port) {
 238		if (tb_port_has_remote(port))
 239			tb_remove_dp_resources(port->remote->sw);
 240	}
 241
 242	list_for_each_entry_safe(port, tmp, &tcm->dp_resources, list) {
 243		if (port->sw == sw) {
 244			tb_port_dbg(port, "DP OUT resource unavailable\n");
 245			list_del_init(&port->list);
 246		}
 247	}
 248}
 249
 250static void tb_discover_dp_resource(struct tb *tb, struct tb_port *port)
 251{
 252	struct tb_cm *tcm = tb_priv(tb);
 253	struct tb_port *p;
 254
 255	list_for_each_entry(p, &tcm->dp_resources, list) {
 256		if (p == port)
 257			return;
 258	}
 259
 260	tb_port_dbg(port, "DP %s resource available discovered\n",
 261		    tb_port_is_dpin(port) ? "IN" : "OUT");
 262	list_add_tail(&port->list, &tcm->dp_resources);
 263}
 264
 265static void tb_discover_dp_resources(struct tb *tb)
 266{
 267	struct tb_cm *tcm = tb_priv(tb);
 268	struct tb_tunnel *tunnel;
 269
 270	list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
 271		if (tb_tunnel_is_dp(tunnel))
 272			tb_discover_dp_resource(tb, tunnel->dst_port);
 273	}
 274}
 275
 276/* Enables CL states up to host router */
 277static int tb_enable_clx(struct tb_switch *sw)
 278{
 279	struct tb_cm *tcm = tb_priv(sw->tb);
 280	unsigned int clx = TB_CL0S | TB_CL1;
 281	const struct tb_tunnel *tunnel;
 282	int ret;
 283
 284	/*
 285	 * Currently only enable CLx for the first link. This is enough
 286	 * to allow the CPU to save energy at least on Intel hardware
 287	 * and makes it slightly simpler to implement. We may change
 288	 * this in the future to cover the whole topology if it turns
 289	 * out to be beneficial.
 290	 */
 291	while (sw && tb_switch_depth(sw) > 1)
 292		sw = tb_switch_parent(sw);
 293
 294	if (!sw)
 295		return 0;
 296
 297	if (tb_switch_depth(sw) != 1)
 298		return 0;
 299
 300	/*
 301	 * If we are re-enabling then check if there is an active DMA
 302	 * tunnel and in that case bail out.
 303	 */
 304	list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
 305		if (tb_tunnel_is_dma(tunnel)) {
 306			if (tb_tunnel_port_on_path(tunnel, tb_upstream_port(sw)))
 307				return 0;
 308		}
 309	}
 310
 311	/*
 312	 * Initially try with CL2. If that's not supported by the
 313	 * topology try with CL0s and CL1 and then give up.
 314	 */
 315	ret = tb_switch_clx_enable(sw, clx | TB_CL2);
 316	if (ret == -EOPNOTSUPP)
 317		ret = tb_switch_clx_enable(sw, clx);
 318	return ret == -EOPNOTSUPP ? 0 : ret;
 319}
 320
 321/**
 322 * tb_disable_clx() - Disable CL states up to host router
 323 * @sw: Router to start
 324 *
 325 * Disables CL states from @sw up to the host router. Returns true if
 326 * any CL state were disabled. This can be used to figure out whether
 327 * the link was setup by us or the boot firmware so we don't
 328 * accidentally enable them if they were not enabled during discovery.
 329 */
 330static bool tb_disable_clx(struct tb_switch *sw)
 331{
 332	bool disabled = false;
 333
 334	do {
 335		int ret;
 336
 337		ret = tb_switch_clx_disable(sw);
 338		if (ret > 0)
 339			disabled = true;
 340		else if (ret < 0)
 341			tb_sw_warn(sw, "failed to disable CL states\n");
 342
 343		sw = tb_switch_parent(sw);
 344	} while (sw);
 345
 346	return disabled;
 347}
 348
 349static int tb_increase_switch_tmu_accuracy(struct device *dev, void *data)
 350{
 351	struct tb_switch *sw;
 352
 353	sw = tb_to_switch(dev);
 354	if (!sw)
 355		return 0;
 356
 357	if (tb_switch_tmu_is_configured(sw, TB_SWITCH_TMU_MODE_LOWRES)) {
 358		enum tb_switch_tmu_mode mode;
 359		int ret;
 360
 361		if (tb_switch_clx_is_enabled(sw, TB_CL1))
 362			mode = TB_SWITCH_TMU_MODE_HIFI_UNI;
 363		else
 364			mode = TB_SWITCH_TMU_MODE_HIFI_BI;
 365
 366		ret = tb_switch_tmu_configure(sw, mode);
 367		if (ret)
 368			return ret;
 369
 370		return tb_switch_tmu_enable(sw);
 371	}
 372
 373	return 0;
 374}
 375
 376static void tb_increase_tmu_accuracy(struct tb_tunnel *tunnel)
 377{
 378	struct tb_switch *sw;
 379
 380	if (!tunnel)
 381		return;
 382
 383	/*
 384	 * Once first DP tunnel is established we change the TMU
 385	 * accuracy of first depth child routers (and the host router)
 386	 * to the highest. This is needed for the DP tunneling to work
 387	 * but also allows CL0s.
 388	 *
 389	 * If both routers are v2 then we don't need to do anything as
 390	 * they are using enhanced TMU mode that allows all CLx.
 391	 */
 392	sw = tunnel->tb->root_switch;
 393	device_for_each_child(&sw->dev, NULL, tb_increase_switch_tmu_accuracy);
 394}
 395
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 396static int tb_enable_tmu(struct tb_switch *sw)
 397{
 398	int ret;
 399
 400	/*
 401	 * If both routers at the end of the link are v2 we simply
 402	 * enable the enhanched uni-directional mode. That covers all
 403	 * the CL states. For v1 and before we need to use the normal
 404	 * rate to allow CL1 (when supported). Otherwise we keep the TMU
 405	 * running at the highest accuracy.
 406	 */
 407	ret = tb_switch_tmu_configure(sw,
 408			TB_SWITCH_TMU_MODE_MEDRES_ENHANCED_UNI);
 409	if (ret == -EOPNOTSUPP) {
 410		if (tb_switch_clx_is_enabled(sw, TB_CL1))
 411			ret = tb_switch_tmu_configure(sw,
 412					TB_SWITCH_TMU_MODE_LOWRES);
 413		else
 414			ret = tb_switch_tmu_configure(sw,
 415					TB_SWITCH_TMU_MODE_HIFI_BI);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 416	}
 417	if (ret)
 418		return ret;
 419
 420	/* If it is already enabled in correct mode, don't touch it */
 421	if (tb_switch_tmu_is_enabled(sw))
 422		return 0;
 423
 424	ret = tb_switch_tmu_disable(sw);
 425	if (ret)
 426		return ret;
 427
 428	ret = tb_switch_tmu_post_time(sw);
 429	if (ret)
 430		return ret;
 431
 432	return tb_switch_tmu_enable(sw);
 433}
 434
 435static void tb_switch_discover_tunnels(struct tb_switch *sw,
 436				       struct list_head *list,
 437				       bool alloc_hopids)
 438{
 439	struct tb *tb = sw->tb;
 440	struct tb_port *port;
 441
 442	tb_switch_for_each_port(sw, port) {
 443		struct tb_tunnel *tunnel = NULL;
 444
 445		switch (port->config.type) {
 446		case TB_TYPE_DP_HDMI_IN:
 447			tunnel = tb_tunnel_discover_dp(tb, port, alloc_hopids);
 448			tb_increase_tmu_accuracy(tunnel);
 449			break;
 450
 451		case TB_TYPE_PCIE_DOWN:
 452			tunnel = tb_tunnel_discover_pci(tb, port, alloc_hopids);
 453			break;
 454
 455		case TB_TYPE_USB3_DOWN:
 456			tunnel = tb_tunnel_discover_usb3(tb, port, alloc_hopids);
 457			break;
 458
 459		default:
 460			break;
 461		}
 462
 463		if (tunnel)
 464			list_add_tail(&tunnel->list, list);
 465	}
 466
 467	tb_switch_for_each_port(sw, port) {
 468		if (tb_port_has_remote(port)) {
 469			tb_switch_discover_tunnels(port->remote->sw, list,
 470						   alloc_hopids);
 471		}
 472	}
 473}
 474
 475static void tb_discover_tunnels(struct tb *tb)
 476{
 477	struct tb_cm *tcm = tb_priv(tb);
 478	struct tb_tunnel *tunnel;
 479
 480	tb_switch_discover_tunnels(tb->root_switch, &tcm->tunnel_list, true);
 481
 482	list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
 483		if (tb_tunnel_is_pci(tunnel)) {
 484			struct tb_switch *parent = tunnel->dst_port->sw;
 485
 486			while (parent != tunnel->src_port->sw) {
 487				parent->boot = true;
 488				parent = tb_switch_parent(parent);
 489			}
 490		} else if (tb_tunnel_is_dp(tunnel)) {
 491			struct tb_port *in = tunnel->src_port;
 492			struct tb_port *out = tunnel->dst_port;
 493
 494			/* Keep the domain from powering down */
 495			pm_runtime_get_sync(&in->sw->dev);
 496			pm_runtime_get_sync(&out->sw->dev);
 497
 498			tb_discover_bandwidth_group(tcm, in, out);
 499		}
 500	}
 501}
 502
 503static int tb_port_configure_xdomain(struct tb_port *port, struct tb_xdomain *xd)
 504{
 505	if (tb_switch_is_usb4(port->sw))
 506		return usb4_port_configure_xdomain(port, xd);
 507	return tb_lc_configure_xdomain(port);
 508}
 509
 510static void tb_port_unconfigure_xdomain(struct tb_port *port)
 511{
 512	if (tb_switch_is_usb4(port->sw))
 513		usb4_port_unconfigure_xdomain(port);
 514	else
 515		tb_lc_unconfigure_xdomain(port);
 516}
 517
 518static void tb_scan_xdomain(struct tb_port *port)
 519{
 520	struct tb_switch *sw = port->sw;
 521	struct tb *tb = sw->tb;
 522	struct tb_xdomain *xd;
 523	u64 route;
 524
 525	if (!tb_is_xdomain_enabled())
 526		return;
 527
 528	route = tb_downstream_route(port);
 529	xd = tb_xdomain_find_by_route(tb, route);
 530	if (xd) {
 531		tb_xdomain_put(xd);
 532		return;
 533	}
 534
 535	xd = tb_xdomain_alloc(tb, &sw->dev, route, tb->root_switch->uuid,
 536			      NULL);
 537	if (xd) {
 538		tb_port_at(route, sw)->xdomain = xd;
 539		tb_port_configure_xdomain(port, xd);
 540		tb_xdomain_add(xd);
 541	}
 542}
 543
 544/**
 545 * tb_find_unused_port() - return the first inactive port on @sw
 546 * @sw: Switch to find the port on
 547 * @type: Port type to look for
 548 */
 549static struct tb_port *tb_find_unused_port(struct tb_switch *sw,
 550					   enum tb_port_type type)
 551{
 552	struct tb_port *port;
 553
 554	tb_switch_for_each_port(sw, port) {
 555		if (tb_is_upstream_port(port))
 556			continue;
 557		if (port->config.type != type)
 558			continue;
 559		if (!port->cap_adap)
 560			continue;
 561		if (tb_port_is_enabled(port))
 562			continue;
 563		return port;
 564	}
 565	return NULL;
 566}
 567
 568static struct tb_port *tb_find_usb3_down(struct tb_switch *sw,
 569					 const struct tb_port *port)
 570{
 571	struct tb_port *down;
 572
 573	down = usb4_switch_map_usb3_down(sw, port);
 574	if (down && !tb_usb3_port_is_enabled(down))
 575		return down;
 576	return NULL;
 577}
 578
 579static struct tb_tunnel *tb_find_tunnel(struct tb *tb, enum tb_tunnel_type type,
 580					struct tb_port *src_port,
 581					struct tb_port *dst_port)
 582{
 583	struct tb_cm *tcm = tb_priv(tb);
 584	struct tb_tunnel *tunnel;
 585
 586	list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
 587		if (tunnel->type == type &&
 588		    ((src_port && src_port == tunnel->src_port) ||
 589		     (dst_port && dst_port == tunnel->dst_port))) {
 590			return tunnel;
 591		}
 592	}
 593
 594	return NULL;
 595}
 596
 597static struct tb_tunnel *tb_find_first_usb3_tunnel(struct tb *tb,
 598						   struct tb_port *src_port,
 599						   struct tb_port *dst_port)
 600{
 601	struct tb_port *port, *usb3_down;
 602	struct tb_switch *sw;
 603
 604	/* Pick the router that is deepest in the topology */
 605	if (tb_port_path_direction_downstream(src_port, dst_port))
 606		sw = dst_port->sw;
 607	else
 608		sw = src_port->sw;
 609
 610	/* Can't be the host router */
 611	if (sw == tb->root_switch)
 612		return NULL;
 613
 614	/* Find the downstream USB4 port that leads to this router */
 615	port = tb_port_at(tb_route(sw), tb->root_switch);
 616	/* Find the corresponding host router USB3 downstream port */
 617	usb3_down = usb4_switch_map_usb3_down(tb->root_switch, port);
 618	if (!usb3_down)
 619		return NULL;
 620
 621	return tb_find_tunnel(tb, TB_TUNNEL_USB3, usb3_down, NULL);
 622}
 623
 624/**
 625 * tb_consumed_usb3_pcie_bandwidth() - Consumed USB3/PCIe bandwidth over a single link
 626 * @tb: Domain structure
 627 * @src_port: Source protocol adapter
 628 * @dst_port: Destination protocol adapter
 629 * @port: USB4 port the consumed bandwidth is calculated
 630 * @consumed_up: Consumed upsream bandwidth (Mb/s)
 631 * @consumed_down: Consumed downstream bandwidth (Mb/s)
 632 *
 633 * Calculates consumed USB3 and PCIe bandwidth at @port between path
 634 * from @src_port to @dst_port. Does not take tunnel starting from
 635 * @src_port and ending from @src_port into account.
 
 636 */
 637static int tb_consumed_usb3_pcie_bandwidth(struct tb *tb,
 638					   struct tb_port *src_port,
 639					   struct tb_port *dst_port,
 640					   struct tb_port *port,
 641					   int *consumed_up,
 642					   int *consumed_down)
 643{
 644	int pci_consumed_up, pci_consumed_down;
 645	struct tb_tunnel *tunnel;
 646
 647	*consumed_up = *consumed_down = 0;
 648
 649	tunnel = tb_find_first_usb3_tunnel(tb, src_port, dst_port);
 650	if (tunnel && tunnel->src_port != src_port &&
 651	    tunnel->dst_port != dst_port) {
 652		int ret;
 653
 654		ret = tb_tunnel_consumed_bandwidth(tunnel, consumed_up,
 655						   consumed_down);
 656		if (ret)
 657			return ret;
 658	}
 659
 660	/*
 661	 * If there is anything reserved for PCIe bulk traffic take it
 662	 * into account here too.
 663	 */
 664	if (tb_tunnel_reserved_pci(port, &pci_consumed_up, &pci_consumed_down)) {
 665		*consumed_up += pci_consumed_up;
 666		*consumed_down += pci_consumed_down;
 667	}
 668
 669	return 0;
 670}
 671
 672/**
 673 * tb_consumed_dp_bandwidth() - Consumed DP bandwidth over a single link
 674 * @tb: Domain structure
 675 * @src_port: Source protocol adapter
 676 * @dst_port: Destination protocol adapter
 677 * @port: USB4 port the consumed bandwidth is calculated
 678 * @consumed_up: Consumed upsream bandwidth (Mb/s)
 679 * @consumed_down: Consumed downstream bandwidth (Mb/s)
 680 *
 681 * Calculates consumed DP bandwidth at @port between path from @src_port
 682 * to @dst_port. Does not take tunnel starting from @src_port and ending
 683 * from @src_port into account.
 
 
 
 
 684 */
 685static int tb_consumed_dp_bandwidth(struct tb *tb,
 686				    struct tb_port *src_port,
 687				    struct tb_port *dst_port,
 688				    struct tb_port *port,
 689				    int *consumed_up,
 690				    int *consumed_down)
 691{
 
 692	struct tb_cm *tcm = tb_priv(tb);
 693	struct tb_tunnel *tunnel;
 694	int ret;
 
 695
 696	*consumed_up = *consumed_down = 0;
 697
 698	/*
 699	 * Find all DP tunnels that cross the port and reduce
 700	 * their consumed bandwidth from the available.
 701	 */
 702	list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
 
 703		int dp_consumed_up, dp_consumed_down;
 704
 705		if (tb_tunnel_is_invalid(tunnel))
 706			continue;
 707
 708		if (!tb_tunnel_is_dp(tunnel))
 709			continue;
 710
 711		if (!tb_tunnel_port_on_path(tunnel, port))
 712			continue;
 713
 714		/*
 
 
 
 
 
 
 
 
 
 715		 * Ignore the DP tunnel between src_port and dst_port
 716		 * because it is the same tunnel and we may be
 717		 * re-calculating estimated bandwidth.
 718		 */
 719		if (tunnel->src_port == src_port &&
 720		    tunnel->dst_port == dst_port)
 721			continue;
 722
 723		ret = tb_tunnel_consumed_bandwidth(tunnel, &dp_consumed_up,
 724						   &dp_consumed_down);
 725		if (ret)
 726			return ret;
 727
 728		*consumed_up += dp_consumed_up;
 729		*consumed_down += dp_consumed_down;
 730	}
 731
 
 
 
 
 
 
 
 
 732	return 0;
 733}
 734
 735static bool tb_asym_supported(struct tb_port *src_port, struct tb_port *dst_port,
 736			      struct tb_port *port)
 737{
 738	bool downstream = tb_port_path_direction_downstream(src_port, dst_port);
 739	enum tb_link_width width;
 740
 741	if (tb_is_upstream_port(port))
 742		width = downstream ? TB_LINK_WIDTH_ASYM_RX : TB_LINK_WIDTH_ASYM_TX;
 743	else
 744		width = downstream ? TB_LINK_WIDTH_ASYM_TX : TB_LINK_WIDTH_ASYM_RX;
 745
 746	return tb_port_width_supported(port, width);
 747}
 748
 749/**
 750 * tb_maximum_bandwidth() - Maximum bandwidth over a single link
 751 * @tb: Domain structure
 752 * @src_port: Source protocol adapter
 753 * @dst_port: Destination protocol adapter
 754 * @port: USB4 port the total bandwidth is calculated
 755 * @max_up: Maximum upstream bandwidth (Mb/s)
 756 * @max_down: Maximum downstream bandwidth (Mb/s)
 757 * @include_asym: Include bandwidth if the link is switched from
 758 *		  symmetric to asymmetric
 759 *
 760 * Returns maximum possible bandwidth in @max_up and @max_down over a
 761 * single link at @port. If @include_asym is set then includes the
 762 * additional banwdith if the links are transitioned into asymmetric to
 763 * direction from @src_port to @dst_port.
 764 */
 765static int tb_maximum_bandwidth(struct tb *tb, struct tb_port *src_port,
 766				struct tb_port *dst_port, struct tb_port *port,
 767				int *max_up, int *max_down, bool include_asym)
 768{
 769	bool downstream = tb_port_path_direction_downstream(src_port, dst_port);
 770	int link_speed, link_width, up_bw, down_bw;
 771
 772	/*
 773	 * Can include asymmetric, only if it is actually supported by
 774	 * the lane adapter.
 775	 */
 776	if (!tb_asym_supported(src_port, dst_port, port))
 777		include_asym = false;
 778
 779	if (tb_is_upstream_port(port)) {
 780		link_speed = port->sw->link_speed;
 781		/*
 782		 * sw->link_width is from upstream perspective so we use
 783		 * the opposite for downstream of the host router.
 784		 */
 785		if (port->sw->link_width == TB_LINK_WIDTH_ASYM_TX) {
 786			up_bw = link_speed * 3 * 1000;
 787			down_bw = link_speed * 1 * 1000;
 788		} else if (port->sw->link_width == TB_LINK_WIDTH_ASYM_RX) {
 789			up_bw = link_speed * 1 * 1000;
 790			down_bw = link_speed * 3 * 1000;
 791		} else if (include_asym) {
 792			/*
 793			 * The link is symmetric at the moment but we
 794			 * can switch it to asymmetric as needed. Report
 795			 * this bandwidth as available (even though it
 796			 * is not yet enabled).
 797			 */
 798			if (downstream) {
 799				up_bw = link_speed * 1 * 1000;
 800				down_bw = link_speed * 3 * 1000;
 801			} else {
 802				up_bw = link_speed * 3 * 1000;
 803				down_bw = link_speed * 1 * 1000;
 804			}
 805		} else {
 806			up_bw = link_speed * port->sw->link_width * 1000;
 807			down_bw = up_bw;
 808		}
 809	} else {
 810		link_speed = tb_port_get_link_speed(port);
 811		if (link_speed < 0)
 812			return link_speed;
 813
 814		link_width = tb_port_get_link_width(port);
 815		if (link_width < 0)
 816			return link_width;
 817
 818		if (link_width == TB_LINK_WIDTH_ASYM_TX) {
 819			up_bw = link_speed * 1 * 1000;
 820			down_bw = link_speed * 3 * 1000;
 821		} else if (link_width == TB_LINK_WIDTH_ASYM_RX) {
 822			up_bw = link_speed * 3 * 1000;
 823			down_bw = link_speed * 1 * 1000;
 824		} else if (include_asym) {
 825			/*
 826			 * The link is symmetric at the moment but we
 827			 * can switch it to asymmetric as needed. Report
 828			 * this bandwidth as available (even though it
 829			 * is not yet enabled).
 830			 */
 831			if (downstream) {
 832				up_bw = link_speed * 1 * 1000;
 833				down_bw = link_speed * 3 * 1000;
 834			} else {
 835				up_bw = link_speed * 3 * 1000;
 836				down_bw = link_speed * 1 * 1000;
 837			}
 838		} else {
 839			up_bw = link_speed * link_width * 1000;
 840			down_bw = up_bw;
 841		}
 842	}
 843
 844	/* Leave 10% guard band */
 845	*max_up = up_bw - up_bw / 10;
 846	*max_down = down_bw - down_bw / 10;
 847
 848	tb_port_dbg(port, "link maximum bandwidth %d/%d Mb/s\n", *max_up, *max_down);
 849	return 0;
 850}
 851
 852/**
 853 * tb_available_bandwidth() - Available bandwidth for tunneling
 854 * @tb: Domain structure
 855 * @src_port: Source protocol adapter
 856 * @dst_port: Destination protocol adapter
 857 * @available_up: Available bandwidth upstream (Mb/s)
 858 * @available_down: Available bandwidth downstream (Mb/s)
 859 * @include_asym: Include bandwidth if the link is switched from
 860 *		  symmetric to asymmetric
 861 *
 862 * Calculates maximum available bandwidth for protocol tunneling between
 863 * @src_port and @dst_port at the moment. This is minimum of maximum
 864 * link bandwidth across all links reduced by currently consumed
 865 * bandwidth on that link.
 866 *
 867 * If @include_asym is true then includes also bandwidth that can be
 868 * added when the links are transitioned into asymmetric (but does not
 869 * transition the links).
 870 */
 871static int tb_available_bandwidth(struct tb *tb, struct tb_port *src_port,
 872				 struct tb_port *dst_port, int *available_up,
 873				 int *available_down, bool include_asym)
 874{
 875	struct tb_port *port;
 876	int ret;
 877
 878	/* Maximum possible bandwidth asymmetric Gen 4 link is 120 Gb/s */
 879	*available_up = *available_down = 120000;
 880
 881	/* Find the minimum available bandwidth over all links */
 882	tb_for_each_port_on_path(src_port, dst_port, port) {
 883		int max_up, max_down, consumed_up, consumed_down;
 884
 885		if (!tb_port_is_null(port))
 886			continue;
 887
 888		ret = tb_maximum_bandwidth(tb, src_port, dst_port, port,
 889					   &max_up, &max_down, include_asym);
 890		if (ret)
 891			return ret;
 892
 893		ret = tb_consumed_usb3_pcie_bandwidth(tb, src_port, dst_port,
 894						      port, &consumed_up,
 895						      &consumed_down);
 896		if (ret)
 897			return ret;
 898		max_up -= consumed_up;
 899		max_down -= consumed_down;
 900
 901		ret = tb_consumed_dp_bandwidth(tb, src_port, dst_port, port,
 902					       &consumed_up, &consumed_down);
 903		if (ret)
 904			return ret;
 905		max_up -= consumed_up;
 906		max_down -= consumed_down;
 907
 908		if (max_up < *available_up)
 909			*available_up = max_up;
 910		if (max_down < *available_down)
 911			*available_down = max_down;
 912	}
 913
 914	if (*available_up < 0)
 915		*available_up = 0;
 916	if (*available_down < 0)
 917		*available_down = 0;
 918
 919	return 0;
 920}
 921
 922static int tb_release_unused_usb3_bandwidth(struct tb *tb,
 923					    struct tb_port *src_port,
 924					    struct tb_port *dst_port)
 925{
 926	struct tb_tunnel *tunnel;
 927
 928	tunnel = tb_find_first_usb3_tunnel(tb, src_port, dst_port);
 929	return tunnel ? tb_tunnel_release_unused_bandwidth(tunnel) : 0;
 930}
 931
 932static void tb_reclaim_usb3_bandwidth(struct tb *tb, struct tb_port *src_port,
 933				      struct tb_port *dst_port)
 934{
 935	int ret, available_up, available_down;
 936	struct tb_tunnel *tunnel;
 937
 938	tunnel = tb_find_first_usb3_tunnel(tb, src_port, dst_port);
 939	if (!tunnel)
 940		return;
 941
 942	tb_tunnel_dbg(tunnel, "reclaiming unused bandwidth\n");
 943
 944	/*
 945	 * Calculate available bandwidth for the first hop USB3 tunnel.
 946	 * That determines the whole USB3 bandwidth for this branch.
 947	 */
 948	ret = tb_available_bandwidth(tb, tunnel->src_port, tunnel->dst_port,
 949				     &available_up, &available_down, false);
 950	if (ret) {
 951		tb_tunnel_warn(tunnel, "failed to calculate available bandwidth\n");
 952		return;
 953	}
 954
 955	tb_tunnel_dbg(tunnel, "available bandwidth %d/%d Mb/s\n", available_up,
 956		      available_down);
 957
 958	tb_tunnel_reclaim_available_bandwidth(tunnel, &available_up, &available_down);
 959}
 960
 961static int tb_tunnel_usb3(struct tb *tb, struct tb_switch *sw)
 962{
 963	struct tb_switch *parent = tb_switch_parent(sw);
 964	int ret, available_up, available_down;
 965	struct tb_port *up, *down, *port;
 966	struct tb_cm *tcm = tb_priv(tb);
 967	struct tb_tunnel *tunnel;
 968
 969	if (!tb_acpi_may_tunnel_usb3()) {
 970		tb_dbg(tb, "USB3 tunneling disabled, not creating tunnel\n");
 971		return 0;
 972	}
 973
 974	up = tb_switch_find_port(sw, TB_TYPE_USB3_UP);
 975	if (!up)
 976		return 0;
 977
 978	if (!sw->link_usb4)
 979		return 0;
 980
 981	/*
 982	 * Look up available down port. Since we are chaining it should
 983	 * be found right above this switch.
 984	 */
 985	port = tb_switch_downstream_port(sw);
 986	down = tb_find_usb3_down(parent, port);
 987	if (!down)
 988		return 0;
 989
 990	if (tb_route(parent)) {
 991		struct tb_port *parent_up;
 992		/*
 993		 * Check first that the parent switch has its upstream USB3
 994		 * port enabled. Otherwise the chain is not complete and
 995		 * there is no point setting up a new tunnel.
 996		 */
 997		parent_up = tb_switch_find_port(parent, TB_TYPE_USB3_UP);
 998		if (!parent_up || !tb_port_is_enabled(parent_up))
 999			return 0;
1000
1001		/* Make all unused bandwidth available for the new tunnel */
1002		ret = tb_release_unused_usb3_bandwidth(tb, down, up);
1003		if (ret)
1004			return ret;
1005	}
1006
1007	ret = tb_available_bandwidth(tb, down, up, &available_up, &available_down,
1008				     false);
1009	if (ret)
1010		goto err_reclaim;
1011
1012	tb_port_dbg(up, "available bandwidth for new USB3 tunnel %d/%d Mb/s\n",
1013		    available_up, available_down);
1014
1015	tunnel = tb_tunnel_alloc_usb3(tb, up, down, available_up,
1016				      available_down);
1017	if (!tunnel) {
1018		ret = -ENOMEM;
1019		goto err_reclaim;
1020	}
1021
1022	if (tb_tunnel_activate(tunnel)) {
1023		tb_port_info(up,
1024			     "USB3 tunnel activation failed, aborting\n");
1025		ret = -EIO;
1026		goto err_free;
1027	}
1028
1029	list_add_tail(&tunnel->list, &tcm->tunnel_list);
1030	if (tb_route(parent))
1031		tb_reclaim_usb3_bandwidth(tb, down, up);
1032
1033	return 0;
1034
1035err_free:
1036	tb_tunnel_free(tunnel);
1037err_reclaim:
1038	if (tb_route(parent))
1039		tb_reclaim_usb3_bandwidth(tb, down, up);
1040
1041	return ret;
1042}
1043
1044static int tb_create_usb3_tunnels(struct tb_switch *sw)
1045{
1046	struct tb_port *port;
1047	int ret;
1048
1049	if (!tb_acpi_may_tunnel_usb3())
1050		return 0;
1051
1052	if (tb_route(sw)) {
1053		ret = tb_tunnel_usb3(sw->tb, sw);
1054		if (ret)
1055			return ret;
1056	}
1057
1058	tb_switch_for_each_port(sw, port) {
1059		if (!tb_port_has_remote(port))
1060			continue;
1061		ret = tb_create_usb3_tunnels(port->remote->sw);
1062		if (ret)
1063			return ret;
1064	}
1065
1066	return 0;
1067}
1068
1069/**
1070 * tb_configure_asym() - Transition links to asymmetric if needed
1071 * @tb: Domain structure
1072 * @src_port: Source adapter to start the transition
1073 * @dst_port: Destination adapter
1074 * @requested_up: Additional bandwidth (Mb/s) required upstream
1075 * @requested_down: Additional bandwidth (Mb/s) required downstream
1076 *
1077 * Transition links between @src_port and @dst_port into asymmetric, with
1078 * three lanes in the direction from @src_port towards @dst_port and one lane
1079 * in the opposite direction, if the bandwidth requirements
1080 * (requested + currently consumed) on that link exceed @asym_threshold.
1081 *
1082 * Must be called with available >= requested over all links.
1083 */
1084static int tb_configure_asym(struct tb *tb, struct tb_port *src_port,
1085			     struct tb_port *dst_port, int requested_up,
1086			     int requested_down)
1087{
1088	bool clx = false, clx_disabled = false, downstream;
1089	struct tb_switch *sw;
1090	struct tb_port *up;
1091	int ret = 0;
1092
1093	if (!asym_threshold)
1094		return 0;
1095
1096	downstream = tb_port_path_direction_downstream(src_port, dst_port);
1097	/* Pick up router deepest in the hierarchy */
1098	if (downstream)
1099		sw = dst_port->sw;
1100	else
1101		sw = src_port->sw;
1102
1103	tb_for_each_upstream_port_on_path(src_port, dst_port, up) {
1104		struct tb_port *down = tb_switch_downstream_port(up->sw);
1105		enum tb_link_width width_up, width_down;
1106		int consumed_up, consumed_down;
1107
1108		ret = tb_consumed_dp_bandwidth(tb, src_port, dst_port, up,
1109					       &consumed_up, &consumed_down);
1110		if (ret)
1111			break;
1112
1113		if (downstream) {
1114			/*
1115			 * Downstream so make sure upstream is within the 36G
1116			 * (40G - guard band 10%), and the requested is above
1117			 * what the threshold is.
1118			 */
1119			if (consumed_up + requested_up >= TB_ASYM_MIN) {
1120				ret = -ENOBUFS;
1121				break;
1122			}
1123			/* Does consumed + requested exceed the threshold */
1124			if (consumed_down + requested_down < asym_threshold)
1125				continue;
1126
1127			width_up = TB_LINK_WIDTH_ASYM_RX;
1128			width_down = TB_LINK_WIDTH_ASYM_TX;
1129		} else {
1130			/* Upstream, the opposite of above */
1131			if (consumed_down + requested_down >= TB_ASYM_MIN) {
1132				ret = -ENOBUFS;
1133				break;
1134			}
1135			if (consumed_up + requested_up < asym_threshold)
1136				continue;
1137
1138			width_up = TB_LINK_WIDTH_ASYM_TX;
1139			width_down = TB_LINK_WIDTH_ASYM_RX;
1140		}
1141
1142		if (up->sw->link_width == width_up)
1143			continue;
1144
1145		if (!tb_port_width_supported(up, width_up) ||
1146		    !tb_port_width_supported(down, width_down))
1147			continue;
1148
1149		/*
1150		 * Disable CL states before doing any transitions. We
1151		 * delayed it until now that we know there is a real
1152		 * transition taking place.
1153		 */
1154		if (!clx_disabled) {
1155			clx = tb_disable_clx(sw);
1156			clx_disabled = true;
1157		}
1158
1159		tb_sw_dbg(up->sw, "configuring asymmetric link\n");
1160
1161		/*
1162		 * Here requested + consumed > threshold so we need to
1163		 * transtion the link into asymmetric now.
1164		 */
1165		ret = tb_switch_set_link_width(up->sw, width_up);
1166		if (ret) {
1167			tb_sw_warn(up->sw, "failed to set link width\n");
1168			break;
1169		}
1170	}
1171
1172	/* Re-enable CL states if they were previosly enabled */
1173	if (clx)
1174		tb_enable_clx(sw);
1175
1176	return ret;
1177}
1178
1179/**
1180 * tb_configure_sym() - Transition links to symmetric if possible
1181 * @tb: Domain structure
1182 * @src_port: Source adapter to start the transition
1183 * @dst_port: Destination adapter
1184 * @requested_up: New lower bandwidth request upstream (Mb/s)
1185 * @requested_down: New lower bandwidth request downstream (Mb/s)
1186 * @keep_asym: Keep asymmetric link if preferred
1187 *
1188 * Goes over each link from @src_port to @dst_port and tries to
1189 * transition the link to symmetric if the currently consumed bandwidth
1190 * allows and link asymmetric preference is ignored (if @keep_asym is %false).
1191 */
1192static int tb_configure_sym(struct tb *tb, struct tb_port *src_port,
1193			    struct tb_port *dst_port, int requested_up,
1194			    int requested_down, bool keep_asym)
1195{
1196	bool clx = false, clx_disabled = false, downstream;
1197	struct tb_switch *sw;
1198	struct tb_port *up;
1199	int ret = 0;
1200
1201	if (!asym_threshold)
1202		return 0;
1203
1204	downstream = tb_port_path_direction_downstream(src_port, dst_port);
1205	/* Pick up router deepest in the hierarchy */
1206	if (downstream)
1207		sw = dst_port->sw;
1208	else
1209		sw = src_port->sw;
1210
1211	tb_for_each_upstream_port_on_path(src_port, dst_port, up) {
1212		int consumed_up, consumed_down;
1213
1214		/* Already symmetric */
1215		if (up->sw->link_width <= TB_LINK_WIDTH_DUAL)
1216			continue;
1217		/* Unplugged, no need to switch */
1218		if (up->sw->is_unplugged)
1219			continue;
1220
1221		ret = tb_consumed_dp_bandwidth(tb, src_port, dst_port, up,
1222					       &consumed_up, &consumed_down);
1223		if (ret)
1224			break;
1225
1226		if (downstream) {
1227			/*
1228			 * Downstream so we want the consumed_down < threshold.
1229			 * Upstream traffic should be less than 36G (40G
1230			 * guard band 10%) as the link was configured asymmetric
1231			 * already.
1232			 */
1233			if (consumed_down + requested_down >= asym_threshold)
1234				continue;
1235		} else {
1236			if (consumed_up + requested_up >= asym_threshold)
1237				continue;
1238		}
1239
1240		if (up->sw->link_width == TB_LINK_WIDTH_DUAL)
1241			continue;
1242
1243		/*
1244		 * Here consumed < threshold so we can transition the
1245		 * link to symmetric.
1246		 *
1247		 * However, if the router prefers asymmetric link we
1248		 * honor that (unless @keep_asym is %false).
1249		 */
1250		if (keep_asym &&
1251		    up->sw->preferred_link_width > TB_LINK_WIDTH_DUAL) {
1252			tb_sw_dbg(up->sw, "keeping preferred asymmetric link\n");
1253			continue;
1254		}
1255
1256		/* Disable CL states before doing any transitions */
1257		if (!clx_disabled) {
1258			clx = tb_disable_clx(sw);
1259			clx_disabled = true;
1260		}
1261
1262		tb_sw_dbg(up->sw, "configuring symmetric link\n");
1263
1264		ret = tb_switch_set_link_width(up->sw, TB_LINK_WIDTH_DUAL);
1265		if (ret) {
1266			tb_sw_warn(up->sw, "failed to set link width\n");
1267			break;
1268		}
1269	}
1270
1271	/* Re-enable CL states if they were previosly enabled */
1272	if (clx)
1273		tb_enable_clx(sw);
1274
1275	return ret;
1276}
1277
1278static void tb_configure_link(struct tb_port *down, struct tb_port *up,
1279			      struct tb_switch *sw)
1280{
1281	struct tb *tb = sw->tb;
1282
1283	/* Link the routers using both links if available */
1284	down->remote = up;
1285	up->remote = down;
1286	if (down->dual_link_port && up->dual_link_port) {
1287		down->dual_link_port->remote = up->dual_link_port;
1288		up->dual_link_port->remote = down->dual_link_port;
1289	}
1290
1291	/*
1292	 * Enable lane bonding if the link is currently two single lane
1293	 * links.
1294	 */
1295	if (sw->link_width < TB_LINK_WIDTH_DUAL)
1296		tb_switch_set_link_width(sw, TB_LINK_WIDTH_DUAL);
1297
1298	/*
1299	 * Device router that comes up as symmetric link is
1300	 * connected deeper in the hierarchy, we transition the links
1301	 * above into symmetric if bandwidth allows.
1302	 */
1303	if (tb_switch_depth(sw) > 1 &&
1304	    tb_port_get_link_generation(up) >= 4 &&
1305	    up->sw->link_width == TB_LINK_WIDTH_DUAL) {
1306		struct tb_port *host_port;
1307
1308		host_port = tb_port_at(tb_route(sw), tb->root_switch);
1309		tb_configure_sym(tb, host_port, up, 0, 0, false);
1310	}
1311
1312	/* Set the link configured */
1313	tb_switch_configure_link(sw);
1314}
1315
1316static void tb_scan_port(struct tb_port *port);
1317
1318/*
1319 * tb_scan_switch() - scan for and initialize downstream switches
1320 */
1321static void tb_scan_switch(struct tb_switch *sw)
1322{
1323	struct tb_port *port;
1324
1325	pm_runtime_get_sync(&sw->dev);
1326
1327	tb_switch_for_each_port(sw, port)
1328		tb_scan_port(port);
1329
1330	pm_runtime_mark_last_busy(&sw->dev);
1331	pm_runtime_put_autosuspend(&sw->dev);
1332}
1333
1334/*
1335 * tb_scan_port() - check for and initialize switches below port
1336 */
1337static void tb_scan_port(struct tb_port *port)
1338{
1339	struct tb_cm *tcm = tb_priv(port->sw->tb);
1340	struct tb_port *upstream_port;
1341	bool discovery = false;
1342	struct tb_switch *sw;
1343
1344	if (tb_is_upstream_port(port))
1345		return;
1346
1347	if (tb_port_is_dpout(port) && tb_dp_port_hpd_is_active(port) == 1 &&
1348	    !tb_dp_port_is_enabled(port)) {
1349		tb_port_dbg(port, "DP adapter HPD set, queuing hotplug\n");
1350		tb_queue_hotplug(port->sw->tb, tb_route(port->sw), port->port,
1351				 false);
1352		return;
1353	}
1354
1355	if (port->config.type != TB_TYPE_PORT)
1356		return;
1357	if (port->dual_link_port && port->link_nr)
1358		return; /*
1359			 * Downstream switch is reachable through two ports.
1360			 * Only scan on the primary port (link_nr == 0).
1361			 */
1362
1363	if (port->usb4)
1364		pm_runtime_get_sync(&port->usb4->dev);
1365
1366	if (tb_wait_for_port(port, false) <= 0)
1367		goto out_rpm_put;
1368	if (port->remote) {
1369		tb_port_dbg(port, "port already has a remote\n");
1370		goto out_rpm_put;
1371	}
1372
1373	tb_retimer_scan(port, true);
1374
1375	sw = tb_switch_alloc(port->sw->tb, &port->sw->dev,
1376			     tb_downstream_route(port));
1377	if (IS_ERR(sw)) {
1378		/*
1379		 * If there is an error accessing the connected switch
1380		 * it may be connected to another domain. Also we allow
1381		 * the other domain to be connected to a max depth switch.
1382		 */
1383		if (PTR_ERR(sw) == -EIO || PTR_ERR(sw) == -EADDRNOTAVAIL)
1384			tb_scan_xdomain(port);
1385		goto out_rpm_put;
1386	}
1387
1388	if (tb_switch_configure(sw)) {
1389		tb_switch_put(sw);
1390		goto out_rpm_put;
1391	}
1392
1393	/*
1394	 * If there was previously another domain connected remove it
1395	 * first.
1396	 */
1397	if (port->xdomain) {
1398		tb_xdomain_remove(port->xdomain);
1399		tb_port_unconfigure_xdomain(port);
1400		port->xdomain = NULL;
1401	}
1402
1403	/*
1404	 * Do not send uevents until we have discovered all existing
1405	 * tunnels and know which switches were authorized already by
1406	 * the boot firmware.
1407	 */
1408	if (!tcm->hotplug_active) {
1409		dev_set_uevent_suppress(&sw->dev, true);
1410		discovery = true;
1411	}
1412
1413	/*
1414	 * At the moment Thunderbolt 2 and beyond (devices with LC) we
1415	 * can support runtime PM.
1416	 */
1417	sw->rpm = sw->generation > 1;
1418
1419	if (tb_switch_add(sw)) {
1420		tb_switch_put(sw);
1421		goto out_rpm_put;
1422	}
1423
1424	upstream_port = tb_upstream_port(sw);
1425	tb_configure_link(port, upstream_port, sw);
1426
1427	/*
1428	 * CL0s and CL1 are enabled and supported together.
1429	 * Silently ignore CLx enabling in case CLx is not supported.
1430	 */
1431	if (discovery)
1432		tb_sw_dbg(sw, "discovery, not touching CL states\n");
1433	else if (tb_enable_clx(sw))
1434		tb_sw_warn(sw, "failed to enable CL states\n");
1435
1436	if (tb_enable_tmu(sw))
1437		tb_sw_warn(sw, "failed to enable TMU\n");
1438
1439	/*
1440	 * Configuration valid needs to be set after the TMU has been
1441	 * enabled for the upstream port of the router so we do it here.
1442	 */
1443	tb_switch_configuration_valid(sw);
1444
1445	/* Scan upstream retimers */
1446	tb_retimer_scan(upstream_port, true);
1447
1448	/*
1449	 * Create USB 3.x tunnels only when the switch is plugged to the
1450	 * domain. This is because we scan the domain also during discovery
1451	 * and want to discover existing USB 3.x tunnels before we create
1452	 * any new.
1453	 */
1454	if (tcm->hotplug_active && tb_tunnel_usb3(sw->tb, sw))
1455		tb_sw_warn(sw, "USB3 tunnel creation failed\n");
1456
1457	tb_add_dp_resources(sw);
1458	tb_scan_switch(sw);
1459
1460out_rpm_put:
1461	if (port->usb4) {
1462		pm_runtime_mark_last_busy(&port->usb4->dev);
1463		pm_runtime_put_autosuspend(&port->usb4->dev);
1464	}
1465}
1466
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1467static void tb_deactivate_and_free_tunnel(struct tb_tunnel *tunnel)
1468{
1469	struct tb_port *src_port, *dst_port;
1470	struct tb *tb;
1471
1472	if (!tunnel)
1473		return;
1474
1475	tb_tunnel_deactivate(tunnel);
1476	list_del(&tunnel->list);
1477
1478	tb = tunnel->tb;
1479	src_port = tunnel->src_port;
1480	dst_port = tunnel->dst_port;
1481
1482	switch (tunnel->type) {
1483	case TB_TUNNEL_DP:
1484		tb_detach_bandwidth_group(src_port);
1485		/*
1486		 * In case of DP tunnel make sure the DP IN resource is
1487		 * deallocated properly.
1488		 */
1489		tb_switch_dealloc_dp_resource(src_port->sw, src_port);
1490		/*
1491		 * If bandwidth on a link is < asym_threshold
1492		 * transition the link to symmetric.
1493		 */
1494		tb_configure_sym(tb, src_port, dst_port, 0, 0, true);
1495		/* Now we can allow the domain to runtime suspend again */
1496		pm_runtime_mark_last_busy(&dst_port->sw->dev);
1497		pm_runtime_put_autosuspend(&dst_port->sw->dev);
1498		pm_runtime_mark_last_busy(&src_port->sw->dev);
1499		pm_runtime_put_autosuspend(&src_port->sw->dev);
1500		fallthrough;
1501
1502	case TB_TUNNEL_USB3:
1503		tb_reclaim_usb3_bandwidth(tb, src_port, dst_port);
1504		break;
1505
1506	default:
1507		/*
1508		 * PCIe and DMA tunnels do not consume guaranteed
1509		 * bandwidth.
1510		 */
1511		break;
1512	}
1513
1514	tb_tunnel_free(tunnel);
1515}
1516
1517/*
1518 * tb_free_invalid_tunnels() - destroy tunnels of devices that have gone away
1519 */
1520static void tb_free_invalid_tunnels(struct tb *tb)
1521{
1522	struct tb_cm *tcm = tb_priv(tb);
1523	struct tb_tunnel *tunnel;
1524	struct tb_tunnel *n;
1525
1526	list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) {
1527		if (tb_tunnel_is_invalid(tunnel))
1528			tb_deactivate_and_free_tunnel(tunnel);
1529	}
1530}
1531
1532/*
1533 * tb_free_unplugged_children() - traverse hierarchy and free unplugged switches
1534 */
1535static void tb_free_unplugged_children(struct tb_switch *sw)
1536{
1537	struct tb_port *port;
1538
1539	tb_switch_for_each_port(sw, port) {
1540		if (!tb_port_has_remote(port))
1541			continue;
1542
1543		if (port->remote->sw->is_unplugged) {
1544			tb_retimer_remove_all(port);
1545			tb_remove_dp_resources(port->remote->sw);
1546			tb_switch_unconfigure_link(port->remote->sw);
1547			tb_switch_set_link_width(port->remote->sw,
1548						 TB_LINK_WIDTH_SINGLE);
1549			tb_switch_remove(port->remote->sw);
1550			port->remote = NULL;
1551			if (port->dual_link_port)
1552				port->dual_link_port->remote = NULL;
1553		} else {
1554			tb_free_unplugged_children(port->remote->sw);
1555		}
1556	}
1557}
1558
1559static struct tb_port *tb_find_pcie_down(struct tb_switch *sw,
1560					 const struct tb_port *port)
1561{
1562	struct tb_port *down = NULL;
1563
1564	/*
1565	 * To keep plugging devices consistently in the same PCIe
1566	 * hierarchy, do mapping here for switch downstream PCIe ports.
1567	 */
1568	if (tb_switch_is_usb4(sw)) {
1569		down = usb4_switch_map_pcie_down(sw, port);
1570	} else if (!tb_route(sw)) {
1571		int phy_port = tb_phy_port_from_link(port->port);
1572		int index;
1573
1574		/*
1575		 * Hard-coded Thunderbolt port to PCIe down port mapping
1576		 * per controller.
1577		 */
1578		if (tb_switch_is_cactus_ridge(sw) ||
1579		    tb_switch_is_alpine_ridge(sw))
1580			index = !phy_port ? 6 : 7;
1581		else if (tb_switch_is_falcon_ridge(sw))
1582			index = !phy_port ? 6 : 8;
1583		else if (tb_switch_is_titan_ridge(sw))
1584			index = !phy_port ? 8 : 9;
1585		else
1586			goto out;
1587
1588		/* Validate the hard-coding */
1589		if (WARN_ON(index > sw->config.max_port_number))
1590			goto out;
1591
1592		down = &sw->ports[index];
1593	}
1594
1595	if (down) {
1596		if (WARN_ON(!tb_port_is_pcie_down(down)))
1597			goto out;
1598		if (tb_pci_port_is_enabled(down))
1599			goto out;
1600
1601		return down;
1602	}
1603
1604out:
1605	return tb_find_unused_port(sw, TB_TYPE_PCIE_DOWN);
1606}
1607
1608static void
1609tb_recalc_estimated_bandwidth_for_group(struct tb_bandwidth_group *group)
1610{
1611	struct tb_tunnel *first_tunnel;
1612	struct tb *tb = group->tb;
1613	struct tb_port *in;
1614	int ret;
1615
1616	tb_dbg(tb, "re-calculating bandwidth estimation for group %u\n",
1617	       group->index);
1618
1619	first_tunnel = NULL;
1620	list_for_each_entry(in, &group->ports, group_list) {
1621		int estimated_bw, estimated_up, estimated_down;
1622		struct tb_tunnel *tunnel;
1623		struct tb_port *out;
1624
1625		if (!usb4_dp_port_bandwidth_mode_enabled(in))
1626			continue;
1627
1628		tunnel = tb_find_tunnel(tb, TB_TUNNEL_DP, in, NULL);
1629		if (WARN_ON(!tunnel))
1630			break;
1631
1632		if (!first_tunnel) {
1633			/*
1634			 * Since USB3 bandwidth is shared by all DP
1635			 * tunnels under the host router USB4 port, even
1636			 * if they do not begin from the host router, we
1637			 * can release USB3 bandwidth just once and not
1638			 * for each tunnel separately.
1639			 */
1640			first_tunnel = tunnel;
1641			ret = tb_release_unused_usb3_bandwidth(tb,
1642				first_tunnel->src_port, first_tunnel->dst_port);
1643			if (ret) {
1644				tb_tunnel_warn(tunnel,
1645					"failed to release unused bandwidth\n");
1646				break;
1647			}
1648		}
1649
1650		out = tunnel->dst_port;
1651		ret = tb_available_bandwidth(tb, in, out, &estimated_up,
1652					     &estimated_down, true);
1653		if (ret) {
1654			tb_tunnel_warn(tunnel,
1655				"failed to re-calculate estimated bandwidth\n");
1656			break;
1657		}
1658
1659		/*
1660		 * Estimated bandwidth includes:
1661		 *  - already allocated bandwidth for the DP tunnel
1662		 *  - available bandwidth along the path
1663		 *  - bandwidth allocated for USB 3.x but not used.
1664		 */
1665		tb_tunnel_dbg(tunnel,
1666			      "re-calculated estimated bandwidth %u/%u Mb/s\n",
1667			      estimated_up, estimated_down);
1668
1669		if (tb_port_path_direction_downstream(in, out))
1670			estimated_bw = estimated_down;
1671		else
1672			estimated_bw = estimated_up;
1673
1674		if (usb4_dp_port_set_estimated_bandwidth(in, estimated_bw))
1675			tb_tunnel_warn(tunnel,
1676				       "failed to update estimated bandwidth\n");
1677	}
1678
1679	if (first_tunnel)
1680		tb_reclaim_usb3_bandwidth(tb, first_tunnel->src_port,
1681					  first_tunnel->dst_port);
1682
1683	tb_dbg(tb, "bandwidth estimation for group %u done\n", group->index);
1684}
1685
1686static void tb_recalc_estimated_bandwidth(struct tb *tb)
1687{
1688	struct tb_cm *tcm = tb_priv(tb);
1689	int i;
1690
1691	tb_dbg(tb, "bandwidth consumption changed, re-calculating estimated bandwidth\n");
1692
1693	for (i = 0; i < ARRAY_SIZE(tcm->groups); i++) {
1694		struct tb_bandwidth_group *group = &tcm->groups[i];
1695
1696		if (!list_empty(&group->ports))
1697			tb_recalc_estimated_bandwidth_for_group(group);
1698	}
1699
1700	tb_dbg(tb, "bandwidth re-calculation done\n");
1701}
1702
1703static struct tb_port *tb_find_dp_out(struct tb *tb, struct tb_port *in)
1704{
1705	struct tb_port *host_port, *port;
1706	struct tb_cm *tcm = tb_priv(tb);
1707
1708	host_port = tb_route(in->sw) ?
1709		tb_port_at(tb_route(in->sw), tb->root_switch) : NULL;
1710
1711	list_for_each_entry(port, &tcm->dp_resources, list) {
1712		if (!tb_port_is_dpout(port))
1713			continue;
1714
1715		if (tb_port_is_enabled(port)) {
1716			tb_port_dbg(port, "DP OUT in use\n");
1717			continue;
1718		}
1719
 
 
 
 
 
 
1720		tb_port_dbg(port, "DP OUT available\n");
1721
1722		/*
1723		 * Keep the DP tunnel under the topology starting from
1724		 * the same host router downstream port.
1725		 */
1726		if (host_port && tb_route(port->sw)) {
1727			struct tb_port *p;
1728
1729			p = tb_port_at(tb_route(port->sw), tb->root_switch);
1730			if (p != host_port)
1731				continue;
1732		}
1733
1734		return port;
1735	}
1736
1737	return NULL;
1738}
1739
1740static bool tb_tunnel_one_dp(struct tb *tb)
 
1741{
1742	int available_up, available_down, ret, link_nr;
1743	struct tb_cm *tcm = tb_priv(tb);
1744	struct tb_port *port, *in, *out;
1745	int consumed_up, consumed_down;
1746	struct tb_tunnel *tunnel;
1747
1748	/*
1749	 * Find pair of inactive DP IN and DP OUT adapters and then
1750	 * establish a DP tunnel between them.
1751	 */
1752	tb_dbg(tb, "looking for DP IN <-> DP OUT pairs:\n");
1753
1754	in = NULL;
1755	out = NULL;
1756	list_for_each_entry(port, &tcm->dp_resources, list) {
1757		if (!tb_port_is_dpin(port))
1758			continue;
1759
1760		if (tb_port_is_enabled(port)) {
1761			tb_port_dbg(port, "DP IN in use\n");
1762			continue;
1763		}
1764
1765		in = port;
1766		tb_port_dbg(in, "DP IN available\n");
1767
1768		out = tb_find_dp_out(tb, port);
1769		if (out)
1770			break;
1771	}
1772
1773	if (!in) {
1774		tb_dbg(tb, "no suitable DP IN adapter available, not tunneling\n");
1775		return false;
1776	}
1777	if (!out) {
1778		tb_dbg(tb, "no suitable DP OUT adapter available, not tunneling\n");
1779		return false;
1780	}
1781
1782	/*
1783	 * This is only applicable to links that are not bonded (so
1784	 * when Thunderbolt 1 hardware is involved somewhere in the
1785	 * topology). For these try to share the DP bandwidth between
1786	 * the two lanes.
1787	 */
1788	link_nr = 1;
1789	list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
1790		if (tb_tunnel_is_dp(tunnel)) {
1791			link_nr = 0;
1792			break;
1793		}
1794	}
1795
1796	/*
1797	 * DP stream needs the domain to be active so runtime resume
1798	 * both ends of the tunnel.
1799	 *
1800	 * This should bring the routers in the middle active as well
1801	 * and keeps the domain from runtime suspending while the DP
1802	 * tunnel is active.
1803	 */
1804	pm_runtime_get_sync(&in->sw->dev);
1805	pm_runtime_get_sync(&out->sw->dev);
1806
1807	if (tb_switch_alloc_dp_resource(in->sw, in)) {
1808		tb_port_dbg(in, "no resource available for DP IN, not tunneling\n");
1809		goto err_rpm_put;
1810	}
1811
1812	if (!tb_attach_bandwidth_group(tcm, in, out))
1813		goto err_dealloc_dp;
1814
1815	/* Make all unused USB3 bandwidth available for the new DP tunnel */
1816	ret = tb_release_unused_usb3_bandwidth(tb, in, out);
1817	if (ret) {
1818		tb_warn(tb, "failed to release unused bandwidth\n");
1819		goto err_detach_group;
1820	}
1821
1822	ret = tb_available_bandwidth(tb, in, out, &available_up, &available_down,
1823				     true);
1824	if (ret)
1825		goto err_reclaim_usb;
1826
1827	tb_dbg(tb, "available bandwidth for new DP tunnel %u/%u Mb/s\n",
1828	       available_up, available_down);
1829
1830	tunnel = tb_tunnel_alloc_dp(tb, in, out, link_nr, available_up,
1831				    available_down);
1832	if (!tunnel) {
1833		tb_port_dbg(out, "could not allocate DP tunnel\n");
1834		goto err_reclaim_usb;
1835	}
1836
1837	if (tb_tunnel_activate(tunnel)) {
1838		tb_port_info(out, "DP tunnel activation failed, aborting\n");
1839		goto err_free;
1840	}
1841
 
 
 
 
 
1842	list_add_tail(&tunnel->list, &tcm->tunnel_list);
1843	tb_reclaim_usb3_bandwidth(tb, in, out);
1844
 
1845	/*
1846	 * Transition the links to asymmetric if the consumption exceeds
1847	 * the threshold.
1848	 */
1849	if (!tb_tunnel_consumed_bandwidth(tunnel, &consumed_up, &consumed_down))
1850		tb_configure_asym(tb, in, out, consumed_up, consumed_down);
1851
1852	/* Update the domain with the new bandwidth estimation */
1853	tb_recalc_estimated_bandwidth(tb);
1854
1855	/*
1856	 * In case of DP tunnel exists, change host router's 1st children
1857	 * TMU mode to HiFi for CL0s to work.
1858	 */
1859	tb_increase_tmu_accuracy(tunnel);
1860	return true;
1861
 
 
1862err_free:
1863	tb_tunnel_free(tunnel);
1864err_reclaim_usb:
1865	tb_reclaim_usb3_bandwidth(tb, in, out);
1866err_detach_group:
1867	tb_detach_bandwidth_group(in);
1868err_dealloc_dp:
1869	tb_switch_dealloc_dp_resource(in->sw, in);
1870err_rpm_put:
1871	pm_runtime_mark_last_busy(&out->sw->dev);
1872	pm_runtime_put_autosuspend(&out->sw->dev);
1873	pm_runtime_mark_last_busy(&in->sw->dev);
1874	pm_runtime_put_autosuspend(&in->sw->dev);
1875
1876	return false;
1877}
1878
1879static void tb_tunnel_dp(struct tb *tb)
1880{
 
 
 
1881	if (!tb_acpi_may_tunnel_dp()) {
1882		tb_dbg(tb, "DP tunneling disabled, not creating tunnel\n");
1883		return;
1884	}
1885
1886	while (tb_tunnel_one_dp(tb))
1887		;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1888}
1889
1890static void tb_dp_resource_unavailable(struct tb *tb, struct tb_port *port)
1891{
1892	struct tb_port *in, *out;
1893	struct tb_tunnel *tunnel;
1894
1895	if (tb_port_is_dpin(port)) {
1896		tb_port_dbg(port, "DP IN resource unavailable\n");
1897		in = port;
1898		out = NULL;
1899	} else {
1900		tb_port_dbg(port, "DP OUT resource unavailable\n");
1901		in = NULL;
1902		out = port;
1903	}
1904
1905	tunnel = tb_find_tunnel(tb, TB_TUNNEL_DP, in, out);
1906	tb_deactivate_and_free_tunnel(tunnel);
 
 
 
1907	list_del_init(&port->list);
1908
1909	/*
1910	 * See if there is another DP OUT port that can be used for
1911	 * to create another tunnel.
1912	 */
1913	tb_recalc_estimated_bandwidth(tb);
1914	tb_tunnel_dp(tb);
1915}
1916
1917static void tb_dp_resource_available(struct tb *tb, struct tb_port *port)
1918{
1919	struct tb_cm *tcm = tb_priv(tb);
1920	struct tb_port *p;
1921
1922	if (tb_port_is_enabled(port))
1923		return;
1924
1925	list_for_each_entry(p, &tcm->dp_resources, list) {
1926		if (p == port)
1927			return;
1928	}
1929
1930	tb_port_dbg(port, "DP %s resource available after hotplug\n",
1931		    tb_port_is_dpin(port) ? "IN" : "OUT");
1932	list_add_tail(&port->list, &tcm->dp_resources);
 
1933
1934	/* Look for suitable DP IN <-> DP OUT pairs now */
1935	tb_tunnel_dp(tb);
1936}
1937
1938static void tb_disconnect_and_release_dp(struct tb *tb)
1939{
1940	struct tb_cm *tcm = tb_priv(tb);
1941	struct tb_tunnel *tunnel, *n;
1942
1943	/*
1944	 * Tear down all DP tunnels and release their resources. They
1945	 * will be re-established after resume based on plug events.
1946	 */
1947	list_for_each_entry_safe_reverse(tunnel, n, &tcm->tunnel_list, list) {
1948		if (tb_tunnel_is_dp(tunnel))
1949			tb_deactivate_and_free_tunnel(tunnel);
1950	}
1951
1952	while (!list_empty(&tcm->dp_resources)) {
1953		struct tb_port *port;
1954
1955		port = list_first_entry(&tcm->dp_resources,
1956					struct tb_port, list);
1957		list_del_init(&port->list);
1958	}
1959}
1960
1961static int tb_disconnect_pci(struct tb *tb, struct tb_switch *sw)
1962{
1963	struct tb_tunnel *tunnel;
1964	struct tb_port *up;
1965
1966	up = tb_switch_find_port(sw, TB_TYPE_PCIE_UP);
1967	if (WARN_ON(!up))
1968		return -ENODEV;
1969
1970	tunnel = tb_find_tunnel(tb, TB_TUNNEL_PCI, NULL, up);
1971	if (WARN_ON(!tunnel))
1972		return -ENODEV;
1973
1974	tb_switch_xhci_disconnect(sw);
1975
1976	tb_tunnel_deactivate(tunnel);
1977	list_del(&tunnel->list);
1978	tb_tunnel_free(tunnel);
1979	return 0;
1980}
1981
1982static int tb_tunnel_pci(struct tb *tb, struct tb_switch *sw)
1983{
1984	struct tb_port *up, *down, *port;
1985	struct tb_cm *tcm = tb_priv(tb);
1986	struct tb_tunnel *tunnel;
1987
1988	up = tb_switch_find_port(sw, TB_TYPE_PCIE_UP);
1989	if (!up)
1990		return 0;
1991
1992	/*
1993	 * Look up available down port. Since we are chaining it should
1994	 * be found right above this switch.
1995	 */
1996	port = tb_switch_downstream_port(sw);
1997	down = tb_find_pcie_down(tb_switch_parent(sw), port);
1998	if (!down)
1999		return 0;
2000
2001	tunnel = tb_tunnel_alloc_pci(tb, up, down);
2002	if (!tunnel)
2003		return -ENOMEM;
2004
2005	if (tb_tunnel_activate(tunnel)) {
2006		tb_port_info(up,
2007			     "PCIe tunnel activation failed, aborting\n");
2008		tb_tunnel_free(tunnel);
2009		return -EIO;
2010	}
2011
2012	/*
2013	 * PCIe L1 is needed to enable CL0s for Titan Ridge so enable it
2014	 * here.
2015	 */
2016	if (tb_switch_pcie_l1_enable(sw))
2017		tb_sw_warn(sw, "failed to enable PCIe L1 for Titan Ridge\n");
2018
2019	if (tb_switch_xhci_connect(sw))
2020		tb_sw_warn(sw, "failed to connect xHCI\n");
2021
2022	list_add_tail(&tunnel->list, &tcm->tunnel_list);
2023	return 0;
2024}
2025
2026static int tb_approve_xdomain_paths(struct tb *tb, struct tb_xdomain *xd,
2027				    int transmit_path, int transmit_ring,
2028				    int receive_path, int receive_ring)
2029{
2030	struct tb_cm *tcm = tb_priv(tb);
2031	struct tb_port *nhi_port, *dst_port;
2032	struct tb_tunnel *tunnel;
2033	struct tb_switch *sw;
2034	int ret;
2035
2036	sw = tb_to_switch(xd->dev.parent);
2037	dst_port = tb_port_at(xd->route, sw);
2038	nhi_port = tb_switch_find_port(tb->root_switch, TB_TYPE_NHI);
2039
2040	mutex_lock(&tb->lock);
2041
2042	/*
2043	 * When tunneling DMA paths the link should not enter CL states
2044	 * so disable them now.
2045	 */
2046	tb_disable_clx(sw);
2047
2048	tunnel = tb_tunnel_alloc_dma(tb, nhi_port, dst_port, transmit_path,
2049				     transmit_ring, receive_path, receive_ring);
2050	if (!tunnel) {
2051		ret = -ENOMEM;
2052		goto err_clx;
2053	}
2054
2055	if (tb_tunnel_activate(tunnel)) {
2056		tb_port_info(nhi_port,
2057			     "DMA tunnel activation failed, aborting\n");
2058		ret = -EIO;
2059		goto err_free;
2060	}
2061
2062	list_add_tail(&tunnel->list, &tcm->tunnel_list);
2063	mutex_unlock(&tb->lock);
2064	return 0;
2065
2066err_free:
2067	tb_tunnel_free(tunnel);
2068err_clx:
2069	tb_enable_clx(sw);
2070	mutex_unlock(&tb->lock);
2071
2072	return ret;
2073}
2074
2075static void __tb_disconnect_xdomain_paths(struct tb *tb, struct tb_xdomain *xd,
2076					  int transmit_path, int transmit_ring,
2077					  int receive_path, int receive_ring)
2078{
2079	struct tb_cm *tcm = tb_priv(tb);
2080	struct tb_port *nhi_port, *dst_port;
2081	struct tb_tunnel *tunnel, *n;
2082	struct tb_switch *sw;
2083
2084	sw = tb_to_switch(xd->dev.parent);
2085	dst_port = tb_port_at(xd->route, sw);
2086	nhi_port = tb_switch_find_port(tb->root_switch, TB_TYPE_NHI);
2087
2088	list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) {
2089		if (!tb_tunnel_is_dma(tunnel))
2090			continue;
2091		if (tunnel->src_port != nhi_port || tunnel->dst_port != dst_port)
2092			continue;
2093
2094		if (tb_tunnel_match_dma(tunnel, transmit_path, transmit_ring,
2095					receive_path, receive_ring))
2096			tb_deactivate_and_free_tunnel(tunnel);
2097	}
2098
2099	/*
2100	 * Try to re-enable CL states now, it is OK if this fails
2101	 * because we may still have another DMA tunnel active through
2102	 * the same host router USB4 downstream port.
2103	 */
2104	tb_enable_clx(sw);
2105}
2106
2107static int tb_disconnect_xdomain_paths(struct tb *tb, struct tb_xdomain *xd,
2108				       int transmit_path, int transmit_ring,
2109				       int receive_path, int receive_ring)
2110{
2111	if (!xd->is_unplugged) {
2112		mutex_lock(&tb->lock);
2113		__tb_disconnect_xdomain_paths(tb, xd, transmit_path,
2114					      transmit_ring, receive_path,
2115					      receive_ring);
2116		mutex_unlock(&tb->lock);
2117	}
2118	return 0;
2119}
2120
2121/* hotplug handling */
2122
2123/*
2124 * tb_handle_hotplug() - handle hotplug event
2125 *
2126 * Executes on tb->wq.
2127 */
2128static void tb_handle_hotplug(struct work_struct *work)
2129{
2130	struct tb_hotplug_event *ev = container_of(work, typeof(*ev), work);
2131	struct tb *tb = ev->tb;
2132	struct tb_cm *tcm = tb_priv(tb);
2133	struct tb_switch *sw;
2134	struct tb_port *port;
2135
2136	/* Bring the domain back from sleep if it was suspended */
2137	pm_runtime_get_sync(&tb->dev);
2138
2139	mutex_lock(&tb->lock);
2140	if (!tcm->hotplug_active)
2141		goto out; /* during init, suspend or shutdown */
2142
2143	sw = tb_switch_find_by_route(tb, ev->route);
2144	if (!sw) {
2145		tb_warn(tb,
2146			"hotplug event from non existent switch %llx:%x (unplug: %d)\n",
2147			ev->route, ev->port, ev->unplug);
2148		goto out;
2149	}
2150	if (ev->port > sw->config.max_port_number) {
2151		tb_warn(tb,
2152			"hotplug event from non existent port %llx:%x (unplug: %d)\n",
2153			ev->route, ev->port, ev->unplug);
2154		goto put_sw;
2155	}
2156	port = &sw->ports[ev->port];
2157	if (tb_is_upstream_port(port)) {
2158		tb_dbg(tb, "hotplug event for upstream port %llx:%x (unplug: %d)\n",
2159		       ev->route, ev->port, ev->unplug);
2160		goto put_sw;
2161	}
2162
2163	pm_runtime_get_sync(&sw->dev);
2164
2165	if (ev->unplug) {
2166		tb_retimer_remove_all(port);
2167
2168		if (tb_port_has_remote(port)) {
2169			tb_port_dbg(port, "switch unplugged\n");
2170			tb_sw_set_unplugged(port->remote->sw);
2171			tb_free_invalid_tunnels(tb);
2172			tb_remove_dp_resources(port->remote->sw);
2173			tb_switch_tmu_disable(port->remote->sw);
2174			tb_switch_unconfigure_link(port->remote->sw);
2175			tb_switch_set_link_width(port->remote->sw,
2176						 TB_LINK_WIDTH_SINGLE);
2177			tb_switch_remove(port->remote->sw);
2178			port->remote = NULL;
2179			if (port->dual_link_port)
2180				port->dual_link_port->remote = NULL;
2181			/* Maybe we can create another DP tunnel */
2182			tb_recalc_estimated_bandwidth(tb);
2183			tb_tunnel_dp(tb);
2184		} else if (port->xdomain) {
2185			struct tb_xdomain *xd = tb_xdomain_get(port->xdomain);
2186
2187			tb_port_dbg(port, "xdomain unplugged\n");
2188			/*
2189			 * Service drivers are unbound during
2190			 * tb_xdomain_remove() so setting XDomain as
2191			 * unplugged here prevents deadlock if they call
2192			 * tb_xdomain_disable_paths(). We will tear down
2193			 * all the tunnels below.
2194			 */
2195			xd->is_unplugged = true;
2196			tb_xdomain_remove(xd);
2197			port->xdomain = NULL;
2198			__tb_disconnect_xdomain_paths(tb, xd, -1, -1, -1, -1);
2199			tb_xdomain_put(xd);
2200			tb_port_unconfigure_xdomain(port);
2201		} else if (tb_port_is_dpout(port) || tb_port_is_dpin(port)) {
2202			tb_dp_resource_unavailable(tb, port);
2203		} else if (!port->port) {
2204			tb_sw_dbg(sw, "xHCI disconnect request\n");
2205			tb_switch_xhci_disconnect(sw);
2206		} else {
2207			tb_port_dbg(port,
2208				   "got unplug event for disconnected port, ignoring\n");
2209		}
2210	} else if (port->remote) {
2211		tb_port_dbg(port, "got plug event for connected port, ignoring\n");
2212	} else if (!port->port && sw->authorized) {
2213		tb_sw_dbg(sw, "xHCI connect request\n");
2214		tb_switch_xhci_connect(sw);
2215	} else {
2216		if (tb_port_is_null(port)) {
2217			tb_port_dbg(port, "hotplug: scanning\n");
2218			tb_scan_port(port);
2219			if (!port->remote)
2220				tb_port_dbg(port, "hotplug: no switch found\n");
2221		} else if (tb_port_is_dpout(port) || tb_port_is_dpin(port)) {
2222			tb_dp_resource_available(tb, port);
2223		}
2224	}
2225
2226	pm_runtime_mark_last_busy(&sw->dev);
2227	pm_runtime_put_autosuspend(&sw->dev);
2228
2229put_sw:
2230	tb_switch_put(sw);
2231out:
2232	mutex_unlock(&tb->lock);
2233
2234	pm_runtime_mark_last_busy(&tb->dev);
2235	pm_runtime_put_autosuspend(&tb->dev);
2236
2237	kfree(ev);
2238}
2239
2240static int tb_alloc_dp_bandwidth(struct tb_tunnel *tunnel, int *requested_up,
2241				 int *requested_down)
2242{
2243	int allocated_up, allocated_down, available_up, available_down, ret;
2244	int requested_up_corrected, requested_down_corrected, granularity;
2245	int max_up, max_down, max_up_rounded, max_down_rounded;
 
2246	struct tb *tb = tunnel->tb;
2247	struct tb_port *in, *out;
 
2248
2249	ret = tb_tunnel_allocated_bandwidth(tunnel, &allocated_up, &allocated_down);
2250	if (ret)
2251		return ret;
2252
2253	in = tunnel->src_port;
2254	out = tunnel->dst_port;
2255
2256	tb_tunnel_dbg(tunnel, "bandwidth allocated currently %d/%d Mb/s\n",
2257		      allocated_up, allocated_down);
2258
2259	/*
2260	 * If we get rounded up request from graphics side, say HBR2 x 4
2261	 * that is 17500 instead of 17280 (this is because of the
2262	 * granularity), we allow it too. Here the graphics has already
2263	 * negotiated with the DPRX the maximum possible rates (which is
2264	 * 17280 in this case).
2265	 *
2266	 * Since the link cannot go higher than 17280 we use that in our
2267	 * calculations but the DP IN adapter Allocated BW write must be
2268	 * the same value (17500) otherwise the adapter will mark it as
2269	 * failed for graphics.
2270	 */
2271	ret = tb_tunnel_maximum_bandwidth(tunnel, &max_up, &max_down);
2272	if (ret)
2273		return ret;
2274
2275	ret = usb4_dp_port_granularity(in);
2276	if (ret < 0)
2277		return ret;
2278	granularity = ret;
2279
2280	max_up_rounded = roundup(max_up, granularity);
2281	max_down_rounded = roundup(max_down, granularity);
2282
2283	/*
2284	 * This will "fix" the request down to the maximum supported
2285	 * rate * lanes if it is at the maximum rounded up level.
2286	 */
2287	requested_up_corrected = *requested_up;
2288	if (requested_up_corrected == max_up_rounded)
2289		requested_up_corrected = max_up;
2290	else if (requested_up_corrected < 0)
2291		requested_up_corrected = 0;
2292	requested_down_corrected = *requested_down;
2293	if (requested_down_corrected == max_down_rounded)
2294		requested_down_corrected = max_down;
2295	else if (requested_down_corrected < 0)
2296		requested_down_corrected = 0;
2297
2298	tb_tunnel_dbg(tunnel, "corrected bandwidth request %d/%d Mb/s\n",
2299		      requested_up_corrected, requested_down_corrected);
2300
2301	if ((*requested_up >= 0 && requested_up_corrected > max_up_rounded) ||
2302	    (*requested_down >= 0 && requested_down_corrected > max_down_rounded)) {
2303		tb_tunnel_dbg(tunnel,
2304			      "bandwidth request too high (%d/%d Mb/s > %d/%d Mb/s)\n",
2305			      requested_up_corrected, requested_down_corrected,
2306			      max_up_rounded, max_down_rounded);
2307		return -ENOBUFS;
 
2308	}
2309
 
 
 
2310	if ((*requested_up >= 0 && requested_up_corrected <= allocated_up) ||
2311	    (*requested_down >= 0 && requested_down_corrected <= allocated_down)) {
2312		/*
2313		 * If bandwidth on a link is < asym_threshold transition
2314		 * the link to symmetric.
2315		 */
2316		tb_configure_sym(tb, in, out, *requested_up, *requested_down, true);
2317		/*
2318		 * If requested bandwidth is less or equal than what is
2319		 * currently allocated to that tunnel we simply change
2320		 * the reservation of the tunnel. Since all the tunnels
2321		 * going out from the same USB4 port are in the same
2322		 * group the released bandwidth will be taken into
2323		 * account for the other tunnels automatically below.
2324		 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2325		return tb_tunnel_alloc_bandwidth(tunnel, requested_up,
2326						 requested_down);
2327	}
2328
2329	/*
2330	 * More bandwidth is requested. Release all the potential
2331	 * bandwidth from USB3 first.
2332	 */
2333	ret = tb_release_unused_usb3_bandwidth(tb, in, out);
2334	if (ret)
2335		return ret;
2336
2337	/*
2338	 * Then go over all tunnels that cross the same USB4 ports (they
2339	 * are also in the same group but we use the same function here
2340	 * that we use with the normal bandwidth allocation).
2341	 */
2342	ret = tb_available_bandwidth(tb, in, out, &available_up, &available_down,
2343				     true);
2344	if (ret)
2345		goto reclaim;
2346
2347	tb_tunnel_dbg(tunnel, "bandwidth available for allocation %d/%d Mb/s\n",
2348		      available_up, available_down);
 
 
 
 
 
 
2349
2350	if ((*requested_up >= 0 && available_up >= requested_up_corrected) ||
2351	    (*requested_down >= 0 && available_down >= requested_down_corrected)) {
2352		/*
2353		 * If bandwidth on a link is >= asym_threshold
2354		 * transition the link to asymmetric.
2355		 */
2356		ret = tb_configure_asym(tb, in, out, *requested_up,
2357					*requested_down);
2358		if (ret) {
2359			tb_configure_sym(tb, in, out, 0, 0, true);
2360			return ret;
2361		}
2362
2363		ret = tb_tunnel_alloc_bandwidth(tunnel, requested_up,
2364						requested_down);
2365		if (ret) {
2366			tb_tunnel_warn(tunnel, "failed to allocate bandwidth\n");
2367			tb_configure_sym(tb, in, out, 0, 0, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
2368		}
2369	} else {
2370		ret = -ENOBUFS;
2371	}
2372
2373reclaim:
2374	tb_reclaim_usb3_bandwidth(tb, in, out);
 
 
 
 
 
 
 
 
 
 
 
 
2375	return ret;
2376}
2377
2378static void tb_handle_dp_bandwidth_request(struct work_struct *work)
2379{
2380	struct tb_hotplug_event *ev = container_of(work, typeof(*ev), work);
2381	int requested_bw, requested_up, requested_down, ret;
2382	struct tb_port *in, *out;
2383	struct tb_tunnel *tunnel;
2384	struct tb *tb = ev->tb;
2385	struct tb_cm *tcm = tb_priv(tb);
2386	struct tb_switch *sw;
 
2387
2388	pm_runtime_get_sync(&tb->dev);
2389
2390	mutex_lock(&tb->lock);
2391	if (!tcm->hotplug_active)
2392		goto unlock;
2393
2394	sw = tb_switch_find_by_route(tb, ev->route);
2395	if (!sw) {
2396		tb_warn(tb, "bandwidth request from non-existent router %llx\n",
2397			ev->route);
2398		goto unlock;
2399	}
2400
2401	in = &sw->ports[ev->port];
2402	if (!tb_port_is_dpin(in)) {
2403		tb_port_warn(in, "bandwidth request to non-DP IN adapter\n");
2404		goto put_sw;
2405	}
2406
2407	tb_port_dbg(in, "handling bandwidth allocation request\n");
2408
 
 
 
 
 
 
2409	if (!usb4_dp_port_bandwidth_mode_enabled(in)) {
2410		tb_port_warn(in, "bandwidth allocation mode not enabled\n");
 
 
 
 
 
 
 
 
 
2411		goto put_sw;
2412	}
2413
2414	ret = usb4_dp_port_requested_bandwidth(in);
2415	if (ret < 0) {
2416		if (ret == -ENODATA)
2417			tb_port_dbg(in, "no bandwidth request active\n");
2418		else
 
 
 
 
 
 
 
 
2419			tb_port_warn(in, "failed to read requested bandwidth\n");
 
2420		goto put_sw;
2421	}
2422	requested_bw = ret;
2423
2424	tb_port_dbg(in, "requested bandwidth %d Mb/s\n", requested_bw);
2425
2426	tunnel = tb_find_tunnel(tb, TB_TUNNEL_DP, in, NULL);
2427	if (!tunnel) {
2428		tb_port_warn(in, "failed to find tunnel\n");
2429		goto put_sw;
2430	}
2431
2432	out = tunnel->dst_port;
2433
2434	if (tb_port_path_direction_downstream(in, out)) {
2435		requested_up = -1;
2436		requested_down = requested_bw;
2437	} else {
2438		requested_up = requested_bw;
2439		requested_down = -1;
2440	}
2441
2442	ret = tb_alloc_dp_bandwidth(tunnel, &requested_up, &requested_down);
2443	if (ret) {
2444		if (ret == -ENOBUFS)
2445			tb_tunnel_warn(tunnel,
2446				       "not enough bandwidth available\n");
2447		else
2448			tb_tunnel_warn(tunnel,
2449				       "failed to change bandwidth allocation\n");
2450	} else {
2451		tb_tunnel_dbg(tunnel,
2452			      "bandwidth allocation changed to %d/%d Mb/s\n",
2453			      requested_up, requested_down);
2454
2455		/* Update other clients about the allocation change */
2456		tb_recalc_estimated_bandwidth(tb);
2457	}
2458
2459put_sw:
2460	tb_switch_put(sw);
2461unlock:
2462	mutex_unlock(&tb->lock);
2463
2464	pm_runtime_mark_last_busy(&tb->dev);
2465	pm_runtime_put_autosuspend(&tb->dev);
2466
2467	kfree(ev);
2468}
2469
2470static void tb_queue_dp_bandwidth_request(struct tb *tb, u64 route, u8 port)
2471{
2472	struct tb_hotplug_event *ev;
2473
2474	ev = kmalloc(sizeof(*ev), GFP_KERNEL);
2475	if (!ev)
2476		return;
2477
2478	ev->tb = tb;
2479	ev->route = route;
2480	ev->port = port;
2481	INIT_WORK(&ev->work, tb_handle_dp_bandwidth_request);
2482	queue_work(tb->wq, &ev->work);
2483}
2484
2485static void tb_handle_notification(struct tb *tb, u64 route,
2486				   const struct cfg_error_pkg *error)
2487{
2488
2489	switch (error->error) {
2490	case TB_CFG_ERROR_PCIE_WAKE:
2491	case TB_CFG_ERROR_DP_CON_CHANGE:
2492	case TB_CFG_ERROR_DPTX_DISCOVERY:
2493		if (tb_cfg_ack_notification(tb->ctl, route, error))
2494			tb_warn(tb, "could not ack notification on %llx\n",
2495				route);
2496		break;
2497
2498	case TB_CFG_ERROR_DP_BW:
2499		if (tb_cfg_ack_notification(tb->ctl, route, error))
2500			tb_warn(tb, "could not ack notification on %llx\n",
2501				route);
2502		tb_queue_dp_bandwidth_request(tb, route, error->port);
2503		break;
2504
2505	default:
2506		/* Ignore for now */
2507		break;
2508	}
2509}
2510
2511/*
2512 * tb_schedule_hotplug_handler() - callback function for the control channel
2513 *
2514 * Delegates to tb_handle_hotplug.
2515 */
2516static void tb_handle_event(struct tb *tb, enum tb_cfg_pkg_type type,
2517			    const void *buf, size_t size)
2518{
2519	const struct cfg_event_pkg *pkg = buf;
2520	u64 route = tb_cfg_get_route(&pkg->header);
2521
2522	switch (type) {
2523	case TB_CFG_PKG_ERROR:
2524		tb_handle_notification(tb, route, (const struct cfg_error_pkg *)buf);
2525		return;
2526	case TB_CFG_PKG_EVENT:
2527		break;
2528	default:
2529		tb_warn(tb, "unexpected event %#x, ignoring\n", type);
2530		return;
2531	}
2532
2533	if (tb_cfg_ack_plug(tb->ctl, route, pkg->port, pkg->unplug)) {
2534		tb_warn(tb, "could not ack plug event on %llx:%x\n", route,
2535			pkg->port);
2536	}
2537
2538	tb_queue_hotplug(tb, route, pkg->port, pkg->unplug);
2539}
2540
2541static void tb_stop(struct tb *tb)
2542{
2543	struct tb_cm *tcm = tb_priv(tb);
2544	struct tb_tunnel *tunnel;
2545	struct tb_tunnel *n;
2546
2547	cancel_delayed_work(&tcm->remove_work);
2548	/* tunnels are only present after everything has been initialized */
2549	list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) {
2550		/*
2551		 * DMA tunnels require the driver to be functional so we
2552		 * tear them down. Other protocol tunnels can be left
2553		 * intact.
2554		 */
2555		if (tb_tunnel_is_dma(tunnel))
2556			tb_tunnel_deactivate(tunnel);
2557		tb_tunnel_free(tunnel);
2558	}
2559	tb_switch_remove(tb->root_switch);
2560	tcm->hotplug_active = false; /* signal tb_handle_hotplug to quit */
2561}
2562
 
 
 
 
 
 
 
 
 
 
2563static int tb_scan_finalize_switch(struct device *dev, void *data)
2564{
2565	if (tb_is_switch(dev)) {
2566		struct tb_switch *sw = tb_to_switch(dev);
2567
2568		/*
2569		 * If we found that the switch was already setup by the
2570		 * boot firmware, mark it as authorized now before we
2571		 * send uevent to userspace.
2572		 */
2573		if (sw->boot)
2574			sw->authorized = 1;
2575
2576		dev_set_uevent_suppress(dev, false);
2577		kobject_uevent(&dev->kobj, KOBJ_ADD);
2578		device_for_each_child(dev, NULL, tb_scan_finalize_switch);
2579	}
2580
2581	return 0;
2582}
2583
2584static int tb_start(struct tb *tb)
2585{
2586	struct tb_cm *tcm = tb_priv(tb);
 
2587	int ret;
2588
2589	tb->root_switch = tb_switch_alloc(tb, &tb->dev, 0);
2590	if (IS_ERR(tb->root_switch))
2591		return PTR_ERR(tb->root_switch);
2592
2593	/*
2594	 * ICM firmware upgrade needs running firmware and in native
2595	 * mode that is not available so disable firmware upgrade of the
2596	 * root switch.
2597	 *
2598	 * However, USB4 routers support NVM firmware upgrade if they
2599	 * implement the necessary router operations.
2600	 */
2601	tb->root_switch->no_nvm_upgrade = !tb_switch_is_usb4(tb->root_switch);
2602	/* All USB4 routers support runtime PM */
2603	tb->root_switch->rpm = tb_switch_is_usb4(tb->root_switch);
2604
2605	ret = tb_switch_configure(tb->root_switch);
2606	if (ret) {
2607		tb_switch_put(tb->root_switch);
2608		return ret;
2609	}
2610
2611	/* Announce the switch to the world */
2612	ret = tb_switch_add(tb->root_switch);
2613	if (ret) {
2614		tb_switch_put(tb->root_switch);
2615		return ret;
2616	}
2617
2618	/*
2619	 * To support highest CLx state, we set host router's TMU to
2620	 * Normal mode.
2621	 */
2622	tb_switch_tmu_configure(tb->root_switch, TB_SWITCH_TMU_MODE_LOWRES);
2623	/* Enable TMU if it is off */
2624	tb_switch_tmu_enable(tb->root_switch);
2625	/* Full scan to discover devices added before the driver was loaded. */
2626	tb_scan_switch(tb->root_switch);
2627	/* Find out tunnels created by the boot firmware */
2628	tb_discover_tunnels(tb);
2629	/* Add DP resources from the DP tunnels created by the boot firmware */
2630	tb_discover_dp_resources(tb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2631	/*
2632	 * If the boot firmware did not create USB 3.x tunnels create them
2633	 * now for the whole topology.
2634	 */
2635	tb_create_usb3_tunnels(tb->root_switch);
2636	/* Add DP IN resources for the root switch */
2637	tb_add_dp_resources(tb->root_switch);
 
2638	/* Make the discovered switches available to the userspace */
2639	device_for_each_child(&tb->root_switch->dev, NULL,
2640			      tb_scan_finalize_switch);
2641
2642	/* Allow tb_handle_hotplug to progress events */
2643	tcm->hotplug_active = true;
2644	return 0;
2645}
2646
2647static int tb_suspend_noirq(struct tb *tb)
2648{
2649	struct tb_cm *tcm = tb_priv(tb);
2650
2651	tb_dbg(tb, "suspending...\n");
2652	tb_disconnect_and_release_dp(tb);
 
2653	tb_switch_suspend(tb->root_switch, false);
2654	tcm->hotplug_active = false; /* signal tb_handle_hotplug to quit */
2655	tb_dbg(tb, "suspend finished\n");
2656
2657	return 0;
2658}
2659
2660static void tb_restore_children(struct tb_switch *sw)
2661{
2662	struct tb_port *port;
2663
2664	/* No need to restore if the router is already unplugged */
2665	if (sw->is_unplugged)
2666		return;
2667
2668	if (tb_enable_clx(sw))
2669		tb_sw_warn(sw, "failed to re-enable CL states\n");
2670
2671	if (tb_enable_tmu(sw))
2672		tb_sw_warn(sw, "failed to restore TMU configuration\n");
2673
2674	tb_switch_configuration_valid(sw);
2675
2676	tb_switch_for_each_port(sw, port) {
2677		if (!tb_port_has_remote(port) && !port->xdomain)
2678			continue;
2679
2680		if (port->remote) {
2681			tb_switch_set_link_width(port->remote->sw,
2682						 port->remote->sw->link_width);
2683			tb_switch_configure_link(port->remote->sw);
2684
2685			tb_restore_children(port->remote->sw);
2686		} else if (port->xdomain) {
2687			tb_port_configure_xdomain(port, port->xdomain);
2688		}
2689	}
2690}
2691
2692static int tb_resume_noirq(struct tb *tb)
2693{
2694	struct tb_cm *tcm = tb_priv(tb);
2695	struct tb_tunnel *tunnel, *n;
2696	unsigned int usb3_delay = 0;
2697	LIST_HEAD(tunnels);
2698
2699	tb_dbg(tb, "resuming...\n");
2700
2701	/* remove any pci devices the firmware might have setup */
2702	tb_switch_reset(tb->root_switch);
 
 
 
 
2703
2704	tb_switch_resume(tb->root_switch);
2705	tb_free_invalid_tunnels(tb);
2706	tb_free_unplugged_children(tb->root_switch);
2707	tb_restore_children(tb->root_switch);
2708
2709	/*
2710	 * If we get here from suspend to disk the boot firmware or the
2711	 * restore kernel might have created tunnels of its own. Since
2712	 * we cannot be sure they are usable for us we find and tear
2713	 * them down.
2714	 */
2715	tb_switch_discover_tunnels(tb->root_switch, &tunnels, false);
2716	list_for_each_entry_safe_reverse(tunnel, n, &tunnels, list) {
2717		if (tb_tunnel_is_usb3(tunnel))
2718			usb3_delay = 500;
2719		tb_tunnel_deactivate(tunnel);
2720		tb_tunnel_free(tunnel);
2721	}
2722
2723	/* Re-create our tunnels now */
2724	list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) {
2725		/* USB3 requires delay before it can be re-activated */
2726		if (tb_tunnel_is_usb3(tunnel)) {
2727			msleep(usb3_delay);
2728			/* Only need to do it once */
2729			usb3_delay = 0;
2730		}
2731		tb_tunnel_restart(tunnel);
2732	}
2733	if (!list_empty(&tcm->tunnel_list)) {
2734		/*
2735		 * the pcie links need some time to get going.
2736		 * 100ms works for me...
2737		 */
2738		tb_dbg(tb, "tunnels restarted, sleeping for 100ms\n");
2739		msleep(100);
2740	}
 
2741	 /* Allow tb_handle_hotplug to progress events */
2742	tcm->hotplug_active = true;
2743	tb_dbg(tb, "resume finished\n");
2744
2745	return 0;
2746}
2747
2748static int tb_free_unplugged_xdomains(struct tb_switch *sw)
2749{
2750	struct tb_port *port;
2751	int ret = 0;
2752
2753	tb_switch_for_each_port(sw, port) {
2754		if (tb_is_upstream_port(port))
2755			continue;
2756		if (port->xdomain && port->xdomain->is_unplugged) {
2757			tb_retimer_remove_all(port);
2758			tb_xdomain_remove(port->xdomain);
2759			tb_port_unconfigure_xdomain(port);
2760			port->xdomain = NULL;
2761			ret++;
2762		} else if (port->remote) {
2763			ret += tb_free_unplugged_xdomains(port->remote->sw);
2764		}
2765	}
2766
2767	return ret;
2768}
2769
2770static int tb_freeze_noirq(struct tb *tb)
2771{
2772	struct tb_cm *tcm = tb_priv(tb);
2773
2774	tcm->hotplug_active = false;
2775	return 0;
2776}
2777
2778static int tb_thaw_noirq(struct tb *tb)
2779{
2780	struct tb_cm *tcm = tb_priv(tb);
2781
2782	tcm->hotplug_active = true;
2783	return 0;
2784}
2785
2786static void tb_complete(struct tb *tb)
2787{
2788	/*
2789	 * Release any unplugged XDomains and if there is a case where
2790	 * another domain is swapped in place of unplugged XDomain we
2791	 * need to run another rescan.
2792	 */
2793	mutex_lock(&tb->lock);
2794	if (tb_free_unplugged_xdomains(tb->root_switch))
2795		tb_scan_switch(tb->root_switch);
2796	mutex_unlock(&tb->lock);
2797}
2798
2799static int tb_runtime_suspend(struct tb *tb)
2800{
2801	struct tb_cm *tcm = tb_priv(tb);
2802
2803	mutex_lock(&tb->lock);
 
 
 
 
 
 
2804	tb_switch_suspend(tb->root_switch, true);
2805	tcm->hotplug_active = false;
2806	mutex_unlock(&tb->lock);
2807
2808	return 0;
2809}
2810
2811static void tb_remove_work(struct work_struct *work)
2812{
2813	struct tb_cm *tcm = container_of(work, struct tb_cm, remove_work.work);
2814	struct tb *tb = tcm_to_tb(tcm);
2815
2816	mutex_lock(&tb->lock);
2817	if (tb->root_switch) {
2818		tb_free_unplugged_children(tb->root_switch);
2819		tb_free_unplugged_xdomains(tb->root_switch);
2820	}
2821	mutex_unlock(&tb->lock);
2822}
2823
2824static int tb_runtime_resume(struct tb *tb)
2825{
2826	struct tb_cm *tcm = tb_priv(tb);
2827	struct tb_tunnel *tunnel, *n;
2828
2829	mutex_lock(&tb->lock);
2830	tb_switch_resume(tb->root_switch);
2831	tb_free_invalid_tunnels(tb);
2832	tb_restore_children(tb->root_switch);
2833	list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list)
2834		tb_tunnel_restart(tunnel);
 
2835	tcm->hotplug_active = true;
2836	mutex_unlock(&tb->lock);
2837
2838	/*
2839	 * Schedule cleanup of any unplugged devices. Run this in a
2840	 * separate thread to avoid possible deadlock if the device
2841	 * removal runtime resumes the unplugged device.
2842	 */
2843	queue_delayed_work(tb->wq, &tcm->remove_work, msecs_to_jiffies(50));
2844	return 0;
2845}
2846
2847static const struct tb_cm_ops tb_cm_ops = {
2848	.start = tb_start,
2849	.stop = tb_stop,
 
2850	.suspend_noirq = tb_suspend_noirq,
2851	.resume_noirq = tb_resume_noirq,
2852	.freeze_noirq = tb_freeze_noirq,
2853	.thaw_noirq = tb_thaw_noirq,
2854	.complete = tb_complete,
2855	.runtime_suspend = tb_runtime_suspend,
2856	.runtime_resume = tb_runtime_resume,
2857	.handle_event = tb_handle_event,
2858	.disapprove_switch = tb_disconnect_pci,
2859	.approve_switch = tb_tunnel_pci,
2860	.approve_xdomain_paths = tb_approve_xdomain_paths,
2861	.disconnect_xdomain_paths = tb_disconnect_xdomain_paths,
2862};
2863
2864/*
2865 * During suspend the Thunderbolt controller is reset and all PCIe
2866 * tunnels are lost. The NHI driver will try to reestablish all tunnels
2867 * during resume. This adds device links between the tunneled PCIe
2868 * downstream ports and the NHI so that the device core will make sure
2869 * NHI is resumed first before the rest.
2870 */
2871static bool tb_apple_add_links(struct tb_nhi *nhi)
2872{
2873	struct pci_dev *upstream, *pdev;
2874	bool ret;
2875
2876	if (!x86_apple_machine)
2877		return false;
2878
2879	switch (nhi->pdev->device) {
2880	case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
2881	case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
2882	case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI:
2883	case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI:
2884		break;
2885	default:
2886		return false;
2887	}
2888
2889	upstream = pci_upstream_bridge(nhi->pdev);
2890	while (upstream) {
2891		if (!pci_is_pcie(upstream))
2892			return false;
2893		if (pci_pcie_type(upstream) == PCI_EXP_TYPE_UPSTREAM)
2894			break;
2895		upstream = pci_upstream_bridge(upstream);
2896	}
2897
2898	if (!upstream)
2899		return false;
2900
2901	/*
2902	 * For each hotplug downstream port, create add device link
2903	 * back to NHI so that PCIe tunnels can be re-established after
2904	 * sleep.
2905	 */
2906	ret = false;
2907	for_each_pci_bridge(pdev, upstream->subordinate) {
2908		const struct device_link *link;
2909
2910		if (!pci_is_pcie(pdev))
2911			continue;
2912		if (pci_pcie_type(pdev) != PCI_EXP_TYPE_DOWNSTREAM ||
2913		    !pdev->is_hotplug_bridge)
2914			continue;
2915
2916		link = device_link_add(&pdev->dev, &nhi->pdev->dev,
2917				       DL_FLAG_AUTOREMOVE_SUPPLIER |
2918				       DL_FLAG_PM_RUNTIME);
2919		if (link) {
2920			dev_dbg(&nhi->pdev->dev, "created link from %s\n",
2921				dev_name(&pdev->dev));
2922			ret = true;
2923		} else {
2924			dev_warn(&nhi->pdev->dev, "device link creation from %s failed\n",
2925				 dev_name(&pdev->dev));
2926		}
2927	}
2928
2929	return ret;
2930}
2931
2932struct tb *tb_probe(struct tb_nhi *nhi)
2933{
2934	struct tb_cm *tcm;
2935	struct tb *tb;
2936
2937	tb = tb_domain_alloc(nhi, TB_TIMEOUT, sizeof(*tcm));
2938	if (!tb)
2939		return NULL;
2940
2941	if (tb_acpi_may_tunnel_pcie())
2942		tb->security_level = TB_SECURITY_USER;
2943	else
2944		tb->security_level = TB_SECURITY_NOPCIE;
2945
2946	tb->cm_ops = &tb_cm_ops;
2947
2948	tcm = tb_priv(tb);
2949	INIT_LIST_HEAD(&tcm->tunnel_list);
2950	INIT_LIST_HEAD(&tcm->dp_resources);
2951	INIT_DELAYED_WORK(&tcm->remove_work, tb_remove_work);
2952	tb_init_bandwidth_groups(tcm);
2953
2954	tb_dbg(tb, "using software connection manager\n");
2955
2956	/*
2957	 * Device links are needed to make sure we establish tunnels
2958	 * before the PCIe/USB stack is resumed so complain here if we
2959	 * found them missing.
2960	 */
2961	if (!tb_apple_add_links(nhi) && !tb_acpi_add_links(nhi))
2962		tb_warn(tb, "device links to tunneled native ports are missing!\n");
2963
2964	return tb;
2965}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Thunderbolt driver - bus logic (NHI independent)
   4 *
   5 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
   6 * Copyright (C) 2019, Intel Corporation
   7 */
   8
   9#include <linux/slab.h>
  10#include <linux/errno.h>
  11#include <linux/delay.h>
  12#include <linux/pm_runtime.h>
  13#include <linux/platform_data/x86/apple.h>
  14
  15#include "tb.h"
  16#include "tb_regs.h"
  17#include "tunnel.h"
  18
  19#define TB_TIMEOUT		100	/* ms */
  20#define TB_RELEASE_BW_TIMEOUT	10000	/* ms */
  21
  22/*
  23 * Minimum bandwidth (in Mb/s) that is needed in the single transmitter/receiver
  24 * direction. This is 40G - 10% guard band bandwidth.
  25 */
  26#define TB_ASYM_MIN		(40000 * 90 / 100)
  27
  28/*
  29 * Threshold bandwidth (in Mb/s) that is used to switch the links to
  30 * asymmetric and back. This is selected as 45G which means when the
  31 * request is higher than this, we switch the link to asymmetric, and
  32 * when it is less than this we switch it back. The 45G is selected so
  33 * that we still have 27G (of the total 72G) for bulk PCIe traffic when
  34 * switching back to symmetric.
  35 */
  36#define TB_ASYM_THRESHOLD	45000
  37
  38#define MAX_GROUPS		7	/* max Group_ID is 7 */
  39
  40static unsigned int asym_threshold = TB_ASYM_THRESHOLD;
  41module_param_named(asym_threshold, asym_threshold, uint, 0444);
  42MODULE_PARM_DESC(asym_threshold,
  43		"threshold (Mb/s) when to Gen 4 switch link symmetry. 0 disables. (default: "
  44		__MODULE_STRING(TB_ASYM_THRESHOLD) ")");
  45
  46/**
  47 * struct tb_cm - Simple Thunderbolt connection manager
  48 * @tunnel_list: List of active tunnels
  49 * @dp_resources: List of available DP resources for DP tunneling
  50 * @hotplug_active: tb_handle_hotplug will stop progressing plug
  51 *		    events and exit if this is not set (it needs to
  52 *		    acquire the lock one more time). Used to drain wq
  53 *		    after cfg has been paused.
  54 * @remove_work: Work used to remove any unplugged routers after
  55 *		 runtime resume
  56 * @groups: Bandwidth groups used in this domain.
  57 */
  58struct tb_cm {
  59	struct list_head tunnel_list;
  60	struct list_head dp_resources;
  61	bool hotplug_active;
  62	struct delayed_work remove_work;
  63	struct tb_bandwidth_group groups[MAX_GROUPS];
  64};
  65
  66static inline struct tb *tcm_to_tb(struct tb_cm *tcm)
  67{
  68	return ((void *)tcm - sizeof(struct tb));
  69}
  70
  71struct tb_hotplug_event {
  72	struct work_struct work;
  73	struct tb *tb;
  74	u64 route;
  75	u8 port;
  76	bool unplug;
  77};
  78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  79static void tb_handle_hotplug(struct work_struct *work);
  80
  81static void tb_queue_hotplug(struct tb *tb, u64 route, u8 port, bool unplug)
  82{
  83	struct tb_hotplug_event *ev;
  84
  85	ev = kmalloc(sizeof(*ev), GFP_KERNEL);
  86	if (!ev)
  87		return;
  88
  89	ev->tb = tb;
  90	ev->route = route;
  91	ev->port = port;
  92	ev->unplug = unplug;
  93	INIT_WORK(&ev->work, tb_handle_hotplug);
  94	queue_work(tb->wq, &ev->work);
  95}
  96
  97/* enumeration & hot plug handling */
  98
  99static void tb_add_dp_resources(struct tb_switch *sw)
 100{
 101	struct tb_cm *tcm = tb_priv(sw->tb);
 102	struct tb_port *port;
 103
 104	tb_switch_for_each_port(sw, port) {
 105		if (!tb_port_is_dpin(port))
 106			continue;
 107
 108		if (!tb_switch_query_dp_resource(sw, port))
 109			continue;
 110
 111		/*
 112		 * If DP IN on device router exist, position it at the
 113		 * beginning of the DP resources list, so that it is used
 114		 * before DP IN of the host router. This way external GPU(s)
 115		 * will be prioritized when pairing DP IN to a DP OUT.
 116		 */
 117		if (tb_route(sw))
 118			list_add(&port->list, &tcm->dp_resources);
 119		else
 120			list_add_tail(&port->list, &tcm->dp_resources);
 121
 122		tb_port_dbg(port, "DP IN resource available\n");
 123	}
 124}
 125
 126static void tb_remove_dp_resources(struct tb_switch *sw)
 127{
 128	struct tb_cm *tcm = tb_priv(sw->tb);
 129	struct tb_port *port, *tmp;
 130
 131	/* Clear children resources first */
 132	tb_switch_for_each_port(sw, port) {
 133		if (tb_port_has_remote(port))
 134			tb_remove_dp_resources(port->remote->sw);
 135	}
 136
 137	list_for_each_entry_safe(port, tmp, &tcm->dp_resources, list) {
 138		if (port->sw == sw) {
 139			tb_port_dbg(port, "DP OUT resource unavailable\n");
 140			list_del_init(&port->list);
 141		}
 142	}
 143}
 144
 145static void tb_discover_dp_resource(struct tb *tb, struct tb_port *port)
 146{
 147	struct tb_cm *tcm = tb_priv(tb);
 148	struct tb_port *p;
 149
 150	list_for_each_entry(p, &tcm->dp_resources, list) {
 151		if (p == port)
 152			return;
 153	}
 154
 155	tb_port_dbg(port, "DP %s resource available discovered\n",
 156		    tb_port_is_dpin(port) ? "IN" : "OUT");
 157	list_add_tail(&port->list, &tcm->dp_resources);
 158}
 159
 160static void tb_discover_dp_resources(struct tb *tb)
 161{
 162	struct tb_cm *tcm = tb_priv(tb);
 163	struct tb_tunnel *tunnel;
 164
 165	list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
 166		if (tb_tunnel_is_dp(tunnel))
 167			tb_discover_dp_resource(tb, tunnel->dst_port);
 168	}
 169}
 170
 171/* Enables CL states up to host router */
 172static int tb_enable_clx(struct tb_switch *sw)
 173{
 174	struct tb_cm *tcm = tb_priv(sw->tb);
 175	unsigned int clx = TB_CL0S | TB_CL1;
 176	const struct tb_tunnel *tunnel;
 177	int ret;
 178
 179	/*
 180	 * Currently only enable CLx for the first link. This is enough
 181	 * to allow the CPU to save energy at least on Intel hardware
 182	 * and makes it slightly simpler to implement. We may change
 183	 * this in the future to cover the whole topology if it turns
 184	 * out to be beneficial.
 185	 */
 186	while (sw && tb_switch_depth(sw) > 1)
 187		sw = tb_switch_parent(sw);
 188
 189	if (!sw)
 190		return 0;
 191
 192	if (tb_switch_depth(sw) != 1)
 193		return 0;
 194
 195	/*
 196	 * If we are re-enabling then check if there is an active DMA
 197	 * tunnel and in that case bail out.
 198	 */
 199	list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
 200		if (tb_tunnel_is_dma(tunnel)) {
 201			if (tb_tunnel_port_on_path(tunnel, tb_upstream_port(sw)))
 202				return 0;
 203		}
 204	}
 205
 206	/*
 207	 * Initially try with CL2. If that's not supported by the
 208	 * topology try with CL0s and CL1 and then give up.
 209	 */
 210	ret = tb_switch_clx_enable(sw, clx | TB_CL2);
 211	if (ret == -EOPNOTSUPP)
 212		ret = tb_switch_clx_enable(sw, clx);
 213	return ret == -EOPNOTSUPP ? 0 : ret;
 214}
 215
 216/**
 217 * tb_disable_clx() - Disable CL states up to host router
 218 * @sw: Router to start
 219 *
 220 * Disables CL states from @sw up to the host router. Returns true if
 221 * any CL state were disabled. This can be used to figure out whether
 222 * the link was setup by us or the boot firmware so we don't
 223 * accidentally enable them if they were not enabled during discovery.
 224 */
 225static bool tb_disable_clx(struct tb_switch *sw)
 226{
 227	bool disabled = false;
 228
 229	do {
 230		int ret;
 231
 232		ret = tb_switch_clx_disable(sw);
 233		if (ret > 0)
 234			disabled = true;
 235		else if (ret < 0)
 236			tb_sw_warn(sw, "failed to disable CL states\n");
 237
 238		sw = tb_switch_parent(sw);
 239	} while (sw);
 240
 241	return disabled;
 242}
 243
 244static int tb_increase_switch_tmu_accuracy(struct device *dev, void *data)
 245{
 246	struct tb_switch *sw;
 247
 248	sw = tb_to_switch(dev);
 249	if (!sw)
 250		return 0;
 251
 252	if (tb_switch_tmu_is_configured(sw, TB_SWITCH_TMU_MODE_LOWRES)) {
 253		enum tb_switch_tmu_mode mode;
 254		int ret;
 255
 256		if (tb_switch_clx_is_enabled(sw, TB_CL1))
 257			mode = TB_SWITCH_TMU_MODE_HIFI_UNI;
 258		else
 259			mode = TB_SWITCH_TMU_MODE_HIFI_BI;
 260
 261		ret = tb_switch_tmu_configure(sw, mode);
 262		if (ret)
 263			return ret;
 264
 265		return tb_switch_tmu_enable(sw);
 266	}
 267
 268	return 0;
 269}
 270
 271static void tb_increase_tmu_accuracy(struct tb_tunnel *tunnel)
 272{
 273	struct tb_switch *sw;
 274
 275	if (!tunnel)
 276		return;
 277
 278	/*
 279	 * Once first DP tunnel is established we change the TMU
 280	 * accuracy of first depth child routers (and the host router)
 281	 * to the highest. This is needed for the DP tunneling to work
 282	 * but also allows CL0s.
 283	 *
 284	 * If both routers are v2 then we don't need to do anything as
 285	 * they are using enhanced TMU mode that allows all CLx.
 286	 */
 287	sw = tunnel->tb->root_switch;
 288	device_for_each_child(&sw->dev, NULL, tb_increase_switch_tmu_accuracy);
 289}
 290
 291static int tb_switch_tmu_hifi_uni_required(struct device *dev, void *not_used)
 292{
 293	struct tb_switch *sw = tb_to_switch(dev);
 294
 295	if (sw && tb_switch_tmu_is_enabled(sw) &&
 296	    tb_switch_tmu_is_configured(sw, TB_SWITCH_TMU_MODE_HIFI_UNI))
 297		return 1;
 298
 299	return device_for_each_child(dev, NULL,
 300				     tb_switch_tmu_hifi_uni_required);
 301}
 302
 303static bool tb_tmu_hifi_uni_required(struct tb *tb)
 304{
 305	return device_for_each_child(&tb->dev, NULL,
 306				     tb_switch_tmu_hifi_uni_required) == 1;
 307}
 308
 309static int tb_enable_tmu(struct tb_switch *sw)
 310{
 311	int ret;
 312
 313	/*
 314	 * If both routers at the end of the link are v2 we simply
 315	 * enable the enhanched uni-directional mode. That covers all
 316	 * the CL states. For v1 and before we need to use the normal
 317	 * rate to allow CL1 (when supported). Otherwise we keep the TMU
 318	 * running at the highest accuracy.
 319	 */
 320	ret = tb_switch_tmu_configure(sw,
 321			TB_SWITCH_TMU_MODE_MEDRES_ENHANCED_UNI);
 322	if (ret == -EOPNOTSUPP) {
 323		if (tb_switch_clx_is_enabled(sw, TB_CL1)) {
 324			/*
 325			 * Figure out uni-directional HiFi TMU requirements
 326			 * currently in the domain. If there are no
 327			 * uni-directional HiFi requirements we can put the TMU
 328			 * into LowRes mode.
 329			 *
 330			 * Deliberately skip bi-directional HiFi links
 331			 * as these work independently of other links
 332			 * (and they do not allow any CL states anyway).
 333			 */
 334			if (tb_tmu_hifi_uni_required(sw->tb))
 335				ret = tb_switch_tmu_configure(sw,
 336						TB_SWITCH_TMU_MODE_HIFI_UNI);
 337			else
 338				ret = tb_switch_tmu_configure(sw,
 339						TB_SWITCH_TMU_MODE_LOWRES);
 340		} else {
 341			ret = tb_switch_tmu_configure(sw, TB_SWITCH_TMU_MODE_HIFI_BI);
 342		}
 343
 344		/* If not supported, fallback to bi-directional HiFi */
 345		if (ret == -EOPNOTSUPP)
 346			ret = tb_switch_tmu_configure(sw, TB_SWITCH_TMU_MODE_HIFI_BI);
 347	}
 348	if (ret)
 349		return ret;
 350
 351	/* If it is already enabled in correct mode, don't touch it */
 352	if (tb_switch_tmu_is_enabled(sw))
 353		return 0;
 354
 355	ret = tb_switch_tmu_disable(sw);
 356	if (ret)
 357		return ret;
 358
 359	ret = tb_switch_tmu_post_time(sw);
 360	if (ret)
 361		return ret;
 362
 363	return tb_switch_tmu_enable(sw);
 364}
 365
 366static void tb_switch_discover_tunnels(struct tb_switch *sw,
 367				       struct list_head *list,
 368				       bool alloc_hopids)
 369{
 370	struct tb *tb = sw->tb;
 371	struct tb_port *port;
 372
 373	tb_switch_for_each_port(sw, port) {
 374		struct tb_tunnel *tunnel = NULL;
 375
 376		switch (port->config.type) {
 377		case TB_TYPE_DP_HDMI_IN:
 378			tunnel = tb_tunnel_discover_dp(tb, port, alloc_hopids);
 379			tb_increase_tmu_accuracy(tunnel);
 380			break;
 381
 382		case TB_TYPE_PCIE_DOWN:
 383			tunnel = tb_tunnel_discover_pci(tb, port, alloc_hopids);
 384			break;
 385
 386		case TB_TYPE_USB3_DOWN:
 387			tunnel = tb_tunnel_discover_usb3(tb, port, alloc_hopids);
 388			break;
 389
 390		default:
 391			break;
 392		}
 393
 394		if (tunnel)
 395			list_add_tail(&tunnel->list, list);
 396	}
 397
 398	tb_switch_for_each_port(sw, port) {
 399		if (tb_port_has_remote(port)) {
 400			tb_switch_discover_tunnels(port->remote->sw, list,
 401						   alloc_hopids);
 402		}
 403	}
 404}
 405
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 406static int tb_port_configure_xdomain(struct tb_port *port, struct tb_xdomain *xd)
 407{
 408	if (tb_switch_is_usb4(port->sw))
 409		return usb4_port_configure_xdomain(port, xd);
 410	return tb_lc_configure_xdomain(port);
 411}
 412
 413static void tb_port_unconfigure_xdomain(struct tb_port *port)
 414{
 415	if (tb_switch_is_usb4(port->sw))
 416		usb4_port_unconfigure_xdomain(port);
 417	else
 418		tb_lc_unconfigure_xdomain(port);
 419}
 420
 421static void tb_scan_xdomain(struct tb_port *port)
 422{
 423	struct tb_switch *sw = port->sw;
 424	struct tb *tb = sw->tb;
 425	struct tb_xdomain *xd;
 426	u64 route;
 427
 428	if (!tb_is_xdomain_enabled())
 429		return;
 430
 431	route = tb_downstream_route(port);
 432	xd = tb_xdomain_find_by_route(tb, route);
 433	if (xd) {
 434		tb_xdomain_put(xd);
 435		return;
 436	}
 437
 438	xd = tb_xdomain_alloc(tb, &sw->dev, route, tb->root_switch->uuid,
 439			      NULL);
 440	if (xd) {
 441		tb_port_at(route, sw)->xdomain = xd;
 442		tb_port_configure_xdomain(port, xd);
 443		tb_xdomain_add(xd);
 444	}
 445}
 446
 447/**
 448 * tb_find_unused_port() - return the first inactive port on @sw
 449 * @sw: Switch to find the port on
 450 * @type: Port type to look for
 451 */
 452static struct tb_port *tb_find_unused_port(struct tb_switch *sw,
 453					   enum tb_port_type type)
 454{
 455	struct tb_port *port;
 456
 457	tb_switch_for_each_port(sw, port) {
 458		if (tb_is_upstream_port(port))
 459			continue;
 460		if (port->config.type != type)
 461			continue;
 462		if (!port->cap_adap)
 463			continue;
 464		if (tb_port_is_enabled(port))
 465			continue;
 466		return port;
 467	}
 468	return NULL;
 469}
 470
 471static struct tb_port *tb_find_usb3_down(struct tb_switch *sw,
 472					 const struct tb_port *port)
 473{
 474	struct tb_port *down;
 475
 476	down = usb4_switch_map_usb3_down(sw, port);
 477	if (down && !tb_usb3_port_is_enabled(down))
 478		return down;
 479	return NULL;
 480}
 481
 482static struct tb_tunnel *tb_find_tunnel(struct tb *tb, enum tb_tunnel_type type,
 483					struct tb_port *src_port,
 484					struct tb_port *dst_port)
 485{
 486	struct tb_cm *tcm = tb_priv(tb);
 487	struct tb_tunnel *tunnel;
 488
 489	list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
 490		if (tunnel->type == type &&
 491		    ((src_port && src_port == tunnel->src_port) ||
 492		     (dst_port && dst_port == tunnel->dst_port))) {
 493			return tunnel;
 494		}
 495	}
 496
 497	return NULL;
 498}
 499
 500static struct tb_tunnel *tb_find_first_usb3_tunnel(struct tb *tb,
 501						   struct tb_port *src_port,
 502						   struct tb_port *dst_port)
 503{
 504	struct tb_port *port, *usb3_down;
 505	struct tb_switch *sw;
 506
 507	/* Pick the router that is deepest in the topology */
 508	if (tb_port_path_direction_downstream(src_port, dst_port))
 509		sw = dst_port->sw;
 510	else
 511		sw = src_port->sw;
 512
 513	/* Can't be the host router */
 514	if (sw == tb->root_switch)
 515		return NULL;
 516
 517	/* Find the downstream USB4 port that leads to this router */
 518	port = tb_port_at(tb_route(sw), tb->root_switch);
 519	/* Find the corresponding host router USB3 downstream port */
 520	usb3_down = usb4_switch_map_usb3_down(tb->root_switch, port);
 521	if (!usb3_down)
 522		return NULL;
 523
 524	return tb_find_tunnel(tb, TB_TUNNEL_USB3, usb3_down, NULL);
 525}
 526
 527/**
 528 * tb_consumed_usb3_pcie_bandwidth() - Consumed USB3/PCIe bandwidth over a single link
 529 * @tb: Domain structure
 530 * @src_port: Source protocol adapter
 531 * @dst_port: Destination protocol adapter
 532 * @port: USB4 port the consumed bandwidth is calculated
 533 * @consumed_up: Consumed upsream bandwidth (Mb/s)
 534 * @consumed_down: Consumed downstream bandwidth (Mb/s)
 535 *
 536 * Calculates consumed USB3 and PCIe bandwidth at @port between path
 537 * from @src_port to @dst_port. Does not take USB3 tunnel starting from
 538 * @src_port and ending on @src_port into account because that bandwidth is
 539 * already included in as part of the "first hop" USB3 tunnel.
 540 */
 541static int tb_consumed_usb3_pcie_bandwidth(struct tb *tb,
 542					   struct tb_port *src_port,
 543					   struct tb_port *dst_port,
 544					   struct tb_port *port,
 545					   int *consumed_up,
 546					   int *consumed_down)
 547{
 548	int pci_consumed_up, pci_consumed_down;
 549	struct tb_tunnel *tunnel;
 550
 551	*consumed_up = *consumed_down = 0;
 552
 553	tunnel = tb_find_first_usb3_tunnel(tb, src_port, dst_port);
 554	if (tunnel && !tb_port_is_usb3_down(src_port) &&
 555	    !tb_port_is_usb3_up(dst_port)) {
 556		int ret;
 557
 558		ret = tb_tunnel_consumed_bandwidth(tunnel, consumed_up,
 559						   consumed_down);
 560		if (ret)
 561			return ret;
 562	}
 563
 564	/*
 565	 * If there is anything reserved for PCIe bulk traffic take it
 566	 * into account here too.
 567	 */
 568	if (tb_tunnel_reserved_pci(port, &pci_consumed_up, &pci_consumed_down)) {
 569		*consumed_up += pci_consumed_up;
 570		*consumed_down += pci_consumed_down;
 571	}
 572
 573	return 0;
 574}
 575
 576/**
 577 * tb_consumed_dp_bandwidth() - Consumed DP bandwidth over a single link
 578 * @tb: Domain structure
 579 * @src_port: Source protocol adapter
 580 * @dst_port: Destination protocol adapter
 581 * @port: USB4 port the consumed bandwidth is calculated
 582 * @consumed_up: Consumed upsream bandwidth (Mb/s)
 583 * @consumed_down: Consumed downstream bandwidth (Mb/s)
 584 *
 585 * Calculates consumed DP bandwidth at @port between path from @src_port
 586 * to @dst_port. Does not take tunnel starting from @src_port and ending
 587 * from @src_port into account.
 588 *
 589 * If there is bandwidth reserved for any of the groups between
 590 * @src_port and @dst_port (but not yet used) that is also taken into
 591 * account in the returned consumed bandwidth.
 592 */
 593static int tb_consumed_dp_bandwidth(struct tb *tb,
 594				    struct tb_port *src_port,
 595				    struct tb_port *dst_port,
 596				    struct tb_port *port,
 597				    int *consumed_up,
 598				    int *consumed_down)
 599{
 600	int group_reserved[MAX_GROUPS] = {};
 601	struct tb_cm *tcm = tb_priv(tb);
 602	struct tb_tunnel *tunnel;
 603	bool downstream;
 604	int i, ret;
 605
 606	*consumed_up = *consumed_down = 0;
 607
 608	/*
 609	 * Find all DP tunnels that cross the port and reduce
 610	 * their consumed bandwidth from the available.
 611	 */
 612	list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
 613		const struct tb_bandwidth_group *group;
 614		int dp_consumed_up, dp_consumed_down;
 615
 616		if (tb_tunnel_is_invalid(tunnel))
 617			continue;
 618
 619		if (!tb_tunnel_is_dp(tunnel))
 620			continue;
 621
 622		if (!tb_tunnel_port_on_path(tunnel, port))
 623			continue;
 624
 625		/*
 626		 * Calculate what is reserved for groups crossing the
 627		 * same ports only once (as that is reserved for all the
 628		 * tunnels in the group).
 629		 */
 630		group = tunnel->src_port->group;
 631		if (group && group->reserved && !group_reserved[group->index])
 632			group_reserved[group->index] = group->reserved;
 633
 634		/*
 635		 * Ignore the DP tunnel between src_port and dst_port
 636		 * because it is the same tunnel and we may be
 637		 * re-calculating estimated bandwidth.
 638		 */
 639		if (tunnel->src_port == src_port &&
 640		    tunnel->dst_port == dst_port)
 641			continue;
 642
 643		ret = tb_tunnel_consumed_bandwidth(tunnel, &dp_consumed_up,
 644						   &dp_consumed_down);
 645		if (ret)
 646			return ret;
 647
 648		*consumed_up += dp_consumed_up;
 649		*consumed_down += dp_consumed_down;
 650	}
 651
 652	downstream = tb_port_path_direction_downstream(src_port, dst_port);
 653	for (i = 0; i < ARRAY_SIZE(group_reserved); i++) {
 654		if (downstream)
 655			*consumed_down += group_reserved[i];
 656		else
 657			*consumed_up += group_reserved[i];
 658	}
 659
 660	return 0;
 661}
 662
 663static bool tb_asym_supported(struct tb_port *src_port, struct tb_port *dst_port,
 664			      struct tb_port *port)
 665{
 666	bool downstream = tb_port_path_direction_downstream(src_port, dst_port);
 667	enum tb_link_width width;
 668
 669	if (tb_is_upstream_port(port))
 670		width = downstream ? TB_LINK_WIDTH_ASYM_RX : TB_LINK_WIDTH_ASYM_TX;
 671	else
 672		width = downstream ? TB_LINK_WIDTH_ASYM_TX : TB_LINK_WIDTH_ASYM_RX;
 673
 674	return tb_port_width_supported(port, width);
 675}
 676
 677/**
 678 * tb_maximum_bandwidth() - Maximum bandwidth over a single link
 679 * @tb: Domain structure
 680 * @src_port: Source protocol adapter
 681 * @dst_port: Destination protocol adapter
 682 * @port: USB4 port the total bandwidth is calculated
 683 * @max_up: Maximum upstream bandwidth (Mb/s)
 684 * @max_down: Maximum downstream bandwidth (Mb/s)
 685 * @include_asym: Include bandwidth if the link is switched from
 686 *		  symmetric to asymmetric
 687 *
 688 * Returns maximum possible bandwidth in @max_up and @max_down over a
 689 * single link at @port. If @include_asym is set then includes the
 690 * additional banwdith if the links are transitioned into asymmetric to
 691 * direction from @src_port to @dst_port.
 692 */
 693static int tb_maximum_bandwidth(struct tb *tb, struct tb_port *src_port,
 694				struct tb_port *dst_port, struct tb_port *port,
 695				int *max_up, int *max_down, bool include_asym)
 696{
 697	bool downstream = tb_port_path_direction_downstream(src_port, dst_port);
 698	int link_speed, link_width, up_bw, down_bw;
 699
 700	/*
 701	 * Can include asymmetric, only if it is actually supported by
 702	 * the lane adapter.
 703	 */
 704	if (!tb_asym_supported(src_port, dst_port, port))
 705		include_asym = false;
 706
 707	if (tb_is_upstream_port(port)) {
 708		link_speed = port->sw->link_speed;
 709		/*
 710		 * sw->link_width is from upstream perspective so we use
 711		 * the opposite for downstream of the host router.
 712		 */
 713		if (port->sw->link_width == TB_LINK_WIDTH_ASYM_TX) {
 714			up_bw = link_speed * 3 * 1000;
 715			down_bw = link_speed * 1 * 1000;
 716		} else if (port->sw->link_width == TB_LINK_WIDTH_ASYM_RX) {
 717			up_bw = link_speed * 1 * 1000;
 718			down_bw = link_speed * 3 * 1000;
 719		} else if (include_asym) {
 720			/*
 721			 * The link is symmetric at the moment but we
 722			 * can switch it to asymmetric as needed. Report
 723			 * this bandwidth as available (even though it
 724			 * is not yet enabled).
 725			 */
 726			if (downstream) {
 727				up_bw = link_speed * 1 * 1000;
 728				down_bw = link_speed * 3 * 1000;
 729			} else {
 730				up_bw = link_speed * 3 * 1000;
 731				down_bw = link_speed * 1 * 1000;
 732			}
 733		} else {
 734			up_bw = link_speed * port->sw->link_width * 1000;
 735			down_bw = up_bw;
 736		}
 737	} else {
 738		link_speed = tb_port_get_link_speed(port);
 739		if (link_speed < 0)
 740			return link_speed;
 741
 742		link_width = tb_port_get_link_width(port);
 743		if (link_width < 0)
 744			return link_width;
 745
 746		if (link_width == TB_LINK_WIDTH_ASYM_TX) {
 747			up_bw = link_speed * 1 * 1000;
 748			down_bw = link_speed * 3 * 1000;
 749		} else if (link_width == TB_LINK_WIDTH_ASYM_RX) {
 750			up_bw = link_speed * 3 * 1000;
 751			down_bw = link_speed * 1 * 1000;
 752		} else if (include_asym) {
 753			/*
 754			 * The link is symmetric at the moment but we
 755			 * can switch it to asymmetric as needed. Report
 756			 * this bandwidth as available (even though it
 757			 * is not yet enabled).
 758			 */
 759			if (downstream) {
 760				up_bw = link_speed * 1 * 1000;
 761				down_bw = link_speed * 3 * 1000;
 762			} else {
 763				up_bw = link_speed * 3 * 1000;
 764				down_bw = link_speed * 1 * 1000;
 765			}
 766		} else {
 767			up_bw = link_speed * link_width * 1000;
 768			down_bw = up_bw;
 769		}
 770	}
 771
 772	/* Leave 10% guard band */
 773	*max_up = up_bw - up_bw / 10;
 774	*max_down = down_bw - down_bw / 10;
 775
 776	tb_port_dbg(port, "link maximum bandwidth %d/%d Mb/s\n", *max_up, *max_down);
 777	return 0;
 778}
 779
 780/**
 781 * tb_available_bandwidth() - Available bandwidth for tunneling
 782 * @tb: Domain structure
 783 * @src_port: Source protocol adapter
 784 * @dst_port: Destination protocol adapter
 785 * @available_up: Available bandwidth upstream (Mb/s)
 786 * @available_down: Available bandwidth downstream (Mb/s)
 787 * @include_asym: Include bandwidth if the link is switched from
 788 *		  symmetric to asymmetric
 789 *
 790 * Calculates maximum available bandwidth for protocol tunneling between
 791 * @src_port and @dst_port at the moment. This is minimum of maximum
 792 * link bandwidth across all links reduced by currently consumed
 793 * bandwidth on that link.
 794 *
 795 * If @include_asym is true then includes also bandwidth that can be
 796 * added when the links are transitioned into asymmetric (but does not
 797 * transition the links).
 798 */
 799static int tb_available_bandwidth(struct tb *tb, struct tb_port *src_port,
 800				 struct tb_port *dst_port, int *available_up,
 801				 int *available_down, bool include_asym)
 802{
 803	struct tb_port *port;
 804	int ret;
 805
 806	/* Maximum possible bandwidth asymmetric Gen 4 link is 120 Gb/s */
 807	*available_up = *available_down = 120000;
 808
 809	/* Find the minimum available bandwidth over all links */
 810	tb_for_each_port_on_path(src_port, dst_port, port) {
 811		int max_up, max_down, consumed_up, consumed_down;
 812
 813		if (!tb_port_is_null(port))
 814			continue;
 815
 816		ret = tb_maximum_bandwidth(tb, src_port, dst_port, port,
 817					   &max_up, &max_down, include_asym);
 818		if (ret)
 819			return ret;
 820
 821		ret = tb_consumed_usb3_pcie_bandwidth(tb, src_port, dst_port,
 822						      port, &consumed_up,
 823						      &consumed_down);
 824		if (ret)
 825			return ret;
 826		max_up -= consumed_up;
 827		max_down -= consumed_down;
 828
 829		ret = tb_consumed_dp_bandwidth(tb, src_port, dst_port, port,
 830					       &consumed_up, &consumed_down);
 831		if (ret)
 832			return ret;
 833		max_up -= consumed_up;
 834		max_down -= consumed_down;
 835
 836		if (max_up < *available_up)
 837			*available_up = max_up;
 838		if (max_down < *available_down)
 839			*available_down = max_down;
 840	}
 841
 842	if (*available_up < 0)
 843		*available_up = 0;
 844	if (*available_down < 0)
 845		*available_down = 0;
 846
 847	return 0;
 848}
 849
 850static int tb_release_unused_usb3_bandwidth(struct tb *tb,
 851					    struct tb_port *src_port,
 852					    struct tb_port *dst_port)
 853{
 854	struct tb_tunnel *tunnel;
 855
 856	tunnel = tb_find_first_usb3_tunnel(tb, src_port, dst_port);
 857	return tunnel ? tb_tunnel_release_unused_bandwidth(tunnel) : 0;
 858}
 859
 860static void tb_reclaim_usb3_bandwidth(struct tb *tb, struct tb_port *src_port,
 861				      struct tb_port *dst_port)
 862{
 863	int ret, available_up, available_down;
 864	struct tb_tunnel *tunnel;
 865
 866	tunnel = tb_find_first_usb3_tunnel(tb, src_port, dst_port);
 867	if (!tunnel)
 868		return;
 869
 870	tb_tunnel_dbg(tunnel, "reclaiming unused bandwidth\n");
 871
 872	/*
 873	 * Calculate available bandwidth for the first hop USB3 tunnel.
 874	 * That determines the whole USB3 bandwidth for this branch.
 875	 */
 876	ret = tb_available_bandwidth(tb, tunnel->src_port, tunnel->dst_port,
 877				     &available_up, &available_down, false);
 878	if (ret) {
 879		tb_tunnel_warn(tunnel, "failed to calculate available bandwidth\n");
 880		return;
 881	}
 882
 883	tb_tunnel_dbg(tunnel, "available bandwidth %d/%d Mb/s\n", available_up,
 884		      available_down);
 885
 886	tb_tunnel_reclaim_available_bandwidth(tunnel, &available_up, &available_down);
 887}
 888
 889static int tb_tunnel_usb3(struct tb *tb, struct tb_switch *sw)
 890{
 891	struct tb_switch *parent = tb_switch_parent(sw);
 892	int ret, available_up, available_down;
 893	struct tb_port *up, *down, *port;
 894	struct tb_cm *tcm = tb_priv(tb);
 895	struct tb_tunnel *tunnel;
 896
 897	if (!tb_acpi_may_tunnel_usb3()) {
 898		tb_dbg(tb, "USB3 tunneling disabled, not creating tunnel\n");
 899		return 0;
 900	}
 901
 902	up = tb_switch_find_port(sw, TB_TYPE_USB3_UP);
 903	if (!up)
 904		return 0;
 905
 906	if (!sw->link_usb4)
 907		return 0;
 908
 909	/*
 910	 * Look up available down port. Since we are chaining it should
 911	 * be found right above this switch.
 912	 */
 913	port = tb_switch_downstream_port(sw);
 914	down = tb_find_usb3_down(parent, port);
 915	if (!down)
 916		return 0;
 917
 918	if (tb_route(parent)) {
 919		struct tb_port *parent_up;
 920		/*
 921		 * Check first that the parent switch has its upstream USB3
 922		 * port enabled. Otherwise the chain is not complete and
 923		 * there is no point setting up a new tunnel.
 924		 */
 925		parent_up = tb_switch_find_port(parent, TB_TYPE_USB3_UP);
 926		if (!parent_up || !tb_port_is_enabled(parent_up))
 927			return 0;
 928
 929		/* Make all unused bandwidth available for the new tunnel */
 930		ret = tb_release_unused_usb3_bandwidth(tb, down, up);
 931		if (ret)
 932			return ret;
 933	}
 934
 935	ret = tb_available_bandwidth(tb, down, up, &available_up, &available_down,
 936				     false);
 937	if (ret)
 938		goto err_reclaim;
 939
 940	tb_port_dbg(up, "available bandwidth for new USB3 tunnel %d/%d Mb/s\n",
 941		    available_up, available_down);
 942
 943	tunnel = tb_tunnel_alloc_usb3(tb, up, down, available_up,
 944				      available_down);
 945	if (!tunnel) {
 946		ret = -ENOMEM;
 947		goto err_reclaim;
 948	}
 949
 950	if (tb_tunnel_activate(tunnel)) {
 951		tb_port_info(up,
 952			     "USB3 tunnel activation failed, aborting\n");
 953		ret = -EIO;
 954		goto err_free;
 955	}
 956
 957	list_add_tail(&tunnel->list, &tcm->tunnel_list);
 958	if (tb_route(parent))
 959		tb_reclaim_usb3_bandwidth(tb, down, up);
 960
 961	return 0;
 962
 963err_free:
 964	tb_tunnel_free(tunnel);
 965err_reclaim:
 966	if (tb_route(parent))
 967		tb_reclaim_usb3_bandwidth(tb, down, up);
 968
 969	return ret;
 970}
 971
 972static int tb_create_usb3_tunnels(struct tb_switch *sw)
 973{
 974	struct tb_port *port;
 975	int ret;
 976
 977	if (!tb_acpi_may_tunnel_usb3())
 978		return 0;
 979
 980	if (tb_route(sw)) {
 981		ret = tb_tunnel_usb3(sw->tb, sw);
 982		if (ret)
 983			return ret;
 984	}
 985
 986	tb_switch_for_each_port(sw, port) {
 987		if (!tb_port_has_remote(port))
 988			continue;
 989		ret = tb_create_usb3_tunnels(port->remote->sw);
 990		if (ret)
 991			return ret;
 992	}
 993
 994	return 0;
 995}
 996
 997/**
 998 * tb_configure_asym() - Transition links to asymmetric if needed
 999 * @tb: Domain structure
1000 * @src_port: Source adapter to start the transition
1001 * @dst_port: Destination adapter
1002 * @requested_up: Additional bandwidth (Mb/s) required upstream
1003 * @requested_down: Additional bandwidth (Mb/s) required downstream
1004 *
1005 * Transition links between @src_port and @dst_port into asymmetric, with
1006 * three lanes in the direction from @src_port towards @dst_port and one lane
1007 * in the opposite direction, if the bandwidth requirements
1008 * (requested + currently consumed) on that link exceed @asym_threshold.
1009 *
1010 * Must be called with available >= requested over all links.
1011 */
1012static int tb_configure_asym(struct tb *tb, struct tb_port *src_port,
1013			     struct tb_port *dst_port, int requested_up,
1014			     int requested_down)
1015{
1016	bool clx = false, clx_disabled = false, downstream;
1017	struct tb_switch *sw;
1018	struct tb_port *up;
1019	int ret = 0;
1020
1021	if (!asym_threshold)
1022		return 0;
1023
1024	downstream = tb_port_path_direction_downstream(src_port, dst_port);
1025	/* Pick up router deepest in the hierarchy */
1026	if (downstream)
1027		sw = dst_port->sw;
1028	else
1029		sw = src_port->sw;
1030
1031	tb_for_each_upstream_port_on_path(src_port, dst_port, up) {
1032		struct tb_port *down = tb_switch_downstream_port(up->sw);
1033		enum tb_link_width width_up, width_down;
1034		int consumed_up, consumed_down;
1035
1036		ret = tb_consumed_dp_bandwidth(tb, src_port, dst_port, up,
1037					       &consumed_up, &consumed_down);
1038		if (ret)
1039			break;
1040
1041		if (downstream) {
1042			/*
1043			 * Downstream so make sure upstream is within the 36G
1044			 * (40G - guard band 10%), and the requested is above
1045			 * what the threshold is.
1046			 */
1047			if (consumed_up + requested_up >= TB_ASYM_MIN) {
1048				ret = -ENOBUFS;
1049				break;
1050			}
1051			/* Does consumed + requested exceed the threshold */
1052			if (consumed_down + requested_down < asym_threshold)
1053				continue;
1054
1055			width_up = TB_LINK_WIDTH_ASYM_RX;
1056			width_down = TB_LINK_WIDTH_ASYM_TX;
1057		} else {
1058			/* Upstream, the opposite of above */
1059			if (consumed_down + requested_down >= TB_ASYM_MIN) {
1060				ret = -ENOBUFS;
1061				break;
1062			}
1063			if (consumed_up + requested_up < asym_threshold)
1064				continue;
1065
1066			width_up = TB_LINK_WIDTH_ASYM_TX;
1067			width_down = TB_LINK_WIDTH_ASYM_RX;
1068		}
1069
1070		if (up->sw->link_width == width_up)
1071			continue;
1072
1073		if (!tb_port_width_supported(up, width_up) ||
1074		    !tb_port_width_supported(down, width_down))
1075			continue;
1076
1077		/*
1078		 * Disable CL states before doing any transitions. We
1079		 * delayed it until now that we know there is a real
1080		 * transition taking place.
1081		 */
1082		if (!clx_disabled) {
1083			clx = tb_disable_clx(sw);
1084			clx_disabled = true;
1085		}
1086
1087		tb_sw_dbg(up->sw, "configuring asymmetric link\n");
1088
1089		/*
1090		 * Here requested + consumed > threshold so we need to
1091		 * transtion the link into asymmetric now.
1092		 */
1093		ret = tb_switch_set_link_width(up->sw, width_up);
1094		if (ret) {
1095			tb_sw_warn(up->sw, "failed to set link width\n");
1096			break;
1097		}
1098	}
1099
1100	/* Re-enable CL states if they were previosly enabled */
1101	if (clx)
1102		tb_enable_clx(sw);
1103
1104	return ret;
1105}
1106
1107/**
1108 * tb_configure_sym() - Transition links to symmetric if possible
1109 * @tb: Domain structure
1110 * @src_port: Source adapter to start the transition
1111 * @dst_port: Destination adapter
 
 
1112 * @keep_asym: Keep asymmetric link if preferred
1113 *
1114 * Goes over each link from @src_port to @dst_port and tries to
1115 * transition the link to symmetric if the currently consumed bandwidth
1116 * allows and link asymmetric preference is ignored (if @keep_asym is %false).
1117 */
1118static int tb_configure_sym(struct tb *tb, struct tb_port *src_port,
1119			    struct tb_port *dst_port, bool keep_asym)
 
1120{
1121	bool clx = false, clx_disabled = false, downstream;
1122	struct tb_switch *sw;
1123	struct tb_port *up;
1124	int ret = 0;
1125
1126	if (!asym_threshold)
1127		return 0;
1128
1129	downstream = tb_port_path_direction_downstream(src_port, dst_port);
1130	/* Pick up router deepest in the hierarchy */
1131	if (downstream)
1132		sw = dst_port->sw;
1133	else
1134		sw = src_port->sw;
1135
1136	tb_for_each_upstream_port_on_path(src_port, dst_port, up) {
1137		int consumed_up, consumed_down;
1138
1139		/* Already symmetric */
1140		if (up->sw->link_width <= TB_LINK_WIDTH_DUAL)
1141			continue;
1142		/* Unplugged, no need to switch */
1143		if (up->sw->is_unplugged)
1144			continue;
1145
1146		ret = tb_consumed_dp_bandwidth(tb, src_port, dst_port, up,
1147					       &consumed_up, &consumed_down);
1148		if (ret)
1149			break;
1150
1151		if (downstream) {
1152			/*
1153			 * Downstream so we want the consumed_down < threshold.
1154			 * Upstream traffic should be less than 36G (40G
1155			 * guard band 10%) as the link was configured asymmetric
1156			 * already.
1157			 */
1158			if (consumed_down >= asym_threshold)
1159				continue;
1160		} else {
1161			if (consumed_up >= asym_threshold)
1162				continue;
1163		}
1164
1165		if (up->sw->link_width == TB_LINK_WIDTH_DUAL)
1166			continue;
1167
1168		/*
1169		 * Here consumed < threshold so we can transition the
1170		 * link to symmetric.
1171		 *
1172		 * However, if the router prefers asymmetric link we
1173		 * honor that (unless @keep_asym is %false).
1174		 */
1175		if (keep_asym &&
1176		    up->sw->preferred_link_width > TB_LINK_WIDTH_DUAL) {
1177			tb_sw_dbg(up->sw, "keeping preferred asymmetric link\n");
1178			continue;
1179		}
1180
1181		/* Disable CL states before doing any transitions */
1182		if (!clx_disabled) {
1183			clx = tb_disable_clx(sw);
1184			clx_disabled = true;
1185		}
1186
1187		tb_sw_dbg(up->sw, "configuring symmetric link\n");
1188
1189		ret = tb_switch_set_link_width(up->sw, TB_LINK_WIDTH_DUAL);
1190		if (ret) {
1191			tb_sw_warn(up->sw, "failed to set link width\n");
1192			break;
1193		}
1194	}
1195
1196	/* Re-enable CL states if they were previosly enabled */
1197	if (clx)
1198		tb_enable_clx(sw);
1199
1200	return ret;
1201}
1202
1203static void tb_configure_link(struct tb_port *down, struct tb_port *up,
1204			      struct tb_switch *sw)
1205{
1206	struct tb *tb = sw->tb;
1207
1208	/* Link the routers using both links if available */
1209	down->remote = up;
1210	up->remote = down;
1211	if (down->dual_link_port && up->dual_link_port) {
1212		down->dual_link_port->remote = up->dual_link_port;
1213		up->dual_link_port->remote = down->dual_link_port;
1214	}
1215
1216	/*
1217	 * Enable lane bonding if the link is currently two single lane
1218	 * links.
1219	 */
1220	if (sw->link_width < TB_LINK_WIDTH_DUAL)
1221		tb_switch_set_link_width(sw, TB_LINK_WIDTH_DUAL);
1222
1223	/*
1224	 * Device router that comes up as symmetric link is
1225	 * connected deeper in the hierarchy, we transition the links
1226	 * above into symmetric if bandwidth allows.
1227	 */
1228	if (tb_switch_depth(sw) > 1 &&
1229	    tb_port_get_link_generation(up) >= 4 &&
1230	    up->sw->link_width == TB_LINK_WIDTH_DUAL) {
1231		struct tb_port *host_port;
1232
1233		host_port = tb_port_at(tb_route(sw), tb->root_switch);
1234		tb_configure_sym(tb, host_port, up, false);
1235	}
1236
1237	/* Set the link configured */
1238	tb_switch_configure_link(sw);
1239}
1240
1241static void tb_scan_port(struct tb_port *port);
1242
1243/*
1244 * tb_scan_switch() - scan for and initialize downstream switches
1245 */
1246static void tb_scan_switch(struct tb_switch *sw)
1247{
1248	struct tb_port *port;
1249
1250	pm_runtime_get_sync(&sw->dev);
1251
1252	tb_switch_for_each_port(sw, port)
1253		tb_scan_port(port);
1254
1255	pm_runtime_mark_last_busy(&sw->dev);
1256	pm_runtime_put_autosuspend(&sw->dev);
1257}
1258
1259/*
1260 * tb_scan_port() - check for and initialize switches below port
1261 */
1262static void tb_scan_port(struct tb_port *port)
1263{
1264	struct tb_cm *tcm = tb_priv(port->sw->tb);
1265	struct tb_port *upstream_port;
1266	bool discovery = false;
1267	struct tb_switch *sw;
1268
1269	if (tb_is_upstream_port(port))
1270		return;
1271
1272	if (tb_port_is_dpout(port) && tb_dp_port_hpd_is_active(port) == 1 &&
1273	    !tb_dp_port_is_enabled(port)) {
1274		tb_port_dbg(port, "DP adapter HPD set, queuing hotplug\n");
1275		tb_queue_hotplug(port->sw->tb, tb_route(port->sw), port->port,
1276				 false);
1277		return;
1278	}
1279
1280	if (port->config.type != TB_TYPE_PORT)
1281		return;
1282	if (port->dual_link_port && port->link_nr)
1283		return; /*
1284			 * Downstream switch is reachable through two ports.
1285			 * Only scan on the primary port (link_nr == 0).
1286			 */
1287
1288	if (port->usb4)
1289		pm_runtime_get_sync(&port->usb4->dev);
1290
1291	if (tb_wait_for_port(port, false) <= 0)
1292		goto out_rpm_put;
1293	if (port->remote) {
1294		tb_port_dbg(port, "port already has a remote\n");
1295		goto out_rpm_put;
1296	}
1297
1298	tb_retimer_scan(port, true);
1299
1300	sw = tb_switch_alloc(port->sw->tb, &port->sw->dev,
1301			     tb_downstream_route(port));
1302	if (IS_ERR(sw)) {
1303		/*
1304		 * If there is an error accessing the connected switch
1305		 * it may be connected to another domain. Also we allow
1306		 * the other domain to be connected to a max depth switch.
1307		 */
1308		if (PTR_ERR(sw) == -EIO || PTR_ERR(sw) == -EADDRNOTAVAIL)
1309			tb_scan_xdomain(port);
1310		goto out_rpm_put;
1311	}
1312
1313	if (tb_switch_configure(sw)) {
1314		tb_switch_put(sw);
1315		goto out_rpm_put;
1316	}
1317
1318	/*
1319	 * If there was previously another domain connected remove it
1320	 * first.
1321	 */
1322	if (port->xdomain) {
1323		tb_xdomain_remove(port->xdomain);
1324		tb_port_unconfigure_xdomain(port);
1325		port->xdomain = NULL;
1326	}
1327
1328	/*
1329	 * Do not send uevents until we have discovered all existing
1330	 * tunnels and know which switches were authorized already by
1331	 * the boot firmware.
1332	 */
1333	if (!tcm->hotplug_active) {
1334		dev_set_uevent_suppress(&sw->dev, true);
1335		discovery = true;
1336	}
1337
1338	/*
1339	 * At the moment Thunderbolt 2 and beyond (devices with LC) we
1340	 * can support runtime PM.
1341	 */
1342	sw->rpm = sw->generation > 1;
1343
1344	if (tb_switch_add(sw)) {
1345		tb_switch_put(sw);
1346		goto out_rpm_put;
1347	}
1348
1349	upstream_port = tb_upstream_port(sw);
1350	tb_configure_link(port, upstream_port, sw);
1351
1352	/*
1353	 * CL0s and CL1 are enabled and supported together.
1354	 * Silently ignore CLx enabling in case CLx is not supported.
1355	 */
1356	if (discovery)
1357		tb_sw_dbg(sw, "discovery, not touching CL states\n");
1358	else if (tb_enable_clx(sw))
1359		tb_sw_warn(sw, "failed to enable CL states\n");
1360
1361	if (tb_enable_tmu(sw))
1362		tb_sw_warn(sw, "failed to enable TMU\n");
1363
1364	/*
1365	 * Configuration valid needs to be set after the TMU has been
1366	 * enabled for the upstream port of the router so we do it here.
1367	 */
1368	tb_switch_configuration_valid(sw);
1369
1370	/* Scan upstream retimers */
1371	tb_retimer_scan(upstream_port, true);
1372
1373	/*
1374	 * Create USB 3.x tunnels only when the switch is plugged to the
1375	 * domain. This is because we scan the domain also during discovery
1376	 * and want to discover existing USB 3.x tunnels before we create
1377	 * any new.
1378	 */
1379	if (tcm->hotplug_active && tb_tunnel_usb3(sw->tb, sw))
1380		tb_sw_warn(sw, "USB3 tunnel creation failed\n");
1381
1382	tb_add_dp_resources(sw);
1383	tb_scan_switch(sw);
1384
1385out_rpm_put:
1386	if (port->usb4) {
1387		pm_runtime_mark_last_busy(&port->usb4->dev);
1388		pm_runtime_put_autosuspend(&port->usb4->dev);
1389	}
1390}
1391
1392static void
1393tb_recalc_estimated_bandwidth_for_group(struct tb_bandwidth_group *group)
1394{
1395	struct tb_tunnel *first_tunnel;
1396	struct tb *tb = group->tb;
1397	struct tb_port *in;
1398	int ret;
1399
1400	tb_dbg(tb, "re-calculating bandwidth estimation for group %u\n",
1401	       group->index);
1402
1403	first_tunnel = NULL;
1404	list_for_each_entry(in, &group->ports, group_list) {
1405		int estimated_bw, estimated_up, estimated_down;
1406		struct tb_tunnel *tunnel;
1407		struct tb_port *out;
1408
1409		if (!usb4_dp_port_bandwidth_mode_enabled(in))
1410			continue;
1411
1412		tunnel = tb_find_tunnel(tb, TB_TUNNEL_DP, in, NULL);
1413		if (WARN_ON(!tunnel))
1414			break;
1415
1416		if (!first_tunnel) {
1417			/*
1418			 * Since USB3 bandwidth is shared by all DP
1419			 * tunnels under the host router USB4 port, even
1420			 * if they do not begin from the host router, we
1421			 * can release USB3 bandwidth just once and not
1422			 * for each tunnel separately.
1423			 */
1424			first_tunnel = tunnel;
1425			ret = tb_release_unused_usb3_bandwidth(tb,
1426				first_tunnel->src_port, first_tunnel->dst_port);
1427			if (ret) {
1428				tb_tunnel_warn(tunnel,
1429					"failed to release unused bandwidth\n");
1430				break;
1431			}
1432		}
1433
1434		out = tunnel->dst_port;
1435		ret = tb_available_bandwidth(tb, in, out, &estimated_up,
1436					     &estimated_down, true);
1437		if (ret) {
1438			tb_tunnel_warn(tunnel,
1439				"failed to re-calculate estimated bandwidth\n");
1440			break;
1441		}
1442
1443		/*
1444		 * Estimated bandwidth includes:
1445		 *  - already allocated bandwidth for the DP tunnel
1446		 *  - available bandwidth along the path
1447		 *  - bandwidth allocated for USB 3.x but not used.
1448		 */
1449		if (tb_tunnel_direction_downstream(tunnel))
1450			estimated_bw = estimated_down;
1451		else
1452			estimated_bw = estimated_up;
1453
1454		/*
1455		 * If there is reserved bandwidth for the group that is
1456		 * not yet released we report that too.
1457		 */
1458		tb_tunnel_dbg(tunnel,
1459			      "re-calculated estimated bandwidth %u (+ %u reserved) = %u Mb/s\n",
1460			      estimated_bw, group->reserved,
1461			      estimated_bw + group->reserved);
1462
1463		if (usb4_dp_port_set_estimated_bandwidth(in,
1464				estimated_bw + group->reserved))
1465			tb_tunnel_warn(tunnel,
1466				       "failed to update estimated bandwidth\n");
1467	}
1468
1469	if (first_tunnel)
1470		tb_reclaim_usb3_bandwidth(tb, first_tunnel->src_port,
1471					  first_tunnel->dst_port);
1472
1473	tb_dbg(tb, "bandwidth estimation for group %u done\n", group->index);
1474}
1475
1476static void tb_recalc_estimated_bandwidth(struct tb *tb)
1477{
1478	struct tb_cm *tcm = tb_priv(tb);
1479	int i;
1480
1481	tb_dbg(tb, "bandwidth consumption changed, re-calculating estimated bandwidth\n");
1482
1483	for (i = 0; i < ARRAY_SIZE(tcm->groups); i++) {
1484		struct tb_bandwidth_group *group = &tcm->groups[i];
1485
1486		if (!list_empty(&group->ports))
1487			tb_recalc_estimated_bandwidth_for_group(group);
1488	}
1489
1490	tb_dbg(tb, "bandwidth re-calculation done\n");
1491}
1492
1493static bool __release_group_bandwidth(struct tb_bandwidth_group *group)
1494{
1495	if (group->reserved) {
1496		tb_dbg(group->tb, "group %d released total %d Mb/s\n", group->index,
1497			group->reserved);
1498		group->reserved = 0;
1499		return true;
1500	}
1501	return false;
1502}
1503
1504static void __configure_group_sym(struct tb_bandwidth_group *group)
1505{
1506	struct tb_tunnel *tunnel;
1507	struct tb_port *in;
1508
1509	if (list_empty(&group->ports))
1510		return;
1511
1512	/*
1513	 * All the tunnels in the group go through the same USB4 links
1514	 * so we find the first one here and pass the IN and OUT
1515	 * adapters to tb_configure_sym() which now transitions the
1516	 * links back to symmetric if bandwidth requirement < asym_threshold.
1517	 *
1518	 * We do this here to avoid unnecessary transitions (for example
1519	 * if the graphics released bandwidth for other tunnel in the
1520	 * same group).
1521	 */
1522	in = list_first_entry(&group->ports, struct tb_port, group_list);
1523	tunnel = tb_find_tunnel(group->tb, TB_TUNNEL_DP, in, NULL);
1524	if (tunnel)
1525		tb_configure_sym(group->tb, in, tunnel->dst_port, true);
1526}
1527
1528static void tb_bandwidth_group_release_work(struct work_struct *work)
1529{
1530	struct tb_bandwidth_group *group =
1531		container_of(work, typeof(*group), release_work.work);
1532	struct tb *tb = group->tb;
1533
1534	mutex_lock(&tb->lock);
1535	if (__release_group_bandwidth(group))
1536		tb_recalc_estimated_bandwidth(tb);
1537	__configure_group_sym(group);
1538	mutex_unlock(&tb->lock);
1539}
1540
1541static void tb_init_bandwidth_groups(struct tb_cm *tcm)
1542{
1543	int i;
1544
1545	for (i = 0; i < ARRAY_SIZE(tcm->groups); i++) {
1546		struct tb_bandwidth_group *group = &tcm->groups[i];
1547
1548		group->tb = tcm_to_tb(tcm);
1549		group->index = i + 1;
1550		INIT_LIST_HEAD(&group->ports);
1551		INIT_DELAYED_WORK(&group->release_work,
1552				  tb_bandwidth_group_release_work);
1553	}
1554}
1555
1556static void tb_bandwidth_group_attach_port(struct tb_bandwidth_group *group,
1557					   struct tb_port *in)
1558{
1559	if (!group || WARN_ON(in->group))
1560		return;
1561
1562	in->group = group;
1563	list_add_tail(&in->group_list, &group->ports);
1564
1565	tb_port_dbg(in, "attached to bandwidth group %d\n", group->index);
1566}
1567
1568static struct tb_bandwidth_group *tb_find_free_bandwidth_group(struct tb_cm *tcm)
1569{
1570	int i;
1571
1572	for (i = 0; i < ARRAY_SIZE(tcm->groups); i++) {
1573		struct tb_bandwidth_group *group = &tcm->groups[i];
1574
1575		if (list_empty(&group->ports))
1576			return group;
1577	}
1578
1579	return NULL;
1580}
1581
1582static struct tb_bandwidth_group *
1583tb_attach_bandwidth_group(struct tb_cm *tcm, struct tb_port *in,
1584			  struct tb_port *out)
1585{
1586	struct tb_bandwidth_group *group;
1587	struct tb_tunnel *tunnel;
1588
1589	/*
1590	 * Find all DP tunnels that go through all the same USB4 links
1591	 * as this one. Because we always setup tunnels the same way we
1592	 * can just check for the routers at both ends of the tunnels
1593	 * and if they are the same we have a match.
1594	 */
1595	list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
1596		if (!tb_tunnel_is_dp(tunnel))
1597			continue;
1598
1599		if (tunnel->src_port->sw == in->sw &&
1600		    tunnel->dst_port->sw == out->sw) {
1601			group = tunnel->src_port->group;
1602			if (group) {
1603				tb_bandwidth_group_attach_port(group, in);
1604				return group;
1605			}
1606		}
1607	}
1608
1609	/* Pick up next available group then */
1610	group = tb_find_free_bandwidth_group(tcm);
1611	if (group)
1612		tb_bandwidth_group_attach_port(group, in);
1613	else
1614		tb_port_warn(in, "no available bandwidth groups\n");
1615
1616	return group;
1617}
1618
1619static void tb_discover_bandwidth_group(struct tb_cm *tcm, struct tb_port *in,
1620					struct tb_port *out)
1621{
1622	if (usb4_dp_port_bandwidth_mode_enabled(in)) {
1623		int index, i;
1624
1625		index = usb4_dp_port_group_id(in);
1626		for (i = 0; i < ARRAY_SIZE(tcm->groups); i++) {
1627			if (tcm->groups[i].index == index) {
1628				tb_bandwidth_group_attach_port(&tcm->groups[i], in);
1629				return;
1630			}
1631		}
1632	}
1633
1634	tb_attach_bandwidth_group(tcm, in, out);
1635}
1636
1637static void tb_detach_bandwidth_group(struct tb_port *in)
1638{
1639	struct tb_bandwidth_group *group = in->group;
1640
1641	if (group) {
1642		in->group = NULL;
1643		list_del_init(&in->group_list);
1644
1645		tb_port_dbg(in, "detached from bandwidth group %d\n", group->index);
1646
1647		/* No more tunnels so release the reserved bandwidth if any */
1648		if (list_empty(&group->ports)) {
1649			cancel_delayed_work(&group->release_work);
1650			__release_group_bandwidth(group);
1651		}
1652	}
1653}
1654
1655static void tb_discover_tunnels(struct tb *tb)
1656{
1657	struct tb_cm *tcm = tb_priv(tb);
1658	struct tb_tunnel *tunnel;
1659
1660	tb_switch_discover_tunnels(tb->root_switch, &tcm->tunnel_list, true);
1661
1662	list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
1663		if (tb_tunnel_is_pci(tunnel)) {
1664			struct tb_switch *parent = tunnel->dst_port->sw;
1665
1666			while (parent != tunnel->src_port->sw) {
1667				parent->boot = true;
1668				parent = tb_switch_parent(parent);
1669			}
1670		} else if (tb_tunnel_is_dp(tunnel)) {
1671			struct tb_port *in = tunnel->src_port;
1672			struct tb_port *out = tunnel->dst_port;
1673
1674			/* Keep the domain from powering down */
1675			pm_runtime_get_sync(&in->sw->dev);
1676			pm_runtime_get_sync(&out->sw->dev);
1677
1678			tb_discover_bandwidth_group(tcm, in, out);
1679		}
1680	}
1681}
1682
1683static void tb_deactivate_and_free_tunnel(struct tb_tunnel *tunnel)
1684{
1685	struct tb_port *src_port, *dst_port;
1686	struct tb *tb;
1687
1688	if (!tunnel)
1689		return;
1690
1691	tb_tunnel_deactivate(tunnel);
1692	list_del(&tunnel->list);
1693
1694	tb = tunnel->tb;
1695	src_port = tunnel->src_port;
1696	dst_port = tunnel->dst_port;
1697
1698	switch (tunnel->type) {
1699	case TB_TUNNEL_DP:
1700		tb_detach_bandwidth_group(src_port);
1701		/*
1702		 * In case of DP tunnel make sure the DP IN resource is
1703		 * deallocated properly.
1704		 */
1705		tb_switch_dealloc_dp_resource(src_port->sw, src_port);
1706		/*
1707		 * If bandwidth on a link is < asym_threshold
1708		 * transition the link to symmetric.
1709		 */
1710		tb_configure_sym(tb, src_port, dst_port, true);
1711		/* Now we can allow the domain to runtime suspend again */
1712		pm_runtime_mark_last_busy(&dst_port->sw->dev);
1713		pm_runtime_put_autosuspend(&dst_port->sw->dev);
1714		pm_runtime_mark_last_busy(&src_port->sw->dev);
1715		pm_runtime_put_autosuspend(&src_port->sw->dev);
1716		fallthrough;
1717
1718	case TB_TUNNEL_USB3:
1719		tb_reclaim_usb3_bandwidth(tb, src_port, dst_port);
1720		break;
1721
1722	default:
1723		/*
1724		 * PCIe and DMA tunnels do not consume guaranteed
1725		 * bandwidth.
1726		 */
1727		break;
1728	}
1729
1730	tb_tunnel_free(tunnel);
1731}
1732
1733/*
1734 * tb_free_invalid_tunnels() - destroy tunnels of devices that have gone away
1735 */
1736static void tb_free_invalid_tunnels(struct tb *tb)
1737{
1738	struct tb_cm *tcm = tb_priv(tb);
1739	struct tb_tunnel *tunnel;
1740	struct tb_tunnel *n;
1741
1742	list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) {
1743		if (tb_tunnel_is_invalid(tunnel))
1744			tb_deactivate_and_free_tunnel(tunnel);
1745	}
1746}
1747
1748/*
1749 * tb_free_unplugged_children() - traverse hierarchy and free unplugged switches
1750 */
1751static void tb_free_unplugged_children(struct tb_switch *sw)
1752{
1753	struct tb_port *port;
1754
1755	tb_switch_for_each_port(sw, port) {
1756		if (!tb_port_has_remote(port))
1757			continue;
1758
1759		if (port->remote->sw->is_unplugged) {
1760			tb_retimer_remove_all(port);
1761			tb_remove_dp_resources(port->remote->sw);
1762			tb_switch_unconfigure_link(port->remote->sw);
1763			tb_switch_set_link_width(port->remote->sw,
1764						 TB_LINK_WIDTH_SINGLE);
1765			tb_switch_remove(port->remote->sw);
1766			port->remote = NULL;
1767			if (port->dual_link_port)
1768				port->dual_link_port->remote = NULL;
1769		} else {
1770			tb_free_unplugged_children(port->remote->sw);
1771		}
1772	}
1773}
1774
1775static struct tb_port *tb_find_pcie_down(struct tb_switch *sw,
1776					 const struct tb_port *port)
1777{
1778	struct tb_port *down = NULL;
1779
1780	/*
1781	 * To keep plugging devices consistently in the same PCIe
1782	 * hierarchy, do mapping here for switch downstream PCIe ports.
1783	 */
1784	if (tb_switch_is_usb4(sw)) {
1785		down = usb4_switch_map_pcie_down(sw, port);
1786	} else if (!tb_route(sw)) {
1787		int phy_port = tb_phy_port_from_link(port->port);
1788		int index;
1789
1790		/*
1791		 * Hard-coded Thunderbolt port to PCIe down port mapping
1792		 * per controller.
1793		 */
1794		if (tb_switch_is_cactus_ridge(sw) ||
1795		    tb_switch_is_alpine_ridge(sw))
1796			index = !phy_port ? 6 : 7;
1797		else if (tb_switch_is_falcon_ridge(sw))
1798			index = !phy_port ? 6 : 8;
1799		else if (tb_switch_is_titan_ridge(sw))
1800			index = !phy_port ? 8 : 9;
1801		else
1802			goto out;
1803
1804		/* Validate the hard-coding */
1805		if (WARN_ON(index > sw->config.max_port_number))
1806			goto out;
1807
1808		down = &sw->ports[index];
1809	}
1810
1811	if (down) {
1812		if (WARN_ON(!tb_port_is_pcie_down(down)))
1813			goto out;
1814		if (tb_pci_port_is_enabled(down))
1815			goto out;
1816
1817		return down;
1818	}
1819
1820out:
1821	return tb_find_unused_port(sw, TB_TYPE_PCIE_DOWN);
1822}
1823
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1824static struct tb_port *tb_find_dp_out(struct tb *tb, struct tb_port *in)
1825{
1826	struct tb_port *host_port, *port;
1827	struct tb_cm *tcm = tb_priv(tb);
1828
1829	host_port = tb_route(in->sw) ?
1830		tb_port_at(tb_route(in->sw), tb->root_switch) : NULL;
1831
1832	list_for_each_entry(port, &tcm->dp_resources, list) {
1833		if (!tb_port_is_dpout(port))
1834			continue;
1835
1836		if (tb_port_is_enabled(port)) {
1837			tb_port_dbg(port, "DP OUT in use\n");
1838			continue;
1839		}
1840
1841		/* Needs to be on different routers */
1842		if (in->sw == port->sw) {
1843			tb_port_dbg(port, "skipping DP OUT on same router\n");
1844			continue;
1845		}
1846
1847		tb_port_dbg(port, "DP OUT available\n");
1848
1849		/*
1850		 * Keep the DP tunnel under the topology starting from
1851		 * the same host router downstream port.
1852		 */
1853		if (host_port && tb_route(port->sw)) {
1854			struct tb_port *p;
1855
1856			p = tb_port_at(tb_route(port->sw), tb->root_switch);
1857			if (p != host_port)
1858				continue;
1859		}
1860
1861		return port;
1862	}
1863
1864	return NULL;
1865}
1866
1867static bool tb_tunnel_one_dp(struct tb *tb, struct tb_port *in,
1868			     struct tb_port *out)
1869{
1870	int available_up, available_down, ret, link_nr;
1871	struct tb_cm *tcm = tb_priv(tb);
 
1872	int consumed_up, consumed_down;
1873	struct tb_tunnel *tunnel;
1874
1875	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1876	 * This is only applicable to links that are not bonded (so
1877	 * when Thunderbolt 1 hardware is involved somewhere in the
1878	 * topology). For these try to share the DP bandwidth between
1879	 * the two lanes.
1880	 */
1881	link_nr = 1;
1882	list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
1883		if (tb_tunnel_is_dp(tunnel)) {
1884			link_nr = 0;
1885			break;
1886		}
1887	}
1888
1889	/*
1890	 * DP stream needs the domain to be active so runtime resume
1891	 * both ends of the tunnel.
1892	 *
1893	 * This should bring the routers in the middle active as well
1894	 * and keeps the domain from runtime suspending while the DP
1895	 * tunnel is active.
1896	 */
1897	pm_runtime_get_sync(&in->sw->dev);
1898	pm_runtime_get_sync(&out->sw->dev);
1899
1900	if (tb_switch_alloc_dp_resource(in->sw, in)) {
1901		tb_port_dbg(in, "no resource available for DP IN, not tunneling\n");
1902		goto err_rpm_put;
1903	}
1904
1905	if (!tb_attach_bandwidth_group(tcm, in, out))
1906		goto err_dealloc_dp;
1907
1908	/* Make all unused USB3 bandwidth available for the new DP tunnel */
1909	ret = tb_release_unused_usb3_bandwidth(tb, in, out);
1910	if (ret) {
1911		tb_warn(tb, "failed to release unused bandwidth\n");
1912		goto err_detach_group;
1913	}
1914
1915	ret = tb_available_bandwidth(tb, in, out, &available_up, &available_down,
1916				     true);
1917	if (ret)
1918		goto err_reclaim_usb;
1919
1920	tb_dbg(tb, "available bandwidth for new DP tunnel %u/%u Mb/s\n",
1921	       available_up, available_down);
1922
1923	tunnel = tb_tunnel_alloc_dp(tb, in, out, link_nr, available_up,
1924				    available_down);
1925	if (!tunnel) {
1926		tb_port_dbg(out, "could not allocate DP tunnel\n");
1927		goto err_reclaim_usb;
1928	}
1929
1930	if (tb_tunnel_activate(tunnel)) {
1931		tb_port_info(out, "DP tunnel activation failed, aborting\n");
1932		goto err_free;
1933	}
1934
1935	/* If fail reading tunnel's consumed bandwidth, tear it down */
1936	ret = tb_tunnel_consumed_bandwidth(tunnel, &consumed_up, &consumed_down);
1937	if (ret)
1938		goto err_deactivate;
1939
1940	list_add_tail(&tunnel->list, &tcm->tunnel_list);
 
1941
1942	tb_reclaim_usb3_bandwidth(tb, in, out);
1943	/*
1944	 * Transition the links to asymmetric if the consumption exceeds
1945	 * the threshold.
1946	 */
1947	tb_configure_asym(tb, in, out, consumed_up, consumed_down);
 
1948
1949	/* Update the domain with the new bandwidth estimation */
1950	tb_recalc_estimated_bandwidth(tb);
1951
1952	/*
1953	 * In case of DP tunnel exists, change host router's 1st children
1954	 * TMU mode to HiFi for CL0s to work.
1955	 */
1956	tb_increase_tmu_accuracy(tunnel);
1957	return true;
1958
1959err_deactivate:
1960	tb_tunnel_deactivate(tunnel);
1961err_free:
1962	tb_tunnel_free(tunnel);
1963err_reclaim_usb:
1964	tb_reclaim_usb3_bandwidth(tb, in, out);
1965err_detach_group:
1966	tb_detach_bandwidth_group(in);
1967err_dealloc_dp:
1968	tb_switch_dealloc_dp_resource(in->sw, in);
1969err_rpm_put:
1970	pm_runtime_mark_last_busy(&out->sw->dev);
1971	pm_runtime_put_autosuspend(&out->sw->dev);
1972	pm_runtime_mark_last_busy(&in->sw->dev);
1973	pm_runtime_put_autosuspend(&in->sw->dev);
1974
1975	return false;
1976}
1977
1978static void tb_tunnel_dp(struct tb *tb)
1979{
1980	struct tb_cm *tcm = tb_priv(tb);
1981	struct tb_port *port, *in, *out;
1982
1983	if (!tb_acpi_may_tunnel_dp()) {
1984		tb_dbg(tb, "DP tunneling disabled, not creating tunnel\n");
1985		return;
1986	}
1987
1988	/*
1989	 * Find pair of inactive DP IN and DP OUT adapters and then
1990	 * establish a DP tunnel between them.
1991	 */
1992	tb_dbg(tb, "looking for DP IN <-> DP OUT pairs:\n");
1993
1994	in = NULL;
1995	out = NULL;
1996	list_for_each_entry(port, &tcm->dp_resources, list) {
1997		if (!tb_port_is_dpin(port))
1998			continue;
1999
2000		if (tb_port_is_enabled(port)) {
2001			tb_port_dbg(port, "DP IN in use\n");
2002			continue;
2003		}
2004
2005		in = port;
2006		tb_port_dbg(in, "DP IN available\n");
2007
2008		out = tb_find_dp_out(tb, port);
2009		if (out)
2010			tb_tunnel_one_dp(tb, in, out);
2011		else
2012			tb_port_dbg(in, "no suitable DP OUT adapter available, not tunneling\n");
2013	}
2014
2015	if (!in)
2016		tb_dbg(tb, "no suitable DP IN adapter available, not tunneling\n");
2017}
2018
2019static void tb_enter_redrive(struct tb_port *port)
2020{
2021	struct tb_switch *sw = port->sw;
2022
2023	if (!(sw->quirks & QUIRK_KEEP_POWER_IN_DP_REDRIVE))
2024		return;
2025
2026	/*
2027	 * If we get hot-unplug for the DP IN port of the host router
2028	 * and the DP resource is not available anymore it means there
2029	 * is a monitor connected directly to the Type-C port and we are
2030	 * in "redrive" mode. For this to work we cannot enter RTD3 so
2031	 * we bump up the runtime PM reference count here.
2032	 */
2033	if (!tb_port_is_dpin(port))
2034		return;
2035	if (tb_route(sw))
2036		return;
2037	if (!tb_switch_query_dp_resource(sw, port)) {
2038		port->redrive = true;
2039		pm_runtime_get(&sw->dev);
2040		tb_port_dbg(port, "enter redrive mode, keeping powered\n");
2041	}
2042}
2043
2044static void tb_exit_redrive(struct tb_port *port)
2045{
2046	struct tb_switch *sw = port->sw;
2047
2048	if (!(sw->quirks & QUIRK_KEEP_POWER_IN_DP_REDRIVE))
2049		return;
2050
2051	if (!tb_port_is_dpin(port))
2052		return;
2053	if (tb_route(sw))
2054		return;
2055	if (port->redrive && tb_switch_query_dp_resource(sw, port)) {
2056		port->redrive = false;
2057		pm_runtime_put(&sw->dev);
2058		tb_port_dbg(port, "exit redrive mode\n");
2059	}
2060}
2061
2062static void tb_switch_enter_redrive(struct tb_switch *sw)
2063{
2064	struct tb_port *port;
2065
2066	tb_switch_for_each_port(sw, port)
2067		tb_enter_redrive(port);
2068}
2069
2070/*
2071 * Called during system and runtime suspend to forcefully exit redrive
2072 * mode without querying whether the resource is available.
2073 */
2074static void tb_switch_exit_redrive(struct tb_switch *sw)
2075{
2076	struct tb_port *port;
2077
2078	if (!(sw->quirks & QUIRK_KEEP_POWER_IN_DP_REDRIVE))
2079		return;
2080
2081	tb_switch_for_each_port(sw, port) {
2082		if (!tb_port_is_dpin(port))
2083			continue;
2084
2085		if (port->redrive) {
2086			port->redrive = false;
2087			pm_runtime_put(&sw->dev);
2088			tb_port_dbg(port, "exit redrive mode\n");
2089		}
2090	}
2091}
2092
2093static void tb_dp_resource_unavailable(struct tb *tb, struct tb_port *port)
2094{
2095	struct tb_port *in, *out;
2096	struct tb_tunnel *tunnel;
2097
2098	if (tb_port_is_dpin(port)) {
2099		tb_port_dbg(port, "DP IN resource unavailable\n");
2100		in = port;
2101		out = NULL;
2102	} else {
2103		tb_port_dbg(port, "DP OUT resource unavailable\n");
2104		in = NULL;
2105		out = port;
2106	}
2107
2108	tunnel = tb_find_tunnel(tb, TB_TUNNEL_DP, in, out);
2109	if (tunnel)
2110		tb_deactivate_and_free_tunnel(tunnel);
2111	else
2112		tb_enter_redrive(port);
2113	list_del_init(&port->list);
2114
2115	/*
2116	 * See if there is another DP OUT port that can be used for
2117	 * to create another tunnel.
2118	 */
2119	tb_recalc_estimated_bandwidth(tb);
2120	tb_tunnel_dp(tb);
2121}
2122
2123static void tb_dp_resource_available(struct tb *tb, struct tb_port *port)
2124{
2125	struct tb_cm *tcm = tb_priv(tb);
2126	struct tb_port *p;
2127
2128	if (tb_port_is_enabled(port))
2129		return;
2130
2131	list_for_each_entry(p, &tcm->dp_resources, list) {
2132		if (p == port)
2133			return;
2134	}
2135
2136	tb_port_dbg(port, "DP %s resource available after hotplug\n",
2137		    tb_port_is_dpin(port) ? "IN" : "OUT");
2138	list_add_tail(&port->list, &tcm->dp_resources);
2139	tb_exit_redrive(port);
2140
2141	/* Look for suitable DP IN <-> DP OUT pairs now */
2142	tb_tunnel_dp(tb);
2143}
2144
2145static void tb_disconnect_and_release_dp(struct tb *tb)
2146{
2147	struct tb_cm *tcm = tb_priv(tb);
2148	struct tb_tunnel *tunnel, *n;
2149
2150	/*
2151	 * Tear down all DP tunnels and release their resources. They
2152	 * will be re-established after resume based on plug events.
2153	 */
2154	list_for_each_entry_safe_reverse(tunnel, n, &tcm->tunnel_list, list) {
2155		if (tb_tunnel_is_dp(tunnel))
2156			tb_deactivate_and_free_tunnel(tunnel);
2157	}
2158
2159	while (!list_empty(&tcm->dp_resources)) {
2160		struct tb_port *port;
2161
2162		port = list_first_entry(&tcm->dp_resources,
2163					struct tb_port, list);
2164		list_del_init(&port->list);
2165	}
2166}
2167
2168static int tb_disconnect_pci(struct tb *tb, struct tb_switch *sw)
2169{
2170	struct tb_tunnel *tunnel;
2171	struct tb_port *up;
2172
2173	up = tb_switch_find_port(sw, TB_TYPE_PCIE_UP);
2174	if (WARN_ON(!up))
2175		return -ENODEV;
2176
2177	tunnel = tb_find_tunnel(tb, TB_TUNNEL_PCI, NULL, up);
2178	if (WARN_ON(!tunnel))
2179		return -ENODEV;
2180
2181	tb_switch_xhci_disconnect(sw);
2182
2183	tb_tunnel_deactivate(tunnel);
2184	list_del(&tunnel->list);
2185	tb_tunnel_free(tunnel);
2186	return 0;
2187}
2188
2189static int tb_tunnel_pci(struct tb *tb, struct tb_switch *sw)
2190{
2191	struct tb_port *up, *down, *port;
2192	struct tb_cm *tcm = tb_priv(tb);
2193	struct tb_tunnel *tunnel;
2194
2195	up = tb_switch_find_port(sw, TB_TYPE_PCIE_UP);
2196	if (!up)
2197		return 0;
2198
2199	/*
2200	 * Look up available down port. Since we are chaining it should
2201	 * be found right above this switch.
2202	 */
2203	port = tb_switch_downstream_port(sw);
2204	down = tb_find_pcie_down(tb_switch_parent(sw), port);
2205	if (!down)
2206		return 0;
2207
2208	tunnel = tb_tunnel_alloc_pci(tb, up, down);
2209	if (!tunnel)
2210		return -ENOMEM;
2211
2212	if (tb_tunnel_activate(tunnel)) {
2213		tb_port_info(up,
2214			     "PCIe tunnel activation failed, aborting\n");
2215		tb_tunnel_free(tunnel);
2216		return -EIO;
2217	}
2218
2219	/*
2220	 * PCIe L1 is needed to enable CL0s for Titan Ridge so enable it
2221	 * here.
2222	 */
2223	if (tb_switch_pcie_l1_enable(sw))
2224		tb_sw_warn(sw, "failed to enable PCIe L1 for Titan Ridge\n");
2225
2226	if (tb_switch_xhci_connect(sw))
2227		tb_sw_warn(sw, "failed to connect xHCI\n");
2228
2229	list_add_tail(&tunnel->list, &tcm->tunnel_list);
2230	return 0;
2231}
2232
2233static int tb_approve_xdomain_paths(struct tb *tb, struct tb_xdomain *xd,
2234				    int transmit_path, int transmit_ring,
2235				    int receive_path, int receive_ring)
2236{
2237	struct tb_cm *tcm = tb_priv(tb);
2238	struct tb_port *nhi_port, *dst_port;
2239	struct tb_tunnel *tunnel;
2240	struct tb_switch *sw;
2241	int ret;
2242
2243	sw = tb_to_switch(xd->dev.parent);
2244	dst_port = tb_port_at(xd->route, sw);
2245	nhi_port = tb_switch_find_port(tb->root_switch, TB_TYPE_NHI);
2246
2247	mutex_lock(&tb->lock);
2248
2249	/*
2250	 * When tunneling DMA paths the link should not enter CL states
2251	 * so disable them now.
2252	 */
2253	tb_disable_clx(sw);
2254
2255	tunnel = tb_tunnel_alloc_dma(tb, nhi_port, dst_port, transmit_path,
2256				     transmit_ring, receive_path, receive_ring);
2257	if (!tunnel) {
2258		ret = -ENOMEM;
2259		goto err_clx;
2260	}
2261
2262	if (tb_tunnel_activate(tunnel)) {
2263		tb_port_info(nhi_port,
2264			     "DMA tunnel activation failed, aborting\n");
2265		ret = -EIO;
2266		goto err_free;
2267	}
2268
2269	list_add_tail(&tunnel->list, &tcm->tunnel_list);
2270	mutex_unlock(&tb->lock);
2271	return 0;
2272
2273err_free:
2274	tb_tunnel_free(tunnel);
2275err_clx:
2276	tb_enable_clx(sw);
2277	mutex_unlock(&tb->lock);
2278
2279	return ret;
2280}
2281
2282static void __tb_disconnect_xdomain_paths(struct tb *tb, struct tb_xdomain *xd,
2283					  int transmit_path, int transmit_ring,
2284					  int receive_path, int receive_ring)
2285{
2286	struct tb_cm *tcm = tb_priv(tb);
2287	struct tb_port *nhi_port, *dst_port;
2288	struct tb_tunnel *tunnel, *n;
2289	struct tb_switch *sw;
2290
2291	sw = tb_to_switch(xd->dev.parent);
2292	dst_port = tb_port_at(xd->route, sw);
2293	nhi_port = tb_switch_find_port(tb->root_switch, TB_TYPE_NHI);
2294
2295	list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) {
2296		if (!tb_tunnel_is_dma(tunnel))
2297			continue;
2298		if (tunnel->src_port != nhi_port || tunnel->dst_port != dst_port)
2299			continue;
2300
2301		if (tb_tunnel_match_dma(tunnel, transmit_path, transmit_ring,
2302					receive_path, receive_ring))
2303			tb_deactivate_and_free_tunnel(tunnel);
2304	}
2305
2306	/*
2307	 * Try to re-enable CL states now, it is OK if this fails
2308	 * because we may still have another DMA tunnel active through
2309	 * the same host router USB4 downstream port.
2310	 */
2311	tb_enable_clx(sw);
2312}
2313
2314static int tb_disconnect_xdomain_paths(struct tb *tb, struct tb_xdomain *xd,
2315				       int transmit_path, int transmit_ring,
2316				       int receive_path, int receive_ring)
2317{
2318	if (!xd->is_unplugged) {
2319		mutex_lock(&tb->lock);
2320		__tb_disconnect_xdomain_paths(tb, xd, transmit_path,
2321					      transmit_ring, receive_path,
2322					      receive_ring);
2323		mutex_unlock(&tb->lock);
2324	}
2325	return 0;
2326}
2327
2328/* hotplug handling */
2329
2330/*
2331 * tb_handle_hotplug() - handle hotplug event
2332 *
2333 * Executes on tb->wq.
2334 */
2335static void tb_handle_hotplug(struct work_struct *work)
2336{
2337	struct tb_hotplug_event *ev = container_of(work, typeof(*ev), work);
2338	struct tb *tb = ev->tb;
2339	struct tb_cm *tcm = tb_priv(tb);
2340	struct tb_switch *sw;
2341	struct tb_port *port;
2342
2343	/* Bring the domain back from sleep if it was suspended */
2344	pm_runtime_get_sync(&tb->dev);
2345
2346	mutex_lock(&tb->lock);
2347	if (!tcm->hotplug_active)
2348		goto out; /* during init, suspend or shutdown */
2349
2350	sw = tb_switch_find_by_route(tb, ev->route);
2351	if (!sw) {
2352		tb_warn(tb,
2353			"hotplug event from non existent switch %llx:%x (unplug: %d)\n",
2354			ev->route, ev->port, ev->unplug);
2355		goto out;
2356	}
2357	if (ev->port > sw->config.max_port_number) {
2358		tb_warn(tb,
2359			"hotplug event from non existent port %llx:%x (unplug: %d)\n",
2360			ev->route, ev->port, ev->unplug);
2361		goto put_sw;
2362	}
2363	port = &sw->ports[ev->port];
2364	if (tb_is_upstream_port(port)) {
2365		tb_dbg(tb, "hotplug event for upstream port %llx:%x (unplug: %d)\n",
2366		       ev->route, ev->port, ev->unplug);
2367		goto put_sw;
2368	}
2369
2370	pm_runtime_get_sync(&sw->dev);
2371
2372	if (ev->unplug) {
2373		tb_retimer_remove_all(port);
2374
2375		if (tb_port_has_remote(port)) {
2376			tb_port_dbg(port, "switch unplugged\n");
2377			tb_sw_set_unplugged(port->remote->sw);
2378			tb_free_invalid_tunnels(tb);
2379			tb_remove_dp_resources(port->remote->sw);
2380			tb_switch_tmu_disable(port->remote->sw);
2381			tb_switch_unconfigure_link(port->remote->sw);
2382			tb_switch_set_link_width(port->remote->sw,
2383						 TB_LINK_WIDTH_SINGLE);
2384			tb_switch_remove(port->remote->sw);
2385			port->remote = NULL;
2386			if (port->dual_link_port)
2387				port->dual_link_port->remote = NULL;
2388			/* Maybe we can create another DP tunnel */
2389			tb_recalc_estimated_bandwidth(tb);
2390			tb_tunnel_dp(tb);
2391		} else if (port->xdomain) {
2392			struct tb_xdomain *xd = tb_xdomain_get(port->xdomain);
2393
2394			tb_port_dbg(port, "xdomain unplugged\n");
2395			/*
2396			 * Service drivers are unbound during
2397			 * tb_xdomain_remove() so setting XDomain as
2398			 * unplugged here prevents deadlock if they call
2399			 * tb_xdomain_disable_paths(). We will tear down
2400			 * all the tunnels below.
2401			 */
2402			xd->is_unplugged = true;
2403			tb_xdomain_remove(xd);
2404			port->xdomain = NULL;
2405			__tb_disconnect_xdomain_paths(tb, xd, -1, -1, -1, -1);
2406			tb_xdomain_put(xd);
2407			tb_port_unconfigure_xdomain(port);
2408		} else if (tb_port_is_dpout(port) || tb_port_is_dpin(port)) {
2409			tb_dp_resource_unavailable(tb, port);
2410		} else if (!port->port) {
2411			tb_sw_dbg(sw, "xHCI disconnect request\n");
2412			tb_switch_xhci_disconnect(sw);
2413		} else {
2414			tb_port_dbg(port,
2415				   "got unplug event for disconnected port, ignoring\n");
2416		}
2417	} else if (port->remote) {
2418		tb_port_dbg(port, "got plug event for connected port, ignoring\n");
2419	} else if (!port->port && sw->authorized) {
2420		tb_sw_dbg(sw, "xHCI connect request\n");
2421		tb_switch_xhci_connect(sw);
2422	} else {
2423		if (tb_port_is_null(port)) {
2424			tb_port_dbg(port, "hotplug: scanning\n");
2425			tb_scan_port(port);
2426			if (!port->remote)
2427				tb_port_dbg(port, "hotplug: no switch found\n");
2428		} else if (tb_port_is_dpout(port) || tb_port_is_dpin(port)) {
2429			tb_dp_resource_available(tb, port);
2430		}
2431	}
2432
2433	pm_runtime_mark_last_busy(&sw->dev);
2434	pm_runtime_put_autosuspend(&sw->dev);
2435
2436put_sw:
2437	tb_switch_put(sw);
2438out:
2439	mutex_unlock(&tb->lock);
2440
2441	pm_runtime_mark_last_busy(&tb->dev);
2442	pm_runtime_put_autosuspend(&tb->dev);
2443
2444	kfree(ev);
2445}
2446
2447static int tb_alloc_dp_bandwidth(struct tb_tunnel *tunnel, int *requested_up,
2448				 int *requested_down)
2449{
2450	int allocated_up, allocated_down, available_up, available_down, ret;
2451	int requested_up_corrected, requested_down_corrected, granularity;
2452	int max_up, max_down, max_up_rounded, max_down_rounded;
2453	struct tb_bandwidth_group *group;
2454	struct tb *tb = tunnel->tb;
2455	struct tb_port *in, *out;
2456	bool downstream;
2457
2458	ret = tb_tunnel_allocated_bandwidth(tunnel, &allocated_up, &allocated_down);
2459	if (ret)
2460		return ret;
2461
2462	in = tunnel->src_port;
2463	out = tunnel->dst_port;
2464
2465	tb_tunnel_dbg(tunnel, "bandwidth allocated currently %d/%d Mb/s\n",
2466		      allocated_up, allocated_down);
2467
2468	/*
2469	 * If we get rounded up request from graphics side, say HBR2 x 4
2470	 * that is 17500 instead of 17280 (this is because of the
2471	 * granularity), we allow it too. Here the graphics has already
2472	 * negotiated with the DPRX the maximum possible rates (which is
2473	 * 17280 in this case).
2474	 *
2475	 * Since the link cannot go higher than 17280 we use that in our
2476	 * calculations but the DP IN adapter Allocated BW write must be
2477	 * the same value (17500) otherwise the adapter will mark it as
2478	 * failed for graphics.
2479	 */
2480	ret = tb_tunnel_maximum_bandwidth(tunnel, &max_up, &max_down);
2481	if (ret)
2482		goto fail;
2483
2484	ret = usb4_dp_port_granularity(in);
2485	if (ret < 0)
2486		goto fail;
2487	granularity = ret;
2488
2489	max_up_rounded = roundup(max_up, granularity);
2490	max_down_rounded = roundup(max_down, granularity);
2491
2492	/*
2493	 * This will "fix" the request down to the maximum supported
2494	 * rate * lanes if it is at the maximum rounded up level.
2495	 */
2496	requested_up_corrected = *requested_up;
2497	if (requested_up_corrected == max_up_rounded)
2498		requested_up_corrected = max_up;
2499	else if (requested_up_corrected < 0)
2500		requested_up_corrected = 0;
2501	requested_down_corrected = *requested_down;
2502	if (requested_down_corrected == max_down_rounded)
2503		requested_down_corrected = max_down;
2504	else if (requested_down_corrected < 0)
2505		requested_down_corrected = 0;
2506
2507	tb_tunnel_dbg(tunnel, "corrected bandwidth request %d/%d Mb/s\n",
2508		      requested_up_corrected, requested_down_corrected);
2509
2510	if ((*requested_up >= 0 && requested_up_corrected > max_up_rounded) ||
2511	    (*requested_down >= 0 && requested_down_corrected > max_down_rounded)) {
2512		tb_tunnel_dbg(tunnel,
2513			      "bandwidth request too high (%d/%d Mb/s > %d/%d Mb/s)\n",
2514			      requested_up_corrected, requested_down_corrected,
2515			      max_up_rounded, max_down_rounded);
2516		ret = -ENOBUFS;
2517		goto fail;
2518	}
2519
2520	downstream = tb_tunnel_direction_downstream(tunnel);
2521	group = in->group;
2522
2523	if ((*requested_up >= 0 && requested_up_corrected <= allocated_up) ||
2524	    (*requested_down >= 0 && requested_down_corrected <= allocated_down)) {
2525		if (tunnel->bw_mode) {
2526			int reserved;
2527			/*
2528			 * If requested bandwidth is less or equal than
2529			 * what is currently allocated to that tunnel we
2530			 * simply change the reservation of the tunnel
2531			 * and add the released bandwidth for the group
2532			 * for the next 10s. Then we release it for
2533			 * others to use.
2534			 */
2535			if (downstream)
2536				reserved = allocated_down - *requested_down;
2537			else
2538				reserved = allocated_up - *requested_up;
2539
2540			if (reserved > 0) {
2541				group->reserved += reserved;
2542				tb_dbg(tb, "group %d reserved %d total %d Mb/s\n",
2543				       group->index, reserved, group->reserved);
2544
2545				/*
2546				 * If it was not already pending,
2547				 * schedule release now. If it is then
2548				 * postpone it for the next 10s (unless
2549				 * it is already running in which case
2550				 * the 10s already expired and we should
2551				 * give the reserved back to others).
2552				 */
2553				mod_delayed_work(system_wq, &group->release_work,
2554					msecs_to_jiffies(TB_RELEASE_BW_TIMEOUT));
2555			}
2556		}
2557
2558		return tb_tunnel_alloc_bandwidth(tunnel, requested_up,
2559						 requested_down);
2560	}
2561
2562	/*
2563	 * More bandwidth is requested. Release all the potential
2564	 * bandwidth from USB3 first.
2565	 */
2566	ret = tb_release_unused_usb3_bandwidth(tb, in, out);
2567	if (ret)
2568		goto fail;
2569
2570	/*
2571	 * Then go over all tunnels that cross the same USB4 ports (they
2572	 * are also in the same group but we use the same function here
2573	 * that we use with the normal bandwidth allocation).
2574	 */
2575	ret = tb_available_bandwidth(tb, in, out, &available_up, &available_down,
2576				     true);
2577	if (ret)
2578		goto reclaim;
2579
2580	tb_tunnel_dbg(tunnel, "bandwidth available for allocation %d/%d (+ %u reserved) Mb/s\n",
2581		      available_up, available_down, group->reserved);
2582
2583	if ((*requested_up >= 0 &&
2584		available_up + group->reserved >= requested_up_corrected) ||
2585	    (*requested_down >= 0 &&
2586		available_down + group->reserved >= requested_down_corrected)) {
2587		int released = 0;
2588
 
 
2589		/*
2590		 * If bandwidth on a link is >= asym_threshold
2591		 * transition the link to asymmetric.
2592		 */
2593		ret = tb_configure_asym(tb, in, out, *requested_up,
2594					*requested_down);
2595		if (ret) {
2596			tb_configure_sym(tb, in, out, true);
2597			goto fail;
2598		}
2599
2600		ret = tb_tunnel_alloc_bandwidth(tunnel, requested_up,
2601						requested_down);
2602		if (ret) {
2603			tb_tunnel_warn(tunnel, "failed to allocate bandwidth\n");
2604			tb_configure_sym(tb, in, out, true);
2605		}
2606
2607		if (downstream) {
2608			if (*requested_down > available_down)
2609				released = *requested_down - available_down;
2610		} else {
2611			if (*requested_up > available_up)
2612				released = *requested_up - available_up;
2613		}
2614		if (released) {
2615			group->reserved -= released;
2616			tb_dbg(tb, "group %d released %d total %d Mb/s\n",
2617			       group->index, released, group->reserved);
2618		}
2619	} else {
2620		ret = -ENOBUFS;
2621	}
2622
2623reclaim:
2624	tb_reclaim_usb3_bandwidth(tb, in, out);
2625fail:
2626	if (ret && ret != -ENODEV) {
2627		/*
2628		 * Write back the same allocated (so no change), this
2629		 * makes the DPTX request fail on graphics side.
2630		 */
2631		tb_tunnel_dbg(tunnel,
2632			      "failing the request by rewriting allocated %d/%d Mb/s\n",
2633			      allocated_up, allocated_down);
2634		tb_tunnel_alloc_bandwidth(tunnel, &allocated_up, &allocated_down);
2635	}
2636
2637	return ret;
2638}
2639
2640static void tb_handle_dp_bandwidth_request(struct work_struct *work)
2641{
2642	struct tb_hotplug_event *ev = container_of(work, typeof(*ev), work);
2643	int requested_bw, requested_up, requested_down, ret;
 
2644	struct tb_tunnel *tunnel;
2645	struct tb *tb = ev->tb;
2646	struct tb_cm *tcm = tb_priv(tb);
2647	struct tb_switch *sw;
2648	struct tb_port *in;
2649
2650	pm_runtime_get_sync(&tb->dev);
2651
2652	mutex_lock(&tb->lock);
2653	if (!tcm->hotplug_active)
2654		goto unlock;
2655
2656	sw = tb_switch_find_by_route(tb, ev->route);
2657	if (!sw) {
2658		tb_warn(tb, "bandwidth request from non-existent router %llx\n",
2659			ev->route);
2660		goto unlock;
2661	}
2662
2663	in = &sw->ports[ev->port];
2664	if (!tb_port_is_dpin(in)) {
2665		tb_port_warn(in, "bandwidth request to non-DP IN adapter\n");
2666		goto put_sw;
2667	}
2668
2669	tb_port_dbg(in, "handling bandwidth allocation request\n");
2670
2671	tunnel = tb_find_tunnel(tb, TB_TUNNEL_DP, in, NULL);
2672	if (!tunnel) {
2673		tb_port_warn(in, "failed to find tunnel\n");
2674		goto put_sw;
2675	}
2676
2677	if (!usb4_dp_port_bandwidth_mode_enabled(in)) {
2678		if (tunnel->bw_mode) {
2679			/*
2680			 * Reset the tunnel back to use the legacy
2681			 * allocation.
2682			 */
2683			tunnel->bw_mode = false;
2684			tb_port_dbg(in, "DPTX disabled bandwidth allocation mode\n");
2685		} else {
2686			tb_port_warn(in, "bandwidth allocation mode not enabled\n");
2687		}
2688		goto put_sw;
2689	}
2690
2691	ret = usb4_dp_port_requested_bandwidth(in);
2692	if (ret < 0) {
2693		if (ret == -ENODATA) {
2694			/*
2695			 * There is no request active so this means the
2696			 * BW allocation mode was enabled from graphics
2697			 * side. At this point we know that the graphics
2698			 * driver has read the DRPX capabilities so we
2699			 * can offer an better bandwidth estimatation.
2700			 */
2701			tb_port_dbg(in, "DPTX enabled bandwidth allocation mode, updating estimated bandwidth\n");
2702			tb_recalc_estimated_bandwidth(tb);
2703		} else {
2704			tb_port_warn(in, "failed to read requested bandwidth\n");
2705		}
2706		goto put_sw;
2707	}
2708	requested_bw = ret;
2709
2710	tb_port_dbg(in, "requested bandwidth %d Mb/s\n", requested_bw);
2711
2712	if (tb_tunnel_direction_downstream(tunnel)) {
 
 
 
 
 
 
 
 
2713		requested_up = -1;
2714		requested_down = requested_bw;
2715	} else {
2716		requested_up = requested_bw;
2717		requested_down = -1;
2718	}
2719
2720	ret = tb_alloc_dp_bandwidth(tunnel, &requested_up, &requested_down);
2721	if (ret) {
2722		if (ret == -ENOBUFS)
2723			tb_tunnel_warn(tunnel,
2724				       "not enough bandwidth available\n");
2725		else
2726			tb_tunnel_warn(tunnel,
2727				       "failed to change bandwidth allocation\n");
2728	} else {
2729		tb_tunnel_dbg(tunnel,
2730			      "bandwidth allocation changed to %d/%d Mb/s\n",
2731			      requested_up, requested_down);
2732
2733		/* Update other clients about the allocation change */
2734		tb_recalc_estimated_bandwidth(tb);
2735	}
2736
2737put_sw:
2738	tb_switch_put(sw);
2739unlock:
2740	mutex_unlock(&tb->lock);
2741
2742	pm_runtime_mark_last_busy(&tb->dev);
2743	pm_runtime_put_autosuspend(&tb->dev);
2744
2745	kfree(ev);
2746}
2747
2748static void tb_queue_dp_bandwidth_request(struct tb *tb, u64 route, u8 port)
2749{
2750	struct tb_hotplug_event *ev;
2751
2752	ev = kmalloc(sizeof(*ev), GFP_KERNEL);
2753	if (!ev)
2754		return;
2755
2756	ev->tb = tb;
2757	ev->route = route;
2758	ev->port = port;
2759	INIT_WORK(&ev->work, tb_handle_dp_bandwidth_request);
2760	queue_work(tb->wq, &ev->work);
2761}
2762
2763static void tb_handle_notification(struct tb *tb, u64 route,
2764				   const struct cfg_error_pkg *error)
2765{
2766
2767	switch (error->error) {
2768	case TB_CFG_ERROR_PCIE_WAKE:
2769	case TB_CFG_ERROR_DP_CON_CHANGE:
2770	case TB_CFG_ERROR_DPTX_DISCOVERY:
2771		if (tb_cfg_ack_notification(tb->ctl, route, error))
2772			tb_warn(tb, "could not ack notification on %llx\n",
2773				route);
2774		break;
2775
2776	case TB_CFG_ERROR_DP_BW:
2777		if (tb_cfg_ack_notification(tb->ctl, route, error))
2778			tb_warn(tb, "could not ack notification on %llx\n",
2779				route);
2780		tb_queue_dp_bandwidth_request(tb, route, error->port);
2781		break;
2782
2783	default:
2784		/* Ignore for now */
2785		break;
2786	}
2787}
2788
2789/*
2790 * tb_schedule_hotplug_handler() - callback function for the control channel
2791 *
2792 * Delegates to tb_handle_hotplug.
2793 */
2794static void tb_handle_event(struct tb *tb, enum tb_cfg_pkg_type type,
2795			    const void *buf, size_t size)
2796{
2797	const struct cfg_event_pkg *pkg = buf;
2798	u64 route = tb_cfg_get_route(&pkg->header);
2799
2800	switch (type) {
2801	case TB_CFG_PKG_ERROR:
2802		tb_handle_notification(tb, route, (const struct cfg_error_pkg *)buf);
2803		return;
2804	case TB_CFG_PKG_EVENT:
2805		break;
2806	default:
2807		tb_warn(tb, "unexpected event %#x, ignoring\n", type);
2808		return;
2809	}
2810
2811	if (tb_cfg_ack_plug(tb->ctl, route, pkg->port, pkg->unplug)) {
2812		tb_warn(tb, "could not ack plug event on %llx:%x\n", route,
2813			pkg->port);
2814	}
2815
2816	tb_queue_hotplug(tb, route, pkg->port, pkg->unplug);
2817}
2818
2819static void tb_stop(struct tb *tb)
2820{
2821	struct tb_cm *tcm = tb_priv(tb);
2822	struct tb_tunnel *tunnel;
2823	struct tb_tunnel *n;
2824
2825	cancel_delayed_work(&tcm->remove_work);
2826	/* tunnels are only present after everything has been initialized */
2827	list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) {
2828		/*
2829		 * DMA tunnels require the driver to be functional so we
2830		 * tear them down. Other protocol tunnels can be left
2831		 * intact.
2832		 */
2833		if (tb_tunnel_is_dma(tunnel))
2834			tb_tunnel_deactivate(tunnel);
2835		tb_tunnel_free(tunnel);
2836	}
2837	tb_switch_remove(tb->root_switch);
2838	tcm->hotplug_active = false; /* signal tb_handle_hotplug to quit */
2839}
2840
2841static void tb_deinit(struct tb *tb)
2842{
2843	struct tb_cm *tcm = tb_priv(tb);
2844	int i;
2845
2846	/* Cancel all the release bandwidth workers */
2847	for (i = 0; i < ARRAY_SIZE(tcm->groups); i++)
2848		cancel_delayed_work_sync(&tcm->groups[i].release_work);
2849}
2850
2851static int tb_scan_finalize_switch(struct device *dev, void *data)
2852{
2853	if (tb_is_switch(dev)) {
2854		struct tb_switch *sw = tb_to_switch(dev);
2855
2856		/*
2857		 * If we found that the switch was already setup by the
2858		 * boot firmware, mark it as authorized now before we
2859		 * send uevent to userspace.
2860		 */
2861		if (sw->boot)
2862			sw->authorized = 1;
2863
2864		dev_set_uevent_suppress(dev, false);
2865		kobject_uevent(&dev->kobj, KOBJ_ADD);
2866		device_for_each_child(dev, NULL, tb_scan_finalize_switch);
2867	}
2868
2869	return 0;
2870}
2871
2872static int tb_start(struct tb *tb, bool reset)
2873{
2874	struct tb_cm *tcm = tb_priv(tb);
2875	bool discover = true;
2876	int ret;
2877
2878	tb->root_switch = tb_switch_alloc(tb, &tb->dev, 0);
2879	if (IS_ERR(tb->root_switch))
2880		return PTR_ERR(tb->root_switch);
2881
2882	/*
2883	 * ICM firmware upgrade needs running firmware and in native
2884	 * mode that is not available so disable firmware upgrade of the
2885	 * root switch.
2886	 *
2887	 * However, USB4 routers support NVM firmware upgrade if they
2888	 * implement the necessary router operations.
2889	 */
2890	tb->root_switch->no_nvm_upgrade = !tb_switch_is_usb4(tb->root_switch);
2891	/* All USB4 routers support runtime PM */
2892	tb->root_switch->rpm = tb_switch_is_usb4(tb->root_switch);
2893
2894	ret = tb_switch_configure(tb->root_switch);
2895	if (ret) {
2896		tb_switch_put(tb->root_switch);
2897		return ret;
2898	}
2899
2900	/* Announce the switch to the world */
2901	ret = tb_switch_add(tb->root_switch);
2902	if (ret) {
2903		tb_switch_put(tb->root_switch);
2904		return ret;
2905	}
2906
2907	/*
2908	 * To support highest CLx state, we set host router's TMU to
2909	 * Normal mode.
2910	 */
2911	tb_switch_tmu_configure(tb->root_switch, TB_SWITCH_TMU_MODE_LOWRES);
2912	/* Enable TMU if it is off */
2913	tb_switch_tmu_enable(tb->root_switch);
2914
2915	/*
2916	 * Boot firmware might have created tunnels of its own. Since we
2917	 * cannot be sure they are usable for us, tear them down and
2918	 * reset the ports to handle it as new hotplug for USB4 v1
2919	 * routers (for USB4 v2 and beyond we already do host reset).
2920	 */
2921	if (reset && tb_switch_is_usb4(tb->root_switch)) {
2922		discover = false;
2923		if (usb4_switch_version(tb->root_switch) == 1)
2924			tb_switch_reset(tb->root_switch);
2925	}
2926
2927	if (discover) {
2928		/* Full scan to discover devices added before the driver was loaded. */
2929		tb_scan_switch(tb->root_switch);
2930		/* Find out tunnels created by the boot firmware */
2931		tb_discover_tunnels(tb);
2932		/* Add DP resources from the DP tunnels created by the boot firmware */
2933		tb_discover_dp_resources(tb);
2934	}
2935
2936	/*
2937	 * If the boot firmware did not create USB 3.x tunnels create them
2938	 * now for the whole topology.
2939	 */
2940	tb_create_usb3_tunnels(tb->root_switch);
2941	/* Add DP IN resources for the root switch */
2942	tb_add_dp_resources(tb->root_switch);
2943	tb_switch_enter_redrive(tb->root_switch);
2944	/* Make the discovered switches available to the userspace */
2945	device_for_each_child(&tb->root_switch->dev, NULL,
2946			      tb_scan_finalize_switch);
2947
2948	/* Allow tb_handle_hotplug to progress events */
2949	tcm->hotplug_active = true;
2950	return 0;
2951}
2952
2953static int tb_suspend_noirq(struct tb *tb)
2954{
2955	struct tb_cm *tcm = tb_priv(tb);
2956
2957	tb_dbg(tb, "suspending...\n");
2958	tb_disconnect_and_release_dp(tb);
2959	tb_switch_exit_redrive(tb->root_switch);
2960	tb_switch_suspend(tb->root_switch, false);
2961	tcm->hotplug_active = false; /* signal tb_handle_hotplug to quit */
2962	tb_dbg(tb, "suspend finished\n");
2963
2964	return 0;
2965}
2966
2967static void tb_restore_children(struct tb_switch *sw)
2968{
2969	struct tb_port *port;
2970
2971	/* No need to restore if the router is already unplugged */
2972	if (sw->is_unplugged)
2973		return;
2974
2975	if (tb_enable_clx(sw))
2976		tb_sw_warn(sw, "failed to re-enable CL states\n");
2977
2978	if (tb_enable_tmu(sw))
2979		tb_sw_warn(sw, "failed to restore TMU configuration\n");
2980
2981	tb_switch_configuration_valid(sw);
2982
2983	tb_switch_for_each_port(sw, port) {
2984		if (!tb_port_has_remote(port) && !port->xdomain)
2985			continue;
2986
2987		if (port->remote) {
2988			tb_switch_set_link_width(port->remote->sw,
2989						 port->remote->sw->link_width);
2990			tb_switch_configure_link(port->remote->sw);
2991
2992			tb_restore_children(port->remote->sw);
2993		} else if (port->xdomain) {
2994			tb_port_configure_xdomain(port, port->xdomain);
2995		}
2996	}
2997}
2998
2999static int tb_resume_noirq(struct tb *tb)
3000{
3001	struct tb_cm *tcm = tb_priv(tb);
3002	struct tb_tunnel *tunnel, *n;
3003	unsigned int usb3_delay = 0;
3004	LIST_HEAD(tunnels);
3005
3006	tb_dbg(tb, "resuming...\n");
3007
3008	/*
3009	 * For non-USB4 hosts (Apple systems) remove any PCIe devices
3010	 * the firmware might have setup.
3011	 */
3012	if (!tb_switch_is_usb4(tb->root_switch))
3013		tb_switch_reset(tb->root_switch);
3014
3015	tb_switch_resume(tb->root_switch, false);
3016	tb_free_invalid_tunnels(tb);
3017	tb_free_unplugged_children(tb->root_switch);
3018	tb_restore_children(tb->root_switch);
3019
3020	/*
3021	 * If we get here from suspend to disk the boot firmware or the
3022	 * restore kernel might have created tunnels of its own. Since
3023	 * we cannot be sure they are usable for us we find and tear
3024	 * them down.
3025	 */
3026	tb_switch_discover_tunnels(tb->root_switch, &tunnels, false);
3027	list_for_each_entry_safe_reverse(tunnel, n, &tunnels, list) {
3028		if (tb_tunnel_is_usb3(tunnel))
3029			usb3_delay = 500;
3030		tb_tunnel_deactivate(tunnel);
3031		tb_tunnel_free(tunnel);
3032	}
3033
3034	/* Re-create our tunnels now */
3035	list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) {
3036		/* USB3 requires delay before it can be re-activated */
3037		if (tb_tunnel_is_usb3(tunnel)) {
3038			msleep(usb3_delay);
3039			/* Only need to do it once */
3040			usb3_delay = 0;
3041		}
3042		tb_tunnel_restart(tunnel);
3043	}
3044	if (!list_empty(&tcm->tunnel_list)) {
3045		/*
3046		 * the pcie links need some time to get going.
3047		 * 100ms works for me...
3048		 */
3049		tb_dbg(tb, "tunnels restarted, sleeping for 100ms\n");
3050		msleep(100);
3051	}
3052	tb_switch_enter_redrive(tb->root_switch);
3053	 /* Allow tb_handle_hotplug to progress events */
3054	tcm->hotplug_active = true;
3055	tb_dbg(tb, "resume finished\n");
3056
3057	return 0;
3058}
3059
3060static int tb_free_unplugged_xdomains(struct tb_switch *sw)
3061{
3062	struct tb_port *port;
3063	int ret = 0;
3064
3065	tb_switch_for_each_port(sw, port) {
3066		if (tb_is_upstream_port(port))
3067			continue;
3068		if (port->xdomain && port->xdomain->is_unplugged) {
3069			tb_retimer_remove_all(port);
3070			tb_xdomain_remove(port->xdomain);
3071			tb_port_unconfigure_xdomain(port);
3072			port->xdomain = NULL;
3073			ret++;
3074		} else if (port->remote) {
3075			ret += tb_free_unplugged_xdomains(port->remote->sw);
3076		}
3077	}
3078
3079	return ret;
3080}
3081
3082static int tb_freeze_noirq(struct tb *tb)
3083{
3084	struct tb_cm *tcm = tb_priv(tb);
3085
3086	tcm->hotplug_active = false;
3087	return 0;
3088}
3089
3090static int tb_thaw_noirq(struct tb *tb)
3091{
3092	struct tb_cm *tcm = tb_priv(tb);
3093
3094	tcm->hotplug_active = true;
3095	return 0;
3096}
3097
3098static void tb_complete(struct tb *tb)
3099{
3100	/*
3101	 * Release any unplugged XDomains and if there is a case where
3102	 * another domain is swapped in place of unplugged XDomain we
3103	 * need to run another rescan.
3104	 */
3105	mutex_lock(&tb->lock);
3106	if (tb_free_unplugged_xdomains(tb->root_switch))
3107		tb_scan_switch(tb->root_switch);
3108	mutex_unlock(&tb->lock);
3109}
3110
3111static int tb_runtime_suspend(struct tb *tb)
3112{
3113	struct tb_cm *tcm = tb_priv(tb);
3114
3115	mutex_lock(&tb->lock);
3116	/*
3117	 * The below call only releases DP resources to allow exiting and
3118	 * re-entering redrive mode.
3119	 */
3120	tb_disconnect_and_release_dp(tb);
3121	tb_switch_exit_redrive(tb->root_switch);
3122	tb_switch_suspend(tb->root_switch, true);
3123	tcm->hotplug_active = false;
3124	mutex_unlock(&tb->lock);
3125
3126	return 0;
3127}
3128
3129static void tb_remove_work(struct work_struct *work)
3130{
3131	struct tb_cm *tcm = container_of(work, struct tb_cm, remove_work.work);
3132	struct tb *tb = tcm_to_tb(tcm);
3133
3134	mutex_lock(&tb->lock);
3135	if (tb->root_switch) {
3136		tb_free_unplugged_children(tb->root_switch);
3137		tb_free_unplugged_xdomains(tb->root_switch);
3138	}
3139	mutex_unlock(&tb->lock);
3140}
3141
3142static int tb_runtime_resume(struct tb *tb)
3143{
3144	struct tb_cm *tcm = tb_priv(tb);
3145	struct tb_tunnel *tunnel, *n;
3146
3147	mutex_lock(&tb->lock);
3148	tb_switch_resume(tb->root_switch, true);
3149	tb_free_invalid_tunnels(tb);
3150	tb_restore_children(tb->root_switch);
3151	list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list)
3152		tb_tunnel_restart(tunnel);
3153	tb_switch_enter_redrive(tb->root_switch);
3154	tcm->hotplug_active = true;
3155	mutex_unlock(&tb->lock);
3156
3157	/*
3158	 * Schedule cleanup of any unplugged devices. Run this in a
3159	 * separate thread to avoid possible deadlock if the device
3160	 * removal runtime resumes the unplugged device.
3161	 */
3162	queue_delayed_work(tb->wq, &tcm->remove_work, msecs_to_jiffies(50));
3163	return 0;
3164}
3165
3166static const struct tb_cm_ops tb_cm_ops = {
3167	.start = tb_start,
3168	.stop = tb_stop,
3169	.deinit = tb_deinit,
3170	.suspend_noirq = tb_suspend_noirq,
3171	.resume_noirq = tb_resume_noirq,
3172	.freeze_noirq = tb_freeze_noirq,
3173	.thaw_noirq = tb_thaw_noirq,
3174	.complete = tb_complete,
3175	.runtime_suspend = tb_runtime_suspend,
3176	.runtime_resume = tb_runtime_resume,
3177	.handle_event = tb_handle_event,
3178	.disapprove_switch = tb_disconnect_pci,
3179	.approve_switch = tb_tunnel_pci,
3180	.approve_xdomain_paths = tb_approve_xdomain_paths,
3181	.disconnect_xdomain_paths = tb_disconnect_xdomain_paths,
3182};
3183
3184/*
3185 * During suspend the Thunderbolt controller is reset and all PCIe
3186 * tunnels are lost. The NHI driver will try to reestablish all tunnels
3187 * during resume. This adds device links between the tunneled PCIe
3188 * downstream ports and the NHI so that the device core will make sure
3189 * NHI is resumed first before the rest.
3190 */
3191static bool tb_apple_add_links(struct tb_nhi *nhi)
3192{
3193	struct pci_dev *upstream, *pdev;
3194	bool ret;
3195
3196	if (!x86_apple_machine)
3197		return false;
3198
3199	switch (nhi->pdev->device) {
3200	case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
3201	case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
3202	case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI:
3203	case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI:
3204		break;
3205	default:
3206		return false;
3207	}
3208
3209	upstream = pci_upstream_bridge(nhi->pdev);
3210	while (upstream) {
3211		if (!pci_is_pcie(upstream))
3212			return false;
3213		if (pci_pcie_type(upstream) == PCI_EXP_TYPE_UPSTREAM)
3214			break;
3215		upstream = pci_upstream_bridge(upstream);
3216	}
3217
3218	if (!upstream)
3219		return false;
3220
3221	/*
3222	 * For each hotplug downstream port, create add device link
3223	 * back to NHI so that PCIe tunnels can be re-established after
3224	 * sleep.
3225	 */
3226	ret = false;
3227	for_each_pci_bridge(pdev, upstream->subordinate) {
3228		const struct device_link *link;
3229
3230		if (!pci_is_pcie(pdev))
3231			continue;
3232		if (pci_pcie_type(pdev) != PCI_EXP_TYPE_DOWNSTREAM ||
3233		    !pdev->is_hotplug_bridge)
3234			continue;
3235
3236		link = device_link_add(&pdev->dev, &nhi->pdev->dev,
3237				       DL_FLAG_AUTOREMOVE_SUPPLIER |
3238				       DL_FLAG_PM_RUNTIME);
3239		if (link) {
3240			dev_dbg(&nhi->pdev->dev, "created link from %s\n",
3241				dev_name(&pdev->dev));
3242			ret = true;
3243		} else {
3244			dev_warn(&nhi->pdev->dev, "device link creation from %s failed\n",
3245				 dev_name(&pdev->dev));
3246		}
3247	}
3248
3249	return ret;
3250}
3251
3252struct tb *tb_probe(struct tb_nhi *nhi)
3253{
3254	struct tb_cm *tcm;
3255	struct tb *tb;
3256
3257	tb = tb_domain_alloc(nhi, TB_TIMEOUT, sizeof(*tcm));
3258	if (!tb)
3259		return NULL;
3260
3261	if (tb_acpi_may_tunnel_pcie())
3262		tb->security_level = TB_SECURITY_USER;
3263	else
3264		tb->security_level = TB_SECURITY_NOPCIE;
3265
3266	tb->cm_ops = &tb_cm_ops;
3267
3268	tcm = tb_priv(tb);
3269	INIT_LIST_HEAD(&tcm->tunnel_list);
3270	INIT_LIST_HEAD(&tcm->dp_resources);
3271	INIT_DELAYED_WORK(&tcm->remove_work, tb_remove_work);
3272	tb_init_bandwidth_groups(tcm);
3273
3274	tb_dbg(tb, "using software connection manager\n");
3275
3276	/*
3277	 * Device links are needed to make sure we establish tunnels
3278	 * before the PCIe/USB stack is resumed so complain here if we
3279	 * found them missing.
3280	 */
3281	if (!tb_apple_add_links(nhi) && !tb_acpi_add_links(nhi))
3282		tb_warn(tb, "device links to tunneled native ports are missing!\n");
3283
3284	return tb;
3285}