Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * corePWM driver for Microchip "soft" FPGA IP cores.
  4 *
  5 * Copyright (c) 2021-2023 Microchip Corporation. All rights reserved.
  6 * Author: Conor Dooley <conor.dooley@microchip.com>
  7 * Documentation:
  8 * https://www.microsemi.com/document-portal/doc_download/1245275-corepwm-hb
  9 *
 10 * Limitations:
 11 * - If the IP block is configured without "shadow registers", all register
 12 *   writes will take effect immediately, causing glitches on the output.
 13 *   If shadow registers *are* enabled, setting the "SYNC_UPDATE" register
 14 *   notifies the core that it needs to update the registers defining the
 15 *   waveform from the contents of the "shadow registers". Otherwise, changes
 16 *   will take effective immediately, even for those channels.
 17 *   As setting the period/duty cycle takes 4 register writes, there is a window
 18 *   in which this races against the start of a new period.
 19 * - The IP block has no concept of a duty cycle, only rising/falling edges of
 20 *   the waveform. Unfortunately, if the rising & falling edges registers have
 21 *   the same value written to them the IP block will do whichever of a rising
 22 *   or a falling edge is possible. I.E. a 50% waveform at twice the requested
 23 *   period. Therefore to get a 0% waveform, the output is set the max high/low
 24 *   time depending on polarity.
 25 *   If the duty cycle is 0%, and the requested period is less than the
 26 *   available period resolution, this will manifest as a ~100% waveform (with
 27 *   some output glitches) rather than 50%.
 28 * - The PWM period is set for the whole IP block not per channel. The driver
 29 *   will only change the period if no other PWM output is enabled.
 30 */
 31
 32#include <linux/clk.h>
 33#include <linux/delay.h>
 34#include <linux/err.h>
 35#include <linux/io.h>
 36#include <linux/ktime.h>
 37#include <linux/math.h>
 38#include <linux/module.h>
 39#include <linux/mutex.h>
 40#include <linux/of.h>
 41#include <linux/platform_device.h>
 42#include <linux/pwm.h>
 43
 44#define MCHPCOREPWM_PRESCALE_MAX	0xff
 45#define MCHPCOREPWM_PERIOD_STEPS_MAX	0xfe
 46#define MCHPCOREPWM_PERIOD_MAX		0xff00
 47
 48#define MCHPCOREPWM_PRESCALE	0x00
 49#define MCHPCOREPWM_PERIOD	0x04
 50#define MCHPCOREPWM_EN(i)	(0x08 + 0x04 * (i)) /* 0x08, 0x0c */
 51#define MCHPCOREPWM_POSEDGE(i)	(0x10 + 0x08 * (i)) /* 0x10, 0x18, ..., 0x88 */
 52#define MCHPCOREPWM_NEGEDGE(i)	(0x14 + 0x08 * (i)) /* 0x14, 0x1c, ..., 0x8c */
 53#define MCHPCOREPWM_SYNC_UPD	0xe4
 54#define MCHPCOREPWM_TIMEOUT_MS	100u
 55
 56struct mchp_core_pwm_chip {
 57	struct pwm_chip chip;
 58	struct clk *clk;
 59	void __iomem *base;
 60	struct mutex lock; /* protects the shared period */
 61	ktime_t update_timestamp;
 62	u32 sync_update_mask;
 63	u16 channel_enabled;
 64};
 65
 66static inline struct mchp_core_pwm_chip *to_mchp_core_pwm(struct pwm_chip *chip)
 67{
 68	return container_of(chip, struct mchp_core_pwm_chip, chip);
 69}
 70
 71static void mchp_core_pwm_enable(struct pwm_chip *chip, struct pwm_device *pwm,
 72				 bool enable, u64 period)
 73{
 74	struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip);
 75	u8 channel_enable, reg_offset, shift;
 76
 77	/*
 78	 * There are two adjacent 8 bit control regs, the lower reg controls
 79	 * 0-7 and the upper reg 8-15. Check if the pwm is in the upper reg
 80	 * and if so, offset by the bus width.
 81	 */
 82	reg_offset = MCHPCOREPWM_EN(pwm->hwpwm >> 3);
 83	shift = pwm->hwpwm & 7;
 84
 85	channel_enable = readb_relaxed(mchp_core_pwm->base + reg_offset);
 86	channel_enable &= ~(1 << shift);
 87	channel_enable |= (enable << shift);
 88
 89	writel_relaxed(channel_enable, mchp_core_pwm->base + reg_offset);
 90	mchp_core_pwm->channel_enabled &= ~BIT(pwm->hwpwm);
 91	mchp_core_pwm->channel_enabled |= enable << pwm->hwpwm;
 92
 93	/*
 94	 * The updated values will not appear on the bus until they have been
 95	 * applied to the waveform at the beginning of the next period.
 96	 * This is a NO-OP if the channel does not have shadow registers.
 97	 */
 98	if (mchp_core_pwm->sync_update_mask & (1 << pwm->hwpwm))
 99		mchp_core_pwm->update_timestamp = ktime_add_ns(ktime_get(), period);
100}
101
102static void mchp_core_pwm_wait_for_sync_update(struct mchp_core_pwm_chip *mchp_core_pwm,
103					       unsigned int channel)
104{
105	/*
106	 * If a shadow register is used for this PWM channel, and iff there is
107	 * a pending update to the waveform, we must wait for it to be applied
108	 * before attempting to read its state. Reading the registers yields
109	 * the currently implemented settings & the new ones are only readable
110	 * once the current period has ended.
111	 */
112
113	if (mchp_core_pwm->sync_update_mask & (1 << channel)) {
114		ktime_t current_time = ktime_get();
115		s64 remaining_ns;
116		u32 delay_us;
117
118		remaining_ns = ktime_to_ns(ktime_sub(mchp_core_pwm->update_timestamp,
119						     current_time));
120
121		/*
122		 * If the update has gone through, don't bother waiting for
123		 * obvious reasons. Otherwise wait around for an appropriate
124		 * amount of time for the update to go through.
125		 */
126		if (remaining_ns <= 0)
127			return;
128
129		delay_us = DIV_ROUND_UP_ULL(remaining_ns, NSEC_PER_USEC);
130		fsleep(delay_us);
131	}
132}
133
134static u64 mchp_core_pwm_calc_duty(const struct pwm_state *state, u64 clk_rate,
135				   u8 prescale, u8 period_steps)
136{
137	u64 duty_steps, tmp;
138
139	/*
140	 * Calculate the duty cycle in multiples of the prescaled period:
141	 * duty_steps = duty_in_ns / step_in_ns
142	 * step_in_ns = (prescale * NSEC_PER_SEC) / clk_rate
143	 * The code below is rearranged slightly to only divide once.
144	 */
145	tmp = (((u64)prescale) + 1) * NSEC_PER_SEC;
146	duty_steps = mul_u64_u64_div_u64(state->duty_cycle, clk_rate, tmp);
147
148	return duty_steps;
149}
150
151static void mchp_core_pwm_apply_duty(struct pwm_chip *chip, struct pwm_device *pwm,
152				     const struct pwm_state *state, u64 duty_steps,
153				     u16 period_steps)
154{
155	struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip);
156	u8 posedge, negedge;
157	u8 first_edge = 0, second_edge = duty_steps;
158
159	/*
160	 * Setting posedge == negedge doesn't yield a constant output,
161	 * so that's an unsuitable setting to model duty_steps = 0.
162	 * In that case set the unwanted edge to a value that never
163	 * triggers.
164	 */
165	if (duty_steps == 0)
166		first_edge = period_steps + 1;
167
168	if (state->polarity == PWM_POLARITY_INVERSED) {
169		negedge = first_edge;
170		posedge = second_edge;
171	} else {
172		posedge = first_edge;
173		negedge = second_edge;
174	}
175
176	/*
177	 * Set the sync bit which ensures that periods that already started are
178	 * completed unaltered. At each counter reset event the values are
179	 * updated from the shadow registers.
180	 */
181	writel_relaxed(posedge, mchp_core_pwm->base + MCHPCOREPWM_POSEDGE(pwm->hwpwm));
182	writel_relaxed(negedge, mchp_core_pwm->base + MCHPCOREPWM_NEGEDGE(pwm->hwpwm));
183}
184
185static int mchp_core_pwm_calc_period(const struct pwm_state *state, unsigned long clk_rate,
186				     u16 *prescale, u16 *period_steps)
187{
188	u64 tmp;
189
190	/*
191	 * Calculate the period cycles and prescale values.
192	 * The registers are each 8 bits wide & multiplied to compute the period
193	 * using the formula:
194	 *           (prescale + 1) * (period_steps + 1)
195	 * period = -------------------------------------
196	 *                      clk_rate
197	 * so the maximum period that can be generated is 0x10000 times the
198	 * period of the input clock.
199	 * However, due to the design of the "hardware", it is not possible to
200	 * attain a 100% duty cycle if the full range of period_steps is used.
201	 * Therefore period_steps is restricted to 0xfe and the maximum multiple
202	 * of the clock period attainable is (0xff + 1) * (0xfe + 1) = 0xff00
203	 *
204	 * The prescale and period_steps registers operate similarly to
205	 * CLK_DIVIDER_ONE_BASED, where the value used by the hardware is that
206	 * in the register plus one.
207	 * It's therefore not possible to set a period lower than 1/clk_rate, so
208	 * if tmp is 0, abort. Without aborting, we will set a period that is
209	 * greater than that requested and, more importantly, will trigger the
210	 * neg-/pos-edge issue described in the limitations.
211	 */
212	tmp = mul_u64_u64_div_u64(state->period, clk_rate, NSEC_PER_SEC);
213	if (tmp >= MCHPCOREPWM_PERIOD_MAX) {
214		*prescale = MCHPCOREPWM_PRESCALE_MAX;
215		*period_steps = MCHPCOREPWM_PERIOD_STEPS_MAX;
216
217		return 0;
218	}
219
220	/*
221	 * There are multiple strategies that could be used to choose the
222	 * prescale & period_steps values.
223	 * Here the idea is to pick values so that the selection of duty cycles
224	 * is as finegrain as possible, while also keeping the period less than
225	 * that requested.
226	 *
227	 * A simple way to satisfy the first condition is to always set
228	 * period_steps to its maximum value. This neatly also satisfies the
229	 * second condition too, since using the maximum value of period_steps
230	 * to calculate prescale actually calculates its upper bound.
231	 * Integer division will ensure a round down, so the period will thereby
232	 * always be less than that requested.
233	 *
234	 * The downside of this approach is a significant degree of inaccuracy,
235	 * especially as tmp approaches integer multiples of
236	 * MCHPCOREPWM_PERIOD_STEPS_MAX.
237	 *
238	 * As we must produce a period less than that requested, and for the
239	 * sake of creating a simple algorithm, disallow small values of tmp
240	 * that would need special handling.
241	 */
242	if (tmp < MCHPCOREPWM_PERIOD_STEPS_MAX + 1)
243		return -EINVAL;
244
245	/*
246	 * This "optimal" value for prescale is be calculated using the maximum
247	 * permitted value of period_steps, 0xfe.
248	 *
249	 *                period * clk_rate
250	 * prescale = ------------------------- - 1
251	 *            NSEC_PER_SEC * (0xfe + 1)
252	 *
253	 *
254	 *  period * clk_rate
255	 * ------------------- was precomputed as `tmp`
256	 *    NSEC_PER_SEC
257	 */
258	*prescale = ((u16)tmp) / (MCHPCOREPWM_PERIOD_STEPS_MAX + 1) - 1;
259
260	/*
261	 * period_steps can be computed from prescale:
262	 *                      period * clk_rate
263	 * period_steps = ----------------------------- - 1
264	 *                NSEC_PER_SEC * (prescale + 1)
265	 *
266	 * However, in this approximation, we simply use the maximum value that
267	 * was used to compute prescale.
268	 */
269	*period_steps = MCHPCOREPWM_PERIOD_STEPS_MAX;
270
271	return 0;
272}
273
274static int mchp_core_pwm_apply_locked(struct pwm_chip *chip, struct pwm_device *pwm,
275				      const struct pwm_state *state)
276{
277	struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip);
278	bool period_locked;
279	unsigned long clk_rate;
280	u64 duty_steps;
281	u16 prescale, period_steps;
282	int ret;
283
284	if (!state->enabled) {
285		mchp_core_pwm_enable(chip, pwm, false, pwm->state.period);
286		return 0;
287	}
288
289	/*
290	 * If clk_rate is too big, the following multiplication might overflow.
291	 * However this is implausible, as the fabric of current FPGAs cannot
292	 * provide clocks at a rate high enough.
293	 */
294	clk_rate = clk_get_rate(mchp_core_pwm->clk);
295	if (clk_rate >= NSEC_PER_SEC)
296		return -EINVAL;
297
298	ret = mchp_core_pwm_calc_period(state, clk_rate, &prescale, &period_steps);
299	if (ret)
300		return ret;
301
302	/*
303	 * If the only thing that has changed is the duty cycle or the polarity,
304	 * we can shortcut the calculations and just compute/apply the new duty
305	 * cycle pos & neg edges
306	 * As all the channels share the same period, do not allow it to be
307	 * changed if any other channels are enabled.
308	 * If the period is locked, it may not be possible to use a period
309	 * less than that requested. In that case, we just abort.
310	 */
311	period_locked = mchp_core_pwm->channel_enabled & ~(1 << pwm->hwpwm);
312
313	if (period_locked) {
314		u16 hw_prescale;
315		u16 hw_period_steps;
316
317		hw_prescale = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_PRESCALE);
318		hw_period_steps = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_PERIOD);
319
320		if ((period_steps + 1) * (prescale + 1) <
321		    (hw_period_steps + 1) * (hw_prescale + 1))
322			return -EINVAL;
323
324		/*
325		 * It is possible that something could have set the period_steps
326		 * register to 0xff, which would prevent us from setting a 100%
327		 * or 0% relative duty cycle, as explained above in
328		 * mchp_core_pwm_calc_period().
329		 * The period is locked and we cannot change this, so we abort.
330		 */
331		if (hw_period_steps == MCHPCOREPWM_PERIOD_STEPS_MAX)
332			return -EINVAL;
333
334		prescale = hw_prescale;
335		period_steps = hw_period_steps;
336	}
337
338	duty_steps = mchp_core_pwm_calc_duty(state, clk_rate, prescale, period_steps);
339
340	/*
341	 * Because the period is not per channel, it is possible that the
342	 * requested duty cycle is longer than the period, in which case cap it
343	 * to the period, IOW a 100% duty cycle.
344	 */
345	if (duty_steps > period_steps)
346		duty_steps = period_steps + 1;
347
348	if (!period_locked) {
349		writel_relaxed(prescale, mchp_core_pwm->base + MCHPCOREPWM_PRESCALE);
350		writel_relaxed(period_steps, mchp_core_pwm->base + MCHPCOREPWM_PERIOD);
351	}
352
353	mchp_core_pwm_apply_duty(chip, pwm, state, duty_steps, period_steps);
354
355	mchp_core_pwm_enable(chip, pwm, true, pwm->state.period);
356
357	return 0;
358}
359
360static int mchp_core_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
361			       const struct pwm_state *state)
362{
363	struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip);
364	int ret;
365
366	mutex_lock(&mchp_core_pwm->lock);
367
368	mchp_core_pwm_wait_for_sync_update(mchp_core_pwm, pwm->hwpwm);
369
370	ret = mchp_core_pwm_apply_locked(chip, pwm, state);
371
372	mutex_unlock(&mchp_core_pwm->lock);
373
374	return ret;
375}
376
377static int mchp_core_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
378				   struct pwm_state *state)
379{
380	struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip);
381	u64 rate;
382	u16 prescale, period_steps;
383	u8 duty_steps, posedge, negedge;
384
385	mutex_lock(&mchp_core_pwm->lock);
386
387	mchp_core_pwm_wait_for_sync_update(mchp_core_pwm, pwm->hwpwm);
388
389	if (mchp_core_pwm->channel_enabled & (1 << pwm->hwpwm))
390		state->enabled = true;
391	else
392		state->enabled = false;
393
394	rate = clk_get_rate(mchp_core_pwm->clk);
395
396	/*
397	 * Calculating the period:
398	 * The registers are each 8 bits wide & multiplied to compute the period
399	 * using the formula:
400	 *           (prescale + 1) * (period_steps + 1)
401	 * period = -------------------------------------
402	 *                      clk_rate
403	 *
404	 * Note:
405	 * The prescale and period_steps registers operate similarly to
406	 * CLK_DIVIDER_ONE_BASED, where the value used by the hardware is that
407	 * in the register plus one.
408	 */
409	prescale = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_PRESCALE);
410	period_steps = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_PERIOD);
411
412	state->period = (period_steps + 1) * (prescale + 1);
413	state->period *= NSEC_PER_SEC;
414	state->period = DIV64_U64_ROUND_UP(state->period, rate);
415
416	posedge = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_POSEDGE(pwm->hwpwm));
417	negedge = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_NEGEDGE(pwm->hwpwm));
418
419	mutex_unlock(&mchp_core_pwm->lock);
420
421	if (negedge == posedge) {
422		state->duty_cycle = state->period;
423		state->period *= 2;
424	} else {
425		duty_steps = abs((s16)posedge - (s16)negedge);
426		state->duty_cycle = duty_steps * (prescale + 1) * NSEC_PER_SEC;
427		state->duty_cycle = DIV64_U64_ROUND_UP(state->duty_cycle, rate);
428	}
429
430	state->polarity = negedge < posedge ? PWM_POLARITY_INVERSED : PWM_POLARITY_NORMAL;
431
432	return 0;
433}
434
435static const struct pwm_ops mchp_core_pwm_ops = {
436	.apply = mchp_core_pwm_apply,
437	.get_state = mchp_core_pwm_get_state,
438};
439
440static const struct of_device_id mchp_core_of_match[] = {
441	{
442		.compatible = "microchip,corepwm-rtl-v4",
443	},
444	{ /* sentinel */ }
445};
446MODULE_DEVICE_TABLE(of, mchp_core_of_match);
447
448static int mchp_core_pwm_probe(struct platform_device *pdev)
449{
 
450	struct mchp_core_pwm_chip *mchp_core_pwm;
451	struct resource *regs;
452	int ret;
453
454	mchp_core_pwm = devm_kzalloc(&pdev->dev, sizeof(*mchp_core_pwm), GFP_KERNEL);
455	if (!mchp_core_pwm)
456		return -ENOMEM;
 
457
458	mchp_core_pwm->base = devm_platform_get_and_ioremap_resource(pdev, 0, &regs);
459	if (IS_ERR(mchp_core_pwm->base))
460		return PTR_ERR(mchp_core_pwm->base);
461
462	mchp_core_pwm->clk = devm_clk_get_enabled(&pdev->dev, NULL);
463	if (IS_ERR(mchp_core_pwm->clk))
464		return dev_err_probe(&pdev->dev, PTR_ERR(mchp_core_pwm->clk),
465				     "failed to get PWM clock\n");
466
467	if (of_property_read_u32(pdev->dev.of_node, "microchip,sync-update-mask",
468				 &mchp_core_pwm->sync_update_mask))
469		mchp_core_pwm->sync_update_mask = 0;
470
471	mutex_init(&mchp_core_pwm->lock);
472
473	mchp_core_pwm->chip.dev = &pdev->dev;
474	mchp_core_pwm->chip.ops = &mchp_core_pwm_ops;
475	mchp_core_pwm->chip.npwm = 16;
476
477	mchp_core_pwm->channel_enabled = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_EN(0));
478	mchp_core_pwm->channel_enabled |=
479		readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_EN(1)) << 8;
480
481	/*
482	 * Enable synchronous update mode for all channels for which shadow
483	 * registers have been synthesised.
484	 */
485	writel_relaxed(1U, mchp_core_pwm->base + MCHPCOREPWM_SYNC_UPD);
486	mchp_core_pwm->update_timestamp = ktime_get();
487
488	ret = devm_pwmchip_add(&pdev->dev, &mchp_core_pwm->chip);
489	if (ret)
490		return dev_err_probe(&pdev->dev, ret, "Failed to add pwmchip\n");
491
492	return 0;
493}
494
495static struct platform_driver mchp_core_pwm_driver = {
496	.driver = {
497		.name = "mchp-core-pwm",
498		.of_match_table = mchp_core_of_match,
499	},
500	.probe = mchp_core_pwm_probe,
501};
502module_platform_driver(mchp_core_pwm_driver);
503
504MODULE_LICENSE("GPL");
505MODULE_AUTHOR("Conor Dooley <conor.dooley@microchip.com>");
506MODULE_DESCRIPTION("corePWM driver for Microchip FPGAs");
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * corePWM driver for Microchip "soft" FPGA IP cores.
  4 *
  5 * Copyright (c) 2021-2023 Microchip Corporation. All rights reserved.
  6 * Author: Conor Dooley <conor.dooley@microchip.com>
  7 * Documentation:
  8 * https://www.microsemi.com/document-portal/doc_download/1245275-corepwm-hb
  9 *
 10 * Limitations:
 11 * - If the IP block is configured without "shadow registers", all register
 12 *   writes will take effect immediately, causing glitches on the output.
 13 *   If shadow registers *are* enabled, setting the "SYNC_UPDATE" register
 14 *   notifies the core that it needs to update the registers defining the
 15 *   waveform from the contents of the "shadow registers". Otherwise, changes
 16 *   will take effective immediately, even for those channels.
 17 *   As setting the period/duty cycle takes 4 register writes, there is a window
 18 *   in which this races against the start of a new period.
 19 * - The IP block has no concept of a duty cycle, only rising/falling edges of
 20 *   the waveform. Unfortunately, if the rising & falling edges registers have
 21 *   the same value written to them the IP block will do whichever of a rising
 22 *   or a falling edge is possible. I.E. a 50% waveform at twice the requested
 23 *   period. Therefore to get a 0% waveform, the output is set the max high/low
 24 *   time depending on polarity.
 25 *   If the duty cycle is 0%, and the requested period is less than the
 26 *   available period resolution, this will manifest as a ~100% waveform (with
 27 *   some output glitches) rather than 50%.
 28 * - The PWM period is set for the whole IP block not per channel. The driver
 29 *   will only change the period if no other PWM output is enabled.
 30 */
 31
 32#include <linux/clk.h>
 33#include <linux/delay.h>
 34#include <linux/err.h>
 35#include <linux/io.h>
 36#include <linux/ktime.h>
 37#include <linux/math.h>
 38#include <linux/module.h>
 39#include <linux/mutex.h>
 40#include <linux/of.h>
 41#include <linux/platform_device.h>
 42#include <linux/pwm.h>
 43
 44#define MCHPCOREPWM_PRESCALE_MAX	0xff
 45#define MCHPCOREPWM_PERIOD_STEPS_MAX	0xfe
 46#define MCHPCOREPWM_PERIOD_MAX		0xff00
 47
 48#define MCHPCOREPWM_PRESCALE	0x00
 49#define MCHPCOREPWM_PERIOD	0x04
 50#define MCHPCOREPWM_EN(i)	(0x08 + 0x04 * (i)) /* 0x08, 0x0c */
 51#define MCHPCOREPWM_POSEDGE(i)	(0x10 + 0x08 * (i)) /* 0x10, 0x18, ..., 0x88 */
 52#define MCHPCOREPWM_NEGEDGE(i)	(0x14 + 0x08 * (i)) /* 0x14, 0x1c, ..., 0x8c */
 53#define MCHPCOREPWM_SYNC_UPD	0xe4
 54#define MCHPCOREPWM_TIMEOUT_MS	100u
 55
 56struct mchp_core_pwm_chip {
 
 57	struct clk *clk;
 58	void __iomem *base;
 59	struct mutex lock; /* protects the shared period */
 60	ktime_t update_timestamp;
 61	u32 sync_update_mask;
 62	u16 channel_enabled;
 63};
 64
 65static inline struct mchp_core_pwm_chip *to_mchp_core_pwm(struct pwm_chip *chip)
 66{
 67	return pwmchip_get_drvdata(chip);
 68}
 69
 70static void mchp_core_pwm_enable(struct pwm_chip *chip, struct pwm_device *pwm,
 71				 bool enable, u64 period)
 72{
 73	struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip);
 74	u8 channel_enable, reg_offset, shift;
 75
 76	/*
 77	 * There are two adjacent 8 bit control regs, the lower reg controls
 78	 * 0-7 and the upper reg 8-15. Check if the pwm is in the upper reg
 79	 * and if so, offset by the bus width.
 80	 */
 81	reg_offset = MCHPCOREPWM_EN(pwm->hwpwm >> 3);
 82	shift = pwm->hwpwm & 7;
 83
 84	channel_enable = readb_relaxed(mchp_core_pwm->base + reg_offset);
 85	channel_enable &= ~(1 << shift);
 86	channel_enable |= (enable << shift);
 87
 88	writel_relaxed(channel_enable, mchp_core_pwm->base + reg_offset);
 89	mchp_core_pwm->channel_enabled &= ~BIT(pwm->hwpwm);
 90	mchp_core_pwm->channel_enabled |= enable << pwm->hwpwm;
 91
 92	/*
 93	 * The updated values will not appear on the bus until they have been
 94	 * applied to the waveform at the beginning of the next period.
 95	 * This is a NO-OP if the channel does not have shadow registers.
 96	 */
 97	if (mchp_core_pwm->sync_update_mask & (1 << pwm->hwpwm))
 98		mchp_core_pwm->update_timestamp = ktime_add_ns(ktime_get(), period);
 99}
100
101static void mchp_core_pwm_wait_for_sync_update(struct mchp_core_pwm_chip *mchp_core_pwm,
102					       unsigned int channel)
103{
104	/*
105	 * If a shadow register is used for this PWM channel, and iff there is
106	 * a pending update to the waveform, we must wait for it to be applied
107	 * before attempting to read its state. Reading the registers yields
108	 * the currently implemented settings & the new ones are only readable
109	 * once the current period has ended.
110	 */
111
112	if (mchp_core_pwm->sync_update_mask & (1 << channel)) {
113		ktime_t current_time = ktime_get();
114		s64 remaining_ns;
115		u32 delay_us;
116
117		remaining_ns = ktime_to_ns(ktime_sub(mchp_core_pwm->update_timestamp,
118						     current_time));
119
120		/*
121		 * If the update has gone through, don't bother waiting for
122		 * obvious reasons. Otherwise wait around for an appropriate
123		 * amount of time for the update to go through.
124		 */
125		if (remaining_ns <= 0)
126			return;
127
128		delay_us = DIV_ROUND_UP_ULL(remaining_ns, NSEC_PER_USEC);
129		fsleep(delay_us);
130	}
131}
132
133static u64 mchp_core_pwm_calc_duty(const struct pwm_state *state, u64 clk_rate,
134				   u8 prescale, u8 period_steps)
135{
136	u64 duty_steps, tmp;
137
138	/*
139	 * Calculate the duty cycle in multiples of the prescaled period:
140	 * duty_steps = duty_in_ns / step_in_ns
141	 * step_in_ns = (prescale * NSEC_PER_SEC) / clk_rate
142	 * The code below is rearranged slightly to only divide once.
143	 */
144	tmp = (((u64)prescale) + 1) * NSEC_PER_SEC;
145	duty_steps = mul_u64_u64_div_u64(state->duty_cycle, clk_rate, tmp);
146
147	return duty_steps;
148}
149
150static void mchp_core_pwm_apply_duty(struct pwm_chip *chip, struct pwm_device *pwm,
151				     const struct pwm_state *state, u64 duty_steps,
152				     u16 period_steps)
153{
154	struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip);
155	u8 posedge, negedge;
156	u8 first_edge = 0, second_edge = duty_steps;
157
158	/*
159	 * Setting posedge == negedge doesn't yield a constant output,
160	 * so that's an unsuitable setting to model duty_steps = 0.
161	 * In that case set the unwanted edge to a value that never
162	 * triggers.
163	 */
164	if (duty_steps == 0)
165		first_edge = period_steps + 1;
166
167	if (state->polarity == PWM_POLARITY_INVERSED) {
168		negedge = first_edge;
169		posedge = second_edge;
170	} else {
171		posedge = first_edge;
172		negedge = second_edge;
173	}
174
175	/*
176	 * Set the sync bit which ensures that periods that already started are
177	 * completed unaltered. At each counter reset event the values are
178	 * updated from the shadow registers.
179	 */
180	writel_relaxed(posedge, mchp_core_pwm->base + MCHPCOREPWM_POSEDGE(pwm->hwpwm));
181	writel_relaxed(negedge, mchp_core_pwm->base + MCHPCOREPWM_NEGEDGE(pwm->hwpwm));
182}
183
184static int mchp_core_pwm_calc_period(const struct pwm_state *state, unsigned long clk_rate,
185				     u16 *prescale, u16 *period_steps)
186{
187	u64 tmp;
188
189	/*
190	 * Calculate the period cycles and prescale values.
191	 * The registers are each 8 bits wide & multiplied to compute the period
192	 * using the formula:
193	 *           (prescale + 1) * (period_steps + 1)
194	 * period = -------------------------------------
195	 *                      clk_rate
196	 * so the maximum period that can be generated is 0x10000 times the
197	 * period of the input clock.
198	 * However, due to the design of the "hardware", it is not possible to
199	 * attain a 100% duty cycle if the full range of period_steps is used.
200	 * Therefore period_steps is restricted to 0xfe and the maximum multiple
201	 * of the clock period attainable is (0xff + 1) * (0xfe + 1) = 0xff00
202	 *
203	 * The prescale and period_steps registers operate similarly to
204	 * CLK_DIVIDER_ONE_BASED, where the value used by the hardware is that
205	 * in the register plus one.
206	 * It's therefore not possible to set a period lower than 1/clk_rate, so
207	 * if tmp is 0, abort. Without aborting, we will set a period that is
208	 * greater than that requested and, more importantly, will trigger the
209	 * neg-/pos-edge issue described in the limitations.
210	 */
211	tmp = mul_u64_u64_div_u64(state->period, clk_rate, NSEC_PER_SEC);
212	if (tmp >= MCHPCOREPWM_PERIOD_MAX) {
213		*prescale = MCHPCOREPWM_PRESCALE_MAX;
214		*period_steps = MCHPCOREPWM_PERIOD_STEPS_MAX;
215
216		return 0;
217	}
218
219	/*
220	 * There are multiple strategies that could be used to choose the
221	 * prescale & period_steps values.
222	 * Here the idea is to pick values so that the selection of duty cycles
223	 * is as finegrain as possible, while also keeping the period less than
224	 * that requested.
225	 *
226	 * A simple way to satisfy the first condition is to always set
227	 * period_steps to its maximum value. This neatly also satisfies the
228	 * second condition too, since using the maximum value of period_steps
229	 * to calculate prescale actually calculates its upper bound.
230	 * Integer division will ensure a round down, so the period will thereby
231	 * always be less than that requested.
232	 *
233	 * The downside of this approach is a significant degree of inaccuracy,
234	 * especially as tmp approaches integer multiples of
235	 * MCHPCOREPWM_PERIOD_STEPS_MAX.
236	 *
237	 * As we must produce a period less than that requested, and for the
238	 * sake of creating a simple algorithm, disallow small values of tmp
239	 * that would need special handling.
240	 */
241	if (tmp < MCHPCOREPWM_PERIOD_STEPS_MAX + 1)
242		return -EINVAL;
243
244	/*
245	 * This "optimal" value for prescale is be calculated using the maximum
246	 * permitted value of period_steps, 0xfe.
247	 *
248	 *                period * clk_rate
249	 * prescale = ------------------------- - 1
250	 *            NSEC_PER_SEC * (0xfe + 1)
251	 *
252	 *
253	 *  period * clk_rate
254	 * ------------------- was precomputed as `tmp`
255	 *    NSEC_PER_SEC
256	 */
257	*prescale = ((u16)tmp) / (MCHPCOREPWM_PERIOD_STEPS_MAX + 1) - 1;
258
259	/*
260	 * period_steps can be computed from prescale:
261	 *                      period * clk_rate
262	 * period_steps = ----------------------------- - 1
263	 *                NSEC_PER_SEC * (prescale + 1)
264	 *
265	 * However, in this approximation, we simply use the maximum value that
266	 * was used to compute prescale.
267	 */
268	*period_steps = MCHPCOREPWM_PERIOD_STEPS_MAX;
269
270	return 0;
271}
272
273static int mchp_core_pwm_apply_locked(struct pwm_chip *chip, struct pwm_device *pwm,
274				      const struct pwm_state *state)
275{
276	struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip);
277	bool period_locked;
278	unsigned long clk_rate;
279	u64 duty_steps;
280	u16 prescale, period_steps;
281	int ret;
282
283	if (!state->enabled) {
284		mchp_core_pwm_enable(chip, pwm, false, pwm->state.period);
285		return 0;
286	}
287
288	/*
289	 * If clk_rate is too big, the following multiplication might overflow.
290	 * However this is implausible, as the fabric of current FPGAs cannot
291	 * provide clocks at a rate high enough.
292	 */
293	clk_rate = clk_get_rate(mchp_core_pwm->clk);
294	if (clk_rate >= NSEC_PER_SEC)
295		return -EINVAL;
296
297	ret = mchp_core_pwm_calc_period(state, clk_rate, &prescale, &period_steps);
298	if (ret)
299		return ret;
300
301	/*
302	 * If the only thing that has changed is the duty cycle or the polarity,
303	 * we can shortcut the calculations and just compute/apply the new duty
304	 * cycle pos & neg edges
305	 * As all the channels share the same period, do not allow it to be
306	 * changed if any other channels are enabled.
307	 * If the period is locked, it may not be possible to use a period
308	 * less than that requested. In that case, we just abort.
309	 */
310	period_locked = mchp_core_pwm->channel_enabled & ~(1 << pwm->hwpwm);
311
312	if (period_locked) {
313		u16 hw_prescale;
314		u16 hw_period_steps;
315
316		hw_prescale = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_PRESCALE);
317		hw_period_steps = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_PERIOD);
318
319		if ((period_steps + 1) * (prescale + 1) <
320		    (hw_period_steps + 1) * (hw_prescale + 1))
321			return -EINVAL;
322
323		/*
324		 * It is possible that something could have set the period_steps
325		 * register to 0xff, which would prevent us from setting a 100%
326		 * or 0% relative duty cycle, as explained above in
327		 * mchp_core_pwm_calc_period().
328		 * The period is locked and we cannot change this, so we abort.
329		 */
330		if (hw_period_steps > MCHPCOREPWM_PERIOD_STEPS_MAX)
331			return -EINVAL;
332
333		prescale = hw_prescale;
334		period_steps = hw_period_steps;
335	}
336
337	duty_steps = mchp_core_pwm_calc_duty(state, clk_rate, prescale, period_steps);
338
339	/*
340	 * Because the period is not per channel, it is possible that the
341	 * requested duty cycle is longer than the period, in which case cap it
342	 * to the period, IOW a 100% duty cycle.
343	 */
344	if (duty_steps > period_steps)
345		duty_steps = period_steps + 1;
346
347	if (!period_locked) {
348		writel_relaxed(prescale, mchp_core_pwm->base + MCHPCOREPWM_PRESCALE);
349		writel_relaxed(period_steps, mchp_core_pwm->base + MCHPCOREPWM_PERIOD);
350	}
351
352	mchp_core_pwm_apply_duty(chip, pwm, state, duty_steps, period_steps);
353
354	mchp_core_pwm_enable(chip, pwm, true, pwm->state.period);
355
356	return 0;
357}
358
359static int mchp_core_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
360			       const struct pwm_state *state)
361{
362	struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip);
363	int ret;
364
365	mutex_lock(&mchp_core_pwm->lock);
366
367	mchp_core_pwm_wait_for_sync_update(mchp_core_pwm, pwm->hwpwm);
368
369	ret = mchp_core_pwm_apply_locked(chip, pwm, state);
370
371	mutex_unlock(&mchp_core_pwm->lock);
372
373	return ret;
374}
375
376static int mchp_core_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
377				   struct pwm_state *state)
378{
379	struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip);
380	u64 rate;
381	u16 prescale, period_steps;
382	u8 duty_steps, posedge, negedge;
383
384	mutex_lock(&mchp_core_pwm->lock);
385
386	mchp_core_pwm_wait_for_sync_update(mchp_core_pwm, pwm->hwpwm);
387
388	if (mchp_core_pwm->channel_enabled & (1 << pwm->hwpwm))
389		state->enabled = true;
390	else
391		state->enabled = false;
392
393	rate = clk_get_rate(mchp_core_pwm->clk);
394
395	/*
396	 * Calculating the period:
397	 * The registers are each 8 bits wide & multiplied to compute the period
398	 * using the formula:
399	 *           (prescale + 1) * (period_steps + 1)
400	 * period = -------------------------------------
401	 *                      clk_rate
402	 *
403	 * Note:
404	 * The prescale and period_steps registers operate similarly to
405	 * CLK_DIVIDER_ONE_BASED, where the value used by the hardware is that
406	 * in the register plus one.
407	 */
408	prescale = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_PRESCALE);
409	period_steps = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_PERIOD);
410
411	state->period = (period_steps + 1) * (prescale + 1);
412	state->period *= NSEC_PER_SEC;
413	state->period = DIV64_U64_ROUND_UP(state->period, rate);
414
415	posedge = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_POSEDGE(pwm->hwpwm));
416	negedge = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_NEGEDGE(pwm->hwpwm));
417
418	mutex_unlock(&mchp_core_pwm->lock);
419
420	if (negedge == posedge) {
421		state->duty_cycle = state->period;
422		state->period *= 2;
423	} else {
424		duty_steps = abs((s16)posedge - (s16)negedge);
425		state->duty_cycle = duty_steps * (prescale + 1) * NSEC_PER_SEC;
426		state->duty_cycle = DIV64_U64_ROUND_UP(state->duty_cycle, rate);
427	}
428
429	state->polarity = negedge < posedge ? PWM_POLARITY_INVERSED : PWM_POLARITY_NORMAL;
430
431	return 0;
432}
433
434static const struct pwm_ops mchp_core_pwm_ops = {
435	.apply = mchp_core_pwm_apply,
436	.get_state = mchp_core_pwm_get_state,
437};
438
439static const struct of_device_id mchp_core_of_match[] = {
440	{
441		.compatible = "microchip,corepwm-rtl-v4",
442	},
443	{ /* sentinel */ }
444};
445MODULE_DEVICE_TABLE(of, mchp_core_of_match);
446
447static int mchp_core_pwm_probe(struct platform_device *pdev)
448{
449	struct pwm_chip *chip;
450	struct mchp_core_pwm_chip *mchp_core_pwm;
451	struct resource *regs;
452	int ret;
453
454	chip = devm_pwmchip_alloc(&pdev->dev, 16, sizeof(*mchp_core_pwm));
455	if (IS_ERR(chip))
456		return PTR_ERR(chip);
457	mchp_core_pwm = to_mchp_core_pwm(chip);
458
459	mchp_core_pwm->base = devm_platform_get_and_ioremap_resource(pdev, 0, &regs);
460	if (IS_ERR(mchp_core_pwm->base))
461		return PTR_ERR(mchp_core_pwm->base);
462
463	mchp_core_pwm->clk = devm_clk_get_enabled(&pdev->dev, NULL);
464	if (IS_ERR(mchp_core_pwm->clk))
465		return dev_err_probe(&pdev->dev, PTR_ERR(mchp_core_pwm->clk),
466				     "failed to get PWM clock\n");
467
468	if (of_property_read_u32(pdev->dev.of_node, "microchip,sync-update-mask",
469				 &mchp_core_pwm->sync_update_mask))
470		mchp_core_pwm->sync_update_mask = 0;
471
472	mutex_init(&mchp_core_pwm->lock);
473
474	chip->ops = &mchp_core_pwm_ops;
 
 
475
476	mchp_core_pwm->channel_enabled = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_EN(0));
477	mchp_core_pwm->channel_enabled |=
478		readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_EN(1)) << 8;
479
480	/*
481	 * Enable synchronous update mode for all channels for which shadow
482	 * registers have been synthesised.
483	 */
484	writel_relaxed(1U, mchp_core_pwm->base + MCHPCOREPWM_SYNC_UPD);
485	mchp_core_pwm->update_timestamp = ktime_get();
486
487	ret = devm_pwmchip_add(&pdev->dev, chip);
488	if (ret)
489		return dev_err_probe(&pdev->dev, ret, "Failed to add pwmchip\n");
490
491	return 0;
492}
493
494static struct platform_driver mchp_core_pwm_driver = {
495	.driver = {
496		.name = "mchp-core-pwm",
497		.of_match_table = mchp_core_of_match,
498	},
499	.probe = mchp_core_pwm_probe,
500};
501module_platform_driver(mchp_core_pwm_driver);
502
503MODULE_LICENSE("GPL");
504MODULE_AUTHOR("Conor Dooley <conor.dooley@microchip.com>");
505MODULE_DESCRIPTION("corePWM driver for Microchip FPGAs");