Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 | // SPDX-License-Identifier: GPL-2.0 /* * corePWM driver for Microchip "soft" FPGA IP cores. * * Copyright (c) 2021-2023 Microchip Corporation. All rights reserved. * Author: Conor Dooley <conor.dooley@microchip.com> * Documentation: * https://www.microsemi.com/document-portal/doc_download/1245275-corepwm-hb * * Limitations: * - If the IP block is configured without "shadow registers", all register * writes will take effect immediately, causing glitches on the output. * If shadow registers *are* enabled, setting the "SYNC_UPDATE" register * notifies the core that it needs to update the registers defining the * waveform from the contents of the "shadow registers". Otherwise, changes * will take effective immediately, even for those channels. * As setting the period/duty cycle takes 4 register writes, there is a window * in which this races against the start of a new period. * - The IP block has no concept of a duty cycle, only rising/falling edges of * the waveform. Unfortunately, if the rising & falling edges registers have * the same value written to them the IP block will do whichever of a rising * or a falling edge is possible. I.E. a 50% waveform at twice the requested * period. Therefore to get a 0% waveform, the output is set the max high/low * time depending on polarity. * If the duty cycle is 0%, and the requested period is less than the * available period resolution, this will manifest as a ~100% waveform (with * some output glitches) rather than 50%. * - The PWM period is set for the whole IP block not per channel. The driver * will only change the period if no other PWM output is enabled. */ #include <linux/clk.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/io.h> #include <linux/ktime.h> #include <linux/math.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/pwm.h> #define MCHPCOREPWM_PRESCALE_MAX 0xff #define MCHPCOREPWM_PERIOD_STEPS_MAX 0xfe #define MCHPCOREPWM_PERIOD_MAX 0xff00 #define MCHPCOREPWM_PRESCALE 0x00 #define MCHPCOREPWM_PERIOD 0x04 #define MCHPCOREPWM_EN(i) (0x08 + 0x04 * (i)) /* 0x08, 0x0c */ #define MCHPCOREPWM_POSEDGE(i) (0x10 + 0x08 * (i)) /* 0x10, 0x18, ..., 0x88 */ #define MCHPCOREPWM_NEGEDGE(i) (0x14 + 0x08 * (i)) /* 0x14, 0x1c, ..., 0x8c */ #define MCHPCOREPWM_SYNC_UPD 0xe4 #define MCHPCOREPWM_TIMEOUT_MS 100u struct mchp_core_pwm_chip { struct clk *clk; void __iomem *base; struct mutex lock; /* protects the shared period */ ktime_t update_timestamp; u32 sync_update_mask; u16 channel_enabled; }; static inline struct mchp_core_pwm_chip *to_mchp_core_pwm(struct pwm_chip *chip) { return pwmchip_get_drvdata(chip); } static void mchp_core_pwm_enable(struct pwm_chip *chip, struct pwm_device *pwm, bool enable, u64 period) { struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip); u8 channel_enable, reg_offset, shift; /* * There are two adjacent 8 bit control regs, the lower reg controls * 0-7 and the upper reg 8-15. Check if the pwm is in the upper reg * and if so, offset by the bus width. */ reg_offset = MCHPCOREPWM_EN(pwm->hwpwm >> 3); shift = pwm->hwpwm & 7; channel_enable = readb_relaxed(mchp_core_pwm->base + reg_offset); channel_enable &= ~(1 << shift); channel_enable |= (enable << shift); writel_relaxed(channel_enable, mchp_core_pwm->base + reg_offset); mchp_core_pwm->channel_enabled &= ~BIT(pwm->hwpwm); mchp_core_pwm->channel_enabled |= enable << pwm->hwpwm; /* * The updated values will not appear on the bus until they have been * applied to the waveform at the beginning of the next period. * This is a NO-OP if the channel does not have shadow registers. */ if (mchp_core_pwm->sync_update_mask & (1 << pwm->hwpwm)) mchp_core_pwm->update_timestamp = ktime_add_ns(ktime_get(), period); } static void mchp_core_pwm_wait_for_sync_update(struct mchp_core_pwm_chip *mchp_core_pwm, unsigned int channel) { /* * If a shadow register is used for this PWM channel, and iff there is * a pending update to the waveform, we must wait for it to be applied * before attempting to read its state. Reading the registers yields * the currently implemented settings & the new ones are only readable * once the current period has ended. */ if (mchp_core_pwm->sync_update_mask & (1 << channel)) { ktime_t current_time = ktime_get(); s64 remaining_ns; u32 delay_us; remaining_ns = ktime_to_ns(ktime_sub(mchp_core_pwm->update_timestamp, current_time)); /* * If the update has gone through, don't bother waiting for * obvious reasons. Otherwise wait around for an appropriate * amount of time for the update to go through. */ if (remaining_ns <= 0) return; delay_us = DIV_ROUND_UP_ULL(remaining_ns, NSEC_PER_USEC); fsleep(delay_us); } } static u64 mchp_core_pwm_calc_duty(const struct pwm_state *state, u64 clk_rate, u8 prescale, u8 period_steps) { u64 duty_steps, tmp; /* * Calculate the duty cycle in multiples of the prescaled period: * duty_steps = duty_in_ns / step_in_ns * step_in_ns = (prescale * NSEC_PER_SEC) / clk_rate * The code below is rearranged slightly to only divide once. */ tmp = (((u64)prescale) + 1) * NSEC_PER_SEC; duty_steps = mul_u64_u64_div_u64(state->duty_cycle, clk_rate, tmp); return duty_steps; } static void mchp_core_pwm_apply_duty(struct pwm_chip *chip, struct pwm_device *pwm, const struct pwm_state *state, u64 duty_steps, u16 period_steps) { struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip); u8 posedge, negedge; u8 first_edge = 0, second_edge = duty_steps; /* * Setting posedge == negedge doesn't yield a constant output, * so that's an unsuitable setting to model duty_steps = 0. * In that case set the unwanted edge to a value that never * triggers. */ if (duty_steps == 0) first_edge = period_steps + 1; if (state->polarity == PWM_POLARITY_INVERSED) { negedge = first_edge; posedge = second_edge; } else { posedge = first_edge; negedge = second_edge; } /* * Set the sync bit which ensures that periods that already started are * completed unaltered. At each counter reset event the values are * updated from the shadow registers. */ writel_relaxed(posedge, mchp_core_pwm->base + MCHPCOREPWM_POSEDGE(pwm->hwpwm)); writel_relaxed(negedge, mchp_core_pwm->base + MCHPCOREPWM_NEGEDGE(pwm->hwpwm)); } static int mchp_core_pwm_calc_period(const struct pwm_state *state, unsigned long clk_rate, u16 *prescale, u16 *period_steps) { u64 tmp; /* * Calculate the period cycles and prescale values. * The registers are each 8 bits wide & multiplied to compute the period * using the formula: * (prescale + 1) * (period_steps + 1) * period = ------------------------------------- * clk_rate * so the maximum period that can be generated is 0x10000 times the * period of the input clock. * However, due to the design of the "hardware", it is not possible to * attain a 100% duty cycle if the full range of period_steps is used. * Therefore period_steps is restricted to 0xfe and the maximum multiple * of the clock period attainable is (0xff + 1) * (0xfe + 1) = 0xff00 * * The prescale and period_steps registers operate similarly to * CLK_DIVIDER_ONE_BASED, where the value used by the hardware is that * in the register plus one. * It's therefore not possible to set a period lower than 1/clk_rate, so * if tmp is 0, abort. Without aborting, we will set a period that is * greater than that requested and, more importantly, will trigger the * neg-/pos-edge issue described in the limitations. */ tmp = mul_u64_u64_div_u64(state->period, clk_rate, NSEC_PER_SEC); if (tmp >= MCHPCOREPWM_PERIOD_MAX) { *prescale = MCHPCOREPWM_PRESCALE_MAX; *period_steps = MCHPCOREPWM_PERIOD_STEPS_MAX; return 0; } /* * There are multiple strategies that could be used to choose the * prescale & period_steps values. * Here the idea is to pick values so that the selection of duty cycles * is as finegrain as possible, while also keeping the period less than * that requested. * * A simple way to satisfy the first condition is to always set * period_steps to its maximum value. This neatly also satisfies the * second condition too, since using the maximum value of period_steps * to calculate prescale actually calculates its upper bound. * Integer division will ensure a round down, so the period will thereby * always be less than that requested. * * The downside of this approach is a significant degree of inaccuracy, * especially as tmp approaches integer multiples of * MCHPCOREPWM_PERIOD_STEPS_MAX. * * As we must produce a period less than that requested, and for the * sake of creating a simple algorithm, disallow small values of tmp * that would need special handling. */ if (tmp < MCHPCOREPWM_PERIOD_STEPS_MAX + 1) return -EINVAL; /* * This "optimal" value for prescale is be calculated using the maximum * permitted value of period_steps, 0xfe. * * period * clk_rate * prescale = ------------------------- - 1 * NSEC_PER_SEC * (0xfe + 1) * * * period * clk_rate * ------------------- was precomputed as `tmp` * NSEC_PER_SEC */ *prescale = ((u16)tmp) / (MCHPCOREPWM_PERIOD_STEPS_MAX + 1) - 1; /* * period_steps can be computed from prescale: * period * clk_rate * period_steps = ----------------------------- - 1 * NSEC_PER_SEC * (prescale + 1) * * However, in this approximation, we simply use the maximum value that * was used to compute prescale. */ *period_steps = MCHPCOREPWM_PERIOD_STEPS_MAX; return 0; } static int mchp_core_pwm_apply_locked(struct pwm_chip *chip, struct pwm_device *pwm, const struct pwm_state *state) { struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip); bool period_locked; unsigned long clk_rate; u64 duty_steps; u16 prescale, period_steps; int ret; if (!state->enabled) { mchp_core_pwm_enable(chip, pwm, false, pwm->state.period); return 0; } /* * If clk_rate is too big, the following multiplication might overflow. * However this is implausible, as the fabric of current FPGAs cannot * provide clocks at a rate high enough. */ clk_rate = clk_get_rate(mchp_core_pwm->clk); if (clk_rate >= NSEC_PER_SEC) return -EINVAL; ret = mchp_core_pwm_calc_period(state, clk_rate, &prescale, &period_steps); if (ret) return ret; /* * If the only thing that has changed is the duty cycle or the polarity, * we can shortcut the calculations and just compute/apply the new duty * cycle pos & neg edges * As all the channels share the same period, do not allow it to be * changed if any other channels are enabled. * If the period is locked, it may not be possible to use a period * less than that requested. In that case, we just abort. */ period_locked = mchp_core_pwm->channel_enabled & ~(1 << pwm->hwpwm); if (period_locked) { u16 hw_prescale; u16 hw_period_steps; hw_prescale = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_PRESCALE); hw_period_steps = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_PERIOD); if ((period_steps + 1) * (prescale + 1) < (hw_period_steps + 1) * (hw_prescale + 1)) return -EINVAL; /* * It is possible that something could have set the period_steps * register to 0xff, which would prevent us from setting a 100% * or 0% relative duty cycle, as explained above in * mchp_core_pwm_calc_period(). * The period is locked and we cannot change this, so we abort. */ if (hw_period_steps == MCHPCOREPWM_PERIOD_STEPS_MAX) return -EINVAL; prescale = hw_prescale; period_steps = hw_period_steps; } duty_steps = mchp_core_pwm_calc_duty(state, clk_rate, prescale, period_steps); /* * Because the period is not per channel, it is possible that the * requested duty cycle is longer than the period, in which case cap it * to the period, IOW a 100% duty cycle. */ if (duty_steps > period_steps) duty_steps = period_steps + 1; if (!period_locked) { writel_relaxed(prescale, mchp_core_pwm->base + MCHPCOREPWM_PRESCALE); writel_relaxed(period_steps, mchp_core_pwm->base + MCHPCOREPWM_PERIOD); } mchp_core_pwm_apply_duty(chip, pwm, state, duty_steps, period_steps); mchp_core_pwm_enable(chip, pwm, true, pwm->state.period); return 0; } static int mchp_core_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm, const struct pwm_state *state) { struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip); int ret; mutex_lock(&mchp_core_pwm->lock); mchp_core_pwm_wait_for_sync_update(mchp_core_pwm, pwm->hwpwm); ret = mchp_core_pwm_apply_locked(chip, pwm, state); mutex_unlock(&mchp_core_pwm->lock); return ret; } static int mchp_core_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm, struct pwm_state *state) { struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip); u64 rate; u16 prescale, period_steps; u8 duty_steps, posedge, negedge; mutex_lock(&mchp_core_pwm->lock); mchp_core_pwm_wait_for_sync_update(mchp_core_pwm, pwm->hwpwm); if (mchp_core_pwm->channel_enabled & (1 << pwm->hwpwm)) state->enabled = true; else state->enabled = false; rate = clk_get_rate(mchp_core_pwm->clk); /* * Calculating the period: * The registers are each 8 bits wide & multiplied to compute the period * using the formula: * (prescale + 1) * (period_steps + 1) * period = ------------------------------------- * clk_rate * * Note: * The prescale and period_steps registers operate similarly to * CLK_DIVIDER_ONE_BASED, where the value used by the hardware is that * in the register plus one. */ prescale = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_PRESCALE); period_steps = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_PERIOD); state->period = (period_steps + 1) * (prescale + 1); state->period *= NSEC_PER_SEC; state->period = DIV64_U64_ROUND_UP(state->period, rate); posedge = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_POSEDGE(pwm->hwpwm)); negedge = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_NEGEDGE(pwm->hwpwm)); mutex_unlock(&mchp_core_pwm->lock); if (negedge == posedge) { state->duty_cycle = state->period; state->period *= 2; } else { duty_steps = abs((s16)posedge - (s16)negedge); state->duty_cycle = duty_steps * (prescale + 1) * NSEC_PER_SEC; state->duty_cycle = DIV64_U64_ROUND_UP(state->duty_cycle, rate); } state->polarity = negedge < posedge ? PWM_POLARITY_INVERSED : PWM_POLARITY_NORMAL; return 0; } static const struct pwm_ops mchp_core_pwm_ops = { .apply = mchp_core_pwm_apply, .get_state = mchp_core_pwm_get_state, }; static const struct of_device_id mchp_core_of_match[] = { { .compatible = "microchip,corepwm-rtl-v4", }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, mchp_core_of_match); static int mchp_core_pwm_probe(struct platform_device *pdev) { struct pwm_chip *chip; struct mchp_core_pwm_chip *mchp_core_pwm; struct resource *regs; int ret; chip = devm_pwmchip_alloc(&pdev->dev, 16, sizeof(*mchp_core_pwm)); if (IS_ERR(chip)) return PTR_ERR(chip); mchp_core_pwm = to_mchp_core_pwm(chip); mchp_core_pwm->base = devm_platform_get_and_ioremap_resource(pdev, 0, ®s); if (IS_ERR(mchp_core_pwm->base)) return PTR_ERR(mchp_core_pwm->base); mchp_core_pwm->clk = devm_clk_get_enabled(&pdev->dev, NULL); if (IS_ERR(mchp_core_pwm->clk)) return dev_err_probe(&pdev->dev, PTR_ERR(mchp_core_pwm->clk), "failed to get PWM clock\n"); if (of_property_read_u32(pdev->dev.of_node, "microchip,sync-update-mask", &mchp_core_pwm->sync_update_mask)) mchp_core_pwm->sync_update_mask = 0; mutex_init(&mchp_core_pwm->lock); chip->ops = &mchp_core_pwm_ops; mchp_core_pwm->channel_enabled = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_EN(0)); mchp_core_pwm->channel_enabled |= readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_EN(1)) << 8; /* * Enable synchronous update mode for all channels for which shadow * registers have been synthesised. */ writel_relaxed(1U, mchp_core_pwm->base + MCHPCOREPWM_SYNC_UPD); mchp_core_pwm->update_timestamp = ktime_get(); ret = devm_pwmchip_add(&pdev->dev, chip); if (ret) return dev_err_probe(&pdev->dev, ret, "Failed to add pwmchip\n"); return 0; } static struct platform_driver mchp_core_pwm_driver = { .driver = { .name = "mchp-core-pwm", .of_match_table = mchp_core_of_match, }, .probe = mchp_core_pwm_probe, }; module_platform_driver(mchp_core_pwm_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Conor Dooley <conor.dooley@microchip.com>"); MODULE_DESCRIPTION("corePWM driver for Microchip FPGAs"); |