Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
  2/*
  3 * Copyright (C) 2012-2014, 2018-2019, 2021-2023 Intel Corporation
  4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
  5 * Copyright (C) 2016-2017 Intel Deutschland GmbH
  6 */
  7#include <linux/firmware.h>
  8#include <linux/rtnetlink.h>
  9#include "iwl-trans.h"
 10#include "iwl-csr.h"
 11#include "mvm.h"
 12#include "iwl-eeprom-parse.h"
 13#include "iwl-eeprom-read.h"
 14#include "iwl-nvm-parse.h"
 15#include "iwl-prph.h"
 16#include "fw/acpi.h"
 17
 18/* Default NVM size to read */
 19#define IWL_NVM_DEFAULT_CHUNK_SIZE (2 * 1024)
 20
 21#define NVM_WRITE_OPCODE 1
 22#define NVM_READ_OPCODE 0
 23
 24/* load nvm chunk response */
 25enum {
 26	READ_NVM_CHUNK_SUCCEED = 0,
 27	READ_NVM_CHUNK_NOT_VALID_ADDRESS = 1
 28};
 29
 30/*
 31 * prepare the NVM host command w/ the pointers to the nvm buffer
 32 * and send it to fw
 33 */
 34static int iwl_nvm_write_chunk(struct iwl_mvm *mvm, u16 section,
 35			       u16 offset, u16 length, const u8 *data)
 36{
 37	struct iwl_nvm_access_cmd nvm_access_cmd = {
 38		.offset = cpu_to_le16(offset),
 39		.length = cpu_to_le16(length),
 40		.type = cpu_to_le16(section),
 41		.op_code = NVM_WRITE_OPCODE,
 42	};
 43	struct iwl_host_cmd cmd = {
 44		.id = NVM_ACCESS_CMD,
 45		.len = { sizeof(struct iwl_nvm_access_cmd), length },
 46		.flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
 47		.data = { &nvm_access_cmd, data },
 48		/* data may come from vmalloc, so use _DUP */
 49		.dataflags = { 0, IWL_HCMD_DFL_DUP },
 50	};
 51	struct iwl_rx_packet *pkt;
 52	struct iwl_nvm_access_resp *nvm_resp;
 53	int ret;
 54
 55	ret = iwl_mvm_send_cmd(mvm, &cmd);
 56	if (ret)
 57		return ret;
 58
 59	pkt = cmd.resp_pkt;
 60	/* Extract & check NVM write response */
 61	nvm_resp = (void *)pkt->data;
 62	if (le16_to_cpu(nvm_resp->status) != READ_NVM_CHUNK_SUCCEED) {
 63		IWL_ERR(mvm,
 64			"NVM access write command failed for section %u (status = 0x%x)\n",
 65			section, le16_to_cpu(nvm_resp->status));
 66		ret = -EIO;
 67	}
 68
 69	iwl_free_resp(&cmd);
 70	return ret;
 71}
 72
 73static int iwl_nvm_read_chunk(struct iwl_mvm *mvm, u16 section,
 74			      u16 offset, u16 length, u8 *data)
 75{
 76	struct iwl_nvm_access_cmd nvm_access_cmd = {
 77		.offset = cpu_to_le16(offset),
 78		.length = cpu_to_le16(length),
 79		.type = cpu_to_le16(section),
 80		.op_code = NVM_READ_OPCODE,
 81	};
 82	struct iwl_nvm_access_resp *nvm_resp;
 83	struct iwl_rx_packet *pkt;
 84	struct iwl_host_cmd cmd = {
 85		.id = NVM_ACCESS_CMD,
 86		.flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
 87		.data = { &nvm_access_cmd, },
 88	};
 89	int ret, bytes_read, offset_read;
 90	u8 *resp_data;
 91
 92	cmd.len[0] = sizeof(struct iwl_nvm_access_cmd);
 93
 94	ret = iwl_mvm_send_cmd(mvm, &cmd);
 95	if (ret)
 96		return ret;
 97
 98	pkt = cmd.resp_pkt;
 99
100	/* Extract NVM response */
101	nvm_resp = (void *)pkt->data;
102	ret = le16_to_cpu(nvm_resp->status);
103	bytes_read = le16_to_cpu(nvm_resp->length);
104	offset_read = le16_to_cpu(nvm_resp->offset);
105	resp_data = nvm_resp->data;
106	if (ret) {
107		if ((offset != 0) &&
108		    (ret == READ_NVM_CHUNK_NOT_VALID_ADDRESS)) {
109			/*
110			 * meaning of NOT_VALID_ADDRESS:
111			 * driver try to read chunk from address that is
112			 * multiple of 2K and got an error since addr is empty.
113			 * meaning of (offset != 0): driver already
114			 * read valid data from another chunk so this case
115			 * is not an error.
116			 */
117			IWL_DEBUG_EEPROM(mvm->trans->dev,
118					 "NVM access command failed on offset 0x%x since that section size is multiple 2K\n",
119					 offset);
120			ret = 0;
121		} else {
122			IWL_DEBUG_EEPROM(mvm->trans->dev,
123					 "NVM access command failed with status %d (device: %s)\n",
124					 ret, mvm->trans->name);
125			ret = -ENODATA;
126		}
127		goto exit;
128	}
129
130	if (offset_read != offset) {
131		IWL_ERR(mvm, "NVM ACCESS response with invalid offset %d\n",
132			offset_read);
133		ret = -EINVAL;
134		goto exit;
135	}
136
137	/* Write data to NVM */
138	memcpy(data + offset, resp_data, bytes_read);
139	ret = bytes_read;
140
141exit:
142	iwl_free_resp(&cmd);
143	return ret;
144}
145
146static int iwl_nvm_write_section(struct iwl_mvm *mvm, u16 section,
147				 const u8 *data, u16 length)
148{
149	int offset = 0;
150
151	/* copy data in chunks of 2k (and remainder if any) */
152
153	while (offset < length) {
154		int chunk_size, ret;
155
156		chunk_size = min(IWL_NVM_DEFAULT_CHUNK_SIZE,
157				 length - offset);
158
159		ret = iwl_nvm_write_chunk(mvm, section, offset,
160					  chunk_size, data + offset);
161		if (ret < 0)
162			return ret;
163
164		offset += chunk_size;
165	}
166
167	return 0;
168}
169
170/*
171 * Reads an NVM section completely.
172 * NICs prior to 7000 family doesn't have a real NVM, but just read
173 * section 0 which is the EEPROM. Because the EEPROM reading is unlimited
174 * by uCode, we need to manually check in this case that we don't
175 * overflow and try to read more than the EEPROM size.
176 * For 7000 family NICs, we supply the maximal size we can read, and
177 * the uCode fills the response with as much data as we can,
178 * without overflowing, so no check is needed.
179 */
180static int iwl_nvm_read_section(struct iwl_mvm *mvm, u16 section,
181				u8 *data, u32 size_read)
182{
183	u16 length, offset = 0;
184	int ret;
185
186	/* Set nvm section read length */
187	length = IWL_NVM_DEFAULT_CHUNK_SIZE;
188
189	ret = length;
190
191	/* Read the NVM until exhausted (reading less than requested) */
192	while (ret == length) {
193		/* Check no memory assumptions fail and cause an overflow */
194		if ((size_read + offset + length) >
195		    mvm->trans->trans_cfg->base_params->eeprom_size) {
196			IWL_ERR(mvm, "EEPROM size is too small for NVM\n");
197			return -ENOBUFS;
198		}
199
200		ret = iwl_nvm_read_chunk(mvm, section, offset, length, data);
201		if (ret < 0) {
202			IWL_DEBUG_EEPROM(mvm->trans->dev,
203					 "Cannot read NVM from section %d offset %d, length %d\n",
204					 section, offset, length);
205			return ret;
206		}
207		offset += ret;
208	}
209
210	iwl_nvm_fixups(mvm->trans->hw_id, section, data, offset);
211
212	IWL_DEBUG_EEPROM(mvm->trans->dev,
213			 "NVM section %d read completed\n", section);
214	return offset;
215}
216
217static struct iwl_nvm_data *
218iwl_parse_nvm_sections(struct iwl_mvm *mvm)
219{
220	struct iwl_nvm_section *sections = mvm->nvm_sections;
221	const __be16 *hw;
222	const __le16 *sw, *calib, *regulatory, *mac_override, *phy_sku;
223	u8 tx_ant = mvm->fw->valid_tx_ant;
224	u8 rx_ant = mvm->fw->valid_rx_ant;
225	int regulatory_type;
226
227	/* Checking for required sections */
228	if (mvm->trans->cfg->nvm_type == IWL_NVM) {
229		if (!mvm->nvm_sections[NVM_SECTION_TYPE_SW].data ||
230		    !mvm->nvm_sections[mvm->cfg->nvm_hw_section_num].data) {
231			IWL_ERR(mvm, "Can't parse empty OTP/NVM sections\n");
232			return NULL;
233		}
234	} else {
235		if (mvm->trans->cfg->nvm_type == IWL_NVM_SDP)
236			regulatory_type = NVM_SECTION_TYPE_REGULATORY_SDP;
237		else
238			regulatory_type = NVM_SECTION_TYPE_REGULATORY;
239
240		/* SW and REGULATORY sections are mandatory */
241		if (!mvm->nvm_sections[NVM_SECTION_TYPE_SW].data ||
242		    !mvm->nvm_sections[regulatory_type].data) {
243			IWL_ERR(mvm,
244				"Can't parse empty family 8000 OTP/NVM sections\n");
245			return NULL;
246		}
247		/* MAC_OVERRIDE or at least HW section must exist */
248		if (!mvm->nvm_sections[mvm->cfg->nvm_hw_section_num].data &&
249		    !mvm->nvm_sections[NVM_SECTION_TYPE_MAC_OVERRIDE].data) {
250			IWL_ERR(mvm,
251				"Can't parse mac_address, empty sections\n");
252			return NULL;
253		}
254
255		/* PHY_SKU section is mandatory in B0 */
256		if (mvm->trans->cfg->nvm_type == IWL_NVM_EXT &&
257		    !mvm->nvm_sections[NVM_SECTION_TYPE_PHY_SKU].data) {
258			IWL_ERR(mvm,
259				"Can't parse phy_sku in B0, empty sections\n");
260			return NULL;
261		}
262	}
263
264	hw = (const __be16 *)sections[mvm->cfg->nvm_hw_section_num].data;
265	sw = (const __le16 *)sections[NVM_SECTION_TYPE_SW].data;
266	calib = (const __le16 *)sections[NVM_SECTION_TYPE_CALIBRATION].data;
267	mac_override =
268		(const __le16 *)sections[NVM_SECTION_TYPE_MAC_OVERRIDE].data;
269	phy_sku = (const __le16 *)sections[NVM_SECTION_TYPE_PHY_SKU].data;
270
271	regulatory = mvm->trans->cfg->nvm_type == IWL_NVM_SDP ?
272		(const __le16 *)sections[NVM_SECTION_TYPE_REGULATORY_SDP].data :
273		(const __le16 *)sections[NVM_SECTION_TYPE_REGULATORY].data;
274
275	if (mvm->set_tx_ant)
276		tx_ant &= mvm->set_tx_ant;
277
278	if (mvm->set_rx_ant)
279		rx_ant &= mvm->set_rx_ant;
280
281	return iwl_parse_nvm_data(mvm->trans, mvm->cfg, mvm->fw, hw, sw, calib,
282				  regulatory, mac_override, phy_sku,
283				  tx_ant, rx_ant);
284}
285
286/* Loads the NVM data stored in mvm->nvm_sections into the NIC */
287int iwl_mvm_load_nvm_to_nic(struct iwl_mvm *mvm)
288{
289	int i, ret = 0;
290	struct iwl_nvm_section *sections = mvm->nvm_sections;
291
292	IWL_DEBUG_EEPROM(mvm->trans->dev, "'Write to NVM\n");
293
294	for (i = 0; i < ARRAY_SIZE(mvm->nvm_sections); i++) {
295		if (!mvm->nvm_sections[i].data || !mvm->nvm_sections[i].length)
296			continue;
297		ret = iwl_nvm_write_section(mvm, i, sections[i].data,
298					    sections[i].length);
299		if (ret < 0) {
300			IWL_ERR(mvm, "iwl_mvm_send_cmd failed: %d\n", ret);
301			break;
302		}
303	}
304	return ret;
305}
306
307int iwl_nvm_init(struct iwl_mvm *mvm)
308{
309	int ret, section;
310	u32 size_read = 0;
311	u8 *nvm_buffer, *temp;
312	const char *nvm_file_C = mvm->cfg->default_nvm_file_C_step;
313
314	if (WARN_ON_ONCE(mvm->cfg->nvm_hw_section_num >= NVM_MAX_NUM_SECTIONS))
315		return -EINVAL;
316
317	/* load NVM values from nic */
318	/* Read From FW NVM */
319	IWL_DEBUG_EEPROM(mvm->trans->dev, "Read from NVM\n");
320
321	nvm_buffer = kmalloc(mvm->trans->trans_cfg->base_params->eeprom_size,
322			     GFP_KERNEL);
323	if (!nvm_buffer)
324		return -ENOMEM;
325	for (section = 0; section < NVM_MAX_NUM_SECTIONS; section++) {
326		/* we override the constness for initial read */
327		ret = iwl_nvm_read_section(mvm, section, nvm_buffer,
328					   size_read);
329		if (ret == -ENODATA) {
330			ret = 0;
331			continue;
332		}
333		if (ret < 0)
334			break;
335		size_read += ret;
336		temp = kmemdup(nvm_buffer, ret, GFP_KERNEL);
337		if (!temp) {
338			ret = -ENOMEM;
339			break;
340		}
341
342		iwl_nvm_fixups(mvm->trans->hw_id, section, temp, ret);
343
344		mvm->nvm_sections[section].data = temp;
345		mvm->nvm_sections[section].length = ret;
346
347#ifdef CONFIG_IWLWIFI_DEBUGFS
348		switch (section) {
349		case NVM_SECTION_TYPE_SW:
350			mvm->nvm_sw_blob.data = temp;
351			mvm->nvm_sw_blob.size  = ret;
352			break;
353		case NVM_SECTION_TYPE_CALIBRATION:
354			mvm->nvm_calib_blob.data = temp;
355			mvm->nvm_calib_blob.size  = ret;
356			break;
357		case NVM_SECTION_TYPE_PRODUCTION:
358			mvm->nvm_prod_blob.data = temp;
359			mvm->nvm_prod_blob.size  = ret;
360			break;
361		case NVM_SECTION_TYPE_PHY_SKU:
362			mvm->nvm_phy_sku_blob.data = temp;
363			mvm->nvm_phy_sku_blob.size  = ret;
364			break;
365		case NVM_SECTION_TYPE_REGULATORY_SDP:
366		case NVM_SECTION_TYPE_REGULATORY:
367			mvm->nvm_reg_blob.data = temp;
368			mvm->nvm_reg_blob.size  = ret;
369			break;
370		default:
371			if (section == mvm->cfg->nvm_hw_section_num) {
372				mvm->nvm_hw_blob.data = temp;
373				mvm->nvm_hw_blob.size = ret;
374				break;
375			}
376		}
377#endif
378	}
379	if (!size_read)
380		IWL_ERR(mvm, "OTP is blank\n");
381	kfree(nvm_buffer);
382
383	/* Only if PNVM selected in the mod param - load external NVM  */
384	if (mvm->nvm_file_name) {
385		/* read External NVM file from the mod param */
386		ret = iwl_read_external_nvm(mvm->trans, mvm->nvm_file_name,
387					    mvm->nvm_sections);
388		if (ret) {
389			mvm->nvm_file_name = nvm_file_C;
390
391			if ((ret == -EFAULT || ret == -ENOENT) &&
392			    mvm->nvm_file_name) {
393				/* in case nvm file was failed try again */
394				ret = iwl_read_external_nvm(mvm->trans,
395							    mvm->nvm_file_name,
396							    mvm->nvm_sections);
397				if (ret)
398					return ret;
399			} else {
400				return ret;
401			}
402		}
403	}
404
405	/* parse the relevant nvm sections */
406	mvm->nvm_data = iwl_parse_nvm_sections(mvm);
407	if (!mvm->nvm_data)
408		return -ENODATA;
409	IWL_DEBUG_EEPROM(mvm->trans->dev, "nvm version = %x\n",
410			 mvm->nvm_data->nvm_version);
411
412	return ret < 0 ? ret : 0;
413}
414
415struct iwl_mcc_update_resp_v8 *
416iwl_mvm_update_mcc(struct iwl_mvm *mvm, const char *alpha2,
417		   enum iwl_mcc_source src_id)
418{
419	struct iwl_mcc_update_cmd mcc_update_cmd = {
420		.mcc = cpu_to_le16(alpha2[0] << 8 | alpha2[1]),
421		.source_id = (u8)src_id,
422	};
423	struct iwl_mcc_update_resp_v8 *resp_cp;
424	struct iwl_rx_packet *pkt;
425	struct iwl_host_cmd cmd = {
426		.id = MCC_UPDATE_CMD,
427		.flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
428		.data = { &mcc_update_cmd },
429	};
430
431	int ret, resp_ver;
432	u32 status;
433	int resp_len, n_channels;
434	u16 mcc;
435
436	if (WARN_ON_ONCE(!iwl_mvm_is_lar_supported(mvm)))
437		return ERR_PTR(-EOPNOTSUPP);
438
439	cmd.len[0] = sizeof(struct iwl_mcc_update_cmd);
440
441	IWL_DEBUG_LAR(mvm, "send MCC update to FW with '%c%c' src = %d\n",
442		      alpha2[0], alpha2[1], src_id);
443
444	ret = iwl_mvm_send_cmd(mvm, &cmd);
445	if (ret)
446		return ERR_PTR(ret);
447
448	pkt = cmd.resp_pkt;
449
450	resp_ver = iwl_fw_lookup_notif_ver(mvm->fw, IWL_ALWAYS_LONG_GROUP,
451					   MCC_UPDATE_CMD, 0);
452
453	/* Extract MCC response */
454	if (resp_ver >= 8) {
455		struct iwl_mcc_update_resp_v8 *mcc_resp_v8 = (void *)pkt->data;
456
457		n_channels =  __le32_to_cpu(mcc_resp_v8->n_channels);
458		if (iwl_rx_packet_payload_len(pkt) !=
459		    struct_size(mcc_resp_v8, channels, n_channels)) {
460			resp_cp = ERR_PTR(-EINVAL);
461			goto exit;
462		}
463		resp_len = struct_size(resp_cp, channels, n_channels);
464		resp_cp = kzalloc(resp_len, GFP_KERNEL);
465		if (!resp_cp) {
466			resp_cp = ERR_PTR(-ENOMEM);
467			goto exit;
468		}
469		resp_cp->status = mcc_resp_v8->status;
470		resp_cp->mcc = mcc_resp_v8->mcc;
471		resp_cp->cap = mcc_resp_v8->cap;
472		resp_cp->source_id = mcc_resp_v8->source_id;
473		resp_cp->time = mcc_resp_v8->time;
474		resp_cp->geo_info = mcc_resp_v8->geo_info;
475		resp_cp->n_channels = mcc_resp_v8->n_channels;
476		memcpy(resp_cp->channels, mcc_resp_v8->channels,
477		       n_channels * sizeof(__le32));
478	} else if (fw_has_capa(&mvm->fw->ucode_capa,
479			       IWL_UCODE_TLV_CAPA_MCC_UPDATE_11AX_SUPPORT)) {
480		struct iwl_mcc_update_resp_v4 *mcc_resp_v4 = (void *)pkt->data;
481
482		n_channels =  __le32_to_cpu(mcc_resp_v4->n_channels);
483		if (iwl_rx_packet_payload_len(pkt) !=
484		    struct_size(mcc_resp_v4, channels, n_channels)) {
485			resp_cp = ERR_PTR(-EINVAL);
486			goto exit;
487		}
488		resp_len = struct_size(resp_cp, channels, n_channels);
489		resp_cp = kzalloc(resp_len, GFP_KERNEL);
490		if (!resp_cp) {
491			resp_cp = ERR_PTR(-ENOMEM);
492			goto exit;
493		}
494
495		resp_cp->status = mcc_resp_v4->status;
496		resp_cp->mcc = mcc_resp_v4->mcc;
497		resp_cp->cap = cpu_to_le32(le16_to_cpu(mcc_resp_v4->cap));
498		resp_cp->source_id = mcc_resp_v4->source_id;
499		resp_cp->time = mcc_resp_v4->time;
500		resp_cp->geo_info = mcc_resp_v4->geo_info;
501		resp_cp->n_channels = mcc_resp_v4->n_channels;
502		memcpy(resp_cp->channels, mcc_resp_v4->channels,
503		       n_channels * sizeof(__le32));
504	} else {
505		struct iwl_mcc_update_resp_v3 *mcc_resp_v3 = (void *)pkt->data;
506
507		n_channels =  __le32_to_cpu(mcc_resp_v3->n_channels);
508		if (iwl_rx_packet_payload_len(pkt) !=
509		    struct_size(mcc_resp_v3, channels, n_channels)) {
510			resp_cp = ERR_PTR(-EINVAL);
511			goto exit;
512		}
513		resp_len = struct_size(resp_cp, channels, n_channels);
514		resp_cp = kzalloc(resp_len, GFP_KERNEL);
515		if (!resp_cp) {
516			resp_cp = ERR_PTR(-ENOMEM);
517			goto exit;
518		}
519
520		resp_cp->status = mcc_resp_v3->status;
521		resp_cp->mcc = mcc_resp_v3->mcc;
522		resp_cp->cap = cpu_to_le32(mcc_resp_v3->cap);
523		resp_cp->source_id = mcc_resp_v3->source_id;
524		resp_cp->time = mcc_resp_v3->time;
525		resp_cp->geo_info = mcc_resp_v3->geo_info;
526		resp_cp->n_channels = mcc_resp_v3->n_channels;
527		memcpy(resp_cp->channels, mcc_resp_v3->channels,
528		       n_channels * sizeof(__le32));
529	}
530
531	status = le32_to_cpu(resp_cp->status);
532
533	mcc = le16_to_cpu(resp_cp->mcc);
534
535	/* W/A for a FW/NVM issue - returns 0x00 for the world domain */
536	if (mcc == 0) {
537		mcc = 0x3030;  /* "00" - world */
538		resp_cp->mcc = cpu_to_le16(mcc);
539	}
540
541	IWL_DEBUG_LAR(mvm,
542		      "MCC response status: 0x%x. new MCC: 0x%x ('%c%c') n_chans: %d\n",
543		      status, mcc, mcc >> 8, mcc & 0xff, n_channels);
544
545exit:
546	iwl_free_resp(&cmd);
547	return resp_cp;
548}
549
550int iwl_mvm_init_mcc(struct iwl_mvm *mvm)
551{
552	bool tlv_lar;
553	bool nvm_lar;
554	int retval;
555	struct ieee80211_regdomain *regd;
556	char mcc[3];
557
558	if (mvm->cfg->nvm_type == IWL_NVM_EXT) {
559		tlv_lar = fw_has_capa(&mvm->fw->ucode_capa,
560				      IWL_UCODE_TLV_CAPA_LAR_SUPPORT);
561		nvm_lar = mvm->nvm_data->lar_enabled;
562		if (tlv_lar != nvm_lar)
563			IWL_INFO(mvm,
564				 "Conflict between TLV & NVM regarding enabling LAR (TLV = %s NVM =%s)\n",
565				 tlv_lar ? "enabled" : "disabled",
566				 nvm_lar ? "enabled" : "disabled");
567	}
568
569	if (!iwl_mvm_is_lar_supported(mvm))
570		return 0;
571
572	/*
573	 * try to replay the last set MCC to FW. If it doesn't exist,
574	 * queue an update to cfg80211 to retrieve the default alpha2 from FW.
575	 */
576	retval = iwl_mvm_init_fw_regd(mvm, true);
577	if (retval != -ENOENT)
578		return retval;
579
580	/*
581	 * Driver regulatory hint for initial update, this also informs the
582	 * firmware we support wifi location updates.
583	 * Disallow scans that might crash the FW while the LAR regdomain
584	 * is not set.
585	 */
586	mvm->lar_regdom_set = false;
587
588	regd = iwl_mvm_get_current_regdomain(mvm, NULL);
589	if (IS_ERR_OR_NULL(regd))
590		return -EIO;
591
592	if (iwl_mvm_is_wifi_mcc_supported(mvm) &&
593	    !iwl_acpi_get_mcc(mvm->dev, mcc)) {
594		kfree(regd);
595		regd = iwl_mvm_get_regdomain(mvm->hw->wiphy, mcc,
596					     MCC_SOURCE_BIOS, NULL);
597		if (IS_ERR_OR_NULL(regd))
598			return -EIO;
599	}
600
601	retval = regulatory_set_wiphy_regd_sync(mvm->hw->wiphy, regd);
602	kfree(regd);
603	return retval;
604}
605
606void iwl_mvm_rx_chub_update_mcc(struct iwl_mvm *mvm,
607				struct iwl_rx_cmd_buffer *rxb)
608{
609	struct iwl_rx_packet *pkt = rxb_addr(rxb);
610	struct iwl_mcc_chub_notif *notif = (void *)pkt->data;
611	enum iwl_mcc_source src;
612	char mcc[3];
613	struct ieee80211_regdomain *regd;
614	int wgds_tbl_idx;
 
615
616	lockdep_assert_held(&mvm->mutex);
617
618	if (iwl_mvm_is_vif_assoc(mvm) && notif->source_id == MCC_SOURCE_WIFI) {
619		IWL_DEBUG_LAR(mvm, "Ignore mcc update while associated\n");
620		return;
621	}
622
623	if (WARN_ON_ONCE(!iwl_mvm_is_lar_supported(mvm)))
624		return;
625
626	mcc[0] = le16_to_cpu(notif->mcc) >> 8;
627	mcc[1] = le16_to_cpu(notif->mcc) & 0xff;
628	mcc[2] = '\0';
629	src = notif->source_id;
630
631	IWL_DEBUG_LAR(mvm,
632		      "RX: received chub update mcc cmd (mcc '%s' src %d)\n",
633		      mcc, src);
634	regd = iwl_mvm_get_regdomain(mvm->hw->wiphy, mcc, src, NULL);
635	if (IS_ERR_OR_NULL(regd))
636		return;
637
 
 
 
 
 
638	wgds_tbl_idx = iwl_mvm_get_sar_geo_profile(mvm);
639	if (wgds_tbl_idx < 1)
640		IWL_DEBUG_INFO(mvm,
641			       "SAR WGDS is disabled or error received (%d)\n",
642			       wgds_tbl_idx);
643	else
644		IWL_DEBUG_INFO(mvm, "SAR WGDS: geo profile %d is configured\n",
645			       wgds_tbl_idx);
646
647	regulatory_set_wiphy_regd(mvm->hw->wiphy, regd);
 
 
648	kfree(regd);
649}
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
  2/*
  3 * Copyright (C) 2012-2014, 2018-2019, 2021-2024 Intel Corporation
  4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
  5 * Copyright (C) 2016-2017 Intel Deutschland GmbH
  6 */
  7#include <linux/firmware.h>
  8#include <linux/rtnetlink.h>
  9#include "iwl-trans.h"
 10#include "iwl-csr.h"
 11#include "mvm.h"
 12#include "iwl-nvm-utils.h"
 
 13#include "iwl-nvm-parse.h"
 14#include "iwl-prph.h"
 15#include "fw/acpi.h"
 16
 17/* Default NVM size to read */
 18#define IWL_NVM_DEFAULT_CHUNK_SIZE (2 * 1024)
 19
 20#define NVM_WRITE_OPCODE 1
 21#define NVM_READ_OPCODE 0
 22
 23/* load nvm chunk response */
 24enum {
 25	READ_NVM_CHUNK_SUCCEED = 0,
 26	READ_NVM_CHUNK_NOT_VALID_ADDRESS = 1
 27};
 28
 29/*
 30 * prepare the NVM host command w/ the pointers to the nvm buffer
 31 * and send it to fw
 32 */
 33static int iwl_nvm_write_chunk(struct iwl_mvm *mvm, u16 section,
 34			       u16 offset, u16 length, const u8 *data)
 35{
 36	struct iwl_nvm_access_cmd nvm_access_cmd = {
 37		.offset = cpu_to_le16(offset),
 38		.length = cpu_to_le16(length),
 39		.type = cpu_to_le16(section),
 40		.op_code = NVM_WRITE_OPCODE,
 41	};
 42	struct iwl_host_cmd cmd = {
 43		.id = NVM_ACCESS_CMD,
 44		.len = { sizeof(struct iwl_nvm_access_cmd), length },
 45		.flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
 46		.data = { &nvm_access_cmd, data },
 47		/* data may come from vmalloc, so use _DUP */
 48		.dataflags = { 0, IWL_HCMD_DFL_DUP },
 49	};
 50	struct iwl_rx_packet *pkt;
 51	struct iwl_nvm_access_resp *nvm_resp;
 52	int ret;
 53
 54	ret = iwl_mvm_send_cmd(mvm, &cmd);
 55	if (ret)
 56		return ret;
 57
 58	pkt = cmd.resp_pkt;
 59	/* Extract & check NVM write response */
 60	nvm_resp = (void *)pkt->data;
 61	if (le16_to_cpu(nvm_resp->status) != READ_NVM_CHUNK_SUCCEED) {
 62		IWL_ERR(mvm,
 63			"NVM access write command failed for section %u (status = 0x%x)\n",
 64			section, le16_to_cpu(nvm_resp->status));
 65		ret = -EIO;
 66	}
 67
 68	iwl_free_resp(&cmd);
 69	return ret;
 70}
 71
 72static int iwl_nvm_read_chunk(struct iwl_mvm *mvm, u16 section,
 73			      u16 offset, u16 length, u8 *data)
 74{
 75	struct iwl_nvm_access_cmd nvm_access_cmd = {
 76		.offset = cpu_to_le16(offset),
 77		.length = cpu_to_le16(length),
 78		.type = cpu_to_le16(section),
 79		.op_code = NVM_READ_OPCODE,
 80	};
 81	struct iwl_nvm_access_resp *nvm_resp;
 82	struct iwl_rx_packet *pkt;
 83	struct iwl_host_cmd cmd = {
 84		.id = NVM_ACCESS_CMD,
 85		.flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
 86		.data = { &nvm_access_cmd, },
 87	};
 88	int ret, bytes_read, offset_read;
 89	u8 *resp_data;
 90
 91	cmd.len[0] = sizeof(struct iwl_nvm_access_cmd);
 92
 93	ret = iwl_mvm_send_cmd(mvm, &cmd);
 94	if (ret)
 95		return ret;
 96
 97	pkt = cmd.resp_pkt;
 98
 99	/* Extract NVM response */
100	nvm_resp = (void *)pkt->data;
101	ret = le16_to_cpu(nvm_resp->status);
102	bytes_read = le16_to_cpu(nvm_resp->length);
103	offset_read = le16_to_cpu(nvm_resp->offset);
104	resp_data = nvm_resp->data;
105	if (ret) {
106		if ((offset != 0) &&
107		    (ret == READ_NVM_CHUNK_NOT_VALID_ADDRESS)) {
108			/*
109			 * meaning of NOT_VALID_ADDRESS:
110			 * driver try to read chunk from address that is
111			 * multiple of 2K and got an error since addr is empty.
112			 * meaning of (offset != 0): driver already
113			 * read valid data from another chunk so this case
114			 * is not an error.
115			 */
116			IWL_DEBUG_EEPROM(mvm->trans->dev,
117					 "NVM access command failed on offset 0x%x since that section size is multiple 2K\n",
118					 offset);
119			ret = 0;
120		} else {
121			IWL_DEBUG_EEPROM(mvm->trans->dev,
122					 "NVM access command failed with status %d (device: %s)\n",
123					 ret, mvm->trans->name);
124			ret = -ENODATA;
125		}
126		goto exit;
127	}
128
129	if (offset_read != offset) {
130		IWL_ERR(mvm, "NVM ACCESS response with invalid offset %d\n",
131			offset_read);
132		ret = -EINVAL;
133		goto exit;
134	}
135
136	/* Write data to NVM */
137	memcpy(data + offset, resp_data, bytes_read);
138	ret = bytes_read;
139
140exit:
141	iwl_free_resp(&cmd);
142	return ret;
143}
144
145static int iwl_nvm_write_section(struct iwl_mvm *mvm, u16 section,
146				 const u8 *data, u16 length)
147{
148	int offset = 0;
149
150	/* copy data in chunks of 2k (and remainder if any) */
151
152	while (offset < length) {
153		int chunk_size, ret;
154
155		chunk_size = min(IWL_NVM_DEFAULT_CHUNK_SIZE,
156				 length - offset);
157
158		ret = iwl_nvm_write_chunk(mvm, section, offset,
159					  chunk_size, data + offset);
160		if (ret < 0)
161			return ret;
162
163		offset += chunk_size;
164	}
165
166	return 0;
167}
168
169/*
170 * Reads an NVM section completely.
171 * NICs prior to 7000 family doesn't have a real NVM, but just read
172 * section 0 which is the EEPROM. Because the EEPROM reading is unlimited
173 * by uCode, we need to manually check in this case that we don't
174 * overflow and try to read more than the EEPROM size.
175 * For 7000 family NICs, we supply the maximal size we can read, and
176 * the uCode fills the response with as much data as we can,
177 * without overflowing, so no check is needed.
178 */
179static int iwl_nvm_read_section(struct iwl_mvm *mvm, u16 section,
180				u8 *data, u32 size_read)
181{
182	u16 length, offset = 0;
183	int ret;
184
185	/* Set nvm section read length */
186	length = IWL_NVM_DEFAULT_CHUNK_SIZE;
187
188	ret = length;
189
190	/* Read the NVM until exhausted (reading less than requested) */
191	while (ret == length) {
192		/* Check no memory assumptions fail and cause an overflow */
193		if ((size_read + offset + length) >
194		    mvm->trans->trans_cfg->base_params->eeprom_size) {
195			IWL_ERR(mvm, "EEPROM size is too small for NVM\n");
196			return -ENOBUFS;
197		}
198
199		ret = iwl_nvm_read_chunk(mvm, section, offset, length, data);
200		if (ret < 0) {
201			IWL_DEBUG_EEPROM(mvm->trans->dev,
202					 "Cannot read NVM from section %d offset %d, length %d\n",
203					 section, offset, length);
204			return ret;
205		}
206		offset += ret;
207	}
208
209	iwl_nvm_fixups(mvm->trans->hw_id, section, data, offset);
210
211	IWL_DEBUG_EEPROM(mvm->trans->dev,
212			 "NVM section %d read completed\n", section);
213	return offset;
214}
215
216static struct iwl_nvm_data *
217iwl_parse_nvm_sections(struct iwl_mvm *mvm)
218{
219	struct iwl_nvm_section *sections = mvm->nvm_sections;
220	const __be16 *hw;
221	const __le16 *sw, *calib, *regulatory, *mac_override, *phy_sku;
222	u8 tx_ant = mvm->fw->valid_tx_ant;
223	u8 rx_ant = mvm->fw->valid_rx_ant;
224	int regulatory_type;
225
226	/* Checking for required sections */
227	if (mvm->trans->cfg->nvm_type == IWL_NVM) {
228		if (!mvm->nvm_sections[NVM_SECTION_TYPE_SW].data ||
229		    !mvm->nvm_sections[mvm->cfg->nvm_hw_section_num].data) {
230			IWL_ERR(mvm, "Can't parse empty OTP/NVM sections\n");
231			return NULL;
232		}
233	} else {
234		if (mvm->trans->cfg->nvm_type == IWL_NVM_SDP)
235			regulatory_type = NVM_SECTION_TYPE_REGULATORY_SDP;
236		else
237			regulatory_type = NVM_SECTION_TYPE_REGULATORY;
238
239		/* SW and REGULATORY sections are mandatory */
240		if (!mvm->nvm_sections[NVM_SECTION_TYPE_SW].data ||
241		    !mvm->nvm_sections[regulatory_type].data) {
242			IWL_ERR(mvm,
243				"Can't parse empty family 8000 OTP/NVM sections\n");
244			return NULL;
245		}
246		/* MAC_OVERRIDE or at least HW section must exist */
247		if (!mvm->nvm_sections[mvm->cfg->nvm_hw_section_num].data &&
248		    !mvm->nvm_sections[NVM_SECTION_TYPE_MAC_OVERRIDE].data) {
249			IWL_ERR(mvm,
250				"Can't parse mac_address, empty sections\n");
251			return NULL;
252		}
253
254		/* PHY_SKU section is mandatory in B0 */
255		if (mvm->trans->cfg->nvm_type == IWL_NVM_EXT &&
256		    !mvm->nvm_sections[NVM_SECTION_TYPE_PHY_SKU].data) {
257			IWL_ERR(mvm,
258				"Can't parse phy_sku in B0, empty sections\n");
259			return NULL;
260		}
261	}
262
263	hw = (const __be16 *)sections[mvm->cfg->nvm_hw_section_num].data;
264	sw = (const __le16 *)sections[NVM_SECTION_TYPE_SW].data;
265	calib = (const __le16 *)sections[NVM_SECTION_TYPE_CALIBRATION].data;
266	mac_override =
267		(const __le16 *)sections[NVM_SECTION_TYPE_MAC_OVERRIDE].data;
268	phy_sku = (const __le16 *)sections[NVM_SECTION_TYPE_PHY_SKU].data;
269
270	regulatory = mvm->trans->cfg->nvm_type == IWL_NVM_SDP ?
271		(const __le16 *)sections[NVM_SECTION_TYPE_REGULATORY_SDP].data :
272		(const __le16 *)sections[NVM_SECTION_TYPE_REGULATORY].data;
273
274	if (mvm->set_tx_ant)
275		tx_ant &= mvm->set_tx_ant;
276
277	if (mvm->set_rx_ant)
278		rx_ant &= mvm->set_rx_ant;
279
280	return iwl_parse_nvm_data(mvm->trans, mvm->cfg, mvm->fw, hw, sw, calib,
281				  regulatory, mac_override, phy_sku,
282				  tx_ant, rx_ant);
283}
284
285/* Loads the NVM data stored in mvm->nvm_sections into the NIC */
286int iwl_mvm_load_nvm_to_nic(struct iwl_mvm *mvm)
287{
288	int i, ret = 0;
289	struct iwl_nvm_section *sections = mvm->nvm_sections;
290
291	IWL_DEBUG_EEPROM(mvm->trans->dev, "'Write to NVM\n");
292
293	for (i = 0; i < ARRAY_SIZE(mvm->nvm_sections); i++) {
294		if (!mvm->nvm_sections[i].data || !mvm->nvm_sections[i].length)
295			continue;
296		ret = iwl_nvm_write_section(mvm, i, sections[i].data,
297					    sections[i].length);
298		if (ret < 0) {
299			IWL_ERR(mvm, "iwl_mvm_send_cmd failed: %d\n", ret);
300			break;
301		}
302	}
303	return ret;
304}
305
306int iwl_nvm_init(struct iwl_mvm *mvm)
307{
308	int ret, section;
309	u32 size_read = 0;
310	u8 *nvm_buffer, *temp;
311	const char *nvm_file_C = mvm->cfg->default_nvm_file_C_step;
312
313	if (WARN_ON_ONCE(mvm->cfg->nvm_hw_section_num >= NVM_MAX_NUM_SECTIONS))
314		return -EINVAL;
315
316	/* load NVM values from nic */
317	/* Read From FW NVM */
318	IWL_DEBUG_EEPROM(mvm->trans->dev, "Read from NVM\n");
319
320	nvm_buffer = kmalloc(mvm->trans->trans_cfg->base_params->eeprom_size,
321			     GFP_KERNEL);
322	if (!nvm_buffer)
323		return -ENOMEM;
324	for (section = 0; section < NVM_MAX_NUM_SECTIONS; section++) {
325		/* we override the constness for initial read */
326		ret = iwl_nvm_read_section(mvm, section, nvm_buffer,
327					   size_read);
328		if (ret == -ENODATA) {
329			ret = 0;
330			continue;
331		}
332		if (ret < 0)
333			break;
334		size_read += ret;
335		temp = kmemdup(nvm_buffer, ret, GFP_KERNEL);
336		if (!temp) {
337			ret = -ENOMEM;
338			break;
339		}
340
341		iwl_nvm_fixups(mvm->trans->hw_id, section, temp, ret);
342
343		mvm->nvm_sections[section].data = temp;
344		mvm->nvm_sections[section].length = ret;
345
346#ifdef CONFIG_IWLWIFI_DEBUGFS
347		switch (section) {
348		case NVM_SECTION_TYPE_SW:
349			mvm->nvm_sw_blob.data = temp;
350			mvm->nvm_sw_blob.size  = ret;
351			break;
352		case NVM_SECTION_TYPE_CALIBRATION:
353			mvm->nvm_calib_blob.data = temp;
354			mvm->nvm_calib_blob.size  = ret;
355			break;
356		case NVM_SECTION_TYPE_PRODUCTION:
357			mvm->nvm_prod_blob.data = temp;
358			mvm->nvm_prod_blob.size  = ret;
359			break;
360		case NVM_SECTION_TYPE_PHY_SKU:
361			mvm->nvm_phy_sku_blob.data = temp;
362			mvm->nvm_phy_sku_blob.size  = ret;
363			break;
364		case NVM_SECTION_TYPE_REGULATORY_SDP:
365		case NVM_SECTION_TYPE_REGULATORY:
366			mvm->nvm_reg_blob.data = temp;
367			mvm->nvm_reg_blob.size  = ret;
368			break;
369		default:
370			if (section == mvm->cfg->nvm_hw_section_num) {
371				mvm->nvm_hw_blob.data = temp;
372				mvm->nvm_hw_blob.size = ret;
373				break;
374			}
375		}
376#endif
377	}
378	if (!size_read)
379		IWL_ERR(mvm, "OTP is blank\n");
380	kfree(nvm_buffer);
381
382	/* Only if PNVM selected in the mod param - load external NVM  */
383	if (mvm->nvm_file_name) {
384		/* read External NVM file from the mod param */
385		ret = iwl_read_external_nvm(mvm->trans, mvm->nvm_file_name,
386					    mvm->nvm_sections);
387		if (ret) {
388			mvm->nvm_file_name = nvm_file_C;
389
390			if ((ret == -EFAULT || ret == -ENOENT) &&
391			    mvm->nvm_file_name) {
392				/* in case nvm file was failed try again */
393				ret = iwl_read_external_nvm(mvm->trans,
394							    mvm->nvm_file_name,
395							    mvm->nvm_sections);
396				if (ret)
397					return ret;
398			} else {
399				return ret;
400			}
401		}
402	}
403
404	/* parse the relevant nvm sections */
405	mvm->nvm_data = iwl_parse_nvm_sections(mvm);
406	if (!mvm->nvm_data)
407		return -ENODATA;
408	IWL_DEBUG_EEPROM(mvm->trans->dev, "nvm version = %x\n",
409			 mvm->nvm_data->nvm_version);
410
411	return ret < 0 ? ret : 0;
412}
413
414struct iwl_mcc_update_resp_v8 *
415iwl_mvm_update_mcc(struct iwl_mvm *mvm, const char *alpha2,
416		   enum iwl_mcc_source src_id)
417{
418	struct iwl_mcc_update_cmd mcc_update_cmd = {
419		.mcc = cpu_to_le16(alpha2[0] << 8 | alpha2[1]),
420		.source_id = (u8)src_id,
421	};
422	struct iwl_mcc_update_resp_v8 *resp_cp;
423	struct iwl_rx_packet *pkt;
424	struct iwl_host_cmd cmd = {
425		.id = MCC_UPDATE_CMD,
426		.flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
427		.data = { &mcc_update_cmd },
428	};
429
430	int ret, resp_ver;
431	u32 status;
432	int resp_len, n_channels;
433	u16 mcc;
434
435	if (WARN_ON_ONCE(!iwl_mvm_is_lar_supported(mvm)))
436		return ERR_PTR(-EOPNOTSUPP);
437
438	cmd.len[0] = sizeof(struct iwl_mcc_update_cmd);
439
440	IWL_DEBUG_LAR(mvm, "send MCC update to FW with '%c%c' src = %d\n",
441		      alpha2[0], alpha2[1], src_id);
442
443	ret = iwl_mvm_send_cmd(mvm, &cmd);
444	if (ret)
445		return ERR_PTR(ret);
446
447	pkt = cmd.resp_pkt;
448
449	resp_ver = iwl_fw_lookup_notif_ver(mvm->fw, IWL_ALWAYS_LONG_GROUP,
450					   MCC_UPDATE_CMD, 0);
451
452	/* Extract MCC response */
453	if (resp_ver >= 8) {
454		struct iwl_mcc_update_resp_v8 *mcc_resp_v8 = (void *)pkt->data;
455
456		n_channels =  __le32_to_cpu(mcc_resp_v8->n_channels);
457		if (iwl_rx_packet_payload_len(pkt) !=
458		    struct_size(mcc_resp_v8, channels, n_channels)) {
459			resp_cp = ERR_PTR(-EINVAL);
460			goto exit;
461		}
462		resp_len = struct_size(resp_cp, channels, n_channels);
463		resp_cp = kzalloc(resp_len, GFP_KERNEL);
464		if (!resp_cp) {
465			resp_cp = ERR_PTR(-ENOMEM);
466			goto exit;
467		}
468		resp_cp->status = mcc_resp_v8->status;
469		resp_cp->mcc = mcc_resp_v8->mcc;
470		resp_cp->cap = mcc_resp_v8->cap;
471		resp_cp->source_id = mcc_resp_v8->source_id;
472		resp_cp->time = mcc_resp_v8->time;
473		resp_cp->geo_info = mcc_resp_v8->geo_info;
474		resp_cp->n_channels = mcc_resp_v8->n_channels;
475		memcpy(resp_cp->channels, mcc_resp_v8->channels,
476		       n_channels * sizeof(__le32));
477	} else if (fw_has_capa(&mvm->fw->ucode_capa,
478			       IWL_UCODE_TLV_CAPA_MCC_UPDATE_11AX_SUPPORT)) {
479		struct iwl_mcc_update_resp_v4 *mcc_resp_v4 = (void *)pkt->data;
480
481		n_channels =  __le32_to_cpu(mcc_resp_v4->n_channels);
482		if (iwl_rx_packet_payload_len(pkt) !=
483		    struct_size(mcc_resp_v4, channels, n_channels)) {
484			resp_cp = ERR_PTR(-EINVAL);
485			goto exit;
486		}
487		resp_len = struct_size(resp_cp, channels, n_channels);
488		resp_cp = kzalloc(resp_len, GFP_KERNEL);
489		if (!resp_cp) {
490			resp_cp = ERR_PTR(-ENOMEM);
491			goto exit;
492		}
493
494		resp_cp->status = mcc_resp_v4->status;
495		resp_cp->mcc = mcc_resp_v4->mcc;
496		resp_cp->cap = cpu_to_le32(le16_to_cpu(mcc_resp_v4->cap));
497		resp_cp->source_id = mcc_resp_v4->source_id;
498		resp_cp->time = mcc_resp_v4->time;
499		resp_cp->geo_info = mcc_resp_v4->geo_info;
500		resp_cp->n_channels = mcc_resp_v4->n_channels;
501		memcpy(resp_cp->channels, mcc_resp_v4->channels,
502		       n_channels * sizeof(__le32));
503	} else {
504		struct iwl_mcc_update_resp_v3 *mcc_resp_v3 = (void *)pkt->data;
505
506		n_channels =  __le32_to_cpu(mcc_resp_v3->n_channels);
507		if (iwl_rx_packet_payload_len(pkt) !=
508		    struct_size(mcc_resp_v3, channels, n_channels)) {
509			resp_cp = ERR_PTR(-EINVAL);
510			goto exit;
511		}
512		resp_len = struct_size(resp_cp, channels, n_channels);
513		resp_cp = kzalloc(resp_len, GFP_KERNEL);
514		if (!resp_cp) {
515			resp_cp = ERR_PTR(-ENOMEM);
516			goto exit;
517		}
518
519		resp_cp->status = mcc_resp_v3->status;
520		resp_cp->mcc = mcc_resp_v3->mcc;
521		resp_cp->cap = cpu_to_le32(mcc_resp_v3->cap);
522		resp_cp->source_id = mcc_resp_v3->source_id;
523		resp_cp->time = mcc_resp_v3->time;
524		resp_cp->geo_info = mcc_resp_v3->geo_info;
525		resp_cp->n_channels = mcc_resp_v3->n_channels;
526		memcpy(resp_cp->channels, mcc_resp_v3->channels,
527		       n_channels * sizeof(__le32));
528	}
529
530	status = le32_to_cpu(resp_cp->status);
531
532	mcc = le16_to_cpu(resp_cp->mcc);
533
534	/* W/A for a FW/NVM issue - returns 0x00 for the world domain */
535	if (mcc == 0) {
536		mcc = 0x3030;  /* "00" - world */
537		resp_cp->mcc = cpu_to_le16(mcc);
538	}
539
540	IWL_DEBUG_LAR(mvm,
541		      "MCC response status: 0x%x. new MCC: 0x%x ('%c%c') n_chans: %d\n",
542		      status, mcc, mcc >> 8, mcc & 0xff, n_channels);
543
544exit:
545	iwl_free_resp(&cmd);
546	return resp_cp;
547}
548
549int iwl_mvm_init_mcc(struct iwl_mvm *mvm)
550{
551	bool tlv_lar;
552	bool nvm_lar;
553	int retval;
554	struct ieee80211_regdomain *regd;
555	char mcc[3];
556
557	if (mvm->cfg->nvm_type == IWL_NVM_EXT) {
558		tlv_lar = fw_has_capa(&mvm->fw->ucode_capa,
559				      IWL_UCODE_TLV_CAPA_LAR_SUPPORT);
560		nvm_lar = mvm->nvm_data->lar_enabled;
561		if (tlv_lar != nvm_lar)
562			IWL_INFO(mvm,
563				 "Conflict between TLV & NVM regarding enabling LAR (TLV = %s NVM =%s)\n",
564				 tlv_lar ? "enabled" : "disabled",
565				 nvm_lar ? "enabled" : "disabled");
566	}
567
568	if (!iwl_mvm_is_lar_supported(mvm))
569		return 0;
570
571	/*
572	 * try to replay the last set MCC to FW. If it doesn't exist,
573	 * queue an update to cfg80211 to retrieve the default alpha2 from FW.
574	 */
575	retval = iwl_mvm_init_fw_regd(mvm, true);
576	if (retval != -ENOENT)
577		return retval;
578
579	/*
580	 * Driver regulatory hint for initial update, this also informs the
581	 * firmware we support wifi location updates.
582	 * Disallow scans that might crash the FW while the LAR regdomain
583	 * is not set.
584	 */
585	mvm->lar_regdom_set = false;
586
587	regd = iwl_mvm_get_current_regdomain(mvm, NULL);
588	if (IS_ERR_OR_NULL(regd))
589		return -EIO;
590
591	if (iwl_mvm_is_wifi_mcc_supported(mvm) &&
592	    !iwl_bios_get_mcc(&mvm->fwrt, mcc)) {
593		kfree(regd);
594		regd = iwl_mvm_get_regdomain(mvm->hw->wiphy, mcc,
595					     MCC_SOURCE_BIOS, NULL);
596		if (IS_ERR_OR_NULL(regd))
597			return -EIO;
598	}
599
600	retval = regulatory_set_wiphy_regd_sync(mvm->hw->wiphy, regd);
601	kfree(regd);
602	return retval;
603}
604
605void iwl_mvm_rx_chub_update_mcc(struct iwl_mvm *mvm,
606				struct iwl_rx_cmd_buffer *rxb)
607{
608	struct iwl_rx_packet *pkt = rxb_addr(rxb);
609	struct iwl_mcc_chub_notif *notif = (void *)pkt->data;
610	enum iwl_mcc_source src;
611	char mcc[3];
612	struct ieee80211_regdomain *regd;
613	int wgds_tbl_idx;
614	bool changed = false;
615
616	lockdep_assert_held(&mvm->mutex);
617
618	if (iwl_mvm_is_vif_assoc(mvm) && notif->source_id == MCC_SOURCE_WIFI) {
619		IWL_DEBUG_LAR(mvm, "Ignore mcc update while associated\n");
620		return;
621	}
622
623	if (WARN_ON_ONCE(!iwl_mvm_is_lar_supported(mvm)))
624		return;
625
626	mcc[0] = le16_to_cpu(notif->mcc) >> 8;
627	mcc[1] = le16_to_cpu(notif->mcc) & 0xff;
628	mcc[2] = '\0';
629	src = notif->source_id;
630
631	IWL_DEBUG_LAR(mvm,
632		      "RX: received chub update mcc cmd (mcc '%s' src %d)\n",
633		      mcc, src);
634	regd = iwl_mvm_get_regdomain(mvm->hw->wiphy, mcc, src, &changed);
635	if (IS_ERR_OR_NULL(regd))
636		return;
637
638	if (!changed) {
639		IWL_DEBUG_LAR(mvm, "RX: No change in the regulatory data\n");
640		goto out;
641	}
642
643	wgds_tbl_idx = iwl_mvm_get_sar_geo_profile(mvm);
644	if (wgds_tbl_idx < 1)
645		IWL_DEBUG_INFO(mvm,
646			       "SAR WGDS is disabled or error received (%d)\n",
647			       wgds_tbl_idx);
648	else
649		IWL_DEBUG_INFO(mvm, "SAR WGDS: geo profile %d is configured\n",
650			       wgds_tbl_idx);
651
652	regulatory_set_wiphy_regd(mvm->hw->wiphy, regd);
653
654out:
655	kfree(regd);
656}