Loading...
1// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2/*
3 * Copyright (C) 2012-2014, 2018-2019, 2021-2023 Intel Corporation
4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5 * Copyright (C) 2016-2017 Intel Deutschland GmbH
6 */
7#include <linux/firmware.h>
8#include <linux/rtnetlink.h>
9#include "iwl-trans.h"
10#include "iwl-csr.h"
11#include "mvm.h"
12#include "iwl-eeprom-parse.h"
13#include "iwl-eeprom-read.h"
14#include "iwl-nvm-parse.h"
15#include "iwl-prph.h"
16#include "fw/acpi.h"
17
18/* Default NVM size to read */
19#define IWL_NVM_DEFAULT_CHUNK_SIZE (2 * 1024)
20
21#define NVM_WRITE_OPCODE 1
22#define NVM_READ_OPCODE 0
23
24/* load nvm chunk response */
25enum {
26 READ_NVM_CHUNK_SUCCEED = 0,
27 READ_NVM_CHUNK_NOT_VALID_ADDRESS = 1
28};
29
30/*
31 * prepare the NVM host command w/ the pointers to the nvm buffer
32 * and send it to fw
33 */
34static int iwl_nvm_write_chunk(struct iwl_mvm *mvm, u16 section,
35 u16 offset, u16 length, const u8 *data)
36{
37 struct iwl_nvm_access_cmd nvm_access_cmd = {
38 .offset = cpu_to_le16(offset),
39 .length = cpu_to_le16(length),
40 .type = cpu_to_le16(section),
41 .op_code = NVM_WRITE_OPCODE,
42 };
43 struct iwl_host_cmd cmd = {
44 .id = NVM_ACCESS_CMD,
45 .len = { sizeof(struct iwl_nvm_access_cmd), length },
46 .flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
47 .data = { &nvm_access_cmd, data },
48 /* data may come from vmalloc, so use _DUP */
49 .dataflags = { 0, IWL_HCMD_DFL_DUP },
50 };
51 struct iwl_rx_packet *pkt;
52 struct iwl_nvm_access_resp *nvm_resp;
53 int ret;
54
55 ret = iwl_mvm_send_cmd(mvm, &cmd);
56 if (ret)
57 return ret;
58
59 pkt = cmd.resp_pkt;
60 /* Extract & check NVM write response */
61 nvm_resp = (void *)pkt->data;
62 if (le16_to_cpu(nvm_resp->status) != READ_NVM_CHUNK_SUCCEED) {
63 IWL_ERR(mvm,
64 "NVM access write command failed for section %u (status = 0x%x)\n",
65 section, le16_to_cpu(nvm_resp->status));
66 ret = -EIO;
67 }
68
69 iwl_free_resp(&cmd);
70 return ret;
71}
72
73static int iwl_nvm_read_chunk(struct iwl_mvm *mvm, u16 section,
74 u16 offset, u16 length, u8 *data)
75{
76 struct iwl_nvm_access_cmd nvm_access_cmd = {
77 .offset = cpu_to_le16(offset),
78 .length = cpu_to_le16(length),
79 .type = cpu_to_le16(section),
80 .op_code = NVM_READ_OPCODE,
81 };
82 struct iwl_nvm_access_resp *nvm_resp;
83 struct iwl_rx_packet *pkt;
84 struct iwl_host_cmd cmd = {
85 .id = NVM_ACCESS_CMD,
86 .flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
87 .data = { &nvm_access_cmd, },
88 };
89 int ret, bytes_read, offset_read;
90 u8 *resp_data;
91
92 cmd.len[0] = sizeof(struct iwl_nvm_access_cmd);
93
94 ret = iwl_mvm_send_cmd(mvm, &cmd);
95 if (ret)
96 return ret;
97
98 pkt = cmd.resp_pkt;
99
100 /* Extract NVM response */
101 nvm_resp = (void *)pkt->data;
102 ret = le16_to_cpu(nvm_resp->status);
103 bytes_read = le16_to_cpu(nvm_resp->length);
104 offset_read = le16_to_cpu(nvm_resp->offset);
105 resp_data = nvm_resp->data;
106 if (ret) {
107 if ((offset != 0) &&
108 (ret == READ_NVM_CHUNK_NOT_VALID_ADDRESS)) {
109 /*
110 * meaning of NOT_VALID_ADDRESS:
111 * driver try to read chunk from address that is
112 * multiple of 2K and got an error since addr is empty.
113 * meaning of (offset != 0): driver already
114 * read valid data from another chunk so this case
115 * is not an error.
116 */
117 IWL_DEBUG_EEPROM(mvm->trans->dev,
118 "NVM access command failed on offset 0x%x since that section size is multiple 2K\n",
119 offset);
120 ret = 0;
121 } else {
122 IWL_DEBUG_EEPROM(mvm->trans->dev,
123 "NVM access command failed with status %d (device: %s)\n",
124 ret, mvm->trans->name);
125 ret = -ENODATA;
126 }
127 goto exit;
128 }
129
130 if (offset_read != offset) {
131 IWL_ERR(mvm, "NVM ACCESS response with invalid offset %d\n",
132 offset_read);
133 ret = -EINVAL;
134 goto exit;
135 }
136
137 /* Write data to NVM */
138 memcpy(data + offset, resp_data, bytes_read);
139 ret = bytes_read;
140
141exit:
142 iwl_free_resp(&cmd);
143 return ret;
144}
145
146static int iwl_nvm_write_section(struct iwl_mvm *mvm, u16 section,
147 const u8 *data, u16 length)
148{
149 int offset = 0;
150
151 /* copy data in chunks of 2k (and remainder if any) */
152
153 while (offset < length) {
154 int chunk_size, ret;
155
156 chunk_size = min(IWL_NVM_DEFAULT_CHUNK_SIZE,
157 length - offset);
158
159 ret = iwl_nvm_write_chunk(mvm, section, offset,
160 chunk_size, data + offset);
161 if (ret < 0)
162 return ret;
163
164 offset += chunk_size;
165 }
166
167 return 0;
168}
169
170/*
171 * Reads an NVM section completely.
172 * NICs prior to 7000 family doesn't have a real NVM, but just read
173 * section 0 which is the EEPROM. Because the EEPROM reading is unlimited
174 * by uCode, we need to manually check in this case that we don't
175 * overflow and try to read more than the EEPROM size.
176 * For 7000 family NICs, we supply the maximal size we can read, and
177 * the uCode fills the response with as much data as we can,
178 * without overflowing, so no check is needed.
179 */
180static int iwl_nvm_read_section(struct iwl_mvm *mvm, u16 section,
181 u8 *data, u32 size_read)
182{
183 u16 length, offset = 0;
184 int ret;
185
186 /* Set nvm section read length */
187 length = IWL_NVM_DEFAULT_CHUNK_SIZE;
188
189 ret = length;
190
191 /* Read the NVM until exhausted (reading less than requested) */
192 while (ret == length) {
193 /* Check no memory assumptions fail and cause an overflow */
194 if ((size_read + offset + length) >
195 mvm->trans->trans_cfg->base_params->eeprom_size) {
196 IWL_ERR(mvm, "EEPROM size is too small for NVM\n");
197 return -ENOBUFS;
198 }
199
200 ret = iwl_nvm_read_chunk(mvm, section, offset, length, data);
201 if (ret < 0) {
202 IWL_DEBUG_EEPROM(mvm->trans->dev,
203 "Cannot read NVM from section %d offset %d, length %d\n",
204 section, offset, length);
205 return ret;
206 }
207 offset += ret;
208 }
209
210 iwl_nvm_fixups(mvm->trans->hw_id, section, data, offset);
211
212 IWL_DEBUG_EEPROM(mvm->trans->dev,
213 "NVM section %d read completed\n", section);
214 return offset;
215}
216
217static struct iwl_nvm_data *
218iwl_parse_nvm_sections(struct iwl_mvm *mvm)
219{
220 struct iwl_nvm_section *sections = mvm->nvm_sections;
221 const __be16 *hw;
222 const __le16 *sw, *calib, *regulatory, *mac_override, *phy_sku;
223 u8 tx_ant = mvm->fw->valid_tx_ant;
224 u8 rx_ant = mvm->fw->valid_rx_ant;
225 int regulatory_type;
226
227 /* Checking for required sections */
228 if (mvm->trans->cfg->nvm_type == IWL_NVM) {
229 if (!mvm->nvm_sections[NVM_SECTION_TYPE_SW].data ||
230 !mvm->nvm_sections[mvm->cfg->nvm_hw_section_num].data) {
231 IWL_ERR(mvm, "Can't parse empty OTP/NVM sections\n");
232 return NULL;
233 }
234 } else {
235 if (mvm->trans->cfg->nvm_type == IWL_NVM_SDP)
236 regulatory_type = NVM_SECTION_TYPE_REGULATORY_SDP;
237 else
238 regulatory_type = NVM_SECTION_TYPE_REGULATORY;
239
240 /* SW and REGULATORY sections are mandatory */
241 if (!mvm->nvm_sections[NVM_SECTION_TYPE_SW].data ||
242 !mvm->nvm_sections[regulatory_type].data) {
243 IWL_ERR(mvm,
244 "Can't parse empty family 8000 OTP/NVM sections\n");
245 return NULL;
246 }
247 /* MAC_OVERRIDE or at least HW section must exist */
248 if (!mvm->nvm_sections[mvm->cfg->nvm_hw_section_num].data &&
249 !mvm->nvm_sections[NVM_SECTION_TYPE_MAC_OVERRIDE].data) {
250 IWL_ERR(mvm,
251 "Can't parse mac_address, empty sections\n");
252 return NULL;
253 }
254
255 /* PHY_SKU section is mandatory in B0 */
256 if (mvm->trans->cfg->nvm_type == IWL_NVM_EXT &&
257 !mvm->nvm_sections[NVM_SECTION_TYPE_PHY_SKU].data) {
258 IWL_ERR(mvm,
259 "Can't parse phy_sku in B0, empty sections\n");
260 return NULL;
261 }
262 }
263
264 hw = (const __be16 *)sections[mvm->cfg->nvm_hw_section_num].data;
265 sw = (const __le16 *)sections[NVM_SECTION_TYPE_SW].data;
266 calib = (const __le16 *)sections[NVM_SECTION_TYPE_CALIBRATION].data;
267 mac_override =
268 (const __le16 *)sections[NVM_SECTION_TYPE_MAC_OVERRIDE].data;
269 phy_sku = (const __le16 *)sections[NVM_SECTION_TYPE_PHY_SKU].data;
270
271 regulatory = mvm->trans->cfg->nvm_type == IWL_NVM_SDP ?
272 (const __le16 *)sections[NVM_SECTION_TYPE_REGULATORY_SDP].data :
273 (const __le16 *)sections[NVM_SECTION_TYPE_REGULATORY].data;
274
275 if (mvm->set_tx_ant)
276 tx_ant &= mvm->set_tx_ant;
277
278 if (mvm->set_rx_ant)
279 rx_ant &= mvm->set_rx_ant;
280
281 return iwl_parse_nvm_data(mvm->trans, mvm->cfg, mvm->fw, hw, sw, calib,
282 regulatory, mac_override, phy_sku,
283 tx_ant, rx_ant);
284}
285
286/* Loads the NVM data stored in mvm->nvm_sections into the NIC */
287int iwl_mvm_load_nvm_to_nic(struct iwl_mvm *mvm)
288{
289 int i, ret = 0;
290 struct iwl_nvm_section *sections = mvm->nvm_sections;
291
292 IWL_DEBUG_EEPROM(mvm->trans->dev, "'Write to NVM\n");
293
294 for (i = 0; i < ARRAY_SIZE(mvm->nvm_sections); i++) {
295 if (!mvm->nvm_sections[i].data || !mvm->nvm_sections[i].length)
296 continue;
297 ret = iwl_nvm_write_section(mvm, i, sections[i].data,
298 sections[i].length);
299 if (ret < 0) {
300 IWL_ERR(mvm, "iwl_mvm_send_cmd failed: %d\n", ret);
301 break;
302 }
303 }
304 return ret;
305}
306
307int iwl_nvm_init(struct iwl_mvm *mvm)
308{
309 int ret, section;
310 u32 size_read = 0;
311 u8 *nvm_buffer, *temp;
312 const char *nvm_file_C = mvm->cfg->default_nvm_file_C_step;
313
314 if (WARN_ON_ONCE(mvm->cfg->nvm_hw_section_num >= NVM_MAX_NUM_SECTIONS))
315 return -EINVAL;
316
317 /* load NVM values from nic */
318 /* Read From FW NVM */
319 IWL_DEBUG_EEPROM(mvm->trans->dev, "Read from NVM\n");
320
321 nvm_buffer = kmalloc(mvm->trans->trans_cfg->base_params->eeprom_size,
322 GFP_KERNEL);
323 if (!nvm_buffer)
324 return -ENOMEM;
325 for (section = 0; section < NVM_MAX_NUM_SECTIONS; section++) {
326 /* we override the constness for initial read */
327 ret = iwl_nvm_read_section(mvm, section, nvm_buffer,
328 size_read);
329 if (ret == -ENODATA) {
330 ret = 0;
331 continue;
332 }
333 if (ret < 0)
334 break;
335 size_read += ret;
336 temp = kmemdup(nvm_buffer, ret, GFP_KERNEL);
337 if (!temp) {
338 ret = -ENOMEM;
339 break;
340 }
341
342 iwl_nvm_fixups(mvm->trans->hw_id, section, temp, ret);
343
344 mvm->nvm_sections[section].data = temp;
345 mvm->nvm_sections[section].length = ret;
346
347#ifdef CONFIG_IWLWIFI_DEBUGFS
348 switch (section) {
349 case NVM_SECTION_TYPE_SW:
350 mvm->nvm_sw_blob.data = temp;
351 mvm->nvm_sw_blob.size = ret;
352 break;
353 case NVM_SECTION_TYPE_CALIBRATION:
354 mvm->nvm_calib_blob.data = temp;
355 mvm->nvm_calib_blob.size = ret;
356 break;
357 case NVM_SECTION_TYPE_PRODUCTION:
358 mvm->nvm_prod_blob.data = temp;
359 mvm->nvm_prod_blob.size = ret;
360 break;
361 case NVM_SECTION_TYPE_PHY_SKU:
362 mvm->nvm_phy_sku_blob.data = temp;
363 mvm->nvm_phy_sku_blob.size = ret;
364 break;
365 case NVM_SECTION_TYPE_REGULATORY_SDP:
366 case NVM_SECTION_TYPE_REGULATORY:
367 mvm->nvm_reg_blob.data = temp;
368 mvm->nvm_reg_blob.size = ret;
369 break;
370 default:
371 if (section == mvm->cfg->nvm_hw_section_num) {
372 mvm->nvm_hw_blob.data = temp;
373 mvm->nvm_hw_blob.size = ret;
374 break;
375 }
376 }
377#endif
378 }
379 if (!size_read)
380 IWL_ERR(mvm, "OTP is blank\n");
381 kfree(nvm_buffer);
382
383 /* Only if PNVM selected in the mod param - load external NVM */
384 if (mvm->nvm_file_name) {
385 /* read External NVM file from the mod param */
386 ret = iwl_read_external_nvm(mvm->trans, mvm->nvm_file_name,
387 mvm->nvm_sections);
388 if (ret) {
389 mvm->nvm_file_name = nvm_file_C;
390
391 if ((ret == -EFAULT || ret == -ENOENT) &&
392 mvm->nvm_file_name) {
393 /* in case nvm file was failed try again */
394 ret = iwl_read_external_nvm(mvm->trans,
395 mvm->nvm_file_name,
396 mvm->nvm_sections);
397 if (ret)
398 return ret;
399 } else {
400 return ret;
401 }
402 }
403 }
404
405 /* parse the relevant nvm sections */
406 mvm->nvm_data = iwl_parse_nvm_sections(mvm);
407 if (!mvm->nvm_data)
408 return -ENODATA;
409 IWL_DEBUG_EEPROM(mvm->trans->dev, "nvm version = %x\n",
410 mvm->nvm_data->nvm_version);
411
412 return ret < 0 ? ret : 0;
413}
414
415struct iwl_mcc_update_resp_v8 *
416iwl_mvm_update_mcc(struct iwl_mvm *mvm, const char *alpha2,
417 enum iwl_mcc_source src_id)
418{
419 struct iwl_mcc_update_cmd mcc_update_cmd = {
420 .mcc = cpu_to_le16(alpha2[0] << 8 | alpha2[1]),
421 .source_id = (u8)src_id,
422 };
423 struct iwl_mcc_update_resp_v8 *resp_cp;
424 struct iwl_rx_packet *pkt;
425 struct iwl_host_cmd cmd = {
426 .id = MCC_UPDATE_CMD,
427 .flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
428 .data = { &mcc_update_cmd },
429 };
430
431 int ret, resp_ver;
432 u32 status;
433 int resp_len, n_channels;
434 u16 mcc;
435
436 if (WARN_ON_ONCE(!iwl_mvm_is_lar_supported(mvm)))
437 return ERR_PTR(-EOPNOTSUPP);
438
439 cmd.len[0] = sizeof(struct iwl_mcc_update_cmd);
440
441 IWL_DEBUG_LAR(mvm, "send MCC update to FW with '%c%c' src = %d\n",
442 alpha2[0], alpha2[1], src_id);
443
444 ret = iwl_mvm_send_cmd(mvm, &cmd);
445 if (ret)
446 return ERR_PTR(ret);
447
448 pkt = cmd.resp_pkt;
449
450 resp_ver = iwl_fw_lookup_notif_ver(mvm->fw, IWL_ALWAYS_LONG_GROUP,
451 MCC_UPDATE_CMD, 0);
452
453 /* Extract MCC response */
454 if (resp_ver >= 8) {
455 struct iwl_mcc_update_resp_v8 *mcc_resp_v8 = (void *)pkt->data;
456
457 n_channels = __le32_to_cpu(mcc_resp_v8->n_channels);
458 if (iwl_rx_packet_payload_len(pkt) !=
459 struct_size(mcc_resp_v8, channels, n_channels)) {
460 resp_cp = ERR_PTR(-EINVAL);
461 goto exit;
462 }
463 resp_len = struct_size(resp_cp, channels, n_channels);
464 resp_cp = kzalloc(resp_len, GFP_KERNEL);
465 if (!resp_cp) {
466 resp_cp = ERR_PTR(-ENOMEM);
467 goto exit;
468 }
469 resp_cp->status = mcc_resp_v8->status;
470 resp_cp->mcc = mcc_resp_v8->mcc;
471 resp_cp->cap = mcc_resp_v8->cap;
472 resp_cp->source_id = mcc_resp_v8->source_id;
473 resp_cp->time = mcc_resp_v8->time;
474 resp_cp->geo_info = mcc_resp_v8->geo_info;
475 resp_cp->n_channels = mcc_resp_v8->n_channels;
476 memcpy(resp_cp->channels, mcc_resp_v8->channels,
477 n_channels * sizeof(__le32));
478 } else if (fw_has_capa(&mvm->fw->ucode_capa,
479 IWL_UCODE_TLV_CAPA_MCC_UPDATE_11AX_SUPPORT)) {
480 struct iwl_mcc_update_resp_v4 *mcc_resp_v4 = (void *)pkt->data;
481
482 n_channels = __le32_to_cpu(mcc_resp_v4->n_channels);
483 if (iwl_rx_packet_payload_len(pkt) !=
484 struct_size(mcc_resp_v4, channels, n_channels)) {
485 resp_cp = ERR_PTR(-EINVAL);
486 goto exit;
487 }
488 resp_len = struct_size(resp_cp, channels, n_channels);
489 resp_cp = kzalloc(resp_len, GFP_KERNEL);
490 if (!resp_cp) {
491 resp_cp = ERR_PTR(-ENOMEM);
492 goto exit;
493 }
494
495 resp_cp->status = mcc_resp_v4->status;
496 resp_cp->mcc = mcc_resp_v4->mcc;
497 resp_cp->cap = cpu_to_le32(le16_to_cpu(mcc_resp_v4->cap));
498 resp_cp->source_id = mcc_resp_v4->source_id;
499 resp_cp->time = mcc_resp_v4->time;
500 resp_cp->geo_info = mcc_resp_v4->geo_info;
501 resp_cp->n_channels = mcc_resp_v4->n_channels;
502 memcpy(resp_cp->channels, mcc_resp_v4->channels,
503 n_channels * sizeof(__le32));
504 } else {
505 struct iwl_mcc_update_resp_v3 *mcc_resp_v3 = (void *)pkt->data;
506
507 n_channels = __le32_to_cpu(mcc_resp_v3->n_channels);
508 if (iwl_rx_packet_payload_len(pkt) !=
509 struct_size(mcc_resp_v3, channels, n_channels)) {
510 resp_cp = ERR_PTR(-EINVAL);
511 goto exit;
512 }
513 resp_len = struct_size(resp_cp, channels, n_channels);
514 resp_cp = kzalloc(resp_len, GFP_KERNEL);
515 if (!resp_cp) {
516 resp_cp = ERR_PTR(-ENOMEM);
517 goto exit;
518 }
519
520 resp_cp->status = mcc_resp_v3->status;
521 resp_cp->mcc = mcc_resp_v3->mcc;
522 resp_cp->cap = cpu_to_le32(mcc_resp_v3->cap);
523 resp_cp->source_id = mcc_resp_v3->source_id;
524 resp_cp->time = mcc_resp_v3->time;
525 resp_cp->geo_info = mcc_resp_v3->geo_info;
526 resp_cp->n_channels = mcc_resp_v3->n_channels;
527 memcpy(resp_cp->channels, mcc_resp_v3->channels,
528 n_channels * sizeof(__le32));
529 }
530
531 status = le32_to_cpu(resp_cp->status);
532
533 mcc = le16_to_cpu(resp_cp->mcc);
534
535 /* W/A for a FW/NVM issue - returns 0x00 for the world domain */
536 if (mcc == 0) {
537 mcc = 0x3030; /* "00" - world */
538 resp_cp->mcc = cpu_to_le16(mcc);
539 }
540
541 IWL_DEBUG_LAR(mvm,
542 "MCC response status: 0x%x. new MCC: 0x%x ('%c%c') n_chans: %d\n",
543 status, mcc, mcc >> 8, mcc & 0xff, n_channels);
544
545exit:
546 iwl_free_resp(&cmd);
547 return resp_cp;
548}
549
550int iwl_mvm_init_mcc(struct iwl_mvm *mvm)
551{
552 bool tlv_lar;
553 bool nvm_lar;
554 int retval;
555 struct ieee80211_regdomain *regd;
556 char mcc[3];
557
558 if (mvm->cfg->nvm_type == IWL_NVM_EXT) {
559 tlv_lar = fw_has_capa(&mvm->fw->ucode_capa,
560 IWL_UCODE_TLV_CAPA_LAR_SUPPORT);
561 nvm_lar = mvm->nvm_data->lar_enabled;
562 if (tlv_lar != nvm_lar)
563 IWL_INFO(mvm,
564 "Conflict between TLV & NVM regarding enabling LAR (TLV = %s NVM =%s)\n",
565 tlv_lar ? "enabled" : "disabled",
566 nvm_lar ? "enabled" : "disabled");
567 }
568
569 if (!iwl_mvm_is_lar_supported(mvm))
570 return 0;
571
572 /*
573 * try to replay the last set MCC to FW. If it doesn't exist,
574 * queue an update to cfg80211 to retrieve the default alpha2 from FW.
575 */
576 retval = iwl_mvm_init_fw_regd(mvm, true);
577 if (retval != -ENOENT)
578 return retval;
579
580 /*
581 * Driver regulatory hint for initial update, this also informs the
582 * firmware we support wifi location updates.
583 * Disallow scans that might crash the FW while the LAR regdomain
584 * is not set.
585 */
586 mvm->lar_regdom_set = false;
587
588 regd = iwl_mvm_get_current_regdomain(mvm, NULL);
589 if (IS_ERR_OR_NULL(regd))
590 return -EIO;
591
592 if (iwl_mvm_is_wifi_mcc_supported(mvm) &&
593 !iwl_acpi_get_mcc(mvm->dev, mcc)) {
594 kfree(regd);
595 regd = iwl_mvm_get_regdomain(mvm->hw->wiphy, mcc,
596 MCC_SOURCE_BIOS, NULL);
597 if (IS_ERR_OR_NULL(regd))
598 return -EIO;
599 }
600
601 retval = regulatory_set_wiphy_regd_sync(mvm->hw->wiphy, regd);
602 kfree(regd);
603 return retval;
604}
605
606void iwl_mvm_rx_chub_update_mcc(struct iwl_mvm *mvm,
607 struct iwl_rx_cmd_buffer *rxb)
608{
609 struct iwl_rx_packet *pkt = rxb_addr(rxb);
610 struct iwl_mcc_chub_notif *notif = (void *)pkt->data;
611 enum iwl_mcc_source src;
612 char mcc[3];
613 struct ieee80211_regdomain *regd;
614 int wgds_tbl_idx;
615
616 lockdep_assert_held(&mvm->mutex);
617
618 if (iwl_mvm_is_vif_assoc(mvm) && notif->source_id == MCC_SOURCE_WIFI) {
619 IWL_DEBUG_LAR(mvm, "Ignore mcc update while associated\n");
620 return;
621 }
622
623 if (WARN_ON_ONCE(!iwl_mvm_is_lar_supported(mvm)))
624 return;
625
626 mcc[0] = le16_to_cpu(notif->mcc) >> 8;
627 mcc[1] = le16_to_cpu(notif->mcc) & 0xff;
628 mcc[2] = '\0';
629 src = notif->source_id;
630
631 IWL_DEBUG_LAR(mvm,
632 "RX: received chub update mcc cmd (mcc '%s' src %d)\n",
633 mcc, src);
634 regd = iwl_mvm_get_regdomain(mvm->hw->wiphy, mcc, src, NULL);
635 if (IS_ERR_OR_NULL(regd))
636 return;
637
638 wgds_tbl_idx = iwl_mvm_get_sar_geo_profile(mvm);
639 if (wgds_tbl_idx < 1)
640 IWL_DEBUG_INFO(mvm,
641 "SAR WGDS is disabled or error received (%d)\n",
642 wgds_tbl_idx);
643 else
644 IWL_DEBUG_INFO(mvm, "SAR WGDS: geo profile %d is configured\n",
645 wgds_tbl_idx);
646
647 regulatory_set_wiphy_regd(mvm->hw->wiphy, regd);
648 kfree(regd);
649}
1/******************************************************************************
2 *
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
5 *
6 * GPL LICENSE SUMMARY
7 *
8 * Copyright(c) 2012 - 2014 Intel Corporation. All rights reserved.
9 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
10 * Copyright(c) 2016 Intel Deutschland GmbH
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of version 2 of the GNU General Public License as
14 * published by the Free Software Foundation.
15 *
16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
24 * USA
25 *
26 * The full GNU General Public License is included in this distribution
27 * in the file called COPYING.
28 *
29 * Contact Information:
30 * Intel Linux Wireless <linuxwifi@intel.com>
31 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
32 *
33 * BSD LICENSE
34 *
35 * Copyright(c) 2012 - 2014 Intel Corporation. All rights reserved.
36 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
37 * Copyright(c) 2016 Intel Deutschland GmbH
38 * All rights reserved.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 *
44 * * Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * * Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in
48 * the documentation and/or other materials provided with the
49 * distribution.
50 * * Neither the name Intel Corporation nor the names of its
51 * contributors may be used to endorse or promote products derived
52 * from this software without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
55 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
56 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
57 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
58 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
59 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
60 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
61 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
62 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
63 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
64 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65 *
66 *****************************************************************************/
67#include <linux/firmware.h>
68#include <linux/rtnetlink.h>
69#include <linux/pci.h>
70#include <linux/acpi.h>
71#include "iwl-trans.h"
72#include "iwl-csr.h"
73#include "mvm.h"
74#include "iwl-eeprom-parse.h"
75#include "iwl-eeprom-read.h"
76#include "iwl-nvm-parse.h"
77#include "iwl-prph.h"
78
79/* Default NVM size to read */
80#define IWL_NVM_DEFAULT_CHUNK_SIZE (2*1024)
81#define IWL_MAX_NVM_SECTION_SIZE 0x1b58
82#define IWL_MAX_NVM_8000_SECTION_SIZE 0x1ffc
83
84#define NVM_WRITE_OPCODE 1
85#define NVM_READ_OPCODE 0
86
87/* load nvm chunk response */
88enum {
89 READ_NVM_CHUNK_SUCCEED = 0,
90 READ_NVM_CHUNK_NOT_VALID_ADDRESS = 1
91};
92
93/*
94 * prepare the NVM host command w/ the pointers to the nvm buffer
95 * and send it to fw
96 */
97static int iwl_nvm_write_chunk(struct iwl_mvm *mvm, u16 section,
98 u16 offset, u16 length, const u8 *data)
99{
100 struct iwl_nvm_access_cmd nvm_access_cmd = {
101 .offset = cpu_to_le16(offset),
102 .length = cpu_to_le16(length),
103 .type = cpu_to_le16(section),
104 .op_code = NVM_WRITE_OPCODE,
105 };
106 struct iwl_host_cmd cmd = {
107 .id = NVM_ACCESS_CMD,
108 .len = { sizeof(struct iwl_nvm_access_cmd), length },
109 .flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
110 .data = { &nvm_access_cmd, data },
111 /* data may come from vmalloc, so use _DUP */
112 .dataflags = { 0, IWL_HCMD_DFL_DUP },
113 };
114 struct iwl_rx_packet *pkt;
115 struct iwl_nvm_access_resp *nvm_resp;
116 int ret;
117
118 ret = iwl_mvm_send_cmd(mvm, &cmd);
119 if (ret)
120 return ret;
121
122 pkt = cmd.resp_pkt;
123 if (!pkt) {
124 IWL_ERR(mvm, "Error in NVM_ACCESS response\n");
125 return -EINVAL;
126 }
127 /* Extract & check NVM write response */
128 nvm_resp = (void *)pkt->data;
129 if (le16_to_cpu(nvm_resp->status) != READ_NVM_CHUNK_SUCCEED) {
130 IWL_ERR(mvm,
131 "NVM access write command failed for section %u (status = 0x%x)\n",
132 section, le16_to_cpu(nvm_resp->status));
133 ret = -EIO;
134 }
135
136 iwl_free_resp(&cmd);
137 return ret;
138}
139
140static int iwl_nvm_read_chunk(struct iwl_mvm *mvm, u16 section,
141 u16 offset, u16 length, u8 *data)
142{
143 struct iwl_nvm_access_cmd nvm_access_cmd = {
144 .offset = cpu_to_le16(offset),
145 .length = cpu_to_le16(length),
146 .type = cpu_to_le16(section),
147 .op_code = NVM_READ_OPCODE,
148 };
149 struct iwl_nvm_access_resp *nvm_resp;
150 struct iwl_rx_packet *pkt;
151 struct iwl_host_cmd cmd = {
152 .id = NVM_ACCESS_CMD,
153 .flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
154 .data = { &nvm_access_cmd, },
155 };
156 int ret, bytes_read, offset_read;
157 u8 *resp_data;
158
159 cmd.len[0] = sizeof(struct iwl_nvm_access_cmd);
160
161 ret = iwl_mvm_send_cmd(mvm, &cmd);
162 if (ret)
163 return ret;
164
165 pkt = cmd.resp_pkt;
166
167 /* Extract NVM response */
168 nvm_resp = (void *)pkt->data;
169 ret = le16_to_cpu(nvm_resp->status);
170 bytes_read = le16_to_cpu(nvm_resp->length);
171 offset_read = le16_to_cpu(nvm_resp->offset);
172 resp_data = nvm_resp->data;
173 if (ret) {
174 if ((offset != 0) &&
175 (ret == READ_NVM_CHUNK_NOT_VALID_ADDRESS)) {
176 /*
177 * meaning of NOT_VALID_ADDRESS:
178 * driver try to read chunk from address that is
179 * multiple of 2K and got an error since addr is empty.
180 * meaning of (offset != 0): driver already
181 * read valid data from another chunk so this case
182 * is not an error.
183 */
184 IWL_DEBUG_EEPROM(mvm->trans->dev,
185 "NVM access command failed on offset 0x%x since that section size is multiple 2K\n",
186 offset);
187 ret = 0;
188 } else {
189 IWL_DEBUG_EEPROM(mvm->trans->dev,
190 "NVM access command failed with status %d (device: %s)\n",
191 ret, mvm->cfg->name);
192 ret = -EIO;
193 }
194 goto exit;
195 }
196
197 if (offset_read != offset) {
198 IWL_ERR(mvm, "NVM ACCESS response with invalid offset %d\n",
199 offset_read);
200 ret = -EINVAL;
201 goto exit;
202 }
203
204 /* Write data to NVM */
205 memcpy(data + offset, resp_data, bytes_read);
206 ret = bytes_read;
207
208exit:
209 iwl_free_resp(&cmd);
210 return ret;
211}
212
213static int iwl_nvm_write_section(struct iwl_mvm *mvm, u16 section,
214 const u8 *data, u16 length)
215{
216 int offset = 0;
217
218 /* copy data in chunks of 2k (and remainder if any) */
219
220 while (offset < length) {
221 int chunk_size, ret;
222
223 chunk_size = min(IWL_NVM_DEFAULT_CHUNK_SIZE,
224 length - offset);
225
226 ret = iwl_nvm_write_chunk(mvm, section, offset,
227 chunk_size, data + offset);
228 if (ret < 0)
229 return ret;
230
231 offset += chunk_size;
232 }
233
234 return 0;
235}
236
237static void iwl_mvm_nvm_fixups(struct iwl_mvm *mvm, unsigned int section,
238 u8 *data, unsigned int len)
239{
240#define IWL_4165_DEVICE_ID 0x5501
241#define NVM_SKU_CAP_MIMO_DISABLE BIT(5)
242
243 if (section == NVM_SECTION_TYPE_PHY_SKU &&
244 mvm->trans->hw_id == IWL_4165_DEVICE_ID && data && len >= 5 &&
245 (data[4] & NVM_SKU_CAP_MIMO_DISABLE))
246 /* OTP 0x52 bug work around: it's a 1x1 device */
247 data[3] = ANT_B | (ANT_B << 4);
248}
249
250/*
251 * Reads an NVM section completely.
252 * NICs prior to 7000 family doesn't have a real NVM, but just read
253 * section 0 which is the EEPROM. Because the EEPROM reading is unlimited
254 * by uCode, we need to manually check in this case that we don't
255 * overflow and try to read more than the EEPROM size.
256 * For 7000 family NICs, we supply the maximal size we can read, and
257 * the uCode fills the response with as much data as we can,
258 * without overflowing, so no check is needed.
259 */
260static int iwl_nvm_read_section(struct iwl_mvm *mvm, u16 section,
261 u8 *data, u32 size_read)
262{
263 u16 length, offset = 0;
264 int ret;
265
266 /* Set nvm section read length */
267 length = IWL_NVM_DEFAULT_CHUNK_SIZE;
268
269 ret = length;
270
271 /* Read the NVM until exhausted (reading less than requested) */
272 while (ret == length) {
273 /* Check no memory assumptions fail and cause an overflow */
274 if ((size_read + offset + length) >
275 mvm->cfg->base_params->eeprom_size) {
276 IWL_ERR(mvm, "EEPROM size is too small for NVM\n");
277 return -ENOBUFS;
278 }
279
280 ret = iwl_nvm_read_chunk(mvm, section, offset, length, data);
281 if (ret < 0) {
282 IWL_DEBUG_EEPROM(mvm->trans->dev,
283 "Cannot read NVM from section %d offset %d, length %d\n",
284 section, offset, length);
285 return ret;
286 }
287 offset += ret;
288 }
289
290 iwl_mvm_nvm_fixups(mvm, section, data, offset);
291
292 IWL_DEBUG_EEPROM(mvm->trans->dev,
293 "NVM section %d read completed\n", section);
294 return offset;
295}
296
297static struct iwl_nvm_data *
298iwl_parse_nvm_sections(struct iwl_mvm *mvm)
299{
300 struct iwl_nvm_section *sections = mvm->nvm_sections;
301 const __le16 *hw, *sw, *calib, *regulatory, *mac_override, *phy_sku;
302 bool lar_enabled;
303
304 /* Checking for required sections */
305 if (mvm->trans->cfg->device_family != IWL_DEVICE_FAMILY_8000) {
306 if (!mvm->nvm_sections[NVM_SECTION_TYPE_SW].data ||
307 !mvm->nvm_sections[mvm->cfg->nvm_hw_section_num].data) {
308 IWL_ERR(mvm, "Can't parse empty OTP/NVM sections\n");
309 return NULL;
310 }
311 } else {
312 /* SW and REGULATORY sections are mandatory */
313 if (!mvm->nvm_sections[NVM_SECTION_TYPE_SW].data ||
314 !mvm->nvm_sections[NVM_SECTION_TYPE_REGULATORY].data) {
315 IWL_ERR(mvm,
316 "Can't parse empty family 8000 OTP/NVM sections\n");
317 return NULL;
318 }
319 /* MAC_OVERRIDE or at least HW section must exist */
320 if (!mvm->nvm_sections[mvm->cfg->nvm_hw_section_num].data &&
321 !mvm->nvm_sections[NVM_SECTION_TYPE_MAC_OVERRIDE].data) {
322 IWL_ERR(mvm,
323 "Can't parse mac_address, empty sections\n");
324 return NULL;
325 }
326
327 /* PHY_SKU section is mandatory in B0 */
328 if (!mvm->nvm_sections[NVM_SECTION_TYPE_PHY_SKU].data) {
329 IWL_ERR(mvm,
330 "Can't parse phy_sku in B0, empty sections\n");
331 return NULL;
332 }
333 }
334
335 if (WARN_ON(!mvm->cfg))
336 return NULL;
337
338 hw = (const __le16 *)sections[mvm->cfg->nvm_hw_section_num].data;
339 sw = (const __le16 *)sections[NVM_SECTION_TYPE_SW].data;
340 calib = (const __le16 *)sections[NVM_SECTION_TYPE_CALIBRATION].data;
341 regulatory = (const __le16 *)sections[NVM_SECTION_TYPE_REGULATORY].data;
342 mac_override =
343 (const __le16 *)sections[NVM_SECTION_TYPE_MAC_OVERRIDE].data;
344 phy_sku = (const __le16 *)sections[NVM_SECTION_TYPE_PHY_SKU].data;
345
346 lar_enabled = !iwlwifi_mod_params.lar_disable &&
347 fw_has_capa(&mvm->fw->ucode_capa,
348 IWL_UCODE_TLV_CAPA_LAR_SUPPORT);
349
350 return iwl_parse_nvm_data(mvm->trans, mvm->cfg, hw, sw, calib,
351 regulatory, mac_override, phy_sku,
352 mvm->fw->valid_tx_ant, mvm->fw->valid_rx_ant,
353 lar_enabled);
354}
355
356#define MAX_NVM_FILE_LEN 16384
357
358/*
359 * Reads external NVM from a file into mvm->nvm_sections
360 *
361 * HOW TO CREATE THE NVM FILE FORMAT:
362 * ------------------------------
363 * 1. create hex file, format:
364 * 3800 -> header
365 * 0000 -> header
366 * 5a40 -> data
367 *
368 * rev - 6 bit (word1)
369 * len - 10 bit (word1)
370 * id - 4 bit (word2)
371 * rsv - 12 bit (word2)
372 *
373 * 2. flip 8bits with 8 bits per line to get the right NVM file format
374 *
375 * 3. create binary file from the hex file
376 *
377 * 4. save as "iNVM_xxx.bin" under /lib/firmware
378 */
379static int iwl_mvm_read_external_nvm(struct iwl_mvm *mvm)
380{
381 int ret, section_size;
382 u16 section_id;
383 const struct firmware *fw_entry;
384 const struct {
385 __le16 word1;
386 __le16 word2;
387 u8 data[];
388 } *file_sec;
389 const u8 *eof;
390 u8 *temp;
391 int max_section_size;
392 const __le32 *dword_buff;
393
394#define NVM_WORD1_LEN(x) (8 * (x & 0x03FF))
395#define NVM_WORD2_ID(x) (x >> 12)
396#define NVM_WORD2_LEN_FAMILY_8000(x) (2 * ((x & 0xFF) << 8 | x >> 8))
397#define NVM_WORD1_ID_FAMILY_8000(x) (x >> 4)
398#define NVM_HEADER_0 (0x2A504C54)
399#define NVM_HEADER_1 (0x4E564D2A)
400#define NVM_HEADER_SIZE (4 * sizeof(u32))
401
402 IWL_DEBUG_EEPROM(mvm->trans->dev, "Read from external NVM\n");
403
404 /* Maximal size depends on HW family and step */
405 if (mvm->trans->cfg->device_family != IWL_DEVICE_FAMILY_8000)
406 max_section_size = IWL_MAX_NVM_SECTION_SIZE;
407 else
408 max_section_size = IWL_MAX_NVM_8000_SECTION_SIZE;
409
410 /*
411 * Obtain NVM image via request_firmware. Since we already used
412 * request_firmware_nowait() for the firmware binary load and only
413 * get here after that we assume the NVM request can be satisfied
414 * synchronously.
415 */
416 ret = request_firmware(&fw_entry, mvm->nvm_file_name,
417 mvm->trans->dev);
418 if (ret) {
419 IWL_ERR(mvm, "ERROR: %s isn't available %d\n",
420 mvm->nvm_file_name, ret);
421 return ret;
422 }
423
424 IWL_INFO(mvm, "Loaded NVM file %s (%zu bytes)\n",
425 mvm->nvm_file_name, fw_entry->size);
426
427 if (fw_entry->size > MAX_NVM_FILE_LEN) {
428 IWL_ERR(mvm, "NVM file too large\n");
429 ret = -EINVAL;
430 goto out;
431 }
432
433 eof = fw_entry->data + fw_entry->size;
434 dword_buff = (__le32 *)fw_entry->data;
435
436 /* some NVM file will contain a header.
437 * The header is identified by 2 dwords header as follow:
438 * dword[0] = 0x2A504C54
439 * dword[1] = 0x4E564D2A
440 *
441 * This header must be skipped when providing the NVM data to the FW.
442 */
443 if (fw_entry->size > NVM_HEADER_SIZE &&
444 dword_buff[0] == cpu_to_le32(NVM_HEADER_0) &&
445 dword_buff[1] == cpu_to_le32(NVM_HEADER_1)) {
446 file_sec = (void *)(fw_entry->data + NVM_HEADER_SIZE);
447 IWL_INFO(mvm, "NVM Version %08X\n", le32_to_cpu(dword_buff[2]));
448 IWL_INFO(mvm, "NVM Manufacturing date %08X\n",
449 le32_to_cpu(dword_buff[3]));
450
451 /* nvm file validation, dword_buff[2] holds the file version */
452 if ((CSR_HW_REV_STEP(mvm->trans->hw_rev) == SILICON_C_STEP &&
453 le32_to_cpu(dword_buff[2]) < 0xE4A) ||
454 (CSR_HW_REV_STEP(mvm->trans->hw_rev) == SILICON_B_STEP &&
455 le32_to_cpu(dword_buff[2]) >= 0xE4A)) {
456 ret = -EFAULT;
457 goto out;
458 }
459 } else {
460 file_sec = (void *)fw_entry->data;
461 }
462
463 while (true) {
464 if (file_sec->data > eof) {
465 IWL_ERR(mvm,
466 "ERROR - NVM file too short for section header\n");
467 ret = -EINVAL;
468 break;
469 }
470
471 /* check for EOF marker */
472 if (!file_sec->word1 && !file_sec->word2) {
473 ret = 0;
474 break;
475 }
476
477 if (mvm->trans->cfg->device_family != IWL_DEVICE_FAMILY_8000) {
478 section_size =
479 2 * NVM_WORD1_LEN(le16_to_cpu(file_sec->word1));
480 section_id = NVM_WORD2_ID(le16_to_cpu(file_sec->word2));
481 } else {
482 section_size = 2 * NVM_WORD2_LEN_FAMILY_8000(
483 le16_to_cpu(file_sec->word2));
484 section_id = NVM_WORD1_ID_FAMILY_8000(
485 le16_to_cpu(file_sec->word1));
486 }
487
488 if (section_size > max_section_size) {
489 IWL_ERR(mvm, "ERROR - section too large (%d)\n",
490 section_size);
491 ret = -EINVAL;
492 break;
493 }
494
495 if (!section_size) {
496 IWL_ERR(mvm, "ERROR - section empty\n");
497 ret = -EINVAL;
498 break;
499 }
500
501 if (file_sec->data + section_size > eof) {
502 IWL_ERR(mvm,
503 "ERROR - NVM file too short for section (%d bytes)\n",
504 section_size);
505 ret = -EINVAL;
506 break;
507 }
508
509 if (WARN(section_id >= NVM_MAX_NUM_SECTIONS,
510 "Invalid NVM section ID %d\n", section_id)) {
511 ret = -EINVAL;
512 break;
513 }
514
515 temp = kmemdup(file_sec->data, section_size, GFP_KERNEL);
516 if (!temp) {
517 ret = -ENOMEM;
518 break;
519 }
520
521 iwl_mvm_nvm_fixups(mvm, section_id, temp, section_size);
522
523 kfree(mvm->nvm_sections[section_id].data);
524 mvm->nvm_sections[section_id].data = temp;
525 mvm->nvm_sections[section_id].length = section_size;
526
527 /* advance to the next section */
528 file_sec = (void *)(file_sec->data + section_size);
529 }
530out:
531 release_firmware(fw_entry);
532 return ret;
533}
534
535/* Loads the NVM data stored in mvm->nvm_sections into the NIC */
536int iwl_mvm_load_nvm_to_nic(struct iwl_mvm *mvm)
537{
538 int i, ret = 0;
539 struct iwl_nvm_section *sections = mvm->nvm_sections;
540
541 IWL_DEBUG_EEPROM(mvm->trans->dev, "'Write to NVM\n");
542
543 for (i = 0; i < ARRAY_SIZE(mvm->nvm_sections); i++) {
544 if (!mvm->nvm_sections[i].data || !mvm->nvm_sections[i].length)
545 continue;
546 ret = iwl_nvm_write_section(mvm, i, sections[i].data,
547 sections[i].length);
548 if (ret < 0) {
549 IWL_ERR(mvm, "iwl_mvm_send_cmd failed: %d\n", ret);
550 break;
551 }
552 }
553 return ret;
554}
555
556int iwl_nvm_init(struct iwl_mvm *mvm, bool read_nvm_from_nic)
557{
558 int ret, section;
559 u32 size_read = 0;
560 u8 *nvm_buffer, *temp;
561 const char *nvm_file_B = mvm->cfg->default_nvm_file_B_step;
562 const char *nvm_file_C = mvm->cfg->default_nvm_file_C_step;
563
564 if (WARN_ON_ONCE(mvm->cfg->nvm_hw_section_num >= NVM_MAX_NUM_SECTIONS))
565 return -EINVAL;
566
567 /* load NVM values from nic */
568 if (read_nvm_from_nic) {
569 /* Read From FW NVM */
570 IWL_DEBUG_EEPROM(mvm->trans->dev, "Read from NVM\n");
571
572 nvm_buffer = kmalloc(mvm->cfg->base_params->eeprom_size,
573 GFP_KERNEL);
574 if (!nvm_buffer)
575 return -ENOMEM;
576 for (section = 0; section < NVM_MAX_NUM_SECTIONS; section++) {
577 /* we override the constness for initial read */
578 ret = iwl_nvm_read_section(mvm, section, nvm_buffer,
579 size_read);
580 if (ret < 0)
581 continue;
582 size_read += ret;
583 temp = kmemdup(nvm_buffer, ret, GFP_KERNEL);
584 if (!temp) {
585 ret = -ENOMEM;
586 break;
587 }
588
589 iwl_mvm_nvm_fixups(mvm, section, temp, ret);
590
591 mvm->nvm_sections[section].data = temp;
592 mvm->nvm_sections[section].length = ret;
593
594#ifdef CONFIG_IWLWIFI_DEBUGFS
595 switch (section) {
596 case NVM_SECTION_TYPE_SW:
597 mvm->nvm_sw_blob.data = temp;
598 mvm->nvm_sw_blob.size = ret;
599 break;
600 case NVM_SECTION_TYPE_CALIBRATION:
601 mvm->nvm_calib_blob.data = temp;
602 mvm->nvm_calib_blob.size = ret;
603 break;
604 case NVM_SECTION_TYPE_PRODUCTION:
605 mvm->nvm_prod_blob.data = temp;
606 mvm->nvm_prod_blob.size = ret;
607 break;
608 case NVM_SECTION_TYPE_PHY_SKU:
609 mvm->nvm_phy_sku_blob.data = temp;
610 mvm->nvm_phy_sku_blob.size = ret;
611 break;
612 default:
613 if (section == mvm->cfg->nvm_hw_section_num) {
614 mvm->nvm_hw_blob.data = temp;
615 mvm->nvm_hw_blob.size = ret;
616 break;
617 }
618 }
619#endif
620 }
621 if (!size_read)
622 IWL_ERR(mvm, "OTP is blank\n");
623 kfree(nvm_buffer);
624 }
625
626 /* Only if PNVM selected in the mod param - load external NVM */
627 if (mvm->nvm_file_name) {
628 /* read External NVM file from the mod param */
629 ret = iwl_mvm_read_external_nvm(mvm);
630 if (ret) {
631 /* choose the nvm_file name according to the
632 * HW step
633 */
634 if (CSR_HW_REV_STEP(mvm->trans->hw_rev) ==
635 SILICON_B_STEP)
636 mvm->nvm_file_name = nvm_file_B;
637 else
638 mvm->nvm_file_name = nvm_file_C;
639
640 if ((ret == -EFAULT || ret == -ENOENT) &&
641 mvm->nvm_file_name) {
642 /* in case nvm file was failed try again */
643 ret = iwl_mvm_read_external_nvm(mvm);
644 if (ret)
645 return ret;
646 } else {
647 return ret;
648 }
649 }
650 }
651
652 /* parse the relevant nvm sections */
653 mvm->nvm_data = iwl_parse_nvm_sections(mvm);
654 if (!mvm->nvm_data)
655 return -ENODATA;
656 IWL_DEBUG_EEPROM(mvm->trans->dev, "nvm version = %x\n",
657 mvm->nvm_data->nvm_version);
658
659 return 0;
660}
661
662struct iwl_mcc_update_resp *
663iwl_mvm_update_mcc(struct iwl_mvm *mvm, const char *alpha2,
664 enum iwl_mcc_source src_id)
665{
666 struct iwl_mcc_update_cmd mcc_update_cmd = {
667 .mcc = cpu_to_le16(alpha2[0] << 8 | alpha2[1]),
668 .source_id = (u8)src_id,
669 };
670 struct iwl_mcc_update_resp *mcc_resp, *resp_cp = NULL;
671 struct iwl_mcc_update_resp_v1 *mcc_resp_v1 = NULL;
672 struct iwl_rx_packet *pkt;
673 struct iwl_host_cmd cmd = {
674 .id = MCC_UPDATE_CMD,
675 .flags = CMD_WANT_SKB,
676 .data = { &mcc_update_cmd },
677 };
678
679 int ret;
680 u32 status;
681 int resp_len, n_channels;
682 u16 mcc;
683 bool resp_v2 = fw_has_capa(&mvm->fw->ucode_capa,
684 IWL_UCODE_TLV_CAPA_LAR_SUPPORT_V2);
685
686 if (WARN_ON_ONCE(!iwl_mvm_is_lar_supported(mvm)))
687 return ERR_PTR(-EOPNOTSUPP);
688
689 cmd.len[0] = sizeof(struct iwl_mcc_update_cmd);
690 if (!resp_v2)
691 cmd.len[0] = sizeof(struct iwl_mcc_update_cmd_v1);
692
693 IWL_DEBUG_LAR(mvm, "send MCC update to FW with '%c%c' src = %d\n",
694 alpha2[0], alpha2[1], src_id);
695
696 ret = iwl_mvm_send_cmd(mvm, &cmd);
697 if (ret)
698 return ERR_PTR(ret);
699
700 pkt = cmd.resp_pkt;
701
702 /* Extract MCC response */
703 if (resp_v2) {
704 mcc_resp = (void *)pkt->data;
705 n_channels = __le32_to_cpu(mcc_resp->n_channels);
706 } else {
707 mcc_resp_v1 = (void *)pkt->data;
708 n_channels = __le32_to_cpu(mcc_resp_v1->n_channels);
709 }
710
711 resp_len = sizeof(struct iwl_mcc_update_resp) + n_channels *
712 sizeof(__le32);
713
714 resp_cp = kzalloc(resp_len, GFP_KERNEL);
715 if (!resp_cp) {
716 ret = -ENOMEM;
717 goto exit;
718 }
719
720 if (resp_v2) {
721 memcpy(resp_cp, mcc_resp, resp_len);
722 } else {
723 resp_cp->status = mcc_resp_v1->status;
724 resp_cp->mcc = mcc_resp_v1->mcc;
725 resp_cp->cap = mcc_resp_v1->cap;
726 resp_cp->source_id = mcc_resp_v1->source_id;
727 resp_cp->n_channels = mcc_resp_v1->n_channels;
728 memcpy(resp_cp->channels, mcc_resp_v1->channels,
729 n_channels * sizeof(__le32));
730 }
731
732 status = le32_to_cpu(resp_cp->status);
733
734 mcc = le16_to_cpu(resp_cp->mcc);
735
736 /* W/A for a FW/NVM issue - returns 0x00 for the world domain */
737 if (mcc == 0) {
738 mcc = 0x3030; /* "00" - world */
739 resp_cp->mcc = cpu_to_le16(mcc);
740 }
741
742 IWL_DEBUG_LAR(mvm,
743 "MCC response status: 0x%x. new MCC: 0x%x ('%c%c') change: %d n_chans: %d\n",
744 status, mcc, mcc >> 8, mcc & 0xff,
745 !!(status == MCC_RESP_NEW_CHAN_PROFILE), n_channels);
746
747exit:
748 iwl_free_resp(&cmd);
749 if (ret)
750 return ERR_PTR(ret);
751 return resp_cp;
752}
753
754#ifdef CONFIG_ACPI
755#define WRD_METHOD "WRDD"
756#define WRDD_WIFI (0x07)
757#define WRDD_WIGIG (0x10)
758
759static u32 iwl_mvm_wrdd_get_mcc(struct iwl_mvm *mvm, union acpi_object *wrdd)
760{
761 union acpi_object *mcc_pkg, *domain_type, *mcc_value;
762 u32 i;
763
764 if (wrdd->type != ACPI_TYPE_PACKAGE ||
765 wrdd->package.count < 2 ||
766 wrdd->package.elements[0].type != ACPI_TYPE_INTEGER ||
767 wrdd->package.elements[0].integer.value != 0) {
768 IWL_DEBUG_LAR(mvm, "Unsupported wrdd structure\n");
769 return 0;
770 }
771
772 for (i = 1 ; i < wrdd->package.count ; ++i) {
773 mcc_pkg = &wrdd->package.elements[i];
774
775 if (mcc_pkg->type != ACPI_TYPE_PACKAGE ||
776 mcc_pkg->package.count < 2 ||
777 mcc_pkg->package.elements[0].type != ACPI_TYPE_INTEGER ||
778 mcc_pkg->package.elements[1].type != ACPI_TYPE_INTEGER) {
779 mcc_pkg = NULL;
780 continue;
781 }
782
783 domain_type = &mcc_pkg->package.elements[0];
784 if (domain_type->integer.value == WRDD_WIFI)
785 break;
786
787 mcc_pkg = NULL;
788 }
789
790 if (mcc_pkg) {
791 mcc_value = &mcc_pkg->package.elements[1];
792 return mcc_value->integer.value;
793 }
794
795 return 0;
796}
797
798static int iwl_mvm_get_bios_mcc(struct iwl_mvm *mvm, char *mcc)
799{
800 acpi_handle root_handle;
801 acpi_handle handle;
802 struct acpi_buffer wrdd = {ACPI_ALLOCATE_BUFFER, NULL};
803 acpi_status status;
804 u32 mcc_val;
805 struct pci_dev *pdev = to_pci_dev(mvm->dev);
806
807 root_handle = ACPI_HANDLE(&pdev->dev);
808 if (!root_handle) {
809 IWL_DEBUG_LAR(mvm,
810 "Could not retrieve root port ACPI handle\n");
811 return -ENOENT;
812 }
813
814 /* Get the method's handle */
815 status = acpi_get_handle(root_handle, (acpi_string)WRD_METHOD, &handle);
816 if (ACPI_FAILURE(status)) {
817 IWL_DEBUG_LAR(mvm, "WRD method not found\n");
818 return -ENOENT;
819 }
820
821 /* Call WRDD with no arguments */
822 status = acpi_evaluate_object(handle, NULL, NULL, &wrdd);
823 if (ACPI_FAILURE(status)) {
824 IWL_DEBUG_LAR(mvm, "WRDC invocation failed (0x%x)\n", status);
825 return -ENOENT;
826 }
827
828 mcc_val = iwl_mvm_wrdd_get_mcc(mvm, wrdd.pointer);
829 kfree(wrdd.pointer);
830 if (!mcc_val)
831 return -ENOENT;
832
833 mcc[0] = (mcc_val >> 8) & 0xff;
834 mcc[1] = mcc_val & 0xff;
835 mcc[2] = '\0';
836 return 0;
837}
838#else /* CONFIG_ACPI */
839static int iwl_mvm_get_bios_mcc(struct iwl_mvm *mvm, char *mcc)
840{
841 return -ENOENT;
842}
843#endif
844
845int iwl_mvm_init_mcc(struct iwl_mvm *mvm)
846{
847 bool tlv_lar;
848 bool nvm_lar;
849 int retval;
850 struct ieee80211_regdomain *regd;
851 char mcc[3];
852
853 if (mvm->cfg->device_family == IWL_DEVICE_FAMILY_8000) {
854 tlv_lar = fw_has_capa(&mvm->fw->ucode_capa,
855 IWL_UCODE_TLV_CAPA_LAR_SUPPORT);
856 nvm_lar = mvm->nvm_data->lar_enabled;
857 if (tlv_lar != nvm_lar)
858 IWL_INFO(mvm,
859 "Conflict between TLV & NVM regarding enabling LAR (TLV = %s NVM =%s)\n",
860 tlv_lar ? "enabled" : "disabled",
861 nvm_lar ? "enabled" : "disabled");
862 }
863
864 if (!iwl_mvm_is_lar_supported(mvm))
865 return 0;
866
867 /*
868 * try to replay the last set MCC to FW. If it doesn't exist,
869 * queue an update to cfg80211 to retrieve the default alpha2 from FW.
870 */
871 retval = iwl_mvm_init_fw_regd(mvm);
872 if (retval != -ENOENT)
873 return retval;
874
875 /*
876 * Driver regulatory hint for initial update, this also informs the
877 * firmware we support wifi location updates.
878 * Disallow scans that might crash the FW while the LAR regdomain
879 * is not set.
880 */
881 mvm->lar_regdom_set = false;
882
883 regd = iwl_mvm_get_current_regdomain(mvm, NULL);
884 if (IS_ERR_OR_NULL(regd))
885 return -EIO;
886
887 if (iwl_mvm_is_wifi_mcc_supported(mvm) &&
888 !iwl_mvm_get_bios_mcc(mvm, mcc)) {
889 kfree(regd);
890 regd = iwl_mvm_get_regdomain(mvm->hw->wiphy, mcc,
891 MCC_SOURCE_BIOS, NULL);
892 if (IS_ERR_OR_NULL(regd))
893 return -EIO;
894 }
895
896 retval = regulatory_set_wiphy_regd_sync_rtnl(mvm->hw->wiphy, regd);
897 kfree(regd);
898 return retval;
899}
900
901void iwl_mvm_rx_chub_update_mcc(struct iwl_mvm *mvm,
902 struct iwl_rx_cmd_buffer *rxb)
903{
904 struct iwl_rx_packet *pkt = rxb_addr(rxb);
905 struct iwl_mcc_chub_notif *notif = (void *)pkt->data;
906 enum iwl_mcc_source src;
907 char mcc[3];
908 struct ieee80211_regdomain *regd;
909
910 lockdep_assert_held(&mvm->mutex);
911
912 if (WARN_ON_ONCE(!iwl_mvm_is_lar_supported(mvm)))
913 return;
914
915 mcc[0] = notif->mcc >> 8;
916 mcc[1] = notif->mcc & 0xff;
917 mcc[2] = '\0';
918 src = notif->source_id;
919
920 IWL_DEBUG_LAR(mvm,
921 "RX: received chub update mcc cmd (mcc '%s' src %d)\n",
922 mcc, src);
923 regd = iwl_mvm_get_regdomain(mvm->hw->wiphy, mcc, src, NULL);
924 if (IS_ERR_OR_NULL(regd))
925 return;
926
927 regulatory_set_wiphy_regd(mvm->hw->wiphy, regd);
928 kfree(regd);
929}