Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
  2/*
  3 * Copyright (C) 2012-2014, 2018-2019, 2021-2023 Intel Corporation
  4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
  5 * Copyright (C) 2016-2017 Intel Deutschland GmbH
  6 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  7#include <linux/firmware.h>
  8#include <linux/rtnetlink.h>
 
 
  9#include "iwl-trans.h"
 10#include "iwl-csr.h"
 11#include "mvm.h"
 12#include "iwl-eeprom-parse.h"
 13#include "iwl-eeprom-read.h"
 14#include "iwl-nvm-parse.h"
 15#include "iwl-prph.h"
 16#include "fw/acpi.h"
 17
 18/* Default NVM size to read */
 19#define IWL_NVM_DEFAULT_CHUNK_SIZE (2 * 1024)
 
 
 20
 21#define NVM_WRITE_OPCODE 1
 22#define NVM_READ_OPCODE 0
 23
 24/* load nvm chunk response */
 25enum {
 26	READ_NVM_CHUNK_SUCCEED = 0,
 27	READ_NVM_CHUNK_NOT_VALID_ADDRESS = 1
 28};
 29
 30/*
 31 * prepare the NVM host command w/ the pointers to the nvm buffer
 32 * and send it to fw
 33 */
 34static int iwl_nvm_write_chunk(struct iwl_mvm *mvm, u16 section,
 35			       u16 offset, u16 length, const u8 *data)
 36{
 37	struct iwl_nvm_access_cmd nvm_access_cmd = {
 38		.offset = cpu_to_le16(offset),
 39		.length = cpu_to_le16(length),
 40		.type = cpu_to_le16(section),
 41		.op_code = NVM_WRITE_OPCODE,
 42	};
 43	struct iwl_host_cmd cmd = {
 44		.id = NVM_ACCESS_CMD,
 45		.len = { sizeof(struct iwl_nvm_access_cmd), length },
 46		.flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
 47		.data = { &nvm_access_cmd, data },
 48		/* data may come from vmalloc, so use _DUP */
 49		.dataflags = { 0, IWL_HCMD_DFL_DUP },
 50	};
 51	struct iwl_rx_packet *pkt;
 52	struct iwl_nvm_access_resp *nvm_resp;
 53	int ret;
 54
 55	ret = iwl_mvm_send_cmd(mvm, &cmd);
 56	if (ret)
 57		return ret;
 58
 59	pkt = cmd.resp_pkt;
 
 
 
 
 60	/* Extract & check NVM write response */
 61	nvm_resp = (void *)pkt->data;
 62	if (le16_to_cpu(nvm_resp->status) != READ_NVM_CHUNK_SUCCEED) {
 63		IWL_ERR(mvm,
 64			"NVM access write command failed for section %u (status = 0x%x)\n",
 65			section, le16_to_cpu(nvm_resp->status));
 66		ret = -EIO;
 67	}
 68
 69	iwl_free_resp(&cmd);
 70	return ret;
 71}
 72
 73static int iwl_nvm_read_chunk(struct iwl_mvm *mvm, u16 section,
 74			      u16 offset, u16 length, u8 *data)
 75{
 76	struct iwl_nvm_access_cmd nvm_access_cmd = {
 77		.offset = cpu_to_le16(offset),
 78		.length = cpu_to_le16(length),
 79		.type = cpu_to_le16(section),
 80		.op_code = NVM_READ_OPCODE,
 81	};
 82	struct iwl_nvm_access_resp *nvm_resp;
 83	struct iwl_rx_packet *pkt;
 84	struct iwl_host_cmd cmd = {
 85		.id = NVM_ACCESS_CMD,
 86		.flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
 87		.data = { &nvm_access_cmd, },
 88	};
 89	int ret, bytes_read, offset_read;
 90	u8 *resp_data;
 91
 92	cmd.len[0] = sizeof(struct iwl_nvm_access_cmd);
 93
 94	ret = iwl_mvm_send_cmd(mvm, &cmd);
 95	if (ret)
 96		return ret;
 97
 98	pkt = cmd.resp_pkt;
 99
100	/* Extract NVM response */
101	nvm_resp = (void *)pkt->data;
102	ret = le16_to_cpu(nvm_resp->status);
103	bytes_read = le16_to_cpu(nvm_resp->length);
104	offset_read = le16_to_cpu(nvm_resp->offset);
105	resp_data = nvm_resp->data;
106	if (ret) {
107		if ((offset != 0) &&
108		    (ret == READ_NVM_CHUNK_NOT_VALID_ADDRESS)) {
109			/*
110			 * meaning of NOT_VALID_ADDRESS:
111			 * driver try to read chunk from address that is
112			 * multiple of 2K and got an error since addr is empty.
113			 * meaning of (offset != 0): driver already
114			 * read valid data from another chunk so this case
115			 * is not an error.
116			 */
117			IWL_DEBUG_EEPROM(mvm->trans->dev,
118					 "NVM access command failed on offset 0x%x since that section size is multiple 2K\n",
119					 offset);
120			ret = 0;
121		} else {
122			IWL_DEBUG_EEPROM(mvm->trans->dev,
123					 "NVM access command failed with status %d (device: %s)\n",
124					 ret, mvm->trans->name);
125			ret = -ENODATA;
126		}
127		goto exit;
128	}
129
130	if (offset_read != offset) {
131		IWL_ERR(mvm, "NVM ACCESS response with invalid offset %d\n",
132			offset_read);
133		ret = -EINVAL;
134		goto exit;
135	}
136
137	/* Write data to NVM */
138	memcpy(data + offset, resp_data, bytes_read);
139	ret = bytes_read;
140
141exit:
142	iwl_free_resp(&cmd);
143	return ret;
144}
145
146static int iwl_nvm_write_section(struct iwl_mvm *mvm, u16 section,
147				 const u8 *data, u16 length)
148{
149	int offset = 0;
150
151	/* copy data in chunks of 2k (and remainder if any) */
152
153	while (offset < length) {
154		int chunk_size, ret;
155
156		chunk_size = min(IWL_NVM_DEFAULT_CHUNK_SIZE,
157				 length - offset);
158
159		ret = iwl_nvm_write_chunk(mvm, section, offset,
160					  chunk_size, data + offset);
161		if (ret < 0)
162			return ret;
163
164		offset += chunk_size;
165	}
166
167	return 0;
168}
169
 
 
 
 
 
 
 
 
 
 
 
 
 
170/*
171 * Reads an NVM section completely.
172 * NICs prior to 7000 family doesn't have a real NVM, but just read
173 * section 0 which is the EEPROM. Because the EEPROM reading is unlimited
174 * by uCode, we need to manually check in this case that we don't
175 * overflow and try to read more than the EEPROM size.
176 * For 7000 family NICs, we supply the maximal size we can read, and
177 * the uCode fills the response with as much data as we can,
178 * without overflowing, so no check is needed.
179 */
180static int iwl_nvm_read_section(struct iwl_mvm *mvm, u16 section,
181				u8 *data, u32 size_read)
182{
183	u16 length, offset = 0;
184	int ret;
185
186	/* Set nvm section read length */
187	length = IWL_NVM_DEFAULT_CHUNK_SIZE;
188
189	ret = length;
190
191	/* Read the NVM until exhausted (reading less than requested) */
192	while (ret == length) {
193		/* Check no memory assumptions fail and cause an overflow */
194		if ((size_read + offset + length) >
195		    mvm->trans->trans_cfg->base_params->eeprom_size) {
196			IWL_ERR(mvm, "EEPROM size is too small for NVM\n");
197			return -ENOBUFS;
198		}
199
200		ret = iwl_nvm_read_chunk(mvm, section, offset, length, data);
201		if (ret < 0) {
202			IWL_DEBUG_EEPROM(mvm->trans->dev,
203					 "Cannot read NVM from section %d offset %d, length %d\n",
204					 section, offset, length);
205			return ret;
206		}
207		offset += ret;
208	}
209
210	iwl_nvm_fixups(mvm->trans->hw_id, section, data, offset);
211
212	IWL_DEBUG_EEPROM(mvm->trans->dev,
213			 "NVM section %d read completed\n", section);
214	return offset;
215}
216
217static struct iwl_nvm_data *
218iwl_parse_nvm_sections(struct iwl_mvm *mvm)
219{
220	struct iwl_nvm_section *sections = mvm->nvm_sections;
221	const __be16 *hw;
222	const __le16 *sw, *calib, *regulatory, *mac_override, *phy_sku;
223	u8 tx_ant = mvm->fw->valid_tx_ant;
224	u8 rx_ant = mvm->fw->valid_rx_ant;
225	int regulatory_type;
226
227	/* Checking for required sections */
228	if (mvm->trans->cfg->nvm_type == IWL_NVM) {
229		if (!mvm->nvm_sections[NVM_SECTION_TYPE_SW].data ||
230		    !mvm->nvm_sections[mvm->cfg->nvm_hw_section_num].data) {
231			IWL_ERR(mvm, "Can't parse empty OTP/NVM sections\n");
232			return NULL;
233		}
234	} else {
235		if (mvm->trans->cfg->nvm_type == IWL_NVM_SDP)
236			regulatory_type = NVM_SECTION_TYPE_REGULATORY_SDP;
237		else
238			regulatory_type = NVM_SECTION_TYPE_REGULATORY;
239
240		/* SW and REGULATORY sections are mandatory */
241		if (!mvm->nvm_sections[NVM_SECTION_TYPE_SW].data ||
242		    !mvm->nvm_sections[regulatory_type].data) {
243			IWL_ERR(mvm,
244				"Can't parse empty family 8000 OTP/NVM sections\n");
245			return NULL;
246		}
247		/* MAC_OVERRIDE or at least HW section must exist */
248		if (!mvm->nvm_sections[mvm->cfg->nvm_hw_section_num].data &&
249		    !mvm->nvm_sections[NVM_SECTION_TYPE_MAC_OVERRIDE].data) {
250			IWL_ERR(mvm,
251				"Can't parse mac_address, empty sections\n");
252			return NULL;
253		}
254
255		/* PHY_SKU section is mandatory in B0 */
256		if (mvm->trans->cfg->nvm_type == IWL_NVM_EXT &&
257		    !mvm->nvm_sections[NVM_SECTION_TYPE_PHY_SKU].data) {
258			IWL_ERR(mvm,
259				"Can't parse phy_sku in B0, empty sections\n");
260			return NULL;
261		}
262	}
263
264	hw = (const __be16 *)sections[mvm->cfg->nvm_hw_section_num].data;
 
 
 
265	sw = (const __le16 *)sections[NVM_SECTION_TYPE_SW].data;
266	calib = (const __le16 *)sections[NVM_SECTION_TYPE_CALIBRATION].data;
 
267	mac_override =
268		(const __le16 *)sections[NVM_SECTION_TYPE_MAC_OVERRIDE].data;
269	phy_sku = (const __le16 *)sections[NVM_SECTION_TYPE_PHY_SKU].data;
270
271	regulatory = mvm->trans->cfg->nvm_type == IWL_NVM_SDP ?
272		(const __le16 *)sections[NVM_SECTION_TYPE_REGULATORY_SDP].data :
273		(const __le16 *)sections[NVM_SECTION_TYPE_REGULATORY].data;
274
275	if (mvm->set_tx_ant)
276		tx_ant &= mvm->set_tx_ant;
 
 
 
277
278	if (mvm->set_rx_ant)
279		rx_ant &= mvm->set_rx_ant;
280
281	return iwl_parse_nvm_data(mvm->trans, mvm->cfg, mvm->fw, hw, sw, calib,
282				  regulatory, mac_override, phy_sku,
283				  tx_ant, rx_ant);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
284}
285
286/* Loads the NVM data stored in mvm->nvm_sections into the NIC */
287int iwl_mvm_load_nvm_to_nic(struct iwl_mvm *mvm)
288{
289	int i, ret = 0;
290	struct iwl_nvm_section *sections = mvm->nvm_sections;
291
292	IWL_DEBUG_EEPROM(mvm->trans->dev, "'Write to NVM\n");
293
294	for (i = 0; i < ARRAY_SIZE(mvm->nvm_sections); i++) {
295		if (!mvm->nvm_sections[i].data || !mvm->nvm_sections[i].length)
296			continue;
297		ret = iwl_nvm_write_section(mvm, i, sections[i].data,
298					    sections[i].length);
299		if (ret < 0) {
300			IWL_ERR(mvm, "iwl_mvm_send_cmd failed: %d\n", ret);
301			break;
302		}
303	}
304	return ret;
305}
306
307int iwl_nvm_init(struct iwl_mvm *mvm)
308{
309	int ret, section;
310	u32 size_read = 0;
311	u8 *nvm_buffer, *temp;
 
312	const char *nvm_file_C = mvm->cfg->default_nvm_file_C_step;
313
314	if (WARN_ON_ONCE(mvm->cfg->nvm_hw_section_num >= NVM_MAX_NUM_SECTIONS))
315		return -EINVAL;
316
317	/* load NVM values from nic */
318	/* Read From FW NVM */
319	IWL_DEBUG_EEPROM(mvm->trans->dev, "Read from NVM\n");
320
321	nvm_buffer = kmalloc(mvm->trans->trans_cfg->base_params->eeprom_size,
322			     GFP_KERNEL);
323	if (!nvm_buffer)
324		return -ENOMEM;
325	for (section = 0; section < NVM_MAX_NUM_SECTIONS; section++) {
326		/* we override the constness for initial read */
327		ret = iwl_nvm_read_section(mvm, section, nvm_buffer,
328					   size_read);
329		if (ret == -ENODATA) {
330			ret = 0;
331			continue;
332		}
333		if (ret < 0)
334			break;
335		size_read += ret;
336		temp = kmemdup(nvm_buffer, ret, GFP_KERNEL);
337		if (!temp) {
338			ret = -ENOMEM;
339			break;
340		}
341
342		iwl_nvm_fixups(mvm->trans->hw_id, section, temp, ret);
343
344		mvm->nvm_sections[section].data = temp;
345		mvm->nvm_sections[section].length = ret;
346
347#ifdef CONFIG_IWLWIFI_DEBUGFS
348		switch (section) {
349		case NVM_SECTION_TYPE_SW:
350			mvm->nvm_sw_blob.data = temp;
351			mvm->nvm_sw_blob.size  = ret;
352			break;
353		case NVM_SECTION_TYPE_CALIBRATION:
354			mvm->nvm_calib_blob.data = temp;
355			mvm->nvm_calib_blob.size  = ret;
356			break;
357		case NVM_SECTION_TYPE_PRODUCTION:
358			mvm->nvm_prod_blob.data = temp;
359			mvm->nvm_prod_blob.size  = ret;
360			break;
361		case NVM_SECTION_TYPE_PHY_SKU:
362			mvm->nvm_phy_sku_blob.data = temp;
363			mvm->nvm_phy_sku_blob.size  = ret;
364			break;
365		case NVM_SECTION_TYPE_REGULATORY_SDP:
366		case NVM_SECTION_TYPE_REGULATORY:
367			mvm->nvm_reg_blob.data = temp;
368			mvm->nvm_reg_blob.size  = ret;
369			break;
370		default:
371			if (section == mvm->cfg->nvm_hw_section_num) {
372				mvm->nvm_hw_blob.data = temp;
373				mvm->nvm_hw_blob.size = ret;
374				break;
 
 
 
 
 
 
375			}
376		}
377#endif
 
 
 
 
378	}
379	if (!size_read)
380		IWL_ERR(mvm, "OTP is blank\n");
381	kfree(nvm_buffer);
382
383	/* Only if PNVM selected in the mod param - load external NVM  */
384	if (mvm->nvm_file_name) {
385		/* read External NVM file from the mod param */
386		ret = iwl_read_external_nvm(mvm->trans, mvm->nvm_file_name,
387					    mvm->nvm_sections);
388		if (ret) {
389			mvm->nvm_file_name = nvm_file_C;
 
 
 
 
 
 
 
390
391			if ((ret == -EFAULT || ret == -ENOENT) &&
392			    mvm->nvm_file_name) {
393				/* in case nvm file was failed try again */
394				ret = iwl_read_external_nvm(mvm->trans,
395							    mvm->nvm_file_name,
396							    mvm->nvm_sections);
397				if (ret)
398					return ret;
399			} else {
400				return ret;
401			}
402		}
403	}
404
405	/* parse the relevant nvm sections */
406	mvm->nvm_data = iwl_parse_nvm_sections(mvm);
407	if (!mvm->nvm_data)
408		return -ENODATA;
409	IWL_DEBUG_EEPROM(mvm->trans->dev, "nvm version = %x\n",
410			 mvm->nvm_data->nvm_version);
411
412	return ret < 0 ? ret : 0;
413}
414
415struct iwl_mcc_update_resp_v8 *
416iwl_mvm_update_mcc(struct iwl_mvm *mvm, const char *alpha2,
417		   enum iwl_mcc_source src_id)
418{
419	struct iwl_mcc_update_cmd mcc_update_cmd = {
420		.mcc = cpu_to_le16(alpha2[0] << 8 | alpha2[1]),
421		.source_id = (u8)src_id,
422	};
423	struct iwl_mcc_update_resp_v8 *resp_cp;
 
424	struct iwl_rx_packet *pkt;
425	struct iwl_host_cmd cmd = {
426		.id = MCC_UPDATE_CMD,
427		.flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
428		.data = { &mcc_update_cmd },
429	};
430
431	int ret, resp_ver;
432	u32 status;
433	int resp_len, n_channels;
434	u16 mcc;
 
 
435
436	if (WARN_ON_ONCE(!iwl_mvm_is_lar_supported(mvm)))
437		return ERR_PTR(-EOPNOTSUPP);
438
439	cmd.len[0] = sizeof(struct iwl_mcc_update_cmd);
 
 
440
441	IWL_DEBUG_LAR(mvm, "send MCC update to FW with '%c%c' src = %d\n",
442		      alpha2[0], alpha2[1], src_id);
443
444	ret = iwl_mvm_send_cmd(mvm, &cmd);
445	if (ret)
446		return ERR_PTR(ret);
447
448	pkt = cmd.resp_pkt;
449
450	resp_ver = iwl_fw_lookup_notif_ver(mvm->fw, IWL_ALWAYS_LONG_GROUP,
451					   MCC_UPDATE_CMD, 0);
452
453	/* Extract MCC response */
454	if (resp_ver >= 8) {
455		struct iwl_mcc_update_resp_v8 *mcc_resp_v8 = (void *)pkt->data;
456
457		n_channels =  __le32_to_cpu(mcc_resp_v8->n_channels);
458		if (iwl_rx_packet_payload_len(pkt) !=
459		    struct_size(mcc_resp_v8, channels, n_channels)) {
460			resp_cp = ERR_PTR(-EINVAL);
461			goto exit;
462		}
463		resp_len = struct_size(resp_cp, channels, n_channels);
464		resp_cp = kzalloc(resp_len, GFP_KERNEL);
465		if (!resp_cp) {
466			resp_cp = ERR_PTR(-ENOMEM);
467			goto exit;
468		}
469		resp_cp->status = mcc_resp_v8->status;
470		resp_cp->mcc = mcc_resp_v8->mcc;
471		resp_cp->cap = mcc_resp_v8->cap;
472		resp_cp->source_id = mcc_resp_v8->source_id;
473		resp_cp->time = mcc_resp_v8->time;
474		resp_cp->geo_info = mcc_resp_v8->geo_info;
475		resp_cp->n_channels = mcc_resp_v8->n_channels;
476		memcpy(resp_cp->channels, mcc_resp_v8->channels,
477		       n_channels * sizeof(__le32));
478	} else if (fw_has_capa(&mvm->fw->ucode_capa,
479			       IWL_UCODE_TLV_CAPA_MCC_UPDATE_11AX_SUPPORT)) {
480		struct iwl_mcc_update_resp_v4 *mcc_resp_v4 = (void *)pkt->data;
481
482		n_channels =  __le32_to_cpu(mcc_resp_v4->n_channels);
483		if (iwl_rx_packet_payload_len(pkt) !=
484		    struct_size(mcc_resp_v4, channels, n_channels)) {
485			resp_cp = ERR_PTR(-EINVAL);
486			goto exit;
487		}
488		resp_len = struct_size(resp_cp, channels, n_channels);
489		resp_cp = kzalloc(resp_len, GFP_KERNEL);
490		if (!resp_cp) {
491			resp_cp = ERR_PTR(-ENOMEM);
492			goto exit;
493		}
494
495		resp_cp->status = mcc_resp_v4->status;
496		resp_cp->mcc = mcc_resp_v4->mcc;
497		resp_cp->cap = cpu_to_le32(le16_to_cpu(mcc_resp_v4->cap));
498		resp_cp->source_id = mcc_resp_v4->source_id;
499		resp_cp->time = mcc_resp_v4->time;
500		resp_cp->geo_info = mcc_resp_v4->geo_info;
501		resp_cp->n_channels = mcc_resp_v4->n_channels;
502		memcpy(resp_cp->channels, mcc_resp_v4->channels,
503		       n_channels * sizeof(__le32));
504	} else {
505		struct iwl_mcc_update_resp_v3 *mcc_resp_v3 = (void *)pkt->data;
 
 
 
 
 
 
 
 
 
 
 
506
507		n_channels =  __le32_to_cpu(mcc_resp_v3->n_channels);
508		if (iwl_rx_packet_payload_len(pkt) !=
509		    struct_size(mcc_resp_v3, channels, n_channels)) {
510			resp_cp = ERR_PTR(-EINVAL);
511			goto exit;
512		}
513		resp_len = struct_size(resp_cp, channels, n_channels);
514		resp_cp = kzalloc(resp_len, GFP_KERNEL);
515		if (!resp_cp) {
516			resp_cp = ERR_PTR(-ENOMEM);
517			goto exit;
518		}
519
520		resp_cp->status = mcc_resp_v3->status;
521		resp_cp->mcc = mcc_resp_v3->mcc;
522		resp_cp->cap = cpu_to_le32(mcc_resp_v3->cap);
523		resp_cp->source_id = mcc_resp_v3->source_id;
524		resp_cp->time = mcc_resp_v3->time;
525		resp_cp->geo_info = mcc_resp_v3->geo_info;
526		resp_cp->n_channels = mcc_resp_v3->n_channels;
527		memcpy(resp_cp->channels, mcc_resp_v3->channels,
528		       n_channels * sizeof(__le32));
529	}
530
531	status = le32_to_cpu(resp_cp->status);
532
533	mcc = le16_to_cpu(resp_cp->mcc);
534
535	/* W/A for a FW/NVM issue - returns 0x00 for the world domain */
536	if (mcc == 0) {
537		mcc = 0x3030;  /* "00" - world */
538		resp_cp->mcc = cpu_to_le16(mcc);
539	}
540
541	IWL_DEBUG_LAR(mvm,
542		      "MCC response status: 0x%x. new MCC: 0x%x ('%c%c') n_chans: %d\n",
543		      status, mcc, mcc >> 8, mcc & 0xff, n_channels);
 
544
545exit:
546	iwl_free_resp(&cmd);
 
 
547	return resp_cp;
548}
549
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
550int iwl_mvm_init_mcc(struct iwl_mvm *mvm)
551{
552	bool tlv_lar;
553	bool nvm_lar;
554	int retval;
555	struct ieee80211_regdomain *regd;
556	char mcc[3];
557
558	if (mvm->cfg->nvm_type == IWL_NVM_EXT) {
559		tlv_lar = fw_has_capa(&mvm->fw->ucode_capa,
560				      IWL_UCODE_TLV_CAPA_LAR_SUPPORT);
561		nvm_lar = mvm->nvm_data->lar_enabled;
562		if (tlv_lar != nvm_lar)
563			IWL_INFO(mvm,
564				 "Conflict between TLV & NVM regarding enabling LAR (TLV = %s NVM =%s)\n",
565				 tlv_lar ? "enabled" : "disabled",
566				 nvm_lar ? "enabled" : "disabled");
567	}
568
569	if (!iwl_mvm_is_lar_supported(mvm))
570		return 0;
571
572	/*
573	 * try to replay the last set MCC to FW. If it doesn't exist,
574	 * queue an update to cfg80211 to retrieve the default alpha2 from FW.
575	 */
576	retval = iwl_mvm_init_fw_regd(mvm, true);
577	if (retval != -ENOENT)
578		return retval;
579
580	/*
581	 * Driver regulatory hint for initial update, this also informs the
582	 * firmware we support wifi location updates.
583	 * Disallow scans that might crash the FW while the LAR regdomain
584	 * is not set.
585	 */
586	mvm->lar_regdom_set = false;
587
588	regd = iwl_mvm_get_current_regdomain(mvm, NULL);
589	if (IS_ERR_OR_NULL(regd))
590		return -EIO;
591
592	if (iwl_mvm_is_wifi_mcc_supported(mvm) &&
593	    !iwl_acpi_get_mcc(mvm->dev, mcc)) {
594		kfree(regd);
595		regd = iwl_mvm_get_regdomain(mvm->hw->wiphy, mcc,
596					     MCC_SOURCE_BIOS, NULL);
597		if (IS_ERR_OR_NULL(regd))
598			return -EIO;
599	}
600
601	retval = regulatory_set_wiphy_regd_sync(mvm->hw->wiphy, regd);
602	kfree(regd);
603	return retval;
604}
605
606void iwl_mvm_rx_chub_update_mcc(struct iwl_mvm *mvm,
607				struct iwl_rx_cmd_buffer *rxb)
608{
609	struct iwl_rx_packet *pkt = rxb_addr(rxb);
610	struct iwl_mcc_chub_notif *notif = (void *)pkt->data;
611	enum iwl_mcc_source src;
612	char mcc[3];
613	struct ieee80211_regdomain *regd;
614	int wgds_tbl_idx;
615
616	lockdep_assert_held(&mvm->mutex);
617
618	if (iwl_mvm_is_vif_assoc(mvm) && notif->source_id == MCC_SOURCE_WIFI) {
619		IWL_DEBUG_LAR(mvm, "Ignore mcc update while associated\n");
620		return;
621	}
622
623	if (WARN_ON_ONCE(!iwl_mvm_is_lar_supported(mvm)))
624		return;
625
626	mcc[0] = le16_to_cpu(notif->mcc) >> 8;
627	mcc[1] = le16_to_cpu(notif->mcc) & 0xff;
628	mcc[2] = '\0';
629	src = notif->source_id;
630
631	IWL_DEBUG_LAR(mvm,
632		      "RX: received chub update mcc cmd (mcc '%s' src %d)\n",
633		      mcc, src);
634	regd = iwl_mvm_get_regdomain(mvm->hw->wiphy, mcc, src, NULL);
635	if (IS_ERR_OR_NULL(regd))
636		return;
637
638	wgds_tbl_idx = iwl_mvm_get_sar_geo_profile(mvm);
639	if (wgds_tbl_idx < 1)
640		IWL_DEBUG_INFO(mvm,
641			       "SAR WGDS is disabled or error received (%d)\n",
642			       wgds_tbl_idx);
643	else
644		IWL_DEBUG_INFO(mvm, "SAR WGDS: geo profile %d is configured\n",
645			       wgds_tbl_idx);
646
647	regulatory_set_wiphy_regd(mvm->hw->wiphy, regd);
648	kfree(regd);
649}
v4.6
  1/******************************************************************************
  2 *
  3 * This file is provided under a dual BSD/GPLv2 license.  When using or
  4 * redistributing this file, you may do so under either license.
  5 *
  6 * GPL LICENSE SUMMARY
  7 *
  8 * Copyright(c) 2012 - 2014 Intel Corporation. All rights reserved.
  9 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
 10 * Copyright(c) 2016        Intel Deutschland GmbH
 11 *
 12 * This program is free software; you can redistribute it and/or modify
 13 * it under the terms of version 2 of the GNU General Public License as
 14 * published by the Free Software Foundation.
 15 *
 16 * This program is distributed in the hope that it will be useful, but
 17 * WITHOUT ANY WARRANTY; without even the implied warranty of
 18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 19 * General Public License for more details.
 20 *
 21 * You should have received a copy of the GNU General Public License
 22 * along with this program; if not, write to the Free Software
 23 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
 24 * USA
 25 *
 26 * The full GNU General Public License is included in this distribution
 27 * in the file called COPYING.
 28 *
 29 * Contact Information:
 30 *  Intel Linux Wireless <linuxwifi@intel.com>
 31 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 32 *
 33 * BSD LICENSE
 34 *
 35 * Copyright(c) 2012 - 2014 Intel Corporation. All rights reserved.
 36 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
 37 * Copyright(c) 2016        Intel Deutschland GmbH
 38 * All rights reserved.
 39 *
 40 * Redistribution and use in source and binary forms, with or without
 41 * modification, are permitted provided that the following conditions
 42 * are met:
 43 *
 44 *  * Redistributions of source code must retain the above copyright
 45 *    notice, this list of conditions and the following disclaimer.
 46 *  * Redistributions in binary form must reproduce the above copyright
 47 *    notice, this list of conditions and the following disclaimer in
 48 *    the documentation and/or other materials provided with the
 49 *    distribution.
 50 *  * Neither the name Intel Corporation nor the names of its
 51 *    contributors may be used to endorse or promote products derived
 52 *    from this software without specific prior written permission.
 53 *
 54 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 55 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 56 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 57 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 58 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 59 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 60 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 61 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 62 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 63 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 64 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 65 *
 66 *****************************************************************************/
 67#include <linux/firmware.h>
 68#include <linux/rtnetlink.h>
 69#include <linux/pci.h>
 70#include <linux/acpi.h>
 71#include "iwl-trans.h"
 72#include "iwl-csr.h"
 73#include "mvm.h"
 74#include "iwl-eeprom-parse.h"
 75#include "iwl-eeprom-read.h"
 76#include "iwl-nvm-parse.h"
 77#include "iwl-prph.h"
 
 78
 79/* Default NVM size to read */
 80#define IWL_NVM_DEFAULT_CHUNK_SIZE (2*1024)
 81#define IWL_MAX_NVM_SECTION_SIZE	0x1b58
 82#define IWL_MAX_NVM_8000_SECTION_SIZE	0x1ffc
 83
 84#define NVM_WRITE_OPCODE 1
 85#define NVM_READ_OPCODE 0
 86
 87/* load nvm chunk response */
 88enum {
 89	READ_NVM_CHUNK_SUCCEED = 0,
 90	READ_NVM_CHUNK_NOT_VALID_ADDRESS = 1
 91};
 92
 93/*
 94 * prepare the NVM host command w/ the pointers to the nvm buffer
 95 * and send it to fw
 96 */
 97static int iwl_nvm_write_chunk(struct iwl_mvm *mvm, u16 section,
 98			       u16 offset, u16 length, const u8 *data)
 99{
100	struct iwl_nvm_access_cmd nvm_access_cmd = {
101		.offset = cpu_to_le16(offset),
102		.length = cpu_to_le16(length),
103		.type = cpu_to_le16(section),
104		.op_code = NVM_WRITE_OPCODE,
105	};
106	struct iwl_host_cmd cmd = {
107		.id = NVM_ACCESS_CMD,
108		.len = { sizeof(struct iwl_nvm_access_cmd), length },
109		.flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
110		.data = { &nvm_access_cmd, data },
111		/* data may come from vmalloc, so use _DUP */
112		.dataflags = { 0, IWL_HCMD_DFL_DUP },
113	};
114	struct iwl_rx_packet *pkt;
115	struct iwl_nvm_access_resp *nvm_resp;
116	int ret;
117
118	ret = iwl_mvm_send_cmd(mvm, &cmd);
119	if (ret)
120		return ret;
121
122	pkt = cmd.resp_pkt;
123	if (!pkt) {
124		IWL_ERR(mvm, "Error in NVM_ACCESS response\n");
125		return -EINVAL;
126	}
127	/* Extract & check NVM write response */
128	nvm_resp = (void *)pkt->data;
129	if (le16_to_cpu(nvm_resp->status) != READ_NVM_CHUNK_SUCCEED) {
130		IWL_ERR(mvm,
131			"NVM access write command failed for section %u (status = 0x%x)\n",
132			section, le16_to_cpu(nvm_resp->status));
133		ret = -EIO;
134	}
135
136	iwl_free_resp(&cmd);
137	return ret;
138}
139
140static int iwl_nvm_read_chunk(struct iwl_mvm *mvm, u16 section,
141			      u16 offset, u16 length, u8 *data)
142{
143	struct iwl_nvm_access_cmd nvm_access_cmd = {
144		.offset = cpu_to_le16(offset),
145		.length = cpu_to_le16(length),
146		.type = cpu_to_le16(section),
147		.op_code = NVM_READ_OPCODE,
148	};
149	struct iwl_nvm_access_resp *nvm_resp;
150	struct iwl_rx_packet *pkt;
151	struct iwl_host_cmd cmd = {
152		.id = NVM_ACCESS_CMD,
153		.flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
154		.data = { &nvm_access_cmd, },
155	};
156	int ret, bytes_read, offset_read;
157	u8 *resp_data;
158
159	cmd.len[0] = sizeof(struct iwl_nvm_access_cmd);
160
161	ret = iwl_mvm_send_cmd(mvm, &cmd);
162	if (ret)
163		return ret;
164
165	pkt = cmd.resp_pkt;
166
167	/* Extract NVM response */
168	nvm_resp = (void *)pkt->data;
169	ret = le16_to_cpu(nvm_resp->status);
170	bytes_read = le16_to_cpu(nvm_resp->length);
171	offset_read = le16_to_cpu(nvm_resp->offset);
172	resp_data = nvm_resp->data;
173	if (ret) {
174		if ((offset != 0) &&
175		    (ret == READ_NVM_CHUNK_NOT_VALID_ADDRESS)) {
176			/*
177			 * meaning of NOT_VALID_ADDRESS:
178			 * driver try to read chunk from address that is
179			 * multiple of 2K and got an error since addr is empty.
180			 * meaning of (offset != 0): driver already
181			 * read valid data from another chunk so this case
182			 * is not an error.
183			 */
184			IWL_DEBUG_EEPROM(mvm->trans->dev,
185					 "NVM access command failed on offset 0x%x since that section size is multiple 2K\n",
186					 offset);
187			ret = 0;
188		} else {
189			IWL_DEBUG_EEPROM(mvm->trans->dev,
190					 "NVM access command failed with status %d (device: %s)\n",
191					 ret, mvm->cfg->name);
192			ret = -EIO;
193		}
194		goto exit;
195	}
196
197	if (offset_read != offset) {
198		IWL_ERR(mvm, "NVM ACCESS response with invalid offset %d\n",
199			offset_read);
200		ret = -EINVAL;
201		goto exit;
202	}
203
204	/* Write data to NVM */
205	memcpy(data + offset, resp_data, bytes_read);
206	ret = bytes_read;
207
208exit:
209	iwl_free_resp(&cmd);
210	return ret;
211}
212
213static int iwl_nvm_write_section(struct iwl_mvm *mvm, u16 section,
214				 const u8 *data, u16 length)
215{
216	int offset = 0;
217
218	/* copy data in chunks of 2k (and remainder if any) */
219
220	while (offset < length) {
221		int chunk_size, ret;
222
223		chunk_size = min(IWL_NVM_DEFAULT_CHUNK_SIZE,
224				 length - offset);
225
226		ret = iwl_nvm_write_chunk(mvm, section, offset,
227					  chunk_size, data + offset);
228		if (ret < 0)
229			return ret;
230
231		offset += chunk_size;
232	}
233
234	return 0;
235}
236
237static void iwl_mvm_nvm_fixups(struct iwl_mvm *mvm, unsigned int section,
238			       u8 *data, unsigned int len)
239{
240#define IWL_4165_DEVICE_ID	0x5501
241#define NVM_SKU_CAP_MIMO_DISABLE BIT(5)
242
243	if (section == NVM_SECTION_TYPE_PHY_SKU &&
244	    mvm->trans->hw_id == IWL_4165_DEVICE_ID && data && len >= 5 &&
245	    (data[4] & NVM_SKU_CAP_MIMO_DISABLE))
246		/* OTP 0x52 bug work around: it's a 1x1 device */
247		data[3] = ANT_B | (ANT_B << 4);
248}
249
250/*
251 * Reads an NVM section completely.
252 * NICs prior to 7000 family doesn't have a real NVM, but just read
253 * section 0 which is the EEPROM. Because the EEPROM reading is unlimited
254 * by uCode, we need to manually check in this case that we don't
255 * overflow and try to read more than the EEPROM size.
256 * For 7000 family NICs, we supply the maximal size we can read, and
257 * the uCode fills the response with as much data as we can,
258 * without overflowing, so no check is needed.
259 */
260static int iwl_nvm_read_section(struct iwl_mvm *mvm, u16 section,
261				u8 *data, u32 size_read)
262{
263	u16 length, offset = 0;
264	int ret;
265
266	/* Set nvm section read length */
267	length = IWL_NVM_DEFAULT_CHUNK_SIZE;
268
269	ret = length;
270
271	/* Read the NVM until exhausted (reading less than requested) */
272	while (ret == length) {
273		/* Check no memory assumptions fail and cause an overflow */
274		if ((size_read + offset + length) >
275		    mvm->cfg->base_params->eeprom_size) {
276			IWL_ERR(mvm, "EEPROM size is too small for NVM\n");
277			return -ENOBUFS;
278		}
279
280		ret = iwl_nvm_read_chunk(mvm, section, offset, length, data);
281		if (ret < 0) {
282			IWL_DEBUG_EEPROM(mvm->trans->dev,
283					 "Cannot read NVM from section %d offset %d, length %d\n",
284					 section, offset, length);
285			return ret;
286		}
287		offset += ret;
288	}
289
290	iwl_mvm_nvm_fixups(mvm, section, data, offset);
291
292	IWL_DEBUG_EEPROM(mvm->trans->dev,
293			 "NVM section %d read completed\n", section);
294	return offset;
295}
296
297static struct iwl_nvm_data *
298iwl_parse_nvm_sections(struct iwl_mvm *mvm)
299{
300	struct iwl_nvm_section *sections = mvm->nvm_sections;
301	const __le16 *hw, *sw, *calib, *regulatory, *mac_override, *phy_sku;
302	bool lar_enabled;
 
 
 
303
304	/* Checking for required sections */
305	if (mvm->trans->cfg->device_family != IWL_DEVICE_FAMILY_8000) {
306		if (!mvm->nvm_sections[NVM_SECTION_TYPE_SW].data ||
307		    !mvm->nvm_sections[mvm->cfg->nvm_hw_section_num].data) {
308			IWL_ERR(mvm, "Can't parse empty OTP/NVM sections\n");
309			return NULL;
310		}
311	} else {
 
 
 
 
 
312		/* SW and REGULATORY sections are mandatory */
313		if (!mvm->nvm_sections[NVM_SECTION_TYPE_SW].data ||
314		    !mvm->nvm_sections[NVM_SECTION_TYPE_REGULATORY].data) {
315			IWL_ERR(mvm,
316				"Can't parse empty family 8000 OTP/NVM sections\n");
317			return NULL;
318		}
319		/* MAC_OVERRIDE or at least HW section must exist */
320		if (!mvm->nvm_sections[mvm->cfg->nvm_hw_section_num].data &&
321		    !mvm->nvm_sections[NVM_SECTION_TYPE_MAC_OVERRIDE].data) {
322			IWL_ERR(mvm,
323				"Can't parse mac_address, empty sections\n");
324			return NULL;
325		}
326
327		/* PHY_SKU section is mandatory in B0 */
328		if (!mvm->nvm_sections[NVM_SECTION_TYPE_PHY_SKU].data) {
 
329			IWL_ERR(mvm,
330				"Can't parse phy_sku in B0, empty sections\n");
331			return NULL;
332		}
333	}
334
335	if (WARN_ON(!mvm->cfg))
336		return NULL;
337
338	hw = (const __le16 *)sections[mvm->cfg->nvm_hw_section_num].data;
339	sw = (const __le16 *)sections[NVM_SECTION_TYPE_SW].data;
340	calib = (const __le16 *)sections[NVM_SECTION_TYPE_CALIBRATION].data;
341	regulatory = (const __le16 *)sections[NVM_SECTION_TYPE_REGULATORY].data;
342	mac_override =
343		(const __le16 *)sections[NVM_SECTION_TYPE_MAC_OVERRIDE].data;
344	phy_sku = (const __le16 *)sections[NVM_SECTION_TYPE_PHY_SKU].data;
345
346	lar_enabled = !iwlwifi_mod_params.lar_disable &&
347		      fw_has_capa(&mvm->fw->ucode_capa,
348				  IWL_UCODE_TLV_CAPA_LAR_SUPPORT);
349
350	return iwl_parse_nvm_data(mvm->trans, mvm->cfg, hw, sw, calib,
351				  regulatory, mac_override, phy_sku,
352				  mvm->fw->valid_tx_ant, mvm->fw->valid_rx_ant,
353				  lar_enabled);
354}
355
356#define MAX_NVM_FILE_LEN	16384
 
357
358/*
359 * Reads external NVM from a file into mvm->nvm_sections
360 *
361 * HOW TO CREATE THE NVM FILE FORMAT:
362 * ------------------------------
363 * 1. create hex file, format:
364 *      3800 -> header
365 *      0000 -> header
366 *      5a40 -> data
367 *
368 *   rev - 6 bit (word1)
369 *   len - 10 bit (word1)
370 *   id - 4 bit (word2)
371 *   rsv - 12 bit (word2)
372 *
373 * 2. flip 8bits with 8 bits per line to get the right NVM file format
374 *
375 * 3. create binary file from the hex file
376 *
377 * 4. save as "iNVM_xxx.bin" under /lib/firmware
378 */
379static int iwl_mvm_read_external_nvm(struct iwl_mvm *mvm)
380{
381	int ret, section_size;
382	u16 section_id;
383	const struct firmware *fw_entry;
384	const struct {
385		__le16 word1;
386		__le16 word2;
387		u8 data[];
388	} *file_sec;
389	const u8 *eof;
390	u8 *temp;
391	int max_section_size;
392	const __le32 *dword_buff;
393
394#define NVM_WORD1_LEN(x) (8 * (x & 0x03FF))
395#define NVM_WORD2_ID(x) (x >> 12)
396#define NVM_WORD2_LEN_FAMILY_8000(x) (2 * ((x & 0xFF) << 8 | x >> 8))
397#define NVM_WORD1_ID_FAMILY_8000(x) (x >> 4)
398#define NVM_HEADER_0	(0x2A504C54)
399#define NVM_HEADER_1	(0x4E564D2A)
400#define NVM_HEADER_SIZE	(4 * sizeof(u32))
401
402	IWL_DEBUG_EEPROM(mvm->trans->dev, "Read from external NVM\n");
403
404	/* Maximal size depends on HW family and step */
405	if (mvm->trans->cfg->device_family != IWL_DEVICE_FAMILY_8000)
406		max_section_size = IWL_MAX_NVM_SECTION_SIZE;
407	else
408		max_section_size = IWL_MAX_NVM_8000_SECTION_SIZE;
409
410	/*
411	 * Obtain NVM image via request_firmware. Since we already used
412	 * request_firmware_nowait() for the firmware binary load and only
413	 * get here after that we assume the NVM request can be satisfied
414	 * synchronously.
415	 */
416	ret = request_firmware(&fw_entry, mvm->nvm_file_name,
417			       mvm->trans->dev);
418	if (ret) {
419		IWL_ERR(mvm, "ERROR: %s isn't available %d\n",
420			mvm->nvm_file_name, ret);
421		return ret;
422	}
423
424	IWL_INFO(mvm, "Loaded NVM file %s (%zu bytes)\n",
425		 mvm->nvm_file_name, fw_entry->size);
426
427	if (fw_entry->size > MAX_NVM_FILE_LEN) {
428		IWL_ERR(mvm, "NVM file too large\n");
429		ret = -EINVAL;
430		goto out;
431	}
432
433	eof = fw_entry->data + fw_entry->size;
434	dword_buff = (__le32 *)fw_entry->data;
435
436	/* some NVM file will contain a header.
437	 * The header is identified by 2 dwords header as follow:
438	 * dword[0] = 0x2A504C54
439	 * dword[1] = 0x4E564D2A
440	 *
441	 * This header must be skipped when providing the NVM data to the FW.
442	 */
443	if (fw_entry->size > NVM_HEADER_SIZE &&
444	    dword_buff[0] == cpu_to_le32(NVM_HEADER_0) &&
445	    dword_buff[1] == cpu_to_le32(NVM_HEADER_1)) {
446		file_sec = (void *)(fw_entry->data + NVM_HEADER_SIZE);
447		IWL_INFO(mvm, "NVM Version %08X\n", le32_to_cpu(dword_buff[2]));
448		IWL_INFO(mvm, "NVM Manufacturing date %08X\n",
449			 le32_to_cpu(dword_buff[3]));
450
451		/* nvm file validation, dword_buff[2] holds the file version */
452		if ((CSR_HW_REV_STEP(mvm->trans->hw_rev) == SILICON_C_STEP &&
453		     le32_to_cpu(dword_buff[2]) < 0xE4A) ||
454		    (CSR_HW_REV_STEP(mvm->trans->hw_rev) == SILICON_B_STEP &&
455		     le32_to_cpu(dword_buff[2]) >= 0xE4A)) {
456			ret = -EFAULT;
457			goto out;
458		}
459	} else {
460		file_sec = (void *)fw_entry->data;
461	}
462
463	while (true) {
464		if (file_sec->data > eof) {
465			IWL_ERR(mvm,
466				"ERROR - NVM file too short for section header\n");
467			ret = -EINVAL;
468			break;
469		}
470
471		/* check for EOF marker */
472		if (!file_sec->word1 && !file_sec->word2) {
473			ret = 0;
474			break;
475		}
476
477		if (mvm->trans->cfg->device_family != IWL_DEVICE_FAMILY_8000) {
478			section_size =
479				2 * NVM_WORD1_LEN(le16_to_cpu(file_sec->word1));
480			section_id = NVM_WORD2_ID(le16_to_cpu(file_sec->word2));
481		} else {
482			section_size = 2 * NVM_WORD2_LEN_FAMILY_8000(
483						le16_to_cpu(file_sec->word2));
484			section_id = NVM_WORD1_ID_FAMILY_8000(
485						le16_to_cpu(file_sec->word1));
486		}
487
488		if (section_size > max_section_size) {
489			IWL_ERR(mvm, "ERROR - section too large (%d)\n",
490				section_size);
491			ret = -EINVAL;
492			break;
493		}
494
495		if (!section_size) {
496			IWL_ERR(mvm, "ERROR - section empty\n");
497			ret = -EINVAL;
498			break;
499		}
500
501		if (file_sec->data + section_size > eof) {
502			IWL_ERR(mvm,
503				"ERROR - NVM file too short for section (%d bytes)\n",
504				section_size);
505			ret = -EINVAL;
506			break;
507		}
508
509		if (WARN(section_id >= NVM_MAX_NUM_SECTIONS,
510			 "Invalid NVM section ID %d\n", section_id)) {
511			ret = -EINVAL;
512			break;
513		}
514
515		temp = kmemdup(file_sec->data, section_size, GFP_KERNEL);
516		if (!temp) {
517			ret = -ENOMEM;
518			break;
519		}
520
521		iwl_mvm_nvm_fixups(mvm, section_id, temp, section_size);
522
523		kfree(mvm->nvm_sections[section_id].data);
524		mvm->nvm_sections[section_id].data = temp;
525		mvm->nvm_sections[section_id].length = section_size;
526
527		/* advance to the next section */
528		file_sec = (void *)(file_sec->data + section_size);
529	}
530out:
531	release_firmware(fw_entry);
532	return ret;
533}
534
535/* Loads the NVM data stored in mvm->nvm_sections into the NIC */
536int iwl_mvm_load_nvm_to_nic(struct iwl_mvm *mvm)
537{
538	int i, ret = 0;
539	struct iwl_nvm_section *sections = mvm->nvm_sections;
540
541	IWL_DEBUG_EEPROM(mvm->trans->dev, "'Write to NVM\n");
542
543	for (i = 0; i < ARRAY_SIZE(mvm->nvm_sections); i++) {
544		if (!mvm->nvm_sections[i].data || !mvm->nvm_sections[i].length)
545			continue;
546		ret = iwl_nvm_write_section(mvm, i, sections[i].data,
547					    sections[i].length);
548		if (ret < 0) {
549			IWL_ERR(mvm, "iwl_mvm_send_cmd failed: %d\n", ret);
550			break;
551		}
552	}
553	return ret;
554}
555
556int iwl_nvm_init(struct iwl_mvm *mvm, bool read_nvm_from_nic)
557{
558	int ret, section;
559	u32 size_read = 0;
560	u8 *nvm_buffer, *temp;
561	const char *nvm_file_B = mvm->cfg->default_nvm_file_B_step;
562	const char *nvm_file_C = mvm->cfg->default_nvm_file_C_step;
563
564	if (WARN_ON_ONCE(mvm->cfg->nvm_hw_section_num >= NVM_MAX_NUM_SECTIONS))
565		return -EINVAL;
566
567	/* load NVM values from nic */
568	if (read_nvm_from_nic) {
569		/* Read From FW NVM */
570		IWL_DEBUG_EEPROM(mvm->trans->dev, "Read from NVM\n");
571
572		nvm_buffer = kmalloc(mvm->cfg->base_params->eeprom_size,
573				     GFP_KERNEL);
574		if (!nvm_buffer)
575			return -ENOMEM;
576		for (section = 0; section < NVM_MAX_NUM_SECTIONS; section++) {
577			/* we override the constness for initial read */
578			ret = iwl_nvm_read_section(mvm, section, nvm_buffer,
579						   size_read);
580			if (ret < 0)
581				continue;
582			size_read += ret;
583			temp = kmemdup(nvm_buffer, ret, GFP_KERNEL);
584			if (!temp) {
585				ret = -ENOMEM;
586				break;
587			}
 
 
 
588
589			iwl_mvm_nvm_fixups(mvm, section, temp, ret);
590
591			mvm->nvm_sections[section].data = temp;
592			mvm->nvm_sections[section].length = ret;
593
594#ifdef CONFIG_IWLWIFI_DEBUGFS
595			switch (section) {
596			case NVM_SECTION_TYPE_SW:
597				mvm->nvm_sw_blob.data = temp;
598				mvm->nvm_sw_blob.size  = ret;
599				break;
600			case NVM_SECTION_TYPE_CALIBRATION:
601				mvm->nvm_calib_blob.data = temp;
602				mvm->nvm_calib_blob.size  = ret;
603				break;
604			case NVM_SECTION_TYPE_PRODUCTION:
605				mvm->nvm_prod_blob.data = temp;
606				mvm->nvm_prod_blob.size  = ret;
607				break;
608			case NVM_SECTION_TYPE_PHY_SKU:
609				mvm->nvm_phy_sku_blob.data = temp;
610				mvm->nvm_phy_sku_blob.size  = ret;
 
 
 
 
 
 
 
 
 
 
611				break;
612			default:
613				if (section == mvm->cfg->nvm_hw_section_num) {
614					mvm->nvm_hw_blob.data = temp;
615					mvm->nvm_hw_blob.size = ret;
616					break;
617				}
618			}
 
619#endif
620		}
621		if (!size_read)
622			IWL_ERR(mvm, "OTP is blank\n");
623		kfree(nvm_buffer);
624	}
 
 
 
625
626	/* Only if PNVM selected in the mod param - load external NVM  */
627	if (mvm->nvm_file_name) {
628		/* read External NVM file from the mod param */
629		ret = iwl_mvm_read_external_nvm(mvm);
 
630		if (ret) {
631			/* choose the nvm_file name according to the
632			 * HW step
633			 */
634			if (CSR_HW_REV_STEP(mvm->trans->hw_rev) ==
635			    SILICON_B_STEP)
636				mvm->nvm_file_name = nvm_file_B;
637			else
638				mvm->nvm_file_name = nvm_file_C;
639
640			if ((ret == -EFAULT || ret == -ENOENT) &&
641			    mvm->nvm_file_name) {
642				/* in case nvm file was failed try again */
643				ret = iwl_mvm_read_external_nvm(mvm);
 
 
644				if (ret)
645					return ret;
646			} else {
647				return ret;
648			}
649		}
650	}
651
652	/* parse the relevant nvm sections */
653	mvm->nvm_data = iwl_parse_nvm_sections(mvm);
654	if (!mvm->nvm_data)
655		return -ENODATA;
656	IWL_DEBUG_EEPROM(mvm->trans->dev, "nvm version = %x\n",
657			 mvm->nvm_data->nvm_version);
658
659	return 0;
660}
661
662struct iwl_mcc_update_resp *
663iwl_mvm_update_mcc(struct iwl_mvm *mvm, const char *alpha2,
664		   enum iwl_mcc_source src_id)
665{
666	struct iwl_mcc_update_cmd mcc_update_cmd = {
667		.mcc = cpu_to_le16(alpha2[0] << 8 | alpha2[1]),
668		.source_id = (u8)src_id,
669	};
670	struct iwl_mcc_update_resp *mcc_resp, *resp_cp = NULL;
671	struct iwl_mcc_update_resp_v1 *mcc_resp_v1 = NULL;
672	struct iwl_rx_packet *pkt;
673	struct iwl_host_cmd cmd = {
674		.id = MCC_UPDATE_CMD,
675		.flags = CMD_WANT_SKB,
676		.data = { &mcc_update_cmd },
677	};
678
679	int ret;
680	u32 status;
681	int resp_len, n_channels;
682	u16 mcc;
683	bool resp_v2 = fw_has_capa(&mvm->fw->ucode_capa,
684				   IWL_UCODE_TLV_CAPA_LAR_SUPPORT_V2);
685
686	if (WARN_ON_ONCE(!iwl_mvm_is_lar_supported(mvm)))
687		return ERR_PTR(-EOPNOTSUPP);
688
689	cmd.len[0] = sizeof(struct iwl_mcc_update_cmd);
690	if (!resp_v2)
691		cmd.len[0] = sizeof(struct iwl_mcc_update_cmd_v1);
692
693	IWL_DEBUG_LAR(mvm, "send MCC update to FW with '%c%c' src = %d\n",
694		      alpha2[0], alpha2[1], src_id);
695
696	ret = iwl_mvm_send_cmd(mvm, &cmd);
697	if (ret)
698		return ERR_PTR(ret);
699
700	pkt = cmd.resp_pkt;
701
 
 
 
702	/* Extract MCC response */
703	if (resp_v2) {
704		mcc_resp = (void *)pkt->data;
705		n_channels =  __le32_to_cpu(mcc_resp->n_channels);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
706	} else {
707		mcc_resp_v1 = (void *)pkt->data;
708		n_channels =  __le32_to_cpu(mcc_resp_v1->n_channels);
709	}
710
711	resp_len = sizeof(struct iwl_mcc_update_resp) + n_channels *
712		sizeof(__le32);
713
714	resp_cp = kzalloc(resp_len, GFP_KERNEL);
715	if (!resp_cp) {
716		ret = -ENOMEM;
717		goto exit;
718	}
719
720	if (resp_v2) {
721		memcpy(resp_cp, mcc_resp, resp_len);
722	} else {
723		resp_cp->status = mcc_resp_v1->status;
724		resp_cp->mcc = mcc_resp_v1->mcc;
725		resp_cp->cap = mcc_resp_v1->cap;
726		resp_cp->source_id = mcc_resp_v1->source_id;
727		resp_cp->n_channels = mcc_resp_v1->n_channels;
728		memcpy(resp_cp->channels, mcc_resp_v1->channels,
 
 
 
 
 
 
 
 
 
 
 
 
729		       n_channels * sizeof(__le32));
730	}
731
732	status = le32_to_cpu(resp_cp->status);
733
734	mcc = le16_to_cpu(resp_cp->mcc);
735
736	/* W/A for a FW/NVM issue - returns 0x00 for the world domain */
737	if (mcc == 0) {
738		mcc = 0x3030;  /* "00" - world */
739		resp_cp->mcc = cpu_to_le16(mcc);
740	}
741
742	IWL_DEBUG_LAR(mvm,
743		      "MCC response status: 0x%x. new MCC: 0x%x ('%c%c') change: %d n_chans: %d\n",
744		      status, mcc, mcc >> 8, mcc & 0xff,
745		      !!(status == MCC_RESP_NEW_CHAN_PROFILE), n_channels);
746
747exit:
748	iwl_free_resp(&cmd);
749	if (ret)
750		return ERR_PTR(ret);
751	return resp_cp;
752}
753
754#ifdef CONFIG_ACPI
755#define WRD_METHOD		"WRDD"
756#define WRDD_WIFI		(0x07)
757#define WRDD_WIGIG		(0x10)
758
759static u32 iwl_mvm_wrdd_get_mcc(struct iwl_mvm *mvm, union acpi_object *wrdd)
760{
761	union acpi_object *mcc_pkg, *domain_type, *mcc_value;
762	u32 i;
763
764	if (wrdd->type != ACPI_TYPE_PACKAGE ||
765	    wrdd->package.count < 2 ||
766	    wrdd->package.elements[0].type != ACPI_TYPE_INTEGER ||
767	    wrdd->package.elements[0].integer.value != 0) {
768		IWL_DEBUG_LAR(mvm, "Unsupported wrdd structure\n");
769		return 0;
770	}
771
772	for (i = 1 ; i < wrdd->package.count ; ++i) {
773		mcc_pkg = &wrdd->package.elements[i];
774
775		if (mcc_pkg->type != ACPI_TYPE_PACKAGE ||
776		    mcc_pkg->package.count < 2 ||
777		    mcc_pkg->package.elements[0].type != ACPI_TYPE_INTEGER ||
778		    mcc_pkg->package.elements[1].type != ACPI_TYPE_INTEGER) {
779			mcc_pkg = NULL;
780			continue;
781		}
782
783		domain_type = &mcc_pkg->package.elements[0];
784		if (domain_type->integer.value == WRDD_WIFI)
785			break;
786
787		mcc_pkg = NULL;
788	}
789
790	if (mcc_pkg) {
791		mcc_value = &mcc_pkg->package.elements[1];
792		return mcc_value->integer.value;
793	}
794
795	return 0;
796}
797
798static int iwl_mvm_get_bios_mcc(struct iwl_mvm *mvm, char *mcc)
799{
800	acpi_handle root_handle;
801	acpi_handle handle;
802	struct acpi_buffer wrdd = {ACPI_ALLOCATE_BUFFER, NULL};
803	acpi_status status;
804	u32 mcc_val;
805	struct pci_dev *pdev = to_pci_dev(mvm->dev);
806
807	root_handle = ACPI_HANDLE(&pdev->dev);
808	if (!root_handle) {
809		IWL_DEBUG_LAR(mvm,
810			      "Could not retrieve root port ACPI handle\n");
811		return -ENOENT;
812	}
813
814	/* Get the method's handle */
815	status = acpi_get_handle(root_handle, (acpi_string)WRD_METHOD, &handle);
816	if (ACPI_FAILURE(status)) {
817		IWL_DEBUG_LAR(mvm, "WRD method not found\n");
818		return -ENOENT;
819	}
820
821	/* Call WRDD with no arguments */
822	status = acpi_evaluate_object(handle, NULL, NULL, &wrdd);
823	if (ACPI_FAILURE(status)) {
824		IWL_DEBUG_LAR(mvm, "WRDC invocation failed (0x%x)\n", status);
825		return -ENOENT;
826	}
827
828	mcc_val = iwl_mvm_wrdd_get_mcc(mvm, wrdd.pointer);
829	kfree(wrdd.pointer);
830	if (!mcc_val)
831		return -ENOENT;
832
833	mcc[0] = (mcc_val >> 8) & 0xff;
834	mcc[1] = mcc_val & 0xff;
835	mcc[2] = '\0';
836	return 0;
837}
838#else /* CONFIG_ACPI */
839static int iwl_mvm_get_bios_mcc(struct iwl_mvm *mvm, char *mcc)
840{
841	return -ENOENT;
842}
843#endif
844
845int iwl_mvm_init_mcc(struct iwl_mvm *mvm)
846{
847	bool tlv_lar;
848	bool nvm_lar;
849	int retval;
850	struct ieee80211_regdomain *regd;
851	char mcc[3];
852
853	if (mvm->cfg->device_family == IWL_DEVICE_FAMILY_8000) {
854		tlv_lar = fw_has_capa(&mvm->fw->ucode_capa,
855				      IWL_UCODE_TLV_CAPA_LAR_SUPPORT);
856		nvm_lar = mvm->nvm_data->lar_enabled;
857		if (tlv_lar != nvm_lar)
858			IWL_INFO(mvm,
859				 "Conflict between TLV & NVM regarding enabling LAR (TLV = %s NVM =%s)\n",
860				 tlv_lar ? "enabled" : "disabled",
861				 nvm_lar ? "enabled" : "disabled");
862	}
863
864	if (!iwl_mvm_is_lar_supported(mvm))
865		return 0;
866
867	/*
868	 * try to replay the last set MCC to FW. If it doesn't exist,
869	 * queue an update to cfg80211 to retrieve the default alpha2 from FW.
870	 */
871	retval = iwl_mvm_init_fw_regd(mvm);
872	if (retval != -ENOENT)
873		return retval;
874
875	/*
876	 * Driver regulatory hint for initial update, this also informs the
877	 * firmware we support wifi location updates.
878	 * Disallow scans that might crash the FW while the LAR regdomain
879	 * is not set.
880	 */
881	mvm->lar_regdom_set = false;
882
883	regd = iwl_mvm_get_current_regdomain(mvm, NULL);
884	if (IS_ERR_OR_NULL(regd))
885		return -EIO;
886
887	if (iwl_mvm_is_wifi_mcc_supported(mvm) &&
888	    !iwl_mvm_get_bios_mcc(mvm, mcc)) {
889		kfree(regd);
890		regd = iwl_mvm_get_regdomain(mvm->hw->wiphy, mcc,
891					     MCC_SOURCE_BIOS, NULL);
892		if (IS_ERR_OR_NULL(regd))
893			return -EIO;
894	}
895
896	retval = regulatory_set_wiphy_regd_sync_rtnl(mvm->hw->wiphy, regd);
897	kfree(regd);
898	return retval;
899}
900
901void iwl_mvm_rx_chub_update_mcc(struct iwl_mvm *mvm,
902				struct iwl_rx_cmd_buffer *rxb)
903{
904	struct iwl_rx_packet *pkt = rxb_addr(rxb);
905	struct iwl_mcc_chub_notif *notif = (void *)pkt->data;
906	enum iwl_mcc_source src;
907	char mcc[3];
908	struct ieee80211_regdomain *regd;
 
909
910	lockdep_assert_held(&mvm->mutex);
911
 
 
 
 
 
912	if (WARN_ON_ONCE(!iwl_mvm_is_lar_supported(mvm)))
913		return;
914
915	mcc[0] = notif->mcc >> 8;
916	mcc[1] = notif->mcc & 0xff;
917	mcc[2] = '\0';
918	src = notif->source_id;
919
920	IWL_DEBUG_LAR(mvm,
921		      "RX: received chub update mcc cmd (mcc '%s' src %d)\n",
922		      mcc, src);
923	regd = iwl_mvm_get_regdomain(mvm->hw->wiphy, mcc, src, NULL);
924	if (IS_ERR_OR_NULL(regd))
925		return;
 
 
 
 
 
 
 
 
 
926
927	regulatory_set_wiphy_regd(mvm->hw->wiphy, regd);
928	kfree(regd);
929}