Loading...
1// SPDX-License-Identifier: GPL-2.0
2#include <linux/debugfs.h>
3#include <linux/delay.h>
4#include <linux/gpio/consumer.h>
5#include <linux/hwmon.h>
6#include <linux/i2c.h>
7#include <linux/interrupt.h>
8#include <linux/jiffies.h>
9#include <linux/mdio/mdio-i2c.h>
10#include <linux/module.h>
11#include <linux/mutex.h>
12#include <linux/of.h>
13#include <linux/phy.h>
14#include <linux/platform_device.h>
15#include <linux/rtnetlink.h>
16#include <linux/slab.h>
17#include <linux/workqueue.h>
18
19#include "sfp.h"
20#include "swphy.h"
21
22enum {
23 GPIO_MODDEF0,
24 GPIO_LOS,
25 GPIO_TX_FAULT,
26 GPIO_TX_DISABLE,
27 GPIO_RS0,
28 GPIO_RS1,
29 GPIO_MAX,
30
31 SFP_F_PRESENT = BIT(GPIO_MODDEF0),
32 SFP_F_LOS = BIT(GPIO_LOS),
33 SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
34 SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
35 SFP_F_RS0 = BIT(GPIO_RS0),
36 SFP_F_RS1 = BIT(GPIO_RS1),
37
38 SFP_F_OUTPUTS = SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1,
39
40 SFP_E_INSERT = 0,
41 SFP_E_REMOVE,
42 SFP_E_DEV_ATTACH,
43 SFP_E_DEV_DETACH,
44 SFP_E_DEV_DOWN,
45 SFP_E_DEV_UP,
46 SFP_E_TX_FAULT,
47 SFP_E_TX_CLEAR,
48 SFP_E_LOS_HIGH,
49 SFP_E_LOS_LOW,
50 SFP_E_TIMEOUT,
51
52 SFP_MOD_EMPTY = 0,
53 SFP_MOD_ERROR,
54 SFP_MOD_PROBE,
55 SFP_MOD_WAITDEV,
56 SFP_MOD_HPOWER,
57 SFP_MOD_WAITPWR,
58 SFP_MOD_PRESENT,
59
60 SFP_DEV_DETACHED = 0,
61 SFP_DEV_DOWN,
62 SFP_DEV_UP,
63
64 SFP_S_DOWN = 0,
65 SFP_S_FAIL,
66 SFP_S_WAIT,
67 SFP_S_INIT,
68 SFP_S_INIT_PHY,
69 SFP_S_INIT_TX_FAULT,
70 SFP_S_WAIT_LOS,
71 SFP_S_LINK_UP,
72 SFP_S_TX_FAULT,
73 SFP_S_REINIT,
74 SFP_S_TX_DISABLE,
75};
76
77static const char * const mod_state_strings[] = {
78 [SFP_MOD_EMPTY] = "empty",
79 [SFP_MOD_ERROR] = "error",
80 [SFP_MOD_PROBE] = "probe",
81 [SFP_MOD_WAITDEV] = "waitdev",
82 [SFP_MOD_HPOWER] = "hpower",
83 [SFP_MOD_WAITPWR] = "waitpwr",
84 [SFP_MOD_PRESENT] = "present",
85};
86
87static const char *mod_state_to_str(unsigned short mod_state)
88{
89 if (mod_state >= ARRAY_SIZE(mod_state_strings))
90 return "Unknown module state";
91 return mod_state_strings[mod_state];
92}
93
94static const char * const dev_state_strings[] = {
95 [SFP_DEV_DETACHED] = "detached",
96 [SFP_DEV_DOWN] = "down",
97 [SFP_DEV_UP] = "up",
98};
99
100static const char *dev_state_to_str(unsigned short dev_state)
101{
102 if (dev_state >= ARRAY_SIZE(dev_state_strings))
103 return "Unknown device state";
104 return dev_state_strings[dev_state];
105}
106
107static const char * const event_strings[] = {
108 [SFP_E_INSERT] = "insert",
109 [SFP_E_REMOVE] = "remove",
110 [SFP_E_DEV_ATTACH] = "dev_attach",
111 [SFP_E_DEV_DETACH] = "dev_detach",
112 [SFP_E_DEV_DOWN] = "dev_down",
113 [SFP_E_DEV_UP] = "dev_up",
114 [SFP_E_TX_FAULT] = "tx_fault",
115 [SFP_E_TX_CLEAR] = "tx_clear",
116 [SFP_E_LOS_HIGH] = "los_high",
117 [SFP_E_LOS_LOW] = "los_low",
118 [SFP_E_TIMEOUT] = "timeout",
119};
120
121static const char *event_to_str(unsigned short event)
122{
123 if (event >= ARRAY_SIZE(event_strings))
124 return "Unknown event";
125 return event_strings[event];
126}
127
128static const char * const sm_state_strings[] = {
129 [SFP_S_DOWN] = "down",
130 [SFP_S_FAIL] = "fail",
131 [SFP_S_WAIT] = "wait",
132 [SFP_S_INIT] = "init",
133 [SFP_S_INIT_PHY] = "init_phy",
134 [SFP_S_INIT_TX_FAULT] = "init_tx_fault",
135 [SFP_S_WAIT_LOS] = "wait_los",
136 [SFP_S_LINK_UP] = "link_up",
137 [SFP_S_TX_FAULT] = "tx_fault",
138 [SFP_S_REINIT] = "reinit",
139 [SFP_S_TX_DISABLE] = "tx_disable",
140};
141
142static const char *sm_state_to_str(unsigned short sm_state)
143{
144 if (sm_state >= ARRAY_SIZE(sm_state_strings))
145 return "Unknown state";
146 return sm_state_strings[sm_state];
147}
148
149static const char *gpio_names[] = {
150 "mod-def0",
151 "los",
152 "tx-fault",
153 "tx-disable",
154 "rate-select0",
155 "rate-select1",
156};
157
158static const enum gpiod_flags gpio_flags[] = {
159 GPIOD_IN,
160 GPIOD_IN,
161 GPIOD_IN,
162 GPIOD_ASIS,
163 GPIOD_ASIS,
164 GPIOD_ASIS,
165};
166
167/* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a
168 * non-cooled module to initialise its laser safety circuitry. We wait
169 * an initial T_WAIT period before we check the tx fault to give any PHY
170 * on board (for a copper SFP) time to initialise.
171 */
172#define T_WAIT msecs_to_jiffies(50)
173#define T_START_UP msecs_to_jiffies(300)
174#define T_START_UP_BAD_GPON msecs_to_jiffies(60000)
175
176/* t_reset is the time required to assert the TX_DISABLE signal to reset
177 * an indicated TX_FAULT.
178 */
179#define T_RESET_US 10
180#define T_FAULT_RECOVER msecs_to_jiffies(1000)
181
182/* N_FAULT_INIT is the number of recovery attempts at module initialisation
183 * time. If the TX_FAULT signal is not deasserted after this number of
184 * attempts at clearing it, we decide that the module is faulty.
185 * N_FAULT is the same but after the module has initialised.
186 */
187#define N_FAULT_INIT 5
188#define N_FAULT 5
189
190/* T_PHY_RETRY is the time interval between attempts to probe the PHY.
191 * R_PHY_RETRY is the number of attempts.
192 */
193#define T_PHY_RETRY msecs_to_jiffies(50)
194#define R_PHY_RETRY 25
195
196/* SFP module presence detection is poor: the three MOD DEF signals are
197 * the same length on the PCB, which means it's possible for MOD DEF 0 to
198 * connect before the I2C bus on MOD DEF 1/2.
199 *
200 * The SFF-8472 specifies t_serial ("Time from power on until module is
201 * ready for data transmission over the two wire serial bus.") as 300ms.
202 */
203#define T_SERIAL msecs_to_jiffies(300)
204#define T_HPOWER_LEVEL msecs_to_jiffies(300)
205#define T_PROBE_RETRY_INIT msecs_to_jiffies(100)
206#define R_PROBE_RETRY_INIT 10
207#define T_PROBE_RETRY_SLOW msecs_to_jiffies(5000)
208#define R_PROBE_RETRY_SLOW 12
209
210/* SFP modules appear to always have their PHY configured for bus address
211 * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
212 * RollBall SFPs access phy via SFP Enhanced Digital Diagnostic Interface
213 * via address 0x51 (mdio-i2c will use RollBall protocol on this address).
214 */
215#define SFP_PHY_ADDR 22
216#define SFP_PHY_ADDR_ROLLBALL 17
217
218/* SFP_EEPROM_BLOCK_SIZE is the size of data chunk to read the EEPROM
219 * at a time. Some SFP modules and also some Linux I2C drivers do not like
220 * reads longer than 16 bytes.
221 */
222#define SFP_EEPROM_BLOCK_SIZE 16
223
224struct sff_data {
225 unsigned int gpios;
226 bool (*module_supported)(const struct sfp_eeprom_id *id);
227};
228
229struct sfp {
230 struct device *dev;
231 struct i2c_adapter *i2c;
232 struct mii_bus *i2c_mii;
233 struct sfp_bus *sfp_bus;
234 enum mdio_i2c_proto mdio_protocol;
235 struct phy_device *mod_phy;
236 const struct sff_data *type;
237 size_t i2c_block_size;
238 u32 max_power_mW;
239
240 unsigned int (*get_state)(struct sfp *);
241 void (*set_state)(struct sfp *, unsigned int);
242 int (*read)(struct sfp *, bool, u8, void *, size_t);
243 int (*write)(struct sfp *, bool, u8, void *, size_t);
244
245 struct gpio_desc *gpio[GPIO_MAX];
246 int gpio_irq[GPIO_MAX];
247
248 bool need_poll;
249
250 /* Access rules:
251 * state_hw_drive: st_mutex held
252 * state_hw_mask: st_mutex held
253 * state_soft_mask: st_mutex held
254 * state: st_mutex held unless reading input bits
255 */
256 struct mutex st_mutex; /* Protects state */
257 unsigned int state_hw_drive;
258 unsigned int state_hw_mask;
259 unsigned int state_soft_mask;
260 unsigned int state_ignore_mask;
261 unsigned int state;
262
263 struct delayed_work poll;
264 struct delayed_work timeout;
265 struct mutex sm_mutex; /* Protects state machine */
266 unsigned char sm_mod_state;
267 unsigned char sm_mod_tries_init;
268 unsigned char sm_mod_tries;
269 unsigned char sm_dev_state;
270 unsigned short sm_state;
271 unsigned char sm_fault_retries;
272 unsigned char sm_phy_retries;
273
274 struct sfp_eeprom_id id;
275 unsigned int module_power_mW;
276 unsigned int module_t_start_up;
277 unsigned int module_t_wait;
278 unsigned int phy_t_retry;
279
280 unsigned int rate_kbd;
281 unsigned int rs_threshold_kbd;
282 unsigned int rs_state_mask;
283
284 bool have_a2;
285
286 const struct sfp_quirk *quirk;
287
288#if IS_ENABLED(CONFIG_HWMON)
289 struct sfp_diag diag;
290 struct delayed_work hwmon_probe;
291 unsigned int hwmon_tries;
292 struct device *hwmon_dev;
293 char *hwmon_name;
294#endif
295
296#if IS_ENABLED(CONFIG_DEBUG_FS)
297 struct dentry *debugfs_dir;
298#endif
299};
300
301static bool sff_module_supported(const struct sfp_eeprom_id *id)
302{
303 return id->base.phys_id == SFF8024_ID_SFF_8472 &&
304 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
305}
306
307static const struct sff_data sff_data = {
308 .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
309 .module_supported = sff_module_supported,
310};
311
312static bool sfp_module_supported(const struct sfp_eeprom_id *id)
313{
314 if (id->base.phys_id == SFF8024_ID_SFP &&
315 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP)
316 return true;
317
318 /* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored
319 * phys id SFF instead of SFP. Therefore mark this module explicitly
320 * as supported based on vendor name and pn match.
321 */
322 if (id->base.phys_id == SFF8024_ID_SFF_8472 &&
323 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP &&
324 !memcmp(id->base.vendor_name, "UBNT ", 16) &&
325 !memcmp(id->base.vendor_pn, "UF-INSTANT ", 16))
326 return true;
327
328 return false;
329}
330
331static const struct sff_data sfp_data = {
332 .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
333 SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1,
334 .module_supported = sfp_module_supported,
335};
336
337static const struct of_device_id sfp_of_match[] = {
338 { .compatible = "sff,sff", .data = &sff_data, },
339 { .compatible = "sff,sfp", .data = &sfp_data, },
340 { },
341};
342MODULE_DEVICE_TABLE(of, sfp_of_match);
343
344static void sfp_fixup_long_startup(struct sfp *sfp)
345{
346 sfp->module_t_start_up = T_START_UP_BAD_GPON;
347}
348
349static void sfp_fixup_ignore_los(struct sfp *sfp)
350{
351 /* This forces LOS to zero, so we ignore transitions */
352 sfp->state_ignore_mask |= SFP_F_LOS;
353 /* Make sure that LOS options are clear */
354 sfp->id.ext.options &= ~cpu_to_be16(SFP_OPTIONS_LOS_INVERTED |
355 SFP_OPTIONS_LOS_NORMAL);
356}
357
358static void sfp_fixup_ignore_tx_fault(struct sfp *sfp)
359{
360 sfp->state_ignore_mask |= SFP_F_TX_FAULT;
361}
362
363static void sfp_fixup_nokia(struct sfp *sfp)
364{
365 sfp_fixup_long_startup(sfp);
366 sfp_fixup_ignore_los(sfp);
367}
368
369// For 10GBASE-T short-reach modules
370static void sfp_fixup_10gbaset_30m(struct sfp *sfp)
371{
372 sfp->id.base.connector = SFF8024_CONNECTOR_RJ45;
373 sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SR;
374}
375
376static void sfp_fixup_rollball(struct sfp *sfp)
377{
378 sfp->mdio_protocol = MDIO_I2C_ROLLBALL;
379
380 /* RollBall modules may disallow access to PHY registers for up to 25
381 * seconds, and the reads return 0xffff before that. Increase the time
382 * between PHY probe retries from 50ms to 1s so that we will wait for
383 * the PHY for a sufficient amount of time.
384 */
385 sfp->phy_t_retry = msecs_to_jiffies(1000);
386}
387
388static void sfp_fixup_fs_10gt(struct sfp *sfp)
389{
390 sfp_fixup_10gbaset_30m(sfp);
391 sfp_fixup_rollball(sfp);
392
393 /* The RollBall fixup is not enough for FS modules, the AQR chip inside
394 * them does not return 0xffff for PHY ID registers in all MMDs for the
395 * while initializing. They need a 4 second wait before accessing PHY.
396 */
397 sfp->module_t_wait = msecs_to_jiffies(4000);
398}
399
400static void sfp_fixup_halny_gsfp(struct sfp *sfp)
401{
402 /* Ignore the TX_FAULT and LOS signals on this module.
403 * these are possibly used for other purposes on this
404 * module, e.g. a serial port.
405 */
406 sfp->state_hw_mask &= ~(SFP_F_TX_FAULT | SFP_F_LOS);
407}
408
409static void sfp_fixup_rollball_cc(struct sfp *sfp)
410{
411 sfp_fixup_rollball(sfp);
412
413 /* Some RollBall SFPs may have wrong (zero) extended compliance code
414 * burned in EEPROM. For PHY probing we need the correct one.
415 */
416 sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SFI;
417}
418
419static void sfp_quirk_2500basex(const struct sfp_eeprom_id *id,
420 unsigned long *modes,
421 unsigned long *interfaces)
422{
423 linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseX_Full_BIT, modes);
424 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
425}
426
427static void sfp_quirk_disable_autoneg(const struct sfp_eeprom_id *id,
428 unsigned long *modes,
429 unsigned long *interfaces)
430{
431 linkmode_clear_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, modes);
432}
433
434static void sfp_quirk_oem_2_5g(const struct sfp_eeprom_id *id,
435 unsigned long *modes,
436 unsigned long *interfaces)
437{
438 /* Copper 2.5G SFP */
439 linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseT_Full_BIT, modes);
440 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
441 sfp_quirk_disable_autoneg(id, modes, interfaces);
442}
443
444static void sfp_quirk_ubnt_uf_instant(const struct sfp_eeprom_id *id,
445 unsigned long *modes,
446 unsigned long *interfaces)
447{
448 /* Ubiquiti U-Fiber Instant module claims that support all transceiver
449 * types including 10G Ethernet which is not truth. So clear all claimed
450 * modes and set only one mode which module supports: 1000baseX_Full.
451 */
452 linkmode_zero(modes);
453 linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, modes);
454}
455
456#define SFP_QUIRK(_v, _p, _m, _f) \
457 { .vendor = _v, .part = _p, .modes = _m, .fixup = _f, }
458#define SFP_QUIRK_M(_v, _p, _m) SFP_QUIRK(_v, _p, _m, NULL)
459#define SFP_QUIRK_F(_v, _p, _f) SFP_QUIRK(_v, _p, NULL, _f)
460
461static const struct sfp_quirk sfp_quirks[] = {
462 // Alcatel Lucent G-010S-P can operate at 2500base-X, but incorrectly
463 // report 2500MBd NRZ in their EEPROM
464 SFP_QUIRK_M("ALCATELLUCENT", "G010SP", sfp_quirk_2500basex),
465
466 // Alcatel Lucent G-010S-A can operate at 2500base-X, but report 3.2GBd
467 // NRZ in their EEPROM
468 SFP_QUIRK("ALCATELLUCENT", "3FE46541AA", sfp_quirk_2500basex,
469 sfp_fixup_nokia),
470
471 // Fiberstore SFP-10G-T doesn't identify as copper, and uses the
472 // Rollball protocol to talk to the PHY.
473 SFP_QUIRK_F("FS", "SFP-10G-T", sfp_fixup_fs_10gt),
474
475 // Fiberstore GPON-ONU-34-20BI can operate at 2500base-X, but report 1.2GBd
476 // NRZ in their EEPROM
477 SFP_QUIRK("FS", "GPON-ONU-34-20BI", sfp_quirk_2500basex,
478 sfp_fixup_ignore_tx_fault),
479
480 SFP_QUIRK_F("HALNy", "HL-GSFP", sfp_fixup_halny_gsfp),
481
482 // HG MXPD-483II-F 2.5G supports 2500Base-X, but incorrectly reports
483 // 2600MBd in their EERPOM
484 SFP_QUIRK_M("HG GENUINE", "MXPD-483II", sfp_quirk_2500basex),
485
486 // Huawei MA5671A can operate at 2500base-X, but report 1.2GBd NRZ in
487 // their EEPROM
488 SFP_QUIRK("HUAWEI", "MA5671A", sfp_quirk_2500basex,
489 sfp_fixup_ignore_tx_fault),
490
491 // FS 2.5G Base-T
492 SFP_QUIRK_M("FS", "SFP-2.5G-T", sfp_quirk_oem_2_5g),
493
494 // Lantech 8330-262D-E can operate at 2500base-X, but incorrectly report
495 // 2500MBd NRZ in their EEPROM
496 SFP_QUIRK_M("Lantech", "8330-262D-E", sfp_quirk_2500basex),
497
498 SFP_QUIRK_M("UBNT", "UF-INSTANT", sfp_quirk_ubnt_uf_instant),
499
500 // Walsun HXSX-ATR[CI]-1 don't identify as copper, and use the
501 // Rollball protocol to talk to the PHY.
502 SFP_QUIRK_F("Walsun", "HXSX-ATRC-1", sfp_fixup_fs_10gt),
503 SFP_QUIRK_F("Walsun", "HXSX-ATRI-1", sfp_fixup_fs_10gt),
504
505 SFP_QUIRK_F("OEM", "SFP-10G-T", sfp_fixup_rollball_cc),
506 SFP_QUIRK_M("OEM", "SFP-2.5G-T", sfp_quirk_oem_2_5g),
507 SFP_QUIRK_F("OEM", "RTSFP-10", sfp_fixup_rollball_cc),
508 SFP_QUIRK_F("OEM", "RTSFP-10G", sfp_fixup_rollball_cc),
509 SFP_QUIRK_F("Turris", "RTSFP-10", sfp_fixup_rollball),
510 SFP_QUIRK_F("Turris", "RTSFP-10G", sfp_fixup_rollball),
511};
512
513static size_t sfp_strlen(const char *str, size_t maxlen)
514{
515 size_t size, i;
516
517 /* Trailing characters should be filled with space chars, but
518 * some manufacturers can't read SFF-8472 and use NUL.
519 */
520 for (i = 0, size = 0; i < maxlen; i++)
521 if (str[i] != ' ' && str[i] != '\0')
522 size = i + 1;
523
524 return size;
525}
526
527static bool sfp_match(const char *qs, const char *str, size_t len)
528{
529 if (!qs)
530 return true;
531 if (strlen(qs) != len)
532 return false;
533 return !strncmp(qs, str, len);
534}
535
536static const struct sfp_quirk *sfp_lookup_quirk(const struct sfp_eeprom_id *id)
537{
538 const struct sfp_quirk *q;
539 unsigned int i;
540 size_t vs, ps;
541
542 vs = sfp_strlen(id->base.vendor_name, ARRAY_SIZE(id->base.vendor_name));
543 ps = sfp_strlen(id->base.vendor_pn, ARRAY_SIZE(id->base.vendor_pn));
544
545 for (i = 0, q = sfp_quirks; i < ARRAY_SIZE(sfp_quirks); i++, q++)
546 if (sfp_match(q->vendor, id->base.vendor_name, vs) &&
547 sfp_match(q->part, id->base.vendor_pn, ps))
548 return q;
549
550 return NULL;
551}
552
553static unsigned long poll_jiffies;
554
555static unsigned int sfp_gpio_get_state(struct sfp *sfp)
556{
557 unsigned int i, state, v;
558
559 for (i = state = 0; i < GPIO_MAX; i++) {
560 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
561 continue;
562
563 v = gpiod_get_value_cansleep(sfp->gpio[i]);
564 if (v)
565 state |= BIT(i);
566 }
567
568 return state;
569}
570
571static unsigned int sff_gpio_get_state(struct sfp *sfp)
572{
573 return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
574}
575
576static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
577{
578 unsigned int drive;
579
580 if (state & SFP_F_PRESENT)
581 /* If the module is present, drive the requested signals */
582 drive = sfp->state_hw_drive;
583 else
584 /* Otherwise, let them float to the pull-ups */
585 drive = 0;
586
587 if (sfp->gpio[GPIO_TX_DISABLE]) {
588 if (drive & SFP_F_TX_DISABLE)
589 gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
590 state & SFP_F_TX_DISABLE);
591 else
592 gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
593 }
594
595 if (sfp->gpio[GPIO_RS0]) {
596 if (drive & SFP_F_RS0)
597 gpiod_direction_output(sfp->gpio[GPIO_RS0],
598 state & SFP_F_RS0);
599 else
600 gpiod_direction_input(sfp->gpio[GPIO_RS0]);
601 }
602
603 if (sfp->gpio[GPIO_RS1]) {
604 if (drive & SFP_F_RS1)
605 gpiod_direction_output(sfp->gpio[GPIO_RS1],
606 state & SFP_F_RS1);
607 else
608 gpiod_direction_input(sfp->gpio[GPIO_RS1]);
609 }
610}
611
612static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
613 size_t len)
614{
615 struct i2c_msg msgs[2];
616 u8 bus_addr = a2 ? 0x51 : 0x50;
617 size_t block_size = sfp->i2c_block_size;
618 size_t this_len;
619 int ret;
620
621 msgs[0].addr = bus_addr;
622 msgs[0].flags = 0;
623 msgs[0].len = 1;
624 msgs[0].buf = &dev_addr;
625 msgs[1].addr = bus_addr;
626 msgs[1].flags = I2C_M_RD;
627 msgs[1].len = len;
628 msgs[1].buf = buf;
629
630 while (len) {
631 this_len = len;
632 if (this_len > block_size)
633 this_len = block_size;
634
635 msgs[1].len = this_len;
636
637 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
638 if (ret < 0)
639 return ret;
640
641 if (ret != ARRAY_SIZE(msgs))
642 break;
643
644 msgs[1].buf += this_len;
645 dev_addr += this_len;
646 len -= this_len;
647 }
648
649 return msgs[1].buf - (u8 *)buf;
650}
651
652static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
653 size_t len)
654{
655 struct i2c_msg msgs[1];
656 u8 bus_addr = a2 ? 0x51 : 0x50;
657 int ret;
658
659 msgs[0].addr = bus_addr;
660 msgs[0].flags = 0;
661 msgs[0].len = 1 + len;
662 msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
663 if (!msgs[0].buf)
664 return -ENOMEM;
665
666 msgs[0].buf[0] = dev_addr;
667 memcpy(&msgs[0].buf[1], buf, len);
668
669 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
670
671 kfree(msgs[0].buf);
672
673 if (ret < 0)
674 return ret;
675
676 return ret == ARRAY_SIZE(msgs) ? len : 0;
677}
678
679static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
680{
681 if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
682 return -EINVAL;
683
684 sfp->i2c = i2c;
685 sfp->read = sfp_i2c_read;
686 sfp->write = sfp_i2c_write;
687
688 return 0;
689}
690
691static int sfp_i2c_mdiobus_create(struct sfp *sfp)
692{
693 struct mii_bus *i2c_mii;
694 int ret;
695
696 i2c_mii = mdio_i2c_alloc(sfp->dev, sfp->i2c, sfp->mdio_protocol);
697 if (IS_ERR(i2c_mii))
698 return PTR_ERR(i2c_mii);
699
700 i2c_mii->name = "SFP I2C Bus";
701 i2c_mii->phy_mask = ~0;
702
703 ret = mdiobus_register(i2c_mii);
704 if (ret < 0) {
705 mdiobus_free(i2c_mii);
706 return ret;
707 }
708
709 sfp->i2c_mii = i2c_mii;
710
711 return 0;
712}
713
714static void sfp_i2c_mdiobus_destroy(struct sfp *sfp)
715{
716 mdiobus_unregister(sfp->i2c_mii);
717 sfp->i2c_mii = NULL;
718}
719
720/* Interface */
721static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
722{
723 return sfp->read(sfp, a2, addr, buf, len);
724}
725
726static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
727{
728 return sfp->write(sfp, a2, addr, buf, len);
729}
730
731static int sfp_modify_u8(struct sfp *sfp, bool a2, u8 addr, u8 mask, u8 val)
732{
733 int ret;
734 u8 old, v;
735
736 ret = sfp_read(sfp, a2, addr, &old, sizeof(old));
737 if (ret != sizeof(old))
738 return ret;
739
740 v = (old & ~mask) | (val & mask);
741 if (v == old)
742 return sizeof(v);
743
744 return sfp_write(sfp, a2, addr, &v, sizeof(v));
745}
746
747static unsigned int sfp_soft_get_state(struct sfp *sfp)
748{
749 unsigned int state = 0;
750 u8 status;
751 int ret;
752
753 ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status));
754 if (ret == sizeof(status)) {
755 if (status & SFP_STATUS_RX_LOS)
756 state |= SFP_F_LOS;
757 if (status & SFP_STATUS_TX_FAULT)
758 state |= SFP_F_TX_FAULT;
759 } else {
760 dev_err_ratelimited(sfp->dev,
761 "failed to read SFP soft status: %pe\n",
762 ERR_PTR(ret));
763 /* Preserve the current state */
764 state = sfp->state;
765 }
766
767 return state & sfp->state_soft_mask;
768}
769
770static void sfp_soft_set_state(struct sfp *sfp, unsigned int state,
771 unsigned int soft)
772{
773 u8 mask = 0;
774 u8 val = 0;
775
776 if (soft & SFP_F_TX_DISABLE)
777 mask |= SFP_STATUS_TX_DISABLE_FORCE;
778 if (state & SFP_F_TX_DISABLE)
779 val |= SFP_STATUS_TX_DISABLE_FORCE;
780
781 if (soft & SFP_F_RS0)
782 mask |= SFP_STATUS_RS0_SELECT;
783 if (state & SFP_F_RS0)
784 val |= SFP_STATUS_RS0_SELECT;
785
786 if (mask)
787 sfp_modify_u8(sfp, true, SFP_STATUS, mask, val);
788
789 val = mask = 0;
790 if (soft & SFP_F_RS1)
791 mask |= SFP_EXT_STATUS_RS1_SELECT;
792 if (state & SFP_F_RS1)
793 val |= SFP_EXT_STATUS_RS1_SELECT;
794
795 if (mask)
796 sfp_modify_u8(sfp, true, SFP_EXT_STATUS, mask, val);
797}
798
799static void sfp_soft_start_poll(struct sfp *sfp)
800{
801 const struct sfp_eeprom_id *id = &sfp->id;
802 unsigned int mask = 0;
803
804 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE)
805 mask |= SFP_F_TX_DISABLE;
806 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT)
807 mask |= SFP_F_TX_FAULT;
808 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS)
809 mask |= SFP_F_LOS;
810 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RATE_SELECT)
811 mask |= sfp->rs_state_mask;
812
813 mutex_lock(&sfp->st_mutex);
814 // Poll the soft state for hardware pins we want to ignore
815 sfp->state_soft_mask = ~sfp->state_hw_mask & ~sfp->state_ignore_mask &
816 mask;
817
818 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) &&
819 !sfp->need_poll)
820 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
821 mutex_unlock(&sfp->st_mutex);
822}
823
824static void sfp_soft_stop_poll(struct sfp *sfp)
825{
826 mutex_lock(&sfp->st_mutex);
827 sfp->state_soft_mask = 0;
828 mutex_unlock(&sfp->st_mutex);
829}
830
831/* sfp_get_state() - must be called with st_mutex held, or in the
832 * initialisation path.
833 */
834static unsigned int sfp_get_state(struct sfp *sfp)
835{
836 unsigned int soft = sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT);
837 unsigned int state;
838
839 state = sfp->get_state(sfp) & sfp->state_hw_mask;
840 if (state & SFP_F_PRESENT && soft)
841 state |= sfp_soft_get_state(sfp);
842
843 return state;
844}
845
846/* sfp_set_state() - must be called with st_mutex held, or in the
847 * initialisation path.
848 */
849static void sfp_set_state(struct sfp *sfp, unsigned int state)
850{
851 unsigned int soft;
852
853 sfp->set_state(sfp, state);
854
855 soft = sfp->state_soft_mask & SFP_F_OUTPUTS;
856 if (state & SFP_F_PRESENT && soft)
857 sfp_soft_set_state(sfp, state, soft);
858}
859
860static void sfp_mod_state(struct sfp *sfp, unsigned int mask, unsigned int set)
861{
862 mutex_lock(&sfp->st_mutex);
863 sfp->state = (sfp->state & ~mask) | set;
864 sfp_set_state(sfp, sfp->state);
865 mutex_unlock(&sfp->st_mutex);
866}
867
868static unsigned int sfp_check(void *buf, size_t len)
869{
870 u8 *p, check;
871
872 for (p = buf, check = 0; len; p++, len--)
873 check += *p;
874
875 return check;
876}
877
878/* hwmon */
879#if IS_ENABLED(CONFIG_HWMON)
880static umode_t sfp_hwmon_is_visible(const void *data,
881 enum hwmon_sensor_types type,
882 u32 attr, int channel)
883{
884 const struct sfp *sfp = data;
885
886 switch (type) {
887 case hwmon_temp:
888 switch (attr) {
889 case hwmon_temp_min_alarm:
890 case hwmon_temp_max_alarm:
891 case hwmon_temp_lcrit_alarm:
892 case hwmon_temp_crit_alarm:
893 case hwmon_temp_min:
894 case hwmon_temp_max:
895 case hwmon_temp_lcrit:
896 case hwmon_temp_crit:
897 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
898 return 0;
899 fallthrough;
900 case hwmon_temp_input:
901 case hwmon_temp_label:
902 return 0444;
903 default:
904 return 0;
905 }
906 case hwmon_in:
907 switch (attr) {
908 case hwmon_in_min_alarm:
909 case hwmon_in_max_alarm:
910 case hwmon_in_lcrit_alarm:
911 case hwmon_in_crit_alarm:
912 case hwmon_in_min:
913 case hwmon_in_max:
914 case hwmon_in_lcrit:
915 case hwmon_in_crit:
916 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
917 return 0;
918 fallthrough;
919 case hwmon_in_input:
920 case hwmon_in_label:
921 return 0444;
922 default:
923 return 0;
924 }
925 case hwmon_curr:
926 switch (attr) {
927 case hwmon_curr_min_alarm:
928 case hwmon_curr_max_alarm:
929 case hwmon_curr_lcrit_alarm:
930 case hwmon_curr_crit_alarm:
931 case hwmon_curr_min:
932 case hwmon_curr_max:
933 case hwmon_curr_lcrit:
934 case hwmon_curr_crit:
935 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
936 return 0;
937 fallthrough;
938 case hwmon_curr_input:
939 case hwmon_curr_label:
940 return 0444;
941 default:
942 return 0;
943 }
944 case hwmon_power:
945 /* External calibration of receive power requires
946 * floating point arithmetic. Doing that in the kernel
947 * is not easy, so just skip it. If the module does
948 * not require external calibration, we can however
949 * show receiver power, since FP is then not needed.
950 */
951 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
952 channel == 1)
953 return 0;
954 switch (attr) {
955 case hwmon_power_min_alarm:
956 case hwmon_power_max_alarm:
957 case hwmon_power_lcrit_alarm:
958 case hwmon_power_crit_alarm:
959 case hwmon_power_min:
960 case hwmon_power_max:
961 case hwmon_power_lcrit:
962 case hwmon_power_crit:
963 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
964 return 0;
965 fallthrough;
966 case hwmon_power_input:
967 case hwmon_power_label:
968 return 0444;
969 default:
970 return 0;
971 }
972 default:
973 return 0;
974 }
975}
976
977static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
978{
979 __be16 val;
980 int err;
981
982 err = sfp_read(sfp, true, reg, &val, sizeof(val));
983 if (err < 0)
984 return err;
985
986 *value = be16_to_cpu(val);
987
988 return 0;
989}
990
991static void sfp_hwmon_to_rx_power(long *value)
992{
993 *value = DIV_ROUND_CLOSEST(*value, 10);
994}
995
996static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
997 long *value)
998{
999 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
1000 *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
1001}
1002
1003static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
1004{
1005 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
1006 be16_to_cpu(sfp->diag.cal_t_offset), value);
1007
1008 if (*value >= 0x8000)
1009 *value -= 0x10000;
1010
1011 *value = DIV_ROUND_CLOSEST(*value * 1000, 256);
1012}
1013
1014static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
1015{
1016 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
1017 be16_to_cpu(sfp->diag.cal_v_offset), value);
1018
1019 *value = DIV_ROUND_CLOSEST(*value, 10);
1020}
1021
1022static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
1023{
1024 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
1025 be16_to_cpu(sfp->diag.cal_txi_offset), value);
1026
1027 *value = DIV_ROUND_CLOSEST(*value, 500);
1028}
1029
1030static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
1031{
1032 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
1033 be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
1034
1035 *value = DIV_ROUND_CLOSEST(*value, 10);
1036}
1037
1038static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
1039{
1040 int err;
1041
1042 err = sfp_hwmon_read_sensor(sfp, reg, value);
1043 if (err < 0)
1044 return err;
1045
1046 sfp_hwmon_calibrate_temp(sfp, value);
1047
1048 return 0;
1049}
1050
1051static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
1052{
1053 int err;
1054
1055 err = sfp_hwmon_read_sensor(sfp, reg, value);
1056 if (err < 0)
1057 return err;
1058
1059 sfp_hwmon_calibrate_vcc(sfp, value);
1060
1061 return 0;
1062}
1063
1064static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
1065{
1066 int err;
1067
1068 err = sfp_hwmon_read_sensor(sfp, reg, value);
1069 if (err < 0)
1070 return err;
1071
1072 sfp_hwmon_calibrate_bias(sfp, value);
1073
1074 return 0;
1075}
1076
1077static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
1078{
1079 int err;
1080
1081 err = sfp_hwmon_read_sensor(sfp, reg, value);
1082 if (err < 0)
1083 return err;
1084
1085 sfp_hwmon_calibrate_tx_power(sfp, value);
1086
1087 return 0;
1088}
1089
1090static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
1091{
1092 int err;
1093
1094 err = sfp_hwmon_read_sensor(sfp, reg, value);
1095 if (err < 0)
1096 return err;
1097
1098 sfp_hwmon_to_rx_power(value);
1099
1100 return 0;
1101}
1102
1103static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
1104{
1105 u8 status;
1106 int err;
1107
1108 switch (attr) {
1109 case hwmon_temp_input:
1110 return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
1111
1112 case hwmon_temp_lcrit:
1113 *value = be16_to_cpu(sfp->diag.temp_low_alarm);
1114 sfp_hwmon_calibrate_temp(sfp, value);
1115 return 0;
1116
1117 case hwmon_temp_min:
1118 *value = be16_to_cpu(sfp->diag.temp_low_warn);
1119 sfp_hwmon_calibrate_temp(sfp, value);
1120 return 0;
1121 case hwmon_temp_max:
1122 *value = be16_to_cpu(sfp->diag.temp_high_warn);
1123 sfp_hwmon_calibrate_temp(sfp, value);
1124 return 0;
1125
1126 case hwmon_temp_crit:
1127 *value = be16_to_cpu(sfp->diag.temp_high_alarm);
1128 sfp_hwmon_calibrate_temp(sfp, value);
1129 return 0;
1130
1131 case hwmon_temp_lcrit_alarm:
1132 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1133 if (err < 0)
1134 return err;
1135
1136 *value = !!(status & SFP_ALARM0_TEMP_LOW);
1137 return 0;
1138
1139 case hwmon_temp_min_alarm:
1140 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1141 if (err < 0)
1142 return err;
1143
1144 *value = !!(status & SFP_WARN0_TEMP_LOW);
1145 return 0;
1146
1147 case hwmon_temp_max_alarm:
1148 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1149 if (err < 0)
1150 return err;
1151
1152 *value = !!(status & SFP_WARN0_TEMP_HIGH);
1153 return 0;
1154
1155 case hwmon_temp_crit_alarm:
1156 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1157 if (err < 0)
1158 return err;
1159
1160 *value = !!(status & SFP_ALARM0_TEMP_HIGH);
1161 return 0;
1162 default:
1163 return -EOPNOTSUPP;
1164 }
1165
1166 return -EOPNOTSUPP;
1167}
1168
1169static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
1170{
1171 u8 status;
1172 int err;
1173
1174 switch (attr) {
1175 case hwmon_in_input:
1176 return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
1177
1178 case hwmon_in_lcrit:
1179 *value = be16_to_cpu(sfp->diag.volt_low_alarm);
1180 sfp_hwmon_calibrate_vcc(sfp, value);
1181 return 0;
1182
1183 case hwmon_in_min:
1184 *value = be16_to_cpu(sfp->diag.volt_low_warn);
1185 sfp_hwmon_calibrate_vcc(sfp, value);
1186 return 0;
1187
1188 case hwmon_in_max:
1189 *value = be16_to_cpu(sfp->diag.volt_high_warn);
1190 sfp_hwmon_calibrate_vcc(sfp, value);
1191 return 0;
1192
1193 case hwmon_in_crit:
1194 *value = be16_to_cpu(sfp->diag.volt_high_alarm);
1195 sfp_hwmon_calibrate_vcc(sfp, value);
1196 return 0;
1197
1198 case hwmon_in_lcrit_alarm:
1199 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1200 if (err < 0)
1201 return err;
1202
1203 *value = !!(status & SFP_ALARM0_VCC_LOW);
1204 return 0;
1205
1206 case hwmon_in_min_alarm:
1207 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1208 if (err < 0)
1209 return err;
1210
1211 *value = !!(status & SFP_WARN0_VCC_LOW);
1212 return 0;
1213
1214 case hwmon_in_max_alarm:
1215 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1216 if (err < 0)
1217 return err;
1218
1219 *value = !!(status & SFP_WARN0_VCC_HIGH);
1220 return 0;
1221
1222 case hwmon_in_crit_alarm:
1223 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1224 if (err < 0)
1225 return err;
1226
1227 *value = !!(status & SFP_ALARM0_VCC_HIGH);
1228 return 0;
1229 default:
1230 return -EOPNOTSUPP;
1231 }
1232
1233 return -EOPNOTSUPP;
1234}
1235
1236static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
1237{
1238 u8 status;
1239 int err;
1240
1241 switch (attr) {
1242 case hwmon_curr_input:
1243 return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
1244
1245 case hwmon_curr_lcrit:
1246 *value = be16_to_cpu(sfp->diag.bias_low_alarm);
1247 sfp_hwmon_calibrate_bias(sfp, value);
1248 return 0;
1249
1250 case hwmon_curr_min:
1251 *value = be16_to_cpu(sfp->diag.bias_low_warn);
1252 sfp_hwmon_calibrate_bias(sfp, value);
1253 return 0;
1254
1255 case hwmon_curr_max:
1256 *value = be16_to_cpu(sfp->diag.bias_high_warn);
1257 sfp_hwmon_calibrate_bias(sfp, value);
1258 return 0;
1259
1260 case hwmon_curr_crit:
1261 *value = be16_to_cpu(sfp->diag.bias_high_alarm);
1262 sfp_hwmon_calibrate_bias(sfp, value);
1263 return 0;
1264
1265 case hwmon_curr_lcrit_alarm:
1266 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1267 if (err < 0)
1268 return err;
1269
1270 *value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
1271 return 0;
1272
1273 case hwmon_curr_min_alarm:
1274 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1275 if (err < 0)
1276 return err;
1277
1278 *value = !!(status & SFP_WARN0_TX_BIAS_LOW);
1279 return 0;
1280
1281 case hwmon_curr_max_alarm:
1282 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1283 if (err < 0)
1284 return err;
1285
1286 *value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
1287 return 0;
1288
1289 case hwmon_curr_crit_alarm:
1290 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1291 if (err < 0)
1292 return err;
1293
1294 *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
1295 return 0;
1296 default:
1297 return -EOPNOTSUPP;
1298 }
1299
1300 return -EOPNOTSUPP;
1301}
1302
1303static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
1304{
1305 u8 status;
1306 int err;
1307
1308 switch (attr) {
1309 case hwmon_power_input:
1310 return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
1311
1312 case hwmon_power_lcrit:
1313 *value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
1314 sfp_hwmon_calibrate_tx_power(sfp, value);
1315 return 0;
1316
1317 case hwmon_power_min:
1318 *value = be16_to_cpu(sfp->diag.txpwr_low_warn);
1319 sfp_hwmon_calibrate_tx_power(sfp, value);
1320 return 0;
1321
1322 case hwmon_power_max:
1323 *value = be16_to_cpu(sfp->diag.txpwr_high_warn);
1324 sfp_hwmon_calibrate_tx_power(sfp, value);
1325 return 0;
1326
1327 case hwmon_power_crit:
1328 *value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
1329 sfp_hwmon_calibrate_tx_power(sfp, value);
1330 return 0;
1331
1332 case hwmon_power_lcrit_alarm:
1333 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1334 if (err < 0)
1335 return err;
1336
1337 *value = !!(status & SFP_ALARM0_TXPWR_LOW);
1338 return 0;
1339
1340 case hwmon_power_min_alarm:
1341 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1342 if (err < 0)
1343 return err;
1344
1345 *value = !!(status & SFP_WARN0_TXPWR_LOW);
1346 return 0;
1347
1348 case hwmon_power_max_alarm:
1349 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1350 if (err < 0)
1351 return err;
1352
1353 *value = !!(status & SFP_WARN0_TXPWR_HIGH);
1354 return 0;
1355
1356 case hwmon_power_crit_alarm:
1357 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1358 if (err < 0)
1359 return err;
1360
1361 *value = !!(status & SFP_ALARM0_TXPWR_HIGH);
1362 return 0;
1363 default:
1364 return -EOPNOTSUPP;
1365 }
1366
1367 return -EOPNOTSUPP;
1368}
1369
1370static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
1371{
1372 u8 status;
1373 int err;
1374
1375 switch (attr) {
1376 case hwmon_power_input:
1377 return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
1378
1379 case hwmon_power_lcrit:
1380 *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
1381 sfp_hwmon_to_rx_power(value);
1382 return 0;
1383
1384 case hwmon_power_min:
1385 *value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
1386 sfp_hwmon_to_rx_power(value);
1387 return 0;
1388
1389 case hwmon_power_max:
1390 *value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
1391 sfp_hwmon_to_rx_power(value);
1392 return 0;
1393
1394 case hwmon_power_crit:
1395 *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
1396 sfp_hwmon_to_rx_power(value);
1397 return 0;
1398
1399 case hwmon_power_lcrit_alarm:
1400 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1401 if (err < 0)
1402 return err;
1403
1404 *value = !!(status & SFP_ALARM1_RXPWR_LOW);
1405 return 0;
1406
1407 case hwmon_power_min_alarm:
1408 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1409 if (err < 0)
1410 return err;
1411
1412 *value = !!(status & SFP_WARN1_RXPWR_LOW);
1413 return 0;
1414
1415 case hwmon_power_max_alarm:
1416 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1417 if (err < 0)
1418 return err;
1419
1420 *value = !!(status & SFP_WARN1_RXPWR_HIGH);
1421 return 0;
1422
1423 case hwmon_power_crit_alarm:
1424 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1425 if (err < 0)
1426 return err;
1427
1428 *value = !!(status & SFP_ALARM1_RXPWR_HIGH);
1429 return 0;
1430 default:
1431 return -EOPNOTSUPP;
1432 }
1433
1434 return -EOPNOTSUPP;
1435}
1436
1437static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
1438 u32 attr, int channel, long *value)
1439{
1440 struct sfp *sfp = dev_get_drvdata(dev);
1441
1442 switch (type) {
1443 case hwmon_temp:
1444 return sfp_hwmon_temp(sfp, attr, value);
1445 case hwmon_in:
1446 return sfp_hwmon_vcc(sfp, attr, value);
1447 case hwmon_curr:
1448 return sfp_hwmon_bias(sfp, attr, value);
1449 case hwmon_power:
1450 switch (channel) {
1451 case 0:
1452 return sfp_hwmon_tx_power(sfp, attr, value);
1453 case 1:
1454 return sfp_hwmon_rx_power(sfp, attr, value);
1455 default:
1456 return -EOPNOTSUPP;
1457 }
1458 default:
1459 return -EOPNOTSUPP;
1460 }
1461}
1462
1463static const char *const sfp_hwmon_power_labels[] = {
1464 "TX_power",
1465 "RX_power",
1466};
1467
1468static int sfp_hwmon_read_string(struct device *dev,
1469 enum hwmon_sensor_types type,
1470 u32 attr, int channel, const char **str)
1471{
1472 switch (type) {
1473 case hwmon_curr:
1474 switch (attr) {
1475 case hwmon_curr_label:
1476 *str = "bias";
1477 return 0;
1478 default:
1479 return -EOPNOTSUPP;
1480 }
1481 break;
1482 case hwmon_temp:
1483 switch (attr) {
1484 case hwmon_temp_label:
1485 *str = "temperature";
1486 return 0;
1487 default:
1488 return -EOPNOTSUPP;
1489 }
1490 break;
1491 case hwmon_in:
1492 switch (attr) {
1493 case hwmon_in_label:
1494 *str = "VCC";
1495 return 0;
1496 default:
1497 return -EOPNOTSUPP;
1498 }
1499 break;
1500 case hwmon_power:
1501 switch (attr) {
1502 case hwmon_power_label:
1503 *str = sfp_hwmon_power_labels[channel];
1504 return 0;
1505 default:
1506 return -EOPNOTSUPP;
1507 }
1508 break;
1509 default:
1510 return -EOPNOTSUPP;
1511 }
1512
1513 return -EOPNOTSUPP;
1514}
1515
1516static const struct hwmon_ops sfp_hwmon_ops = {
1517 .is_visible = sfp_hwmon_is_visible,
1518 .read = sfp_hwmon_read,
1519 .read_string = sfp_hwmon_read_string,
1520};
1521
1522static const struct hwmon_channel_info * const sfp_hwmon_info[] = {
1523 HWMON_CHANNEL_INFO(chip,
1524 HWMON_C_REGISTER_TZ),
1525 HWMON_CHANNEL_INFO(in,
1526 HWMON_I_INPUT |
1527 HWMON_I_MAX | HWMON_I_MIN |
1528 HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1529 HWMON_I_CRIT | HWMON_I_LCRIT |
1530 HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM |
1531 HWMON_I_LABEL),
1532 HWMON_CHANNEL_INFO(temp,
1533 HWMON_T_INPUT |
1534 HWMON_T_MAX | HWMON_T_MIN |
1535 HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
1536 HWMON_T_CRIT | HWMON_T_LCRIT |
1537 HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM |
1538 HWMON_T_LABEL),
1539 HWMON_CHANNEL_INFO(curr,
1540 HWMON_C_INPUT |
1541 HWMON_C_MAX | HWMON_C_MIN |
1542 HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1543 HWMON_C_CRIT | HWMON_C_LCRIT |
1544 HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM |
1545 HWMON_C_LABEL),
1546 HWMON_CHANNEL_INFO(power,
1547 /* Transmit power */
1548 HWMON_P_INPUT |
1549 HWMON_P_MAX | HWMON_P_MIN |
1550 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1551 HWMON_P_CRIT | HWMON_P_LCRIT |
1552 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1553 HWMON_P_LABEL,
1554 /* Receive power */
1555 HWMON_P_INPUT |
1556 HWMON_P_MAX | HWMON_P_MIN |
1557 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1558 HWMON_P_CRIT | HWMON_P_LCRIT |
1559 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1560 HWMON_P_LABEL),
1561 NULL,
1562};
1563
1564static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1565 .ops = &sfp_hwmon_ops,
1566 .info = sfp_hwmon_info,
1567};
1568
1569static void sfp_hwmon_probe(struct work_struct *work)
1570{
1571 struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work);
1572 int err;
1573
1574 /* hwmon interface needs to access 16bit registers in atomic way to
1575 * guarantee coherency of the diagnostic monitoring data. If it is not
1576 * possible to guarantee coherency because EEPROM is broken in such way
1577 * that does not support atomic 16bit read operation then we have to
1578 * skip registration of hwmon device.
1579 */
1580 if (sfp->i2c_block_size < 2) {
1581 dev_info(sfp->dev,
1582 "skipping hwmon device registration due to broken EEPROM\n");
1583 dev_info(sfp->dev,
1584 "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n");
1585 return;
1586 }
1587
1588 err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1589 if (err < 0) {
1590 if (sfp->hwmon_tries--) {
1591 mod_delayed_work(system_wq, &sfp->hwmon_probe,
1592 T_PROBE_RETRY_SLOW);
1593 } else {
1594 dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
1595 ERR_PTR(err));
1596 }
1597 return;
1598 }
1599
1600 sfp->hwmon_name = hwmon_sanitize_name(dev_name(sfp->dev));
1601 if (IS_ERR(sfp->hwmon_name)) {
1602 dev_err(sfp->dev, "out of memory for hwmon name\n");
1603 return;
1604 }
1605
1606 sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1607 sfp->hwmon_name, sfp,
1608 &sfp_hwmon_chip_info,
1609 NULL);
1610 if (IS_ERR(sfp->hwmon_dev))
1611 dev_err(sfp->dev, "failed to register hwmon device: %ld\n",
1612 PTR_ERR(sfp->hwmon_dev));
1613}
1614
1615static int sfp_hwmon_insert(struct sfp *sfp)
1616{
1617 if (sfp->have_a2 && sfp->id.ext.diagmon & SFP_DIAGMON_DDM) {
1618 mod_delayed_work(system_wq, &sfp->hwmon_probe, 1);
1619 sfp->hwmon_tries = R_PROBE_RETRY_SLOW;
1620 }
1621
1622 return 0;
1623}
1624
1625static void sfp_hwmon_remove(struct sfp *sfp)
1626{
1627 cancel_delayed_work_sync(&sfp->hwmon_probe);
1628 if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1629 hwmon_device_unregister(sfp->hwmon_dev);
1630 sfp->hwmon_dev = NULL;
1631 kfree(sfp->hwmon_name);
1632 }
1633}
1634
1635static int sfp_hwmon_init(struct sfp *sfp)
1636{
1637 INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe);
1638
1639 return 0;
1640}
1641
1642static void sfp_hwmon_exit(struct sfp *sfp)
1643{
1644 cancel_delayed_work_sync(&sfp->hwmon_probe);
1645}
1646#else
1647static int sfp_hwmon_insert(struct sfp *sfp)
1648{
1649 return 0;
1650}
1651
1652static void sfp_hwmon_remove(struct sfp *sfp)
1653{
1654}
1655
1656static int sfp_hwmon_init(struct sfp *sfp)
1657{
1658 return 0;
1659}
1660
1661static void sfp_hwmon_exit(struct sfp *sfp)
1662{
1663}
1664#endif
1665
1666/* Helpers */
1667static void sfp_module_tx_disable(struct sfp *sfp)
1668{
1669 dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1670 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1671 sfp_mod_state(sfp, SFP_F_TX_DISABLE, SFP_F_TX_DISABLE);
1672}
1673
1674static void sfp_module_tx_enable(struct sfp *sfp)
1675{
1676 dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1677 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1678 sfp_mod_state(sfp, SFP_F_TX_DISABLE, 0);
1679}
1680
1681#if IS_ENABLED(CONFIG_DEBUG_FS)
1682static int sfp_debug_state_show(struct seq_file *s, void *data)
1683{
1684 struct sfp *sfp = s->private;
1685
1686 seq_printf(s, "Module state: %s\n",
1687 mod_state_to_str(sfp->sm_mod_state));
1688 seq_printf(s, "Module probe attempts: %d %d\n",
1689 R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init,
1690 R_PROBE_RETRY_SLOW - sfp->sm_mod_tries);
1691 seq_printf(s, "Device state: %s\n",
1692 dev_state_to_str(sfp->sm_dev_state));
1693 seq_printf(s, "Main state: %s\n",
1694 sm_state_to_str(sfp->sm_state));
1695 seq_printf(s, "Fault recovery remaining retries: %d\n",
1696 sfp->sm_fault_retries);
1697 seq_printf(s, "PHY probe remaining retries: %d\n",
1698 sfp->sm_phy_retries);
1699 seq_printf(s, "Signalling rate: %u kBd\n", sfp->rate_kbd);
1700 seq_printf(s, "Rate select threshold: %u kBd\n",
1701 sfp->rs_threshold_kbd);
1702 seq_printf(s, "moddef0: %d\n", !!(sfp->state & SFP_F_PRESENT));
1703 seq_printf(s, "rx_los: %d\n", !!(sfp->state & SFP_F_LOS));
1704 seq_printf(s, "tx_fault: %d\n", !!(sfp->state & SFP_F_TX_FAULT));
1705 seq_printf(s, "tx_disable: %d\n", !!(sfp->state & SFP_F_TX_DISABLE));
1706 seq_printf(s, "rs0: %d\n", !!(sfp->state & SFP_F_RS0));
1707 seq_printf(s, "rs1: %d\n", !!(sfp->state & SFP_F_RS1));
1708 return 0;
1709}
1710DEFINE_SHOW_ATTRIBUTE(sfp_debug_state);
1711
1712static void sfp_debugfs_init(struct sfp *sfp)
1713{
1714 sfp->debugfs_dir = debugfs_create_dir(dev_name(sfp->dev), NULL);
1715
1716 debugfs_create_file("state", 0600, sfp->debugfs_dir, sfp,
1717 &sfp_debug_state_fops);
1718}
1719
1720static void sfp_debugfs_exit(struct sfp *sfp)
1721{
1722 debugfs_remove_recursive(sfp->debugfs_dir);
1723}
1724#else
1725static void sfp_debugfs_init(struct sfp *sfp)
1726{
1727}
1728
1729static void sfp_debugfs_exit(struct sfp *sfp)
1730{
1731}
1732#endif
1733
1734static void sfp_module_tx_fault_reset(struct sfp *sfp)
1735{
1736 unsigned int state;
1737
1738 mutex_lock(&sfp->st_mutex);
1739 state = sfp->state;
1740 if (!(state & SFP_F_TX_DISABLE)) {
1741 sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1742
1743 udelay(T_RESET_US);
1744
1745 sfp_set_state(sfp, state);
1746 }
1747 mutex_unlock(&sfp->st_mutex);
1748}
1749
1750/* SFP state machine */
1751static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1752{
1753 if (timeout)
1754 mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1755 timeout);
1756 else
1757 cancel_delayed_work(&sfp->timeout);
1758}
1759
1760static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1761 unsigned int timeout)
1762{
1763 sfp->sm_state = state;
1764 sfp_sm_set_timer(sfp, timeout);
1765}
1766
1767static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state,
1768 unsigned int timeout)
1769{
1770 sfp->sm_mod_state = state;
1771 sfp_sm_set_timer(sfp, timeout);
1772}
1773
1774static void sfp_sm_phy_detach(struct sfp *sfp)
1775{
1776 sfp_remove_phy(sfp->sfp_bus);
1777 phy_device_remove(sfp->mod_phy);
1778 phy_device_free(sfp->mod_phy);
1779 sfp->mod_phy = NULL;
1780}
1781
1782static int sfp_sm_probe_phy(struct sfp *sfp, int addr, bool is_c45)
1783{
1784 struct phy_device *phy;
1785 int err;
1786
1787 phy = get_phy_device(sfp->i2c_mii, addr, is_c45);
1788 if (phy == ERR_PTR(-ENODEV))
1789 return PTR_ERR(phy);
1790 if (IS_ERR(phy)) {
1791 dev_err(sfp->dev, "mdiobus scan returned %pe\n", phy);
1792 return PTR_ERR(phy);
1793 }
1794
1795 /* Mark this PHY as being on a SFP module */
1796 phy->is_on_sfp_module = true;
1797
1798 err = phy_device_register(phy);
1799 if (err) {
1800 phy_device_free(phy);
1801 dev_err(sfp->dev, "phy_device_register failed: %pe\n",
1802 ERR_PTR(err));
1803 return err;
1804 }
1805
1806 err = sfp_add_phy(sfp->sfp_bus, phy);
1807 if (err) {
1808 phy_device_remove(phy);
1809 phy_device_free(phy);
1810 dev_err(sfp->dev, "sfp_add_phy failed: %pe\n", ERR_PTR(err));
1811 return err;
1812 }
1813
1814 sfp->mod_phy = phy;
1815
1816 return 0;
1817}
1818
1819static void sfp_sm_link_up(struct sfp *sfp)
1820{
1821 sfp_link_up(sfp->sfp_bus);
1822 sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1823}
1824
1825static void sfp_sm_link_down(struct sfp *sfp)
1826{
1827 sfp_link_down(sfp->sfp_bus);
1828}
1829
1830static void sfp_sm_link_check_los(struct sfp *sfp)
1831{
1832 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1833 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1834 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1835 bool los = false;
1836
1837 /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
1838 * are set, we assume that no LOS signal is available. If both are
1839 * set, we assume LOS is not implemented (and is meaningless.)
1840 */
1841 if (los_options == los_inverted)
1842 los = !(sfp->state & SFP_F_LOS);
1843 else if (los_options == los_normal)
1844 los = !!(sfp->state & SFP_F_LOS);
1845
1846 if (los)
1847 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1848 else
1849 sfp_sm_link_up(sfp);
1850}
1851
1852static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1853{
1854 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1855 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1856 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1857
1858 return (los_options == los_inverted && event == SFP_E_LOS_LOW) ||
1859 (los_options == los_normal && event == SFP_E_LOS_HIGH);
1860}
1861
1862static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1863{
1864 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1865 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1866 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1867
1868 return (los_options == los_inverted && event == SFP_E_LOS_HIGH) ||
1869 (los_options == los_normal && event == SFP_E_LOS_LOW);
1870}
1871
1872static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn)
1873{
1874 if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) {
1875 dev_err(sfp->dev,
1876 "module persistently indicates fault, disabling\n");
1877 sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1878 } else {
1879 if (warn)
1880 dev_err(sfp->dev, "module transmit fault indicated\n");
1881
1882 sfp_sm_next(sfp, next_state, T_FAULT_RECOVER);
1883 }
1884}
1885
1886static int sfp_sm_add_mdio_bus(struct sfp *sfp)
1887{
1888 if (sfp->mdio_protocol != MDIO_I2C_NONE)
1889 return sfp_i2c_mdiobus_create(sfp);
1890
1891 return 0;
1892}
1893
1894/* Probe a SFP for a PHY device if the module supports copper - the PHY
1895 * normally sits at I2C bus address 0x56, and may either be a clause 22
1896 * or clause 45 PHY.
1897 *
1898 * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with
1899 * negotiation enabled, but some may be in 1000base-X - which is for the
1900 * PHY driver to determine.
1901 *
1902 * Clause 45 copper SFP+ modules (10G) appear to switch their interface
1903 * mode according to the negotiated line speed.
1904 */
1905static int sfp_sm_probe_for_phy(struct sfp *sfp)
1906{
1907 int err = 0;
1908
1909 switch (sfp->mdio_protocol) {
1910 case MDIO_I2C_NONE:
1911 break;
1912
1913 case MDIO_I2C_MARVELL_C22:
1914 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, false);
1915 break;
1916
1917 case MDIO_I2C_C45:
1918 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, true);
1919 break;
1920
1921 case MDIO_I2C_ROLLBALL:
1922 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR_ROLLBALL, true);
1923 break;
1924 }
1925
1926 return err;
1927}
1928
1929static int sfp_module_parse_power(struct sfp *sfp)
1930{
1931 u32 power_mW = 1000;
1932 bool supports_a2;
1933
1934 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 &&
1935 sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
1936 power_mW = 1500;
1937 /* Added in Rev 11.9, but there is no compliance code for this */
1938 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV11_4 &&
1939 sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
1940 power_mW = 2000;
1941
1942 /* Power level 1 modules (max. 1W) are always supported. */
1943 if (power_mW <= 1000) {
1944 sfp->module_power_mW = power_mW;
1945 return 0;
1946 }
1947
1948 supports_a2 = sfp->id.ext.sff8472_compliance !=
1949 SFP_SFF8472_COMPLIANCE_NONE ||
1950 sfp->id.ext.diagmon & SFP_DIAGMON_DDM;
1951
1952 if (power_mW > sfp->max_power_mW) {
1953 /* Module power specification exceeds the allowed maximum. */
1954 if (!supports_a2) {
1955 /* The module appears not to implement bus address
1956 * 0xa2, so assume that the module powers up in the
1957 * indicated mode.
1958 */
1959 dev_err(sfp->dev,
1960 "Host does not support %u.%uW modules\n",
1961 power_mW / 1000, (power_mW / 100) % 10);
1962 return -EINVAL;
1963 } else {
1964 dev_warn(sfp->dev,
1965 "Host does not support %u.%uW modules, module left in power mode 1\n",
1966 power_mW / 1000, (power_mW / 100) % 10);
1967 return 0;
1968 }
1969 }
1970
1971 if (!supports_a2) {
1972 /* The module power level is below the host maximum and the
1973 * module appears not to implement bus address 0xa2, so assume
1974 * that the module powers up in the indicated mode.
1975 */
1976 return 0;
1977 }
1978
1979 /* If the module requires a higher power mode, but also requires
1980 * an address change sequence, warn the user that the module may
1981 * not be functional.
1982 */
1983 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) {
1984 dev_warn(sfp->dev,
1985 "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n",
1986 power_mW / 1000, (power_mW / 100) % 10);
1987 return 0;
1988 }
1989
1990 sfp->module_power_mW = power_mW;
1991
1992 return 0;
1993}
1994
1995static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable)
1996{
1997 int err;
1998
1999 err = sfp_modify_u8(sfp, true, SFP_EXT_STATUS,
2000 SFP_EXT_STATUS_PWRLVL_SELECT,
2001 enable ? SFP_EXT_STATUS_PWRLVL_SELECT : 0);
2002 if (err != sizeof(u8)) {
2003 dev_err(sfp->dev, "failed to %sable high power: %pe\n",
2004 enable ? "en" : "dis", ERR_PTR(err));
2005 return -EAGAIN;
2006 }
2007
2008 if (enable)
2009 dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
2010 sfp->module_power_mW / 1000,
2011 (sfp->module_power_mW / 100) % 10);
2012
2013 return 0;
2014}
2015
2016static void sfp_module_parse_rate_select(struct sfp *sfp)
2017{
2018 u8 rate_id;
2019
2020 sfp->rs_threshold_kbd = 0;
2021 sfp->rs_state_mask = 0;
2022
2023 if (!(sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_RATE_SELECT)))
2024 /* No support for RateSelect */
2025 return;
2026
2027 /* Default to INF-8074 RateSelect operation. The signalling threshold
2028 * rate is not well specified, so always select "Full Bandwidth", but
2029 * SFF-8079 reveals that it is understood that RS0 will be low for
2030 * 1.0625Gb/s and high for 2.125Gb/s. Choose a value half-way between.
2031 * This method exists prior to SFF-8472.
2032 */
2033 sfp->rs_state_mask = SFP_F_RS0;
2034 sfp->rs_threshold_kbd = 1594;
2035
2036 /* Parse the rate identifier, which is complicated due to history:
2037 * SFF-8472 rev 9.5 marks this field as reserved.
2038 * SFF-8079 references SFF-8472 rev 9.5 and defines bit 0. SFF-8472
2039 * compliance is not required.
2040 * SFF-8472 rev 10.2 defines this field using values 0..4
2041 * SFF-8472 rev 11.0 redefines this field with bit 0 for SFF-8079
2042 * and even values.
2043 */
2044 rate_id = sfp->id.base.rate_id;
2045 if (rate_id == 0)
2046 /* Unspecified */
2047 return;
2048
2049 /* SFF-8472 rev 10.0..10.4 did not account for SFF-8079 using bit 0,
2050 * and allocated value 3 to SFF-8431 independent tx/rx rate select.
2051 * Convert this to a SFF-8472 rev 11.0 rate identifier.
2052 */
2053 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 &&
2054 sfp->id.ext.sff8472_compliance < SFP_SFF8472_COMPLIANCE_REV11_0 &&
2055 rate_id == 3)
2056 rate_id = SFF_RID_8431;
2057
2058 if (rate_id & SFF_RID_8079) {
2059 /* SFF-8079 RateSelect / Application Select in conjunction with
2060 * SFF-8472 rev 9.5. SFF-8079 defines rate_id as a bitfield
2061 * with only bit 0 used, which takes precedence over SFF-8472.
2062 */
2063 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_APP_SELECT_SFF8079)) {
2064 /* SFF-8079 Part 1 - rate selection between Fibre
2065 * Channel 1.0625/2.125/4.25 Gbd modes. Note that RS0
2066 * is high for 2125, so we have to subtract 1 to
2067 * include it.
2068 */
2069 sfp->rs_threshold_kbd = 2125 - 1;
2070 sfp->rs_state_mask = SFP_F_RS0;
2071 }
2072 return;
2073 }
2074
2075 /* SFF-8472 rev 9.5 does not define the rate identifier */
2076 if (sfp->id.ext.sff8472_compliance <= SFP_SFF8472_COMPLIANCE_REV9_5)
2077 return;
2078
2079 /* SFF-8472 rev 11.0 defines rate_id as a numerical value which will
2080 * always have bit 0 clear due to SFF-8079's bitfield usage of rate_id.
2081 */
2082 switch (rate_id) {
2083 case SFF_RID_8431_RX_ONLY:
2084 sfp->rs_threshold_kbd = 4250;
2085 sfp->rs_state_mask = SFP_F_RS0;
2086 break;
2087
2088 case SFF_RID_8431_TX_ONLY:
2089 sfp->rs_threshold_kbd = 4250;
2090 sfp->rs_state_mask = SFP_F_RS1;
2091 break;
2092
2093 case SFF_RID_8431:
2094 sfp->rs_threshold_kbd = 4250;
2095 sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1;
2096 break;
2097
2098 case SFF_RID_10G8G:
2099 sfp->rs_threshold_kbd = 9000;
2100 sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1;
2101 break;
2102 }
2103}
2104
2105/* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL
2106 * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do
2107 * not support multibyte reads from the EEPROM. Each multi-byte read
2108 * operation returns just one byte of EEPROM followed by zeros. There is
2109 * no way to identify which modules are using Realtek RTL8672 and RTL9601C
2110 * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor
2111 * name and vendor id into EEPROM, so there is even no way to detect if
2112 * module is V-SOL V2801F. Therefore check for those zeros in the read
2113 * data and then based on check switch to reading EEPROM to one byte
2114 * at a time.
2115 */
2116static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len)
2117{
2118 size_t i, block_size = sfp->i2c_block_size;
2119
2120 /* Already using byte IO */
2121 if (block_size == 1)
2122 return false;
2123
2124 for (i = 1; i < len; i += block_size) {
2125 if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i)))
2126 return false;
2127 }
2128 return true;
2129}
2130
2131static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id)
2132{
2133 u8 check;
2134 int err;
2135
2136 if (id->base.phys_id != SFF8024_ID_SFF_8472 ||
2137 id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP ||
2138 id->base.connector != SFF8024_CONNECTOR_LC) {
2139 dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n");
2140 id->base.phys_id = SFF8024_ID_SFF_8472;
2141 id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP;
2142 id->base.connector = SFF8024_CONNECTOR_LC;
2143 err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3);
2144 if (err != 3) {
2145 dev_err(sfp->dev,
2146 "Failed to rewrite module EEPROM: %pe\n",
2147 ERR_PTR(err));
2148 return err;
2149 }
2150
2151 /* Cotsworks modules have been found to require a delay between write operations. */
2152 mdelay(50);
2153
2154 /* Update base structure checksum */
2155 check = sfp_check(&id->base, sizeof(id->base) - 1);
2156 err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1);
2157 if (err != 1) {
2158 dev_err(sfp->dev,
2159 "Failed to update base structure checksum in fiber module EEPROM: %pe\n",
2160 ERR_PTR(err));
2161 return err;
2162 }
2163 }
2164 return 0;
2165}
2166
2167static int sfp_module_parse_sff8472(struct sfp *sfp)
2168{
2169 /* If the module requires address swap mode, warn about it */
2170 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
2171 dev_warn(sfp->dev,
2172 "module address swap to access page 0xA2 is not supported.\n");
2173 else
2174 sfp->have_a2 = true;
2175
2176 return 0;
2177}
2178
2179static int sfp_sm_mod_probe(struct sfp *sfp, bool report)
2180{
2181 /* SFP module inserted - read I2C data */
2182 struct sfp_eeprom_id id;
2183 bool cotsworks_sfbg;
2184 unsigned int mask;
2185 bool cotsworks;
2186 u8 check;
2187 int ret;
2188
2189 sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE;
2190
2191 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
2192 if (ret < 0) {
2193 if (report)
2194 dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
2195 ERR_PTR(ret));
2196 return -EAGAIN;
2197 }
2198
2199 if (ret != sizeof(id.base)) {
2200 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
2201 return -EAGAIN;
2202 }
2203
2204 /* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from
2205 * address 0x51 is just one byte at a time. Also SFF-8472 requires
2206 * that EEPROM supports atomic 16bit read operation for diagnostic
2207 * fields, so do not switch to one byte reading at a time unless it
2208 * is really required and we have no other option.
2209 */
2210 if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) {
2211 dev_info(sfp->dev,
2212 "Detected broken RTL8672/RTL9601C emulated EEPROM\n");
2213 dev_info(sfp->dev,
2214 "Switching to reading EEPROM to one byte at a time\n");
2215 sfp->i2c_block_size = 1;
2216
2217 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
2218 if (ret < 0) {
2219 if (report)
2220 dev_err(sfp->dev,
2221 "failed to read EEPROM: %pe\n",
2222 ERR_PTR(ret));
2223 return -EAGAIN;
2224 }
2225
2226 if (ret != sizeof(id.base)) {
2227 dev_err(sfp->dev, "EEPROM short read: %pe\n",
2228 ERR_PTR(ret));
2229 return -EAGAIN;
2230 }
2231 }
2232
2233 /* Cotsworks do not seem to update the checksums when they
2234 * do the final programming with the final module part number,
2235 * serial number and date code.
2236 */
2237 cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS ", 16);
2238 cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4);
2239
2240 /* Cotsworks SFF module EEPROM do not always have valid phys_id,
2241 * phys_ext_id, and connector bytes. Rewrite SFF EEPROM bytes if
2242 * Cotsworks PN matches and bytes are not correct.
2243 */
2244 if (cotsworks && cotsworks_sfbg) {
2245 ret = sfp_cotsworks_fixup_check(sfp, &id);
2246 if (ret < 0)
2247 return ret;
2248 }
2249
2250 /* Validate the checksum over the base structure */
2251 check = sfp_check(&id.base, sizeof(id.base) - 1);
2252 if (check != id.base.cc_base) {
2253 if (cotsworks) {
2254 dev_warn(sfp->dev,
2255 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
2256 check, id.base.cc_base);
2257 } else {
2258 dev_err(sfp->dev,
2259 "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
2260 check, id.base.cc_base);
2261 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
2262 16, 1, &id, sizeof(id), true);
2263 return -EINVAL;
2264 }
2265 }
2266
2267 ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext));
2268 if (ret < 0) {
2269 if (report)
2270 dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
2271 ERR_PTR(ret));
2272 return -EAGAIN;
2273 }
2274
2275 if (ret != sizeof(id.ext)) {
2276 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
2277 return -EAGAIN;
2278 }
2279
2280 check = sfp_check(&id.ext, sizeof(id.ext) - 1);
2281 if (check != id.ext.cc_ext) {
2282 if (cotsworks) {
2283 dev_warn(sfp->dev,
2284 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
2285 check, id.ext.cc_ext);
2286 } else {
2287 dev_err(sfp->dev,
2288 "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
2289 check, id.ext.cc_ext);
2290 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
2291 16, 1, &id, sizeof(id), true);
2292 memset(&id.ext, 0, sizeof(id.ext));
2293 }
2294 }
2295
2296 sfp->id = id;
2297
2298 dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
2299 (int)sizeof(id.base.vendor_name), id.base.vendor_name,
2300 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
2301 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
2302 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
2303 (int)sizeof(id.ext.datecode), id.ext.datecode);
2304
2305 /* Check whether we support this module */
2306 if (!sfp->type->module_supported(&id)) {
2307 dev_err(sfp->dev,
2308 "module is not supported - phys id 0x%02x 0x%02x\n",
2309 sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
2310 return -EINVAL;
2311 }
2312
2313 if (sfp->id.ext.sff8472_compliance != SFP_SFF8472_COMPLIANCE_NONE) {
2314 ret = sfp_module_parse_sff8472(sfp);
2315 if (ret < 0)
2316 return ret;
2317 }
2318
2319 /* Parse the module power requirement */
2320 ret = sfp_module_parse_power(sfp);
2321 if (ret < 0)
2322 return ret;
2323
2324 sfp_module_parse_rate_select(sfp);
2325
2326 mask = SFP_F_PRESENT;
2327 if (sfp->gpio[GPIO_TX_DISABLE])
2328 mask |= SFP_F_TX_DISABLE;
2329 if (sfp->gpio[GPIO_TX_FAULT])
2330 mask |= SFP_F_TX_FAULT;
2331 if (sfp->gpio[GPIO_LOS])
2332 mask |= SFP_F_LOS;
2333 if (sfp->gpio[GPIO_RS0])
2334 mask |= SFP_F_RS0;
2335 if (sfp->gpio[GPIO_RS1])
2336 mask |= SFP_F_RS1;
2337
2338 sfp->module_t_start_up = T_START_UP;
2339 sfp->module_t_wait = T_WAIT;
2340 sfp->phy_t_retry = T_PHY_RETRY;
2341
2342 sfp->state_ignore_mask = 0;
2343
2344 if (sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SFI ||
2345 sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SR ||
2346 sfp->id.base.extended_cc == SFF8024_ECC_5GBASE_T ||
2347 sfp->id.base.extended_cc == SFF8024_ECC_2_5GBASE_T)
2348 sfp->mdio_protocol = MDIO_I2C_C45;
2349 else if (sfp->id.base.e1000_base_t)
2350 sfp->mdio_protocol = MDIO_I2C_MARVELL_C22;
2351 else
2352 sfp->mdio_protocol = MDIO_I2C_NONE;
2353
2354 sfp->quirk = sfp_lookup_quirk(&id);
2355
2356 mutex_lock(&sfp->st_mutex);
2357 /* Initialise state bits to use from hardware */
2358 sfp->state_hw_mask = mask;
2359
2360 /* We want to drive the rate select pins that the module is using */
2361 sfp->state_hw_drive |= sfp->rs_state_mask;
2362
2363 if (sfp->quirk && sfp->quirk->fixup)
2364 sfp->quirk->fixup(sfp);
2365
2366 sfp->state_hw_mask &= ~sfp->state_ignore_mask;
2367 mutex_unlock(&sfp->st_mutex);
2368
2369 return 0;
2370}
2371
2372static void sfp_sm_mod_remove(struct sfp *sfp)
2373{
2374 if (sfp->sm_mod_state > SFP_MOD_WAITDEV)
2375 sfp_module_remove(sfp->sfp_bus);
2376
2377 sfp_hwmon_remove(sfp);
2378
2379 memset(&sfp->id, 0, sizeof(sfp->id));
2380 sfp->module_power_mW = 0;
2381 sfp->state_hw_drive = SFP_F_TX_DISABLE;
2382 sfp->have_a2 = false;
2383
2384 dev_info(sfp->dev, "module removed\n");
2385}
2386
2387/* This state machine tracks the upstream's state */
2388static void sfp_sm_device(struct sfp *sfp, unsigned int event)
2389{
2390 switch (sfp->sm_dev_state) {
2391 default:
2392 if (event == SFP_E_DEV_ATTACH)
2393 sfp->sm_dev_state = SFP_DEV_DOWN;
2394 break;
2395
2396 case SFP_DEV_DOWN:
2397 if (event == SFP_E_DEV_DETACH)
2398 sfp->sm_dev_state = SFP_DEV_DETACHED;
2399 else if (event == SFP_E_DEV_UP)
2400 sfp->sm_dev_state = SFP_DEV_UP;
2401 break;
2402
2403 case SFP_DEV_UP:
2404 if (event == SFP_E_DEV_DETACH)
2405 sfp->sm_dev_state = SFP_DEV_DETACHED;
2406 else if (event == SFP_E_DEV_DOWN)
2407 sfp->sm_dev_state = SFP_DEV_DOWN;
2408 break;
2409 }
2410}
2411
2412/* This state machine tracks the insert/remove state of the module, probes
2413 * the on-board EEPROM, and sets up the power level.
2414 */
2415static void sfp_sm_module(struct sfp *sfp, unsigned int event)
2416{
2417 int err;
2418
2419 /* Handle remove event globally, it resets this state machine */
2420 if (event == SFP_E_REMOVE) {
2421 if (sfp->sm_mod_state > SFP_MOD_PROBE)
2422 sfp_sm_mod_remove(sfp);
2423 sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0);
2424 return;
2425 }
2426
2427 /* Handle device detach globally */
2428 if (sfp->sm_dev_state < SFP_DEV_DOWN &&
2429 sfp->sm_mod_state > SFP_MOD_WAITDEV) {
2430 if (sfp->module_power_mW > 1000 &&
2431 sfp->sm_mod_state > SFP_MOD_HPOWER)
2432 sfp_sm_mod_hpower(sfp, false);
2433 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2434 return;
2435 }
2436
2437 switch (sfp->sm_mod_state) {
2438 default:
2439 if (event == SFP_E_INSERT) {
2440 sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL);
2441 sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT;
2442 sfp->sm_mod_tries = R_PROBE_RETRY_SLOW;
2443 }
2444 break;
2445
2446 case SFP_MOD_PROBE:
2447 /* Wait for T_PROBE_INIT to time out */
2448 if (event != SFP_E_TIMEOUT)
2449 break;
2450
2451 err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1);
2452 if (err == -EAGAIN) {
2453 if (sfp->sm_mod_tries_init &&
2454 --sfp->sm_mod_tries_init) {
2455 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2456 break;
2457 } else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) {
2458 if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1)
2459 dev_warn(sfp->dev,
2460 "please wait, module slow to respond\n");
2461 sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW);
2462 break;
2463 }
2464 }
2465 if (err < 0) {
2466 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2467 break;
2468 }
2469
2470 /* Force a poll to re-read the hardware signal state after
2471 * sfp_sm_mod_probe() changed state_hw_mask.
2472 */
2473 mod_delayed_work(system_wq, &sfp->poll, 1);
2474
2475 err = sfp_hwmon_insert(sfp);
2476 if (err)
2477 dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
2478 ERR_PTR(err));
2479
2480 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2481 fallthrough;
2482 case SFP_MOD_WAITDEV:
2483 /* Ensure that the device is attached before proceeding */
2484 if (sfp->sm_dev_state < SFP_DEV_DOWN)
2485 break;
2486
2487 /* Report the module insertion to the upstream device */
2488 err = sfp_module_insert(sfp->sfp_bus, &sfp->id,
2489 sfp->quirk);
2490 if (err < 0) {
2491 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2492 break;
2493 }
2494
2495 /* If this is a power level 1 module, we are done */
2496 if (sfp->module_power_mW <= 1000)
2497 goto insert;
2498
2499 sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0);
2500 fallthrough;
2501 case SFP_MOD_HPOWER:
2502 /* Enable high power mode */
2503 err = sfp_sm_mod_hpower(sfp, true);
2504 if (err < 0) {
2505 if (err != -EAGAIN) {
2506 sfp_module_remove(sfp->sfp_bus);
2507 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2508 } else {
2509 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2510 }
2511 break;
2512 }
2513
2514 sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL);
2515 break;
2516
2517 case SFP_MOD_WAITPWR:
2518 /* Wait for T_HPOWER_LEVEL to time out */
2519 if (event != SFP_E_TIMEOUT)
2520 break;
2521
2522 insert:
2523 sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0);
2524 break;
2525
2526 case SFP_MOD_PRESENT:
2527 case SFP_MOD_ERROR:
2528 break;
2529 }
2530}
2531
2532static void sfp_sm_main(struct sfp *sfp, unsigned int event)
2533{
2534 unsigned long timeout;
2535 int ret;
2536
2537 /* Some events are global */
2538 if (sfp->sm_state != SFP_S_DOWN &&
2539 (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2540 sfp->sm_dev_state != SFP_DEV_UP)) {
2541 if (sfp->sm_state == SFP_S_LINK_UP &&
2542 sfp->sm_dev_state == SFP_DEV_UP)
2543 sfp_sm_link_down(sfp);
2544 if (sfp->sm_state > SFP_S_INIT)
2545 sfp_module_stop(sfp->sfp_bus);
2546 if (sfp->mod_phy)
2547 sfp_sm_phy_detach(sfp);
2548 if (sfp->i2c_mii)
2549 sfp_i2c_mdiobus_destroy(sfp);
2550 sfp_module_tx_disable(sfp);
2551 sfp_soft_stop_poll(sfp);
2552 sfp_sm_next(sfp, SFP_S_DOWN, 0);
2553 return;
2554 }
2555
2556 /* The main state machine */
2557 switch (sfp->sm_state) {
2558 case SFP_S_DOWN:
2559 if (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2560 sfp->sm_dev_state != SFP_DEV_UP)
2561 break;
2562
2563 /* Only use the soft state bits if we have access to the A2h
2564 * memory, which implies that we have some level of SFF-8472
2565 * compliance.
2566 */
2567 if (sfp->have_a2)
2568 sfp_soft_start_poll(sfp);
2569
2570 sfp_module_tx_enable(sfp);
2571
2572 /* Initialise the fault clearance retries */
2573 sfp->sm_fault_retries = N_FAULT_INIT;
2574
2575 /* We need to check the TX_FAULT state, which is not defined
2576 * while TX_DISABLE is asserted. The earliest we want to do
2577 * anything (such as probe for a PHY) is 50ms (or more on
2578 * specific modules).
2579 */
2580 sfp_sm_next(sfp, SFP_S_WAIT, sfp->module_t_wait);
2581 break;
2582
2583 case SFP_S_WAIT:
2584 if (event != SFP_E_TIMEOUT)
2585 break;
2586
2587 if (sfp->state & SFP_F_TX_FAULT) {
2588 /* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431)
2589 * from the TX_DISABLE deassertion for the module to
2590 * initialise, which is indicated by TX_FAULT
2591 * deasserting.
2592 */
2593 timeout = sfp->module_t_start_up;
2594 if (timeout > sfp->module_t_wait)
2595 timeout -= sfp->module_t_wait;
2596 else
2597 timeout = 1;
2598
2599 sfp_sm_next(sfp, SFP_S_INIT, timeout);
2600 } else {
2601 /* TX_FAULT is not asserted, assume the module has
2602 * finished initialising.
2603 */
2604 goto init_done;
2605 }
2606 break;
2607
2608 case SFP_S_INIT:
2609 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2610 /* TX_FAULT is still asserted after t_init
2611 * or t_start_up, so assume there is a fault.
2612 */
2613 sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT,
2614 sfp->sm_fault_retries == N_FAULT_INIT);
2615 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2616 init_done:
2617 /* Create mdiobus and start trying for PHY */
2618 ret = sfp_sm_add_mdio_bus(sfp);
2619 if (ret < 0) {
2620 sfp_sm_next(sfp, SFP_S_FAIL, 0);
2621 break;
2622 }
2623 sfp->sm_phy_retries = R_PHY_RETRY;
2624 goto phy_probe;
2625 }
2626 break;
2627
2628 case SFP_S_INIT_PHY:
2629 if (event != SFP_E_TIMEOUT)
2630 break;
2631 phy_probe:
2632 /* TX_FAULT deasserted or we timed out with TX_FAULT
2633 * clear. Probe for the PHY and check the LOS state.
2634 */
2635 ret = sfp_sm_probe_for_phy(sfp);
2636 if (ret == -ENODEV) {
2637 if (--sfp->sm_phy_retries) {
2638 sfp_sm_next(sfp, SFP_S_INIT_PHY,
2639 sfp->phy_t_retry);
2640 dev_dbg(sfp->dev,
2641 "no PHY detected, %u tries left\n",
2642 sfp->sm_phy_retries);
2643 break;
2644 } else {
2645 dev_info(sfp->dev, "no PHY detected\n");
2646 }
2647 } else if (ret) {
2648 sfp_sm_next(sfp, SFP_S_FAIL, 0);
2649 break;
2650 }
2651 if (sfp_module_start(sfp->sfp_bus)) {
2652 sfp_sm_next(sfp, SFP_S_FAIL, 0);
2653 break;
2654 }
2655 sfp_sm_link_check_los(sfp);
2656
2657 /* Reset the fault retry count */
2658 sfp->sm_fault_retries = N_FAULT;
2659 break;
2660
2661 case SFP_S_INIT_TX_FAULT:
2662 if (event == SFP_E_TIMEOUT) {
2663 sfp_module_tx_fault_reset(sfp);
2664 sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up);
2665 }
2666 break;
2667
2668 case SFP_S_WAIT_LOS:
2669 if (event == SFP_E_TX_FAULT)
2670 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2671 else if (sfp_los_event_inactive(sfp, event))
2672 sfp_sm_link_up(sfp);
2673 break;
2674
2675 case SFP_S_LINK_UP:
2676 if (event == SFP_E_TX_FAULT) {
2677 sfp_sm_link_down(sfp);
2678 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2679 } else if (sfp_los_event_active(sfp, event)) {
2680 sfp_sm_link_down(sfp);
2681 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
2682 }
2683 break;
2684
2685 case SFP_S_TX_FAULT:
2686 if (event == SFP_E_TIMEOUT) {
2687 sfp_module_tx_fault_reset(sfp);
2688 sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up);
2689 }
2690 break;
2691
2692 case SFP_S_REINIT:
2693 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2694 sfp_sm_fault(sfp, SFP_S_TX_FAULT, false);
2695 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2696 dev_info(sfp->dev, "module transmit fault recovered\n");
2697 sfp_sm_link_check_los(sfp);
2698 }
2699 break;
2700
2701 case SFP_S_TX_DISABLE:
2702 break;
2703 }
2704}
2705
2706static void __sfp_sm_event(struct sfp *sfp, unsigned int event)
2707{
2708 dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
2709 mod_state_to_str(sfp->sm_mod_state),
2710 dev_state_to_str(sfp->sm_dev_state),
2711 sm_state_to_str(sfp->sm_state),
2712 event_to_str(event));
2713
2714 sfp_sm_device(sfp, event);
2715 sfp_sm_module(sfp, event);
2716 sfp_sm_main(sfp, event);
2717
2718 dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
2719 mod_state_to_str(sfp->sm_mod_state),
2720 dev_state_to_str(sfp->sm_dev_state),
2721 sm_state_to_str(sfp->sm_state));
2722}
2723
2724static void sfp_sm_event(struct sfp *sfp, unsigned int event)
2725{
2726 mutex_lock(&sfp->sm_mutex);
2727 __sfp_sm_event(sfp, event);
2728 mutex_unlock(&sfp->sm_mutex);
2729}
2730
2731static void sfp_attach(struct sfp *sfp)
2732{
2733 sfp_sm_event(sfp, SFP_E_DEV_ATTACH);
2734}
2735
2736static void sfp_detach(struct sfp *sfp)
2737{
2738 sfp_sm_event(sfp, SFP_E_DEV_DETACH);
2739}
2740
2741static void sfp_start(struct sfp *sfp)
2742{
2743 sfp_sm_event(sfp, SFP_E_DEV_UP);
2744}
2745
2746static void sfp_stop(struct sfp *sfp)
2747{
2748 sfp_sm_event(sfp, SFP_E_DEV_DOWN);
2749}
2750
2751static void sfp_set_signal_rate(struct sfp *sfp, unsigned int rate_kbd)
2752{
2753 unsigned int set;
2754
2755 sfp->rate_kbd = rate_kbd;
2756
2757 if (rate_kbd > sfp->rs_threshold_kbd)
2758 set = sfp->rs_state_mask;
2759 else
2760 set = 0;
2761
2762 sfp_mod_state(sfp, SFP_F_RS0 | SFP_F_RS1, set);
2763}
2764
2765static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
2766{
2767 /* locking... and check module is present */
2768
2769 if (sfp->id.ext.sff8472_compliance &&
2770 !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
2771 modinfo->type = ETH_MODULE_SFF_8472;
2772 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2773 } else {
2774 modinfo->type = ETH_MODULE_SFF_8079;
2775 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2776 }
2777 return 0;
2778}
2779
2780static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
2781 u8 *data)
2782{
2783 unsigned int first, last, len;
2784 int ret;
2785
2786 if (!(sfp->state & SFP_F_PRESENT))
2787 return -ENODEV;
2788
2789 if (ee->len == 0)
2790 return -EINVAL;
2791
2792 first = ee->offset;
2793 last = ee->offset + ee->len;
2794 if (first < ETH_MODULE_SFF_8079_LEN) {
2795 len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
2796 len -= first;
2797
2798 ret = sfp_read(sfp, false, first, data, len);
2799 if (ret < 0)
2800 return ret;
2801
2802 first += len;
2803 data += len;
2804 }
2805 if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
2806 len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
2807 len -= first;
2808 first -= ETH_MODULE_SFF_8079_LEN;
2809
2810 ret = sfp_read(sfp, true, first, data, len);
2811 if (ret < 0)
2812 return ret;
2813 }
2814 return 0;
2815}
2816
2817static int sfp_module_eeprom_by_page(struct sfp *sfp,
2818 const struct ethtool_module_eeprom *page,
2819 struct netlink_ext_ack *extack)
2820{
2821 if (!(sfp->state & SFP_F_PRESENT))
2822 return -ENODEV;
2823
2824 if (page->bank) {
2825 NL_SET_ERR_MSG(extack, "Banks not supported");
2826 return -EOPNOTSUPP;
2827 }
2828
2829 if (page->page) {
2830 NL_SET_ERR_MSG(extack, "Only page 0 supported");
2831 return -EOPNOTSUPP;
2832 }
2833
2834 if (page->i2c_address != 0x50 &&
2835 page->i2c_address != 0x51) {
2836 NL_SET_ERR_MSG(extack, "Only address 0x50 and 0x51 supported");
2837 return -EOPNOTSUPP;
2838 }
2839
2840 return sfp_read(sfp, page->i2c_address == 0x51, page->offset,
2841 page->data, page->length);
2842};
2843
2844static const struct sfp_socket_ops sfp_module_ops = {
2845 .attach = sfp_attach,
2846 .detach = sfp_detach,
2847 .start = sfp_start,
2848 .stop = sfp_stop,
2849 .set_signal_rate = sfp_set_signal_rate,
2850 .module_info = sfp_module_info,
2851 .module_eeprom = sfp_module_eeprom,
2852 .module_eeprom_by_page = sfp_module_eeprom_by_page,
2853};
2854
2855static void sfp_timeout(struct work_struct *work)
2856{
2857 struct sfp *sfp = container_of(work, struct sfp, timeout.work);
2858
2859 rtnl_lock();
2860 sfp_sm_event(sfp, SFP_E_TIMEOUT);
2861 rtnl_unlock();
2862}
2863
2864static void sfp_check_state(struct sfp *sfp)
2865{
2866 unsigned int state, i, changed;
2867
2868 rtnl_lock();
2869 mutex_lock(&sfp->st_mutex);
2870 state = sfp_get_state(sfp);
2871 changed = state ^ sfp->state;
2872 changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
2873
2874 for (i = 0; i < GPIO_MAX; i++)
2875 if (changed & BIT(i))
2876 dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_names[i],
2877 !!(sfp->state & BIT(i)), !!(state & BIT(i)));
2878
2879 state |= sfp->state & SFP_F_OUTPUTS;
2880 sfp->state = state;
2881 mutex_unlock(&sfp->st_mutex);
2882
2883 mutex_lock(&sfp->sm_mutex);
2884 if (changed & SFP_F_PRESENT)
2885 __sfp_sm_event(sfp, state & SFP_F_PRESENT ?
2886 SFP_E_INSERT : SFP_E_REMOVE);
2887
2888 if (changed & SFP_F_TX_FAULT)
2889 __sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
2890 SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
2891
2892 if (changed & SFP_F_LOS)
2893 __sfp_sm_event(sfp, state & SFP_F_LOS ?
2894 SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
2895 mutex_unlock(&sfp->sm_mutex);
2896 rtnl_unlock();
2897}
2898
2899static irqreturn_t sfp_irq(int irq, void *data)
2900{
2901 struct sfp *sfp = data;
2902
2903 sfp_check_state(sfp);
2904
2905 return IRQ_HANDLED;
2906}
2907
2908static void sfp_poll(struct work_struct *work)
2909{
2910 struct sfp *sfp = container_of(work, struct sfp, poll.work);
2911
2912 sfp_check_state(sfp);
2913
2914 // st_mutex doesn't need to be held here for state_soft_mask,
2915 // it's unimportant if we race while reading this.
2916 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) ||
2917 sfp->need_poll)
2918 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2919}
2920
2921static struct sfp *sfp_alloc(struct device *dev)
2922{
2923 struct sfp *sfp;
2924
2925 sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
2926 if (!sfp)
2927 return ERR_PTR(-ENOMEM);
2928
2929 sfp->dev = dev;
2930 sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE;
2931
2932 mutex_init(&sfp->sm_mutex);
2933 mutex_init(&sfp->st_mutex);
2934 INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
2935 INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
2936
2937 sfp_hwmon_init(sfp);
2938
2939 return sfp;
2940}
2941
2942static void sfp_cleanup(void *data)
2943{
2944 struct sfp *sfp = data;
2945
2946 sfp_hwmon_exit(sfp);
2947
2948 cancel_delayed_work_sync(&sfp->poll);
2949 cancel_delayed_work_sync(&sfp->timeout);
2950 if (sfp->i2c_mii) {
2951 mdiobus_unregister(sfp->i2c_mii);
2952 mdiobus_free(sfp->i2c_mii);
2953 }
2954 if (sfp->i2c)
2955 i2c_put_adapter(sfp->i2c);
2956 kfree(sfp);
2957}
2958
2959static int sfp_i2c_get(struct sfp *sfp)
2960{
2961 struct fwnode_handle *h;
2962 struct i2c_adapter *i2c;
2963 int err;
2964
2965 h = fwnode_find_reference(dev_fwnode(sfp->dev), "i2c-bus", 0);
2966 if (IS_ERR(h)) {
2967 dev_err(sfp->dev, "missing 'i2c-bus' property\n");
2968 return -ENODEV;
2969 }
2970
2971 i2c = i2c_get_adapter_by_fwnode(h);
2972 if (!i2c) {
2973 err = -EPROBE_DEFER;
2974 goto put;
2975 }
2976
2977 err = sfp_i2c_configure(sfp, i2c);
2978 if (err)
2979 i2c_put_adapter(i2c);
2980put:
2981 fwnode_handle_put(h);
2982 return err;
2983}
2984
2985static int sfp_probe(struct platform_device *pdev)
2986{
2987 const struct sff_data *sff;
2988 char *sfp_irq_name;
2989 struct sfp *sfp;
2990 int err, i;
2991
2992 sfp = sfp_alloc(&pdev->dev);
2993 if (IS_ERR(sfp))
2994 return PTR_ERR(sfp);
2995
2996 platform_set_drvdata(pdev, sfp);
2997
2998 err = devm_add_action_or_reset(sfp->dev, sfp_cleanup, sfp);
2999 if (err < 0)
3000 return err;
3001
3002 sff = device_get_match_data(sfp->dev);
3003 if (!sff)
3004 sff = &sfp_data;
3005
3006 sfp->type = sff;
3007
3008 err = sfp_i2c_get(sfp);
3009 if (err)
3010 return err;
3011
3012 for (i = 0; i < GPIO_MAX; i++)
3013 if (sff->gpios & BIT(i)) {
3014 sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
3015 gpio_names[i], gpio_flags[i]);
3016 if (IS_ERR(sfp->gpio[i]))
3017 return PTR_ERR(sfp->gpio[i]);
3018 }
3019
3020 sfp->state_hw_mask = SFP_F_PRESENT;
3021 sfp->state_hw_drive = SFP_F_TX_DISABLE;
3022
3023 sfp->get_state = sfp_gpio_get_state;
3024 sfp->set_state = sfp_gpio_set_state;
3025
3026 /* Modules that have no detect signal are always present */
3027 if (!(sfp->gpio[GPIO_MODDEF0]))
3028 sfp->get_state = sff_gpio_get_state;
3029
3030 device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
3031 &sfp->max_power_mW);
3032 if (sfp->max_power_mW < 1000) {
3033 if (sfp->max_power_mW)
3034 dev_warn(sfp->dev,
3035 "Firmware bug: host maximum power should be at least 1W\n");
3036 sfp->max_power_mW = 1000;
3037 }
3038
3039 dev_info(sfp->dev, "Host maximum power %u.%uW\n",
3040 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
3041
3042 /* Get the initial state, and always signal TX disable,
3043 * since the network interface will not be up.
3044 */
3045 sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
3046
3047 if (sfp->gpio[GPIO_RS0] &&
3048 gpiod_get_value_cansleep(sfp->gpio[GPIO_RS0]))
3049 sfp->state |= SFP_F_RS0;
3050 sfp_set_state(sfp, sfp->state);
3051 sfp_module_tx_disable(sfp);
3052 if (sfp->state & SFP_F_PRESENT) {
3053 rtnl_lock();
3054 sfp_sm_event(sfp, SFP_E_INSERT);
3055 rtnl_unlock();
3056 }
3057
3058 for (i = 0; i < GPIO_MAX; i++) {
3059 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
3060 continue;
3061
3062 sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]);
3063 if (sfp->gpio_irq[i] < 0) {
3064 sfp->gpio_irq[i] = 0;
3065 sfp->need_poll = true;
3066 continue;
3067 }
3068
3069 sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL,
3070 "%s-%s", dev_name(sfp->dev),
3071 gpio_names[i]);
3072
3073 if (!sfp_irq_name)
3074 return -ENOMEM;
3075
3076 err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i],
3077 NULL, sfp_irq,
3078 IRQF_ONESHOT |
3079 IRQF_TRIGGER_RISING |
3080 IRQF_TRIGGER_FALLING,
3081 sfp_irq_name, sfp);
3082 if (err) {
3083 sfp->gpio_irq[i] = 0;
3084 sfp->need_poll = true;
3085 }
3086 }
3087
3088 if (sfp->need_poll)
3089 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
3090
3091 /* We could have an issue in cases no Tx disable pin is available or
3092 * wired as modules using a laser as their light source will continue to
3093 * be active when the fiber is removed. This could be a safety issue and
3094 * we should at least warn the user about that.
3095 */
3096 if (!sfp->gpio[GPIO_TX_DISABLE])
3097 dev_warn(sfp->dev,
3098 "No tx_disable pin: SFP modules will always be emitting.\n");
3099
3100 sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
3101 if (!sfp->sfp_bus)
3102 return -ENOMEM;
3103
3104 sfp_debugfs_init(sfp);
3105
3106 return 0;
3107}
3108
3109static void sfp_remove(struct platform_device *pdev)
3110{
3111 struct sfp *sfp = platform_get_drvdata(pdev);
3112
3113 sfp_debugfs_exit(sfp);
3114 sfp_unregister_socket(sfp->sfp_bus);
3115
3116 rtnl_lock();
3117 sfp_sm_event(sfp, SFP_E_REMOVE);
3118 rtnl_unlock();
3119}
3120
3121static void sfp_shutdown(struct platform_device *pdev)
3122{
3123 struct sfp *sfp = platform_get_drvdata(pdev);
3124 int i;
3125
3126 for (i = 0; i < GPIO_MAX; i++) {
3127 if (!sfp->gpio_irq[i])
3128 continue;
3129
3130 devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp);
3131 }
3132
3133 cancel_delayed_work_sync(&sfp->poll);
3134 cancel_delayed_work_sync(&sfp->timeout);
3135}
3136
3137static struct platform_driver sfp_driver = {
3138 .probe = sfp_probe,
3139 .remove_new = sfp_remove,
3140 .shutdown = sfp_shutdown,
3141 .driver = {
3142 .name = "sfp",
3143 .of_match_table = sfp_of_match,
3144 },
3145};
3146
3147static int sfp_init(void)
3148{
3149 poll_jiffies = msecs_to_jiffies(100);
3150
3151 return platform_driver_register(&sfp_driver);
3152}
3153module_init(sfp_init);
3154
3155static void sfp_exit(void)
3156{
3157 platform_driver_unregister(&sfp_driver);
3158}
3159module_exit(sfp_exit);
3160
3161MODULE_ALIAS("platform:sfp");
3162MODULE_AUTHOR("Russell King");
3163MODULE_LICENSE("GPL v2");
3164MODULE_DESCRIPTION("SFP cage support");
1// SPDX-License-Identifier: GPL-2.0
2#include <linux/debugfs.h>
3#include <linux/delay.h>
4#include <linux/gpio/consumer.h>
5#include <linux/hwmon.h>
6#include <linux/i2c.h>
7#include <linux/interrupt.h>
8#include <linux/jiffies.h>
9#include <linux/mdio/mdio-i2c.h>
10#include <linux/module.h>
11#include <linux/mutex.h>
12#include <linux/of.h>
13#include <linux/phy.h>
14#include <linux/platform_device.h>
15#include <linux/rtnetlink.h>
16#include <linux/slab.h>
17#include <linux/workqueue.h>
18
19#include "sfp.h"
20#include "swphy.h"
21
22enum {
23 GPIO_MODDEF0,
24 GPIO_LOS,
25 GPIO_TX_FAULT,
26 GPIO_TX_DISABLE,
27 GPIO_RS0,
28 GPIO_RS1,
29 GPIO_MAX,
30
31 SFP_F_PRESENT = BIT(GPIO_MODDEF0),
32 SFP_F_LOS = BIT(GPIO_LOS),
33 SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
34 SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
35 SFP_F_RS0 = BIT(GPIO_RS0),
36 SFP_F_RS1 = BIT(GPIO_RS1),
37
38 SFP_F_OUTPUTS = SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1,
39
40 SFP_E_INSERT = 0,
41 SFP_E_REMOVE,
42 SFP_E_DEV_ATTACH,
43 SFP_E_DEV_DETACH,
44 SFP_E_DEV_DOWN,
45 SFP_E_DEV_UP,
46 SFP_E_TX_FAULT,
47 SFP_E_TX_CLEAR,
48 SFP_E_LOS_HIGH,
49 SFP_E_LOS_LOW,
50 SFP_E_TIMEOUT,
51
52 SFP_MOD_EMPTY = 0,
53 SFP_MOD_ERROR,
54 SFP_MOD_PROBE,
55 SFP_MOD_WAITDEV,
56 SFP_MOD_HPOWER,
57 SFP_MOD_WAITPWR,
58 SFP_MOD_PRESENT,
59
60 SFP_DEV_DETACHED = 0,
61 SFP_DEV_DOWN,
62 SFP_DEV_UP,
63
64 SFP_S_DOWN = 0,
65 SFP_S_FAIL,
66 SFP_S_WAIT,
67 SFP_S_INIT,
68 SFP_S_INIT_PHY,
69 SFP_S_INIT_TX_FAULT,
70 SFP_S_WAIT_LOS,
71 SFP_S_LINK_UP,
72 SFP_S_TX_FAULT,
73 SFP_S_REINIT,
74 SFP_S_TX_DISABLE,
75};
76
77static const char * const mod_state_strings[] = {
78 [SFP_MOD_EMPTY] = "empty",
79 [SFP_MOD_ERROR] = "error",
80 [SFP_MOD_PROBE] = "probe",
81 [SFP_MOD_WAITDEV] = "waitdev",
82 [SFP_MOD_HPOWER] = "hpower",
83 [SFP_MOD_WAITPWR] = "waitpwr",
84 [SFP_MOD_PRESENT] = "present",
85};
86
87static const char *mod_state_to_str(unsigned short mod_state)
88{
89 if (mod_state >= ARRAY_SIZE(mod_state_strings))
90 return "Unknown module state";
91 return mod_state_strings[mod_state];
92}
93
94static const char * const dev_state_strings[] = {
95 [SFP_DEV_DETACHED] = "detached",
96 [SFP_DEV_DOWN] = "down",
97 [SFP_DEV_UP] = "up",
98};
99
100static const char *dev_state_to_str(unsigned short dev_state)
101{
102 if (dev_state >= ARRAY_SIZE(dev_state_strings))
103 return "Unknown device state";
104 return dev_state_strings[dev_state];
105}
106
107static const char * const event_strings[] = {
108 [SFP_E_INSERT] = "insert",
109 [SFP_E_REMOVE] = "remove",
110 [SFP_E_DEV_ATTACH] = "dev_attach",
111 [SFP_E_DEV_DETACH] = "dev_detach",
112 [SFP_E_DEV_DOWN] = "dev_down",
113 [SFP_E_DEV_UP] = "dev_up",
114 [SFP_E_TX_FAULT] = "tx_fault",
115 [SFP_E_TX_CLEAR] = "tx_clear",
116 [SFP_E_LOS_HIGH] = "los_high",
117 [SFP_E_LOS_LOW] = "los_low",
118 [SFP_E_TIMEOUT] = "timeout",
119};
120
121static const char *event_to_str(unsigned short event)
122{
123 if (event >= ARRAY_SIZE(event_strings))
124 return "Unknown event";
125 return event_strings[event];
126}
127
128static const char * const sm_state_strings[] = {
129 [SFP_S_DOWN] = "down",
130 [SFP_S_FAIL] = "fail",
131 [SFP_S_WAIT] = "wait",
132 [SFP_S_INIT] = "init",
133 [SFP_S_INIT_PHY] = "init_phy",
134 [SFP_S_INIT_TX_FAULT] = "init_tx_fault",
135 [SFP_S_WAIT_LOS] = "wait_los",
136 [SFP_S_LINK_UP] = "link_up",
137 [SFP_S_TX_FAULT] = "tx_fault",
138 [SFP_S_REINIT] = "reinit",
139 [SFP_S_TX_DISABLE] = "tx_disable",
140};
141
142static const char *sm_state_to_str(unsigned short sm_state)
143{
144 if (sm_state >= ARRAY_SIZE(sm_state_strings))
145 return "Unknown state";
146 return sm_state_strings[sm_state];
147}
148
149static const char *gpio_names[] = {
150 "mod-def0",
151 "los",
152 "tx-fault",
153 "tx-disable",
154 "rate-select0",
155 "rate-select1",
156};
157
158static const enum gpiod_flags gpio_flags[] = {
159 GPIOD_IN,
160 GPIOD_IN,
161 GPIOD_IN,
162 GPIOD_ASIS,
163 GPIOD_ASIS,
164 GPIOD_ASIS,
165};
166
167/* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a
168 * non-cooled module to initialise its laser safety circuitry. We wait
169 * an initial T_WAIT period before we check the tx fault to give any PHY
170 * on board (for a copper SFP) time to initialise.
171 */
172#define T_WAIT msecs_to_jiffies(50)
173#define T_START_UP msecs_to_jiffies(300)
174#define T_START_UP_BAD_GPON msecs_to_jiffies(60000)
175
176/* t_reset is the time required to assert the TX_DISABLE signal to reset
177 * an indicated TX_FAULT.
178 */
179#define T_RESET_US 10
180#define T_FAULT_RECOVER msecs_to_jiffies(1000)
181
182/* N_FAULT_INIT is the number of recovery attempts at module initialisation
183 * time. If the TX_FAULT signal is not deasserted after this number of
184 * attempts at clearing it, we decide that the module is faulty.
185 * N_FAULT is the same but after the module has initialised.
186 */
187#define N_FAULT_INIT 5
188#define N_FAULT 5
189
190/* T_PHY_RETRY is the time interval between attempts to probe the PHY.
191 * R_PHY_RETRY is the number of attempts.
192 */
193#define T_PHY_RETRY msecs_to_jiffies(50)
194#define R_PHY_RETRY 25
195
196/* SFP module presence detection is poor: the three MOD DEF signals are
197 * the same length on the PCB, which means it's possible for MOD DEF 0 to
198 * connect before the I2C bus on MOD DEF 1/2.
199 *
200 * The SFF-8472 specifies t_serial ("Time from power on until module is
201 * ready for data transmission over the two wire serial bus.") as 300ms.
202 */
203#define T_SERIAL msecs_to_jiffies(300)
204#define T_HPOWER_LEVEL msecs_to_jiffies(300)
205#define T_PROBE_RETRY_INIT msecs_to_jiffies(100)
206#define R_PROBE_RETRY_INIT 10
207#define T_PROBE_RETRY_SLOW msecs_to_jiffies(5000)
208#define R_PROBE_RETRY_SLOW 12
209
210/* SFP modules appear to always have their PHY configured for bus address
211 * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
212 * RollBall SFPs access phy via SFP Enhanced Digital Diagnostic Interface
213 * via address 0x51 (mdio-i2c will use RollBall protocol on this address).
214 */
215#define SFP_PHY_ADDR 22
216#define SFP_PHY_ADDR_ROLLBALL 17
217
218/* SFP_EEPROM_BLOCK_SIZE is the size of data chunk to read the EEPROM
219 * at a time. Some SFP modules and also some Linux I2C drivers do not like
220 * reads longer than 16 bytes.
221 */
222#define SFP_EEPROM_BLOCK_SIZE 16
223
224struct sff_data {
225 unsigned int gpios;
226 bool (*module_supported)(const struct sfp_eeprom_id *id);
227};
228
229struct sfp {
230 struct device *dev;
231 struct i2c_adapter *i2c;
232 struct mii_bus *i2c_mii;
233 struct sfp_bus *sfp_bus;
234 enum mdio_i2c_proto mdio_protocol;
235 struct phy_device *mod_phy;
236 const struct sff_data *type;
237 size_t i2c_block_size;
238 u32 max_power_mW;
239
240 unsigned int (*get_state)(struct sfp *);
241 void (*set_state)(struct sfp *, unsigned int);
242 int (*read)(struct sfp *, bool, u8, void *, size_t);
243 int (*write)(struct sfp *, bool, u8, void *, size_t);
244
245 struct gpio_desc *gpio[GPIO_MAX];
246 int gpio_irq[GPIO_MAX];
247
248 bool need_poll;
249
250 /* Access rules:
251 * state_hw_drive: st_mutex held
252 * state_hw_mask: st_mutex held
253 * state_soft_mask: st_mutex held
254 * state: st_mutex held unless reading input bits
255 */
256 struct mutex st_mutex; /* Protects state */
257 unsigned int state_hw_drive;
258 unsigned int state_hw_mask;
259 unsigned int state_soft_mask;
260 unsigned int state_ignore_mask;
261 unsigned int state;
262
263 struct delayed_work poll;
264 struct delayed_work timeout;
265 struct mutex sm_mutex; /* Protects state machine */
266 unsigned char sm_mod_state;
267 unsigned char sm_mod_tries_init;
268 unsigned char sm_mod_tries;
269 unsigned char sm_dev_state;
270 unsigned short sm_state;
271 unsigned char sm_fault_retries;
272 unsigned char sm_phy_retries;
273
274 struct sfp_eeprom_id id;
275 unsigned int module_power_mW;
276 unsigned int module_t_start_up;
277 unsigned int module_t_wait;
278 unsigned int phy_t_retry;
279
280 unsigned int rate_kbd;
281 unsigned int rs_threshold_kbd;
282 unsigned int rs_state_mask;
283
284 bool have_a2;
285
286 const struct sfp_quirk *quirk;
287
288#if IS_ENABLED(CONFIG_HWMON)
289 struct sfp_diag diag;
290 struct delayed_work hwmon_probe;
291 unsigned int hwmon_tries;
292 struct device *hwmon_dev;
293 char *hwmon_name;
294#endif
295
296#if IS_ENABLED(CONFIG_DEBUG_FS)
297 struct dentry *debugfs_dir;
298#endif
299};
300
301static bool sff_module_supported(const struct sfp_eeprom_id *id)
302{
303 return id->base.phys_id == SFF8024_ID_SFF_8472 &&
304 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
305}
306
307static const struct sff_data sff_data = {
308 .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
309 .module_supported = sff_module_supported,
310};
311
312static bool sfp_module_supported(const struct sfp_eeprom_id *id)
313{
314 if (id->base.phys_id == SFF8024_ID_SFP &&
315 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP)
316 return true;
317
318 /* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored
319 * phys id SFF instead of SFP. Therefore mark this module explicitly
320 * as supported based on vendor name and pn match.
321 */
322 if (id->base.phys_id == SFF8024_ID_SFF_8472 &&
323 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP &&
324 !memcmp(id->base.vendor_name, "UBNT ", 16) &&
325 !memcmp(id->base.vendor_pn, "UF-INSTANT ", 16))
326 return true;
327
328 return false;
329}
330
331static const struct sff_data sfp_data = {
332 .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
333 SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1,
334 .module_supported = sfp_module_supported,
335};
336
337static const struct of_device_id sfp_of_match[] = {
338 { .compatible = "sff,sff", .data = &sff_data, },
339 { .compatible = "sff,sfp", .data = &sfp_data, },
340 { },
341};
342MODULE_DEVICE_TABLE(of, sfp_of_match);
343
344static void sfp_fixup_long_startup(struct sfp *sfp)
345{
346 sfp->module_t_start_up = T_START_UP_BAD_GPON;
347}
348
349static void sfp_fixup_ignore_los(struct sfp *sfp)
350{
351 /* This forces LOS to zero, so we ignore transitions */
352 sfp->state_ignore_mask |= SFP_F_LOS;
353 /* Make sure that LOS options are clear */
354 sfp->id.ext.options &= ~cpu_to_be16(SFP_OPTIONS_LOS_INVERTED |
355 SFP_OPTIONS_LOS_NORMAL);
356}
357
358static void sfp_fixup_ignore_tx_fault(struct sfp *sfp)
359{
360 sfp->state_ignore_mask |= SFP_F_TX_FAULT;
361}
362
363static void sfp_fixup_nokia(struct sfp *sfp)
364{
365 sfp_fixup_long_startup(sfp);
366 sfp_fixup_ignore_los(sfp);
367}
368
369// For 10GBASE-T short-reach modules
370static void sfp_fixup_10gbaset_30m(struct sfp *sfp)
371{
372 sfp->id.base.connector = SFF8024_CONNECTOR_RJ45;
373 sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SR;
374}
375
376static void sfp_fixup_rollball(struct sfp *sfp)
377{
378 sfp->mdio_protocol = MDIO_I2C_ROLLBALL;
379
380 /* RollBall modules may disallow access to PHY registers for up to 25
381 * seconds, and the reads return 0xffff before that. Increase the time
382 * between PHY probe retries from 50ms to 1s so that we will wait for
383 * the PHY for a sufficient amount of time.
384 */
385 sfp->phy_t_retry = msecs_to_jiffies(1000);
386}
387
388static void sfp_fixup_fs_2_5gt(struct sfp *sfp)
389{
390 sfp_fixup_rollball(sfp);
391
392 /* The RollBall fixup is not enough for FS modules, the PHY chip inside
393 * them does not return 0xffff for PHY ID registers in all MMDs for the
394 * while initializing. They need a 4 second wait before accessing PHY.
395 */
396 sfp->module_t_wait = msecs_to_jiffies(4000);
397}
398
399static void sfp_fixup_fs_10gt(struct sfp *sfp)
400{
401 sfp_fixup_10gbaset_30m(sfp);
402 sfp_fixup_fs_2_5gt(sfp);
403}
404
405static void sfp_fixup_halny_gsfp(struct sfp *sfp)
406{
407 /* Ignore the TX_FAULT and LOS signals on this module.
408 * these are possibly used for other purposes on this
409 * module, e.g. a serial port.
410 */
411 sfp->state_hw_mask &= ~(SFP_F_TX_FAULT | SFP_F_LOS);
412}
413
414static void sfp_fixup_rollball_cc(struct sfp *sfp)
415{
416 sfp_fixup_rollball(sfp);
417
418 /* Some RollBall SFPs may have wrong (zero) extended compliance code
419 * burned in EEPROM. For PHY probing we need the correct one.
420 */
421 sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SFI;
422}
423
424static void sfp_quirk_2500basex(const struct sfp_eeprom_id *id,
425 unsigned long *modes,
426 unsigned long *interfaces)
427{
428 linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseX_Full_BIT, modes);
429 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
430}
431
432static void sfp_quirk_disable_autoneg(const struct sfp_eeprom_id *id,
433 unsigned long *modes,
434 unsigned long *interfaces)
435{
436 linkmode_clear_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, modes);
437}
438
439static void sfp_quirk_oem_2_5g(const struct sfp_eeprom_id *id,
440 unsigned long *modes,
441 unsigned long *interfaces)
442{
443 /* Copper 2.5G SFP */
444 linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseT_Full_BIT, modes);
445 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
446 sfp_quirk_disable_autoneg(id, modes, interfaces);
447}
448
449static void sfp_quirk_ubnt_uf_instant(const struct sfp_eeprom_id *id,
450 unsigned long *modes,
451 unsigned long *interfaces)
452{
453 /* Ubiquiti U-Fiber Instant module claims that support all transceiver
454 * types including 10G Ethernet which is not truth. So clear all claimed
455 * modes and set only one mode which module supports: 1000baseX_Full.
456 */
457 linkmode_zero(modes);
458 linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, modes);
459}
460
461#define SFP_QUIRK(_v, _p, _m, _f) \
462 { .vendor = _v, .part = _p, .modes = _m, .fixup = _f, }
463#define SFP_QUIRK_M(_v, _p, _m) SFP_QUIRK(_v, _p, _m, NULL)
464#define SFP_QUIRK_F(_v, _p, _f) SFP_QUIRK(_v, _p, NULL, _f)
465
466static const struct sfp_quirk sfp_quirks[] = {
467 // Alcatel Lucent G-010S-P can operate at 2500base-X, but incorrectly
468 // report 2500MBd NRZ in their EEPROM
469 SFP_QUIRK("ALCATELLUCENT", "G010SP", sfp_quirk_2500basex,
470 sfp_fixup_ignore_tx_fault),
471
472 // Alcatel Lucent G-010S-A can operate at 2500base-X, but report 3.2GBd
473 // NRZ in their EEPROM
474 SFP_QUIRK("ALCATELLUCENT", "3FE46541AA", sfp_quirk_2500basex,
475 sfp_fixup_nokia),
476
477 // Fiberstore SFP-10G-T doesn't identify as copper, uses the Rollball
478 // protocol to talk to the PHY and needs 4 sec wait before probing the
479 // PHY.
480 SFP_QUIRK_F("FS", "SFP-10G-T", sfp_fixup_fs_10gt),
481
482 // Fiberstore SFP-2.5G-T uses Rollball protocol to talk to the PHY and
483 // needs 4 sec wait before probing the PHY.
484 SFP_QUIRK_F("FS", "SFP-2.5G-T", sfp_fixup_fs_2_5gt),
485
486 // Fiberstore GPON-ONU-34-20BI can operate at 2500base-X, but report 1.2GBd
487 // NRZ in their EEPROM
488 SFP_QUIRK("FS", "GPON-ONU-34-20BI", sfp_quirk_2500basex,
489 sfp_fixup_ignore_tx_fault),
490
491 SFP_QUIRK_F("HALNy", "HL-GSFP", sfp_fixup_halny_gsfp),
492
493 // HG MXPD-483II-F 2.5G supports 2500Base-X, but incorrectly reports
494 // 2600MBd in their EERPOM
495 SFP_QUIRK_M("HG GENUINE", "MXPD-483II", sfp_quirk_2500basex),
496
497 // Huawei MA5671A can operate at 2500base-X, but report 1.2GBd NRZ in
498 // their EEPROM
499 SFP_QUIRK("HUAWEI", "MA5671A", sfp_quirk_2500basex,
500 sfp_fixup_ignore_tx_fault),
501
502 // Lantech 8330-262D-E can operate at 2500base-X, but incorrectly report
503 // 2500MBd NRZ in their EEPROM
504 SFP_QUIRK_M("Lantech", "8330-262D-E", sfp_quirk_2500basex),
505
506 SFP_QUIRK_M("UBNT", "UF-INSTANT", sfp_quirk_ubnt_uf_instant),
507
508 // Walsun HXSX-ATR[CI]-1 don't identify as copper, and use the
509 // Rollball protocol to talk to the PHY.
510 SFP_QUIRK_F("Walsun", "HXSX-ATRC-1", sfp_fixup_fs_10gt),
511 SFP_QUIRK_F("Walsun", "HXSX-ATRI-1", sfp_fixup_fs_10gt),
512
513 // OEM SFP-GE-T is a 1000Base-T module with broken TX_FAULT indicator
514 SFP_QUIRK_F("OEM", "SFP-GE-T", sfp_fixup_ignore_tx_fault),
515
516 SFP_QUIRK_F("OEM", "SFP-10G-T", sfp_fixup_rollball_cc),
517 SFP_QUIRK_M("OEM", "SFP-2.5G-T", sfp_quirk_oem_2_5g),
518 SFP_QUIRK_F("OEM", "RTSFP-10", sfp_fixup_rollball_cc),
519 SFP_QUIRK_F("OEM", "RTSFP-10G", sfp_fixup_rollball_cc),
520 SFP_QUIRK_F("Turris", "RTSFP-2.5G", sfp_fixup_rollball),
521 SFP_QUIRK_F("Turris", "RTSFP-10", sfp_fixup_rollball),
522 SFP_QUIRK_F("Turris", "RTSFP-10G", sfp_fixup_rollball),
523};
524
525static size_t sfp_strlen(const char *str, size_t maxlen)
526{
527 size_t size, i;
528
529 /* Trailing characters should be filled with space chars, but
530 * some manufacturers can't read SFF-8472 and use NUL.
531 */
532 for (i = 0, size = 0; i < maxlen; i++)
533 if (str[i] != ' ' && str[i] != '\0')
534 size = i + 1;
535
536 return size;
537}
538
539static bool sfp_match(const char *qs, const char *str, size_t len)
540{
541 if (!qs)
542 return true;
543 if (strlen(qs) != len)
544 return false;
545 return !strncmp(qs, str, len);
546}
547
548static const struct sfp_quirk *sfp_lookup_quirk(const struct sfp_eeprom_id *id)
549{
550 const struct sfp_quirk *q;
551 unsigned int i;
552 size_t vs, ps;
553
554 vs = sfp_strlen(id->base.vendor_name, ARRAY_SIZE(id->base.vendor_name));
555 ps = sfp_strlen(id->base.vendor_pn, ARRAY_SIZE(id->base.vendor_pn));
556
557 for (i = 0, q = sfp_quirks; i < ARRAY_SIZE(sfp_quirks); i++, q++)
558 if (sfp_match(q->vendor, id->base.vendor_name, vs) &&
559 sfp_match(q->part, id->base.vendor_pn, ps))
560 return q;
561
562 return NULL;
563}
564
565static unsigned long poll_jiffies;
566
567static unsigned int sfp_gpio_get_state(struct sfp *sfp)
568{
569 unsigned int i, state, v;
570
571 for (i = state = 0; i < GPIO_MAX; i++) {
572 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
573 continue;
574
575 v = gpiod_get_value_cansleep(sfp->gpio[i]);
576 if (v)
577 state |= BIT(i);
578 }
579
580 return state;
581}
582
583static unsigned int sff_gpio_get_state(struct sfp *sfp)
584{
585 return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
586}
587
588static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
589{
590 unsigned int drive;
591
592 if (state & SFP_F_PRESENT)
593 /* If the module is present, drive the requested signals */
594 drive = sfp->state_hw_drive;
595 else
596 /* Otherwise, let them float to the pull-ups */
597 drive = 0;
598
599 if (sfp->gpio[GPIO_TX_DISABLE]) {
600 if (drive & SFP_F_TX_DISABLE)
601 gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
602 state & SFP_F_TX_DISABLE);
603 else
604 gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
605 }
606
607 if (sfp->gpio[GPIO_RS0]) {
608 if (drive & SFP_F_RS0)
609 gpiod_direction_output(sfp->gpio[GPIO_RS0],
610 state & SFP_F_RS0);
611 else
612 gpiod_direction_input(sfp->gpio[GPIO_RS0]);
613 }
614
615 if (sfp->gpio[GPIO_RS1]) {
616 if (drive & SFP_F_RS1)
617 gpiod_direction_output(sfp->gpio[GPIO_RS1],
618 state & SFP_F_RS1);
619 else
620 gpiod_direction_input(sfp->gpio[GPIO_RS1]);
621 }
622}
623
624static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
625 size_t len)
626{
627 struct i2c_msg msgs[2];
628 u8 bus_addr = a2 ? 0x51 : 0x50;
629 size_t block_size = sfp->i2c_block_size;
630 size_t this_len;
631 int ret;
632
633 msgs[0].addr = bus_addr;
634 msgs[0].flags = 0;
635 msgs[0].len = 1;
636 msgs[0].buf = &dev_addr;
637 msgs[1].addr = bus_addr;
638 msgs[1].flags = I2C_M_RD;
639 msgs[1].len = len;
640 msgs[1].buf = buf;
641
642 while (len) {
643 this_len = len;
644 if (this_len > block_size)
645 this_len = block_size;
646
647 msgs[1].len = this_len;
648
649 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
650 if (ret < 0)
651 return ret;
652
653 if (ret != ARRAY_SIZE(msgs))
654 break;
655
656 msgs[1].buf += this_len;
657 dev_addr += this_len;
658 len -= this_len;
659 }
660
661 return msgs[1].buf - (u8 *)buf;
662}
663
664static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
665 size_t len)
666{
667 struct i2c_msg msgs[1];
668 u8 bus_addr = a2 ? 0x51 : 0x50;
669 int ret;
670
671 msgs[0].addr = bus_addr;
672 msgs[0].flags = 0;
673 msgs[0].len = 1 + len;
674 msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
675 if (!msgs[0].buf)
676 return -ENOMEM;
677
678 msgs[0].buf[0] = dev_addr;
679 memcpy(&msgs[0].buf[1], buf, len);
680
681 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
682
683 kfree(msgs[0].buf);
684
685 if (ret < 0)
686 return ret;
687
688 return ret == ARRAY_SIZE(msgs) ? len : 0;
689}
690
691static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
692{
693 if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
694 return -EINVAL;
695
696 sfp->i2c = i2c;
697 sfp->read = sfp_i2c_read;
698 sfp->write = sfp_i2c_write;
699
700 return 0;
701}
702
703static int sfp_i2c_mdiobus_create(struct sfp *sfp)
704{
705 struct mii_bus *i2c_mii;
706 int ret;
707
708 i2c_mii = mdio_i2c_alloc(sfp->dev, sfp->i2c, sfp->mdio_protocol);
709 if (IS_ERR(i2c_mii))
710 return PTR_ERR(i2c_mii);
711
712 i2c_mii->name = "SFP I2C Bus";
713 i2c_mii->phy_mask = ~0;
714
715 ret = mdiobus_register(i2c_mii);
716 if (ret < 0) {
717 mdiobus_free(i2c_mii);
718 return ret;
719 }
720
721 sfp->i2c_mii = i2c_mii;
722
723 return 0;
724}
725
726static void sfp_i2c_mdiobus_destroy(struct sfp *sfp)
727{
728 mdiobus_unregister(sfp->i2c_mii);
729 sfp->i2c_mii = NULL;
730}
731
732/* Interface */
733static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
734{
735 return sfp->read(sfp, a2, addr, buf, len);
736}
737
738static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
739{
740 return sfp->write(sfp, a2, addr, buf, len);
741}
742
743static int sfp_modify_u8(struct sfp *sfp, bool a2, u8 addr, u8 mask, u8 val)
744{
745 int ret;
746 u8 old, v;
747
748 ret = sfp_read(sfp, a2, addr, &old, sizeof(old));
749 if (ret != sizeof(old))
750 return ret;
751
752 v = (old & ~mask) | (val & mask);
753 if (v == old)
754 return sizeof(v);
755
756 return sfp_write(sfp, a2, addr, &v, sizeof(v));
757}
758
759static unsigned int sfp_soft_get_state(struct sfp *sfp)
760{
761 unsigned int state = 0;
762 u8 status;
763 int ret;
764
765 ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status));
766 if (ret == sizeof(status)) {
767 if (status & SFP_STATUS_RX_LOS)
768 state |= SFP_F_LOS;
769 if (status & SFP_STATUS_TX_FAULT)
770 state |= SFP_F_TX_FAULT;
771 } else {
772 dev_err_ratelimited(sfp->dev,
773 "failed to read SFP soft status: %pe\n",
774 ERR_PTR(ret));
775 /* Preserve the current state */
776 state = sfp->state;
777 }
778
779 return state & sfp->state_soft_mask;
780}
781
782static void sfp_soft_set_state(struct sfp *sfp, unsigned int state,
783 unsigned int soft)
784{
785 u8 mask = 0;
786 u8 val = 0;
787
788 if (soft & SFP_F_TX_DISABLE)
789 mask |= SFP_STATUS_TX_DISABLE_FORCE;
790 if (state & SFP_F_TX_DISABLE)
791 val |= SFP_STATUS_TX_DISABLE_FORCE;
792
793 if (soft & SFP_F_RS0)
794 mask |= SFP_STATUS_RS0_SELECT;
795 if (state & SFP_F_RS0)
796 val |= SFP_STATUS_RS0_SELECT;
797
798 if (mask)
799 sfp_modify_u8(sfp, true, SFP_STATUS, mask, val);
800
801 val = mask = 0;
802 if (soft & SFP_F_RS1)
803 mask |= SFP_EXT_STATUS_RS1_SELECT;
804 if (state & SFP_F_RS1)
805 val |= SFP_EXT_STATUS_RS1_SELECT;
806
807 if (mask)
808 sfp_modify_u8(sfp, true, SFP_EXT_STATUS, mask, val);
809}
810
811static void sfp_soft_start_poll(struct sfp *sfp)
812{
813 const struct sfp_eeprom_id *id = &sfp->id;
814 unsigned int mask = 0;
815
816 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE)
817 mask |= SFP_F_TX_DISABLE;
818 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT)
819 mask |= SFP_F_TX_FAULT;
820 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS)
821 mask |= SFP_F_LOS;
822 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RATE_SELECT)
823 mask |= sfp->rs_state_mask;
824
825 mutex_lock(&sfp->st_mutex);
826 // Poll the soft state for hardware pins we want to ignore
827 sfp->state_soft_mask = ~sfp->state_hw_mask & ~sfp->state_ignore_mask &
828 mask;
829
830 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) &&
831 !sfp->need_poll)
832 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
833 mutex_unlock(&sfp->st_mutex);
834}
835
836static void sfp_soft_stop_poll(struct sfp *sfp)
837{
838 mutex_lock(&sfp->st_mutex);
839 sfp->state_soft_mask = 0;
840 mutex_unlock(&sfp->st_mutex);
841}
842
843/* sfp_get_state() - must be called with st_mutex held, or in the
844 * initialisation path.
845 */
846static unsigned int sfp_get_state(struct sfp *sfp)
847{
848 unsigned int soft = sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT);
849 unsigned int state;
850
851 state = sfp->get_state(sfp) & sfp->state_hw_mask;
852 if (state & SFP_F_PRESENT && soft)
853 state |= sfp_soft_get_state(sfp);
854
855 return state;
856}
857
858/* sfp_set_state() - must be called with st_mutex held, or in the
859 * initialisation path.
860 */
861static void sfp_set_state(struct sfp *sfp, unsigned int state)
862{
863 unsigned int soft;
864
865 sfp->set_state(sfp, state);
866
867 soft = sfp->state_soft_mask & SFP_F_OUTPUTS;
868 if (state & SFP_F_PRESENT && soft)
869 sfp_soft_set_state(sfp, state, soft);
870}
871
872static void sfp_mod_state(struct sfp *sfp, unsigned int mask, unsigned int set)
873{
874 mutex_lock(&sfp->st_mutex);
875 sfp->state = (sfp->state & ~mask) | set;
876 sfp_set_state(sfp, sfp->state);
877 mutex_unlock(&sfp->st_mutex);
878}
879
880static unsigned int sfp_check(void *buf, size_t len)
881{
882 u8 *p, check;
883
884 for (p = buf, check = 0; len; p++, len--)
885 check += *p;
886
887 return check;
888}
889
890/* hwmon */
891#if IS_ENABLED(CONFIG_HWMON)
892static umode_t sfp_hwmon_is_visible(const void *data,
893 enum hwmon_sensor_types type,
894 u32 attr, int channel)
895{
896 const struct sfp *sfp = data;
897
898 switch (type) {
899 case hwmon_temp:
900 switch (attr) {
901 case hwmon_temp_min_alarm:
902 case hwmon_temp_max_alarm:
903 case hwmon_temp_lcrit_alarm:
904 case hwmon_temp_crit_alarm:
905 case hwmon_temp_min:
906 case hwmon_temp_max:
907 case hwmon_temp_lcrit:
908 case hwmon_temp_crit:
909 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
910 return 0;
911 fallthrough;
912 case hwmon_temp_input:
913 case hwmon_temp_label:
914 return 0444;
915 default:
916 return 0;
917 }
918 case hwmon_in:
919 switch (attr) {
920 case hwmon_in_min_alarm:
921 case hwmon_in_max_alarm:
922 case hwmon_in_lcrit_alarm:
923 case hwmon_in_crit_alarm:
924 case hwmon_in_min:
925 case hwmon_in_max:
926 case hwmon_in_lcrit:
927 case hwmon_in_crit:
928 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
929 return 0;
930 fallthrough;
931 case hwmon_in_input:
932 case hwmon_in_label:
933 return 0444;
934 default:
935 return 0;
936 }
937 case hwmon_curr:
938 switch (attr) {
939 case hwmon_curr_min_alarm:
940 case hwmon_curr_max_alarm:
941 case hwmon_curr_lcrit_alarm:
942 case hwmon_curr_crit_alarm:
943 case hwmon_curr_min:
944 case hwmon_curr_max:
945 case hwmon_curr_lcrit:
946 case hwmon_curr_crit:
947 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
948 return 0;
949 fallthrough;
950 case hwmon_curr_input:
951 case hwmon_curr_label:
952 return 0444;
953 default:
954 return 0;
955 }
956 case hwmon_power:
957 /* External calibration of receive power requires
958 * floating point arithmetic. Doing that in the kernel
959 * is not easy, so just skip it. If the module does
960 * not require external calibration, we can however
961 * show receiver power, since FP is then not needed.
962 */
963 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
964 channel == 1)
965 return 0;
966 switch (attr) {
967 case hwmon_power_min_alarm:
968 case hwmon_power_max_alarm:
969 case hwmon_power_lcrit_alarm:
970 case hwmon_power_crit_alarm:
971 case hwmon_power_min:
972 case hwmon_power_max:
973 case hwmon_power_lcrit:
974 case hwmon_power_crit:
975 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
976 return 0;
977 fallthrough;
978 case hwmon_power_input:
979 case hwmon_power_label:
980 return 0444;
981 default:
982 return 0;
983 }
984 default:
985 return 0;
986 }
987}
988
989static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
990{
991 __be16 val;
992 int err;
993
994 err = sfp_read(sfp, true, reg, &val, sizeof(val));
995 if (err < 0)
996 return err;
997
998 *value = be16_to_cpu(val);
999
1000 return 0;
1001}
1002
1003static void sfp_hwmon_to_rx_power(long *value)
1004{
1005 *value = DIV_ROUND_CLOSEST(*value, 10);
1006}
1007
1008static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
1009 long *value)
1010{
1011 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
1012 *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
1013}
1014
1015static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
1016{
1017 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
1018 be16_to_cpu(sfp->diag.cal_t_offset), value);
1019
1020 if (*value >= 0x8000)
1021 *value -= 0x10000;
1022
1023 *value = DIV_ROUND_CLOSEST(*value * 1000, 256);
1024}
1025
1026static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
1027{
1028 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
1029 be16_to_cpu(sfp->diag.cal_v_offset), value);
1030
1031 *value = DIV_ROUND_CLOSEST(*value, 10);
1032}
1033
1034static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
1035{
1036 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
1037 be16_to_cpu(sfp->diag.cal_txi_offset), value);
1038
1039 *value = DIV_ROUND_CLOSEST(*value, 500);
1040}
1041
1042static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
1043{
1044 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
1045 be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
1046
1047 *value = DIV_ROUND_CLOSEST(*value, 10);
1048}
1049
1050static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
1051{
1052 int err;
1053
1054 err = sfp_hwmon_read_sensor(sfp, reg, value);
1055 if (err < 0)
1056 return err;
1057
1058 sfp_hwmon_calibrate_temp(sfp, value);
1059
1060 return 0;
1061}
1062
1063static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
1064{
1065 int err;
1066
1067 err = sfp_hwmon_read_sensor(sfp, reg, value);
1068 if (err < 0)
1069 return err;
1070
1071 sfp_hwmon_calibrate_vcc(sfp, value);
1072
1073 return 0;
1074}
1075
1076static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
1077{
1078 int err;
1079
1080 err = sfp_hwmon_read_sensor(sfp, reg, value);
1081 if (err < 0)
1082 return err;
1083
1084 sfp_hwmon_calibrate_bias(sfp, value);
1085
1086 return 0;
1087}
1088
1089static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
1090{
1091 int err;
1092
1093 err = sfp_hwmon_read_sensor(sfp, reg, value);
1094 if (err < 0)
1095 return err;
1096
1097 sfp_hwmon_calibrate_tx_power(sfp, value);
1098
1099 return 0;
1100}
1101
1102static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
1103{
1104 int err;
1105
1106 err = sfp_hwmon_read_sensor(sfp, reg, value);
1107 if (err < 0)
1108 return err;
1109
1110 sfp_hwmon_to_rx_power(value);
1111
1112 return 0;
1113}
1114
1115static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
1116{
1117 u8 status;
1118 int err;
1119
1120 switch (attr) {
1121 case hwmon_temp_input:
1122 return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
1123
1124 case hwmon_temp_lcrit:
1125 *value = be16_to_cpu(sfp->diag.temp_low_alarm);
1126 sfp_hwmon_calibrate_temp(sfp, value);
1127 return 0;
1128
1129 case hwmon_temp_min:
1130 *value = be16_to_cpu(sfp->diag.temp_low_warn);
1131 sfp_hwmon_calibrate_temp(sfp, value);
1132 return 0;
1133 case hwmon_temp_max:
1134 *value = be16_to_cpu(sfp->diag.temp_high_warn);
1135 sfp_hwmon_calibrate_temp(sfp, value);
1136 return 0;
1137
1138 case hwmon_temp_crit:
1139 *value = be16_to_cpu(sfp->diag.temp_high_alarm);
1140 sfp_hwmon_calibrate_temp(sfp, value);
1141 return 0;
1142
1143 case hwmon_temp_lcrit_alarm:
1144 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1145 if (err < 0)
1146 return err;
1147
1148 *value = !!(status & SFP_ALARM0_TEMP_LOW);
1149 return 0;
1150
1151 case hwmon_temp_min_alarm:
1152 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1153 if (err < 0)
1154 return err;
1155
1156 *value = !!(status & SFP_WARN0_TEMP_LOW);
1157 return 0;
1158
1159 case hwmon_temp_max_alarm:
1160 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1161 if (err < 0)
1162 return err;
1163
1164 *value = !!(status & SFP_WARN0_TEMP_HIGH);
1165 return 0;
1166
1167 case hwmon_temp_crit_alarm:
1168 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1169 if (err < 0)
1170 return err;
1171
1172 *value = !!(status & SFP_ALARM0_TEMP_HIGH);
1173 return 0;
1174 default:
1175 return -EOPNOTSUPP;
1176 }
1177
1178 return -EOPNOTSUPP;
1179}
1180
1181static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
1182{
1183 u8 status;
1184 int err;
1185
1186 switch (attr) {
1187 case hwmon_in_input:
1188 return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
1189
1190 case hwmon_in_lcrit:
1191 *value = be16_to_cpu(sfp->diag.volt_low_alarm);
1192 sfp_hwmon_calibrate_vcc(sfp, value);
1193 return 0;
1194
1195 case hwmon_in_min:
1196 *value = be16_to_cpu(sfp->diag.volt_low_warn);
1197 sfp_hwmon_calibrate_vcc(sfp, value);
1198 return 0;
1199
1200 case hwmon_in_max:
1201 *value = be16_to_cpu(sfp->diag.volt_high_warn);
1202 sfp_hwmon_calibrate_vcc(sfp, value);
1203 return 0;
1204
1205 case hwmon_in_crit:
1206 *value = be16_to_cpu(sfp->diag.volt_high_alarm);
1207 sfp_hwmon_calibrate_vcc(sfp, value);
1208 return 0;
1209
1210 case hwmon_in_lcrit_alarm:
1211 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1212 if (err < 0)
1213 return err;
1214
1215 *value = !!(status & SFP_ALARM0_VCC_LOW);
1216 return 0;
1217
1218 case hwmon_in_min_alarm:
1219 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1220 if (err < 0)
1221 return err;
1222
1223 *value = !!(status & SFP_WARN0_VCC_LOW);
1224 return 0;
1225
1226 case hwmon_in_max_alarm:
1227 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1228 if (err < 0)
1229 return err;
1230
1231 *value = !!(status & SFP_WARN0_VCC_HIGH);
1232 return 0;
1233
1234 case hwmon_in_crit_alarm:
1235 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1236 if (err < 0)
1237 return err;
1238
1239 *value = !!(status & SFP_ALARM0_VCC_HIGH);
1240 return 0;
1241 default:
1242 return -EOPNOTSUPP;
1243 }
1244
1245 return -EOPNOTSUPP;
1246}
1247
1248static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
1249{
1250 u8 status;
1251 int err;
1252
1253 switch (attr) {
1254 case hwmon_curr_input:
1255 return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
1256
1257 case hwmon_curr_lcrit:
1258 *value = be16_to_cpu(sfp->diag.bias_low_alarm);
1259 sfp_hwmon_calibrate_bias(sfp, value);
1260 return 0;
1261
1262 case hwmon_curr_min:
1263 *value = be16_to_cpu(sfp->diag.bias_low_warn);
1264 sfp_hwmon_calibrate_bias(sfp, value);
1265 return 0;
1266
1267 case hwmon_curr_max:
1268 *value = be16_to_cpu(sfp->diag.bias_high_warn);
1269 sfp_hwmon_calibrate_bias(sfp, value);
1270 return 0;
1271
1272 case hwmon_curr_crit:
1273 *value = be16_to_cpu(sfp->diag.bias_high_alarm);
1274 sfp_hwmon_calibrate_bias(sfp, value);
1275 return 0;
1276
1277 case hwmon_curr_lcrit_alarm:
1278 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1279 if (err < 0)
1280 return err;
1281
1282 *value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
1283 return 0;
1284
1285 case hwmon_curr_min_alarm:
1286 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1287 if (err < 0)
1288 return err;
1289
1290 *value = !!(status & SFP_WARN0_TX_BIAS_LOW);
1291 return 0;
1292
1293 case hwmon_curr_max_alarm:
1294 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1295 if (err < 0)
1296 return err;
1297
1298 *value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
1299 return 0;
1300
1301 case hwmon_curr_crit_alarm:
1302 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1303 if (err < 0)
1304 return err;
1305
1306 *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
1307 return 0;
1308 default:
1309 return -EOPNOTSUPP;
1310 }
1311
1312 return -EOPNOTSUPP;
1313}
1314
1315static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
1316{
1317 u8 status;
1318 int err;
1319
1320 switch (attr) {
1321 case hwmon_power_input:
1322 return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
1323
1324 case hwmon_power_lcrit:
1325 *value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
1326 sfp_hwmon_calibrate_tx_power(sfp, value);
1327 return 0;
1328
1329 case hwmon_power_min:
1330 *value = be16_to_cpu(sfp->diag.txpwr_low_warn);
1331 sfp_hwmon_calibrate_tx_power(sfp, value);
1332 return 0;
1333
1334 case hwmon_power_max:
1335 *value = be16_to_cpu(sfp->diag.txpwr_high_warn);
1336 sfp_hwmon_calibrate_tx_power(sfp, value);
1337 return 0;
1338
1339 case hwmon_power_crit:
1340 *value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
1341 sfp_hwmon_calibrate_tx_power(sfp, value);
1342 return 0;
1343
1344 case hwmon_power_lcrit_alarm:
1345 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1346 if (err < 0)
1347 return err;
1348
1349 *value = !!(status & SFP_ALARM0_TXPWR_LOW);
1350 return 0;
1351
1352 case hwmon_power_min_alarm:
1353 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1354 if (err < 0)
1355 return err;
1356
1357 *value = !!(status & SFP_WARN0_TXPWR_LOW);
1358 return 0;
1359
1360 case hwmon_power_max_alarm:
1361 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1362 if (err < 0)
1363 return err;
1364
1365 *value = !!(status & SFP_WARN0_TXPWR_HIGH);
1366 return 0;
1367
1368 case hwmon_power_crit_alarm:
1369 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1370 if (err < 0)
1371 return err;
1372
1373 *value = !!(status & SFP_ALARM0_TXPWR_HIGH);
1374 return 0;
1375 default:
1376 return -EOPNOTSUPP;
1377 }
1378
1379 return -EOPNOTSUPP;
1380}
1381
1382static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
1383{
1384 u8 status;
1385 int err;
1386
1387 switch (attr) {
1388 case hwmon_power_input:
1389 return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
1390
1391 case hwmon_power_lcrit:
1392 *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
1393 sfp_hwmon_to_rx_power(value);
1394 return 0;
1395
1396 case hwmon_power_min:
1397 *value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
1398 sfp_hwmon_to_rx_power(value);
1399 return 0;
1400
1401 case hwmon_power_max:
1402 *value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
1403 sfp_hwmon_to_rx_power(value);
1404 return 0;
1405
1406 case hwmon_power_crit:
1407 *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
1408 sfp_hwmon_to_rx_power(value);
1409 return 0;
1410
1411 case hwmon_power_lcrit_alarm:
1412 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1413 if (err < 0)
1414 return err;
1415
1416 *value = !!(status & SFP_ALARM1_RXPWR_LOW);
1417 return 0;
1418
1419 case hwmon_power_min_alarm:
1420 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1421 if (err < 0)
1422 return err;
1423
1424 *value = !!(status & SFP_WARN1_RXPWR_LOW);
1425 return 0;
1426
1427 case hwmon_power_max_alarm:
1428 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1429 if (err < 0)
1430 return err;
1431
1432 *value = !!(status & SFP_WARN1_RXPWR_HIGH);
1433 return 0;
1434
1435 case hwmon_power_crit_alarm:
1436 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1437 if (err < 0)
1438 return err;
1439
1440 *value = !!(status & SFP_ALARM1_RXPWR_HIGH);
1441 return 0;
1442 default:
1443 return -EOPNOTSUPP;
1444 }
1445
1446 return -EOPNOTSUPP;
1447}
1448
1449static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
1450 u32 attr, int channel, long *value)
1451{
1452 struct sfp *sfp = dev_get_drvdata(dev);
1453
1454 switch (type) {
1455 case hwmon_temp:
1456 return sfp_hwmon_temp(sfp, attr, value);
1457 case hwmon_in:
1458 return sfp_hwmon_vcc(sfp, attr, value);
1459 case hwmon_curr:
1460 return sfp_hwmon_bias(sfp, attr, value);
1461 case hwmon_power:
1462 switch (channel) {
1463 case 0:
1464 return sfp_hwmon_tx_power(sfp, attr, value);
1465 case 1:
1466 return sfp_hwmon_rx_power(sfp, attr, value);
1467 default:
1468 return -EOPNOTSUPP;
1469 }
1470 default:
1471 return -EOPNOTSUPP;
1472 }
1473}
1474
1475static const char *const sfp_hwmon_power_labels[] = {
1476 "TX_power",
1477 "RX_power",
1478};
1479
1480static int sfp_hwmon_read_string(struct device *dev,
1481 enum hwmon_sensor_types type,
1482 u32 attr, int channel, const char **str)
1483{
1484 switch (type) {
1485 case hwmon_curr:
1486 switch (attr) {
1487 case hwmon_curr_label:
1488 *str = "bias";
1489 return 0;
1490 default:
1491 return -EOPNOTSUPP;
1492 }
1493 break;
1494 case hwmon_temp:
1495 switch (attr) {
1496 case hwmon_temp_label:
1497 *str = "temperature";
1498 return 0;
1499 default:
1500 return -EOPNOTSUPP;
1501 }
1502 break;
1503 case hwmon_in:
1504 switch (attr) {
1505 case hwmon_in_label:
1506 *str = "VCC";
1507 return 0;
1508 default:
1509 return -EOPNOTSUPP;
1510 }
1511 break;
1512 case hwmon_power:
1513 switch (attr) {
1514 case hwmon_power_label:
1515 *str = sfp_hwmon_power_labels[channel];
1516 return 0;
1517 default:
1518 return -EOPNOTSUPP;
1519 }
1520 break;
1521 default:
1522 return -EOPNOTSUPP;
1523 }
1524
1525 return -EOPNOTSUPP;
1526}
1527
1528static const struct hwmon_ops sfp_hwmon_ops = {
1529 .is_visible = sfp_hwmon_is_visible,
1530 .read = sfp_hwmon_read,
1531 .read_string = sfp_hwmon_read_string,
1532};
1533
1534static const struct hwmon_channel_info * const sfp_hwmon_info[] = {
1535 HWMON_CHANNEL_INFO(chip,
1536 HWMON_C_REGISTER_TZ),
1537 HWMON_CHANNEL_INFO(in,
1538 HWMON_I_INPUT |
1539 HWMON_I_MAX | HWMON_I_MIN |
1540 HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1541 HWMON_I_CRIT | HWMON_I_LCRIT |
1542 HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM |
1543 HWMON_I_LABEL),
1544 HWMON_CHANNEL_INFO(temp,
1545 HWMON_T_INPUT |
1546 HWMON_T_MAX | HWMON_T_MIN |
1547 HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
1548 HWMON_T_CRIT | HWMON_T_LCRIT |
1549 HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM |
1550 HWMON_T_LABEL),
1551 HWMON_CHANNEL_INFO(curr,
1552 HWMON_C_INPUT |
1553 HWMON_C_MAX | HWMON_C_MIN |
1554 HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1555 HWMON_C_CRIT | HWMON_C_LCRIT |
1556 HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM |
1557 HWMON_C_LABEL),
1558 HWMON_CHANNEL_INFO(power,
1559 /* Transmit power */
1560 HWMON_P_INPUT |
1561 HWMON_P_MAX | HWMON_P_MIN |
1562 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1563 HWMON_P_CRIT | HWMON_P_LCRIT |
1564 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1565 HWMON_P_LABEL,
1566 /* Receive power */
1567 HWMON_P_INPUT |
1568 HWMON_P_MAX | HWMON_P_MIN |
1569 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1570 HWMON_P_CRIT | HWMON_P_LCRIT |
1571 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1572 HWMON_P_LABEL),
1573 NULL,
1574};
1575
1576static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1577 .ops = &sfp_hwmon_ops,
1578 .info = sfp_hwmon_info,
1579};
1580
1581static void sfp_hwmon_probe(struct work_struct *work)
1582{
1583 struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work);
1584 int err;
1585
1586 /* hwmon interface needs to access 16bit registers in atomic way to
1587 * guarantee coherency of the diagnostic monitoring data. If it is not
1588 * possible to guarantee coherency because EEPROM is broken in such way
1589 * that does not support atomic 16bit read operation then we have to
1590 * skip registration of hwmon device.
1591 */
1592 if (sfp->i2c_block_size < 2) {
1593 dev_info(sfp->dev,
1594 "skipping hwmon device registration due to broken EEPROM\n");
1595 dev_info(sfp->dev,
1596 "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n");
1597 return;
1598 }
1599
1600 err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1601 if (err < 0) {
1602 if (sfp->hwmon_tries--) {
1603 mod_delayed_work(system_wq, &sfp->hwmon_probe,
1604 T_PROBE_RETRY_SLOW);
1605 } else {
1606 dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
1607 ERR_PTR(err));
1608 }
1609 return;
1610 }
1611
1612 sfp->hwmon_name = hwmon_sanitize_name(dev_name(sfp->dev));
1613 if (IS_ERR(sfp->hwmon_name)) {
1614 dev_err(sfp->dev, "out of memory for hwmon name\n");
1615 return;
1616 }
1617
1618 sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1619 sfp->hwmon_name, sfp,
1620 &sfp_hwmon_chip_info,
1621 NULL);
1622 if (IS_ERR(sfp->hwmon_dev))
1623 dev_err(sfp->dev, "failed to register hwmon device: %ld\n",
1624 PTR_ERR(sfp->hwmon_dev));
1625}
1626
1627static int sfp_hwmon_insert(struct sfp *sfp)
1628{
1629 if (sfp->have_a2 && sfp->id.ext.diagmon & SFP_DIAGMON_DDM) {
1630 mod_delayed_work(system_wq, &sfp->hwmon_probe, 1);
1631 sfp->hwmon_tries = R_PROBE_RETRY_SLOW;
1632 }
1633
1634 return 0;
1635}
1636
1637static void sfp_hwmon_remove(struct sfp *sfp)
1638{
1639 cancel_delayed_work_sync(&sfp->hwmon_probe);
1640 if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1641 hwmon_device_unregister(sfp->hwmon_dev);
1642 sfp->hwmon_dev = NULL;
1643 kfree(sfp->hwmon_name);
1644 }
1645}
1646
1647static int sfp_hwmon_init(struct sfp *sfp)
1648{
1649 INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe);
1650
1651 return 0;
1652}
1653
1654static void sfp_hwmon_exit(struct sfp *sfp)
1655{
1656 cancel_delayed_work_sync(&sfp->hwmon_probe);
1657}
1658#else
1659static int sfp_hwmon_insert(struct sfp *sfp)
1660{
1661 return 0;
1662}
1663
1664static void sfp_hwmon_remove(struct sfp *sfp)
1665{
1666}
1667
1668static int sfp_hwmon_init(struct sfp *sfp)
1669{
1670 return 0;
1671}
1672
1673static void sfp_hwmon_exit(struct sfp *sfp)
1674{
1675}
1676#endif
1677
1678/* Helpers */
1679static void sfp_module_tx_disable(struct sfp *sfp)
1680{
1681 dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1682 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1683 sfp_mod_state(sfp, SFP_F_TX_DISABLE, SFP_F_TX_DISABLE);
1684}
1685
1686static void sfp_module_tx_enable(struct sfp *sfp)
1687{
1688 dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1689 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1690 sfp_mod_state(sfp, SFP_F_TX_DISABLE, 0);
1691}
1692
1693#if IS_ENABLED(CONFIG_DEBUG_FS)
1694static int sfp_debug_state_show(struct seq_file *s, void *data)
1695{
1696 struct sfp *sfp = s->private;
1697
1698 seq_printf(s, "Module state: %s\n",
1699 mod_state_to_str(sfp->sm_mod_state));
1700 seq_printf(s, "Module probe attempts: %d %d\n",
1701 R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init,
1702 R_PROBE_RETRY_SLOW - sfp->sm_mod_tries);
1703 seq_printf(s, "Device state: %s\n",
1704 dev_state_to_str(sfp->sm_dev_state));
1705 seq_printf(s, "Main state: %s\n",
1706 sm_state_to_str(sfp->sm_state));
1707 seq_printf(s, "Fault recovery remaining retries: %d\n",
1708 sfp->sm_fault_retries);
1709 seq_printf(s, "PHY probe remaining retries: %d\n",
1710 sfp->sm_phy_retries);
1711 seq_printf(s, "Signalling rate: %u kBd\n", sfp->rate_kbd);
1712 seq_printf(s, "Rate select threshold: %u kBd\n",
1713 sfp->rs_threshold_kbd);
1714 seq_printf(s, "moddef0: %d\n", !!(sfp->state & SFP_F_PRESENT));
1715 seq_printf(s, "rx_los: %d\n", !!(sfp->state & SFP_F_LOS));
1716 seq_printf(s, "tx_fault: %d\n", !!(sfp->state & SFP_F_TX_FAULT));
1717 seq_printf(s, "tx_disable: %d\n", !!(sfp->state & SFP_F_TX_DISABLE));
1718 seq_printf(s, "rs0: %d\n", !!(sfp->state & SFP_F_RS0));
1719 seq_printf(s, "rs1: %d\n", !!(sfp->state & SFP_F_RS1));
1720 return 0;
1721}
1722DEFINE_SHOW_ATTRIBUTE(sfp_debug_state);
1723
1724static void sfp_debugfs_init(struct sfp *sfp)
1725{
1726 sfp->debugfs_dir = debugfs_create_dir(dev_name(sfp->dev), NULL);
1727
1728 debugfs_create_file("state", 0600, sfp->debugfs_dir, sfp,
1729 &sfp_debug_state_fops);
1730}
1731
1732static void sfp_debugfs_exit(struct sfp *sfp)
1733{
1734 debugfs_remove_recursive(sfp->debugfs_dir);
1735}
1736#else
1737static void sfp_debugfs_init(struct sfp *sfp)
1738{
1739}
1740
1741static void sfp_debugfs_exit(struct sfp *sfp)
1742{
1743}
1744#endif
1745
1746static void sfp_module_tx_fault_reset(struct sfp *sfp)
1747{
1748 unsigned int state;
1749
1750 mutex_lock(&sfp->st_mutex);
1751 state = sfp->state;
1752 if (!(state & SFP_F_TX_DISABLE)) {
1753 sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1754
1755 udelay(T_RESET_US);
1756
1757 sfp_set_state(sfp, state);
1758 }
1759 mutex_unlock(&sfp->st_mutex);
1760}
1761
1762/* SFP state machine */
1763static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1764{
1765 if (timeout)
1766 mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1767 timeout);
1768 else
1769 cancel_delayed_work(&sfp->timeout);
1770}
1771
1772static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1773 unsigned int timeout)
1774{
1775 sfp->sm_state = state;
1776 sfp_sm_set_timer(sfp, timeout);
1777}
1778
1779static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state,
1780 unsigned int timeout)
1781{
1782 sfp->sm_mod_state = state;
1783 sfp_sm_set_timer(sfp, timeout);
1784}
1785
1786static void sfp_sm_phy_detach(struct sfp *sfp)
1787{
1788 sfp_remove_phy(sfp->sfp_bus);
1789 phy_device_remove(sfp->mod_phy);
1790 phy_device_free(sfp->mod_phy);
1791 sfp->mod_phy = NULL;
1792}
1793
1794static int sfp_sm_probe_phy(struct sfp *sfp, int addr, bool is_c45)
1795{
1796 struct phy_device *phy;
1797 int err;
1798
1799 phy = get_phy_device(sfp->i2c_mii, addr, is_c45);
1800 if (phy == ERR_PTR(-ENODEV))
1801 return PTR_ERR(phy);
1802 if (IS_ERR(phy)) {
1803 dev_err(sfp->dev, "mdiobus scan returned %pe\n", phy);
1804 return PTR_ERR(phy);
1805 }
1806
1807 /* Mark this PHY as being on a SFP module */
1808 phy->is_on_sfp_module = true;
1809
1810 err = phy_device_register(phy);
1811 if (err) {
1812 phy_device_free(phy);
1813 dev_err(sfp->dev, "phy_device_register failed: %pe\n",
1814 ERR_PTR(err));
1815 return err;
1816 }
1817
1818 err = sfp_add_phy(sfp->sfp_bus, phy);
1819 if (err) {
1820 phy_device_remove(phy);
1821 phy_device_free(phy);
1822 dev_err(sfp->dev, "sfp_add_phy failed: %pe\n", ERR_PTR(err));
1823 return err;
1824 }
1825
1826 sfp->mod_phy = phy;
1827
1828 return 0;
1829}
1830
1831static void sfp_sm_link_up(struct sfp *sfp)
1832{
1833 sfp_link_up(sfp->sfp_bus);
1834 sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1835}
1836
1837static void sfp_sm_link_down(struct sfp *sfp)
1838{
1839 sfp_link_down(sfp->sfp_bus);
1840}
1841
1842static void sfp_sm_link_check_los(struct sfp *sfp)
1843{
1844 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1845 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1846 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1847 bool los = false;
1848
1849 /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
1850 * are set, we assume that no LOS signal is available. If both are
1851 * set, we assume LOS is not implemented (and is meaningless.)
1852 */
1853 if (los_options == los_inverted)
1854 los = !(sfp->state & SFP_F_LOS);
1855 else if (los_options == los_normal)
1856 los = !!(sfp->state & SFP_F_LOS);
1857
1858 if (los)
1859 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1860 else
1861 sfp_sm_link_up(sfp);
1862}
1863
1864static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1865{
1866 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1867 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1868 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1869
1870 return (los_options == los_inverted && event == SFP_E_LOS_LOW) ||
1871 (los_options == los_normal && event == SFP_E_LOS_HIGH);
1872}
1873
1874static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1875{
1876 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1877 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1878 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1879
1880 return (los_options == los_inverted && event == SFP_E_LOS_HIGH) ||
1881 (los_options == los_normal && event == SFP_E_LOS_LOW);
1882}
1883
1884static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn)
1885{
1886 if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) {
1887 dev_err(sfp->dev,
1888 "module persistently indicates fault, disabling\n");
1889 sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1890 } else {
1891 if (warn)
1892 dev_err(sfp->dev, "module transmit fault indicated\n");
1893
1894 sfp_sm_next(sfp, next_state, T_FAULT_RECOVER);
1895 }
1896}
1897
1898static int sfp_sm_add_mdio_bus(struct sfp *sfp)
1899{
1900 if (sfp->mdio_protocol != MDIO_I2C_NONE)
1901 return sfp_i2c_mdiobus_create(sfp);
1902
1903 return 0;
1904}
1905
1906/* Probe a SFP for a PHY device if the module supports copper - the PHY
1907 * normally sits at I2C bus address 0x56, and may either be a clause 22
1908 * or clause 45 PHY.
1909 *
1910 * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with
1911 * negotiation enabled, but some may be in 1000base-X - which is for the
1912 * PHY driver to determine.
1913 *
1914 * Clause 45 copper SFP+ modules (10G) appear to switch their interface
1915 * mode according to the negotiated line speed.
1916 */
1917static int sfp_sm_probe_for_phy(struct sfp *sfp)
1918{
1919 int err = 0;
1920
1921 switch (sfp->mdio_protocol) {
1922 case MDIO_I2C_NONE:
1923 break;
1924
1925 case MDIO_I2C_MARVELL_C22:
1926 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, false);
1927 break;
1928
1929 case MDIO_I2C_C45:
1930 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, true);
1931 break;
1932
1933 case MDIO_I2C_ROLLBALL:
1934 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR_ROLLBALL, true);
1935 break;
1936 }
1937
1938 return err;
1939}
1940
1941static int sfp_module_parse_power(struct sfp *sfp)
1942{
1943 u32 power_mW = 1000;
1944 bool supports_a2;
1945
1946 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 &&
1947 sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
1948 power_mW = 1500;
1949 /* Added in Rev 11.9, but there is no compliance code for this */
1950 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV11_4 &&
1951 sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
1952 power_mW = 2000;
1953
1954 /* Power level 1 modules (max. 1W) are always supported. */
1955 if (power_mW <= 1000) {
1956 sfp->module_power_mW = power_mW;
1957 return 0;
1958 }
1959
1960 supports_a2 = sfp->id.ext.sff8472_compliance !=
1961 SFP_SFF8472_COMPLIANCE_NONE ||
1962 sfp->id.ext.diagmon & SFP_DIAGMON_DDM;
1963
1964 if (power_mW > sfp->max_power_mW) {
1965 /* Module power specification exceeds the allowed maximum. */
1966 if (!supports_a2) {
1967 /* The module appears not to implement bus address
1968 * 0xa2, so assume that the module powers up in the
1969 * indicated mode.
1970 */
1971 dev_err(sfp->dev,
1972 "Host does not support %u.%uW modules\n",
1973 power_mW / 1000, (power_mW / 100) % 10);
1974 return -EINVAL;
1975 } else {
1976 dev_warn(sfp->dev,
1977 "Host does not support %u.%uW modules, module left in power mode 1\n",
1978 power_mW / 1000, (power_mW / 100) % 10);
1979 return 0;
1980 }
1981 }
1982
1983 if (!supports_a2) {
1984 /* The module power level is below the host maximum and the
1985 * module appears not to implement bus address 0xa2, so assume
1986 * that the module powers up in the indicated mode.
1987 */
1988 return 0;
1989 }
1990
1991 /* If the module requires a higher power mode, but also requires
1992 * an address change sequence, warn the user that the module may
1993 * not be functional.
1994 */
1995 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) {
1996 dev_warn(sfp->dev,
1997 "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n",
1998 power_mW / 1000, (power_mW / 100) % 10);
1999 return 0;
2000 }
2001
2002 sfp->module_power_mW = power_mW;
2003
2004 return 0;
2005}
2006
2007static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable)
2008{
2009 int err;
2010
2011 err = sfp_modify_u8(sfp, true, SFP_EXT_STATUS,
2012 SFP_EXT_STATUS_PWRLVL_SELECT,
2013 enable ? SFP_EXT_STATUS_PWRLVL_SELECT : 0);
2014 if (err != sizeof(u8)) {
2015 dev_err(sfp->dev, "failed to %sable high power: %pe\n",
2016 enable ? "en" : "dis", ERR_PTR(err));
2017 return -EAGAIN;
2018 }
2019
2020 if (enable)
2021 dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
2022 sfp->module_power_mW / 1000,
2023 (sfp->module_power_mW / 100) % 10);
2024
2025 return 0;
2026}
2027
2028static void sfp_module_parse_rate_select(struct sfp *sfp)
2029{
2030 u8 rate_id;
2031
2032 sfp->rs_threshold_kbd = 0;
2033 sfp->rs_state_mask = 0;
2034
2035 if (!(sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_RATE_SELECT)))
2036 /* No support for RateSelect */
2037 return;
2038
2039 /* Default to INF-8074 RateSelect operation. The signalling threshold
2040 * rate is not well specified, so always select "Full Bandwidth", but
2041 * SFF-8079 reveals that it is understood that RS0 will be low for
2042 * 1.0625Gb/s and high for 2.125Gb/s. Choose a value half-way between.
2043 * This method exists prior to SFF-8472.
2044 */
2045 sfp->rs_state_mask = SFP_F_RS0;
2046 sfp->rs_threshold_kbd = 1594;
2047
2048 /* Parse the rate identifier, which is complicated due to history:
2049 * SFF-8472 rev 9.5 marks this field as reserved.
2050 * SFF-8079 references SFF-8472 rev 9.5 and defines bit 0. SFF-8472
2051 * compliance is not required.
2052 * SFF-8472 rev 10.2 defines this field using values 0..4
2053 * SFF-8472 rev 11.0 redefines this field with bit 0 for SFF-8079
2054 * and even values.
2055 */
2056 rate_id = sfp->id.base.rate_id;
2057 if (rate_id == 0)
2058 /* Unspecified */
2059 return;
2060
2061 /* SFF-8472 rev 10.0..10.4 did not account for SFF-8079 using bit 0,
2062 * and allocated value 3 to SFF-8431 independent tx/rx rate select.
2063 * Convert this to a SFF-8472 rev 11.0 rate identifier.
2064 */
2065 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 &&
2066 sfp->id.ext.sff8472_compliance < SFP_SFF8472_COMPLIANCE_REV11_0 &&
2067 rate_id == 3)
2068 rate_id = SFF_RID_8431;
2069
2070 if (rate_id & SFF_RID_8079) {
2071 /* SFF-8079 RateSelect / Application Select in conjunction with
2072 * SFF-8472 rev 9.5. SFF-8079 defines rate_id as a bitfield
2073 * with only bit 0 used, which takes precedence over SFF-8472.
2074 */
2075 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_APP_SELECT_SFF8079)) {
2076 /* SFF-8079 Part 1 - rate selection between Fibre
2077 * Channel 1.0625/2.125/4.25 Gbd modes. Note that RS0
2078 * is high for 2125, so we have to subtract 1 to
2079 * include it.
2080 */
2081 sfp->rs_threshold_kbd = 2125 - 1;
2082 sfp->rs_state_mask = SFP_F_RS0;
2083 }
2084 return;
2085 }
2086
2087 /* SFF-8472 rev 9.5 does not define the rate identifier */
2088 if (sfp->id.ext.sff8472_compliance <= SFP_SFF8472_COMPLIANCE_REV9_5)
2089 return;
2090
2091 /* SFF-8472 rev 11.0 defines rate_id as a numerical value which will
2092 * always have bit 0 clear due to SFF-8079's bitfield usage of rate_id.
2093 */
2094 switch (rate_id) {
2095 case SFF_RID_8431_RX_ONLY:
2096 sfp->rs_threshold_kbd = 4250;
2097 sfp->rs_state_mask = SFP_F_RS0;
2098 break;
2099
2100 case SFF_RID_8431_TX_ONLY:
2101 sfp->rs_threshold_kbd = 4250;
2102 sfp->rs_state_mask = SFP_F_RS1;
2103 break;
2104
2105 case SFF_RID_8431:
2106 sfp->rs_threshold_kbd = 4250;
2107 sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1;
2108 break;
2109
2110 case SFF_RID_10G8G:
2111 sfp->rs_threshold_kbd = 9000;
2112 sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1;
2113 break;
2114 }
2115}
2116
2117/* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL
2118 * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do
2119 * not support multibyte reads from the EEPROM. Each multi-byte read
2120 * operation returns just one byte of EEPROM followed by zeros. There is
2121 * no way to identify which modules are using Realtek RTL8672 and RTL9601C
2122 * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor
2123 * name and vendor id into EEPROM, so there is even no way to detect if
2124 * module is V-SOL V2801F. Therefore check for those zeros in the read
2125 * data and then based on check switch to reading EEPROM to one byte
2126 * at a time.
2127 */
2128static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len)
2129{
2130 size_t i, block_size = sfp->i2c_block_size;
2131
2132 /* Already using byte IO */
2133 if (block_size == 1)
2134 return false;
2135
2136 for (i = 1; i < len; i += block_size) {
2137 if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i)))
2138 return false;
2139 }
2140 return true;
2141}
2142
2143static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id)
2144{
2145 u8 check;
2146 int err;
2147
2148 if (id->base.phys_id != SFF8024_ID_SFF_8472 ||
2149 id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP ||
2150 id->base.connector != SFF8024_CONNECTOR_LC) {
2151 dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n");
2152 id->base.phys_id = SFF8024_ID_SFF_8472;
2153 id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP;
2154 id->base.connector = SFF8024_CONNECTOR_LC;
2155 err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3);
2156 if (err != 3) {
2157 dev_err(sfp->dev,
2158 "Failed to rewrite module EEPROM: %pe\n",
2159 ERR_PTR(err));
2160 return err;
2161 }
2162
2163 /* Cotsworks modules have been found to require a delay between write operations. */
2164 mdelay(50);
2165
2166 /* Update base structure checksum */
2167 check = sfp_check(&id->base, sizeof(id->base) - 1);
2168 err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1);
2169 if (err != 1) {
2170 dev_err(sfp->dev,
2171 "Failed to update base structure checksum in fiber module EEPROM: %pe\n",
2172 ERR_PTR(err));
2173 return err;
2174 }
2175 }
2176 return 0;
2177}
2178
2179static int sfp_module_parse_sff8472(struct sfp *sfp)
2180{
2181 /* If the module requires address swap mode, warn about it */
2182 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
2183 dev_warn(sfp->dev,
2184 "module address swap to access page 0xA2 is not supported.\n");
2185 else
2186 sfp->have_a2 = true;
2187
2188 return 0;
2189}
2190
2191static int sfp_sm_mod_probe(struct sfp *sfp, bool report)
2192{
2193 /* SFP module inserted - read I2C data */
2194 struct sfp_eeprom_id id;
2195 bool cotsworks_sfbg;
2196 unsigned int mask;
2197 bool cotsworks;
2198 u8 check;
2199 int ret;
2200
2201 sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE;
2202
2203 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
2204 if (ret < 0) {
2205 if (report)
2206 dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
2207 ERR_PTR(ret));
2208 return -EAGAIN;
2209 }
2210
2211 if (ret != sizeof(id.base)) {
2212 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
2213 return -EAGAIN;
2214 }
2215
2216 /* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from
2217 * address 0x51 is just one byte at a time. Also SFF-8472 requires
2218 * that EEPROM supports atomic 16bit read operation for diagnostic
2219 * fields, so do not switch to one byte reading at a time unless it
2220 * is really required and we have no other option.
2221 */
2222 if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) {
2223 dev_info(sfp->dev,
2224 "Detected broken RTL8672/RTL9601C emulated EEPROM\n");
2225 dev_info(sfp->dev,
2226 "Switching to reading EEPROM to one byte at a time\n");
2227 sfp->i2c_block_size = 1;
2228
2229 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
2230 if (ret < 0) {
2231 if (report)
2232 dev_err(sfp->dev,
2233 "failed to read EEPROM: %pe\n",
2234 ERR_PTR(ret));
2235 return -EAGAIN;
2236 }
2237
2238 if (ret != sizeof(id.base)) {
2239 dev_err(sfp->dev, "EEPROM short read: %pe\n",
2240 ERR_PTR(ret));
2241 return -EAGAIN;
2242 }
2243 }
2244
2245 /* Cotsworks do not seem to update the checksums when they
2246 * do the final programming with the final module part number,
2247 * serial number and date code.
2248 */
2249 cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS ", 16);
2250 cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4);
2251
2252 /* Cotsworks SFF module EEPROM do not always have valid phys_id,
2253 * phys_ext_id, and connector bytes. Rewrite SFF EEPROM bytes if
2254 * Cotsworks PN matches and bytes are not correct.
2255 */
2256 if (cotsworks && cotsworks_sfbg) {
2257 ret = sfp_cotsworks_fixup_check(sfp, &id);
2258 if (ret < 0)
2259 return ret;
2260 }
2261
2262 /* Validate the checksum over the base structure */
2263 check = sfp_check(&id.base, sizeof(id.base) - 1);
2264 if (check != id.base.cc_base) {
2265 if (cotsworks) {
2266 dev_warn(sfp->dev,
2267 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
2268 check, id.base.cc_base);
2269 } else {
2270 dev_err(sfp->dev,
2271 "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
2272 check, id.base.cc_base);
2273 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
2274 16, 1, &id, sizeof(id), true);
2275 return -EINVAL;
2276 }
2277 }
2278
2279 ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext));
2280 if (ret < 0) {
2281 if (report)
2282 dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
2283 ERR_PTR(ret));
2284 return -EAGAIN;
2285 }
2286
2287 if (ret != sizeof(id.ext)) {
2288 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
2289 return -EAGAIN;
2290 }
2291
2292 check = sfp_check(&id.ext, sizeof(id.ext) - 1);
2293 if (check != id.ext.cc_ext) {
2294 if (cotsworks) {
2295 dev_warn(sfp->dev,
2296 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
2297 check, id.ext.cc_ext);
2298 } else {
2299 dev_err(sfp->dev,
2300 "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
2301 check, id.ext.cc_ext);
2302 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
2303 16, 1, &id, sizeof(id), true);
2304 memset(&id.ext, 0, sizeof(id.ext));
2305 }
2306 }
2307
2308 sfp->id = id;
2309
2310 dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
2311 (int)sizeof(id.base.vendor_name), id.base.vendor_name,
2312 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
2313 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
2314 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
2315 (int)sizeof(id.ext.datecode), id.ext.datecode);
2316
2317 /* Check whether we support this module */
2318 if (!sfp->type->module_supported(&id)) {
2319 dev_err(sfp->dev,
2320 "module is not supported - phys id 0x%02x 0x%02x\n",
2321 sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
2322 return -EINVAL;
2323 }
2324
2325 if (sfp->id.ext.sff8472_compliance != SFP_SFF8472_COMPLIANCE_NONE) {
2326 ret = sfp_module_parse_sff8472(sfp);
2327 if (ret < 0)
2328 return ret;
2329 }
2330
2331 /* Parse the module power requirement */
2332 ret = sfp_module_parse_power(sfp);
2333 if (ret < 0)
2334 return ret;
2335
2336 sfp_module_parse_rate_select(sfp);
2337
2338 mask = SFP_F_PRESENT;
2339 if (sfp->gpio[GPIO_TX_DISABLE])
2340 mask |= SFP_F_TX_DISABLE;
2341 if (sfp->gpio[GPIO_TX_FAULT])
2342 mask |= SFP_F_TX_FAULT;
2343 if (sfp->gpio[GPIO_LOS])
2344 mask |= SFP_F_LOS;
2345 if (sfp->gpio[GPIO_RS0])
2346 mask |= SFP_F_RS0;
2347 if (sfp->gpio[GPIO_RS1])
2348 mask |= SFP_F_RS1;
2349
2350 sfp->module_t_start_up = T_START_UP;
2351 sfp->module_t_wait = T_WAIT;
2352 sfp->phy_t_retry = T_PHY_RETRY;
2353
2354 sfp->state_ignore_mask = 0;
2355
2356 if (sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SFI ||
2357 sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SR ||
2358 sfp->id.base.extended_cc == SFF8024_ECC_5GBASE_T ||
2359 sfp->id.base.extended_cc == SFF8024_ECC_2_5GBASE_T)
2360 sfp->mdio_protocol = MDIO_I2C_C45;
2361 else if (sfp->id.base.e1000_base_t)
2362 sfp->mdio_protocol = MDIO_I2C_MARVELL_C22;
2363 else
2364 sfp->mdio_protocol = MDIO_I2C_NONE;
2365
2366 sfp->quirk = sfp_lookup_quirk(&id);
2367
2368 mutex_lock(&sfp->st_mutex);
2369 /* Initialise state bits to use from hardware */
2370 sfp->state_hw_mask = mask;
2371
2372 /* We want to drive the rate select pins that the module is using */
2373 sfp->state_hw_drive |= sfp->rs_state_mask;
2374
2375 if (sfp->quirk && sfp->quirk->fixup)
2376 sfp->quirk->fixup(sfp);
2377
2378 sfp->state_hw_mask &= ~sfp->state_ignore_mask;
2379 mutex_unlock(&sfp->st_mutex);
2380
2381 return 0;
2382}
2383
2384static void sfp_sm_mod_remove(struct sfp *sfp)
2385{
2386 if (sfp->sm_mod_state > SFP_MOD_WAITDEV)
2387 sfp_module_remove(sfp->sfp_bus);
2388
2389 sfp_hwmon_remove(sfp);
2390
2391 memset(&sfp->id, 0, sizeof(sfp->id));
2392 sfp->module_power_mW = 0;
2393 sfp->state_hw_drive = SFP_F_TX_DISABLE;
2394 sfp->have_a2 = false;
2395
2396 dev_info(sfp->dev, "module removed\n");
2397}
2398
2399/* This state machine tracks the upstream's state */
2400static void sfp_sm_device(struct sfp *sfp, unsigned int event)
2401{
2402 switch (sfp->sm_dev_state) {
2403 default:
2404 if (event == SFP_E_DEV_ATTACH)
2405 sfp->sm_dev_state = SFP_DEV_DOWN;
2406 break;
2407
2408 case SFP_DEV_DOWN:
2409 if (event == SFP_E_DEV_DETACH)
2410 sfp->sm_dev_state = SFP_DEV_DETACHED;
2411 else if (event == SFP_E_DEV_UP)
2412 sfp->sm_dev_state = SFP_DEV_UP;
2413 break;
2414
2415 case SFP_DEV_UP:
2416 if (event == SFP_E_DEV_DETACH)
2417 sfp->sm_dev_state = SFP_DEV_DETACHED;
2418 else if (event == SFP_E_DEV_DOWN)
2419 sfp->sm_dev_state = SFP_DEV_DOWN;
2420 break;
2421 }
2422}
2423
2424/* This state machine tracks the insert/remove state of the module, probes
2425 * the on-board EEPROM, and sets up the power level.
2426 */
2427static void sfp_sm_module(struct sfp *sfp, unsigned int event)
2428{
2429 int err;
2430
2431 /* Handle remove event globally, it resets this state machine */
2432 if (event == SFP_E_REMOVE) {
2433 sfp_sm_mod_remove(sfp);
2434 sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0);
2435 return;
2436 }
2437
2438 /* Handle device detach globally */
2439 if (sfp->sm_dev_state < SFP_DEV_DOWN &&
2440 sfp->sm_mod_state > SFP_MOD_WAITDEV) {
2441 if (sfp->module_power_mW > 1000 &&
2442 sfp->sm_mod_state > SFP_MOD_HPOWER)
2443 sfp_sm_mod_hpower(sfp, false);
2444 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2445 return;
2446 }
2447
2448 switch (sfp->sm_mod_state) {
2449 default:
2450 if (event == SFP_E_INSERT) {
2451 sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL);
2452 sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT;
2453 sfp->sm_mod_tries = R_PROBE_RETRY_SLOW;
2454 }
2455 break;
2456
2457 case SFP_MOD_PROBE:
2458 /* Wait for T_PROBE_INIT to time out */
2459 if (event != SFP_E_TIMEOUT)
2460 break;
2461
2462 err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1);
2463 if (err == -EAGAIN) {
2464 if (sfp->sm_mod_tries_init &&
2465 --sfp->sm_mod_tries_init) {
2466 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2467 break;
2468 } else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) {
2469 if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1)
2470 dev_warn(sfp->dev,
2471 "please wait, module slow to respond\n");
2472 sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW);
2473 break;
2474 }
2475 }
2476 if (err < 0) {
2477 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2478 break;
2479 }
2480
2481 /* Force a poll to re-read the hardware signal state after
2482 * sfp_sm_mod_probe() changed state_hw_mask.
2483 */
2484 mod_delayed_work(system_wq, &sfp->poll, 1);
2485
2486 err = sfp_hwmon_insert(sfp);
2487 if (err)
2488 dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
2489 ERR_PTR(err));
2490
2491 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2492 fallthrough;
2493 case SFP_MOD_WAITDEV:
2494 /* Ensure that the device is attached before proceeding */
2495 if (sfp->sm_dev_state < SFP_DEV_DOWN)
2496 break;
2497
2498 /* Report the module insertion to the upstream device */
2499 err = sfp_module_insert(sfp->sfp_bus, &sfp->id,
2500 sfp->quirk);
2501 if (err < 0) {
2502 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2503 break;
2504 }
2505
2506 /* If this is a power level 1 module, we are done */
2507 if (sfp->module_power_mW <= 1000)
2508 goto insert;
2509
2510 sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0);
2511 fallthrough;
2512 case SFP_MOD_HPOWER:
2513 /* Enable high power mode */
2514 err = sfp_sm_mod_hpower(sfp, true);
2515 if (err < 0) {
2516 if (err != -EAGAIN) {
2517 sfp_module_remove(sfp->sfp_bus);
2518 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2519 } else {
2520 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2521 }
2522 break;
2523 }
2524
2525 sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL);
2526 break;
2527
2528 case SFP_MOD_WAITPWR:
2529 /* Wait for T_HPOWER_LEVEL to time out */
2530 if (event != SFP_E_TIMEOUT)
2531 break;
2532
2533 insert:
2534 sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0);
2535 break;
2536
2537 case SFP_MOD_PRESENT:
2538 case SFP_MOD_ERROR:
2539 break;
2540 }
2541}
2542
2543static void sfp_sm_main(struct sfp *sfp, unsigned int event)
2544{
2545 unsigned long timeout;
2546 int ret;
2547
2548 /* Some events are global */
2549 if (sfp->sm_state != SFP_S_DOWN &&
2550 (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2551 sfp->sm_dev_state != SFP_DEV_UP)) {
2552 if (sfp->sm_state == SFP_S_LINK_UP &&
2553 sfp->sm_dev_state == SFP_DEV_UP)
2554 sfp_sm_link_down(sfp);
2555 if (sfp->sm_state > SFP_S_INIT)
2556 sfp_module_stop(sfp->sfp_bus);
2557 if (sfp->mod_phy)
2558 sfp_sm_phy_detach(sfp);
2559 if (sfp->i2c_mii)
2560 sfp_i2c_mdiobus_destroy(sfp);
2561 sfp_module_tx_disable(sfp);
2562 sfp_soft_stop_poll(sfp);
2563 sfp_sm_next(sfp, SFP_S_DOWN, 0);
2564 return;
2565 }
2566
2567 /* The main state machine */
2568 switch (sfp->sm_state) {
2569 case SFP_S_DOWN:
2570 if (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2571 sfp->sm_dev_state != SFP_DEV_UP)
2572 break;
2573
2574 /* Only use the soft state bits if we have access to the A2h
2575 * memory, which implies that we have some level of SFF-8472
2576 * compliance.
2577 */
2578 if (sfp->have_a2)
2579 sfp_soft_start_poll(sfp);
2580
2581 sfp_module_tx_enable(sfp);
2582
2583 /* Initialise the fault clearance retries */
2584 sfp->sm_fault_retries = N_FAULT_INIT;
2585
2586 /* We need to check the TX_FAULT state, which is not defined
2587 * while TX_DISABLE is asserted. The earliest we want to do
2588 * anything (such as probe for a PHY) is 50ms (or more on
2589 * specific modules).
2590 */
2591 sfp_sm_next(sfp, SFP_S_WAIT, sfp->module_t_wait);
2592 break;
2593
2594 case SFP_S_WAIT:
2595 if (event != SFP_E_TIMEOUT)
2596 break;
2597
2598 if (sfp->state & SFP_F_TX_FAULT) {
2599 /* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431)
2600 * from the TX_DISABLE deassertion for the module to
2601 * initialise, which is indicated by TX_FAULT
2602 * deasserting.
2603 */
2604 timeout = sfp->module_t_start_up;
2605 if (timeout > sfp->module_t_wait)
2606 timeout -= sfp->module_t_wait;
2607 else
2608 timeout = 1;
2609
2610 sfp_sm_next(sfp, SFP_S_INIT, timeout);
2611 } else {
2612 /* TX_FAULT is not asserted, assume the module has
2613 * finished initialising.
2614 */
2615 goto init_done;
2616 }
2617 break;
2618
2619 case SFP_S_INIT:
2620 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2621 /* TX_FAULT is still asserted after t_init
2622 * or t_start_up, so assume there is a fault.
2623 */
2624 sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT,
2625 sfp->sm_fault_retries == N_FAULT_INIT);
2626 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2627 init_done:
2628 /* Create mdiobus and start trying for PHY */
2629 ret = sfp_sm_add_mdio_bus(sfp);
2630 if (ret < 0) {
2631 sfp_sm_next(sfp, SFP_S_FAIL, 0);
2632 break;
2633 }
2634 sfp->sm_phy_retries = R_PHY_RETRY;
2635 goto phy_probe;
2636 }
2637 break;
2638
2639 case SFP_S_INIT_PHY:
2640 if (event != SFP_E_TIMEOUT)
2641 break;
2642 phy_probe:
2643 /* TX_FAULT deasserted or we timed out with TX_FAULT
2644 * clear. Probe for the PHY and check the LOS state.
2645 */
2646 ret = sfp_sm_probe_for_phy(sfp);
2647 if (ret == -ENODEV) {
2648 if (--sfp->sm_phy_retries) {
2649 sfp_sm_next(sfp, SFP_S_INIT_PHY,
2650 sfp->phy_t_retry);
2651 dev_dbg(sfp->dev,
2652 "no PHY detected, %u tries left\n",
2653 sfp->sm_phy_retries);
2654 break;
2655 } else {
2656 dev_info(sfp->dev, "no PHY detected\n");
2657 }
2658 } else if (ret) {
2659 sfp_sm_next(sfp, SFP_S_FAIL, 0);
2660 break;
2661 }
2662 if (sfp_module_start(sfp->sfp_bus)) {
2663 sfp_sm_next(sfp, SFP_S_FAIL, 0);
2664 break;
2665 }
2666 sfp_sm_link_check_los(sfp);
2667
2668 /* Reset the fault retry count */
2669 sfp->sm_fault_retries = N_FAULT;
2670 break;
2671
2672 case SFP_S_INIT_TX_FAULT:
2673 if (event == SFP_E_TIMEOUT) {
2674 sfp_module_tx_fault_reset(sfp);
2675 sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up);
2676 }
2677 break;
2678
2679 case SFP_S_WAIT_LOS:
2680 if (event == SFP_E_TX_FAULT)
2681 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2682 else if (sfp_los_event_inactive(sfp, event))
2683 sfp_sm_link_up(sfp);
2684 break;
2685
2686 case SFP_S_LINK_UP:
2687 if (event == SFP_E_TX_FAULT) {
2688 sfp_sm_link_down(sfp);
2689 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2690 } else if (sfp_los_event_active(sfp, event)) {
2691 sfp_sm_link_down(sfp);
2692 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
2693 }
2694 break;
2695
2696 case SFP_S_TX_FAULT:
2697 if (event == SFP_E_TIMEOUT) {
2698 sfp_module_tx_fault_reset(sfp);
2699 sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up);
2700 }
2701 break;
2702
2703 case SFP_S_REINIT:
2704 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2705 sfp_sm_fault(sfp, SFP_S_TX_FAULT, false);
2706 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2707 dev_info(sfp->dev, "module transmit fault recovered\n");
2708 sfp_sm_link_check_los(sfp);
2709 }
2710 break;
2711
2712 case SFP_S_TX_DISABLE:
2713 break;
2714 }
2715}
2716
2717static void __sfp_sm_event(struct sfp *sfp, unsigned int event)
2718{
2719 dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
2720 mod_state_to_str(sfp->sm_mod_state),
2721 dev_state_to_str(sfp->sm_dev_state),
2722 sm_state_to_str(sfp->sm_state),
2723 event_to_str(event));
2724
2725 sfp_sm_device(sfp, event);
2726 sfp_sm_module(sfp, event);
2727 sfp_sm_main(sfp, event);
2728
2729 dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
2730 mod_state_to_str(sfp->sm_mod_state),
2731 dev_state_to_str(sfp->sm_dev_state),
2732 sm_state_to_str(sfp->sm_state));
2733}
2734
2735static void sfp_sm_event(struct sfp *sfp, unsigned int event)
2736{
2737 mutex_lock(&sfp->sm_mutex);
2738 __sfp_sm_event(sfp, event);
2739 mutex_unlock(&sfp->sm_mutex);
2740}
2741
2742static void sfp_attach(struct sfp *sfp)
2743{
2744 sfp_sm_event(sfp, SFP_E_DEV_ATTACH);
2745}
2746
2747static void sfp_detach(struct sfp *sfp)
2748{
2749 sfp_sm_event(sfp, SFP_E_DEV_DETACH);
2750}
2751
2752static void sfp_start(struct sfp *sfp)
2753{
2754 sfp_sm_event(sfp, SFP_E_DEV_UP);
2755}
2756
2757static void sfp_stop(struct sfp *sfp)
2758{
2759 sfp_sm_event(sfp, SFP_E_DEV_DOWN);
2760}
2761
2762static void sfp_set_signal_rate(struct sfp *sfp, unsigned int rate_kbd)
2763{
2764 unsigned int set;
2765
2766 sfp->rate_kbd = rate_kbd;
2767
2768 if (rate_kbd > sfp->rs_threshold_kbd)
2769 set = sfp->rs_state_mask;
2770 else
2771 set = 0;
2772
2773 sfp_mod_state(sfp, SFP_F_RS0 | SFP_F_RS1, set);
2774}
2775
2776static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
2777{
2778 /* locking... and check module is present */
2779
2780 if (sfp->id.ext.sff8472_compliance &&
2781 !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
2782 modinfo->type = ETH_MODULE_SFF_8472;
2783 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2784 } else {
2785 modinfo->type = ETH_MODULE_SFF_8079;
2786 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2787 }
2788 return 0;
2789}
2790
2791static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
2792 u8 *data)
2793{
2794 unsigned int first, last, len;
2795 int ret;
2796
2797 if (!(sfp->state & SFP_F_PRESENT))
2798 return -ENODEV;
2799
2800 if (ee->len == 0)
2801 return -EINVAL;
2802
2803 first = ee->offset;
2804 last = ee->offset + ee->len;
2805 if (first < ETH_MODULE_SFF_8079_LEN) {
2806 len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
2807 len -= first;
2808
2809 ret = sfp_read(sfp, false, first, data, len);
2810 if (ret < 0)
2811 return ret;
2812
2813 first += len;
2814 data += len;
2815 }
2816 if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
2817 len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
2818 len -= first;
2819 first -= ETH_MODULE_SFF_8079_LEN;
2820
2821 ret = sfp_read(sfp, true, first, data, len);
2822 if (ret < 0)
2823 return ret;
2824 }
2825 return 0;
2826}
2827
2828static int sfp_module_eeprom_by_page(struct sfp *sfp,
2829 const struct ethtool_module_eeprom *page,
2830 struct netlink_ext_ack *extack)
2831{
2832 if (!(sfp->state & SFP_F_PRESENT))
2833 return -ENODEV;
2834
2835 if (page->bank) {
2836 NL_SET_ERR_MSG(extack, "Banks not supported");
2837 return -EOPNOTSUPP;
2838 }
2839
2840 if (page->page) {
2841 NL_SET_ERR_MSG(extack, "Only page 0 supported");
2842 return -EOPNOTSUPP;
2843 }
2844
2845 if (page->i2c_address != 0x50 &&
2846 page->i2c_address != 0x51) {
2847 NL_SET_ERR_MSG(extack, "Only address 0x50 and 0x51 supported");
2848 return -EOPNOTSUPP;
2849 }
2850
2851 return sfp_read(sfp, page->i2c_address == 0x51, page->offset,
2852 page->data, page->length);
2853};
2854
2855static const struct sfp_socket_ops sfp_module_ops = {
2856 .attach = sfp_attach,
2857 .detach = sfp_detach,
2858 .start = sfp_start,
2859 .stop = sfp_stop,
2860 .set_signal_rate = sfp_set_signal_rate,
2861 .module_info = sfp_module_info,
2862 .module_eeprom = sfp_module_eeprom,
2863 .module_eeprom_by_page = sfp_module_eeprom_by_page,
2864};
2865
2866static void sfp_timeout(struct work_struct *work)
2867{
2868 struct sfp *sfp = container_of(work, struct sfp, timeout.work);
2869
2870 rtnl_lock();
2871 sfp_sm_event(sfp, SFP_E_TIMEOUT);
2872 rtnl_unlock();
2873}
2874
2875static void sfp_check_state(struct sfp *sfp)
2876{
2877 unsigned int state, i, changed;
2878
2879 rtnl_lock();
2880 mutex_lock(&sfp->st_mutex);
2881 state = sfp_get_state(sfp);
2882 changed = state ^ sfp->state;
2883 changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
2884
2885 for (i = 0; i < GPIO_MAX; i++)
2886 if (changed & BIT(i))
2887 dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_names[i],
2888 !!(sfp->state & BIT(i)), !!(state & BIT(i)));
2889
2890 state |= sfp->state & SFP_F_OUTPUTS;
2891 sfp->state = state;
2892 mutex_unlock(&sfp->st_mutex);
2893
2894 mutex_lock(&sfp->sm_mutex);
2895 if (changed & SFP_F_PRESENT)
2896 __sfp_sm_event(sfp, state & SFP_F_PRESENT ?
2897 SFP_E_INSERT : SFP_E_REMOVE);
2898
2899 if (changed & SFP_F_TX_FAULT)
2900 __sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
2901 SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
2902
2903 if (changed & SFP_F_LOS)
2904 __sfp_sm_event(sfp, state & SFP_F_LOS ?
2905 SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
2906 mutex_unlock(&sfp->sm_mutex);
2907 rtnl_unlock();
2908}
2909
2910static irqreturn_t sfp_irq(int irq, void *data)
2911{
2912 struct sfp *sfp = data;
2913
2914 sfp_check_state(sfp);
2915
2916 return IRQ_HANDLED;
2917}
2918
2919static void sfp_poll(struct work_struct *work)
2920{
2921 struct sfp *sfp = container_of(work, struct sfp, poll.work);
2922
2923 sfp_check_state(sfp);
2924
2925 // st_mutex doesn't need to be held here for state_soft_mask,
2926 // it's unimportant if we race while reading this.
2927 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) ||
2928 sfp->need_poll)
2929 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2930}
2931
2932static struct sfp *sfp_alloc(struct device *dev)
2933{
2934 struct sfp *sfp;
2935
2936 sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
2937 if (!sfp)
2938 return ERR_PTR(-ENOMEM);
2939
2940 sfp->dev = dev;
2941 sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE;
2942
2943 mutex_init(&sfp->sm_mutex);
2944 mutex_init(&sfp->st_mutex);
2945 INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
2946 INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
2947
2948 sfp_hwmon_init(sfp);
2949
2950 return sfp;
2951}
2952
2953static void sfp_cleanup(void *data)
2954{
2955 struct sfp *sfp = data;
2956
2957 sfp_hwmon_exit(sfp);
2958
2959 cancel_delayed_work_sync(&sfp->poll);
2960 cancel_delayed_work_sync(&sfp->timeout);
2961 if (sfp->i2c_mii) {
2962 mdiobus_unregister(sfp->i2c_mii);
2963 mdiobus_free(sfp->i2c_mii);
2964 }
2965 if (sfp->i2c)
2966 i2c_put_adapter(sfp->i2c);
2967 kfree(sfp);
2968}
2969
2970static int sfp_i2c_get(struct sfp *sfp)
2971{
2972 struct fwnode_handle *h;
2973 struct i2c_adapter *i2c;
2974 int err;
2975
2976 h = fwnode_find_reference(dev_fwnode(sfp->dev), "i2c-bus", 0);
2977 if (IS_ERR(h)) {
2978 dev_err(sfp->dev, "missing 'i2c-bus' property\n");
2979 return -ENODEV;
2980 }
2981
2982 i2c = i2c_get_adapter_by_fwnode(h);
2983 if (!i2c) {
2984 err = -EPROBE_DEFER;
2985 goto put;
2986 }
2987
2988 err = sfp_i2c_configure(sfp, i2c);
2989 if (err)
2990 i2c_put_adapter(i2c);
2991put:
2992 fwnode_handle_put(h);
2993 return err;
2994}
2995
2996static int sfp_probe(struct platform_device *pdev)
2997{
2998 const struct sff_data *sff;
2999 char *sfp_irq_name;
3000 struct sfp *sfp;
3001 int err, i;
3002
3003 sfp = sfp_alloc(&pdev->dev);
3004 if (IS_ERR(sfp))
3005 return PTR_ERR(sfp);
3006
3007 platform_set_drvdata(pdev, sfp);
3008
3009 err = devm_add_action_or_reset(sfp->dev, sfp_cleanup, sfp);
3010 if (err < 0)
3011 return err;
3012
3013 sff = device_get_match_data(sfp->dev);
3014 if (!sff)
3015 sff = &sfp_data;
3016
3017 sfp->type = sff;
3018
3019 err = sfp_i2c_get(sfp);
3020 if (err)
3021 return err;
3022
3023 for (i = 0; i < GPIO_MAX; i++)
3024 if (sff->gpios & BIT(i)) {
3025 sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
3026 gpio_names[i], gpio_flags[i]);
3027 if (IS_ERR(sfp->gpio[i]))
3028 return PTR_ERR(sfp->gpio[i]);
3029 }
3030
3031 sfp->state_hw_mask = SFP_F_PRESENT;
3032 sfp->state_hw_drive = SFP_F_TX_DISABLE;
3033
3034 sfp->get_state = sfp_gpio_get_state;
3035 sfp->set_state = sfp_gpio_set_state;
3036
3037 /* Modules that have no detect signal are always present */
3038 if (!(sfp->gpio[GPIO_MODDEF0]))
3039 sfp->get_state = sff_gpio_get_state;
3040
3041 device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
3042 &sfp->max_power_mW);
3043 if (sfp->max_power_mW < 1000) {
3044 if (sfp->max_power_mW)
3045 dev_warn(sfp->dev,
3046 "Firmware bug: host maximum power should be at least 1W\n");
3047 sfp->max_power_mW = 1000;
3048 }
3049
3050 dev_info(sfp->dev, "Host maximum power %u.%uW\n",
3051 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
3052
3053 /* Get the initial state, and always signal TX disable,
3054 * since the network interface will not be up.
3055 */
3056 sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
3057
3058 if (sfp->gpio[GPIO_RS0] &&
3059 gpiod_get_value_cansleep(sfp->gpio[GPIO_RS0]))
3060 sfp->state |= SFP_F_RS0;
3061 sfp_set_state(sfp, sfp->state);
3062 sfp_module_tx_disable(sfp);
3063 if (sfp->state & SFP_F_PRESENT) {
3064 rtnl_lock();
3065 sfp_sm_event(sfp, SFP_E_INSERT);
3066 rtnl_unlock();
3067 }
3068
3069 for (i = 0; i < GPIO_MAX; i++) {
3070 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
3071 continue;
3072
3073 sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]);
3074 if (sfp->gpio_irq[i] < 0) {
3075 sfp->gpio_irq[i] = 0;
3076 sfp->need_poll = true;
3077 continue;
3078 }
3079
3080 sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL,
3081 "%s-%s", dev_name(sfp->dev),
3082 gpio_names[i]);
3083
3084 if (!sfp_irq_name)
3085 return -ENOMEM;
3086
3087 err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i],
3088 NULL, sfp_irq,
3089 IRQF_ONESHOT |
3090 IRQF_TRIGGER_RISING |
3091 IRQF_TRIGGER_FALLING,
3092 sfp_irq_name, sfp);
3093 if (err) {
3094 sfp->gpio_irq[i] = 0;
3095 sfp->need_poll = true;
3096 }
3097 }
3098
3099 if (sfp->need_poll)
3100 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
3101
3102 /* We could have an issue in cases no Tx disable pin is available or
3103 * wired as modules using a laser as their light source will continue to
3104 * be active when the fiber is removed. This could be a safety issue and
3105 * we should at least warn the user about that.
3106 */
3107 if (!sfp->gpio[GPIO_TX_DISABLE])
3108 dev_warn(sfp->dev,
3109 "No tx_disable pin: SFP modules will always be emitting.\n");
3110
3111 sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
3112 if (!sfp->sfp_bus)
3113 return -ENOMEM;
3114
3115 sfp_debugfs_init(sfp);
3116
3117 return 0;
3118}
3119
3120static void sfp_remove(struct platform_device *pdev)
3121{
3122 struct sfp *sfp = platform_get_drvdata(pdev);
3123
3124 sfp_debugfs_exit(sfp);
3125 sfp_unregister_socket(sfp->sfp_bus);
3126
3127 rtnl_lock();
3128 sfp_sm_event(sfp, SFP_E_REMOVE);
3129 rtnl_unlock();
3130}
3131
3132static void sfp_shutdown(struct platform_device *pdev)
3133{
3134 struct sfp *sfp = platform_get_drvdata(pdev);
3135 int i;
3136
3137 for (i = 0; i < GPIO_MAX; i++) {
3138 if (!sfp->gpio_irq[i])
3139 continue;
3140
3141 devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp);
3142 }
3143
3144 cancel_delayed_work_sync(&sfp->poll);
3145 cancel_delayed_work_sync(&sfp->timeout);
3146}
3147
3148static struct platform_driver sfp_driver = {
3149 .probe = sfp_probe,
3150 .remove = sfp_remove,
3151 .shutdown = sfp_shutdown,
3152 .driver = {
3153 .name = "sfp",
3154 .of_match_table = sfp_of_match,
3155 },
3156};
3157
3158static int sfp_init(void)
3159{
3160 poll_jiffies = msecs_to_jiffies(100);
3161
3162 return platform_driver_register(&sfp_driver);
3163}
3164module_init(sfp_init);
3165
3166static void sfp_exit(void)
3167{
3168 platform_driver_unregister(&sfp_driver);
3169}
3170module_exit(sfp_exit);
3171
3172MODULE_ALIAS("platform:sfp");
3173MODULE_AUTHOR("Russell King");
3174MODULE_LICENSE("GPL v2");
3175MODULE_DESCRIPTION("SFP cage support");