Loading...
1// SPDX-License-Identifier: GPL-2.0
2#include <linux/debugfs.h>
3#include <linux/delay.h>
4#include <linux/gpio/consumer.h>
5#include <linux/hwmon.h>
6#include <linux/i2c.h>
7#include <linux/interrupt.h>
8#include <linux/jiffies.h>
9#include <linux/mdio/mdio-i2c.h>
10#include <linux/module.h>
11#include <linux/mutex.h>
12#include <linux/of.h>
13#include <linux/phy.h>
14#include <linux/platform_device.h>
15#include <linux/rtnetlink.h>
16#include <linux/slab.h>
17#include <linux/workqueue.h>
18
19#include "sfp.h"
20#include "swphy.h"
21
22enum {
23 GPIO_MODDEF0,
24 GPIO_LOS,
25 GPIO_TX_FAULT,
26 GPIO_TX_DISABLE,
27 GPIO_RS0,
28 GPIO_RS1,
29 GPIO_MAX,
30
31 SFP_F_PRESENT = BIT(GPIO_MODDEF0),
32 SFP_F_LOS = BIT(GPIO_LOS),
33 SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
34 SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
35 SFP_F_RS0 = BIT(GPIO_RS0),
36 SFP_F_RS1 = BIT(GPIO_RS1),
37
38 SFP_F_OUTPUTS = SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1,
39
40 SFP_E_INSERT = 0,
41 SFP_E_REMOVE,
42 SFP_E_DEV_ATTACH,
43 SFP_E_DEV_DETACH,
44 SFP_E_DEV_DOWN,
45 SFP_E_DEV_UP,
46 SFP_E_TX_FAULT,
47 SFP_E_TX_CLEAR,
48 SFP_E_LOS_HIGH,
49 SFP_E_LOS_LOW,
50 SFP_E_TIMEOUT,
51
52 SFP_MOD_EMPTY = 0,
53 SFP_MOD_ERROR,
54 SFP_MOD_PROBE,
55 SFP_MOD_WAITDEV,
56 SFP_MOD_HPOWER,
57 SFP_MOD_WAITPWR,
58 SFP_MOD_PRESENT,
59
60 SFP_DEV_DETACHED = 0,
61 SFP_DEV_DOWN,
62 SFP_DEV_UP,
63
64 SFP_S_DOWN = 0,
65 SFP_S_FAIL,
66 SFP_S_WAIT,
67 SFP_S_INIT,
68 SFP_S_INIT_PHY,
69 SFP_S_INIT_TX_FAULT,
70 SFP_S_WAIT_LOS,
71 SFP_S_LINK_UP,
72 SFP_S_TX_FAULT,
73 SFP_S_REINIT,
74 SFP_S_TX_DISABLE,
75};
76
77static const char * const mod_state_strings[] = {
78 [SFP_MOD_EMPTY] = "empty",
79 [SFP_MOD_ERROR] = "error",
80 [SFP_MOD_PROBE] = "probe",
81 [SFP_MOD_WAITDEV] = "waitdev",
82 [SFP_MOD_HPOWER] = "hpower",
83 [SFP_MOD_WAITPWR] = "waitpwr",
84 [SFP_MOD_PRESENT] = "present",
85};
86
87static const char *mod_state_to_str(unsigned short mod_state)
88{
89 if (mod_state >= ARRAY_SIZE(mod_state_strings))
90 return "Unknown module state";
91 return mod_state_strings[mod_state];
92}
93
94static const char * const dev_state_strings[] = {
95 [SFP_DEV_DETACHED] = "detached",
96 [SFP_DEV_DOWN] = "down",
97 [SFP_DEV_UP] = "up",
98};
99
100static const char *dev_state_to_str(unsigned short dev_state)
101{
102 if (dev_state >= ARRAY_SIZE(dev_state_strings))
103 return "Unknown device state";
104 return dev_state_strings[dev_state];
105}
106
107static const char * const event_strings[] = {
108 [SFP_E_INSERT] = "insert",
109 [SFP_E_REMOVE] = "remove",
110 [SFP_E_DEV_ATTACH] = "dev_attach",
111 [SFP_E_DEV_DETACH] = "dev_detach",
112 [SFP_E_DEV_DOWN] = "dev_down",
113 [SFP_E_DEV_UP] = "dev_up",
114 [SFP_E_TX_FAULT] = "tx_fault",
115 [SFP_E_TX_CLEAR] = "tx_clear",
116 [SFP_E_LOS_HIGH] = "los_high",
117 [SFP_E_LOS_LOW] = "los_low",
118 [SFP_E_TIMEOUT] = "timeout",
119};
120
121static const char *event_to_str(unsigned short event)
122{
123 if (event >= ARRAY_SIZE(event_strings))
124 return "Unknown event";
125 return event_strings[event];
126}
127
128static const char * const sm_state_strings[] = {
129 [SFP_S_DOWN] = "down",
130 [SFP_S_FAIL] = "fail",
131 [SFP_S_WAIT] = "wait",
132 [SFP_S_INIT] = "init",
133 [SFP_S_INIT_PHY] = "init_phy",
134 [SFP_S_INIT_TX_FAULT] = "init_tx_fault",
135 [SFP_S_WAIT_LOS] = "wait_los",
136 [SFP_S_LINK_UP] = "link_up",
137 [SFP_S_TX_FAULT] = "tx_fault",
138 [SFP_S_REINIT] = "reinit",
139 [SFP_S_TX_DISABLE] = "tx_disable",
140};
141
142static const char *sm_state_to_str(unsigned short sm_state)
143{
144 if (sm_state >= ARRAY_SIZE(sm_state_strings))
145 return "Unknown state";
146 return sm_state_strings[sm_state];
147}
148
149static const char *gpio_names[] = {
150 "mod-def0",
151 "los",
152 "tx-fault",
153 "tx-disable",
154 "rate-select0",
155 "rate-select1",
156};
157
158static const enum gpiod_flags gpio_flags[] = {
159 GPIOD_IN,
160 GPIOD_IN,
161 GPIOD_IN,
162 GPIOD_ASIS,
163 GPIOD_ASIS,
164 GPIOD_ASIS,
165};
166
167/* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a
168 * non-cooled module to initialise its laser safety circuitry. We wait
169 * an initial T_WAIT period before we check the tx fault to give any PHY
170 * on board (for a copper SFP) time to initialise.
171 */
172#define T_WAIT msecs_to_jiffies(50)
173#define T_START_UP msecs_to_jiffies(300)
174#define T_START_UP_BAD_GPON msecs_to_jiffies(60000)
175
176/* t_reset is the time required to assert the TX_DISABLE signal to reset
177 * an indicated TX_FAULT.
178 */
179#define T_RESET_US 10
180#define T_FAULT_RECOVER msecs_to_jiffies(1000)
181
182/* N_FAULT_INIT is the number of recovery attempts at module initialisation
183 * time. If the TX_FAULT signal is not deasserted after this number of
184 * attempts at clearing it, we decide that the module is faulty.
185 * N_FAULT is the same but after the module has initialised.
186 */
187#define N_FAULT_INIT 5
188#define N_FAULT 5
189
190/* T_PHY_RETRY is the time interval between attempts to probe the PHY.
191 * R_PHY_RETRY is the number of attempts.
192 */
193#define T_PHY_RETRY msecs_to_jiffies(50)
194#define R_PHY_RETRY 25
195
196/* SFP module presence detection is poor: the three MOD DEF signals are
197 * the same length on the PCB, which means it's possible for MOD DEF 0 to
198 * connect before the I2C bus on MOD DEF 1/2.
199 *
200 * The SFF-8472 specifies t_serial ("Time from power on until module is
201 * ready for data transmission over the two wire serial bus.") as 300ms.
202 */
203#define T_SERIAL msecs_to_jiffies(300)
204#define T_HPOWER_LEVEL msecs_to_jiffies(300)
205#define T_PROBE_RETRY_INIT msecs_to_jiffies(100)
206#define R_PROBE_RETRY_INIT 10
207#define T_PROBE_RETRY_SLOW msecs_to_jiffies(5000)
208#define R_PROBE_RETRY_SLOW 12
209
210/* SFP modules appear to always have their PHY configured for bus address
211 * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
212 * RollBall SFPs access phy via SFP Enhanced Digital Diagnostic Interface
213 * via address 0x51 (mdio-i2c will use RollBall protocol on this address).
214 */
215#define SFP_PHY_ADDR 22
216#define SFP_PHY_ADDR_ROLLBALL 17
217
218/* SFP_EEPROM_BLOCK_SIZE is the size of data chunk to read the EEPROM
219 * at a time. Some SFP modules and also some Linux I2C drivers do not like
220 * reads longer than 16 bytes.
221 */
222#define SFP_EEPROM_BLOCK_SIZE 16
223
224struct sff_data {
225 unsigned int gpios;
226 bool (*module_supported)(const struct sfp_eeprom_id *id);
227};
228
229struct sfp {
230 struct device *dev;
231 struct i2c_adapter *i2c;
232 struct mii_bus *i2c_mii;
233 struct sfp_bus *sfp_bus;
234 enum mdio_i2c_proto mdio_protocol;
235 struct phy_device *mod_phy;
236 const struct sff_data *type;
237 size_t i2c_block_size;
238 u32 max_power_mW;
239
240 unsigned int (*get_state)(struct sfp *);
241 void (*set_state)(struct sfp *, unsigned int);
242 int (*read)(struct sfp *, bool, u8, void *, size_t);
243 int (*write)(struct sfp *, bool, u8, void *, size_t);
244
245 struct gpio_desc *gpio[GPIO_MAX];
246 int gpio_irq[GPIO_MAX];
247
248 bool need_poll;
249
250 /* Access rules:
251 * state_hw_drive: st_mutex held
252 * state_hw_mask: st_mutex held
253 * state_soft_mask: st_mutex held
254 * state: st_mutex held unless reading input bits
255 */
256 struct mutex st_mutex; /* Protects state */
257 unsigned int state_hw_drive;
258 unsigned int state_hw_mask;
259 unsigned int state_soft_mask;
260 unsigned int state_ignore_mask;
261 unsigned int state;
262
263 struct delayed_work poll;
264 struct delayed_work timeout;
265 struct mutex sm_mutex; /* Protects state machine */
266 unsigned char sm_mod_state;
267 unsigned char sm_mod_tries_init;
268 unsigned char sm_mod_tries;
269 unsigned char sm_dev_state;
270 unsigned short sm_state;
271 unsigned char sm_fault_retries;
272 unsigned char sm_phy_retries;
273
274 struct sfp_eeprom_id id;
275 unsigned int module_power_mW;
276 unsigned int module_t_start_up;
277 unsigned int module_t_wait;
278 unsigned int phy_t_retry;
279
280 unsigned int rate_kbd;
281 unsigned int rs_threshold_kbd;
282 unsigned int rs_state_mask;
283
284 bool have_a2;
285
286 const struct sfp_quirk *quirk;
287
288#if IS_ENABLED(CONFIG_HWMON)
289 struct sfp_diag diag;
290 struct delayed_work hwmon_probe;
291 unsigned int hwmon_tries;
292 struct device *hwmon_dev;
293 char *hwmon_name;
294#endif
295
296#if IS_ENABLED(CONFIG_DEBUG_FS)
297 struct dentry *debugfs_dir;
298#endif
299};
300
301static bool sff_module_supported(const struct sfp_eeprom_id *id)
302{
303 return id->base.phys_id == SFF8024_ID_SFF_8472 &&
304 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
305}
306
307static const struct sff_data sff_data = {
308 .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
309 .module_supported = sff_module_supported,
310};
311
312static bool sfp_module_supported(const struct sfp_eeprom_id *id)
313{
314 if (id->base.phys_id == SFF8024_ID_SFP &&
315 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP)
316 return true;
317
318 /* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored
319 * phys id SFF instead of SFP. Therefore mark this module explicitly
320 * as supported based on vendor name and pn match.
321 */
322 if (id->base.phys_id == SFF8024_ID_SFF_8472 &&
323 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP &&
324 !memcmp(id->base.vendor_name, "UBNT ", 16) &&
325 !memcmp(id->base.vendor_pn, "UF-INSTANT ", 16))
326 return true;
327
328 return false;
329}
330
331static const struct sff_data sfp_data = {
332 .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
333 SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1,
334 .module_supported = sfp_module_supported,
335};
336
337static const struct of_device_id sfp_of_match[] = {
338 { .compatible = "sff,sff", .data = &sff_data, },
339 { .compatible = "sff,sfp", .data = &sfp_data, },
340 { },
341};
342MODULE_DEVICE_TABLE(of, sfp_of_match);
343
344static void sfp_fixup_long_startup(struct sfp *sfp)
345{
346 sfp->module_t_start_up = T_START_UP_BAD_GPON;
347}
348
349static void sfp_fixup_ignore_los(struct sfp *sfp)
350{
351 /* This forces LOS to zero, so we ignore transitions */
352 sfp->state_ignore_mask |= SFP_F_LOS;
353 /* Make sure that LOS options are clear */
354 sfp->id.ext.options &= ~cpu_to_be16(SFP_OPTIONS_LOS_INVERTED |
355 SFP_OPTIONS_LOS_NORMAL);
356}
357
358static void sfp_fixup_ignore_tx_fault(struct sfp *sfp)
359{
360 sfp->state_ignore_mask |= SFP_F_TX_FAULT;
361}
362
363static void sfp_fixup_nokia(struct sfp *sfp)
364{
365 sfp_fixup_long_startup(sfp);
366 sfp_fixup_ignore_los(sfp);
367}
368
369// For 10GBASE-T short-reach modules
370static void sfp_fixup_10gbaset_30m(struct sfp *sfp)
371{
372 sfp->id.base.connector = SFF8024_CONNECTOR_RJ45;
373 sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SR;
374}
375
376static void sfp_fixup_rollball(struct sfp *sfp)
377{
378 sfp->mdio_protocol = MDIO_I2C_ROLLBALL;
379
380 /* RollBall modules may disallow access to PHY registers for up to 25
381 * seconds, and the reads return 0xffff before that. Increase the time
382 * between PHY probe retries from 50ms to 1s so that we will wait for
383 * the PHY for a sufficient amount of time.
384 */
385 sfp->phy_t_retry = msecs_to_jiffies(1000);
386}
387
388static void sfp_fixup_fs_10gt(struct sfp *sfp)
389{
390 sfp_fixup_10gbaset_30m(sfp);
391 sfp_fixup_rollball(sfp);
392
393 /* The RollBall fixup is not enough for FS modules, the AQR chip inside
394 * them does not return 0xffff for PHY ID registers in all MMDs for the
395 * while initializing. They need a 4 second wait before accessing PHY.
396 */
397 sfp->module_t_wait = msecs_to_jiffies(4000);
398}
399
400static void sfp_fixup_halny_gsfp(struct sfp *sfp)
401{
402 /* Ignore the TX_FAULT and LOS signals on this module.
403 * these are possibly used for other purposes on this
404 * module, e.g. a serial port.
405 */
406 sfp->state_hw_mask &= ~(SFP_F_TX_FAULT | SFP_F_LOS);
407}
408
409static void sfp_fixup_rollball_cc(struct sfp *sfp)
410{
411 sfp_fixup_rollball(sfp);
412
413 /* Some RollBall SFPs may have wrong (zero) extended compliance code
414 * burned in EEPROM. For PHY probing we need the correct one.
415 */
416 sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SFI;
417}
418
419static void sfp_quirk_2500basex(const struct sfp_eeprom_id *id,
420 unsigned long *modes,
421 unsigned long *interfaces)
422{
423 linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseX_Full_BIT, modes);
424 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
425}
426
427static void sfp_quirk_disable_autoneg(const struct sfp_eeprom_id *id,
428 unsigned long *modes,
429 unsigned long *interfaces)
430{
431 linkmode_clear_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, modes);
432}
433
434static void sfp_quirk_oem_2_5g(const struct sfp_eeprom_id *id,
435 unsigned long *modes,
436 unsigned long *interfaces)
437{
438 /* Copper 2.5G SFP */
439 linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseT_Full_BIT, modes);
440 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
441 sfp_quirk_disable_autoneg(id, modes, interfaces);
442}
443
444static void sfp_quirk_ubnt_uf_instant(const struct sfp_eeprom_id *id,
445 unsigned long *modes,
446 unsigned long *interfaces)
447{
448 /* Ubiquiti U-Fiber Instant module claims that support all transceiver
449 * types including 10G Ethernet which is not truth. So clear all claimed
450 * modes and set only one mode which module supports: 1000baseX_Full.
451 */
452 linkmode_zero(modes);
453 linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, modes);
454}
455
456#define SFP_QUIRK(_v, _p, _m, _f) \
457 { .vendor = _v, .part = _p, .modes = _m, .fixup = _f, }
458#define SFP_QUIRK_M(_v, _p, _m) SFP_QUIRK(_v, _p, _m, NULL)
459#define SFP_QUIRK_F(_v, _p, _f) SFP_QUIRK(_v, _p, NULL, _f)
460
461static const struct sfp_quirk sfp_quirks[] = {
462 // Alcatel Lucent G-010S-P can operate at 2500base-X, but incorrectly
463 // report 2500MBd NRZ in their EEPROM
464 SFP_QUIRK_M("ALCATELLUCENT", "G010SP", sfp_quirk_2500basex),
465
466 // Alcatel Lucent G-010S-A can operate at 2500base-X, but report 3.2GBd
467 // NRZ in their EEPROM
468 SFP_QUIRK("ALCATELLUCENT", "3FE46541AA", sfp_quirk_2500basex,
469 sfp_fixup_nokia),
470
471 // Fiberstore SFP-10G-T doesn't identify as copper, and uses the
472 // Rollball protocol to talk to the PHY.
473 SFP_QUIRK_F("FS", "SFP-10G-T", sfp_fixup_fs_10gt),
474
475 // Fiberstore GPON-ONU-34-20BI can operate at 2500base-X, but report 1.2GBd
476 // NRZ in their EEPROM
477 SFP_QUIRK("FS", "GPON-ONU-34-20BI", sfp_quirk_2500basex,
478 sfp_fixup_ignore_tx_fault),
479
480 SFP_QUIRK_F("HALNy", "HL-GSFP", sfp_fixup_halny_gsfp),
481
482 // HG MXPD-483II-F 2.5G supports 2500Base-X, but incorrectly reports
483 // 2600MBd in their EERPOM
484 SFP_QUIRK_M("HG GENUINE", "MXPD-483II", sfp_quirk_2500basex),
485
486 // Huawei MA5671A can operate at 2500base-X, but report 1.2GBd NRZ in
487 // their EEPROM
488 SFP_QUIRK("HUAWEI", "MA5671A", sfp_quirk_2500basex,
489 sfp_fixup_ignore_tx_fault),
490
491 // FS 2.5G Base-T
492 SFP_QUIRK_M("FS", "SFP-2.5G-T", sfp_quirk_oem_2_5g),
493
494 // Lantech 8330-262D-E can operate at 2500base-X, but incorrectly report
495 // 2500MBd NRZ in their EEPROM
496 SFP_QUIRK_M("Lantech", "8330-262D-E", sfp_quirk_2500basex),
497
498 SFP_QUIRK_M("UBNT", "UF-INSTANT", sfp_quirk_ubnt_uf_instant),
499
500 // Walsun HXSX-ATR[CI]-1 don't identify as copper, and use the
501 // Rollball protocol to talk to the PHY.
502 SFP_QUIRK_F("Walsun", "HXSX-ATRC-1", sfp_fixup_fs_10gt),
503 SFP_QUIRK_F("Walsun", "HXSX-ATRI-1", sfp_fixup_fs_10gt),
504
505 SFP_QUIRK_F("OEM", "SFP-10G-T", sfp_fixup_rollball_cc),
506 SFP_QUIRK_M("OEM", "SFP-2.5G-T", sfp_quirk_oem_2_5g),
507 SFP_QUIRK_F("OEM", "RTSFP-10", sfp_fixup_rollball_cc),
508 SFP_QUIRK_F("OEM", "RTSFP-10G", sfp_fixup_rollball_cc),
509 SFP_QUIRK_F("Turris", "RTSFP-10", sfp_fixup_rollball),
510 SFP_QUIRK_F("Turris", "RTSFP-10G", sfp_fixup_rollball),
511};
512
513static size_t sfp_strlen(const char *str, size_t maxlen)
514{
515 size_t size, i;
516
517 /* Trailing characters should be filled with space chars, but
518 * some manufacturers can't read SFF-8472 and use NUL.
519 */
520 for (i = 0, size = 0; i < maxlen; i++)
521 if (str[i] != ' ' && str[i] != '\0')
522 size = i + 1;
523
524 return size;
525}
526
527static bool sfp_match(const char *qs, const char *str, size_t len)
528{
529 if (!qs)
530 return true;
531 if (strlen(qs) != len)
532 return false;
533 return !strncmp(qs, str, len);
534}
535
536static const struct sfp_quirk *sfp_lookup_quirk(const struct sfp_eeprom_id *id)
537{
538 const struct sfp_quirk *q;
539 unsigned int i;
540 size_t vs, ps;
541
542 vs = sfp_strlen(id->base.vendor_name, ARRAY_SIZE(id->base.vendor_name));
543 ps = sfp_strlen(id->base.vendor_pn, ARRAY_SIZE(id->base.vendor_pn));
544
545 for (i = 0, q = sfp_quirks; i < ARRAY_SIZE(sfp_quirks); i++, q++)
546 if (sfp_match(q->vendor, id->base.vendor_name, vs) &&
547 sfp_match(q->part, id->base.vendor_pn, ps))
548 return q;
549
550 return NULL;
551}
552
553static unsigned long poll_jiffies;
554
555static unsigned int sfp_gpio_get_state(struct sfp *sfp)
556{
557 unsigned int i, state, v;
558
559 for (i = state = 0; i < GPIO_MAX; i++) {
560 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
561 continue;
562
563 v = gpiod_get_value_cansleep(sfp->gpio[i]);
564 if (v)
565 state |= BIT(i);
566 }
567
568 return state;
569}
570
571static unsigned int sff_gpio_get_state(struct sfp *sfp)
572{
573 return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
574}
575
576static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
577{
578 unsigned int drive;
579
580 if (state & SFP_F_PRESENT)
581 /* If the module is present, drive the requested signals */
582 drive = sfp->state_hw_drive;
583 else
584 /* Otherwise, let them float to the pull-ups */
585 drive = 0;
586
587 if (sfp->gpio[GPIO_TX_DISABLE]) {
588 if (drive & SFP_F_TX_DISABLE)
589 gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
590 state & SFP_F_TX_DISABLE);
591 else
592 gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
593 }
594
595 if (sfp->gpio[GPIO_RS0]) {
596 if (drive & SFP_F_RS0)
597 gpiod_direction_output(sfp->gpio[GPIO_RS0],
598 state & SFP_F_RS0);
599 else
600 gpiod_direction_input(sfp->gpio[GPIO_RS0]);
601 }
602
603 if (sfp->gpio[GPIO_RS1]) {
604 if (drive & SFP_F_RS1)
605 gpiod_direction_output(sfp->gpio[GPIO_RS1],
606 state & SFP_F_RS1);
607 else
608 gpiod_direction_input(sfp->gpio[GPIO_RS1]);
609 }
610}
611
612static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
613 size_t len)
614{
615 struct i2c_msg msgs[2];
616 u8 bus_addr = a2 ? 0x51 : 0x50;
617 size_t block_size = sfp->i2c_block_size;
618 size_t this_len;
619 int ret;
620
621 msgs[0].addr = bus_addr;
622 msgs[0].flags = 0;
623 msgs[0].len = 1;
624 msgs[0].buf = &dev_addr;
625 msgs[1].addr = bus_addr;
626 msgs[1].flags = I2C_M_RD;
627 msgs[1].len = len;
628 msgs[1].buf = buf;
629
630 while (len) {
631 this_len = len;
632 if (this_len > block_size)
633 this_len = block_size;
634
635 msgs[1].len = this_len;
636
637 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
638 if (ret < 0)
639 return ret;
640
641 if (ret != ARRAY_SIZE(msgs))
642 break;
643
644 msgs[1].buf += this_len;
645 dev_addr += this_len;
646 len -= this_len;
647 }
648
649 return msgs[1].buf - (u8 *)buf;
650}
651
652static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
653 size_t len)
654{
655 struct i2c_msg msgs[1];
656 u8 bus_addr = a2 ? 0x51 : 0x50;
657 int ret;
658
659 msgs[0].addr = bus_addr;
660 msgs[0].flags = 0;
661 msgs[0].len = 1 + len;
662 msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
663 if (!msgs[0].buf)
664 return -ENOMEM;
665
666 msgs[0].buf[0] = dev_addr;
667 memcpy(&msgs[0].buf[1], buf, len);
668
669 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
670
671 kfree(msgs[0].buf);
672
673 if (ret < 0)
674 return ret;
675
676 return ret == ARRAY_SIZE(msgs) ? len : 0;
677}
678
679static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
680{
681 if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
682 return -EINVAL;
683
684 sfp->i2c = i2c;
685 sfp->read = sfp_i2c_read;
686 sfp->write = sfp_i2c_write;
687
688 return 0;
689}
690
691static int sfp_i2c_mdiobus_create(struct sfp *sfp)
692{
693 struct mii_bus *i2c_mii;
694 int ret;
695
696 i2c_mii = mdio_i2c_alloc(sfp->dev, sfp->i2c, sfp->mdio_protocol);
697 if (IS_ERR(i2c_mii))
698 return PTR_ERR(i2c_mii);
699
700 i2c_mii->name = "SFP I2C Bus";
701 i2c_mii->phy_mask = ~0;
702
703 ret = mdiobus_register(i2c_mii);
704 if (ret < 0) {
705 mdiobus_free(i2c_mii);
706 return ret;
707 }
708
709 sfp->i2c_mii = i2c_mii;
710
711 return 0;
712}
713
714static void sfp_i2c_mdiobus_destroy(struct sfp *sfp)
715{
716 mdiobus_unregister(sfp->i2c_mii);
717 sfp->i2c_mii = NULL;
718}
719
720/* Interface */
721static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
722{
723 return sfp->read(sfp, a2, addr, buf, len);
724}
725
726static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
727{
728 return sfp->write(sfp, a2, addr, buf, len);
729}
730
731static int sfp_modify_u8(struct sfp *sfp, bool a2, u8 addr, u8 mask, u8 val)
732{
733 int ret;
734 u8 old, v;
735
736 ret = sfp_read(sfp, a2, addr, &old, sizeof(old));
737 if (ret != sizeof(old))
738 return ret;
739
740 v = (old & ~mask) | (val & mask);
741 if (v == old)
742 return sizeof(v);
743
744 return sfp_write(sfp, a2, addr, &v, sizeof(v));
745}
746
747static unsigned int sfp_soft_get_state(struct sfp *sfp)
748{
749 unsigned int state = 0;
750 u8 status;
751 int ret;
752
753 ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status));
754 if (ret == sizeof(status)) {
755 if (status & SFP_STATUS_RX_LOS)
756 state |= SFP_F_LOS;
757 if (status & SFP_STATUS_TX_FAULT)
758 state |= SFP_F_TX_FAULT;
759 } else {
760 dev_err_ratelimited(sfp->dev,
761 "failed to read SFP soft status: %pe\n",
762 ERR_PTR(ret));
763 /* Preserve the current state */
764 state = sfp->state;
765 }
766
767 return state & sfp->state_soft_mask;
768}
769
770static void sfp_soft_set_state(struct sfp *sfp, unsigned int state,
771 unsigned int soft)
772{
773 u8 mask = 0;
774 u8 val = 0;
775
776 if (soft & SFP_F_TX_DISABLE)
777 mask |= SFP_STATUS_TX_DISABLE_FORCE;
778 if (state & SFP_F_TX_DISABLE)
779 val |= SFP_STATUS_TX_DISABLE_FORCE;
780
781 if (soft & SFP_F_RS0)
782 mask |= SFP_STATUS_RS0_SELECT;
783 if (state & SFP_F_RS0)
784 val |= SFP_STATUS_RS0_SELECT;
785
786 if (mask)
787 sfp_modify_u8(sfp, true, SFP_STATUS, mask, val);
788
789 val = mask = 0;
790 if (soft & SFP_F_RS1)
791 mask |= SFP_EXT_STATUS_RS1_SELECT;
792 if (state & SFP_F_RS1)
793 val |= SFP_EXT_STATUS_RS1_SELECT;
794
795 if (mask)
796 sfp_modify_u8(sfp, true, SFP_EXT_STATUS, mask, val);
797}
798
799static void sfp_soft_start_poll(struct sfp *sfp)
800{
801 const struct sfp_eeprom_id *id = &sfp->id;
802 unsigned int mask = 0;
803
804 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE)
805 mask |= SFP_F_TX_DISABLE;
806 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT)
807 mask |= SFP_F_TX_FAULT;
808 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS)
809 mask |= SFP_F_LOS;
810 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RATE_SELECT)
811 mask |= sfp->rs_state_mask;
812
813 mutex_lock(&sfp->st_mutex);
814 // Poll the soft state for hardware pins we want to ignore
815 sfp->state_soft_mask = ~sfp->state_hw_mask & ~sfp->state_ignore_mask &
816 mask;
817
818 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) &&
819 !sfp->need_poll)
820 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
821 mutex_unlock(&sfp->st_mutex);
822}
823
824static void sfp_soft_stop_poll(struct sfp *sfp)
825{
826 mutex_lock(&sfp->st_mutex);
827 sfp->state_soft_mask = 0;
828 mutex_unlock(&sfp->st_mutex);
829}
830
831/* sfp_get_state() - must be called with st_mutex held, or in the
832 * initialisation path.
833 */
834static unsigned int sfp_get_state(struct sfp *sfp)
835{
836 unsigned int soft = sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT);
837 unsigned int state;
838
839 state = sfp->get_state(sfp) & sfp->state_hw_mask;
840 if (state & SFP_F_PRESENT && soft)
841 state |= sfp_soft_get_state(sfp);
842
843 return state;
844}
845
846/* sfp_set_state() - must be called with st_mutex held, or in the
847 * initialisation path.
848 */
849static void sfp_set_state(struct sfp *sfp, unsigned int state)
850{
851 unsigned int soft;
852
853 sfp->set_state(sfp, state);
854
855 soft = sfp->state_soft_mask & SFP_F_OUTPUTS;
856 if (state & SFP_F_PRESENT && soft)
857 sfp_soft_set_state(sfp, state, soft);
858}
859
860static void sfp_mod_state(struct sfp *sfp, unsigned int mask, unsigned int set)
861{
862 mutex_lock(&sfp->st_mutex);
863 sfp->state = (sfp->state & ~mask) | set;
864 sfp_set_state(sfp, sfp->state);
865 mutex_unlock(&sfp->st_mutex);
866}
867
868static unsigned int sfp_check(void *buf, size_t len)
869{
870 u8 *p, check;
871
872 for (p = buf, check = 0; len; p++, len--)
873 check += *p;
874
875 return check;
876}
877
878/* hwmon */
879#if IS_ENABLED(CONFIG_HWMON)
880static umode_t sfp_hwmon_is_visible(const void *data,
881 enum hwmon_sensor_types type,
882 u32 attr, int channel)
883{
884 const struct sfp *sfp = data;
885
886 switch (type) {
887 case hwmon_temp:
888 switch (attr) {
889 case hwmon_temp_min_alarm:
890 case hwmon_temp_max_alarm:
891 case hwmon_temp_lcrit_alarm:
892 case hwmon_temp_crit_alarm:
893 case hwmon_temp_min:
894 case hwmon_temp_max:
895 case hwmon_temp_lcrit:
896 case hwmon_temp_crit:
897 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
898 return 0;
899 fallthrough;
900 case hwmon_temp_input:
901 case hwmon_temp_label:
902 return 0444;
903 default:
904 return 0;
905 }
906 case hwmon_in:
907 switch (attr) {
908 case hwmon_in_min_alarm:
909 case hwmon_in_max_alarm:
910 case hwmon_in_lcrit_alarm:
911 case hwmon_in_crit_alarm:
912 case hwmon_in_min:
913 case hwmon_in_max:
914 case hwmon_in_lcrit:
915 case hwmon_in_crit:
916 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
917 return 0;
918 fallthrough;
919 case hwmon_in_input:
920 case hwmon_in_label:
921 return 0444;
922 default:
923 return 0;
924 }
925 case hwmon_curr:
926 switch (attr) {
927 case hwmon_curr_min_alarm:
928 case hwmon_curr_max_alarm:
929 case hwmon_curr_lcrit_alarm:
930 case hwmon_curr_crit_alarm:
931 case hwmon_curr_min:
932 case hwmon_curr_max:
933 case hwmon_curr_lcrit:
934 case hwmon_curr_crit:
935 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
936 return 0;
937 fallthrough;
938 case hwmon_curr_input:
939 case hwmon_curr_label:
940 return 0444;
941 default:
942 return 0;
943 }
944 case hwmon_power:
945 /* External calibration of receive power requires
946 * floating point arithmetic. Doing that in the kernel
947 * is not easy, so just skip it. If the module does
948 * not require external calibration, we can however
949 * show receiver power, since FP is then not needed.
950 */
951 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
952 channel == 1)
953 return 0;
954 switch (attr) {
955 case hwmon_power_min_alarm:
956 case hwmon_power_max_alarm:
957 case hwmon_power_lcrit_alarm:
958 case hwmon_power_crit_alarm:
959 case hwmon_power_min:
960 case hwmon_power_max:
961 case hwmon_power_lcrit:
962 case hwmon_power_crit:
963 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
964 return 0;
965 fallthrough;
966 case hwmon_power_input:
967 case hwmon_power_label:
968 return 0444;
969 default:
970 return 0;
971 }
972 default:
973 return 0;
974 }
975}
976
977static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
978{
979 __be16 val;
980 int err;
981
982 err = sfp_read(sfp, true, reg, &val, sizeof(val));
983 if (err < 0)
984 return err;
985
986 *value = be16_to_cpu(val);
987
988 return 0;
989}
990
991static void sfp_hwmon_to_rx_power(long *value)
992{
993 *value = DIV_ROUND_CLOSEST(*value, 10);
994}
995
996static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
997 long *value)
998{
999 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
1000 *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
1001}
1002
1003static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
1004{
1005 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
1006 be16_to_cpu(sfp->diag.cal_t_offset), value);
1007
1008 if (*value >= 0x8000)
1009 *value -= 0x10000;
1010
1011 *value = DIV_ROUND_CLOSEST(*value * 1000, 256);
1012}
1013
1014static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
1015{
1016 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
1017 be16_to_cpu(sfp->diag.cal_v_offset), value);
1018
1019 *value = DIV_ROUND_CLOSEST(*value, 10);
1020}
1021
1022static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
1023{
1024 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
1025 be16_to_cpu(sfp->diag.cal_txi_offset), value);
1026
1027 *value = DIV_ROUND_CLOSEST(*value, 500);
1028}
1029
1030static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
1031{
1032 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
1033 be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
1034
1035 *value = DIV_ROUND_CLOSEST(*value, 10);
1036}
1037
1038static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
1039{
1040 int err;
1041
1042 err = sfp_hwmon_read_sensor(sfp, reg, value);
1043 if (err < 0)
1044 return err;
1045
1046 sfp_hwmon_calibrate_temp(sfp, value);
1047
1048 return 0;
1049}
1050
1051static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
1052{
1053 int err;
1054
1055 err = sfp_hwmon_read_sensor(sfp, reg, value);
1056 if (err < 0)
1057 return err;
1058
1059 sfp_hwmon_calibrate_vcc(sfp, value);
1060
1061 return 0;
1062}
1063
1064static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
1065{
1066 int err;
1067
1068 err = sfp_hwmon_read_sensor(sfp, reg, value);
1069 if (err < 0)
1070 return err;
1071
1072 sfp_hwmon_calibrate_bias(sfp, value);
1073
1074 return 0;
1075}
1076
1077static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
1078{
1079 int err;
1080
1081 err = sfp_hwmon_read_sensor(sfp, reg, value);
1082 if (err < 0)
1083 return err;
1084
1085 sfp_hwmon_calibrate_tx_power(sfp, value);
1086
1087 return 0;
1088}
1089
1090static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
1091{
1092 int err;
1093
1094 err = sfp_hwmon_read_sensor(sfp, reg, value);
1095 if (err < 0)
1096 return err;
1097
1098 sfp_hwmon_to_rx_power(value);
1099
1100 return 0;
1101}
1102
1103static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
1104{
1105 u8 status;
1106 int err;
1107
1108 switch (attr) {
1109 case hwmon_temp_input:
1110 return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
1111
1112 case hwmon_temp_lcrit:
1113 *value = be16_to_cpu(sfp->diag.temp_low_alarm);
1114 sfp_hwmon_calibrate_temp(sfp, value);
1115 return 0;
1116
1117 case hwmon_temp_min:
1118 *value = be16_to_cpu(sfp->diag.temp_low_warn);
1119 sfp_hwmon_calibrate_temp(sfp, value);
1120 return 0;
1121 case hwmon_temp_max:
1122 *value = be16_to_cpu(sfp->diag.temp_high_warn);
1123 sfp_hwmon_calibrate_temp(sfp, value);
1124 return 0;
1125
1126 case hwmon_temp_crit:
1127 *value = be16_to_cpu(sfp->diag.temp_high_alarm);
1128 sfp_hwmon_calibrate_temp(sfp, value);
1129 return 0;
1130
1131 case hwmon_temp_lcrit_alarm:
1132 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1133 if (err < 0)
1134 return err;
1135
1136 *value = !!(status & SFP_ALARM0_TEMP_LOW);
1137 return 0;
1138
1139 case hwmon_temp_min_alarm:
1140 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1141 if (err < 0)
1142 return err;
1143
1144 *value = !!(status & SFP_WARN0_TEMP_LOW);
1145 return 0;
1146
1147 case hwmon_temp_max_alarm:
1148 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1149 if (err < 0)
1150 return err;
1151
1152 *value = !!(status & SFP_WARN0_TEMP_HIGH);
1153 return 0;
1154
1155 case hwmon_temp_crit_alarm:
1156 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1157 if (err < 0)
1158 return err;
1159
1160 *value = !!(status & SFP_ALARM0_TEMP_HIGH);
1161 return 0;
1162 default:
1163 return -EOPNOTSUPP;
1164 }
1165
1166 return -EOPNOTSUPP;
1167}
1168
1169static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
1170{
1171 u8 status;
1172 int err;
1173
1174 switch (attr) {
1175 case hwmon_in_input:
1176 return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
1177
1178 case hwmon_in_lcrit:
1179 *value = be16_to_cpu(sfp->diag.volt_low_alarm);
1180 sfp_hwmon_calibrate_vcc(sfp, value);
1181 return 0;
1182
1183 case hwmon_in_min:
1184 *value = be16_to_cpu(sfp->diag.volt_low_warn);
1185 sfp_hwmon_calibrate_vcc(sfp, value);
1186 return 0;
1187
1188 case hwmon_in_max:
1189 *value = be16_to_cpu(sfp->diag.volt_high_warn);
1190 sfp_hwmon_calibrate_vcc(sfp, value);
1191 return 0;
1192
1193 case hwmon_in_crit:
1194 *value = be16_to_cpu(sfp->diag.volt_high_alarm);
1195 sfp_hwmon_calibrate_vcc(sfp, value);
1196 return 0;
1197
1198 case hwmon_in_lcrit_alarm:
1199 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1200 if (err < 0)
1201 return err;
1202
1203 *value = !!(status & SFP_ALARM0_VCC_LOW);
1204 return 0;
1205
1206 case hwmon_in_min_alarm:
1207 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1208 if (err < 0)
1209 return err;
1210
1211 *value = !!(status & SFP_WARN0_VCC_LOW);
1212 return 0;
1213
1214 case hwmon_in_max_alarm:
1215 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1216 if (err < 0)
1217 return err;
1218
1219 *value = !!(status & SFP_WARN0_VCC_HIGH);
1220 return 0;
1221
1222 case hwmon_in_crit_alarm:
1223 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1224 if (err < 0)
1225 return err;
1226
1227 *value = !!(status & SFP_ALARM0_VCC_HIGH);
1228 return 0;
1229 default:
1230 return -EOPNOTSUPP;
1231 }
1232
1233 return -EOPNOTSUPP;
1234}
1235
1236static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
1237{
1238 u8 status;
1239 int err;
1240
1241 switch (attr) {
1242 case hwmon_curr_input:
1243 return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
1244
1245 case hwmon_curr_lcrit:
1246 *value = be16_to_cpu(sfp->diag.bias_low_alarm);
1247 sfp_hwmon_calibrate_bias(sfp, value);
1248 return 0;
1249
1250 case hwmon_curr_min:
1251 *value = be16_to_cpu(sfp->diag.bias_low_warn);
1252 sfp_hwmon_calibrate_bias(sfp, value);
1253 return 0;
1254
1255 case hwmon_curr_max:
1256 *value = be16_to_cpu(sfp->diag.bias_high_warn);
1257 sfp_hwmon_calibrate_bias(sfp, value);
1258 return 0;
1259
1260 case hwmon_curr_crit:
1261 *value = be16_to_cpu(sfp->diag.bias_high_alarm);
1262 sfp_hwmon_calibrate_bias(sfp, value);
1263 return 0;
1264
1265 case hwmon_curr_lcrit_alarm:
1266 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1267 if (err < 0)
1268 return err;
1269
1270 *value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
1271 return 0;
1272
1273 case hwmon_curr_min_alarm:
1274 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1275 if (err < 0)
1276 return err;
1277
1278 *value = !!(status & SFP_WARN0_TX_BIAS_LOW);
1279 return 0;
1280
1281 case hwmon_curr_max_alarm:
1282 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1283 if (err < 0)
1284 return err;
1285
1286 *value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
1287 return 0;
1288
1289 case hwmon_curr_crit_alarm:
1290 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1291 if (err < 0)
1292 return err;
1293
1294 *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
1295 return 0;
1296 default:
1297 return -EOPNOTSUPP;
1298 }
1299
1300 return -EOPNOTSUPP;
1301}
1302
1303static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
1304{
1305 u8 status;
1306 int err;
1307
1308 switch (attr) {
1309 case hwmon_power_input:
1310 return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
1311
1312 case hwmon_power_lcrit:
1313 *value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
1314 sfp_hwmon_calibrate_tx_power(sfp, value);
1315 return 0;
1316
1317 case hwmon_power_min:
1318 *value = be16_to_cpu(sfp->diag.txpwr_low_warn);
1319 sfp_hwmon_calibrate_tx_power(sfp, value);
1320 return 0;
1321
1322 case hwmon_power_max:
1323 *value = be16_to_cpu(sfp->diag.txpwr_high_warn);
1324 sfp_hwmon_calibrate_tx_power(sfp, value);
1325 return 0;
1326
1327 case hwmon_power_crit:
1328 *value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
1329 sfp_hwmon_calibrate_tx_power(sfp, value);
1330 return 0;
1331
1332 case hwmon_power_lcrit_alarm:
1333 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1334 if (err < 0)
1335 return err;
1336
1337 *value = !!(status & SFP_ALARM0_TXPWR_LOW);
1338 return 0;
1339
1340 case hwmon_power_min_alarm:
1341 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1342 if (err < 0)
1343 return err;
1344
1345 *value = !!(status & SFP_WARN0_TXPWR_LOW);
1346 return 0;
1347
1348 case hwmon_power_max_alarm:
1349 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1350 if (err < 0)
1351 return err;
1352
1353 *value = !!(status & SFP_WARN0_TXPWR_HIGH);
1354 return 0;
1355
1356 case hwmon_power_crit_alarm:
1357 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1358 if (err < 0)
1359 return err;
1360
1361 *value = !!(status & SFP_ALARM0_TXPWR_HIGH);
1362 return 0;
1363 default:
1364 return -EOPNOTSUPP;
1365 }
1366
1367 return -EOPNOTSUPP;
1368}
1369
1370static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
1371{
1372 u8 status;
1373 int err;
1374
1375 switch (attr) {
1376 case hwmon_power_input:
1377 return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
1378
1379 case hwmon_power_lcrit:
1380 *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
1381 sfp_hwmon_to_rx_power(value);
1382 return 0;
1383
1384 case hwmon_power_min:
1385 *value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
1386 sfp_hwmon_to_rx_power(value);
1387 return 0;
1388
1389 case hwmon_power_max:
1390 *value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
1391 sfp_hwmon_to_rx_power(value);
1392 return 0;
1393
1394 case hwmon_power_crit:
1395 *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
1396 sfp_hwmon_to_rx_power(value);
1397 return 0;
1398
1399 case hwmon_power_lcrit_alarm:
1400 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1401 if (err < 0)
1402 return err;
1403
1404 *value = !!(status & SFP_ALARM1_RXPWR_LOW);
1405 return 0;
1406
1407 case hwmon_power_min_alarm:
1408 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1409 if (err < 0)
1410 return err;
1411
1412 *value = !!(status & SFP_WARN1_RXPWR_LOW);
1413 return 0;
1414
1415 case hwmon_power_max_alarm:
1416 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1417 if (err < 0)
1418 return err;
1419
1420 *value = !!(status & SFP_WARN1_RXPWR_HIGH);
1421 return 0;
1422
1423 case hwmon_power_crit_alarm:
1424 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1425 if (err < 0)
1426 return err;
1427
1428 *value = !!(status & SFP_ALARM1_RXPWR_HIGH);
1429 return 0;
1430 default:
1431 return -EOPNOTSUPP;
1432 }
1433
1434 return -EOPNOTSUPP;
1435}
1436
1437static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
1438 u32 attr, int channel, long *value)
1439{
1440 struct sfp *sfp = dev_get_drvdata(dev);
1441
1442 switch (type) {
1443 case hwmon_temp:
1444 return sfp_hwmon_temp(sfp, attr, value);
1445 case hwmon_in:
1446 return sfp_hwmon_vcc(sfp, attr, value);
1447 case hwmon_curr:
1448 return sfp_hwmon_bias(sfp, attr, value);
1449 case hwmon_power:
1450 switch (channel) {
1451 case 0:
1452 return sfp_hwmon_tx_power(sfp, attr, value);
1453 case 1:
1454 return sfp_hwmon_rx_power(sfp, attr, value);
1455 default:
1456 return -EOPNOTSUPP;
1457 }
1458 default:
1459 return -EOPNOTSUPP;
1460 }
1461}
1462
1463static const char *const sfp_hwmon_power_labels[] = {
1464 "TX_power",
1465 "RX_power",
1466};
1467
1468static int sfp_hwmon_read_string(struct device *dev,
1469 enum hwmon_sensor_types type,
1470 u32 attr, int channel, const char **str)
1471{
1472 switch (type) {
1473 case hwmon_curr:
1474 switch (attr) {
1475 case hwmon_curr_label:
1476 *str = "bias";
1477 return 0;
1478 default:
1479 return -EOPNOTSUPP;
1480 }
1481 break;
1482 case hwmon_temp:
1483 switch (attr) {
1484 case hwmon_temp_label:
1485 *str = "temperature";
1486 return 0;
1487 default:
1488 return -EOPNOTSUPP;
1489 }
1490 break;
1491 case hwmon_in:
1492 switch (attr) {
1493 case hwmon_in_label:
1494 *str = "VCC";
1495 return 0;
1496 default:
1497 return -EOPNOTSUPP;
1498 }
1499 break;
1500 case hwmon_power:
1501 switch (attr) {
1502 case hwmon_power_label:
1503 *str = sfp_hwmon_power_labels[channel];
1504 return 0;
1505 default:
1506 return -EOPNOTSUPP;
1507 }
1508 break;
1509 default:
1510 return -EOPNOTSUPP;
1511 }
1512
1513 return -EOPNOTSUPP;
1514}
1515
1516static const struct hwmon_ops sfp_hwmon_ops = {
1517 .is_visible = sfp_hwmon_is_visible,
1518 .read = sfp_hwmon_read,
1519 .read_string = sfp_hwmon_read_string,
1520};
1521
1522static const struct hwmon_channel_info * const sfp_hwmon_info[] = {
1523 HWMON_CHANNEL_INFO(chip,
1524 HWMON_C_REGISTER_TZ),
1525 HWMON_CHANNEL_INFO(in,
1526 HWMON_I_INPUT |
1527 HWMON_I_MAX | HWMON_I_MIN |
1528 HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1529 HWMON_I_CRIT | HWMON_I_LCRIT |
1530 HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM |
1531 HWMON_I_LABEL),
1532 HWMON_CHANNEL_INFO(temp,
1533 HWMON_T_INPUT |
1534 HWMON_T_MAX | HWMON_T_MIN |
1535 HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
1536 HWMON_T_CRIT | HWMON_T_LCRIT |
1537 HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM |
1538 HWMON_T_LABEL),
1539 HWMON_CHANNEL_INFO(curr,
1540 HWMON_C_INPUT |
1541 HWMON_C_MAX | HWMON_C_MIN |
1542 HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1543 HWMON_C_CRIT | HWMON_C_LCRIT |
1544 HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM |
1545 HWMON_C_LABEL),
1546 HWMON_CHANNEL_INFO(power,
1547 /* Transmit power */
1548 HWMON_P_INPUT |
1549 HWMON_P_MAX | HWMON_P_MIN |
1550 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1551 HWMON_P_CRIT | HWMON_P_LCRIT |
1552 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1553 HWMON_P_LABEL,
1554 /* Receive power */
1555 HWMON_P_INPUT |
1556 HWMON_P_MAX | HWMON_P_MIN |
1557 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1558 HWMON_P_CRIT | HWMON_P_LCRIT |
1559 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1560 HWMON_P_LABEL),
1561 NULL,
1562};
1563
1564static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1565 .ops = &sfp_hwmon_ops,
1566 .info = sfp_hwmon_info,
1567};
1568
1569static void sfp_hwmon_probe(struct work_struct *work)
1570{
1571 struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work);
1572 int err;
1573
1574 /* hwmon interface needs to access 16bit registers in atomic way to
1575 * guarantee coherency of the diagnostic monitoring data. If it is not
1576 * possible to guarantee coherency because EEPROM is broken in such way
1577 * that does not support atomic 16bit read operation then we have to
1578 * skip registration of hwmon device.
1579 */
1580 if (sfp->i2c_block_size < 2) {
1581 dev_info(sfp->dev,
1582 "skipping hwmon device registration due to broken EEPROM\n");
1583 dev_info(sfp->dev,
1584 "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n");
1585 return;
1586 }
1587
1588 err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1589 if (err < 0) {
1590 if (sfp->hwmon_tries--) {
1591 mod_delayed_work(system_wq, &sfp->hwmon_probe,
1592 T_PROBE_RETRY_SLOW);
1593 } else {
1594 dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
1595 ERR_PTR(err));
1596 }
1597 return;
1598 }
1599
1600 sfp->hwmon_name = hwmon_sanitize_name(dev_name(sfp->dev));
1601 if (IS_ERR(sfp->hwmon_name)) {
1602 dev_err(sfp->dev, "out of memory for hwmon name\n");
1603 return;
1604 }
1605
1606 sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1607 sfp->hwmon_name, sfp,
1608 &sfp_hwmon_chip_info,
1609 NULL);
1610 if (IS_ERR(sfp->hwmon_dev))
1611 dev_err(sfp->dev, "failed to register hwmon device: %ld\n",
1612 PTR_ERR(sfp->hwmon_dev));
1613}
1614
1615static int sfp_hwmon_insert(struct sfp *sfp)
1616{
1617 if (sfp->have_a2 && sfp->id.ext.diagmon & SFP_DIAGMON_DDM) {
1618 mod_delayed_work(system_wq, &sfp->hwmon_probe, 1);
1619 sfp->hwmon_tries = R_PROBE_RETRY_SLOW;
1620 }
1621
1622 return 0;
1623}
1624
1625static void sfp_hwmon_remove(struct sfp *sfp)
1626{
1627 cancel_delayed_work_sync(&sfp->hwmon_probe);
1628 if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1629 hwmon_device_unregister(sfp->hwmon_dev);
1630 sfp->hwmon_dev = NULL;
1631 kfree(sfp->hwmon_name);
1632 }
1633}
1634
1635static int sfp_hwmon_init(struct sfp *sfp)
1636{
1637 INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe);
1638
1639 return 0;
1640}
1641
1642static void sfp_hwmon_exit(struct sfp *sfp)
1643{
1644 cancel_delayed_work_sync(&sfp->hwmon_probe);
1645}
1646#else
1647static int sfp_hwmon_insert(struct sfp *sfp)
1648{
1649 return 0;
1650}
1651
1652static void sfp_hwmon_remove(struct sfp *sfp)
1653{
1654}
1655
1656static int sfp_hwmon_init(struct sfp *sfp)
1657{
1658 return 0;
1659}
1660
1661static void sfp_hwmon_exit(struct sfp *sfp)
1662{
1663}
1664#endif
1665
1666/* Helpers */
1667static void sfp_module_tx_disable(struct sfp *sfp)
1668{
1669 dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1670 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1671 sfp_mod_state(sfp, SFP_F_TX_DISABLE, SFP_F_TX_DISABLE);
1672}
1673
1674static void sfp_module_tx_enable(struct sfp *sfp)
1675{
1676 dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1677 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1678 sfp_mod_state(sfp, SFP_F_TX_DISABLE, 0);
1679}
1680
1681#if IS_ENABLED(CONFIG_DEBUG_FS)
1682static int sfp_debug_state_show(struct seq_file *s, void *data)
1683{
1684 struct sfp *sfp = s->private;
1685
1686 seq_printf(s, "Module state: %s\n",
1687 mod_state_to_str(sfp->sm_mod_state));
1688 seq_printf(s, "Module probe attempts: %d %d\n",
1689 R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init,
1690 R_PROBE_RETRY_SLOW - sfp->sm_mod_tries);
1691 seq_printf(s, "Device state: %s\n",
1692 dev_state_to_str(sfp->sm_dev_state));
1693 seq_printf(s, "Main state: %s\n",
1694 sm_state_to_str(sfp->sm_state));
1695 seq_printf(s, "Fault recovery remaining retries: %d\n",
1696 sfp->sm_fault_retries);
1697 seq_printf(s, "PHY probe remaining retries: %d\n",
1698 sfp->sm_phy_retries);
1699 seq_printf(s, "Signalling rate: %u kBd\n", sfp->rate_kbd);
1700 seq_printf(s, "Rate select threshold: %u kBd\n",
1701 sfp->rs_threshold_kbd);
1702 seq_printf(s, "moddef0: %d\n", !!(sfp->state & SFP_F_PRESENT));
1703 seq_printf(s, "rx_los: %d\n", !!(sfp->state & SFP_F_LOS));
1704 seq_printf(s, "tx_fault: %d\n", !!(sfp->state & SFP_F_TX_FAULT));
1705 seq_printf(s, "tx_disable: %d\n", !!(sfp->state & SFP_F_TX_DISABLE));
1706 seq_printf(s, "rs0: %d\n", !!(sfp->state & SFP_F_RS0));
1707 seq_printf(s, "rs1: %d\n", !!(sfp->state & SFP_F_RS1));
1708 return 0;
1709}
1710DEFINE_SHOW_ATTRIBUTE(sfp_debug_state);
1711
1712static void sfp_debugfs_init(struct sfp *sfp)
1713{
1714 sfp->debugfs_dir = debugfs_create_dir(dev_name(sfp->dev), NULL);
1715
1716 debugfs_create_file("state", 0600, sfp->debugfs_dir, sfp,
1717 &sfp_debug_state_fops);
1718}
1719
1720static void sfp_debugfs_exit(struct sfp *sfp)
1721{
1722 debugfs_remove_recursive(sfp->debugfs_dir);
1723}
1724#else
1725static void sfp_debugfs_init(struct sfp *sfp)
1726{
1727}
1728
1729static void sfp_debugfs_exit(struct sfp *sfp)
1730{
1731}
1732#endif
1733
1734static void sfp_module_tx_fault_reset(struct sfp *sfp)
1735{
1736 unsigned int state;
1737
1738 mutex_lock(&sfp->st_mutex);
1739 state = sfp->state;
1740 if (!(state & SFP_F_TX_DISABLE)) {
1741 sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1742
1743 udelay(T_RESET_US);
1744
1745 sfp_set_state(sfp, state);
1746 }
1747 mutex_unlock(&sfp->st_mutex);
1748}
1749
1750/* SFP state machine */
1751static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1752{
1753 if (timeout)
1754 mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1755 timeout);
1756 else
1757 cancel_delayed_work(&sfp->timeout);
1758}
1759
1760static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1761 unsigned int timeout)
1762{
1763 sfp->sm_state = state;
1764 sfp_sm_set_timer(sfp, timeout);
1765}
1766
1767static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state,
1768 unsigned int timeout)
1769{
1770 sfp->sm_mod_state = state;
1771 sfp_sm_set_timer(sfp, timeout);
1772}
1773
1774static void sfp_sm_phy_detach(struct sfp *sfp)
1775{
1776 sfp_remove_phy(sfp->sfp_bus);
1777 phy_device_remove(sfp->mod_phy);
1778 phy_device_free(sfp->mod_phy);
1779 sfp->mod_phy = NULL;
1780}
1781
1782static int sfp_sm_probe_phy(struct sfp *sfp, int addr, bool is_c45)
1783{
1784 struct phy_device *phy;
1785 int err;
1786
1787 phy = get_phy_device(sfp->i2c_mii, addr, is_c45);
1788 if (phy == ERR_PTR(-ENODEV))
1789 return PTR_ERR(phy);
1790 if (IS_ERR(phy)) {
1791 dev_err(sfp->dev, "mdiobus scan returned %pe\n", phy);
1792 return PTR_ERR(phy);
1793 }
1794
1795 /* Mark this PHY as being on a SFP module */
1796 phy->is_on_sfp_module = true;
1797
1798 err = phy_device_register(phy);
1799 if (err) {
1800 phy_device_free(phy);
1801 dev_err(sfp->dev, "phy_device_register failed: %pe\n",
1802 ERR_PTR(err));
1803 return err;
1804 }
1805
1806 err = sfp_add_phy(sfp->sfp_bus, phy);
1807 if (err) {
1808 phy_device_remove(phy);
1809 phy_device_free(phy);
1810 dev_err(sfp->dev, "sfp_add_phy failed: %pe\n", ERR_PTR(err));
1811 return err;
1812 }
1813
1814 sfp->mod_phy = phy;
1815
1816 return 0;
1817}
1818
1819static void sfp_sm_link_up(struct sfp *sfp)
1820{
1821 sfp_link_up(sfp->sfp_bus);
1822 sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1823}
1824
1825static void sfp_sm_link_down(struct sfp *sfp)
1826{
1827 sfp_link_down(sfp->sfp_bus);
1828}
1829
1830static void sfp_sm_link_check_los(struct sfp *sfp)
1831{
1832 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1833 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1834 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1835 bool los = false;
1836
1837 /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
1838 * are set, we assume that no LOS signal is available. If both are
1839 * set, we assume LOS is not implemented (and is meaningless.)
1840 */
1841 if (los_options == los_inverted)
1842 los = !(sfp->state & SFP_F_LOS);
1843 else if (los_options == los_normal)
1844 los = !!(sfp->state & SFP_F_LOS);
1845
1846 if (los)
1847 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1848 else
1849 sfp_sm_link_up(sfp);
1850}
1851
1852static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1853{
1854 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1855 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1856 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1857
1858 return (los_options == los_inverted && event == SFP_E_LOS_LOW) ||
1859 (los_options == los_normal && event == SFP_E_LOS_HIGH);
1860}
1861
1862static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1863{
1864 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1865 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1866 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1867
1868 return (los_options == los_inverted && event == SFP_E_LOS_HIGH) ||
1869 (los_options == los_normal && event == SFP_E_LOS_LOW);
1870}
1871
1872static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn)
1873{
1874 if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) {
1875 dev_err(sfp->dev,
1876 "module persistently indicates fault, disabling\n");
1877 sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1878 } else {
1879 if (warn)
1880 dev_err(sfp->dev, "module transmit fault indicated\n");
1881
1882 sfp_sm_next(sfp, next_state, T_FAULT_RECOVER);
1883 }
1884}
1885
1886static int sfp_sm_add_mdio_bus(struct sfp *sfp)
1887{
1888 if (sfp->mdio_protocol != MDIO_I2C_NONE)
1889 return sfp_i2c_mdiobus_create(sfp);
1890
1891 return 0;
1892}
1893
1894/* Probe a SFP for a PHY device if the module supports copper - the PHY
1895 * normally sits at I2C bus address 0x56, and may either be a clause 22
1896 * or clause 45 PHY.
1897 *
1898 * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with
1899 * negotiation enabled, but some may be in 1000base-X - which is for the
1900 * PHY driver to determine.
1901 *
1902 * Clause 45 copper SFP+ modules (10G) appear to switch their interface
1903 * mode according to the negotiated line speed.
1904 */
1905static int sfp_sm_probe_for_phy(struct sfp *sfp)
1906{
1907 int err = 0;
1908
1909 switch (sfp->mdio_protocol) {
1910 case MDIO_I2C_NONE:
1911 break;
1912
1913 case MDIO_I2C_MARVELL_C22:
1914 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, false);
1915 break;
1916
1917 case MDIO_I2C_C45:
1918 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, true);
1919 break;
1920
1921 case MDIO_I2C_ROLLBALL:
1922 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR_ROLLBALL, true);
1923 break;
1924 }
1925
1926 return err;
1927}
1928
1929static int sfp_module_parse_power(struct sfp *sfp)
1930{
1931 u32 power_mW = 1000;
1932 bool supports_a2;
1933
1934 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 &&
1935 sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
1936 power_mW = 1500;
1937 /* Added in Rev 11.9, but there is no compliance code for this */
1938 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV11_4 &&
1939 sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
1940 power_mW = 2000;
1941
1942 /* Power level 1 modules (max. 1W) are always supported. */
1943 if (power_mW <= 1000) {
1944 sfp->module_power_mW = power_mW;
1945 return 0;
1946 }
1947
1948 supports_a2 = sfp->id.ext.sff8472_compliance !=
1949 SFP_SFF8472_COMPLIANCE_NONE ||
1950 sfp->id.ext.diagmon & SFP_DIAGMON_DDM;
1951
1952 if (power_mW > sfp->max_power_mW) {
1953 /* Module power specification exceeds the allowed maximum. */
1954 if (!supports_a2) {
1955 /* The module appears not to implement bus address
1956 * 0xa2, so assume that the module powers up in the
1957 * indicated mode.
1958 */
1959 dev_err(sfp->dev,
1960 "Host does not support %u.%uW modules\n",
1961 power_mW / 1000, (power_mW / 100) % 10);
1962 return -EINVAL;
1963 } else {
1964 dev_warn(sfp->dev,
1965 "Host does not support %u.%uW modules, module left in power mode 1\n",
1966 power_mW / 1000, (power_mW / 100) % 10);
1967 return 0;
1968 }
1969 }
1970
1971 if (!supports_a2) {
1972 /* The module power level is below the host maximum and the
1973 * module appears not to implement bus address 0xa2, so assume
1974 * that the module powers up in the indicated mode.
1975 */
1976 return 0;
1977 }
1978
1979 /* If the module requires a higher power mode, but also requires
1980 * an address change sequence, warn the user that the module may
1981 * not be functional.
1982 */
1983 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) {
1984 dev_warn(sfp->dev,
1985 "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n",
1986 power_mW / 1000, (power_mW / 100) % 10);
1987 return 0;
1988 }
1989
1990 sfp->module_power_mW = power_mW;
1991
1992 return 0;
1993}
1994
1995static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable)
1996{
1997 int err;
1998
1999 err = sfp_modify_u8(sfp, true, SFP_EXT_STATUS,
2000 SFP_EXT_STATUS_PWRLVL_SELECT,
2001 enable ? SFP_EXT_STATUS_PWRLVL_SELECT : 0);
2002 if (err != sizeof(u8)) {
2003 dev_err(sfp->dev, "failed to %sable high power: %pe\n",
2004 enable ? "en" : "dis", ERR_PTR(err));
2005 return -EAGAIN;
2006 }
2007
2008 if (enable)
2009 dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
2010 sfp->module_power_mW / 1000,
2011 (sfp->module_power_mW / 100) % 10);
2012
2013 return 0;
2014}
2015
2016static void sfp_module_parse_rate_select(struct sfp *sfp)
2017{
2018 u8 rate_id;
2019
2020 sfp->rs_threshold_kbd = 0;
2021 sfp->rs_state_mask = 0;
2022
2023 if (!(sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_RATE_SELECT)))
2024 /* No support for RateSelect */
2025 return;
2026
2027 /* Default to INF-8074 RateSelect operation. The signalling threshold
2028 * rate is not well specified, so always select "Full Bandwidth", but
2029 * SFF-8079 reveals that it is understood that RS0 will be low for
2030 * 1.0625Gb/s and high for 2.125Gb/s. Choose a value half-way between.
2031 * This method exists prior to SFF-8472.
2032 */
2033 sfp->rs_state_mask = SFP_F_RS0;
2034 sfp->rs_threshold_kbd = 1594;
2035
2036 /* Parse the rate identifier, which is complicated due to history:
2037 * SFF-8472 rev 9.5 marks this field as reserved.
2038 * SFF-8079 references SFF-8472 rev 9.5 and defines bit 0. SFF-8472
2039 * compliance is not required.
2040 * SFF-8472 rev 10.2 defines this field using values 0..4
2041 * SFF-8472 rev 11.0 redefines this field with bit 0 for SFF-8079
2042 * and even values.
2043 */
2044 rate_id = sfp->id.base.rate_id;
2045 if (rate_id == 0)
2046 /* Unspecified */
2047 return;
2048
2049 /* SFF-8472 rev 10.0..10.4 did not account for SFF-8079 using bit 0,
2050 * and allocated value 3 to SFF-8431 independent tx/rx rate select.
2051 * Convert this to a SFF-8472 rev 11.0 rate identifier.
2052 */
2053 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 &&
2054 sfp->id.ext.sff8472_compliance < SFP_SFF8472_COMPLIANCE_REV11_0 &&
2055 rate_id == 3)
2056 rate_id = SFF_RID_8431;
2057
2058 if (rate_id & SFF_RID_8079) {
2059 /* SFF-8079 RateSelect / Application Select in conjunction with
2060 * SFF-8472 rev 9.5. SFF-8079 defines rate_id as a bitfield
2061 * with only bit 0 used, which takes precedence over SFF-8472.
2062 */
2063 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_APP_SELECT_SFF8079)) {
2064 /* SFF-8079 Part 1 - rate selection between Fibre
2065 * Channel 1.0625/2.125/4.25 Gbd modes. Note that RS0
2066 * is high for 2125, so we have to subtract 1 to
2067 * include it.
2068 */
2069 sfp->rs_threshold_kbd = 2125 - 1;
2070 sfp->rs_state_mask = SFP_F_RS0;
2071 }
2072 return;
2073 }
2074
2075 /* SFF-8472 rev 9.5 does not define the rate identifier */
2076 if (sfp->id.ext.sff8472_compliance <= SFP_SFF8472_COMPLIANCE_REV9_5)
2077 return;
2078
2079 /* SFF-8472 rev 11.0 defines rate_id as a numerical value which will
2080 * always have bit 0 clear due to SFF-8079's bitfield usage of rate_id.
2081 */
2082 switch (rate_id) {
2083 case SFF_RID_8431_RX_ONLY:
2084 sfp->rs_threshold_kbd = 4250;
2085 sfp->rs_state_mask = SFP_F_RS0;
2086 break;
2087
2088 case SFF_RID_8431_TX_ONLY:
2089 sfp->rs_threshold_kbd = 4250;
2090 sfp->rs_state_mask = SFP_F_RS1;
2091 break;
2092
2093 case SFF_RID_8431:
2094 sfp->rs_threshold_kbd = 4250;
2095 sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1;
2096 break;
2097
2098 case SFF_RID_10G8G:
2099 sfp->rs_threshold_kbd = 9000;
2100 sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1;
2101 break;
2102 }
2103}
2104
2105/* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL
2106 * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do
2107 * not support multibyte reads from the EEPROM. Each multi-byte read
2108 * operation returns just one byte of EEPROM followed by zeros. There is
2109 * no way to identify which modules are using Realtek RTL8672 and RTL9601C
2110 * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor
2111 * name and vendor id into EEPROM, so there is even no way to detect if
2112 * module is V-SOL V2801F. Therefore check for those zeros in the read
2113 * data and then based on check switch to reading EEPROM to one byte
2114 * at a time.
2115 */
2116static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len)
2117{
2118 size_t i, block_size = sfp->i2c_block_size;
2119
2120 /* Already using byte IO */
2121 if (block_size == 1)
2122 return false;
2123
2124 for (i = 1; i < len; i += block_size) {
2125 if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i)))
2126 return false;
2127 }
2128 return true;
2129}
2130
2131static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id)
2132{
2133 u8 check;
2134 int err;
2135
2136 if (id->base.phys_id != SFF8024_ID_SFF_8472 ||
2137 id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP ||
2138 id->base.connector != SFF8024_CONNECTOR_LC) {
2139 dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n");
2140 id->base.phys_id = SFF8024_ID_SFF_8472;
2141 id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP;
2142 id->base.connector = SFF8024_CONNECTOR_LC;
2143 err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3);
2144 if (err != 3) {
2145 dev_err(sfp->dev,
2146 "Failed to rewrite module EEPROM: %pe\n",
2147 ERR_PTR(err));
2148 return err;
2149 }
2150
2151 /* Cotsworks modules have been found to require a delay between write operations. */
2152 mdelay(50);
2153
2154 /* Update base structure checksum */
2155 check = sfp_check(&id->base, sizeof(id->base) - 1);
2156 err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1);
2157 if (err != 1) {
2158 dev_err(sfp->dev,
2159 "Failed to update base structure checksum in fiber module EEPROM: %pe\n",
2160 ERR_PTR(err));
2161 return err;
2162 }
2163 }
2164 return 0;
2165}
2166
2167static int sfp_module_parse_sff8472(struct sfp *sfp)
2168{
2169 /* If the module requires address swap mode, warn about it */
2170 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
2171 dev_warn(sfp->dev,
2172 "module address swap to access page 0xA2 is not supported.\n");
2173 else
2174 sfp->have_a2 = true;
2175
2176 return 0;
2177}
2178
2179static int sfp_sm_mod_probe(struct sfp *sfp, bool report)
2180{
2181 /* SFP module inserted - read I2C data */
2182 struct sfp_eeprom_id id;
2183 bool cotsworks_sfbg;
2184 unsigned int mask;
2185 bool cotsworks;
2186 u8 check;
2187 int ret;
2188
2189 sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE;
2190
2191 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
2192 if (ret < 0) {
2193 if (report)
2194 dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
2195 ERR_PTR(ret));
2196 return -EAGAIN;
2197 }
2198
2199 if (ret != sizeof(id.base)) {
2200 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
2201 return -EAGAIN;
2202 }
2203
2204 /* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from
2205 * address 0x51 is just one byte at a time. Also SFF-8472 requires
2206 * that EEPROM supports atomic 16bit read operation for diagnostic
2207 * fields, so do not switch to one byte reading at a time unless it
2208 * is really required and we have no other option.
2209 */
2210 if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) {
2211 dev_info(sfp->dev,
2212 "Detected broken RTL8672/RTL9601C emulated EEPROM\n");
2213 dev_info(sfp->dev,
2214 "Switching to reading EEPROM to one byte at a time\n");
2215 sfp->i2c_block_size = 1;
2216
2217 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
2218 if (ret < 0) {
2219 if (report)
2220 dev_err(sfp->dev,
2221 "failed to read EEPROM: %pe\n",
2222 ERR_PTR(ret));
2223 return -EAGAIN;
2224 }
2225
2226 if (ret != sizeof(id.base)) {
2227 dev_err(sfp->dev, "EEPROM short read: %pe\n",
2228 ERR_PTR(ret));
2229 return -EAGAIN;
2230 }
2231 }
2232
2233 /* Cotsworks do not seem to update the checksums when they
2234 * do the final programming with the final module part number,
2235 * serial number and date code.
2236 */
2237 cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS ", 16);
2238 cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4);
2239
2240 /* Cotsworks SFF module EEPROM do not always have valid phys_id,
2241 * phys_ext_id, and connector bytes. Rewrite SFF EEPROM bytes if
2242 * Cotsworks PN matches and bytes are not correct.
2243 */
2244 if (cotsworks && cotsworks_sfbg) {
2245 ret = sfp_cotsworks_fixup_check(sfp, &id);
2246 if (ret < 0)
2247 return ret;
2248 }
2249
2250 /* Validate the checksum over the base structure */
2251 check = sfp_check(&id.base, sizeof(id.base) - 1);
2252 if (check != id.base.cc_base) {
2253 if (cotsworks) {
2254 dev_warn(sfp->dev,
2255 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
2256 check, id.base.cc_base);
2257 } else {
2258 dev_err(sfp->dev,
2259 "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
2260 check, id.base.cc_base);
2261 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
2262 16, 1, &id, sizeof(id), true);
2263 return -EINVAL;
2264 }
2265 }
2266
2267 ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext));
2268 if (ret < 0) {
2269 if (report)
2270 dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
2271 ERR_PTR(ret));
2272 return -EAGAIN;
2273 }
2274
2275 if (ret != sizeof(id.ext)) {
2276 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
2277 return -EAGAIN;
2278 }
2279
2280 check = sfp_check(&id.ext, sizeof(id.ext) - 1);
2281 if (check != id.ext.cc_ext) {
2282 if (cotsworks) {
2283 dev_warn(sfp->dev,
2284 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
2285 check, id.ext.cc_ext);
2286 } else {
2287 dev_err(sfp->dev,
2288 "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
2289 check, id.ext.cc_ext);
2290 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
2291 16, 1, &id, sizeof(id), true);
2292 memset(&id.ext, 0, sizeof(id.ext));
2293 }
2294 }
2295
2296 sfp->id = id;
2297
2298 dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
2299 (int)sizeof(id.base.vendor_name), id.base.vendor_name,
2300 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
2301 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
2302 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
2303 (int)sizeof(id.ext.datecode), id.ext.datecode);
2304
2305 /* Check whether we support this module */
2306 if (!sfp->type->module_supported(&id)) {
2307 dev_err(sfp->dev,
2308 "module is not supported - phys id 0x%02x 0x%02x\n",
2309 sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
2310 return -EINVAL;
2311 }
2312
2313 if (sfp->id.ext.sff8472_compliance != SFP_SFF8472_COMPLIANCE_NONE) {
2314 ret = sfp_module_parse_sff8472(sfp);
2315 if (ret < 0)
2316 return ret;
2317 }
2318
2319 /* Parse the module power requirement */
2320 ret = sfp_module_parse_power(sfp);
2321 if (ret < 0)
2322 return ret;
2323
2324 sfp_module_parse_rate_select(sfp);
2325
2326 mask = SFP_F_PRESENT;
2327 if (sfp->gpio[GPIO_TX_DISABLE])
2328 mask |= SFP_F_TX_DISABLE;
2329 if (sfp->gpio[GPIO_TX_FAULT])
2330 mask |= SFP_F_TX_FAULT;
2331 if (sfp->gpio[GPIO_LOS])
2332 mask |= SFP_F_LOS;
2333 if (sfp->gpio[GPIO_RS0])
2334 mask |= SFP_F_RS0;
2335 if (sfp->gpio[GPIO_RS1])
2336 mask |= SFP_F_RS1;
2337
2338 sfp->module_t_start_up = T_START_UP;
2339 sfp->module_t_wait = T_WAIT;
2340 sfp->phy_t_retry = T_PHY_RETRY;
2341
2342 sfp->state_ignore_mask = 0;
2343
2344 if (sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SFI ||
2345 sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SR ||
2346 sfp->id.base.extended_cc == SFF8024_ECC_5GBASE_T ||
2347 sfp->id.base.extended_cc == SFF8024_ECC_2_5GBASE_T)
2348 sfp->mdio_protocol = MDIO_I2C_C45;
2349 else if (sfp->id.base.e1000_base_t)
2350 sfp->mdio_protocol = MDIO_I2C_MARVELL_C22;
2351 else
2352 sfp->mdio_protocol = MDIO_I2C_NONE;
2353
2354 sfp->quirk = sfp_lookup_quirk(&id);
2355
2356 mutex_lock(&sfp->st_mutex);
2357 /* Initialise state bits to use from hardware */
2358 sfp->state_hw_mask = mask;
2359
2360 /* We want to drive the rate select pins that the module is using */
2361 sfp->state_hw_drive |= sfp->rs_state_mask;
2362
2363 if (sfp->quirk && sfp->quirk->fixup)
2364 sfp->quirk->fixup(sfp);
2365
2366 sfp->state_hw_mask &= ~sfp->state_ignore_mask;
2367 mutex_unlock(&sfp->st_mutex);
2368
2369 return 0;
2370}
2371
2372static void sfp_sm_mod_remove(struct sfp *sfp)
2373{
2374 if (sfp->sm_mod_state > SFP_MOD_WAITDEV)
2375 sfp_module_remove(sfp->sfp_bus);
2376
2377 sfp_hwmon_remove(sfp);
2378
2379 memset(&sfp->id, 0, sizeof(sfp->id));
2380 sfp->module_power_mW = 0;
2381 sfp->state_hw_drive = SFP_F_TX_DISABLE;
2382 sfp->have_a2 = false;
2383
2384 dev_info(sfp->dev, "module removed\n");
2385}
2386
2387/* This state machine tracks the upstream's state */
2388static void sfp_sm_device(struct sfp *sfp, unsigned int event)
2389{
2390 switch (sfp->sm_dev_state) {
2391 default:
2392 if (event == SFP_E_DEV_ATTACH)
2393 sfp->sm_dev_state = SFP_DEV_DOWN;
2394 break;
2395
2396 case SFP_DEV_DOWN:
2397 if (event == SFP_E_DEV_DETACH)
2398 sfp->sm_dev_state = SFP_DEV_DETACHED;
2399 else if (event == SFP_E_DEV_UP)
2400 sfp->sm_dev_state = SFP_DEV_UP;
2401 break;
2402
2403 case SFP_DEV_UP:
2404 if (event == SFP_E_DEV_DETACH)
2405 sfp->sm_dev_state = SFP_DEV_DETACHED;
2406 else if (event == SFP_E_DEV_DOWN)
2407 sfp->sm_dev_state = SFP_DEV_DOWN;
2408 break;
2409 }
2410}
2411
2412/* This state machine tracks the insert/remove state of the module, probes
2413 * the on-board EEPROM, and sets up the power level.
2414 */
2415static void sfp_sm_module(struct sfp *sfp, unsigned int event)
2416{
2417 int err;
2418
2419 /* Handle remove event globally, it resets this state machine */
2420 if (event == SFP_E_REMOVE) {
2421 if (sfp->sm_mod_state > SFP_MOD_PROBE)
2422 sfp_sm_mod_remove(sfp);
2423 sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0);
2424 return;
2425 }
2426
2427 /* Handle device detach globally */
2428 if (sfp->sm_dev_state < SFP_DEV_DOWN &&
2429 sfp->sm_mod_state > SFP_MOD_WAITDEV) {
2430 if (sfp->module_power_mW > 1000 &&
2431 sfp->sm_mod_state > SFP_MOD_HPOWER)
2432 sfp_sm_mod_hpower(sfp, false);
2433 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2434 return;
2435 }
2436
2437 switch (sfp->sm_mod_state) {
2438 default:
2439 if (event == SFP_E_INSERT) {
2440 sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL);
2441 sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT;
2442 sfp->sm_mod_tries = R_PROBE_RETRY_SLOW;
2443 }
2444 break;
2445
2446 case SFP_MOD_PROBE:
2447 /* Wait for T_PROBE_INIT to time out */
2448 if (event != SFP_E_TIMEOUT)
2449 break;
2450
2451 err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1);
2452 if (err == -EAGAIN) {
2453 if (sfp->sm_mod_tries_init &&
2454 --sfp->sm_mod_tries_init) {
2455 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2456 break;
2457 } else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) {
2458 if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1)
2459 dev_warn(sfp->dev,
2460 "please wait, module slow to respond\n");
2461 sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW);
2462 break;
2463 }
2464 }
2465 if (err < 0) {
2466 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2467 break;
2468 }
2469
2470 /* Force a poll to re-read the hardware signal state after
2471 * sfp_sm_mod_probe() changed state_hw_mask.
2472 */
2473 mod_delayed_work(system_wq, &sfp->poll, 1);
2474
2475 err = sfp_hwmon_insert(sfp);
2476 if (err)
2477 dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
2478 ERR_PTR(err));
2479
2480 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2481 fallthrough;
2482 case SFP_MOD_WAITDEV:
2483 /* Ensure that the device is attached before proceeding */
2484 if (sfp->sm_dev_state < SFP_DEV_DOWN)
2485 break;
2486
2487 /* Report the module insertion to the upstream device */
2488 err = sfp_module_insert(sfp->sfp_bus, &sfp->id,
2489 sfp->quirk);
2490 if (err < 0) {
2491 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2492 break;
2493 }
2494
2495 /* If this is a power level 1 module, we are done */
2496 if (sfp->module_power_mW <= 1000)
2497 goto insert;
2498
2499 sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0);
2500 fallthrough;
2501 case SFP_MOD_HPOWER:
2502 /* Enable high power mode */
2503 err = sfp_sm_mod_hpower(sfp, true);
2504 if (err < 0) {
2505 if (err != -EAGAIN) {
2506 sfp_module_remove(sfp->sfp_bus);
2507 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2508 } else {
2509 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2510 }
2511 break;
2512 }
2513
2514 sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL);
2515 break;
2516
2517 case SFP_MOD_WAITPWR:
2518 /* Wait for T_HPOWER_LEVEL to time out */
2519 if (event != SFP_E_TIMEOUT)
2520 break;
2521
2522 insert:
2523 sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0);
2524 break;
2525
2526 case SFP_MOD_PRESENT:
2527 case SFP_MOD_ERROR:
2528 break;
2529 }
2530}
2531
2532static void sfp_sm_main(struct sfp *sfp, unsigned int event)
2533{
2534 unsigned long timeout;
2535 int ret;
2536
2537 /* Some events are global */
2538 if (sfp->sm_state != SFP_S_DOWN &&
2539 (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2540 sfp->sm_dev_state != SFP_DEV_UP)) {
2541 if (sfp->sm_state == SFP_S_LINK_UP &&
2542 sfp->sm_dev_state == SFP_DEV_UP)
2543 sfp_sm_link_down(sfp);
2544 if (sfp->sm_state > SFP_S_INIT)
2545 sfp_module_stop(sfp->sfp_bus);
2546 if (sfp->mod_phy)
2547 sfp_sm_phy_detach(sfp);
2548 if (sfp->i2c_mii)
2549 sfp_i2c_mdiobus_destroy(sfp);
2550 sfp_module_tx_disable(sfp);
2551 sfp_soft_stop_poll(sfp);
2552 sfp_sm_next(sfp, SFP_S_DOWN, 0);
2553 return;
2554 }
2555
2556 /* The main state machine */
2557 switch (sfp->sm_state) {
2558 case SFP_S_DOWN:
2559 if (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2560 sfp->sm_dev_state != SFP_DEV_UP)
2561 break;
2562
2563 /* Only use the soft state bits if we have access to the A2h
2564 * memory, which implies that we have some level of SFF-8472
2565 * compliance.
2566 */
2567 if (sfp->have_a2)
2568 sfp_soft_start_poll(sfp);
2569
2570 sfp_module_tx_enable(sfp);
2571
2572 /* Initialise the fault clearance retries */
2573 sfp->sm_fault_retries = N_FAULT_INIT;
2574
2575 /* We need to check the TX_FAULT state, which is not defined
2576 * while TX_DISABLE is asserted. The earliest we want to do
2577 * anything (such as probe for a PHY) is 50ms (or more on
2578 * specific modules).
2579 */
2580 sfp_sm_next(sfp, SFP_S_WAIT, sfp->module_t_wait);
2581 break;
2582
2583 case SFP_S_WAIT:
2584 if (event != SFP_E_TIMEOUT)
2585 break;
2586
2587 if (sfp->state & SFP_F_TX_FAULT) {
2588 /* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431)
2589 * from the TX_DISABLE deassertion for the module to
2590 * initialise, which is indicated by TX_FAULT
2591 * deasserting.
2592 */
2593 timeout = sfp->module_t_start_up;
2594 if (timeout > sfp->module_t_wait)
2595 timeout -= sfp->module_t_wait;
2596 else
2597 timeout = 1;
2598
2599 sfp_sm_next(sfp, SFP_S_INIT, timeout);
2600 } else {
2601 /* TX_FAULT is not asserted, assume the module has
2602 * finished initialising.
2603 */
2604 goto init_done;
2605 }
2606 break;
2607
2608 case SFP_S_INIT:
2609 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2610 /* TX_FAULT is still asserted after t_init
2611 * or t_start_up, so assume there is a fault.
2612 */
2613 sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT,
2614 sfp->sm_fault_retries == N_FAULT_INIT);
2615 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2616 init_done:
2617 /* Create mdiobus and start trying for PHY */
2618 ret = sfp_sm_add_mdio_bus(sfp);
2619 if (ret < 0) {
2620 sfp_sm_next(sfp, SFP_S_FAIL, 0);
2621 break;
2622 }
2623 sfp->sm_phy_retries = R_PHY_RETRY;
2624 goto phy_probe;
2625 }
2626 break;
2627
2628 case SFP_S_INIT_PHY:
2629 if (event != SFP_E_TIMEOUT)
2630 break;
2631 phy_probe:
2632 /* TX_FAULT deasserted or we timed out with TX_FAULT
2633 * clear. Probe for the PHY and check the LOS state.
2634 */
2635 ret = sfp_sm_probe_for_phy(sfp);
2636 if (ret == -ENODEV) {
2637 if (--sfp->sm_phy_retries) {
2638 sfp_sm_next(sfp, SFP_S_INIT_PHY,
2639 sfp->phy_t_retry);
2640 dev_dbg(sfp->dev,
2641 "no PHY detected, %u tries left\n",
2642 sfp->sm_phy_retries);
2643 break;
2644 } else {
2645 dev_info(sfp->dev, "no PHY detected\n");
2646 }
2647 } else if (ret) {
2648 sfp_sm_next(sfp, SFP_S_FAIL, 0);
2649 break;
2650 }
2651 if (sfp_module_start(sfp->sfp_bus)) {
2652 sfp_sm_next(sfp, SFP_S_FAIL, 0);
2653 break;
2654 }
2655 sfp_sm_link_check_los(sfp);
2656
2657 /* Reset the fault retry count */
2658 sfp->sm_fault_retries = N_FAULT;
2659 break;
2660
2661 case SFP_S_INIT_TX_FAULT:
2662 if (event == SFP_E_TIMEOUT) {
2663 sfp_module_tx_fault_reset(sfp);
2664 sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up);
2665 }
2666 break;
2667
2668 case SFP_S_WAIT_LOS:
2669 if (event == SFP_E_TX_FAULT)
2670 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2671 else if (sfp_los_event_inactive(sfp, event))
2672 sfp_sm_link_up(sfp);
2673 break;
2674
2675 case SFP_S_LINK_UP:
2676 if (event == SFP_E_TX_FAULT) {
2677 sfp_sm_link_down(sfp);
2678 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2679 } else if (sfp_los_event_active(sfp, event)) {
2680 sfp_sm_link_down(sfp);
2681 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
2682 }
2683 break;
2684
2685 case SFP_S_TX_FAULT:
2686 if (event == SFP_E_TIMEOUT) {
2687 sfp_module_tx_fault_reset(sfp);
2688 sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up);
2689 }
2690 break;
2691
2692 case SFP_S_REINIT:
2693 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2694 sfp_sm_fault(sfp, SFP_S_TX_FAULT, false);
2695 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2696 dev_info(sfp->dev, "module transmit fault recovered\n");
2697 sfp_sm_link_check_los(sfp);
2698 }
2699 break;
2700
2701 case SFP_S_TX_DISABLE:
2702 break;
2703 }
2704}
2705
2706static void __sfp_sm_event(struct sfp *sfp, unsigned int event)
2707{
2708 dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
2709 mod_state_to_str(sfp->sm_mod_state),
2710 dev_state_to_str(sfp->sm_dev_state),
2711 sm_state_to_str(sfp->sm_state),
2712 event_to_str(event));
2713
2714 sfp_sm_device(sfp, event);
2715 sfp_sm_module(sfp, event);
2716 sfp_sm_main(sfp, event);
2717
2718 dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
2719 mod_state_to_str(sfp->sm_mod_state),
2720 dev_state_to_str(sfp->sm_dev_state),
2721 sm_state_to_str(sfp->sm_state));
2722}
2723
2724static void sfp_sm_event(struct sfp *sfp, unsigned int event)
2725{
2726 mutex_lock(&sfp->sm_mutex);
2727 __sfp_sm_event(sfp, event);
2728 mutex_unlock(&sfp->sm_mutex);
2729}
2730
2731static void sfp_attach(struct sfp *sfp)
2732{
2733 sfp_sm_event(sfp, SFP_E_DEV_ATTACH);
2734}
2735
2736static void sfp_detach(struct sfp *sfp)
2737{
2738 sfp_sm_event(sfp, SFP_E_DEV_DETACH);
2739}
2740
2741static void sfp_start(struct sfp *sfp)
2742{
2743 sfp_sm_event(sfp, SFP_E_DEV_UP);
2744}
2745
2746static void sfp_stop(struct sfp *sfp)
2747{
2748 sfp_sm_event(sfp, SFP_E_DEV_DOWN);
2749}
2750
2751static void sfp_set_signal_rate(struct sfp *sfp, unsigned int rate_kbd)
2752{
2753 unsigned int set;
2754
2755 sfp->rate_kbd = rate_kbd;
2756
2757 if (rate_kbd > sfp->rs_threshold_kbd)
2758 set = sfp->rs_state_mask;
2759 else
2760 set = 0;
2761
2762 sfp_mod_state(sfp, SFP_F_RS0 | SFP_F_RS1, set);
2763}
2764
2765static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
2766{
2767 /* locking... and check module is present */
2768
2769 if (sfp->id.ext.sff8472_compliance &&
2770 !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
2771 modinfo->type = ETH_MODULE_SFF_8472;
2772 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2773 } else {
2774 modinfo->type = ETH_MODULE_SFF_8079;
2775 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2776 }
2777 return 0;
2778}
2779
2780static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
2781 u8 *data)
2782{
2783 unsigned int first, last, len;
2784 int ret;
2785
2786 if (!(sfp->state & SFP_F_PRESENT))
2787 return -ENODEV;
2788
2789 if (ee->len == 0)
2790 return -EINVAL;
2791
2792 first = ee->offset;
2793 last = ee->offset + ee->len;
2794 if (first < ETH_MODULE_SFF_8079_LEN) {
2795 len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
2796 len -= first;
2797
2798 ret = sfp_read(sfp, false, first, data, len);
2799 if (ret < 0)
2800 return ret;
2801
2802 first += len;
2803 data += len;
2804 }
2805 if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
2806 len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
2807 len -= first;
2808 first -= ETH_MODULE_SFF_8079_LEN;
2809
2810 ret = sfp_read(sfp, true, first, data, len);
2811 if (ret < 0)
2812 return ret;
2813 }
2814 return 0;
2815}
2816
2817static int sfp_module_eeprom_by_page(struct sfp *sfp,
2818 const struct ethtool_module_eeprom *page,
2819 struct netlink_ext_ack *extack)
2820{
2821 if (!(sfp->state & SFP_F_PRESENT))
2822 return -ENODEV;
2823
2824 if (page->bank) {
2825 NL_SET_ERR_MSG(extack, "Banks not supported");
2826 return -EOPNOTSUPP;
2827 }
2828
2829 if (page->page) {
2830 NL_SET_ERR_MSG(extack, "Only page 0 supported");
2831 return -EOPNOTSUPP;
2832 }
2833
2834 if (page->i2c_address != 0x50 &&
2835 page->i2c_address != 0x51) {
2836 NL_SET_ERR_MSG(extack, "Only address 0x50 and 0x51 supported");
2837 return -EOPNOTSUPP;
2838 }
2839
2840 return sfp_read(sfp, page->i2c_address == 0x51, page->offset,
2841 page->data, page->length);
2842};
2843
2844static const struct sfp_socket_ops sfp_module_ops = {
2845 .attach = sfp_attach,
2846 .detach = sfp_detach,
2847 .start = sfp_start,
2848 .stop = sfp_stop,
2849 .set_signal_rate = sfp_set_signal_rate,
2850 .module_info = sfp_module_info,
2851 .module_eeprom = sfp_module_eeprom,
2852 .module_eeprom_by_page = sfp_module_eeprom_by_page,
2853};
2854
2855static void sfp_timeout(struct work_struct *work)
2856{
2857 struct sfp *sfp = container_of(work, struct sfp, timeout.work);
2858
2859 rtnl_lock();
2860 sfp_sm_event(sfp, SFP_E_TIMEOUT);
2861 rtnl_unlock();
2862}
2863
2864static void sfp_check_state(struct sfp *sfp)
2865{
2866 unsigned int state, i, changed;
2867
2868 rtnl_lock();
2869 mutex_lock(&sfp->st_mutex);
2870 state = sfp_get_state(sfp);
2871 changed = state ^ sfp->state;
2872 changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
2873
2874 for (i = 0; i < GPIO_MAX; i++)
2875 if (changed & BIT(i))
2876 dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_names[i],
2877 !!(sfp->state & BIT(i)), !!(state & BIT(i)));
2878
2879 state |= sfp->state & SFP_F_OUTPUTS;
2880 sfp->state = state;
2881 mutex_unlock(&sfp->st_mutex);
2882
2883 mutex_lock(&sfp->sm_mutex);
2884 if (changed & SFP_F_PRESENT)
2885 __sfp_sm_event(sfp, state & SFP_F_PRESENT ?
2886 SFP_E_INSERT : SFP_E_REMOVE);
2887
2888 if (changed & SFP_F_TX_FAULT)
2889 __sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
2890 SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
2891
2892 if (changed & SFP_F_LOS)
2893 __sfp_sm_event(sfp, state & SFP_F_LOS ?
2894 SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
2895 mutex_unlock(&sfp->sm_mutex);
2896 rtnl_unlock();
2897}
2898
2899static irqreturn_t sfp_irq(int irq, void *data)
2900{
2901 struct sfp *sfp = data;
2902
2903 sfp_check_state(sfp);
2904
2905 return IRQ_HANDLED;
2906}
2907
2908static void sfp_poll(struct work_struct *work)
2909{
2910 struct sfp *sfp = container_of(work, struct sfp, poll.work);
2911
2912 sfp_check_state(sfp);
2913
2914 // st_mutex doesn't need to be held here for state_soft_mask,
2915 // it's unimportant if we race while reading this.
2916 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) ||
2917 sfp->need_poll)
2918 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2919}
2920
2921static struct sfp *sfp_alloc(struct device *dev)
2922{
2923 struct sfp *sfp;
2924
2925 sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
2926 if (!sfp)
2927 return ERR_PTR(-ENOMEM);
2928
2929 sfp->dev = dev;
2930 sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE;
2931
2932 mutex_init(&sfp->sm_mutex);
2933 mutex_init(&sfp->st_mutex);
2934 INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
2935 INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
2936
2937 sfp_hwmon_init(sfp);
2938
2939 return sfp;
2940}
2941
2942static void sfp_cleanup(void *data)
2943{
2944 struct sfp *sfp = data;
2945
2946 sfp_hwmon_exit(sfp);
2947
2948 cancel_delayed_work_sync(&sfp->poll);
2949 cancel_delayed_work_sync(&sfp->timeout);
2950 if (sfp->i2c_mii) {
2951 mdiobus_unregister(sfp->i2c_mii);
2952 mdiobus_free(sfp->i2c_mii);
2953 }
2954 if (sfp->i2c)
2955 i2c_put_adapter(sfp->i2c);
2956 kfree(sfp);
2957}
2958
2959static int sfp_i2c_get(struct sfp *sfp)
2960{
2961 struct fwnode_handle *h;
2962 struct i2c_adapter *i2c;
2963 int err;
2964
2965 h = fwnode_find_reference(dev_fwnode(sfp->dev), "i2c-bus", 0);
2966 if (IS_ERR(h)) {
2967 dev_err(sfp->dev, "missing 'i2c-bus' property\n");
2968 return -ENODEV;
2969 }
2970
2971 i2c = i2c_get_adapter_by_fwnode(h);
2972 if (!i2c) {
2973 err = -EPROBE_DEFER;
2974 goto put;
2975 }
2976
2977 err = sfp_i2c_configure(sfp, i2c);
2978 if (err)
2979 i2c_put_adapter(i2c);
2980put:
2981 fwnode_handle_put(h);
2982 return err;
2983}
2984
2985static int sfp_probe(struct platform_device *pdev)
2986{
2987 const struct sff_data *sff;
2988 char *sfp_irq_name;
2989 struct sfp *sfp;
2990 int err, i;
2991
2992 sfp = sfp_alloc(&pdev->dev);
2993 if (IS_ERR(sfp))
2994 return PTR_ERR(sfp);
2995
2996 platform_set_drvdata(pdev, sfp);
2997
2998 err = devm_add_action_or_reset(sfp->dev, sfp_cleanup, sfp);
2999 if (err < 0)
3000 return err;
3001
3002 sff = device_get_match_data(sfp->dev);
3003 if (!sff)
3004 sff = &sfp_data;
3005
3006 sfp->type = sff;
3007
3008 err = sfp_i2c_get(sfp);
3009 if (err)
3010 return err;
3011
3012 for (i = 0; i < GPIO_MAX; i++)
3013 if (sff->gpios & BIT(i)) {
3014 sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
3015 gpio_names[i], gpio_flags[i]);
3016 if (IS_ERR(sfp->gpio[i]))
3017 return PTR_ERR(sfp->gpio[i]);
3018 }
3019
3020 sfp->state_hw_mask = SFP_F_PRESENT;
3021 sfp->state_hw_drive = SFP_F_TX_DISABLE;
3022
3023 sfp->get_state = sfp_gpio_get_state;
3024 sfp->set_state = sfp_gpio_set_state;
3025
3026 /* Modules that have no detect signal are always present */
3027 if (!(sfp->gpio[GPIO_MODDEF0]))
3028 sfp->get_state = sff_gpio_get_state;
3029
3030 device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
3031 &sfp->max_power_mW);
3032 if (sfp->max_power_mW < 1000) {
3033 if (sfp->max_power_mW)
3034 dev_warn(sfp->dev,
3035 "Firmware bug: host maximum power should be at least 1W\n");
3036 sfp->max_power_mW = 1000;
3037 }
3038
3039 dev_info(sfp->dev, "Host maximum power %u.%uW\n",
3040 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
3041
3042 /* Get the initial state, and always signal TX disable,
3043 * since the network interface will not be up.
3044 */
3045 sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
3046
3047 if (sfp->gpio[GPIO_RS0] &&
3048 gpiod_get_value_cansleep(sfp->gpio[GPIO_RS0]))
3049 sfp->state |= SFP_F_RS0;
3050 sfp_set_state(sfp, sfp->state);
3051 sfp_module_tx_disable(sfp);
3052 if (sfp->state & SFP_F_PRESENT) {
3053 rtnl_lock();
3054 sfp_sm_event(sfp, SFP_E_INSERT);
3055 rtnl_unlock();
3056 }
3057
3058 for (i = 0; i < GPIO_MAX; i++) {
3059 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
3060 continue;
3061
3062 sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]);
3063 if (sfp->gpio_irq[i] < 0) {
3064 sfp->gpio_irq[i] = 0;
3065 sfp->need_poll = true;
3066 continue;
3067 }
3068
3069 sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL,
3070 "%s-%s", dev_name(sfp->dev),
3071 gpio_names[i]);
3072
3073 if (!sfp_irq_name)
3074 return -ENOMEM;
3075
3076 err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i],
3077 NULL, sfp_irq,
3078 IRQF_ONESHOT |
3079 IRQF_TRIGGER_RISING |
3080 IRQF_TRIGGER_FALLING,
3081 sfp_irq_name, sfp);
3082 if (err) {
3083 sfp->gpio_irq[i] = 0;
3084 sfp->need_poll = true;
3085 }
3086 }
3087
3088 if (sfp->need_poll)
3089 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
3090
3091 /* We could have an issue in cases no Tx disable pin is available or
3092 * wired as modules using a laser as their light source will continue to
3093 * be active when the fiber is removed. This could be a safety issue and
3094 * we should at least warn the user about that.
3095 */
3096 if (!sfp->gpio[GPIO_TX_DISABLE])
3097 dev_warn(sfp->dev,
3098 "No tx_disable pin: SFP modules will always be emitting.\n");
3099
3100 sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
3101 if (!sfp->sfp_bus)
3102 return -ENOMEM;
3103
3104 sfp_debugfs_init(sfp);
3105
3106 return 0;
3107}
3108
3109static void sfp_remove(struct platform_device *pdev)
3110{
3111 struct sfp *sfp = platform_get_drvdata(pdev);
3112
3113 sfp_debugfs_exit(sfp);
3114 sfp_unregister_socket(sfp->sfp_bus);
3115
3116 rtnl_lock();
3117 sfp_sm_event(sfp, SFP_E_REMOVE);
3118 rtnl_unlock();
3119}
3120
3121static void sfp_shutdown(struct platform_device *pdev)
3122{
3123 struct sfp *sfp = platform_get_drvdata(pdev);
3124 int i;
3125
3126 for (i = 0; i < GPIO_MAX; i++) {
3127 if (!sfp->gpio_irq[i])
3128 continue;
3129
3130 devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp);
3131 }
3132
3133 cancel_delayed_work_sync(&sfp->poll);
3134 cancel_delayed_work_sync(&sfp->timeout);
3135}
3136
3137static struct platform_driver sfp_driver = {
3138 .probe = sfp_probe,
3139 .remove_new = sfp_remove,
3140 .shutdown = sfp_shutdown,
3141 .driver = {
3142 .name = "sfp",
3143 .of_match_table = sfp_of_match,
3144 },
3145};
3146
3147static int sfp_init(void)
3148{
3149 poll_jiffies = msecs_to_jiffies(100);
3150
3151 return platform_driver_register(&sfp_driver);
3152}
3153module_init(sfp_init);
3154
3155static void sfp_exit(void)
3156{
3157 platform_driver_unregister(&sfp_driver);
3158}
3159module_exit(sfp_exit);
3160
3161MODULE_ALIAS("platform:sfp");
3162MODULE_AUTHOR("Russell King");
3163MODULE_LICENSE("GPL v2");
3164MODULE_DESCRIPTION("SFP cage support");
1// SPDX-License-Identifier: GPL-2.0
2#include <linux/acpi.h>
3#include <linux/ctype.h>
4#include <linux/debugfs.h>
5#include <linux/delay.h>
6#include <linux/gpio/consumer.h>
7#include <linux/hwmon.h>
8#include <linux/i2c.h>
9#include <linux/interrupt.h>
10#include <linux/jiffies.h>
11#include <linux/mdio/mdio-i2c.h>
12#include <linux/module.h>
13#include <linux/mutex.h>
14#include <linux/of.h>
15#include <linux/phy.h>
16#include <linux/platform_device.h>
17#include <linux/rtnetlink.h>
18#include <linux/slab.h>
19#include <linux/workqueue.h>
20
21#include "sfp.h"
22#include "swphy.h"
23
24enum {
25 GPIO_MODDEF0,
26 GPIO_LOS,
27 GPIO_TX_FAULT,
28 GPIO_TX_DISABLE,
29 GPIO_RATE_SELECT,
30 GPIO_MAX,
31
32 SFP_F_PRESENT = BIT(GPIO_MODDEF0),
33 SFP_F_LOS = BIT(GPIO_LOS),
34 SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
35 SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
36 SFP_F_RATE_SELECT = BIT(GPIO_RATE_SELECT),
37
38 SFP_E_INSERT = 0,
39 SFP_E_REMOVE,
40 SFP_E_DEV_ATTACH,
41 SFP_E_DEV_DETACH,
42 SFP_E_DEV_DOWN,
43 SFP_E_DEV_UP,
44 SFP_E_TX_FAULT,
45 SFP_E_TX_CLEAR,
46 SFP_E_LOS_HIGH,
47 SFP_E_LOS_LOW,
48 SFP_E_TIMEOUT,
49
50 SFP_MOD_EMPTY = 0,
51 SFP_MOD_ERROR,
52 SFP_MOD_PROBE,
53 SFP_MOD_WAITDEV,
54 SFP_MOD_HPOWER,
55 SFP_MOD_WAITPWR,
56 SFP_MOD_PRESENT,
57
58 SFP_DEV_DETACHED = 0,
59 SFP_DEV_DOWN,
60 SFP_DEV_UP,
61
62 SFP_S_DOWN = 0,
63 SFP_S_FAIL,
64 SFP_S_WAIT,
65 SFP_S_INIT,
66 SFP_S_INIT_PHY,
67 SFP_S_INIT_TX_FAULT,
68 SFP_S_WAIT_LOS,
69 SFP_S_LINK_UP,
70 SFP_S_TX_FAULT,
71 SFP_S_REINIT,
72 SFP_S_TX_DISABLE,
73};
74
75static const char * const mod_state_strings[] = {
76 [SFP_MOD_EMPTY] = "empty",
77 [SFP_MOD_ERROR] = "error",
78 [SFP_MOD_PROBE] = "probe",
79 [SFP_MOD_WAITDEV] = "waitdev",
80 [SFP_MOD_HPOWER] = "hpower",
81 [SFP_MOD_WAITPWR] = "waitpwr",
82 [SFP_MOD_PRESENT] = "present",
83};
84
85static const char *mod_state_to_str(unsigned short mod_state)
86{
87 if (mod_state >= ARRAY_SIZE(mod_state_strings))
88 return "Unknown module state";
89 return mod_state_strings[mod_state];
90}
91
92static const char * const dev_state_strings[] = {
93 [SFP_DEV_DETACHED] = "detached",
94 [SFP_DEV_DOWN] = "down",
95 [SFP_DEV_UP] = "up",
96};
97
98static const char *dev_state_to_str(unsigned short dev_state)
99{
100 if (dev_state >= ARRAY_SIZE(dev_state_strings))
101 return "Unknown device state";
102 return dev_state_strings[dev_state];
103}
104
105static const char * const event_strings[] = {
106 [SFP_E_INSERT] = "insert",
107 [SFP_E_REMOVE] = "remove",
108 [SFP_E_DEV_ATTACH] = "dev_attach",
109 [SFP_E_DEV_DETACH] = "dev_detach",
110 [SFP_E_DEV_DOWN] = "dev_down",
111 [SFP_E_DEV_UP] = "dev_up",
112 [SFP_E_TX_FAULT] = "tx_fault",
113 [SFP_E_TX_CLEAR] = "tx_clear",
114 [SFP_E_LOS_HIGH] = "los_high",
115 [SFP_E_LOS_LOW] = "los_low",
116 [SFP_E_TIMEOUT] = "timeout",
117};
118
119static const char *event_to_str(unsigned short event)
120{
121 if (event >= ARRAY_SIZE(event_strings))
122 return "Unknown event";
123 return event_strings[event];
124}
125
126static const char * const sm_state_strings[] = {
127 [SFP_S_DOWN] = "down",
128 [SFP_S_FAIL] = "fail",
129 [SFP_S_WAIT] = "wait",
130 [SFP_S_INIT] = "init",
131 [SFP_S_INIT_PHY] = "init_phy",
132 [SFP_S_INIT_TX_FAULT] = "init_tx_fault",
133 [SFP_S_WAIT_LOS] = "wait_los",
134 [SFP_S_LINK_UP] = "link_up",
135 [SFP_S_TX_FAULT] = "tx_fault",
136 [SFP_S_REINIT] = "reinit",
137 [SFP_S_TX_DISABLE] = "tx_disable",
138};
139
140static const char *sm_state_to_str(unsigned short sm_state)
141{
142 if (sm_state >= ARRAY_SIZE(sm_state_strings))
143 return "Unknown state";
144 return sm_state_strings[sm_state];
145}
146
147static const char *gpio_of_names[] = {
148 "mod-def0",
149 "los",
150 "tx-fault",
151 "tx-disable",
152 "rate-select0",
153};
154
155static const enum gpiod_flags gpio_flags[] = {
156 GPIOD_IN,
157 GPIOD_IN,
158 GPIOD_IN,
159 GPIOD_ASIS,
160 GPIOD_ASIS,
161};
162
163/* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a
164 * non-cooled module to initialise its laser safety circuitry. We wait
165 * an initial T_WAIT period before we check the tx fault to give any PHY
166 * on board (for a copper SFP) time to initialise.
167 */
168#define T_WAIT msecs_to_jiffies(50)
169#define T_START_UP msecs_to_jiffies(300)
170#define T_START_UP_BAD_GPON msecs_to_jiffies(60000)
171
172/* t_reset is the time required to assert the TX_DISABLE signal to reset
173 * an indicated TX_FAULT.
174 */
175#define T_RESET_US 10
176#define T_FAULT_RECOVER msecs_to_jiffies(1000)
177
178/* N_FAULT_INIT is the number of recovery attempts at module initialisation
179 * time. If the TX_FAULT signal is not deasserted after this number of
180 * attempts at clearing it, we decide that the module is faulty.
181 * N_FAULT is the same but after the module has initialised.
182 */
183#define N_FAULT_INIT 5
184#define N_FAULT 5
185
186/* T_PHY_RETRY is the time interval between attempts to probe the PHY.
187 * R_PHY_RETRY is the number of attempts.
188 */
189#define T_PHY_RETRY msecs_to_jiffies(50)
190#define R_PHY_RETRY 12
191
192/* SFP module presence detection is poor: the three MOD DEF signals are
193 * the same length on the PCB, which means it's possible for MOD DEF 0 to
194 * connect before the I2C bus on MOD DEF 1/2.
195 *
196 * The SFF-8472 specifies t_serial ("Time from power on until module is
197 * ready for data transmission over the two wire serial bus.") as 300ms.
198 */
199#define T_SERIAL msecs_to_jiffies(300)
200#define T_HPOWER_LEVEL msecs_to_jiffies(300)
201#define T_PROBE_RETRY_INIT msecs_to_jiffies(100)
202#define R_PROBE_RETRY_INIT 10
203#define T_PROBE_RETRY_SLOW msecs_to_jiffies(5000)
204#define R_PROBE_RETRY_SLOW 12
205
206/* SFP modules appear to always have their PHY configured for bus address
207 * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
208 */
209#define SFP_PHY_ADDR 22
210
211struct sff_data {
212 unsigned int gpios;
213 bool (*module_supported)(const struct sfp_eeprom_id *id);
214};
215
216struct sfp {
217 struct device *dev;
218 struct i2c_adapter *i2c;
219 struct mii_bus *i2c_mii;
220 struct sfp_bus *sfp_bus;
221 struct phy_device *mod_phy;
222 const struct sff_data *type;
223 size_t i2c_block_size;
224 u32 max_power_mW;
225
226 unsigned int (*get_state)(struct sfp *);
227 void (*set_state)(struct sfp *, unsigned int);
228 int (*read)(struct sfp *, bool, u8, void *, size_t);
229 int (*write)(struct sfp *, bool, u8, void *, size_t);
230
231 struct gpio_desc *gpio[GPIO_MAX];
232 int gpio_irq[GPIO_MAX];
233
234 bool need_poll;
235
236 struct mutex st_mutex; /* Protects state */
237 unsigned int state_soft_mask;
238 unsigned int state;
239 struct delayed_work poll;
240 struct delayed_work timeout;
241 struct mutex sm_mutex; /* Protects state machine */
242 unsigned char sm_mod_state;
243 unsigned char sm_mod_tries_init;
244 unsigned char sm_mod_tries;
245 unsigned char sm_dev_state;
246 unsigned short sm_state;
247 unsigned char sm_fault_retries;
248 unsigned char sm_phy_retries;
249
250 struct sfp_eeprom_id id;
251 unsigned int module_power_mW;
252 unsigned int module_t_start_up;
253
254#if IS_ENABLED(CONFIG_HWMON)
255 struct sfp_diag diag;
256 struct delayed_work hwmon_probe;
257 unsigned int hwmon_tries;
258 struct device *hwmon_dev;
259 char *hwmon_name;
260#endif
261
262#if IS_ENABLED(CONFIG_DEBUG_FS)
263 struct dentry *debugfs_dir;
264#endif
265};
266
267static bool sff_module_supported(const struct sfp_eeprom_id *id)
268{
269 return id->base.phys_id == SFF8024_ID_SFF_8472 &&
270 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
271}
272
273static const struct sff_data sff_data = {
274 .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
275 .module_supported = sff_module_supported,
276};
277
278static bool sfp_module_supported(const struct sfp_eeprom_id *id)
279{
280 if (id->base.phys_id == SFF8024_ID_SFP &&
281 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP)
282 return true;
283
284 /* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored
285 * phys id SFF instead of SFP. Therefore mark this module explicitly
286 * as supported based on vendor name and pn match.
287 */
288 if (id->base.phys_id == SFF8024_ID_SFF_8472 &&
289 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP &&
290 !memcmp(id->base.vendor_name, "UBNT ", 16) &&
291 !memcmp(id->base.vendor_pn, "UF-INSTANT ", 16))
292 return true;
293
294 return false;
295}
296
297static const struct sff_data sfp_data = {
298 .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
299 SFP_F_TX_DISABLE | SFP_F_RATE_SELECT,
300 .module_supported = sfp_module_supported,
301};
302
303static const struct of_device_id sfp_of_match[] = {
304 { .compatible = "sff,sff", .data = &sff_data, },
305 { .compatible = "sff,sfp", .data = &sfp_data, },
306 { },
307};
308MODULE_DEVICE_TABLE(of, sfp_of_match);
309
310static unsigned long poll_jiffies;
311
312static unsigned int sfp_gpio_get_state(struct sfp *sfp)
313{
314 unsigned int i, state, v;
315
316 for (i = state = 0; i < GPIO_MAX; i++) {
317 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
318 continue;
319
320 v = gpiod_get_value_cansleep(sfp->gpio[i]);
321 if (v)
322 state |= BIT(i);
323 }
324
325 return state;
326}
327
328static unsigned int sff_gpio_get_state(struct sfp *sfp)
329{
330 return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
331}
332
333static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
334{
335 if (state & SFP_F_PRESENT) {
336 /* If the module is present, drive the signals */
337 if (sfp->gpio[GPIO_TX_DISABLE])
338 gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
339 state & SFP_F_TX_DISABLE);
340 if (state & SFP_F_RATE_SELECT)
341 gpiod_direction_output(sfp->gpio[GPIO_RATE_SELECT],
342 state & SFP_F_RATE_SELECT);
343 } else {
344 /* Otherwise, let them float to the pull-ups */
345 if (sfp->gpio[GPIO_TX_DISABLE])
346 gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
347 if (state & SFP_F_RATE_SELECT)
348 gpiod_direction_input(sfp->gpio[GPIO_RATE_SELECT]);
349 }
350}
351
352static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
353 size_t len)
354{
355 struct i2c_msg msgs[2];
356 u8 bus_addr = a2 ? 0x51 : 0x50;
357 size_t block_size = sfp->i2c_block_size;
358 size_t this_len;
359 int ret;
360
361 msgs[0].addr = bus_addr;
362 msgs[0].flags = 0;
363 msgs[0].len = 1;
364 msgs[0].buf = &dev_addr;
365 msgs[1].addr = bus_addr;
366 msgs[1].flags = I2C_M_RD;
367 msgs[1].len = len;
368 msgs[1].buf = buf;
369
370 while (len) {
371 this_len = len;
372 if (this_len > block_size)
373 this_len = block_size;
374
375 msgs[1].len = this_len;
376
377 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
378 if (ret < 0)
379 return ret;
380
381 if (ret != ARRAY_SIZE(msgs))
382 break;
383
384 msgs[1].buf += this_len;
385 dev_addr += this_len;
386 len -= this_len;
387 }
388
389 return msgs[1].buf - (u8 *)buf;
390}
391
392static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
393 size_t len)
394{
395 struct i2c_msg msgs[1];
396 u8 bus_addr = a2 ? 0x51 : 0x50;
397 int ret;
398
399 msgs[0].addr = bus_addr;
400 msgs[0].flags = 0;
401 msgs[0].len = 1 + len;
402 msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
403 if (!msgs[0].buf)
404 return -ENOMEM;
405
406 msgs[0].buf[0] = dev_addr;
407 memcpy(&msgs[0].buf[1], buf, len);
408
409 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
410
411 kfree(msgs[0].buf);
412
413 if (ret < 0)
414 return ret;
415
416 return ret == ARRAY_SIZE(msgs) ? len : 0;
417}
418
419static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
420{
421 struct mii_bus *i2c_mii;
422 int ret;
423
424 if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
425 return -EINVAL;
426
427 sfp->i2c = i2c;
428 sfp->read = sfp_i2c_read;
429 sfp->write = sfp_i2c_write;
430
431 i2c_mii = mdio_i2c_alloc(sfp->dev, i2c);
432 if (IS_ERR(i2c_mii))
433 return PTR_ERR(i2c_mii);
434
435 i2c_mii->name = "SFP I2C Bus";
436 i2c_mii->phy_mask = ~0;
437
438 ret = mdiobus_register(i2c_mii);
439 if (ret < 0) {
440 mdiobus_free(i2c_mii);
441 return ret;
442 }
443
444 sfp->i2c_mii = i2c_mii;
445
446 return 0;
447}
448
449/* Interface */
450static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
451{
452 return sfp->read(sfp, a2, addr, buf, len);
453}
454
455static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
456{
457 return sfp->write(sfp, a2, addr, buf, len);
458}
459
460static unsigned int sfp_soft_get_state(struct sfp *sfp)
461{
462 unsigned int state = 0;
463 u8 status;
464 int ret;
465
466 ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status));
467 if (ret == sizeof(status)) {
468 if (status & SFP_STATUS_RX_LOS)
469 state |= SFP_F_LOS;
470 if (status & SFP_STATUS_TX_FAULT)
471 state |= SFP_F_TX_FAULT;
472 } else {
473 dev_err_ratelimited(sfp->dev,
474 "failed to read SFP soft status: %d\n",
475 ret);
476 /* Preserve the current state */
477 state = sfp->state;
478 }
479
480 return state & sfp->state_soft_mask;
481}
482
483static void sfp_soft_set_state(struct sfp *sfp, unsigned int state)
484{
485 u8 status;
486
487 if (sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status)) ==
488 sizeof(status)) {
489 if (state & SFP_F_TX_DISABLE)
490 status |= SFP_STATUS_TX_DISABLE_FORCE;
491 else
492 status &= ~SFP_STATUS_TX_DISABLE_FORCE;
493
494 sfp_write(sfp, true, SFP_STATUS, &status, sizeof(status));
495 }
496}
497
498static void sfp_soft_start_poll(struct sfp *sfp)
499{
500 const struct sfp_eeprom_id *id = &sfp->id;
501
502 sfp->state_soft_mask = 0;
503 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE &&
504 !sfp->gpio[GPIO_TX_DISABLE])
505 sfp->state_soft_mask |= SFP_F_TX_DISABLE;
506 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT &&
507 !sfp->gpio[GPIO_TX_FAULT])
508 sfp->state_soft_mask |= SFP_F_TX_FAULT;
509 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS &&
510 !sfp->gpio[GPIO_LOS])
511 sfp->state_soft_mask |= SFP_F_LOS;
512
513 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) &&
514 !sfp->need_poll)
515 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
516}
517
518static void sfp_soft_stop_poll(struct sfp *sfp)
519{
520 sfp->state_soft_mask = 0;
521}
522
523static unsigned int sfp_get_state(struct sfp *sfp)
524{
525 unsigned int state = sfp->get_state(sfp);
526
527 if (state & SFP_F_PRESENT &&
528 sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT))
529 state |= sfp_soft_get_state(sfp);
530
531 return state;
532}
533
534static void sfp_set_state(struct sfp *sfp, unsigned int state)
535{
536 sfp->set_state(sfp, state);
537
538 if (state & SFP_F_PRESENT &&
539 sfp->state_soft_mask & SFP_F_TX_DISABLE)
540 sfp_soft_set_state(sfp, state);
541}
542
543static unsigned int sfp_check(void *buf, size_t len)
544{
545 u8 *p, check;
546
547 for (p = buf, check = 0; len; p++, len--)
548 check += *p;
549
550 return check;
551}
552
553/* hwmon */
554#if IS_ENABLED(CONFIG_HWMON)
555static umode_t sfp_hwmon_is_visible(const void *data,
556 enum hwmon_sensor_types type,
557 u32 attr, int channel)
558{
559 const struct sfp *sfp = data;
560
561 switch (type) {
562 case hwmon_temp:
563 switch (attr) {
564 case hwmon_temp_min_alarm:
565 case hwmon_temp_max_alarm:
566 case hwmon_temp_lcrit_alarm:
567 case hwmon_temp_crit_alarm:
568 case hwmon_temp_min:
569 case hwmon_temp_max:
570 case hwmon_temp_lcrit:
571 case hwmon_temp_crit:
572 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
573 return 0;
574 fallthrough;
575 case hwmon_temp_input:
576 case hwmon_temp_label:
577 return 0444;
578 default:
579 return 0;
580 }
581 case hwmon_in:
582 switch (attr) {
583 case hwmon_in_min_alarm:
584 case hwmon_in_max_alarm:
585 case hwmon_in_lcrit_alarm:
586 case hwmon_in_crit_alarm:
587 case hwmon_in_min:
588 case hwmon_in_max:
589 case hwmon_in_lcrit:
590 case hwmon_in_crit:
591 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
592 return 0;
593 fallthrough;
594 case hwmon_in_input:
595 case hwmon_in_label:
596 return 0444;
597 default:
598 return 0;
599 }
600 case hwmon_curr:
601 switch (attr) {
602 case hwmon_curr_min_alarm:
603 case hwmon_curr_max_alarm:
604 case hwmon_curr_lcrit_alarm:
605 case hwmon_curr_crit_alarm:
606 case hwmon_curr_min:
607 case hwmon_curr_max:
608 case hwmon_curr_lcrit:
609 case hwmon_curr_crit:
610 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
611 return 0;
612 fallthrough;
613 case hwmon_curr_input:
614 case hwmon_curr_label:
615 return 0444;
616 default:
617 return 0;
618 }
619 case hwmon_power:
620 /* External calibration of receive power requires
621 * floating point arithmetic. Doing that in the kernel
622 * is not easy, so just skip it. If the module does
623 * not require external calibration, we can however
624 * show receiver power, since FP is then not needed.
625 */
626 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
627 channel == 1)
628 return 0;
629 switch (attr) {
630 case hwmon_power_min_alarm:
631 case hwmon_power_max_alarm:
632 case hwmon_power_lcrit_alarm:
633 case hwmon_power_crit_alarm:
634 case hwmon_power_min:
635 case hwmon_power_max:
636 case hwmon_power_lcrit:
637 case hwmon_power_crit:
638 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
639 return 0;
640 fallthrough;
641 case hwmon_power_input:
642 case hwmon_power_label:
643 return 0444;
644 default:
645 return 0;
646 }
647 default:
648 return 0;
649 }
650}
651
652static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
653{
654 __be16 val;
655 int err;
656
657 err = sfp_read(sfp, true, reg, &val, sizeof(val));
658 if (err < 0)
659 return err;
660
661 *value = be16_to_cpu(val);
662
663 return 0;
664}
665
666static void sfp_hwmon_to_rx_power(long *value)
667{
668 *value = DIV_ROUND_CLOSEST(*value, 10);
669}
670
671static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
672 long *value)
673{
674 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
675 *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
676}
677
678static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
679{
680 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
681 be16_to_cpu(sfp->diag.cal_t_offset), value);
682
683 if (*value >= 0x8000)
684 *value -= 0x10000;
685
686 *value = DIV_ROUND_CLOSEST(*value * 1000, 256);
687}
688
689static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
690{
691 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
692 be16_to_cpu(sfp->diag.cal_v_offset), value);
693
694 *value = DIV_ROUND_CLOSEST(*value, 10);
695}
696
697static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
698{
699 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
700 be16_to_cpu(sfp->diag.cal_txi_offset), value);
701
702 *value = DIV_ROUND_CLOSEST(*value, 500);
703}
704
705static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
706{
707 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
708 be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
709
710 *value = DIV_ROUND_CLOSEST(*value, 10);
711}
712
713static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
714{
715 int err;
716
717 err = sfp_hwmon_read_sensor(sfp, reg, value);
718 if (err < 0)
719 return err;
720
721 sfp_hwmon_calibrate_temp(sfp, value);
722
723 return 0;
724}
725
726static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
727{
728 int err;
729
730 err = sfp_hwmon_read_sensor(sfp, reg, value);
731 if (err < 0)
732 return err;
733
734 sfp_hwmon_calibrate_vcc(sfp, value);
735
736 return 0;
737}
738
739static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
740{
741 int err;
742
743 err = sfp_hwmon_read_sensor(sfp, reg, value);
744 if (err < 0)
745 return err;
746
747 sfp_hwmon_calibrate_bias(sfp, value);
748
749 return 0;
750}
751
752static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
753{
754 int err;
755
756 err = sfp_hwmon_read_sensor(sfp, reg, value);
757 if (err < 0)
758 return err;
759
760 sfp_hwmon_calibrate_tx_power(sfp, value);
761
762 return 0;
763}
764
765static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
766{
767 int err;
768
769 err = sfp_hwmon_read_sensor(sfp, reg, value);
770 if (err < 0)
771 return err;
772
773 sfp_hwmon_to_rx_power(value);
774
775 return 0;
776}
777
778static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
779{
780 u8 status;
781 int err;
782
783 switch (attr) {
784 case hwmon_temp_input:
785 return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
786
787 case hwmon_temp_lcrit:
788 *value = be16_to_cpu(sfp->diag.temp_low_alarm);
789 sfp_hwmon_calibrate_temp(sfp, value);
790 return 0;
791
792 case hwmon_temp_min:
793 *value = be16_to_cpu(sfp->diag.temp_low_warn);
794 sfp_hwmon_calibrate_temp(sfp, value);
795 return 0;
796 case hwmon_temp_max:
797 *value = be16_to_cpu(sfp->diag.temp_high_warn);
798 sfp_hwmon_calibrate_temp(sfp, value);
799 return 0;
800
801 case hwmon_temp_crit:
802 *value = be16_to_cpu(sfp->diag.temp_high_alarm);
803 sfp_hwmon_calibrate_temp(sfp, value);
804 return 0;
805
806 case hwmon_temp_lcrit_alarm:
807 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
808 if (err < 0)
809 return err;
810
811 *value = !!(status & SFP_ALARM0_TEMP_LOW);
812 return 0;
813
814 case hwmon_temp_min_alarm:
815 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
816 if (err < 0)
817 return err;
818
819 *value = !!(status & SFP_WARN0_TEMP_LOW);
820 return 0;
821
822 case hwmon_temp_max_alarm:
823 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
824 if (err < 0)
825 return err;
826
827 *value = !!(status & SFP_WARN0_TEMP_HIGH);
828 return 0;
829
830 case hwmon_temp_crit_alarm:
831 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
832 if (err < 0)
833 return err;
834
835 *value = !!(status & SFP_ALARM0_TEMP_HIGH);
836 return 0;
837 default:
838 return -EOPNOTSUPP;
839 }
840
841 return -EOPNOTSUPP;
842}
843
844static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
845{
846 u8 status;
847 int err;
848
849 switch (attr) {
850 case hwmon_in_input:
851 return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
852
853 case hwmon_in_lcrit:
854 *value = be16_to_cpu(sfp->diag.volt_low_alarm);
855 sfp_hwmon_calibrate_vcc(sfp, value);
856 return 0;
857
858 case hwmon_in_min:
859 *value = be16_to_cpu(sfp->diag.volt_low_warn);
860 sfp_hwmon_calibrate_vcc(sfp, value);
861 return 0;
862
863 case hwmon_in_max:
864 *value = be16_to_cpu(sfp->diag.volt_high_warn);
865 sfp_hwmon_calibrate_vcc(sfp, value);
866 return 0;
867
868 case hwmon_in_crit:
869 *value = be16_to_cpu(sfp->diag.volt_high_alarm);
870 sfp_hwmon_calibrate_vcc(sfp, value);
871 return 0;
872
873 case hwmon_in_lcrit_alarm:
874 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
875 if (err < 0)
876 return err;
877
878 *value = !!(status & SFP_ALARM0_VCC_LOW);
879 return 0;
880
881 case hwmon_in_min_alarm:
882 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
883 if (err < 0)
884 return err;
885
886 *value = !!(status & SFP_WARN0_VCC_LOW);
887 return 0;
888
889 case hwmon_in_max_alarm:
890 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
891 if (err < 0)
892 return err;
893
894 *value = !!(status & SFP_WARN0_VCC_HIGH);
895 return 0;
896
897 case hwmon_in_crit_alarm:
898 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
899 if (err < 0)
900 return err;
901
902 *value = !!(status & SFP_ALARM0_VCC_HIGH);
903 return 0;
904 default:
905 return -EOPNOTSUPP;
906 }
907
908 return -EOPNOTSUPP;
909}
910
911static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
912{
913 u8 status;
914 int err;
915
916 switch (attr) {
917 case hwmon_curr_input:
918 return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
919
920 case hwmon_curr_lcrit:
921 *value = be16_to_cpu(sfp->diag.bias_low_alarm);
922 sfp_hwmon_calibrate_bias(sfp, value);
923 return 0;
924
925 case hwmon_curr_min:
926 *value = be16_to_cpu(sfp->diag.bias_low_warn);
927 sfp_hwmon_calibrate_bias(sfp, value);
928 return 0;
929
930 case hwmon_curr_max:
931 *value = be16_to_cpu(sfp->diag.bias_high_warn);
932 sfp_hwmon_calibrate_bias(sfp, value);
933 return 0;
934
935 case hwmon_curr_crit:
936 *value = be16_to_cpu(sfp->diag.bias_high_alarm);
937 sfp_hwmon_calibrate_bias(sfp, value);
938 return 0;
939
940 case hwmon_curr_lcrit_alarm:
941 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
942 if (err < 0)
943 return err;
944
945 *value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
946 return 0;
947
948 case hwmon_curr_min_alarm:
949 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
950 if (err < 0)
951 return err;
952
953 *value = !!(status & SFP_WARN0_TX_BIAS_LOW);
954 return 0;
955
956 case hwmon_curr_max_alarm:
957 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
958 if (err < 0)
959 return err;
960
961 *value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
962 return 0;
963
964 case hwmon_curr_crit_alarm:
965 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
966 if (err < 0)
967 return err;
968
969 *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
970 return 0;
971 default:
972 return -EOPNOTSUPP;
973 }
974
975 return -EOPNOTSUPP;
976}
977
978static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
979{
980 u8 status;
981 int err;
982
983 switch (attr) {
984 case hwmon_power_input:
985 return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
986
987 case hwmon_power_lcrit:
988 *value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
989 sfp_hwmon_calibrate_tx_power(sfp, value);
990 return 0;
991
992 case hwmon_power_min:
993 *value = be16_to_cpu(sfp->diag.txpwr_low_warn);
994 sfp_hwmon_calibrate_tx_power(sfp, value);
995 return 0;
996
997 case hwmon_power_max:
998 *value = be16_to_cpu(sfp->diag.txpwr_high_warn);
999 sfp_hwmon_calibrate_tx_power(sfp, value);
1000 return 0;
1001
1002 case hwmon_power_crit:
1003 *value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
1004 sfp_hwmon_calibrate_tx_power(sfp, value);
1005 return 0;
1006
1007 case hwmon_power_lcrit_alarm:
1008 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1009 if (err < 0)
1010 return err;
1011
1012 *value = !!(status & SFP_ALARM0_TXPWR_LOW);
1013 return 0;
1014
1015 case hwmon_power_min_alarm:
1016 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1017 if (err < 0)
1018 return err;
1019
1020 *value = !!(status & SFP_WARN0_TXPWR_LOW);
1021 return 0;
1022
1023 case hwmon_power_max_alarm:
1024 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1025 if (err < 0)
1026 return err;
1027
1028 *value = !!(status & SFP_WARN0_TXPWR_HIGH);
1029 return 0;
1030
1031 case hwmon_power_crit_alarm:
1032 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1033 if (err < 0)
1034 return err;
1035
1036 *value = !!(status & SFP_ALARM0_TXPWR_HIGH);
1037 return 0;
1038 default:
1039 return -EOPNOTSUPP;
1040 }
1041
1042 return -EOPNOTSUPP;
1043}
1044
1045static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
1046{
1047 u8 status;
1048 int err;
1049
1050 switch (attr) {
1051 case hwmon_power_input:
1052 return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
1053
1054 case hwmon_power_lcrit:
1055 *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
1056 sfp_hwmon_to_rx_power(value);
1057 return 0;
1058
1059 case hwmon_power_min:
1060 *value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
1061 sfp_hwmon_to_rx_power(value);
1062 return 0;
1063
1064 case hwmon_power_max:
1065 *value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
1066 sfp_hwmon_to_rx_power(value);
1067 return 0;
1068
1069 case hwmon_power_crit:
1070 *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
1071 sfp_hwmon_to_rx_power(value);
1072 return 0;
1073
1074 case hwmon_power_lcrit_alarm:
1075 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1076 if (err < 0)
1077 return err;
1078
1079 *value = !!(status & SFP_ALARM1_RXPWR_LOW);
1080 return 0;
1081
1082 case hwmon_power_min_alarm:
1083 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1084 if (err < 0)
1085 return err;
1086
1087 *value = !!(status & SFP_WARN1_RXPWR_LOW);
1088 return 0;
1089
1090 case hwmon_power_max_alarm:
1091 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1092 if (err < 0)
1093 return err;
1094
1095 *value = !!(status & SFP_WARN1_RXPWR_HIGH);
1096 return 0;
1097
1098 case hwmon_power_crit_alarm:
1099 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1100 if (err < 0)
1101 return err;
1102
1103 *value = !!(status & SFP_ALARM1_RXPWR_HIGH);
1104 return 0;
1105 default:
1106 return -EOPNOTSUPP;
1107 }
1108
1109 return -EOPNOTSUPP;
1110}
1111
1112static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
1113 u32 attr, int channel, long *value)
1114{
1115 struct sfp *sfp = dev_get_drvdata(dev);
1116
1117 switch (type) {
1118 case hwmon_temp:
1119 return sfp_hwmon_temp(sfp, attr, value);
1120 case hwmon_in:
1121 return sfp_hwmon_vcc(sfp, attr, value);
1122 case hwmon_curr:
1123 return sfp_hwmon_bias(sfp, attr, value);
1124 case hwmon_power:
1125 switch (channel) {
1126 case 0:
1127 return sfp_hwmon_tx_power(sfp, attr, value);
1128 case 1:
1129 return sfp_hwmon_rx_power(sfp, attr, value);
1130 default:
1131 return -EOPNOTSUPP;
1132 }
1133 default:
1134 return -EOPNOTSUPP;
1135 }
1136}
1137
1138static const char *const sfp_hwmon_power_labels[] = {
1139 "TX_power",
1140 "RX_power",
1141};
1142
1143static int sfp_hwmon_read_string(struct device *dev,
1144 enum hwmon_sensor_types type,
1145 u32 attr, int channel, const char **str)
1146{
1147 switch (type) {
1148 case hwmon_curr:
1149 switch (attr) {
1150 case hwmon_curr_label:
1151 *str = "bias";
1152 return 0;
1153 default:
1154 return -EOPNOTSUPP;
1155 }
1156 break;
1157 case hwmon_temp:
1158 switch (attr) {
1159 case hwmon_temp_label:
1160 *str = "temperature";
1161 return 0;
1162 default:
1163 return -EOPNOTSUPP;
1164 }
1165 break;
1166 case hwmon_in:
1167 switch (attr) {
1168 case hwmon_in_label:
1169 *str = "VCC";
1170 return 0;
1171 default:
1172 return -EOPNOTSUPP;
1173 }
1174 break;
1175 case hwmon_power:
1176 switch (attr) {
1177 case hwmon_power_label:
1178 *str = sfp_hwmon_power_labels[channel];
1179 return 0;
1180 default:
1181 return -EOPNOTSUPP;
1182 }
1183 break;
1184 default:
1185 return -EOPNOTSUPP;
1186 }
1187
1188 return -EOPNOTSUPP;
1189}
1190
1191static const struct hwmon_ops sfp_hwmon_ops = {
1192 .is_visible = sfp_hwmon_is_visible,
1193 .read = sfp_hwmon_read,
1194 .read_string = sfp_hwmon_read_string,
1195};
1196
1197static u32 sfp_hwmon_chip_config[] = {
1198 HWMON_C_REGISTER_TZ,
1199 0,
1200};
1201
1202static const struct hwmon_channel_info sfp_hwmon_chip = {
1203 .type = hwmon_chip,
1204 .config = sfp_hwmon_chip_config,
1205};
1206
1207static u32 sfp_hwmon_temp_config[] = {
1208 HWMON_T_INPUT |
1209 HWMON_T_MAX | HWMON_T_MIN |
1210 HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
1211 HWMON_T_CRIT | HWMON_T_LCRIT |
1212 HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM |
1213 HWMON_T_LABEL,
1214 0,
1215};
1216
1217static const struct hwmon_channel_info sfp_hwmon_temp_channel_info = {
1218 .type = hwmon_temp,
1219 .config = sfp_hwmon_temp_config,
1220};
1221
1222static u32 sfp_hwmon_vcc_config[] = {
1223 HWMON_I_INPUT |
1224 HWMON_I_MAX | HWMON_I_MIN |
1225 HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1226 HWMON_I_CRIT | HWMON_I_LCRIT |
1227 HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM |
1228 HWMON_I_LABEL,
1229 0,
1230};
1231
1232static const struct hwmon_channel_info sfp_hwmon_vcc_channel_info = {
1233 .type = hwmon_in,
1234 .config = sfp_hwmon_vcc_config,
1235};
1236
1237static u32 sfp_hwmon_bias_config[] = {
1238 HWMON_C_INPUT |
1239 HWMON_C_MAX | HWMON_C_MIN |
1240 HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1241 HWMON_C_CRIT | HWMON_C_LCRIT |
1242 HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM |
1243 HWMON_C_LABEL,
1244 0,
1245};
1246
1247static const struct hwmon_channel_info sfp_hwmon_bias_channel_info = {
1248 .type = hwmon_curr,
1249 .config = sfp_hwmon_bias_config,
1250};
1251
1252static u32 sfp_hwmon_power_config[] = {
1253 /* Transmit power */
1254 HWMON_P_INPUT |
1255 HWMON_P_MAX | HWMON_P_MIN |
1256 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1257 HWMON_P_CRIT | HWMON_P_LCRIT |
1258 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1259 HWMON_P_LABEL,
1260 /* Receive power */
1261 HWMON_P_INPUT |
1262 HWMON_P_MAX | HWMON_P_MIN |
1263 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1264 HWMON_P_CRIT | HWMON_P_LCRIT |
1265 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1266 HWMON_P_LABEL,
1267 0,
1268};
1269
1270static const struct hwmon_channel_info sfp_hwmon_power_channel_info = {
1271 .type = hwmon_power,
1272 .config = sfp_hwmon_power_config,
1273};
1274
1275static const struct hwmon_channel_info *sfp_hwmon_info[] = {
1276 &sfp_hwmon_chip,
1277 &sfp_hwmon_vcc_channel_info,
1278 &sfp_hwmon_temp_channel_info,
1279 &sfp_hwmon_bias_channel_info,
1280 &sfp_hwmon_power_channel_info,
1281 NULL,
1282};
1283
1284static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1285 .ops = &sfp_hwmon_ops,
1286 .info = sfp_hwmon_info,
1287};
1288
1289static void sfp_hwmon_probe(struct work_struct *work)
1290{
1291 struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work);
1292 int err, i;
1293
1294 /* hwmon interface needs to access 16bit registers in atomic way to
1295 * guarantee coherency of the diagnostic monitoring data. If it is not
1296 * possible to guarantee coherency because EEPROM is broken in such way
1297 * that does not support atomic 16bit read operation then we have to
1298 * skip registration of hwmon device.
1299 */
1300 if (sfp->i2c_block_size < 2) {
1301 dev_info(sfp->dev,
1302 "skipping hwmon device registration due to broken EEPROM\n");
1303 dev_info(sfp->dev,
1304 "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n");
1305 return;
1306 }
1307
1308 err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1309 if (err < 0) {
1310 if (sfp->hwmon_tries--) {
1311 mod_delayed_work(system_wq, &sfp->hwmon_probe,
1312 T_PROBE_RETRY_SLOW);
1313 } else {
1314 dev_warn(sfp->dev, "hwmon probe failed: %d\n", err);
1315 }
1316 return;
1317 }
1318
1319 sfp->hwmon_name = kstrdup(dev_name(sfp->dev), GFP_KERNEL);
1320 if (!sfp->hwmon_name) {
1321 dev_err(sfp->dev, "out of memory for hwmon name\n");
1322 return;
1323 }
1324
1325 for (i = 0; sfp->hwmon_name[i]; i++)
1326 if (hwmon_is_bad_char(sfp->hwmon_name[i]))
1327 sfp->hwmon_name[i] = '_';
1328
1329 sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1330 sfp->hwmon_name, sfp,
1331 &sfp_hwmon_chip_info,
1332 NULL);
1333 if (IS_ERR(sfp->hwmon_dev))
1334 dev_err(sfp->dev, "failed to register hwmon device: %ld\n",
1335 PTR_ERR(sfp->hwmon_dev));
1336}
1337
1338static int sfp_hwmon_insert(struct sfp *sfp)
1339{
1340 if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE)
1341 return 0;
1342
1343 if (!(sfp->id.ext.diagmon & SFP_DIAGMON_DDM))
1344 return 0;
1345
1346 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1347 /* This driver in general does not support address
1348 * change.
1349 */
1350 return 0;
1351
1352 mod_delayed_work(system_wq, &sfp->hwmon_probe, 1);
1353 sfp->hwmon_tries = R_PROBE_RETRY_SLOW;
1354
1355 return 0;
1356}
1357
1358static void sfp_hwmon_remove(struct sfp *sfp)
1359{
1360 cancel_delayed_work_sync(&sfp->hwmon_probe);
1361 if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1362 hwmon_device_unregister(sfp->hwmon_dev);
1363 sfp->hwmon_dev = NULL;
1364 kfree(sfp->hwmon_name);
1365 }
1366}
1367
1368static int sfp_hwmon_init(struct sfp *sfp)
1369{
1370 INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe);
1371
1372 return 0;
1373}
1374
1375static void sfp_hwmon_exit(struct sfp *sfp)
1376{
1377 cancel_delayed_work_sync(&sfp->hwmon_probe);
1378}
1379#else
1380static int sfp_hwmon_insert(struct sfp *sfp)
1381{
1382 return 0;
1383}
1384
1385static void sfp_hwmon_remove(struct sfp *sfp)
1386{
1387}
1388
1389static int sfp_hwmon_init(struct sfp *sfp)
1390{
1391 return 0;
1392}
1393
1394static void sfp_hwmon_exit(struct sfp *sfp)
1395{
1396}
1397#endif
1398
1399/* Helpers */
1400static void sfp_module_tx_disable(struct sfp *sfp)
1401{
1402 dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1403 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1404 sfp->state |= SFP_F_TX_DISABLE;
1405 sfp_set_state(sfp, sfp->state);
1406}
1407
1408static void sfp_module_tx_enable(struct sfp *sfp)
1409{
1410 dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1411 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1412 sfp->state &= ~SFP_F_TX_DISABLE;
1413 sfp_set_state(sfp, sfp->state);
1414}
1415
1416#if IS_ENABLED(CONFIG_DEBUG_FS)
1417static int sfp_debug_state_show(struct seq_file *s, void *data)
1418{
1419 struct sfp *sfp = s->private;
1420
1421 seq_printf(s, "Module state: %s\n",
1422 mod_state_to_str(sfp->sm_mod_state));
1423 seq_printf(s, "Module probe attempts: %d %d\n",
1424 R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init,
1425 R_PROBE_RETRY_SLOW - sfp->sm_mod_tries);
1426 seq_printf(s, "Device state: %s\n",
1427 dev_state_to_str(sfp->sm_dev_state));
1428 seq_printf(s, "Main state: %s\n",
1429 sm_state_to_str(sfp->sm_state));
1430 seq_printf(s, "Fault recovery remaining retries: %d\n",
1431 sfp->sm_fault_retries);
1432 seq_printf(s, "PHY probe remaining retries: %d\n",
1433 sfp->sm_phy_retries);
1434 seq_printf(s, "moddef0: %d\n", !!(sfp->state & SFP_F_PRESENT));
1435 seq_printf(s, "rx_los: %d\n", !!(sfp->state & SFP_F_LOS));
1436 seq_printf(s, "tx_fault: %d\n", !!(sfp->state & SFP_F_TX_FAULT));
1437 seq_printf(s, "tx_disable: %d\n", !!(sfp->state & SFP_F_TX_DISABLE));
1438 return 0;
1439}
1440DEFINE_SHOW_ATTRIBUTE(sfp_debug_state);
1441
1442static void sfp_debugfs_init(struct sfp *sfp)
1443{
1444 sfp->debugfs_dir = debugfs_create_dir(dev_name(sfp->dev), NULL);
1445
1446 debugfs_create_file("state", 0600, sfp->debugfs_dir, sfp,
1447 &sfp_debug_state_fops);
1448}
1449
1450static void sfp_debugfs_exit(struct sfp *sfp)
1451{
1452 debugfs_remove_recursive(sfp->debugfs_dir);
1453}
1454#else
1455static void sfp_debugfs_init(struct sfp *sfp)
1456{
1457}
1458
1459static void sfp_debugfs_exit(struct sfp *sfp)
1460{
1461}
1462#endif
1463
1464static void sfp_module_tx_fault_reset(struct sfp *sfp)
1465{
1466 unsigned int state = sfp->state;
1467
1468 if (state & SFP_F_TX_DISABLE)
1469 return;
1470
1471 sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1472
1473 udelay(T_RESET_US);
1474
1475 sfp_set_state(sfp, state);
1476}
1477
1478/* SFP state machine */
1479static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1480{
1481 if (timeout)
1482 mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1483 timeout);
1484 else
1485 cancel_delayed_work(&sfp->timeout);
1486}
1487
1488static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1489 unsigned int timeout)
1490{
1491 sfp->sm_state = state;
1492 sfp_sm_set_timer(sfp, timeout);
1493}
1494
1495static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state,
1496 unsigned int timeout)
1497{
1498 sfp->sm_mod_state = state;
1499 sfp_sm_set_timer(sfp, timeout);
1500}
1501
1502static void sfp_sm_phy_detach(struct sfp *sfp)
1503{
1504 sfp_remove_phy(sfp->sfp_bus);
1505 phy_device_remove(sfp->mod_phy);
1506 phy_device_free(sfp->mod_phy);
1507 sfp->mod_phy = NULL;
1508}
1509
1510static int sfp_sm_probe_phy(struct sfp *sfp, bool is_c45)
1511{
1512 struct phy_device *phy;
1513 int err;
1514
1515 phy = get_phy_device(sfp->i2c_mii, SFP_PHY_ADDR, is_c45);
1516 if (phy == ERR_PTR(-ENODEV))
1517 return PTR_ERR(phy);
1518 if (IS_ERR(phy)) {
1519 dev_err(sfp->dev, "mdiobus scan returned %ld\n", PTR_ERR(phy));
1520 return PTR_ERR(phy);
1521 }
1522
1523 err = phy_device_register(phy);
1524 if (err) {
1525 phy_device_free(phy);
1526 dev_err(sfp->dev, "phy_device_register failed: %d\n", err);
1527 return err;
1528 }
1529
1530 err = sfp_add_phy(sfp->sfp_bus, phy);
1531 if (err) {
1532 phy_device_remove(phy);
1533 phy_device_free(phy);
1534 dev_err(sfp->dev, "sfp_add_phy failed: %d\n", err);
1535 return err;
1536 }
1537
1538 sfp->mod_phy = phy;
1539
1540 return 0;
1541}
1542
1543static void sfp_sm_link_up(struct sfp *sfp)
1544{
1545 sfp_link_up(sfp->sfp_bus);
1546 sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1547}
1548
1549static void sfp_sm_link_down(struct sfp *sfp)
1550{
1551 sfp_link_down(sfp->sfp_bus);
1552}
1553
1554static void sfp_sm_link_check_los(struct sfp *sfp)
1555{
1556 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1557 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1558 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1559 bool los = false;
1560
1561 /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
1562 * are set, we assume that no LOS signal is available. If both are
1563 * set, we assume LOS is not implemented (and is meaningless.)
1564 */
1565 if (los_options == los_inverted)
1566 los = !(sfp->state & SFP_F_LOS);
1567 else if (los_options == los_normal)
1568 los = !!(sfp->state & SFP_F_LOS);
1569
1570 if (los)
1571 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1572 else
1573 sfp_sm_link_up(sfp);
1574}
1575
1576static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1577{
1578 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1579 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1580 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1581
1582 return (los_options == los_inverted && event == SFP_E_LOS_LOW) ||
1583 (los_options == los_normal && event == SFP_E_LOS_HIGH);
1584}
1585
1586static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1587{
1588 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1589 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1590 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1591
1592 return (los_options == los_inverted && event == SFP_E_LOS_HIGH) ||
1593 (los_options == los_normal && event == SFP_E_LOS_LOW);
1594}
1595
1596static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn)
1597{
1598 if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) {
1599 dev_err(sfp->dev,
1600 "module persistently indicates fault, disabling\n");
1601 sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1602 } else {
1603 if (warn)
1604 dev_err(sfp->dev, "module transmit fault indicated\n");
1605
1606 sfp_sm_next(sfp, next_state, T_FAULT_RECOVER);
1607 }
1608}
1609
1610/* Probe a SFP for a PHY device if the module supports copper - the PHY
1611 * normally sits at I2C bus address 0x56, and may either be a clause 22
1612 * or clause 45 PHY.
1613 *
1614 * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with
1615 * negotiation enabled, but some may be in 1000base-X - which is for the
1616 * PHY driver to determine.
1617 *
1618 * Clause 45 copper SFP+ modules (10G) appear to switch their interface
1619 * mode according to the negotiated line speed.
1620 */
1621static int sfp_sm_probe_for_phy(struct sfp *sfp)
1622{
1623 int err = 0;
1624
1625 switch (sfp->id.base.extended_cc) {
1626 case SFF8024_ECC_10GBASE_T_SFI:
1627 case SFF8024_ECC_10GBASE_T_SR:
1628 case SFF8024_ECC_5GBASE_T:
1629 case SFF8024_ECC_2_5GBASE_T:
1630 err = sfp_sm_probe_phy(sfp, true);
1631 break;
1632
1633 default:
1634 if (sfp->id.base.e1000_base_t)
1635 err = sfp_sm_probe_phy(sfp, false);
1636 break;
1637 }
1638 return err;
1639}
1640
1641static int sfp_module_parse_power(struct sfp *sfp)
1642{
1643 u32 power_mW = 1000;
1644
1645 if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
1646 power_mW = 1500;
1647 if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
1648 power_mW = 2000;
1649
1650 if (power_mW > sfp->max_power_mW) {
1651 /* Module power specification exceeds the allowed maximum. */
1652 if (sfp->id.ext.sff8472_compliance ==
1653 SFP_SFF8472_COMPLIANCE_NONE &&
1654 !(sfp->id.ext.diagmon & SFP_DIAGMON_DDM)) {
1655 /* The module appears not to implement bus address
1656 * 0xa2, so assume that the module powers up in the
1657 * indicated mode.
1658 */
1659 dev_err(sfp->dev,
1660 "Host does not support %u.%uW modules\n",
1661 power_mW / 1000, (power_mW / 100) % 10);
1662 return -EINVAL;
1663 } else {
1664 dev_warn(sfp->dev,
1665 "Host does not support %u.%uW modules, module left in power mode 1\n",
1666 power_mW / 1000, (power_mW / 100) % 10);
1667 return 0;
1668 }
1669 }
1670
1671 /* If the module requires a higher power mode, but also requires
1672 * an address change sequence, warn the user that the module may
1673 * not be functional.
1674 */
1675 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE && power_mW > 1000) {
1676 dev_warn(sfp->dev,
1677 "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n",
1678 power_mW / 1000, (power_mW / 100) % 10);
1679 return 0;
1680 }
1681
1682 sfp->module_power_mW = power_mW;
1683
1684 return 0;
1685}
1686
1687static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable)
1688{
1689 u8 val;
1690 int err;
1691
1692 err = sfp_read(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1693 if (err != sizeof(val)) {
1694 dev_err(sfp->dev, "Failed to read EEPROM: %d\n", err);
1695 return -EAGAIN;
1696 }
1697
1698 /* DM7052 reports as a high power module, responds to reads (with
1699 * all bytes 0xff) at 0x51 but does not accept writes. In any case,
1700 * if the bit is already set, we're already in high power mode.
1701 */
1702 if (!!(val & BIT(0)) == enable)
1703 return 0;
1704
1705 if (enable)
1706 val |= BIT(0);
1707 else
1708 val &= ~BIT(0);
1709
1710 err = sfp_write(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1711 if (err != sizeof(val)) {
1712 dev_err(sfp->dev, "Failed to write EEPROM: %d\n", err);
1713 return -EAGAIN;
1714 }
1715
1716 if (enable)
1717 dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
1718 sfp->module_power_mW / 1000,
1719 (sfp->module_power_mW / 100) % 10);
1720
1721 return 0;
1722}
1723
1724/* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL
1725 * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do
1726 * not support multibyte reads from the EEPROM. Each multi-byte read
1727 * operation returns just one byte of EEPROM followed by zeros. There is
1728 * no way to identify which modules are using Realtek RTL8672 and RTL9601C
1729 * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor
1730 * name and vendor id into EEPROM, so there is even no way to detect if
1731 * module is V-SOL V2801F. Therefore check for those zeros in the read
1732 * data and then based on check switch to reading EEPROM to one byte
1733 * at a time.
1734 */
1735static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len)
1736{
1737 size_t i, block_size = sfp->i2c_block_size;
1738
1739 /* Already using byte IO */
1740 if (block_size == 1)
1741 return false;
1742
1743 for (i = 1; i < len; i += block_size) {
1744 if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i)))
1745 return false;
1746 }
1747 return true;
1748}
1749
1750static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id)
1751{
1752 u8 check;
1753 int err;
1754
1755 if (id->base.phys_id != SFF8024_ID_SFF_8472 ||
1756 id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP ||
1757 id->base.connector != SFF8024_CONNECTOR_LC) {
1758 dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n");
1759 id->base.phys_id = SFF8024_ID_SFF_8472;
1760 id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP;
1761 id->base.connector = SFF8024_CONNECTOR_LC;
1762 err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3);
1763 if (err != 3) {
1764 dev_err(sfp->dev, "Failed to rewrite module EEPROM: %d\n", err);
1765 return err;
1766 }
1767
1768 /* Cotsworks modules have been found to require a delay between write operations. */
1769 mdelay(50);
1770
1771 /* Update base structure checksum */
1772 check = sfp_check(&id->base, sizeof(id->base) - 1);
1773 err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1);
1774 if (err != 1) {
1775 dev_err(sfp->dev, "Failed to update base structure checksum in fiber module EEPROM: %d\n", err);
1776 return err;
1777 }
1778 }
1779 return 0;
1780}
1781
1782static int sfp_sm_mod_probe(struct sfp *sfp, bool report)
1783{
1784 /* SFP module inserted - read I2C data */
1785 struct sfp_eeprom_id id;
1786 bool cotsworks_sfbg;
1787 bool cotsworks;
1788 u8 check;
1789 int ret;
1790
1791 /* Some SFP modules and also some Linux I2C drivers do not like reads
1792 * longer than 16 bytes, so read the EEPROM in chunks of 16 bytes at
1793 * a time.
1794 */
1795 sfp->i2c_block_size = 16;
1796
1797 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
1798 if (ret < 0) {
1799 if (report)
1800 dev_err(sfp->dev, "failed to read EEPROM: %d\n", ret);
1801 return -EAGAIN;
1802 }
1803
1804 if (ret != sizeof(id.base)) {
1805 dev_err(sfp->dev, "EEPROM short read: %d\n", ret);
1806 return -EAGAIN;
1807 }
1808
1809 /* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from
1810 * address 0x51 is just one byte at a time. Also SFF-8472 requires
1811 * that EEPROM supports atomic 16bit read operation for diagnostic
1812 * fields, so do not switch to one byte reading at a time unless it
1813 * is really required and we have no other option.
1814 */
1815 if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) {
1816 dev_info(sfp->dev,
1817 "Detected broken RTL8672/RTL9601C emulated EEPROM\n");
1818 dev_info(sfp->dev,
1819 "Switching to reading EEPROM to one byte at a time\n");
1820 sfp->i2c_block_size = 1;
1821
1822 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
1823 if (ret < 0) {
1824 if (report)
1825 dev_err(sfp->dev, "failed to read EEPROM: %d\n",
1826 ret);
1827 return -EAGAIN;
1828 }
1829
1830 if (ret != sizeof(id.base)) {
1831 dev_err(sfp->dev, "EEPROM short read: %d\n", ret);
1832 return -EAGAIN;
1833 }
1834 }
1835
1836 /* Cotsworks do not seem to update the checksums when they
1837 * do the final programming with the final module part number,
1838 * serial number and date code.
1839 */
1840 cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS ", 16);
1841 cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4);
1842
1843 /* Cotsworks SFF module EEPROM do not always have valid phys_id,
1844 * phys_ext_id, and connector bytes. Rewrite SFF EEPROM bytes if
1845 * Cotsworks PN matches and bytes are not correct.
1846 */
1847 if (cotsworks && cotsworks_sfbg) {
1848 ret = sfp_cotsworks_fixup_check(sfp, &id);
1849 if (ret < 0)
1850 return ret;
1851 }
1852
1853 /* Validate the checksum over the base structure */
1854 check = sfp_check(&id.base, sizeof(id.base) - 1);
1855 if (check != id.base.cc_base) {
1856 if (cotsworks) {
1857 dev_warn(sfp->dev,
1858 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
1859 check, id.base.cc_base);
1860 } else {
1861 dev_err(sfp->dev,
1862 "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
1863 check, id.base.cc_base);
1864 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1865 16, 1, &id, sizeof(id), true);
1866 return -EINVAL;
1867 }
1868 }
1869
1870 ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext));
1871 if (ret < 0) {
1872 if (report)
1873 dev_err(sfp->dev, "failed to read EEPROM: %d\n", ret);
1874 return -EAGAIN;
1875 }
1876
1877 if (ret != sizeof(id.ext)) {
1878 dev_err(sfp->dev, "EEPROM short read: %d\n", ret);
1879 return -EAGAIN;
1880 }
1881
1882 check = sfp_check(&id.ext, sizeof(id.ext) - 1);
1883 if (check != id.ext.cc_ext) {
1884 if (cotsworks) {
1885 dev_warn(sfp->dev,
1886 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
1887 check, id.ext.cc_ext);
1888 } else {
1889 dev_err(sfp->dev,
1890 "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
1891 check, id.ext.cc_ext);
1892 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1893 16, 1, &id, sizeof(id), true);
1894 memset(&id.ext, 0, sizeof(id.ext));
1895 }
1896 }
1897
1898 sfp->id = id;
1899
1900 dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
1901 (int)sizeof(id.base.vendor_name), id.base.vendor_name,
1902 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
1903 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
1904 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
1905 (int)sizeof(id.ext.datecode), id.ext.datecode);
1906
1907 /* Check whether we support this module */
1908 if (!sfp->type->module_supported(&id)) {
1909 dev_err(sfp->dev,
1910 "module is not supported - phys id 0x%02x 0x%02x\n",
1911 sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
1912 return -EINVAL;
1913 }
1914
1915 /* If the module requires address swap mode, warn about it */
1916 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1917 dev_warn(sfp->dev,
1918 "module address swap to access page 0xA2 is not supported.\n");
1919
1920 /* Parse the module power requirement */
1921 ret = sfp_module_parse_power(sfp);
1922 if (ret < 0)
1923 return ret;
1924
1925 if (!memcmp(id.base.vendor_name, "ALCATELLUCENT ", 16) &&
1926 !memcmp(id.base.vendor_pn, "3FE46541AA ", 16))
1927 sfp->module_t_start_up = T_START_UP_BAD_GPON;
1928 else
1929 sfp->module_t_start_up = T_START_UP;
1930
1931 return 0;
1932}
1933
1934static void sfp_sm_mod_remove(struct sfp *sfp)
1935{
1936 if (sfp->sm_mod_state > SFP_MOD_WAITDEV)
1937 sfp_module_remove(sfp->sfp_bus);
1938
1939 sfp_hwmon_remove(sfp);
1940
1941 memset(&sfp->id, 0, sizeof(sfp->id));
1942 sfp->module_power_mW = 0;
1943
1944 dev_info(sfp->dev, "module removed\n");
1945}
1946
1947/* This state machine tracks the upstream's state */
1948static void sfp_sm_device(struct sfp *sfp, unsigned int event)
1949{
1950 switch (sfp->sm_dev_state) {
1951 default:
1952 if (event == SFP_E_DEV_ATTACH)
1953 sfp->sm_dev_state = SFP_DEV_DOWN;
1954 break;
1955
1956 case SFP_DEV_DOWN:
1957 if (event == SFP_E_DEV_DETACH)
1958 sfp->sm_dev_state = SFP_DEV_DETACHED;
1959 else if (event == SFP_E_DEV_UP)
1960 sfp->sm_dev_state = SFP_DEV_UP;
1961 break;
1962
1963 case SFP_DEV_UP:
1964 if (event == SFP_E_DEV_DETACH)
1965 sfp->sm_dev_state = SFP_DEV_DETACHED;
1966 else if (event == SFP_E_DEV_DOWN)
1967 sfp->sm_dev_state = SFP_DEV_DOWN;
1968 break;
1969 }
1970}
1971
1972/* This state machine tracks the insert/remove state of the module, probes
1973 * the on-board EEPROM, and sets up the power level.
1974 */
1975static void sfp_sm_module(struct sfp *sfp, unsigned int event)
1976{
1977 int err;
1978
1979 /* Handle remove event globally, it resets this state machine */
1980 if (event == SFP_E_REMOVE) {
1981 if (sfp->sm_mod_state > SFP_MOD_PROBE)
1982 sfp_sm_mod_remove(sfp);
1983 sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0);
1984 return;
1985 }
1986
1987 /* Handle device detach globally */
1988 if (sfp->sm_dev_state < SFP_DEV_DOWN &&
1989 sfp->sm_mod_state > SFP_MOD_WAITDEV) {
1990 if (sfp->module_power_mW > 1000 &&
1991 sfp->sm_mod_state > SFP_MOD_HPOWER)
1992 sfp_sm_mod_hpower(sfp, false);
1993 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
1994 return;
1995 }
1996
1997 switch (sfp->sm_mod_state) {
1998 default:
1999 if (event == SFP_E_INSERT) {
2000 sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL);
2001 sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT;
2002 sfp->sm_mod_tries = R_PROBE_RETRY_SLOW;
2003 }
2004 break;
2005
2006 case SFP_MOD_PROBE:
2007 /* Wait for T_PROBE_INIT to time out */
2008 if (event != SFP_E_TIMEOUT)
2009 break;
2010
2011 err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1);
2012 if (err == -EAGAIN) {
2013 if (sfp->sm_mod_tries_init &&
2014 --sfp->sm_mod_tries_init) {
2015 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2016 break;
2017 } else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) {
2018 if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1)
2019 dev_warn(sfp->dev,
2020 "please wait, module slow to respond\n");
2021 sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW);
2022 break;
2023 }
2024 }
2025 if (err < 0) {
2026 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2027 break;
2028 }
2029
2030 err = sfp_hwmon_insert(sfp);
2031 if (err)
2032 dev_warn(sfp->dev, "hwmon probe failed: %d\n", err);
2033
2034 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2035 fallthrough;
2036 case SFP_MOD_WAITDEV:
2037 /* Ensure that the device is attached before proceeding */
2038 if (sfp->sm_dev_state < SFP_DEV_DOWN)
2039 break;
2040
2041 /* Report the module insertion to the upstream device */
2042 err = sfp_module_insert(sfp->sfp_bus, &sfp->id);
2043 if (err < 0) {
2044 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2045 break;
2046 }
2047
2048 /* If this is a power level 1 module, we are done */
2049 if (sfp->module_power_mW <= 1000)
2050 goto insert;
2051
2052 sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0);
2053 fallthrough;
2054 case SFP_MOD_HPOWER:
2055 /* Enable high power mode */
2056 err = sfp_sm_mod_hpower(sfp, true);
2057 if (err < 0) {
2058 if (err != -EAGAIN) {
2059 sfp_module_remove(sfp->sfp_bus);
2060 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2061 } else {
2062 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2063 }
2064 break;
2065 }
2066
2067 sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL);
2068 break;
2069
2070 case SFP_MOD_WAITPWR:
2071 /* Wait for T_HPOWER_LEVEL to time out */
2072 if (event != SFP_E_TIMEOUT)
2073 break;
2074
2075 insert:
2076 sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0);
2077 break;
2078
2079 case SFP_MOD_PRESENT:
2080 case SFP_MOD_ERROR:
2081 break;
2082 }
2083}
2084
2085static void sfp_sm_main(struct sfp *sfp, unsigned int event)
2086{
2087 unsigned long timeout;
2088 int ret;
2089
2090 /* Some events are global */
2091 if (sfp->sm_state != SFP_S_DOWN &&
2092 (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2093 sfp->sm_dev_state != SFP_DEV_UP)) {
2094 if (sfp->sm_state == SFP_S_LINK_UP &&
2095 sfp->sm_dev_state == SFP_DEV_UP)
2096 sfp_sm_link_down(sfp);
2097 if (sfp->sm_state > SFP_S_INIT)
2098 sfp_module_stop(sfp->sfp_bus);
2099 if (sfp->mod_phy)
2100 sfp_sm_phy_detach(sfp);
2101 sfp_module_tx_disable(sfp);
2102 sfp_soft_stop_poll(sfp);
2103 sfp_sm_next(sfp, SFP_S_DOWN, 0);
2104 return;
2105 }
2106
2107 /* The main state machine */
2108 switch (sfp->sm_state) {
2109 case SFP_S_DOWN:
2110 if (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2111 sfp->sm_dev_state != SFP_DEV_UP)
2112 break;
2113
2114 if (!(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE))
2115 sfp_soft_start_poll(sfp);
2116
2117 sfp_module_tx_enable(sfp);
2118
2119 /* Initialise the fault clearance retries */
2120 sfp->sm_fault_retries = N_FAULT_INIT;
2121
2122 /* We need to check the TX_FAULT state, which is not defined
2123 * while TX_DISABLE is asserted. The earliest we want to do
2124 * anything (such as probe for a PHY) is 50ms.
2125 */
2126 sfp_sm_next(sfp, SFP_S_WAIT, T_WAIT);
2127 break;
2128
2129 case SFP_S_WAIT:
2130 if (event != SFP_E_TIMEOUT)
2131 break;
2132
2133 if (sfp->state & SFP_F_TX_FAULT) {
2134 /* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431)
2135 * from the TX_DISABLE deassertion for the module to
2136 * initialise, which is indicated by TX_FAULT
2137 * deasserting.
2138 */
2139 timeout = sfp->module_t_start_up;
2140 if (timeout > T_WAIT)
2141 timeout -= T_WAIT;
2142 else
2143 timeout = 1;
2144
2145 sfp_sm_next(sfp, SFP_S_INIT, timeout);
2146 } else {
2147 /* TX_FAULT is not asserted, assume the module has
2148 * finished initialising.
2149 */
2150 goto init_done;
2151 }
2152 break;
2153
2154 case SFP_S_INIT:
2155 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2156 /* TX_FAULT is still asserted after t_init
2157 * or t_start_up, so assume there is a fault.
2158 */
2159 sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT,
2160 sfp->sm_fault_retries == N_FAULT_INIT);
2161 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2162 init_done:
2163 sfp->sm_phy_retries = R_PHY_RETRY;
2164 goto phy_probe;
2165 }
2166 break;
2167
2168 case SFP_S_INIT_PHY:
2169 if (event != SFP_E_TIMEOUT)
2170 break;
2171 phy_probe:
2172 /* TX_FAULT deasserted or we timed out with TX_FAULT
2173 * clear. Probe for the PHY and check the LOS state.
2174 */
2175 ret = sfp_sm_probe_for_phy(sfp);
2176 if (ret == -ENODEV) {
2177 if (--sfp->sm_phy_retries) {
2178 sfp_sm_next(sfp, SFP_S_INIT_PHY, T_PHY_RETRY);
2179 break;
2180 } else {
2181 dev_info(sfp->dev, "no PHY detected\n");
2182 }
2183 } else if (ret) {
2184 sfp_sm_next(sfp, SFP_S_FAIL, 0);
2185 break;
2186 }
2187 if (sfp_module_start(sfp->sfp_bus)) {
2188 sfp_sm_next(sfp, SFP_S_FAIL, 0);
2189 break;
2190 }
2191 sfp_sm_link_check_los(sfp);
2192
2193 /* Reset the fault retry count */
2194 sfp->sm_fault_retries = N_FAULT;
2195 break;
2196
2197 case SFP_S_INIT_TX_FAULT:
2198 if (event == SFP_E_TIMEOUT) {
2199 sfp_module_tx_fault_reset(sfp);
2200 sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up);
2201 }
2202 break;
2203
2204 case SFP_S_WAIT_LOS:
2205 if (event == SFP_E_TX_FAULT)
2206 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2207 else if (sfp_los_event_inactive(sfp, event))
2208 sfp_sm_link_up(sfp);
2209 break;
2210
2211 case SFP_S_LINK_UP:
2212 if (event == SFP_E_TX_FAULT) {
2213 sfp_sm_link_down(sfp);
2214 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2215 } else if (sfp_los_event_active(sfp, event)) {
2216 sfp_sm_link_down(sfp);
2217 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
2218 }
2219 break;
2220
2221 case SFP_S_TX_FAULT:
2222 if (event == SFP_E_TIMEOUT) {
2223 sfp_module_tx_fault_reset(sfp);
2224 sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up);
2225 }
2226 break;
2227
2228 case SFP_S_REINIT:
2229 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2230 sfp_sm_fault(sfp, SFP_S_TX_FAULT, false);
2231 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2232 dev_info(sfp->dev, "module transmit fault recovered\n");
2233 sfp_sm_link_check_los(sfp);
2234 }
2235 break;
2236
2237 case SFP_S_TX_DISABLE:
2238 break;
2239 }
2240}
2241
2242static void sfp_sm_event(struct sfp *sfp, unsigned int event)
2243{
2244 mutex_lock(&sfp->sm_mutex);
2245
2246 dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
2247 mod_state_to_str(sfp->sm_mod_state),
2248 dev_state_to_str(sfp->sm_dev_state),
2249 sm_state_to_str(sfp->sm_state),
2250 event_to_str(event));
2251
2252 sfp_sm_device(sfp, event);
2253 sfp_sm_module(sfp, event);
2254 sfp_sm_main(sfp, event);
2255
2256 dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
2257 mod_state_to_str(sfp->sm_mod_state),
2258 dev_state_to_str(sfp->sm_dev_state),
2259 sm_state_to_str(sfp->sm_state));
2260
2261 mutex_unlock(&sfp->sm_mutex);
2262}
2263
2264static void sfp_attach(struct sfp *sfp)
2265{
2266 sfp_sm_event(sfp, SFP_E_DEV_ATTACH);
2267}
2268
2269static void sfp_detach(struct sfp *sfp)
2270{
2271 sfp_sm_event(sfp, SFP_E_DEV_DETACH);
2272}
2273
2274static void sfp_start(struct sfp *sfp)
2275{
2276 sfp_sm_event(sfp, SFP_E_DEV_UP);
2277}
2278
2279static void sfp_stop(struct sfp *sfp)
2280{
2281 sfp_sm_event(sfp, SFP_E_DEV_DOWN);
2282}
2283
2284static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
2285{
2286 /* locking... and check module is present */
2287
2288 if (sfp->id.ext.sff8472_compliance &&
2289 !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
2290 modinfo->type = ETH_MODULE_SFF_8472;
2291 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2292 } else {
2293 modinfo->type = ETH_MODULE_SFF_8079;
2294 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2295 }
2296 return 0;
2297}
2298
2299static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
2300 u8 *data)
2301{
2302 unsigned int first, last, len;
2303 int ret;
2304
2305 if (ee->len == 0)
2306 return -EINVAL;
2307
2308 first = ee->offset;
2309 last = ee->offset + ee->len;
2310 if (first < ETH_MODULE_SFF_8079_LEN) {
2311 len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
2312 len -= first;
2313
2314 ret = sfp_read(sfp, false, first, data, len);
2315 if (ret < 0)
2316 return ret;
2317
2318 first += len;
2319 data += len;
2320 }
2321 if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
2322 len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
2323 len -= first;
2324 first -= ETH_MODULE_SFF_8079_LEN;
2325
2326 ret = sfp_read(sfp, true, first, data, len);
2327 if (ret < 0)
2328 return ret;
2329 }
2330 return 0;
2331}
2332
2333static int sfp_module_eeprom_by_page(struct sfp *sfp,
2334 const struct ethtool_module_eeprom *page,
2335 struct netlink_ext_ack *extack)
2336{
2337 if (page->bank) {
2338 NL_SET_ERR_MSG(extack, "Banks not supported");
2339 return -EOPNOTSUPP;
2340 }
2341
2342 if (page->page) {
2343 NL_SET_ERR_MSG(extack, "Only page 0 supported");
2344 return -EOPNOTSUPP;
2345 }
2346
2347 if (page->i2c_address != 0x50 &&
2348 page->i2c_address != 0x51) {
2349 NL_SET_ERR_MSG(extack, "Only address 0x50 and 0x51 supported");
2350 return -EOPNOTSUPP;
2351 }
2352
2353 return sfp_read(sfp, page->i2c_address == 0x51, page->offset,
2354 page->data, page->length);
2355};
2356
2357static const struct sfp_socket_ops sfp_module_ops = {
2358 .attach = sfp_attach,
2359 .detach = sfp_detach,
2360 .start = sfp_start,
2361 .stop = sfp_stop,
2362 .module_info = sfp_module_info,
2363 .module_eeprom = sfp_module_eeprom,
2364 .module_eeprom_by_page = sfp_module_eeprom_by_page,
2365};
2366
2367static void sfp_timeout(struct work_struct *work)
2368{
2369 struct sfp *sfp = container_of(work, struct sfp, timeout.work);
2370
2371 rtnl_lock();
2372 sfp_sm_event(sfp, SFP_E_TIMEOUT);
2373 rtnl_unlock();
2374}
2375
2376static void sfp_check_state(struct sfp *sfp)
2377{
2378 unsigned int state, i, changed;
2379
2380 mutex_lock(&sfp->st_mutex);
2381 state = sfp_get_state(sfp);
2382 changed = state ^ sfp->state;
2383 changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
2384
2385 for (i = 0; i < GPIO_MAX; i++)
2386 if (changed & BIT(i))
2387 dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_of_names[i],
2388 !!(sfp->state & BIT(i)), !!(state & BIT(i)));
2389
2390 state |= sfp->state & (SFP_F_TX_DISABLE | SFP_F_RATE_SELECT);
2391 sfp->state = state;
2392
2393 rtnl_lock();
2394 if (changed & SFP_F_PRESENT)
2395 sfp_sm_event(sfp, state & SFP_F_PRESENT ?
2396 SFP_E_INSERT : SFP_E_REMOVE);
2397
2398 if (changed & SFP_F_TX_FAULT)
2399 sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
2400 SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
2401
2402 if (changed & SFP_F_LOS)
2403 sfp_sm_event(sfp, state & SFP_F_LOS ?
2404 SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
2405 rtnl_unlock();
2406 mutex_unlock(&sfp->st_mutex);
2407}
2408
2409static irqreturn_t sfp_irq(int irq, void *data)
2410{
2411 struct sfp *sfp = data;
2412
2413 sfp_check_state(sfp);
2414
2415 return IRQ_HANDLED;
2416}
2417
2418static void sfp_poll(struct work_struct *work)
2419{
2420 struct sfp *sfp = container_of(work, struct sfp, poll.work);
2421
2422 sfp_check_state(sfp);
2423
2424 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) ||
2425 sfp->need_poll)
2426 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2427}
2428
2429static struct sfp *sfp_alloc(struct device *dev)
2430{
2431 struct sfp *sfp;
2432
2433 sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
2434 if (!sfp)
2435 return ERR_PTR(-ENOMEM);
2436
2437 sfp->dev = dev;
2438
2439 mutex_init(&sfp->sm_mutex);
2440 mutex_init(&sfp->st_mutex);
2441 INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
2442 INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
2443
2444 sfp_hwmon_init(sfp);
2445
2446 return sfp;
2447}
2448
2449static void sfp_cleanup(void *data)
2450{
2451 struct sfp *sfp = data;
2452
2453 sfp_hwmon_exit(sfp);
2454
2455 cancel_delayed_work_sync(&sfp->poll);
2456 cancel_delayed_work_sync(&sfp->timeout);
2457 if (sfp->i2c_mii) {
2458 mdiobus_unregister(sfp->i2c_mii);
2459 mdiobus_free(sfp->i2c_mii);
2460 }
2461 if (sfp->i2c)
2462 i2c_put_adapter(sfp->i2c);
2463 kfree(sfp);
2464}
2465
2466static int sfp_probe(struct platform_device *pdev)
2467{
2468 const struct sff_data *sff;
2469 struct i2c_adapter *i2c;
2470 char *sfp_irq_name;
2471 struct sfp *sfp;
2472 int err, i;
2473
2474 sfp = sfp_alloc(&pdev->dev);
2475 if (IS_ERR(sfp))
2476 return PTR_ERR(sfp);
2477
2478 platform_set_drvdata(pdev, sfp);
2479
2480 err = devm_add_action(sfp->dev, sfp_cleanup, sfp);
2481 if (err < 0)
2482 return err;
2483
2484 sff = sfp->type = &sfp_data;
2485
2486 if (pdev->dev.of_node) {
2487 struct device_node *node = pdev->dev.of_node;
2488 const struct of_device_id *id;
2489 struct device_node *np;
2490
2491 id = of_match_node(sfp_of_match, node);
2492 if (WARN_ON(!id))
2493 return -EINVAL;
2494
2495 sff = sfp->type = id->data;
2496
2497 np = of_parse_phandle(node, "i2c-bus", 0);
2498 if (!np) {
2499 dev_err(sfp->dev, "missing 'i2c-bus' property\n");
2500 return -ENODEV;
2501 }
2502
2503 i2c = of_find_i2c_adapter_by_node(np);
2504 of_node_put(np);
2505 } else if (has_acpi_companion(&pdev->dev)) {
2506 struct acpi_device *adev = ACPI_COMPANION(&pdev->dev);
2507 struct fwnode_handle *fw = acpi_fwnode_handle(adev);
2508 struct fwnode_reference_args args;
2509 struct acpi_handle *acpi_handle;
2510 int ret;
2511
2512 ret = acpi_node_get_property_reference(fw, "i2c-bus", 0, &args);
2513 if (ret || !is_acpi_device_node(args.fwnode)) {
2514 dev_err(&pdev->dev, "missing 'i2c-bus' property\n");
2515 return -ENODEV;
2516 }
2517
2518 acpi_handle = ACPI_HANDLE_FWNODE(args.fwnode);
2519 i2c = i2c_acpi_find_adapter_by_handle(acpi_handle);
2520 } else {
2521 return -EINVAL;
2522 }
2523
2524 if (!i2c)
2525 return -EPROBE_DEFER;
2526
2527 err = sfp_i2c_configure(sfp, i2c);
2528 if (err < 0) {
2529 i2c_put_adapter(i2c);
2530 return err;
2531 }
2532
2533 for (i = 0; i < GPIO_MAX; i++)
2534 if (sff->gpios & BIT(i)) {
2535 sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
2536 gpio_of_names[i], gpio_flags[i]);
2537 if (IS_ERR(sfp->gpio[i]))
2538 return PTR_ERR(sfp->gpio[i]);
2539 }
2540
2541 sfp->get_state = sfp_gpio_get_state;
2542 sfp->set_state = sfp_gpio_set_state;
2543
2544 /* Modules that have no detect signal are always present */
2545 if (!(sfp->gpio[GPIO_MODDEF0]))
2546 sfp->get_state = sff_gpio_get_state;
2547
2548 device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
2549 &sfp->max_power_mW);
2550 if (!sfp->max_power_mW)
2551 sfp->max_power_mW = 1000;
2552
2553 dev_info(sfp->dev, "Host maximum power %u.%uW\n",
2554 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
2555
2556 /* Get the initial state, and always signal TX disable,
2557 * since the network interface will not be up.
2558 */
2559 sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
2560
2561 if (sfp->gpio[GPIO_RATE_SELECT] &&
2562 gpiod_get_value_cansleep(sfp->gpio[GPIO_RATE_SELECT]))
2563 sfp->state |= SFP_F_RATE_SELECT;
2564 sfp_set_state(sfp, sfp->state);
2565 sfp_module_tx_disable(sfp);
2566 if (sfp->state & SFP_F_PRESENT) {
2567 rtnl_lock();
2568 sfp_sm_event(sfp, SFP_E_INSERT);
2569 rtnl_unlock();
2570 }
2571
2572 for (i = 0; i < GPIO_MAX; i++) {
2573 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
2574 continue;
2575
2576 sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]);
2577 if (sfp->gpio_irq[i] < 0) {
2578 sfp->gpio_irq[i] = 0;
2579 sfp->need_poll = true;
2580 continue;
2581 }
2582
2583 sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL,
2584 "%s-%s", dev_name(sfp->dev),
2585 gpio_of_names[i]);
2586
2587 if (!sfp_irq_name)
2588 return -ENOMEM;
2589
2590 err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i],
2591 NULL, sfp_irq,
2592 IRQF_ONESHOT |
2593 IRQF_TRIGGER_RISING |
2594 IRQF_TRIGGER_FALLING,
2595 sfp_irq_name, sfp);
2596 if (err) {
2597 sfp->gpio_irq[i] = 0;
2598 sfp->need_poll = true;
2599 }
2600 }
2601
2602 if (sfp->need_poll)
2603 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2604
2605 /* We could have an issue in cases no Tx disable pin is available or
2606 * wired as modules using a laser as their light source will continue to
2607 * be active when the fiber is removed. This could be a safety issue and
2608 * we should at least warn the user about that.
2609 */
2610 if (!sfp->gpio[GPIO_TX_DISABLE])
2611 dev_warn(sfp->dev,
2612 "No tx_disable pin: SFP modules will always be emitting.\n");
2613
2614 sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
2615 if (!sfp->sfp_bus)
2616 return -ENOMEM;
2617
2618 sfp_debugfs_init(sfp);
2619
2620 return 0;
2621}
2622
2623static int sfp_remove(struct platform_device *pdev)
2624{
2625 struct sfp *sfp = platform_get_drvdata(pdev);
2626
2627 sfp_debugfs_exit(sfp);
2628 sfp_unregister_socket(sfp->sfp_bus);
2629
2630 rtnl_lock();
2631 sfp_sm_event(sfp, SFP_E_REMOVE);
2632 rtnl_unlock();
2633
2634 return 0;
2635}
2636
2637static void sfp_shutdown(struct platform_device *pdev)
2638{
2639 struct sfp *sfp = platform_get_drvdata(pdev);
2640 int i;
2641
2642 for (i = 0; i < GPIO_MAX; i++) {
2643 if (!sfp->gpio_irq[i])
2644 continue;
2645
2646 devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp);
2647 }
2648
2649 cancel_delayed_work_sync(&sfp->poll);
2650 cancel_delayed_work_sync(&sfp->timeout);
2651}
2652
2653static struct platform_driver sfp_driver = {
2654 .probe = sfp_probe,
2655 .remove = sfp_remove,
2656 .shutdown = sfp_shutdown,
2657 .driver = {
2658 .name = "sfp",
2659 .of_match_table = sfp_of_match,
2660 },
2661};
2662
2663static int sfp_init(void)
2664{
2665 poll_jiffies = msecs_to_jiffies(100);
2666
2667 return platform_driver_register(&sfp_driver);
2668}
2669module_init(sfp_init);
2670
2671static void sfp_exit(void)
2672{
2673 platform_driver_unregister(&sfp_driver);
2674}
2675module_exit(sfp_exit);
2676
2677MODULE_ALIAS("platform:sfp");
2678MODULE_AUTHOR("Russell King");
2679MODULE_LICENSE("GPL v2");