Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
 
 
   2#include <linux/debugfs.h>
   3#include <linux/delay.h>
   4#include <linux/gpio/consumer.h>
   5#include <linux/hwmon.h>
   6#include <linux/i2c.h>
   7#include <linux/interrupt.h>
   8#include <linux/jiffies.h>
   9#include <linux/mdio/mdio-i2c.h>
  10#include <linux/module.h>
  11#include <linux/mutex.h>
  12#include <linux/of.h>
  13#include <linux/phy.h>
  14#include <linux/platform_device.h>
  15#include <linux/rtnetlink.h>
  16#include <linux/slab.h>
  17#include <linux/workqueue.h>
  18
  19#include "sfp.h"
  20#include "swphy.h"
  21
  22enum {
  23	GPIO_MODDEF0,
  24	GPIO_LOS,
  25	GPIO_TX_FAULT,
  26	GPIO_TX_DISABLE,
  27	GPIO_RS0,
  28	GPIO_RS1,
  29	GPIO_MAX,
  30
  31	SFP_F_PRESENT = BIT(GPIO_MODDEF0),
  32	SFP_F_LOS = BIT(GPIO_LOS),
  33	SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
  34	SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
  35	SFP_F_RS0 = BIT(GPIO_RS0),
  36	SFP_F_RS1 = BIT(GPIO_RS1),
  37
  38	SFP_F_OUTPUTS = SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1,
  39
  40	SFP_E_INSERT = 0,
  41	SFP_E_REMOVE,
  42	SFP_E_DEV_ATTACH,
  43	SFP_E_DEV_DETACH,
  44	SFP_E_DEV_DOWN,
  45	SFP_E_DEV_UP,
  46	SFP_E_TX_FAULT,
  47	SFP_E_TX_CLEAR,
  48	SFP_E_LOS_HIGH,
  49	SFP_E_LOS_LOW,
  50	SFP_E_TIMEOUT,
  51
  52	SFP_MOD_EMPTY = 0,
  53	SFP_MOD_ERROR,
  54	SFP_MOD_PROBE,
  55	SFP_MOD_WAITDEV,
  56	SFP_MOD_HPOWER,
  57	SFP_MOD_WAITPWR,
  58	SFP_MOD_PRESENT,
  59
  60	SFP_DEV_DETACHED = 0,
  61	SFP_DEV_DOWN,
  62	SFP_DEV_UP,
  63
  64	SFP_S_DOWN = 0,
  65	SFP_S_FAIL,
  66	SFP_S_WAIT,
  67	SFP_S_INIT,
  68	SFP_S_INIT_PHY,
  69	SFP_S_INIT_TX_FAULT,
  70	SFP_S_WAIT_LOS,
  71	SFP_S_LINK_UP,
  72	SFP_S_TX_FAULT,
  73	SFP_S_REINIT,
  74	SFP_S_TX_DISABLE,
  75};
  76
  77static const char  * const mod_state_strings[] = {
  78	[SFP_MOD_EMPTY] = "empty",
  79	[SFP_MOD_ERROR] = "error",
  80	[SFP_MOD_PROBE] = "probe",
  81	[SFP_MOD_WAITDEV] = "waitdev",
  82	[SFP_MOD_HPOWER] = "hpower",
  83	[SFP_MOD_WAITPWR] = "waitpwr",
  84	[SFP_MOD_PRESENT] = "present",
  85};
  86
  87static const char *mod_state_to_str(unsigned short mod_state)
  88{
  89	if (mod_state >= ARRAY_SIZE(mod_state_strings))
  90		return "Unknown module state";
  91	return mod_state_strings[mod_state];
  92}
  93
  94static const char * const dev_state_strings[] = {
  95	[SFP_DEV_DETACHED] = "detached",
  96	[SFP_DEV_DOWN] = "down",
  97	[SFP_DEV_UP] = "up",
  98};
  99
 100static const char *dev_state_to_str(unsigned short dev_state)
 101{
 102	if (dev_state >= ARRAY_SIZE(dev_state_strings))
 103		return "Unknown device state";
 104	return dev_state_strings[dev_state];
 105}
 106
 107static const char * const event_strings[] = {
 108	[SFP_E_INSERT] = "insert",
 109	[SFP_E_REMOVE] = "remove",
 110	[SFP_E_DEV_ATTACH] = "dev_attach",
 111	[SFP_E_DEV_DETACH] = "dev_detach",
 112	[SFP_E_DEV_DOWN] = "dev_down",
 113	[SFP_E_DEV_UP] = "dev_up",
 114	[SFP_E_TX_FAULT] = "tx_fault",
 115	[SFP_E_TX_CLEAR] = "tx_clear",
 116	[SFP_E_LOS_HIGH] = "los_high",
 117	[SFP_E_LOS_LOW] = "los_low",
 118	[SFP_E_TIMEOUT] = "timeout",
 119};
 120
 121static const char *event_to_str(unsigned short event)
 122{
 123	if (event >= ARRAY_SIZE(event_strings))
 124		return "Unknown event";
 125	return event_strings[event];
 126}
 127
 128static const char * const sm_state_strings[] = {
 129	[SFP_S_DOWN] = "down",
 130	[SFP_S_FAIL] = "fail",
 131	[SFP_S_WAIT] = "wait",
 132	[SFP_S_INIT] = "init",
 133	[SFP_S_INIT_PHY] = "init_phy",
 134	[SFP_S_INIT_TX_FAULT] = "init_tx_fault",
 135	[SFP_S_WAIT_LOS] = "wait_los",
 136	[SFP_S_LINK_UP] = "link_up",
 137	[SFP_S_TX_FAULT] = "tx_fault",
 138	[SFP_S_REINIT] = "reinit",
 139	[SFP_S_TX_DISABLE] = "tx_disable",
 140};
 141
 142static const char *sm_state_to_str(unsigned short sm_state)
 143{
 144	if (sm_state >= ARRAY_SIZE(sm_state_strings))
 145		return "Unknown state";
 146	return sm_state_strings[sm_state];
 147}
 148
 149static const char *gpio_names[] = {
 150	"mod-def0",
 151	"los",
 152	"tx-fault",
 153	"tx-disable",
 154	"rate-select0",
 155	"rate-select1",
 156};
 157
 158static const enum gpiod_flags gpio_flags[] = {
 159	GPIOD_IN,
 160	GPIOD_IN,
 161	GPIOD_IN,
 162	GPIOD_ASIS,
 163	GPIOD_ASIS,
 164	GPIOD_ASIS,
 165};
 166
 167/* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a
 168 * non-cooled module to initialise its laser safety circuitry. We wait
 169 * an initial T_WAIT period before we check the tx fault to give any PHY
 170 * on board (for a copper SFP) time to initialise.
 171 */
 172#define T_WAIT			msecs_to_jiffies(50)
 173#define T_START_UP		msecs_to_jiffies(300)
 174#define T_START_UP_BAD_GPON	msecs_to_jiffies(60000)
 175
 176/* t_reset is the time required to assert the TX_DISABLE signal to reset
 177 * an indicated TX_FAULT.
 178 */
 179#define T_RESET_US		10
 180#define T_FAULT_RECOVER		msecs_to_jiffies(1000)
 181
 182/* N_FAULT_INIT is the number of recovery attempts at module initialisation
 183 * time. If the TX_FAULT signal is not deasserted after this number of
 184 * attempts at clearing it, we decide that the module is faulty.
 185 * N_FAULT is the same but after the module has initialised.
 186 */
 187#define N_FAULT_INIT		5
 188#define N_FAULT			5
 189
 190/* T_PHY_RETRY is the time interval between attempts to probe the PHY.
 191 * R_PHY_RETRY is the number of attempts.
 192 */
 193#define T_PHY_RETRY		msecs_to_jiffies(50)
 194#define R_PHY_RETRY		25
 195
 196/* SFP module presence detection is poor: the three MOD DEF signals are
 197 * the same length on the PCB, which means it's possible for MOD DEF 0 to
 198 * connect before the I2C bus on MOD DEF 1/2.
 199 *
 200 * The SFF-8472 specifies t_serial ("Time from power on until module is
 201 * ready for data transmission over the two wire serial bus.") as 300ms.
 202 */
 203#define T_SERIAL		msecs_to_jiffies(300)
 204#define T_HPOWER_LEVEL		msecs_to_jiffies(300)
 205#define T_PROBE_RETRY_INIT	msecs_to_jiffies(100)
 206#define R_PROBE_RETRY_INIT	10
 207#define T_PROBE_RETRY_SLOW	msecs_to_jiffies(5000)
 208#define R_PROBE_RETRY_SLOW	12
 209
 210/* SFP modules appear to always have their PHY configured for bus address
 211 * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
 212 * RollBall SFPs access phy via SFP Enhanced Digital Diagnostic Interface
 213 * via address 0x51 (mdio-i2c will use RollBall protocol on this address).
 214 */
 215#define SFP_PHY_ADDR		22
 216#define SFP_PHY_ADDR_ROLLBALL	17
 217
 218/* SFP_EEPROM_BLOCK_SIZE is the size of data chunk to read the EEPROM
 219 * at a time. Some SFP modules and also some Linux I2C drivers do not like
 220 * reads longer than 16 bytes.
 221 */
 222#define SFP_EEPROM_BLOCK_SIZE	16
 223
 224struct sff_data {
 225	unsigned int gpios;
 226	bool (*module_supported)(const struct sfp_eeprom_id *id);
 227};
 228
 229struct sfp {
 230	struct device *dev;
 231	struct i2c_adapter *i2c;
 232	struct mii_bus *i2c_mii;
 233	struct sfp_bus *sfp_bus;
 234	enum mdio_i2c_proto mdio_protocol;
 235	struct phy_device *mod_phy;
 236	const struct sff_data *type;
 237	size_t i2c_block_size;
 238	u32 max_power_mW;
 239
 240	unsigned int (*get_state)(struct sfp *);
 241	void (*set_state)(struct sfp *, unsigned int);
 242	int (*read)(struct sfp *, bool, u8, void *, size_t);
 243	int (*write)(struct sfp *, bool, u8, void *, size_t);
 244
 245	struct gpio_desc *gpio[GPIO_MAX];
 246	int gpio_irq[GPIO_MAX];
 247
 248	bool need_poll;
 249
 250	/* Access rules:
 251	 * state_hw_drive: st_mutex held
 252	 * state_hw_mask: st_mutex held
 253	 * state_soft_mask: st_mutex held
 254	 * state: st_mutex held unless reading input bits
 255	 */
 256	struct mutex st_mutex;			/* Protects state */
 257	unsigned int state_hw_drive;
 258	unsigned int state_hw_mask;
 259	unsigned int state_soft_mask;
 260	unsigned int state_ignore_mask;
 261	unsigned int state;
 262
 263	struct delayed_work poll;
 264	struct delayed_work timeout;
 265	struct mutex sm_mutex;			/* Protects state machine */
 266	unsigned char sm_mod_state;
 267	unsigned char sm_mod_tries_init;
 268	unsigned char sm_mod_tries;
 269	unsigned char sm_dev_state;
 270	unsigned short sm_state;
 271	unsigned char sm_fault_retries;
 272	unsigned char sm_phy_retries;
 273
 274	struct sfp_eeprom_id id;
 275	unsigned int module_power_mW;
 276	unsigned int module_t_start_up;
 277	unsigned int module_t_wait;
 278	unsigned int phy_t_retry;
 279
 280	unsigned int rate_kbd;
 281	unsigned int rs_threshold_kbd;
 282	unsigned int rs_state_mask;
 283
 284	bool have_a2;
 285
 286	const struct sfp_quirk *quirk;
 287
 288#if IS_ENABLED(CONFIG_HWMON)
 289	struct sfp_diag diag;
 290	struct delayed_work hwmon_probe;
 291	unsigned int hwmon_tries;
 292	struct device *hwmon_dev;
 293	char *hwmon_name;
 294#endif
 295
 296#if IS_ENABLED(CONFIG_DEBUG_FS)
 297	struct dentry *debugfs_dir;
 298#endif
 299};
 300
 301static bool sff_module_supported(const struct sfp_eeprom_id *id)
 302{
 303	return id->base.phys_id == SFF8024_ID_SFF_8472 &&
 304	       id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
 305}
 306
 307static const struct sff_data sff_data = {
 308	.gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
 309	.module_supported = sff_module_supported,
 310};
 311
 312static bool sfp_module_supported(const struct sfp_eeprom_id *id)
 313{
 314	if (id->base.phys_id == SFF8024_ID_SFP &&
 315	    id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP)
 316		return true;
 317
 318	/* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored
 319	 * phys id SFF instead of SFP. Therefore mark this module explicitly
 320	 * as supported based on vendor name and pn match.
 321	 */
 322	if (id->base.phys_id == SFF8024_ID_SFF_8472 &&
 323	    id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP &&
 324	    !memcmp(id->base.vendor_name, "UBNT            ", 16) &&
 325	    !memcmp(id->base.vendor_pn, "UF-INSTANT      ", 16))
 326		return true;
 327
 328	return false;
 329}
 330
 331static const struct sff_data sfp_data = {
 332	.gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
 333		 SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1,
 334	.module_supported = sfp_module_supported,
 335};
 336
 337static const struct of_device_id sfp_of_match[] = {
 338	{ .compatible = "sff,sff", .data = &sff_data, },
 339	{ .compatible = "sff,sfp", .data = &sfp_data, },
 340	{ },
 341};
 342MODULE_DEVICE_TABLE(of, sfp_of_match);
 343
 344static void sfp_fixup_long_startup(struct sfp *sfp)
 345{
 346	sfp->module_t_start_up = T_START_UP_BAD_GPON;
 347}
 348
 349static void sfp_fixup_ignore_los(struct sfp *sfp)
 350{
 351	/* This forces LOS to zero, so we ignore transitions */
 352	sfp->state_ignore_mask |= SFP_F_LOS;
 353	/* Make sure that LOS options are clear */
 354	sfp->id.ext.options &= ~cpu_to_be16(SFP_OPTIONS_LOS_INVERTED |
 355					    SFP_OPTIONS_LOS_NORMAL);
 356}
 357
 358static void sfp_fixup_ignore_tx_fault(struct sfp *sfp)
 359{
 360	sfp->state_ignore_mask |= SFP_F_TX_FAULT;
 361}
 362
 363static void sfp_fixup_nokia(struct sfp *sfp)
 364{
 365	sfp_fixup_long_startup(sfp);
 366	sfp_fixup_ignore_los(sfp);
 367}
 368
 369// For 10GBASE-T short-reach modules
 370static void sfp_fixup_10gbaset_30m(struct sfp *sfp)
 371{
 372	sfp->id.base.connector = SFF8024_CONNECTOR_RJ45;
 373	sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SR;
 374}
 375
 376static void sfp_fixup_rollball(struct sfp *sfp)
 377{
 378	sfp->mdio_protocol = MDIO_I2C_ROLLBALL;
 379
 380	/* RollBall modules may disallow access to PHY registers for up to 25
 381	 * seconds, and the reads return 0xffff before that. Increase the time
 382	 * between PHY probe retries from 50ms to 1s so that we will wait for
 383	 * the PHY for a sufficient amount of time.
 384	 */
 385	sfp->phy_t_retry = msecs_to_jiffies(1000);
 386}
 387
 388static void sfp_fixup_fs_10gt(struct sfp *sfp)
 389{
 390	sfp_fixup_10gbaset_30m(sfp);
 391	sfp_fixup_rollball(sfp);
 392
 393	/* The RollBall fixup is not enough for FS modules, the AQR chip inside
 394	 * them does not return 0xffff for PHY ID registers in all MMDs for the
 395	 * while initializing. They need a 4 second wait before accessing PHY.
 396	 */
 397	sfp->module_t_wait = msecs_to_jiffies(4000);
 398}
 399
 400static void sfp_fixup_halny_gsfp(struct sfp *sfp)
 401{
 402	/* Ignore the TX_FAULT and LOS signals on this module.
 403	 * these are possibly used for other purposes on this
 404	 * module, e.g. a serial port.
 405	 */
 406	sfp->state_hw_mask &= ~(SFP_F_TX_FAULT | SFP_F_LOS);
 407}
 408
 409static void sfp_fixup_rollball_cc(struct sfp *sfp)
 410{
 411	sfp_fixup_rollball(sfp);
 412
 413	/* Some RollBall SFPs may have wrong (zero) extended compliance code
 414	 * burned in EEPROM. For PHY probing we need the correct one.
 415	 */
 416	sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SFI;
 417}
 418
 419static void sfp_quirk_2500basex(const struct sfp_eeprom_id *id,
 420				unsigned long *modes,
 421				unsigned long *interfaces)
 422{
 423	linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseX_Full_BIT, modes);
 424	__set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
 425}
 426
 427static void sfp_quirk_disable_autoneg(const struct sfp_eeprom_id *id,
 428				      unsigned long *modes,
 429				      unsigned long *interfaces)
 430{
 431	linkmode_clear_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, modes);
 432}
 433
 434static void sfp_quirk_oem_2_5g(const struct sfp_eeprom_id *id,
 435			       unsigned long *modes,
 436			       unsigned long *interfaces)
 437{
 438	/* Copper 2.5G SFP */
 439	linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseT_Full_BIT, modes);
 440	__set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
 441	sfp_quirk_disable_autoneg(id, modes, interfaces);
 442}
 443
 444static void sfp_quirk_ubnt_uf_instant(const struct sfp_eeprom_id *id,
 445				      unsigned long *modes,
 446				      unsigned long *interfaces)
 447{
 448	/* Ubiquiti U-Fiber Instant module claims that support all transceiver
 449	 * types including 10G Ethernet which is not truth. So clear all claimed
 450	 * modes and set only one mode which module supports: 1000baseX_Full.
 451	 */
 452	linkmode_zero(modes);
 453	linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, modes);
 454}
 455
 456#define SFP_QUIRK(_v, _p, _m, _f) \
 457	{ .vendor = _v, .part = _p, .modes = _m, .fixup = _f, }
 458#define SFP_QUIRK_M(_v, _p, _m) SFP_QUIRK(_v, _p, _m, NULL)
 459#define SFP_QUIRK_F(_v, _p, _f) SFP_QUIRK(_v, _p, NULL, _f)
 460
 461static const struct sfp_quirk sfp_quirks[] = {
 462	// Alcatel Lucent G-010S-P can operate at 2500base-X, but incorrectly
 463	// report 2500MBd NRZ in their EEPROM
 464	SFP_QUIRK_M("ALCATELLUCENT", "G010SP", sfp_quirk_2500basex),
 465
 466	// Alcatel Lucent G-010S-A can operate at 2500base-X, but report 3.2GBd
 467	// NRZ in their EEPROM
 468	SFP_QUIRK("ALCATELLUCENT", "3FE46541AA", sfp_quirk_2500basex,
 469		  sfp_fixup_nokia),
 470
 471	// Fiberstore SFP-10G-T doesn't identify as copper, and uses the
 472	// Rollball protocol to talk to the PHY.
 473	SFP_QUIRK_F("FS", "SFP-10G-T", sfp_fixup_fs_10gt),
 474
 475	// Fiberstore GPON-ONU-34-20BI can operate at 2500base-X, but report 1.2GBd
 476	// NRZ in their EEPROM
 477	SFP_QUIRK("FS", "GPON-ONU-34-20BI", sfp_quirk_2500basex,
 478		  sfp_fixup_ignore_tx_fault),
 479
 480	SFP_QUIRK_F("HALNy", "HL-GSFP", sfp_fixup_halny_gsfp),
 481
 482	// HG MXPD-483II-F 2.5G supports 2500Base-X, but incorrectly reports
 483	// 2600MBd in their EERPOM
 484	SFP_QUIRK_M("HG GENUINE", "MXPD-483II", sfp_quirk_2500basex),
 485
 486	// Huawei MA5671A can operate at 2500base-X, but report 1.2GBd NRZ in
 487	// their EEPROM
 488	SFP_QUIRK("HUAWEI", "MA5671A", sfp_quirk_2500basex,
 489		  sfp_fixup_ignore_tx_fault),
 490
 491	// FS 2.5G Base-T
 492	SFP_QUIRK_M("FS", "SFP-2.5G-T", sfp_quirk_oem_2_5g),
 493
 494	// Lantech 8330-262D-E can operate at 2500base-X, but incorrectly report
 495	// 2500MBd NRZ in their EEPROM
 496	SFP_QUIRK_M("Lantech", "8330-262D-E", sfp_quirk_2500basex),
 497
 498	SFP_QUIRK_M("UBNT", "UF-INSTANT", sfp_quirk_ubnt_uf_instant),
 499
 500	// Walsun HXSX-ATR[CI]-1 don't identify as copper, and use the
 501	// Rollball protocol to talk to the PHY.
 502	SFP_QUIRK_F("Walsun", "HXSX-ATRC-1", sfp_fixup_fs_10gt),
 503	SFP_QUIRK_F("Walsun", "HXSX-ATRI-1", sfp_fixup_fs_10gt),
 504
 505	SFP_QUIRK_F("OEM", "SFP-10G-T", sfp_fixup_rollball_cc),
 506	SFP_QUIRK_M("OEM", "SFP-2.5G-T", sfp_quirk_oem_2_5g),
 507	SFP_QUIRK_F("OEM", "RTSFP-10", sfp_fixup_rollball_cc),
 508	SFP_QUIRK_F("OEM", "RTSFP-10G", sfp_fixup_rollball_cc),
 509	SFP_QUIRK_F("Turris", "RTSFP-10", sfp_fixup_rollball),
 510	SFP_QUIRK_F("Turris", "RTSFP-10G", sfp_fixup_rollball),
 511};
 512
 513static size_t sfp_strlen(const char *str, size_t maxlen)
 514{
 515	size_t size, i;
 516
 517	/* Trailing characters should be filled with space chars, but
 518	 * some manufacturers can't read SFF-8472 and use NUL.
 519	 */
 520	for (i = 0, size = 0; i < maxlen; i++)
 521		if (str[i] != ' ' && str[i] != '\0')
 522			size = i + 1;
 523
 524	return size;
 525}
 526
 527static bool sfp_match(const char *qs, const char *str, size_t len)
 528{
 529	if (!qs)
 530		return true;
 531	if (strlen(qs) != len)
 532		return false;
 533	return !strncmp(qs, str, len);
 534}
 535
 536static const struct sfp_quirk *sfp_lookup_quirk(const struct sfp_eeprom_id *id)
 537{
 538	const struct sfp_quirk *q;
 539	unsigned int i;
 540	size_t vs, ps;
 541
 542	vs = sfp_strlen(id->base.vendor_name, ARRAY_SIZE(id->base.vendor_name));
 543	ps = sfp_strlen(id->base.vendor_pn, ARRAY_SIZE(id->base.vendor_pn));
 544
 545	for (i = 0, q = sfp_quirks; i < ARRAY_SIZE(sfp_quirks); i++, q++)
 546		if (sfp_match(q->vendor, id->base.vendor_name, vs) &&
 547		    sfp_match(q->part, id->base.vendor_pn, ps))
 548			return q;
 549
 550	return NULL;
 551}
 552
 553static unsigned long poll_jiffies;
 554
 555static unsigned int sfp_gpio_get_state(struct sfp *sfp)
 556{
 557	unsigned int i, state, v;
 558
 559	for (i = state = 0; i < GPIO_MAX; i++) {
 560		if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
 561			continue;
 562
 563		v = gpiod_get_value_cansleep(sfp->gpio[i]);
 564		if (v)
 565			state |= BIT(i);
 566	}
 567
 568	return state;
 569}
 570
 571static unsigned int sff_gpio_get_state(struct sfp *sfp)
 572{
 573	return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
 574}
 575
 576static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
 577{
 578	unsigned int drive;
 579
 580	if (state & SFP_F_PRESENT)
 581		/* If the module is present, drive the requested signals */
 582		drive = sfp->state_hw_drive;
 583	else
 584		/* Otherwise, let them float to the pull-ups */
 585		drive = 0;
 586
 587	if (sfp->gpio[GPIO_TX_DISABLE]) {
 588		if (drive & SFP_F_TX_DISABLE)
 589			gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
 590					       state & SFP_F_TX_DISABLE);
 591		else
 
 
 
 
 
 592			gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
 593	}
 594
 595	if (sfp->gpio[GPIO_RS0]) {
 596		if (drive & SFP_F_RS0)
 597			gpiod_direction_output(sfp->gpio[GPIO_RS0],
 598					       state & SFP_F_RS0);
 599		else
 600			gpiod_direction_input(sfp->gpio[GPIO_RS0]);
 601	}
 602
 603	if (sfp->gpio[GPIO_RS1]) {
 604		if (drive & SFP_F_RS1)
 605			gpiod_direction_output(sfp->gpio[GPIO_RS1],
 606					       state & SFP_F_RS1);
 607		else
 608			gpiod_direction_input(sfp->gpio[GPIO_RS1]);
 609	}
 610}
 611
 612static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
 613			size_t len)
 614{
 615	struct i2c_msg msgs[2];
 616	u8 bus_addr = a2 ? 0x51 : 0x50;
 617	size_t block_size = sfp->i2c_block_size;
 618	size_t this_len;
 619	int ret;
 620
 621	msgs[0].addr = bus_addr;
 622	msgs[0].flags = 0;
 623	msgs[0].len = 1;
 624	msgs[0].buf = &dev_addr;
 625	msgs[1].addr = bus_addr;
 626	msgs[1].flags = I2C_M_RD;
 627	msgs[1].len = len;
 628	msgs[1].buf = buf;
 629
 630	while (len) {
 631		this_len = len;
 632		if (this_len > block_size)
 633			this_len = block_size;
 634
 635		msgs[1].len = this_len;
 636
 637		ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
 638		if (ret < 0)
 639			return ret;
 640
 641		if (ret != ARRAY_SIZE(msgs))
 642			break;
 643
 644		msgs[1].buf += this_len;
 645		dev_addr += this_len;
 646		len -= this_len;
 647	}
 648
 649	return msgs[1].buf - (u8 *)buf;
 650}
 651
 652static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
 653	size_t len)
 654{
 655	struct i2c_msg msgs[1];
 656	u8 bus_addr = a2 ? 0x51 : 0x50;
 657	int ret;
 658
 659	msgs[0].addr = bus_addr;
 660	msgs[0].flags = 0;
 661	msgs[0].len = 1 + len;
 662	msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
 663	if (!msgs[0].buf)
 664		return -ENOMEM;
 665
 666	msgs[0].buf[0] = dev_addr;
 667	memcpy(&msgs[0].buf[1], buf, len);
 668
 669	ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
 670
 671	kfree(msgs[0].buf);
 672
 673	if (ret < 0)
 674		return ret;
 675
 676	return ret == ARRAY_SIZE(msgs) ? len : 0;
 677}
 678
 679static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
 680{
 
 
 
 681	if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
 682		return -EINVAL;
 683
 684	sfp->i2c = i2c;
 685	sfp->read = sfp_i2c_read;
 686	sfp->write = sfp_i2c_write;
 687
 688	return 0;
 689}
 690
 691static int sfp_i2c_mdiobus_create(struct sfp *sfp)
 692{
 693	struct mii_bus *i2c_mii;
 694	int ret;
 695
 696	i2c_mii = mdio_i2c_alloc(sfp->dev, sfp->i2c, sfp->mdio_protocol);
 697	if (IS_ERR(i2c_mii))
 698		return PTR_ERR(i2c_mii);
 699
 700	i2c_mii->name = "SFP I2C Bus";
 701	i2c_mii->phy_mask = ~0;
 702
 703	ret = mdiobus_register(i2c_mii);
 704	if (ret < 0) {
 705		mdiobus_free(i2c_mii);
 706		return ret;
 707	}
 708
 709	sfp->i2c_mii = i2c_mii;
 710
 711	return 0;
 712}
 713
 714static void sfp_i2c_mdiobus_destroy(struct sfp *sfp)
 715{
 716	mdiobus_unregister(sfp->i2c_mii);
 717	sfp->i2c_mii = NULL;
 718}
 719
 720/* Interface */
 721static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
 722{
 723	return sfp->read(sfp, a2, addr, buf, len);
 724}
 725
 726static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
 727{
 728	return sfp->write(sfp, a2, addr, buf, len);
 729}
 730
 731static int sfp_modify_u8(struct sfp *sfp, bool a2, u8 addr, u8 mask, u8 val)
 732{
 733	int ret;
 734	u8 old, v;
 735
 736	ret = sfp_read(sfp, a2, addr, &old, sizeof(old));
 737	if (ret != sizeof(old))
 738		return ret;
 739
 740	v = (old & ~mask) | (val & mask);
 741	if (v == old)
 742		return sizeof(v);
 743
 744	return sfp_write(sfp, a2, addr, &v, sizeof(v));
 745}
 746
 747static unsigned int sfp_soft_get_state(struct sfp *sfp)
 748{
 749	unsigned int state = 0;
 750	u8 status;
 751	int ret;
 752
 753	ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status));
 754	if (ret == sizeof(status)) {
 755		if (status & SFP_STATUS_RX_LOS)
 756			state |= SFP_F_LOS;
 757		if (status & SFP_STATUS_TX_FAULT)
 758			state |= SFP_F_TX_FAULT;
 759	} else {
 760		dev_err_ratelimited(sfp->dev,
 761				    "failed to read SFP soft status: %pe\n",
 762				    ERR_PTR(ret));
 763		/* Preserve the current state */
 764		state = sfp->state;
 765	}
 766
 767	return state & sfp->state_soft_mask;
 768}
 769
 770static void sfp_soft_set_state(struct sfp *sfp, unsigned int state,
 771			       unsigned int soft)
 772{
 773	u8 mask = 0;
 774	u8 val = 0;
 775
 776	if (soft & SFP_F_TX_DISABLE)
 777		mask |= SFP_STATUS_TX_DISABLE_FORCE;
 778	if (state & SFP_F_TX_DISABLE)
 779		val |= SFP_STATUS_TX_DISABLE_FORCE;
 780
 781	if (soft & SFP_F_RS0)
 782		mask |= SFP_STATUS_RS0_SELECT;
 783	if (state & SFP_F_RS0)
 784		val |= SFP_STATUS_RS0_SELECT;
 785
 786	if (mask)
 787		sfp_modify_u8(sfp, true, SFP_STATUS, mask, val);
 788
 789	val = mask = 0;
 790	if (soft & SFP_F_RS1)
 791		mask |= SFP_EXT_STATUS_RS1_SELECT;
 792	if (state & SFP_F_RS1)
 793		val |= SFP_EXT_STATUS_RS1_SELECT;
 794
 795	if (mask)
 796		sfp_modify_u8(sfp, true, SFP_EXT_STATUS, mask, val);
 797}
 798
 799static void sfp_soft_start_poll(struct sfp *sfp)
 800{
 801	const struct sfp_eeprom_id *id = &sfp->id;
 802	unsigned int mask = 0;
 803
 804	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE)
 805		mask |= SFP_F_TX_DISABLE;
 806	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT)
 807		mask |= SFP_F_TX_FAULT;
 808	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS)
 809		mask |= SFP_F_LOS;
 810	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RATE_SELECT)
 811		mask |= sfp->rs_state_mask;
 812
 813	mutex_lock(&sfp->st_mutex);
 814	// Poll the soft state for hardware pins we want to ignore
 815	sfp->state_soft_mask = ~sfp->state_hw_mask & ~sfp->state_ignore_mask &
 816			       mask;
 
 
 
 
 
 
 817
 818	if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) &&
 819	    !sfp->need_poll)
 820		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
 821	mutex_unlock(&sfp->st_mutex);
 822}
 823
 824static void sfp_soft_stop_poll(struct sfp *sfp)
 825{
 826	mutex_lock(&sfp->st_mutex);
 827	sfp->state_soft_mask = 0;
 828	mutex_unlock(&sfp->st_mutex);
 829}
 830
 831/* sfp_get_state() - must be called with st_mutex held, or in the
 832 * initialisation path.
 833 */
 834static unsigned int sfp_get_state(struct sfp *sfp)
 835{
 836	unsigned int soft = sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT);
 837	unsigned int state;
 838
 839	state = sfp->get_state(sfp) & sfp->state_hw_mask;
 840	if (state & SFP_F_PRESENT && soft)
 841		state |= sfp_soft_get_state(sfp);
 842
 843	return state;
 844}
 845
 846/* sfp_set_state() - must be called with st_mutex held, or in the
 847 * initialisation path.
 848 */
 849static void sfp_set_state(struct sfp *sfp, unsigned int state)
 850{
 851	unsigned int soft;
 852
 853	sfp->set_state(sfp, state);
 854
 855	soft = sfp->state_soft_mask & SFP_F_OUTPUTS;
 856	if (state & SFP_F_PRESENT && soft)
 857		sfp_soft_set_state(sfp, state, soft);
 858}
 859
 860static void sfp_mod_state(struct sfp *sfp, unsigned int mask, unsigned int set)
 861{
 862	mutex_lock(&sfp->st_mutex);
 863	sfp->state = (sfp->state & ~mask) | set;
 864	sfp_set_state(sfp, sfp->state);
 865	mutex_unlock(&sfp->st_mutex);
 866}
 867
 868static unsigned int sfp_check(void *buf, size_t len)
 869{
 870	u8 *p, check;
 871
 872	for (p = buf, check = 0; len; p++, len--)
 873		check += *p;
 874
 875	return check;
 876}
 877
 878/* hwmon */
 879#if IS_ENABLED(CONFIG_HWMON)
 880static umode_t sfp_hwmon_is_visible(const void *data,
 881				    enum hwmon_sensor_types type,
 882				    u32 attr, int channel)
 883{
 884	const struct sfp *sfp = data;
 885
 886	switch (type) {
 887	case hwmon_temp:
 888		switch (attr) {
 889		case hwmon_temp_min_alarm:
 890		case hwmon_temp_max_alarm:
 891		case hwmon_temp_lcrit_alarm:
 892		case hwmon_temp_crit_alarm:
 893		case hwmon_temp_min:
 894		case hwmon_temp_max:
 895		case hwmon_temp_lcrit:
 896		case hwmon_temp_crit:
 897			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
 898				return 0;
 899			fallthrough;
 900		case hwmon_temp_input:
 901		case hwmon_temp_label:
 902			return 0444;
 903		default:
 904			return 0;
 905		}
 906	case hwmon_in:
 907		switch (attr) {
 908		case hwmon_in_min_alarm:
 909		case hwmon_in_max_alarm:
 910		case hwmon_in_lcrit_alarm:
 911		case hwmon_in_crit_alarm:
 912		case hwmon_in_min:
 913		case hwmon_in_max:
 914		case hwmon_in_lcrit:
 915		case hwmon_in_crit:
 916			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
 917				return 0;
 918			fallthrough;
 919		case hwmon_in_input:
 920		case hwmon_in_label:
 921			return 0444;
 922		default:
 923			return 0;
 924		}
 925	case hwmon_curr:
 926		switch (attr) {
 927		case hwmon_curr_min_alarm:
 928		case hwmon_curr_max_alarm:
 929		case hwmon_curr_lcrit_alarm:
 930		case hwmon_curr_crit_alarm:
 931		case hwmon_curr_min:
 932		case hwmon_curr_max:
 933		case hwmon_curr_lcrit:
 934		case hwmon_curr_crit:
 935			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
 936				return 0;
 937			fallthrough;
 938		case hwmon_curr_input:
 939		case hwmon_curr_label:
 940			return 0444;
 941		default:
 942			return 0;
 943		}
 944	case hwmon_power:
 945		/* External calibration of receive power requires
 946		 * floating point arithmetic. Doing that in the kernel
 947		 * is not easy, so just skip it. If the module does
 948		 * not require external calibration, we can however
 949		 * show receiver power, since FP is then not needed.
 950		 */
 951		if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
 952		    channel == 1)
 953			return 0;
 954		switch (attr) {
 955		case hwmon_power_min_alarm:
 956		case hwmon_power_max_alarm:
 957		case hwmon_power_lcrit_alarm:
 958		case hwmon_power_crit_alarm:
 959		case hwmon_power_min:
 960		case hwmon_power_max:
 961		case hwmon_power_lcrit:
 962		case hwmon_power_crit:
 963			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
 964				return 0;
 965			fallthrough;
 966		case hwmon_power_input:
 967		case hwmon_power_label:
 968			return 0444;
 969		default:
 970			return 0;
 971		}
 972	default:
 973		return 0;
 974	}
 975}
 976
 977static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
 978{
 979	__be16 val;
 980	int err;
 981
 982	err = sfp_read(sfp, true, reg, &val, sizeof(val));
 983	if (err < 0)
 984		return err;
 985
 986	*value = be16_to_cpu(val);
 987
 988	return 0;
 989}
 990
 991static void sfp_hwmon_to_rx_power(long *value)
 992{
 993	*value = DIV_ROUND_CLOSEST(*value, 10);
 994}
 995
 996static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
 997				long *value)
 998{
 999	if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
1000		*value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
1001}
1002
1003static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
1004{
1005	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
1006			    be16_to_cpu(sfp->diag.cal_t_offset), value);
1007
1008	if (*value >= 0x8000)
1009		*value -= 0x10000;
1010
1011	*value = DIV_ROUND_CLOSEST(*value * 1000, 256);
1012}
1013
1014static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
1015{
1016	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
1017			    be16_to_cpu(sfp->diag.cal_v_offset), value);
1018
1019	*value = DIV_ROUND_CLOSEST(*value, 10);
1020}
1021
1022static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
1023{
1024	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
1025			    be16_to_cpu(sfp->diag.cal_txi_offset), value);
1026
1027	*value = DIV_ROUND_CLOSEST(*value, 500);
1028}
1029
1030static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
1031{
1032	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
1033			    be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
1034
1035	*value = DIV_ROUND_CLOSEST(*value, 10);
1036}
1037
1038static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
1039{
1040	int err;
1041
1042	err = sfp_hwmon_read_sensor(sfp, reg, value);
1043	if (err < 0)
1044		return err;
1045
1046	sfp_hwmon_calibrate_temp(sfp, value);
1047
1048	return 0;
1049}
1050
1051static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
1052{
1053	int err;
1054
1055	err = sfp_hwmon_read_sensor(sfp, reg, value);
1056	if (err < 0)
1057		return err;
1058
1059	sfp_hwmon_calibrate_vcc(sfp, value);
1060
1061	return 0;
1062}
1063
1064static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
1065{
1066	int err;
1067
1068	err = sfp_hwmon_read_sensor(sfp, reg, value);
1069	if (err < 0)
1070		return err;
1071
1072	sfp_hwmon_calibrate_bias(sfp, value);
1073
1074	return 0;
1075}
1076
1077static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
1078{
1079	int err;
1080
1081	err = sfp_hwmon_read_sensor(sfp, reg, value);
1082	if (err < 0)
1083		return err;
1084
1085	sfp_hwmon_calibrate_tx_power(sfp, value);
1086
1087	return 0;
1088}
1089
1090static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
1091{
1092	int err;
1093
1094	err = sfp_hwmon_read_sensor(sfp, reg, value);
1095	if (err < 0)
1096		return err;
1097
1098	sfp_hwmon_to_rx_power(value);
1099
1100	return 0;
1101}
1102
1103static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
1104{
1105	u8 status;
1106	int err;
1107
1108	switch (attr) {
1109	case hwmon_temp_input:
1110		return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
1111
1112	case hwmon_temp_lcrit:
1113		*value = be16_to_cpu(sfp->diag.temp_low_alarm);
1114		sfp_hwmon_calibrate_temp(sfp, value);
1115		return 0;
1116
1117	case hwmon_temp_min:
1118		*value = be16_to_cpu(sfp->diag.temp_low_warn);
1119		sfp_hwmon_calibrate_temp(sfp, value);
1120		return 0;
1121	case hwmon_temp_max:
1122		*value = be16_to_cpu(sfp->diag.temp_high_warn);
1123		sfp_hwmon_calibrate_temp(sfp, value);
1124		return 0;
1125
1126	case hwmon_temp_crit:
1127		*value = be16_to_cpu(sfp->diag.temp_high_alarm);
1128		sfp_hwmon_calibrate_temp(sfp, value);
1129		return 0;
1130
1131	case hwmon_temp_lcrit_alarm:
1132		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1133		if (err < 0)
1134			return err;
1135
1136		*value = !!(status & SFP_ALARM0_TEMP_LOW);
1137		return 0;
1138
1139	case hwmon_temp_min_alarm:
1140		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1141		if (err < 0)
1142			return err;
1143
1144		*value = !!(status & SFP_WARN0_TEMP_LOW);
1145		return 0;
1146
1147	case hwmon_temp_max_alarm:
1148		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1149		if (err < 0)
1150			return err;
1151
1152		*value = !!(status & SFP_WARN0_TEMP_HIGH);
1153		return 0;
1154
1155	case hwmon_temp_crit_alarm:
1156		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1157		if (err < 0)
1158			return err;
1159
1160		*value = !!(status & SFP_ALARM0_TEMP_HIGH);
1161		return 0;
1162	default:
1163		return -EOPNOTSUPP;
1164	}
1165
1166	return -EOPNOTSUPP;
1167}
1168
1169static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
1170{
1171	u8 status;
1172	int err;
1173
1174	switch (attr) {
1175	case hwmon_in_input:
1176		return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
1177
1178	case hwmon_in_lcrit:
1179		*value = be16_to_cpu(sfp->diag.volt_low_alarm);
1180		sfp_hwmon_calibrate_vcc(sfp, value);
1181		return 0;
1182
1183	case hwmon_in_min:
1184		*value = be16_to_cpu(sfp->diag.volt_low_warn);
1185		sfp_hwmon_calibrate_vcc(sfp, value);
1186		return 0;
1187
1188	case hwmon_in_max:
1189		*value = be16_to_cpu(sfp->diag.volt_high_warn);
1190		sfp_hwmon_calibrate_vcc(sfp, value);
1191		return 0;
1192
1193	case hwmon_in_crit:
1194		*value = be16_to_cpu(sfp->diag.volt_high_alarm);
1195		sfp_hwmon_calibrate_vcc(sfp, value);
1196		return 0;
1197
1198	case hwmon_in_lcrit_alarm:
1199		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1200		if (err < 0)
1201			return err;
1202
1203		*value = !!(status & SFP_ALARM0_VCC_LOW);
1204		return 0;
1205
1206	case hwmon_in_min_alarm:
1207		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1208		if (err < 0)
1209			return err;
1210
1211		*value = !!(status & SFP_WARN0_VCC_LOW);
1212		return 0;
1213
1214	case hwmon_in_max_alarm:
1215		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1216		if (err < 0)
1217			return err;
1218
1219		*value = !!(status & SFP_WARN0_VCC_HIGH);
1220		return 0;
1221
1222	case hwmon_in_crit_alarm:
1223		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1224		if (err < 0)
1225			return err;
1226
1227		*value = !!(status & SFP_ALARM0_VCC_HIGH);
1228		return 0;
1229	default:
1230		return -EOPNOTSUPP;
1231	}
1232
1233	return -EOPNOTSUPP;
1234}
1235
1236static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
1237{
1238	u8 status;
1239	int err;
1240
1241	switch (attr) {
1242	case hwmon_curr_input:
1243		return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
1244
1245	case hwmon_curr_lcrit:
1246		*value = be16_to_cpu(sfp->diag.bias_low_alarm);
1247		sfp_hwmon_calibrate_bias(sfp, value);
1248		return 0;
1249
1250	case hwmon_curr_min:
1251		*value = be16_to_cpu(sfp->diag.bias_low_warn);
1252		sfp_hwmon_calibrate_bias(sfp, value);
1253		return 0;
1254
1255	case hwmon_curr_max:
1256		*value = be16_to_cpu(sfp->diag.bias_high_warn);
1257		sfp_hwmon_calibrate_bias(sfp, value);
1258		return 0;
1259
1260	case hwmon_curr_crit:
1261		*value = be16_to_cpu(sfp->diag.bias_high_alarm);
1262		sfp_hwmon_calibrate_bias(sfp, value);
1263		return 0;
1264
1265	case hwmon_curr_lcrit_alarm:
1266		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1267		if (err < 0)
1268			return err;
1269
1270		*value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
1271		return 0;
1272
1273	case hwmon_curr_min_alarm:
1274		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1275		if (err < 0)
1276			return err;
1277
1278		*value = !!(status & SFP_WARN0_TX_BIAS_LOW);
1279		return 0;
1280
1281	case hwmon_curr_max_alarm:
1282		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1283		if (err < 0)
1284			return err;
1285
1286		*value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
1287		return 0;
1288
1289	case hwmon_curr_crit_alarm:
1290		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1291		if (err < 0)
1292			return err;
1293
1294		*value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
1295		return 0;
1296	default:
1297		return -EOPNOTSUPP;
1298	}
1299
1300	return -EOPNOTSUPP;
1301}
1302
1303static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
1304{
1305	u8 status;
1306	int err;
1307
1308	switch (attr) {
1309	case hwmon_power_input:
1310		return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
1311
1312	case hwmon_power_lcrit:
1313		*value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
1314		sfp_hwmon_calibrate_tx_power(sfp, value);
1315		return 0;
1316
1317	case hwmon_power_min:
1318		*value = be16_to_cpu(sfp->diag.txpwr_low_warn);
1319		sfp_hwmon_calibrate_tx_power(sfp, value);
1320		return 0;
1321
1322	case hwmon_power_max:
1323		*value = be16_to_cpu(sfp->diag.txpwr_high_warn);
1324		sfp_hwmon_calibrate_tx_power(sfp, value);
1325		return 0;
1326
1327	case hwmon_power_crit:
1328		*value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
1329		sfp_hwmon_calibrate_tx_power(sfp, value);
1330		return 0;
1331
1332	case hwmon_power_lcrit_alarm:
1333		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1334		if (err < 0)
1335			return err;
1336
1337		*value = !!(status & SFP_ALARM0_TXPWR_LOW);
1338		return 0;
1339
1340	case hwmon_power_min_alarm:
1341		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1342		if (err < 0)
1343			return err;
1344
1345		*value = !!(status & SFP_WARN0_TXPWR_LOW);
1346		return 0;
1347
1348	case hwmon_power_max_alarm:
1349		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1350		if (err < 0)
1351			return err;
1352
1353		*value = !!(status & SFP_WARN0_TXPWR_HIGH);
1354		return 0;
1355
1356	case hwmon_power_crit_alarm:
1357		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1358		if (err < 0)
1359			return err;
1360
1361		*value = !!(status & SFP_ALARM0_TXPWR_HIGH);
1362		return 0;
1363	default:
1364		return -EOPNOTSUPP;
1365	}
1366
1367	return -EOPNOTSUPP;
1368}
1369
1370static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
1371{
1372	u8 status;
1373	int err;
1374
1375	switch (attr) {
1376	case hwmon_power_input:
1377		return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
1378
1379	case hwmon_power_lcrit:
1380		*value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
1381		sfp_hwmon_to_rx_power(value);
1382		return 0;
1383
1384	case hwmon_power_min:
1385		*value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
1386		sfp_hwmon_to_rx_power(value);
1387		return 0;
1388
1389	case hwmon_power_max:
1390		*value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
1391		sfp_hwmon_to_rx_power(value);
1392		return 0;
1393
1394	case hwmon_power_crit:
1395		*value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
1396		sfp_hwmon_to_rx_power(value);
1397		return 0;
1398
1399	case hwmon_power_lcrit_alarm:
1400		err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1401		if (err < 0)
1402			return err;
1403
1404		*value = !!(status & SFP_ALARM1_RXPWR_LOW);
1405		return 0;
1406
1407	case hwmon_power_min_alarm:
1408		err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1409		if (err < 0)
1410			return err;
1411
1412		*value = !!(status & SFP_WARN1_RXPWR_LOW);
1413		return 0;
1414
1415	case hwmon_power_max_alarm:
1416		err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1417		if (err < 0)
1418			return err;
1419
1420		*value = !!(status & SFP_WARN1_RXPWR_HIGH);
1421		return 0;
1422
1423	case hwmon_power_crit_alarm:
1424		err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1425		if (err < 0)
1426			return err;
1427
1428		*value = !!(status & SFP_ALARM1_RXPWR_HIGH);
1429		return 0;
1430	default:
1431		return -EOPNOTSUPP;
1432	}
1433
1434	return -EOPNOTSUPP;
1435}
1436
1437static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
1438			  u32 attr, int channel, long *value)
1439{
1440	struct sfp *sfp = dev_get_drvdata(dev);
1441
1442	switch (type) {
1443	case hwmon_temp:
1444		return sfp_hwmon_temp(sfp, attr, value);
1445	case hwmon_in:
1446		return sfp_hwmon_vcc(sfp, attr, value);
1447	case hwmon_curr:
1448		return sfp_hwmon_bias(sfp, attr, value);
1449	case hwmon_power:
1450		switch (channel) {
1451		case 0:
1452			return sfp_hwmon_tx_power(sfp, attr, value);
1453		case 1:
1454			return sfp_hwmon_rx_power(sfp, attr, value);
1455		default:
1456			return -EOPNOTSUPP;
1457		}
1458	default:
1459		return -EOPNOTSUPP;
1460	}
1461}
1462
1463static const char *const sfp_hwmon_power_labels[] = {
1464	"TX_power",
1465	"RX_power",
1466};
1467
1468static int sfp_hwmon_read_string(struct device *dev,
1469				 enum hwmon_sensor_types type,
1470				 u32 attr, int channel, const char **str)
1471{
1472	switch (type) {
1473	case hwmon_curr:
1474		switch (attr) {
1475		case hwmon_curr_label:
1476			*str = "bias";
1477			return 0;
1478		default:
1479			return -EOPNOTSUPP;
1480		}
1481		break;
1482	case hwmon_temp:
1483		switch (attr) {
1484		case hwmon_temp_label:
1485			*str = "temperature";
1486			return 0;
1487		default:
1488			return -EOPNOTSUPP;
1489		}
1490		break;
1491	case hwmon_in:
1492		switch (attr) {
1493		case hwmon_in_label:
1494			*str = "VCC";
1495			return 0;
1496		default:
1497			return -EOPNOTSUPP;
1498		}
1499		break;
1500	case hwmon_power:
1501		switch (attr) {
1502		case hwmon_power_label:
1503			*str = sfp_hwmon_power_labels[channel];
1504			return 0;
1505		default:
1506			return -EOPNOTSUPP;
1507		}
1508		break;
1509	default:
1510		return -EOPNOTSUPP;
1511	}
1512
1513	return -EOPNOTSUPP;
1514}
1515
1516static const struct hwmon_ops sfp_hwmon_ops = {
1517	.is_visible = sfp_hwmon_is_visible,
1518	.read = sfp_hwmon_read,
1519	.read_string = sfp_hwmon_read_string,
1520};
1521
1522static const struct hwmon_channel_info * const sfp_hwmon_info[] = {
1523	HWMON_CHANNEL_INFO(chip,
1524			   HWMON_C_REGISTER_TZ),
1525	HWMON_CHANNEL_INFO(in,
1526			   HWMON_I_INPUT |
1527			   HWMON_I_MAX | HWMON_I_MIN |
1528			   HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1529			   HWMON_I_CRIT | HWMON_I_LCRIT |
1530			   HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM |
1531			   HWMON_I_LABEL),
1532	HWMON_CHANNEL_INFO(temp,
1533			   HWMON_T_INPUT |
1534			   HWMON_T_MAX | HWMON_T_MIN |
1535			   HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
1536			   HWMON_T_CRIT | HWMON_T_LCRIT |
1537			   HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM |
1538			   HWMON_T_LABEL),
1539	HWMON_CHANNEL_INFO(curr,
1540			   HWMON_C_INPUT |
1541			   HWMON_C_MAX | HWMON_C_MIN |
1542			   HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1543			   HWMON_C_CRIT | HWMON_C_LCRIT |
1544			   HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM |
1545			   HWMON_C_LABEL),
1546	HWMON_CHANNEL_INFO(power,
1547			   /* Transmit power */
1548			   HWMON_P_INPUT |
1549			   HWMON_P_MAX | HWMON_P_MIN |
1550			   HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1551			   HWMON_P_CRIT | HWMON_P_LCRIT |
1552			   HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1553			   HWMON_P_LABEL,
1554			   /* Receive power */
1555			   HWMON_P_INPUT |
1556			   HWMON_P_MAX | HWMON_P_MIN |
1557			   HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1558			   HWMON_P_CRIT | HWMON_P_LCRIT |
1559			   HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1560			   HWMON_P_LABEL),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1561	NULL,
1562};
1563
1564static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1565	.ops = &sfp_hwmon_ops,
1566	.info = sfp_hwmon_info,
1567};
1568
1569static void sfp_hwmon_probe(struct work_struct *work)
1570{
1571	struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work);
1572	int err;
1573
1574	/* hwmon interface needs to access 16bit registers in atomic way to
1575	 * guarantee coherency of the diagnostic monitoring data. If it is not
1576	 * possible to guarantee coherency because EEPROM is broken in such way
1577	 * that does not support atomic 16bit read operation then we have to
1578	 * skip registration of hwmon device.
1579	 */
1580	if (sfp->i2c_block_size < 2) {
1581		dev_info(sfp->dev,
1582			 "skipping hwmon device registration due to broken EEPROM\n");
1583		dev_info(sfp->dev,
1584			 "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n");
1585		return;
1586	}
1587
1588	err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1589	if (err < 0) {
1590		if (sfp->hwmon_tries--) {
1591			mod_delayed_work(system_wq, &sfp->hwmon_probe,
1592					 T_PROBE_RETRY_SLOW);
1593		} else {
1594			dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
1595				 ERR_PTR(err));
1596		}
1597		return;
1598	}
1599
1600	sfp->hwmon_name = hwmon_sanitize_name(dev_name(sfp->dev));
1601	if (IS_ERR(sfp->hwmon_name)) {
1602		dev_err(sfp->dev, "out of memory for hwmon name\n");
1603		return;
1604	}
1605
 
 
 
 
1606	sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1607							 sfp->hwmon_name, sfp,
1608							 &sfp_hwmon_chip_info,
1609							 NULL);
1610	if (IS_ERR(sfp->hwmon_dev))
1611		dev_err(sfp->dev, "failed to register hwmon device: %ld\n",
1612			PTR_ERR(sfp->hwmon_dev));
1613}
1614
1615static int sfp_hwmon_insert(struct sfp *sfp)
1616{
1617	if (sfp->have_a2 && sfp->id.ext.diagmon & SFP_DIAGMON_DDM) {
1618		mod_delayed_work(system_wq, &sfp->hwmon_probe, 1);
1619		sfp->hwmon_tries = R_PROBE_RETRY_SLOW;
1620	}
 
 
 
 
 
 
 
 
 
 
1621
1622	return 0;
1623}
1624
1625static void sfp_hwmon_remove(struct sfp *sfp)
1626{
1627	cancel_delayed_work_sync(&sfp->hwmon_probe);
1628	if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1629		hwmon_device_unregister(sfp->hwmon_dev);
1630		sfp->hwmon_dev = NULL;
1631		kfree(sfp->hwmon_name);
1632	}
1633}
1634
1635static int sfp_hwmon_init(struct sfp *sfp)
1636{
1637	INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe);
1638
1639	return 0;
1640}
1641
1642static void sfp_hwmon_exit(struct sfp *sfp)
1643{
1644	cancel_delayed_work_sync(&sfp->hwmon_probe);
1645}
1646#else
1647static int sfp_hwmon_insert(struct sfp *sfp)
1648{
1649	return 0;
1650}
1651
1652static void sfp_hwmon_remove(struct sfp *sfp)
1653{
1654}
1655
1656static int sfp_hwmon_init(struct sfp *sfp)
1657{
1658	return 0;
1659}
1660
1661static void sfp_hwmon_exit(struct sfp *sfp)
1662{
1663}
1664#endif
1665
1666/* Helpers */
1667static void sfp_module_tx_disable(struct sfp *sfp)
1668{
1669	dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1670		sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1671	sfp_mod_state(sfp, SFP_F_TX_DISABLE, SFP_F_TX_DISABLE);
 
1672}
1673
1674static void sfp_module_tx_enable(struct sfp *sfp)
1675{
1676	dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1677		sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1678	sfp_mod_state(sfp, SFP_F_TX_DISABLE, 0);
 
1679}
1680
1681#if IS_ENABLED(CONFIG_DEBUG_FS)
1682static int sfp_debug_state_show(struct seq_file *s, void *data)
1683{
1684	struct sfp *sfp = s->private;
1685
1686	seq_printf(s, "Module state: %s\n",
1687		   mod_state_to_str(sfp->sm_mod_state));
1688	seq_printf(s, "Module probe attempts: %d %d\n",
1689		   R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init,
1690		   R_PROBE_RETRY_SLOW - sfp->sm_mod_tries);
1691	seq_printf(s, "Device state: %s\n",
1692		   dev_state_to_str(sfp->sm_dev_state));
1693	seq_printf(s, "Main state: %s\n",
1694		   sm_state_to_str(sfp->sm_state));
1695	seq_printf(s, "Fault recovery remaining retries: %d\n",
1696		   sfp->sm_fault_retries);
1697	seq_printf(s, "PHY probe remaining retries: %d\n",
1698		   sfp->sm_phy_retries);
1699	seq_printf(s, "Signalling rate: %u kBd\n", sfp->rate_kbd);
1700	seq_printf(s, "Rate select threshold: %u kBd\n",
1701		   sfp->rs_threshold_kbd);
1702	seq_printf(s, "moddef0: %d\n", !!(sfp->state & SFP_F_PRESENT));
1703	seq_printf(s, "rx_los: %d\n", !!(sfp->state & SFP_F_LOS));
1704	seq_printf(s, "tx_fault: %d\n", !!(sfp->state & SFP_F_TX_FAULT));
1705	seq_printf(s, "tx_disable: %d\n", !!(sfp->state & SFP_F_TX_DISABLE));
1706	seq_printf(s, "rs0: %d\n", !!(sfp->state & SFP_F_RS0));
1707	seq_printf(s, "rs1: %d\n", !!(sfp->state & SFP_F_RS1));
1708	return 0;
1709}
1710DEFINE_SHOW_ATTRIBUTE(sfp_debug_state);
1711
1712static void sfp_debugfs_init(struct sfp *sfp)
1713{
1714	sfp->debugfs_dir = debugfs_create_dir(dev_name(sfp->dev), NULL);
1715
1716	debugfs_create_file("state", 0600, sfp->debugfs_dir, sfp,
1717			    &sfp_debug_state_fops);
1718}
1719
1720static void sfp_debugfs_exit(struct sfp *sfp)
1721{
1722	debugfs_remove_recursive(sfp->debugfs_dir);
1723}
1724#else
1725static void sfp_debugfs_init(struct sfp *sfp)
1726{
1727}
1728
1729static void sfp_debugfs_exit(struct sfp *sfp)
1730{
1731}
1732#endif
1733
1734static void sfp_module_tx_fault_reset(struct sfp *sfp)
1735{
1736	unsigned int state;
1737
1738	mutex_lock(&sfp->st_mutex);
1739	state = sfp->state;
1740	if (!(state & SFP_F_TX_DISABLE)) {
1741		sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1742
1743		udelay(T_RESET_US);
1744
1745		sfp_set_state(sfp, state);
1746	}
1747	mutex_unlock(&sfp->st_mutex);
1748}
1749
1750/* SFP state machine */
1751static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1752{
1753	if (timeout)
1754		mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1755				 timeout);
1756	else
1757		cancel_delayed_work(&sfp->timeout);
1758}
1759
1760static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1761			unsigned int timeout)
1762{
1763	sfp->sm_state = state;
1764	sfp_sm_set_timer(sfp, timeout);
1765}
1766
1767static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state,
1768			    unsigned int timeout)
1769{
1770	sfp->sm_mod_state = state;
1771	sfp_sm_set_timer(sfp, timeout);
1772}
1773
1774static void sfp_sm_phy_detach(struct sfp *sfp)
1775{
1776	sfp_remove_phy(sfp->sfp_bus);
1777	phy_device_remove(sfp->mod_phy);
1778	phy_device_free(sfp->mod_phy);
1779	sfp->mod_phy = NULL;
1780}
1781
1782static int sfp_sm_probe_phy(struct sfp *sfp, int addr, bool is_c45)
1783{
1784	struct phy_device *phy;
1785	int err;
1786
1787	phy = get_phy_device(sfp->i2c_mii, addr, is_c45);
1788	if (phy == ERR_PTR(-ENODEV))
1789		return PTR_ERR(phy);
1790	if (IS_ERR(phy)) {
1791		dev_err(sfp->dev, "mdiobus scan returned %pe\n", phy);
1792		return PTR_ERR(phy);
1793	}
1794
1795	/* Mark this PHY as being on a SFP module */
1796	phy->is_on_sfp_module = true;
1797
1798	err = phy_device_register(phy);
1799	if (err) {
1800		phy_device_free(phy);
1801		dev_err(sfp->dev, "phy_device_register failed: %pe\n",
1802			ERR_PTR(err));
1803		return err;
1804	}
1805
1806	err = sfp_add_phy(sfp->sfp_bus, phy);
1807	if (err) {
1808		phy_device_remove(phy);
1809		phy_device_free(phy);
1810		dev_err(sfp->dev, "sfp_add_phy failed: %pe\n", ERR_PTR(err));
1811		return err;
1812	}
1813
1814	sfp->mod_phy = phy;
1815
1816	return 0;
1817}
1818
1819static void sfp_sm_link_up(struct sfp *sfp)
1820{
1821	sfp_link_up(sfp->sfp_bus);
1822	sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1823}
1824
1825static void sfp_sm_link_down(struct sfp *sfp)
1826{
1827	sfp_link_down(sfp->sfp_bus);
1828}
1829
1830static void sfp_sm_link_check_los(struct sfp *sfp)
1831{
1832	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1833	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1834	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1835	bool los = false;
1836
1837	/* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
1838	 * are set, we assume that no LOS signal is available. If both are
1839	 * set, we assume LOS is not implemented (and is meaningless.)
1840	 */
1841	if (los_options == los_inverted)
1842		los = !(sfp->state & SFP_F_LOS);
1843	else if (los_options == los_normal)
1844		los = !!(sfp->state & SFP_F_LOS);
1845
1846	if (los)
1847		sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1848	else
1849		sfp_sm_link_up(sfp);
1850}
1851
1852static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1853{
1854	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1855	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1856	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1857
1858	return (los_options == los_inverted && event == SFP_E_LOS_LOW) ||
1859	       (los_options == los_normal && event == SFP_E_LOS_HIGH);
1860}
1861
1862static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1863{
1864	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1865	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1866	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1867
1868	return (los_options == los_inverted && event == SFP_E_LOS_HIGH) ||
1869	       (los_options == los_normal && event == SFP_E_LOS_LOW);
1870}
1871
1872static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn)
1873{
1874	if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) {
1875		dev_err(sfp->dev,
1876			"module persistently indicates fault, disabling\n");
1877		sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1878	} else {
1879		if (warn)
1880			dev_err(sfp->dev, "module transmit fault indicated\n");
1881
1882		sfp_sm_next(sfp, next_state, T_FAULT_RECOVER);
1883	}
1884}
1885
1886static int sfp_sm_add_mdio_bus(struct sfp *sfp)
1887{
1888	if (sfp->mdio_protocol != MDIO_I2C_NONE)
1889		return sfp_i2c_mdiobus_create(sfp);
1890
1891	return 0;
1892}
1893
1894/* Probe a SFP for a PHY device if the module supports copper - the PHY
1895 * normally sits at I2C bus address 0x56, and may either be a clause 22
1896 * or clause 45 PHY.
1897 *
1898 * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with
1899 * negotiation enabled, but some may be in 1000base-X - which is for the
1900 * PHY driver to determine.
1901 *
1902 * Clause 45 copper SFP+ modules (10G) appear to switch their interface
1903 * mode according to the negotiated line speed.
1904 */
1905static int sfp_sm_probe_for_phy(struct sfp *sfp)
1906{
1907	int err = 0;
1908
1909	switch (sfp->mdio_protocol) {
1910	case MDIO_I2C_NONE:
 
 
 
 
1911		break;
1912
1913	case MDIO_I2C_MARVELL_C22:
1914		err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, false);
1915		break;
1916
1917	case MDIO_I2C_C45:
1918		err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, true);
1919		break;
1920
1921	case MDIO_I2C_ROLLBALL:
1922		err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR_ROLLBALL, true);
1923		break;
1924	}
1925
1926	return err;
1927}
1928
1929static int sfp_module_parse_power(struct sfp *sfp)
1930{
1931	u32 power_mW = 1000;
1932	bool supports_a2;
1933
1934	if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 &&
1935	    sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
1936		power_mW = 1500;
1937	/* Added in Rev 11.9, but there is no compliance code for this */
1938	if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV11_4 &&
1939	    sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
1940		power_mW = 2000;
1941
1942	/* Power level 1 modules (max. 1W) are always supported. */
1943	if (power_mW <= 1000) {
1944		sfp->module_power_mW = power_mW;
1945		return 0;
1946	}
1947
1948	supports_a2 = sfp->id.ext.sff8472_compliance !=
1949				SFP_SFF8472_COMPLIANCE_NONE ||
1950		      sfp->id.ext.diagmon & SFP_DIAGMON_DDM;
1951
1952	if (power_mW > sfp->max_power_mW) {
1953		/* Module power specification exceeds the allowed maximum. */
1954		if (!supports_a2) {
 
 
1955			/* The module appears not to implement bus address
1956			 * 0xa2, so assume that the module powers up in the
1957			 * indicated mode.
1958			 */
1959			dev_err(sfp->dev,
1960				"Host does not support %u.%uW modules\n",
1961				power_mW / 1000, (power_mW / 100) % 10);
1962			return -EINVAL;
1963		} else {
1964			dev_warn(sfp->dev,
1965				 "Host does not support %u.%uW modules, module left in power mode 1\n",
1966				 power_mW / 1000, (power_mW / 100) % 10);
1967			return 0;
1968		}
1969	}
1970
1971	if (!supports_a2) {
1972		/* The module power level is below the host maximum and the
1973		 * module appears not to implement bus address 0xa2, so assume
1974		 * that the module powers up in the indicated mode.
1975		 */
1976		return 0;
1977	}
1978
1979	/* If the module requires a higher power mode, but also requires
1980	 * an address change sequence, warn the user that the module may
1981	 * not be functional.
1982	 */
1983	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) {
1984		dev_warn(sfp->dev,
1985			 "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n",
1986			 power_mW / 1000, (power_mW / 100) % 10);
1987		return 0;
1988	}
1989
1990	sfp->module_power_mW = power_mW;
1991
1992	return 0;
1993}
1994
1995static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable)
1996{
 
1997	int err;
1998
1999	err = sfp_modify_u8(sfp, true, SFP_EXT_STATUS,
2000			    SFP_EXT_STATUS_PWRLVL_SELECT,
2001			    enable ? SFP_EXT_STATUS_PWRLVL_SELECT : 0);
2002	if (err != sizeof(u8)) {
2003		dev_err(sfp->dev, "failed to %sable high power: %pe\n",
2004			enable ? "en" : "dis", ERR_PTR(err));
2005		return -EAGAIN;
2006	}
2007
2008	if (enable)
2009		dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
2010			 sfp->module_power_mW / 1000,
2011			 (sfp->module_power_mW / 100) % 10);
2012
2013	return 0;
2014}
2015
2016static void sfp_module_parse_rate_select(struct sfp *sfp)
2017{
2018	u8 rate_id;
2019
2020	sfp->rs_threshold_kbd = 0;
2021	sfp->rs_state_mask = 0;
2022
2023	if (!(sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_RATE_SELECT)))
2024		/* No support for RateSelect */
2025		return;
2026
2027	/* Default to INF-8074 RateSelect operation. The signalling threshold
2028	 * rate is not well specified, so always select "Full Bandwidth", but
2029	 * SFF-8079 reveals that it is understood that RS0 will be low for
2030	 * 1.0625Gb/s and high for 2.125Gb/s. Choose a value half-way between.
2031	 * This method exists prior to SFF-8472.
2032	 */
2033	sfp->rs_state_mask = SFP_F_RS0;
2034	sfp->rs_threshold_kbd = 1594;
2035
2036	/* Parse the rate identifier, which is complicated due to history:
2037	 * SFF-8472 rev 9.5 marks this field as reserved.
2038	 * SFF-8079 references SFF-8472 rev 9.5 and defines bit 0. SFF-8472
2039	 *  compliance is not required.
2040	 * SFF-8472 rev 10.2 defines this field using values 0..4
2041	 * SFF-8472 rev 11.0 redefines this field with bit 0 for SFF-8079
2042	 * and even values.
2043	 */
2044	rate_id = sfp->id.base.rate_id;
2045	if (rate_id == 0)
2046		/* Unspecified */
2047		return;
2048
2049	/* SFF-8472 rev 10.0..10.4 did not account for SFF-8079 using bit 0,
2050	 * and allocated value 3 to SFF-8431 independent tx/rx rate select.
2051	 * Convert this to a SFF-8472 rev 11.0 rate identifier.
2052	 */
2053	if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 &&
2054	    sfp->id.ext.sff8472_compliance < SFP_SFF8472_COMPLIANCE_REV11_0 &&
2055	    rate_id == 3)
2056		rate_id = SFF_RID_8431;
2057
2058	if (rate_id & SFF_RID_8079) {
2059		/* SFF-8079 RateSelect / Application Select in conjunction with
2060		 * SFF-8472 rev 9.5. SFF-8079 defines rate_id as a bitfield
2061		 * with only bit 0 used, which takes precedence over SFF-8472.
2062		 */
2063		if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_APP_SELECT_SFF8079)) {
2064			/* SFF-8079 Part 1 - rate selection between Fibre
2065			 * Channel 1.0625/2.125/4.25 Gbd modes. Note that RS0
2066			 * is high for 2125, so we have to subtract 1 to
2067			 * include it.
2068			 */
2069			sfp->rs_threshold_kbd = 2125 - 1;
2070			sfp->rs_state_mask = SFP_F_RS0;
2071		}
2072		return;
2073	}
2074
2075	/* SFF-8472 rev 9.5 does not define the rate identifier */
2076	if (sfp->id.ext.sff8472_compliance <= SFP_SFF8472_COMPLIANCE_REV9_5)
2077		return;
2078
2079	/* SFF-8472 rev 11.0 defines rate_id as a numerical value which will
2080	 * always have bit 0 clear due to SFF-8079's bitfield usage of rate_id.
2081	 */
2082	switch (rate_id) {
2083	case SFF_RID_8431_RX_ONLY:
2084		sfp->rs_threshold_kbd = 4250;
2085		sfp->rs_state_mask = SFP_F_RS0;
2086		break;
2087
2088	case SFF_RID_8431_TX_ONLY:
2089		sfp->rs_threshold_kbd = 4250;
2090		sfp->rs_state_mask = SFP_F_RS1;
2091		break;
2092
2093	case SFF_RID_8431:
2094		sfp->rs_threshold_kbd = 4250;
2095		sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1;
2096		break;
2097
2098	case SFF_RID_10G8G:
2099		sfp->rs_threshold_kbd = 9000;
2100		sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1;
2101		break;
2102	}
2103}
2104
2105/* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL
2106 * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do
2107 * not support multibyte reads from the EEPROM. Each multi-byte read
2108 * operation returns just one byte of EEPROM followed by zeros. There is
2109 * no way to identify which modules are using Realtek RTL8672 and RTL9601C
2110 * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor
2111 * name and vendor id into EEPROM, so there is even no way to detect if
2112 * module is V-SOL V2801F. Therefore check for those zeros in the read
2113 * data and then based on check switch to reading EEPROM to one byte
2114 * at a time.
2115 */
2116static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len)
2117{
2118	size_t i, block_size = sfp->i2c_block_size;
2119
2120	/* Already using byte IO */
2121	if (block_size == 1)
2122		return false;
2123
2124	for (i = 1; i < len; i += block_size) {
2125		if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i)))
2126			return false;
2127	}
2128	return true;
2129}
2130
2131static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id)
2132{
2133	u8 check;
2134	int err;
2135
2136	if (id->base.phys_id != SFF8024_ID_SFF_8472 ||
2137	    id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP ||
2138	    id->base.connector != SFF8024_CONNECTOR_LC) {
2139		dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n");
2140		id->base.phys_id = SFF8024_ID_SFF_8472;
2141		id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP;
2142		id->base.connector = SFF8024_CONNECTOR_LC;
2143		err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3);
2144		if (err != 3) {
2145			dev_err(sfp->dev,
2146				"Failed to rewrite module EEPROM: %pe\n",
2147				ERR_PTR(err));
2148			return err;
2149		}
2150
2151		/* Cotsworks modules have been found to require a delay between write operations. */
2152		mdelay(50);
2153
2154		/* Update base structure checksum */
2155		check = sfp_check(&id->base, sizeof(id->base) - 1);
2156		err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1);
2157		if (err != 1) {
2158			dev_err(sfp->dev,
2159				"Failed to update base structure checksum in fiber module EEPROM: %pe\n",
2160				ERR_PTR(err));
2161			return err;
2162		}
2163	}
2164	return 0;
2165}
2166
2167static int sfp_module_parse_sff8472(struct sfp *sfp)
2168{
2169	/* If the module requires address swap mode, warn about it */
2170	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
2171		dev_warn(sfp->dev,
2172			 "module address swap to access page 0xA2 is not supported.\n");
2173	else
2174		sfp->have_a2 = true;
2175
2176	return 0;
2177}
2178
2179static int sfp_sm_mod_probe(struct sfp *sfp, bool report)
2180{
2181	/* SFP module inserted - read I2C data */
2182	struct sfp_eeprom_id id;
2183	bool cotsworks_sfbg;
2184	unsigned int mask;
2185	bool cotsworks;
2186	u8 check;
2187	int ret;
2188
2189	sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE;
 
 
 
 
2190
2191	ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
2192	if (ret < 0) {
2193		if (report)
2194			dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
2195				ERR_PTR(ret));
2196		return -EAGAIN;
2197	}
2198
2199	if (ret != sizeof(id.base)) {
2200		dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
2201		return -EAGAIN;
2202	}
2203
2204	/* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from
2205	 * address 0x51 is just one byte at a time. Also SFF-8472 requires
2206	 * that EEPROM supports atomic 16bit read operation for diagnostic
2207	 * fields, so do not switch to one byte reading at a time unless it
2208	 * is really required and we have no other option.
2209	 */
2210	if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) {
2211		dev_info(sfp->dev,
2212			 "Detected broken RTL8672/RTL9601C emulated EEPROM\n");
2213		dev_info(sfp->dev,
2214			 "Switching to reading EEPROM to one byte at a time\n");
2215		sfp->i2c_block_size = 1;
2216
2217		ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
2218		if (ret < 0) {
2219			if (report)
2220				dev_err(sfp->dev,
2221					"failed to read EEPROM: %pe\n",
2222					ERR_PTR(ret));
2223			return -EAGAIN;
2224		}
2225
2226		if (ret != sizeof(id.base)) {
2227			dev_err(sfp->dev, "EEPROM short read: %pe\n",
2228				ERR_PTR(ret));
2229			return -EAGAIN;
2230		}
2231	}
2232
2233	/* Cotsworks do not seem to update the checksums when they
2234	 * do the final programming with the final module part number,
2235	 * serial number and date code.
2236	 */
2237	cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS       ", 16);
2238	cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4);
2239
2240	/* Cotsworks SFF module EEPROM do not always have valid phys_id,
2241	 * phys_ext_id, and connector bytes.  Rewrite SFF EEPROM bytes if
2242	 * Cotsworks PN matches and bytes are not correct.
2243	 */
2244	if (cotsworks && cotsworks_sfbg) {
2245		ret = sfp_cotsworks_fixup_check(sfp, &id);
2246		if (ret < 0)
2247			return ret;
2248	}
2249
2250	/* Validate the checksum over the base structure */
2251	check = sfp_check(&id.base, sizeof(id.base) - 1);
2252	if (check != id.base.cc_base) {
2253		if (cotsworks) {
2254			dev_warn(sfp->dev,
2255				 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
2256				 check, id.base.cc_base);
2257		} else {
2258			dev_err(sfp->dev,
2259				"EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
2260				check, id.base.cc_base);
2261			print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
2262				       16, 1, &id, sizeof(id), true);
2263			return -EINVAL;
2264		}
2265	}
2266
2267	ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext));
2268	if (ret < 0) {
2269		if (report)
2270			dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
2271				ERR_PTR(ret));
2272		return -EAGAIN;
2273	}
2274
2275	if (ret != sizeof(id.ext)) {
2276		dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
2277		return -EAGAIN;
2278	}
2279
2280	check = sfp_check(&id.ext, sizeof(id.ext) - 1);
2281	if (check != id.ext.cc_ext) {
2282		if (cotsworks) {
2283			dev_warn(sfp->dev,
2284				 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
2285				 check, id.ext.cc_ext);
2286		} else {
2287			dev_err(sfp->dev,
2288				"EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
2289				check, id.ext.cc_ext);
2290			print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
2291				       16, 1, &id, sizeof(id), true);
2292			memset(&id.ext, 0, sizeof(id.ext));
2293		}
2294	}
2295
2296	sfp->id = id;
2297
2298	dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
2299		 (int)sizeof(id.base.vendor_name), id.base.vendor_name,
2300		 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
2301		 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
2302		 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
2303		 (int)sizeof(id.ext.datecode), id.ext.datecode);
2304
2305	/* Check whether we support this module */
2306	if (!sfp->type->module_supported(&id)) {
2307		dev_err(sfp->dev,
2308			"module is not supported - phys id 0x%02x 0x%02x\n",
2309			sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
2310		return -EINVAL;
2311	}
2312
2313	if (sfp->id.ext.sff8472_compliance != SFP_SFF8472_COMPLIANCE_NONE) {
2314		ret = sfp_module_parse_sff8472(sfp);
2315		if (ret < 0)
2316			return ret;
2317	}
2318
2319	/* Parse the module power requirement */
2320	ret = sfp_module_parse_power(sfp);
2321	if (ret < 0)
2322		return ret;
2323
2324	sfp_module_parse_rate_select(sfp);
2325
2326	mask = SFP_F_PRESENT;
2327	if (sfp->gpio[GPIO_TX_DISABLE])
2328		mask |= SFP_F_TX_DISABLE;
2329	if (sfp->gpio[GPIO_TX_FAULT])
2330		mask |= SFP_F_TX_FAULT;
2331	if (sfp->gpio[GPIO_LOS])
2332		mask |= SFP_F_LOS;
2333	if (sfp->gpio[GPIO_RS0])
2334		mask |= SFP_F_RS0;
2335	if (sfp->gpio[GPIO_RS1])
2336		mask |= SFP_F_RS1;
2337
2338	sfp->module_t_start_up = T_START_UP;
2339	sfp->module_t_wait = T_WAIT;
2340	sfp->phy_t_retry = T_PHY_RETRY;
2341
2342	sfp->state_ignore_mask = 0;
2343
2344	if (sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SFI ||
2345	    sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SR ||
2346	    sfp->id.base.extended_cc == SFF8024_ECC_5GBASE_T ||
2347	    sfp->id.base.extended_cc == SFF8024_ECC_2_5GBASE_T)
2348		sfp->mdio_protocol = MDIO_I2C_C45;
2349	else if (sfp->id.base.e1000_base_t)
2350		sfp->mdio_protocol = MDIO_I2C_MARVELL_C22;
2351	else
2352		sfp->mdio_protocol = MDIO_I2C_NONE;
2353
2354	sfp->quirk = sfp_lookup_quirk(&id);
2355
2356	mutex_lock(&sfp->st_mutex);
2357	/* Initialise state bits to use from hardware */
2358	sfp->state_hw_mask = mask;
2359
2360	/* We want to drive the rate select pins that the module is using */
2361	sfp->state_hw_drive |= sfp->rs_state_mask;
2362
2363	if (sfp->quirk && sfp->quirk->fixup)
2364		sfp->quirk->fixup(sfp);
2365
2366	sfp->state_hw_mask &= ~sfp->state_ignore_mask;
2367	mutex_unlock(&sfp->st_mutex);
2368
2369	return 0;
2370}
2371
2372static void sfp_sm_mod_remove(struct sfp *sfp)
2373{
2374	if (sfp->sm_mod_state > SFP_MOD_WAITDEV)
2375		sfp_module_remove(sfp->sfp_bus);
2376
2377	sfp_hwmon_remove(sfp);
2378
2379	memset(&sfp->id, 0, sizeof(sfp->id));
2380	sfp->module_power_mW = 0;
2381	sfp->state_hw_drive = SFP_F_TX_DISABLE;
2382	sfp->have_a2 = false;
2383
2384	dev_info(sfp->dev, "module removed\n");
2385}
2386
2387/* This state machine tracks the upstream's state */
2388static void sfp_sm_device(struct sfp *sfp, unsigned int event)
2389{
2390	switch (sfp->sm_dev_state) {
2391	default:
2392		if (event == SFP_E_DEV_ATTACH)
2393			sfp->sm_dev_state = SFP_DEV_DOWN;
2394		break;
2395
2396	case SFP_DEV_DOWN:
2397		if (event == SFP_E_DEV_DETACH)
2398			sfp->sm_dev_state = SFP_DEV_DETACHED;
2399		else if (event == SFP_E_DEV_UP)
2400			sfp->sm_dev_state = SFP_DEV_UP;
2401		break;
2402
2403	case SFP_DEV_UP:
2404		if (event == SFP_E_DEV_DETACH)
2405			sfp->sm_dev_state = SFP_DEV_DETACHED;
2406		else if (event == SFP_E_DEV_DOWN)
2407			sfp->sm_dev_state = SFP_DEV_DOWN;
2408		break;
2409	}
2410}
2411
2412/* This state machine tracks the insert/remove state of the module, probes
2413 * the on-board EEPROM, and sets up the power level.
2414 */
2415static void sfp_sm_module(struct sfp *sfp, unsigned int event)
2416{
2417	int err;
2418
2419	/* Handle remove event globally, it resets this state machine */
2420	if (event == SFP_E_REMOVE) {
2421		if (sfp->sm_mod_state > SFP_MOD_PROBE)
2422			sfp_sm_mod_remove(sfp);
2423		sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0);
2424		return;
2425	}
2426
2427	/* Handle device detach globally */
2428	if (sfp->sm_dev_state < SFP_DEV_DOWN &&
2429	    sfp->sm_mod_state > SFP_MOD_WAITDEV) {
2430		if (sfp->module_power_mW > 1000 &&
2431		    sfp->sm_mod_state > SFP_MOD_HPOWER)
2432			sfp_sm_mod_hpower(sfp, false);
2433		sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2434		return;
2435	}
2436
2437	switch (sfp->sm_mod_state) {
2438	default:
2439		if (event == SFP_E_INSERT) {
2440			sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL);
2441			sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT;
2442			sfp->sm_mod_tries = R_PROBE_RETRY_SLOW;
2443		}
2444		break;
2445
2446	case SFP_MOD_PROBE:
2447		/* Wait for T_PROBE_INIT to time out */
2448		if (event != SFP_E_TIMEOUT)
2449			break;
2450
2451		err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1);
2452		if (err == -EAGAIN) {
2453			if (sfp->sm_mod_tries_init &&
2454			   --sfp->sm_mod_tries_init) {
2455				sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2456				break;
2457			} else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) {
2458				if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1)
2459					dev_warn(sfp->dev,
2460						 "please wait, module slow to respond\n");
2461				sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW);
2462				break;
2463			}
2464		}
2465		if (err < 0) {
2466			sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2467			break;
2468		}
2469
2470		/* Force a poll to re-read the hardware signal state after
2471		 * sfp_sm_mod_probe() changed state_hw_mask.
2472		 */
2473		mod_delayed_work(system_wq, &sfp->poll, 1);
2474
2475		err = sfp_hwmon_insert(sfp);
2476		if (err)
2477			dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
2478				 ERR_PTR(err));
2479
2480		sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2481		fallthrough;
2482	case SFP_MOD_WAITDEV:
2483		/* Ensure that the device is attached before proceeding */
2484		if (sfp->sm_dev_state < SFP_DEV_DOWN)
2485			break;
2486
2487		/* Report the module insertion to the upstream device */
2488		err = sfp_module_insert(sfp->sfp_bus, &sfp->id,
2489					sfp->quirk);
2490		if (err < 0) {
2491			sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2492			break;
2493		}
2494
2495		/* If this is a power level 1 module, we are done */
2496		if (sfp->module_power_mW <= 1000)
2497			goto insert;
2498
2499		sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0);
2500		fallthrough;
2501	case SFP_MOD_HPOWER:
2502		/* Enable high power mode */
2503		err = sfp_sm_mod_hpower(sfp, true);
2504		if (err < 0) {
2505			if (err != -EAGAIN) {
2506				sfp_module_remove(sfp->sfp_bus);
2507				sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2508			} else {
2509				sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2510			}
2511			break;
2512		}
2513
2514		sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL);
2515		break;
2516
2517	case SFP_MOD_WAITPWR:
2518		/* Wait for T_HPOWER_LEVEL to time out */
2519		if (event != SFP_E_TIMEOUT)
2520			break;
2521
2522	insert:
2523		sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0);
2524		break;
2525
2526	case SFP_MOD_PRESENT:
2527	case SFP_MOD_ERROR:
2528		break;
2529	}
2530}
2531
2532static void sfp_sm_main(struct sfp *sfp, unsigned int event)
2533{
2534	unsigned long timeout;
2535	int ret;
2536
2537	/* Some events are global */
2538	if (sfp->sm_state != SFP_S_DOWN &&
2539	    (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2540	     sfp->sm_dev_state != SFP_DEV_UP)) {
2541		if (sfp->sm_state == SFP_S_LINK_UP &&
2542		    sfp->sm_dev_state == SFP_DEV_UP)
2543			sfp_sm_link_down(sfp);
2544		if (sfp->sm_state > SFP_S_INIT)
2545			sfp_module_stop(sfp->sfp_bus);
2546		if (sfp->mod_phy)
2547			sfp_sm_phy_detach(sfp);
2548		if (sfp->i2c_mii)
2549			sfp_i2c_mdiobus_destroy(sfp);
2550		sfp_module_tx_disable(sfp);
2551		sfp_soft_stop_poll(sfp);
2552		sfp_sm_next(sfp, SFP_S_DOWN, 0);
2553		return;
2554	}
2555
2556	/* The main state machine */
2557	switch (sfp->sm_state) {
2558	case SFP_S_DOWN:
2559		if (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2560		    sfp->sm_dev_state != SFP_DEV_UP)
2561			break;
2562
2563		/* Only use the soft state bits if we have access to the A2h
2564		 * memory, which implies that we have some level of SFF-8472
2565		 * compliance.
2566		 */
2567		if (sfp->have_a2)
2568			sfp_soft_start_poll(sfp);
2569
2570		sfp_module_tx_enable(sfp);
2571
2572		/* Initialise the fault clearance retries */
2573		sfp->sm_fault_retries = N_FAULT_INIT;
2574
2575		/* We need to check the TX_FAULT state, which is not defined
2576		 * while TX_DISABLE is asserted. The earliest we want to do
2577		 * anything (such as probe for a PHY) is 50ms (or more on
2578		 * specific modules).
2579		 */
2580		sfp_sm_next(sfp, SFP_S_WAIT, sfp->module_t_wait);
2581		break;
2582
2583	case SFP_S_WAIT:
2584		if (event != SFP_E_TIMEOUT)
2585			break;
2586
2587		if (sfp->state & SFP_F_TX_FAULT) {
2588			/* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431)
2589			 * from the TX_DISABLE deassertion for the module to
2590			 * initialise, which is indicated by TX_FAULT
2591			 * deasserting.
2592			 */
2593			timeout = sfp->module_t_start_up;
2594			if (timeout > sfp->module_t_wait)
2595				timeout -= sfp->module_t_wait;
2596			else
2597				timeout = 1;
2598
2599			sfp_sm_next(sfp, SFP_S_INIT, timeout);
2600		} else {
2601			/* TX_FAULT is not asserted, assume the module has
2602			 * finished initialising.
2603			 */
2604			goto init_done;
2605		}
2606		break;
2607
2608	case SFP_S_INIT:
2609		if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2610			/* TX_FAULT is still asserted after t_init
2611			 * or t_start_up, so assume there is a fault.
2612			 */
2613			sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT,
2614				     sfp->sm_fault_retries == N_FAULT_INIT);
2615		} else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2616	init_done:
2617			/* Create mdiobus and start trying for PHY */
2618			ret = sfp_sm_add_mdio_bus(sfp);
2619			if (ret < 0) {
2620				sfp_sm_next(sfp, SFP_S_FAIL, 0);
2621				break;
2622			}
2623			sfp->sm_phy_retries = R_PHY_RETRY;
2624			goto phy_probe;
2625		}
2626		break;
2627
2628	case SFP_S_INIT_PHY:
2629		if (event != SFP_E_TIMEOUT)
2630			break;
2631	phy_probe:
2632		/* TX_FAULT deasserted or we timed out with TX_FAULT
2633		 * clear.  Probe for the PHY and check the LOS state.
2634		 */
2635		ret = sfp_sm_probe_for_phy(sfp);
2636		if (ret == -ENODEV) {
2637			if (--sfp->sm_phy_retries) {
2638				sfp_sm_next(sfp, SFP_S_INIT_PHY,
2639					    sfp->phy_t_retry);
2640				dev_dbg(sfp->dev,
2641					"no PHY detected, %u tries left\n",
2642					sfp->sm_phy_retries);
2643				break;
2644			} else {
2645				dev_info(sfp->dev, "no PHY detected\n");
2646			}
2647		} else if (ret) {
2648			sfp_sm_next(sfp, SFP_S_FAIL, 0);
2649			break;
2650		}
2651		if (sfp_module_start(sfp->sfp_bus)) {
2652			sfp_sm_next(sfp, SFP_S_FAIL, 0);
2653			break;
2654		}
2655		sfp_sm_link_check_los(sfp);
2656
2657		/* Reset the fault retry count */
2658		sfp->sm_fault_retries = N_FAULT;
2659		break;
2660
2661	case SFP_S_INIT_TX_FAULT:
2662		if (event == SFP_E_TIMEOUT) {
2663			sfp_module_tx_fault_reset(sfp);
2664			sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up);
2665		}
2666		break;
2667
2668	case SFP_S_WAIT_LOS:
2669		if (event == SFP_E_TX_FAULT)
2670			sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2671		else if (sfp_los_event_inactive(sfp, event))
2672			sfp_sm_link_up(sfp);
2673		break;
2674
2675	case SFP_S_LINK_UP:
2676		if (event == SFP_E_TX_FAULT) {
2677			sfp_sm_link_down(sfp);
2678			sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2679		} else if (sfp_los_event_active(sfp, event)) {
2680			sfp_sm_link_down(sfp);
2681			sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
2682		}
2683		break;
2684
2685	case SFP_S_TX_FAULT:
2686		if (event == SFP_E_TIMEOUT) {
2687			sfp_module_tx_fault_reset(sfp);
2688			sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up);
2689		}
2690		break;
2691
2692	case SFP_S_REINIT:
2693		if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2694			sfp_sm_fault(sfp, SFP_S_TX_FAULT, false);
2695		} else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2696			dev_info(sfp->dev, "module transmit fault recovered\n");
2697			sfp_sm_link_check_los(sfp);
2698		}
2699		break;
2700
2701	case SFP_S_TX_DISABLE:
2702		break;
2703	}
2704}
2705
2706static void __sfp_sm_event(struct sfp *sfp, unsigned int event)
2707{
 
 
2708	dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
2709		mod_state_to_str(sfp->sm_mod_state),
2710		dev_state_to_str(sfp->sm_dev_state),
2711		sm_state_to_str(sfp->sm_state),
2712		event_to_str(event));
2713
2714	sfp_sm_device(sfp, event);
2715	sfp_sm_module(sfp, event);
2716	sfp_sm_main(sfp, event);
2717
2718	dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
2719		mod_state_to_str(sfp->sm_mod_state),
2720		dev_state_to_str(sfp->sm_dev_state),
2721		sm_state_to_str(sfp->sm_state));
2722}
2723
2724static void sfp_sm_event(struct sfp *sfp, unsigned int event)
2725{
2726	mutex_lock(&sfp->sm_mutex);
2727	__sfp_sm_event(sfp, event);
2728	mutex_unlock(&sfp->sm_mutex);
2729}
2730
2731static void sfp_attach(struct sfp *sfp)
2732{
2733	sfp_sm_event(sfp, SFP_E_DEV_ATTACH);
2734}
2735
2736static void sfp_detach(struct sfp *sfp)
2737{
2738	sfp_sm_event(sfp, SFP_E_DEV_DETACH);
2739}
2740
2741static void sfp_start(struct sfp *sfp)
2742{
2743	sfp_sm_event(sfp, SFP_E_DEV_UP);
2744}
2745
2746static void sfp_stop(struct sfp *sfp)
2747{
2748	sfp_sm_event(sfp, SFP_E_DEV_DOWN);
2749}
2750
2751static void sfp_set_signal_rate(struct sfp *sfp, unsigned int rate_kbd)
2752{
2753	unsigned int set;
2754
2755	sfp->rate_kbd = rate_kbd;
2756
2757	if (rate_kbd > sfp->rs_threshold_kbd)
2758		set = sfp->rs_state_mask;
2759	else
2760		set = 0;
2761
2762	sfp_mod_state(sfp, SFP_F_RS0 | SFP_F_RS1, set);
2763}
2764
2765static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
2766{
2767	/* locking... and check module is present */
2768
2769	if (sfp->id.ext.sff8472_compliance &&
2770	    !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
2771		modinfo->type = ETH_MODULE_SFF_8472;
2772		modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2773	} else {
2774		modinfo->type = ETH_MODULE_SFF_8079;
2775		modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2776	}
2777	return 0;
2778}
2779
2780static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
2781			     u8 *data)
2782{
2783	unsigned int first, last, len;
2784	int ret;
2785
2786	if (!(sfp->state & SFP_F_PRESENT))
2787		return -ENODEV;
2788
2789	if (ee->len == 0)
2790		return -EINVAL;
2791
2792	first = ee->offset;
2793	last = ee->offset + ee->len;
2794	if (first < ETH_MODULE_SFF_8079_LEN) {
2795		len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
2796		len -= first;
2797
2798		ret = sfp_read(sfp, false, first, data, len);
2799		if (ret < 0)
2800			return ret;
2801
2802		first += len;
2803		data += len;
2804	}
2805	if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
2806		len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
2807		len -= first;
2808		first -= ETH_MODULE_SFF_8079_LEN;
2809
2810		ret = sfp_read(sfp, true, first, data, len);
2811		if (ret < 0)
2812			return ret;
2813	}
2814	return 0;
2815}
2816
2817static int sfp_module_eeprom_by_page(struct sfp *sfp,
2818				     const struct ethtool_module_eeprom *page,
2819				     struct netlink_ext_ack *extack)
2820{
2821	if (!(sfp->state & SFP_F_PRESENT))
2822		return -ENODEV;
2823
2824	if (page->bank) {
2825		NL_SET_ERR_MSG(extack, "Banks not supported");
2826		return -EOPNOTSUPP;
2827	}
2828
2829	if (page->page) {
2830		NL_SET_ERR_MSG(extack, "Only page 0 supported");
2831		return -EOPNOTSUPP;
2832	}
2833
2834	if (page->i2c_address != 0x50 &&
2835	    page->i2c_address != 0x51) {
2836		NL_SET_ERR_MSG(extack, "Only address 0x50 and 0x51 supported");
2837		return -EOPNOTSUPP;
2838	}
2839
2840	return sfp_read(sfp, page->i2c_address == 0x51, page->offset,
2841			page->data, page->length);
2842};
2843
2844static const struct sfp_socket_ops sfp_module_ops = {
2845	.attach = sfp_attach,
2846	.detach = sfp_detach,
2847	.start = sfp_start,
2848	.stop = sfp_stop,
2849	.set_signal_rate = sfp_set_signal_rate,
2850	.module_info = sfp_module_info,
2851	.module_eeprom = sfp_module_eeprom,
2852	.module_eeprom_by_page = sfp_module_eeprom_by_page,
2853};
2854
2855static void sfp_timeout(struct work_struct *work)
2856{
2857	struct sfp *sfp = container_of(work, struct sfp, timeout.work);
2858
2859	rtnl_lock();
2860	sfp_sm_event(sfp, SFP_E_TIMEOUT);
2861	rtnl_unlock();
2862}
2863
2864static void sfp_check_state(struct sfp *sfp)
2865{
2866	unsigned int state, i, changed;
2867
2868	rtnl_lock();
2869	mutex_lock(&sfp->st_mutex);
2870	state = sfp_get_state(sfp);
2871	changed = state ^ sfp->state;
2872	changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
2873
2874	for (i = 0; i < GPIO_MAX; i++)
2875		if (changed & BIT(i))
2876			dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_names[i],
2877				!!(sfp->state & BIT(i)), !!(state & BIT(i)));
2878
2879	state |= sfp->state & SFP_F_OUTPUTS;
2880	sfp->state = state;
2881	mutex_unlock(&sfp->st_mutex);
2882
2883	mutex_lock(&sfp->sm_mutex);
2884	if (changed & SFP_F_PRESENT)
2885		__sfp_sm_event(sfp, state & SFP_F_PRESENT ?
2886				    SFP_E_INSERT : SFP_E_REMOVE);
2887
2888	if (changed & SFP_F_TX_FAULT)
2889		__sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
2890				    SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
2891
2892	if (changed & SFP_F_LOS)
2893		__sfp_sm_event(sfp, state & SFP_F_LOS ?
2894				    SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
2895	mutex_unlock(&sfp->sm_mutex);
2896	rtnl_unlock();
 
2897}
2898
2899static irqreturn_t sfp_irq(int irq, void *data)
2900{
2901	struct sfp *sfp = data;
2902
2903	sfp_check_state(sfp);
2904
2905	return IRQ_HANDLED;
2906}
2907
2908static void sfp_poll(struct work_struct *work)
2909{
2910	struct sfp *sfp = container_of(work, struct sfp, poll.work);
2911
2912	sfp_check_state(sfp);
2913
2914	// st_mutex doesn't need to be held here for state_soft_mask,
2915	// it's unimportant if we race while reading this.
2916	if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) ||
2917	    sfp->need_poll)
2918		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2919}
2920
2921static struct sfp *sfp_alloc(struct device *dev)
2922{
2923	struct sfp *sfp;
2924
2925	sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
2926	if (!sfp)
2927		return ERR_PTR(-ENOMEM);
2928
2929	sfp->dev = dev;
2930	sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE;
2931
2932	mutex_init(&sfp->sm_mutex);
2933	mutex_init(&sfp->st_mutex);
2934	INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
2935	INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
2936
2937	sfp_hwmon_init(sfp);
2938
2939	return sfp;
2940}
2941
2942static void sfp_cleanup(void *data)
2943{
2944	struct sfp *sfp = data;
2945
2946	sfp_hwmon_exit(sfp);
2947
2948	cancel_delayed_work_sync(&sfp->poll);
2949	cancel_delayed_work_sync(&sfp->timeout);
2950	if (sfp->i2c_mii) {
2951		mdiobus_unregister(sfp->i2c_mii);
2952		mdiobus_free(sfp->i2c_mii);
2953	}
2954	if (sfp->i2c)
2955		i2c_put_adapter(sfp->i2c);
2956	kfree(sfp);
2957}
2958
2959static int sfp_i2c_get(struct sfp *sfp)
2960{
2961	struct fwnode_handle *h;
2962	struct i2c_adapter *i2c;
2963	int err;
2964
2965	h = fwnode_find_reference(dev_fwnode(sfp->dev), "i2c-bus", 0);
2966	if (IS_ERR(h)) {
2967		dev_err(sfp->dev, "missing 'i2c-bus' property\n");
2968		return -ENODEV;
2969	}
2970
2971	i2c = i2c_get_adapter_by_fwnode(h);
2972	if (!i2c) {
2973		err = -EPROBE_DEFER;
2974		goto put;
2975	}
2976
2977	err = sfp_i2c_configure(sfp, i2c);
2978	if (err)
2979		i2c_put_adapter(i2c);
2980put:
2981	fwnode_handle_put(h);
2982	return err;
2983}
2984
2985static int sfp_probe(struct platform_device *pdev)
2986{
2987	const struct sff_data *sff;
 
2988	char *sfp_irq_name;
2989	struct sfp *sfp;
2990	int err, i;
2991
2992	sfp = sfp_alloc(&pdev->dev);
2993	if (IS_ERR(sfp))
2994		return PTR_ERR(sfp);
2995
2996	platform_set_drvdata(pdev, sfp);
2997
2998	err = devm_add_action_or_reset(sfp->dev, sfp_cleanup, sfp);
2999	if (err < 0)
3000		return err;
3001
3002	sff = device_get_match_data(sfp->dev);
3003	if (!sff)
3004		sff = &sfp_data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3005
3006	sfp->type = sff;
 
3007
3008	err = sfp_i2c_get(sfp);
3009	if (err)
 
3010		return err;
 
3011
3012	for (i = 0; i < GPIO_MAX; i++)
3013		if (sff->gpios & BIT(i)) {
3014			sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
3015					   gpio_names[i], gpio_flags[i]);
3016			if (IS_ERR(sfp->gpio[i]))
3017				return PTR_ERR(sfp->gpio[i]);
3018		}
3019
3020	sfp->state_hw_mask = SFP_F_PRESENT;
3021	sfp->state_hw_drive = SFP_F_TX_DISABLE;
3022
3023	sfp->get_state = sfp_gpio_get_state;
3024	sfp->set_state = sfp_gpio_set_state;
3025
3026	/* Modules that have no detect signal are always present */
3027	if (!(sfp->gpio[GPIO_MODDEF0]))
3028		sfp->get_state = sff_gpio_get_state;
3029
3030	device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
3031				 &sfp->max_power_mW);
3032	if (sfp->max_power_mW < 1000) {
3033		if (sfp->max_power_mW)
3034			dev_warn(sfp->dev,
3035				 "Firmware bug: host maximum power should be at least 1W\n");
3036		sfp->max_power_mW = 1000;
3037	}
3038
3039	dev_info(sfp->dev, "Host maximum power %u.%uW\n",
3040		 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
3041
3042	/* Get the initial state, and always signal TX disable,
3043	 * since the network interface will not be up.
3044	 */
3045	sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
3046
3047	if (sfp->gpio[GPIO_RS0] &&
3048	    gpiod_get_value_cansleep(sfp->gpio[GPIO_RS0]))
3049		sfp->state |= SFP_F_RS0;
3050	sfp_set_state(sfp, sfp->state);
3051	sfp_module_tx_disable(sfp);
3052	if (sfp->state & SFP_F_PRESENT) {
3053		rtnl_lock();
3054		sfp_sm_event(sfp, SFP_E_INSERT);
3055		rtnl_unlock();
3056	}
3057
3058	for (i = 0; i < GPIO_MAX; i++) {
3059		if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
3060			continue;
3061
3062		sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]);
3063		if (sfp->gpio_irq[i] < 0) {
3064			sfp->gpio_irq[i] = 0;
3065			sfp->need_poll = true;
3066			continue;
3067		}
3068
3069		sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL,
3070					      "%s-%s", dev_name(sfp->dev),
3071					      gpio_names[i]);
3072
3073		if (!sfp_irq_name)
3074			return -ENOMEM;
3075
3076		err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i],
3077						NULL, sfp_irq,
3078						IRQF_ONESHOT |
3079						IRQF_TRIGGER_RISING |
3080						IRQF_TRIGGER_FALLING,
3081						sfp_irq_name, sfp);
3082		if (err) {
3083			sfp->gpio_irq[i] = 0;
3084			sfp->need_poll = true;
3085		}
3086	}
3087
3088	if (sfp->need_poll)
3089		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
3090
3091	/* We could have an issue in cases no Tx disable pin is available or
3092	 * wired as modules using a laser as their light source will continue to
3093	 * be active when the fiber is removed. This could be a safety issue and
3094	 * we should at least warn the user about that.
3095	 */
3096	if (!sfp->gpio[GPIO_TX_DISABLE])
3097		dev_warn(sfp->dev,
3098			 "No tx_disable pin: SFP modules will always be emitting.\n");
3099
3100	sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
3101	if (!sfp->sfp_bus)
3102		return -ENOMEM;
3103
3104	sfp_debugfs_init(sfp);
3105
3106	return 0;
3107}
3108
3109static void sfp_remove(struct platform_device *pdev)
3110{
3111	struct sfp *sfp = platform_get_drvdata(pdev);
3112
3113	sfp_debugfs_exit(sfp);
3114	sfp_unregister_socket(sfp->sfp_bus);
3115
3116	rtnl_lock();
3117	sfp_sm_event(sfp, SFP_E_REMOVE);
3118	rtnl_unlock();
 
 
3119}
3120
3121static void sfp_shutdown(struct platform_device *pdev)
3122{
3123	struct sfp *sfp = platform_get_drvdata(pdev);
3124	int i;
3125
3126	for (i = 0; i < GPIO_MAX; i++) {
3127		if (!sfp->gpio_irq[i])
3128			continue;
3129
3130		devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp);
3131	}
3132
3133	cancel_delayed_work_sync(&sfp->poll);
3134	cancel_delayed_work_sync(&sfp->timeout);
3135}
3136
3137static struct platform_driver sfp_driver = {
3138	.probe = sfp_probe,
3139	.remove_new = sfp_remove,
3140	.shutdown = sfp_shutdown,
3141	.driver = {
3142		.name = "sfp",
3143		.of_match_table = sfp_of_match,
3144	},
3145};
3146
3147static int sfp_init(void)
3148{
3149	poll_jiffies = msecs_to_jiffies(100);
3150
3151	return platform_driver_register(&sfp_driver);
3152}
3153module_init(sfp_init);
3154
3155static void sfp_exit(void)
3156{
3157	platform_driver_unregister(&sfp_driver);
3158}
3159module_exit(sfp_exit);
3160
3161MODULE_ALIAS("platform:sfp");
3162MODULE_AUTHOR("Russell King");
3163MODULE_LICENSE("GPL v2");
3164MODULE_DESCRIPTION("SFP cage support");
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2#include <linux/acpi.h>
   3#include <linux/ctype.h>
   4#include <linux/debugfs.h>
   5#include <linux/delay.h>
   6#include <linux/gpio/consumer.h>
   7#include <linux/hwmon.h>
   8#include <linux/i2c.h>
   9#include <linux/interrupt.h>
  10#include <linux/jiffies.h>
  11#include <linux/mdio/mdio-i2c.h>
  12#include <linux/module.h>
  13#include <linux/mutex.h>
  14#include <linux/of.h>
  15#include <linux/phy.h>
  16#include <linux/platform_device.h>
  17#include <linux/rtnetlink.h>
  18#include <linux/slab.h>
  19#include <linux/workqueue.h>
  20
  21#include "sfp.h"
  22#include "swphy.h"
  23
  24enum {
  25	GPIO_MODDEF0,
  26	GPIO_LOS,
  27	GPIO_TX_FAULT,
  28	GPIO_TX_DISABLE,
  29	GPIO_RATE_SELECT,
 
  30	GPIO_MAX,
  31
  32	SFP_F_PRESENT = BIT(GPIO_MODDEF0),
  33	SFP_F_LOS = BIT(GPIO_LOS),
  34	SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
  35	SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
  36	SFP_F_RATE_SELECT = BIT(GPIO_RATE_SELECT),
 
 
 
  37
  38	SFP_E_INSERT = 0,
  39	SFP_E_REMOVE,
  40	SFP_E_DEV_ATTACH,
  41	SFP_E_DEV_DETACH,
  42	SFP_E_DEV_DOWN,
  43	SFP_E_DEV_UP,
  44	SFP_E_TX_FAULT,
  45	SFP_E_TX_CLEAR,
  46	SFP_E_LOS_HIGH,
  47	SFP_E_LOS_LOW,
  48	SFP_E_TIMEOUT,
  49
  50	SFP_MOD_EMPTY = 0,
  51	SFP_MOD_ERROR,
  52	SFP_MOD_PROBE,
  53	SFP_MOD_WAITDEV,
  54	SFP_MOD_HPOWER,
  55	SFP_MOD_WAITPWR,
  56	SFP_MOD_PRESENT,
  57
  58	SFP_DEV_DETACHED = 0,
  59	SFP_DEV_DOWN,
  60	SFP_DEV_UP,
  61
  62	SFP_S_DOWN = 0,
  63	SFP_S_FAIL,
  64	SFP_S_WAIT,
  65	SFP_S_INIT,
  66	SFP_S_INIT_PHY,
  67	SFP_S_INIT_TX_FAULT,
  68	SFP_S_WAIT_LOS,
  69	SFP_S_LINK_UP,
  70	SFP_S_TX_FAULT,
  71	SFP_S_REINIT,
  72	SFP_S_TX_DISABLE,
  73};
  74
  75static const char  * const mod_state_strings[] = {
  76	[SFP_MOD_EMPTY] = "empty",
  77	[SFP_MOD_ERROR] = "error",
  78	[SFP_MOD_PROBE] = "probe",
  79	[SFP_MOD_WAITDEV] = "waitdev",
  80	[SFP_MOD_HPOWER] = "hpower",
  81	[SFP_MOD_WAITPWR] = "waitpwr",
  82	[SFP_MOD_PRESENT] = "present",
  83};
  84
  85static const char *mod_state_to_str(unsigned short mod_state)
  86{
  87	if (mod_state >= ARRAY_SIZE(mod_state_strings))
  88		return "Unknown module state";
  89	return mod_state_strings[mod_state];
  90}
  91
  92static const char * const dev_state_strings[] = {
  93	[SFP_DEV_DETACHED] = "detached",
  94	[SFP_DEV_DOWN] = "down",
  95	[SFP_DEV_UP] = "up",
  96};
  97
  98static const char *dev_state_to_str(unsigned short dev_state)
  99{
 100	if (dev_state >= ARRAY_SIZE(dev_state_strings))
 101		return "Unknown device state";
 102	return dev_state_strings[dev_state];
 103}
 104
 105static const char * const event_strings[] = {
 106	[SFP_E_INSERT] = "insert",
 107	[SFP_E_REMOVE] = "remove",
 108	[SFP_E_DEV_ATTACH] = "dev_attach",
 109	[SFP_E_DEV_DETACH] = "dev_detach",
 110	[SFP_E_DEV_DOWN] = "dev_down",
 111	[SFP_E_DEV_UP] = "dev_up",
 112	[SFP_E_TX_FAULT] = "tx_fault",
 113	[SFP_E_TX_CLEAR] = "tx_clear",
 114	[SFP_E_LOS_HIGH] = "los_high",
 115	[SFP_E_LOS_LOW] = "los_low",
 116	[SFP_E_TIMEOUT] = "timeout",
 117};
 118
 119static const char *event_to_str(unsigned short event)
 120{
 121	if (event >= ARRAY_SIZE(event_strings))
 122		return "Unknown event";
 123	return event_strings[event];
 124}
 125
 126static const char * const sm_state_strings[] = {
 127	[SFP_S_DOWN] = "down",
 128	[SFP_S_FAIL] = "fail",
 129	[SFP_S_WAIT] = "wait",
 130	[SFP_S_INIT] = "init",
 131	[SFP_S_INIT_PHY] = "init_phy",
 132	[SFP_S_INIT_TX_FAULT] = "init_tx_fault",
 133	[SFP_S_WAIT_LOS] = "wait_los",
 134	[SFP_S_LINK_UP] = "link_up",
 135	[SFP_S_TX_FAULT] = "tx_fault",
 136	[SFP_S_REINIT] = "reinit",
 137	[SFP_S_TX_DISABLE] = "tx_disable",
 138};
 139
 140static const char *sm_state_to_str(unsigned short sm_state)
 141{
 142	if (sm_state >= ARRAY_SIZE(sm_state_strings))
 143		return "Unknown state";
 144	return sm_state_strings[sm_state];
 145}
 146
 147static const char *gpio_of_names[] = {
 148	"mod-def0",
 149	"los",
 150	"tx-fault",
 151	"tx-disable",
 152	"rate-select0",
 
 153};
 154
 155static const enum gpiod_flags gpio_flags[] = {
 156	GPIOD_IN,
 157	GPIOD_IN,
 158	GPIOD_IN,
 159	GPIOD_ASIS,
 160	GPIOD_ASIS,
 
 161};
 162
 163/* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a
 164 * non-cooled module to initialise its laser safety circuitry. We wait
 165 * an initial T_WAIT period before we check the tx fault to give any PHY
 166 * on board (for a copper SFP) time to initialise.
 167 */
 168#define T_WAIT			msecs_to_jiffies(50)
 169#define T_START_UP		msecs_to_jiffies(300)
 170#define T_START_UP_BAD_GPON	msecs_to_jiffies(60000)
 171
 172/* t_reset is the time required to assert the TX_DISABLE signal to reset
 173 * an indicated TX_FAULT.
 174 */
 175#define T_RESET_US		10
 176#define T_FAULT_RECOVER		msecs_to_jiffies(1000)
 177
 178/* N_FAULT_INIT is the number of recovery attempts at module initialisation
 179 * time. If the TX_FAULT signal is not deasserted after this number of
 180 * attempts at clearing it, we decide that the module is faulty.
 181 * N_FAULT is the same but after the module has initialised.
 182 */
 183#define N_FAULT_INIT		5
 184#define N_FAULT			5
 185
 186/* T_PHY_RETRY is the time interval between attempts to probe the PHY.
 187 * R_PHY_RETRY is the number of attempts.
 188 */
 189#define T_PHY_RETRY		msecs_to_jiffies(50)
 190#define R_PHY_RETRY		12
 191
 192/* SFP module presence detection is poor: the three MOD DEF signals are
 193 * the same length on the PCB, which means it's possible for MOD DEF 0 to
 194 * connect before the I2C bus on MOD DEF 1/2.
 195 *
 196 * The SFF-8472 specifies t_serial ("Time from power on until module is
 197 * ready for data transmission over the two wire serial bus.") as 300ms.
 198 */
 199#define T_SERIAL		msecs_to_jiffies(300)
 200#define T_HPOWER_LEVEL		msecs_to_jiffies(300)
 201#define T_PROBE_RETRY_INIT	msecs_to_jiffies(100)
 202#define R_PROBE_RETRY_INIT	10
 203#define T_PROBE_RETRY_SLOW	msecs_to_jiffies(5000)
 204#define R_PROBE_RETRY_SLOW	12
 205
 206/* SFP modules appear to always have their PHY configured for bus address
 207 * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
 
 
 
 
 
 
 
 
 
 208 */
 209#define SFP_PHY_ADDR	22
 210
 211struct sff_data {
 212	unsigned int gpios;
 213	bool (*module_supported)(const struct sfp_eeprom_id *id);
 214};
 215
 216struct sfp {
 217	struct device *dev;
 218	struct i2c_adapter *i2c;
 219	struct mii_bus *i2c_mii;
 220	struct sfp_bus *sfp_bus;
 
 221	struct phy_device *mod_phy;
 222	const struct sff_data *type;
 223	size_t i2c_block_size;
 224	u32 max_power_mW;
 225
 226	unsigned int (*get_state)(struct sfp *);
 227	void (*set_state)(struct sfp *, unsigned int);
 228	int (*read)(struct sfp *, bool, u8, void *, size_t);
 229	int (*write)(struct sfp *, bool, u8, void *, size_t);
 230
 231	struct gpio_desc *gpio[GPIO_MAX];
 232	int gpio_irq[GPIO_MAX];
 233
 234	bool need_poll;
 235
 
 
 
 
 
 
 236	struct mutex st_mutex;			/* Protects state */
 
 
 237	unsigned int state_soft_mask;
 
 238	unsigned int state;
 
 239	struct delayed_work poll;
 240	struct delayed_work timeout;
 241	struct mutex sm_mutex;			/* Protects state machine */
 242	unsigned char sm_mod_state;
 243	unsigned char sm_mod_tries_init;
 244	unsigned char sm_mod_tries;
 245	unsigned char sm_dev_state;
 246	unsigned short sm_state;
 247	unsigned char sm_fault_retries;
 248	unsigned char sm_phy_retries;
 249
 250	struct sfp_eeprom_id id;
 251	unsigned int module_power_mW;
 252	unsigned int module_t_start_up;
 
 
 
 
 
 
 
 
 
 
 253
 254#if IS_ENABLED(CONFIG_HWMON)
 255	struct sfp_diag diag;
 256	struct delayed_work hwmon_probe;
 257	unsigned int hwmon_tries;
 258	struct device *hwmon_dev;
 259	char *hwmon_name;
 260#endif
 261
 262#if IS_ENABLED(CONFIG_DEBUG_FS)
 263	struct dentry *debugfs_dir;
 264#endif
 265};
 266
 267static bool sff_module_supported(const struct sfp_eeprom_id *id)
 268{
 269	return id->base.phys_id == SFF8024_ID_SFF_8472 &&
 270	       id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
 271}
 272
 273static const struct sff_data sff_data = {
 274	.gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
 275	.module_supported = sff_module_supported,
 276};
 277
 278static bool sfp_module_supported(const struct sfp_eeprom_id *id)
 279{
 280	if (id->base.phys_id == SFF8024_ID_SFP &&
 281	    id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP)
 282		return true;
 283
 284	/* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored
 285	 * phys id SFF instead of SFP. Therefore mark this module explicitly
 286	 * as supported based on vendor name and pn match.
 287	 */
 288	if (id->base.phys_id == SFF8024_ID_SFF_8472 &&
 289	    id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP &&
 290	    !memcmp(id->base.vendor_name, "UBNT            ", 16) &&
 291	    !memcmp(id->base.vendor_pn, "UF-INSTANT      ", 16))
 292		return true;
 293
 294	return false;
 295}
 296
 297static const struct sff_data sfp_data = {
 298	.gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
 299		 SFP_F_TX_DISABLE | SFP_F_RATE_SELECT,
 300	.module_supported = sfp_module_supported,
 301};
 302
 303static const struct of_device_id sfp_of_match[] = {
 304	{ .compatible = "sff,sff", .data = &sff_data, },
 305	{ .compatible = "sff,sfp", .data = &sfp_data, },
 306	{ },
 307};
 308MODULE_DEVICE_TABLE(of, sfp_of_match);
 309
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 310static unsigned long poll_jiffies;
 311
 312static unsigned int sfp_gpio_get_state(struct sfp *sfp)
 313{
 314	unsigned int i, state, v;
 315
 316	for (i = state = 0; i < GPIO_MAX; i++) {
 317		if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
 318			continue;
 319
 320		v = gpiod_get_value_cansleep(sfp->gpio[i]);
 321		if (v)
 322			state |= BIT(i);
 323	}
 324
 325	return state;
 326}
 327
 328static unsigned int sff_gpio_get_state(struct sfp *sfp)
 329{
 330	return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
 331}
 332
 333static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
 334{
 335	if (state & SFP_F_PRESENT) {
 336		/* If the module is present, drive the signals */
 337		if (sfp->gpio[GPIO_TX_DISABLE])
 
 
 
 
 
 
 
 
 338			gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
 339					       state & SFP_F_TX_DISABLE);
 340		if (state & SFP_F_RATE_SELECT)
 341			gpiod_direction_output(sfp->gpio[GPIO_RATE_SELECT],
 342					       state & SFP_F_RATE_SELECT);
 343	} else {
 344		/* Otherwise, let them float to the pull-ups */
 345		if (sfp->gpio[GPIO_TX_DISABLE])
 346			gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
 347		if (state & SFP_F_RATE_SELECT)
 348			gpiod_direction_input(sfp->gpio[GPIO_RATE_SELECT]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 349	}
 350}
 351
 352static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
 353			size_t len)
 354{
 355	struct i2c_msg msgs[2];
 356	u8 bus_addr = a2 ? 0x51 : 0x50;
 357	size_t block_size = sfp->i2c_block_size;
 358	size_t this_len;
 359	int ret;
 360
 361	msgs[0].addr = bus_addr;
 362	msgs[0].flags = 0;
 363	msgs[0].len = 1;
 364	msgs[0].buf = &dev_addr;
 365	msgs[1].addr = bus_addr;
 366	msgs[1].flags = I2C_M_RD;
 367	msgs[1].len = len;
 368	msgs[1].buf = buf;
 369
 370	while (len) {
 371		this_len = len;
 372		if (this_len > block_size)
 373			this_len = block_size;
 374
 375		msgs[1].len = this_len;
 376
 377		ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
 378		if (ret < 0)
 379			return ret;
 380
 381		if (ret != ARRAY_SIZE(msgs))
 382			break;
 383
 384		msgs[1].buf += this_len;
 385		dev_addr += this_len;
 386		len -= this_len;
 387	}
 388
 389	return msgs[1].buf - (u8 *)buf;
 390}
 391
 392static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
 393	size_t len)
 394{
 395	struct i2c_msg msgs[1];
 396	u8 bus_addr = a2 ? 0x51 : 0x50;
 397	int ret;
 398
 399	msgs[0].addr = bus_addr;
 400	msgs[0].flags = 0;
 401	msgs[0].len = 1 + len;
 402	msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
 403	if (!msgs[0].buf)
 404		return -ENOMEM;
 405
 406	msgs[0].buf[0] = dev_addr;
 407	memcpy(&msgs[0].buf[1], buf, len);
 408
 409	ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
 410
 411	kfree(msgs[0].buf);
 412
 413	if (ret < 0)
 414		return ret;
 415
 416	return ret == ARRAY_SIZE(msgs) ? len : 0;
 417}
 418
 419static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
 420{
 421	struct mii_bus *i2c_mii;
 422	int ret;
 423
 424	if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
 425		return -EINVAL;
 426
 427	sfp->i2c = i2c;
 428	sfp->read = sfp_i2c_read;
 429	sfp->write = sfp_i2c_write;
 430
 431	i2c_mii = mdio_i2c_alloc(sfp->dev, i2c);
 
 
 
 
 
 
 
 
 432	if (IS_ERR(i2c_mii))
 433		return PTR_ERR(i2c_mii);
 434
 435	i2c_mii->name = "SFP I2C Bus";
 436	i2c_mii->phy_mask = ~0;
 437
 438	ret = mdiobus_register(i2c_mii);
 439	if (ret < 0) {
 440		mdiobus_free(i2c_mii);
 441		return ret;
 442	}
 443
 444	sfp->i2c_mii = i2c_mii;
 445
 446	return 0;
 447}
 448
 
 
 
 
 
 
 449/* Interface */
 450static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
 451{
 452	return sfp->read(sfp, a2, addr, buf, len);
 453}
 454
 455static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
 456{
 457	return sfp->write(sfp, a2, addr, buf, len);
 458}
 459
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 460static unsigned int sfp_soft_get_state(struct sfp *sfp)
 461{
 462	unsigned int state = 0;
 463	u8 status;
 464	int ret;
 465
 466	ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status));
 467	if (ret == sizeof(status)) {
 468		if (status & SFP_STATUS_RX_LOS)
 469			state |= SFP_F_LOS;
 470		if (status & SFP_STATUS_TX_FAULT)
 471			state |= SFP_F_TX_FAULT;
 472	} else {
 473		dev_err_ratelimited(sfp->dev,
 474				    "failed to read SFP soft status: %d\n",
 475				    ret);
 476		/* Preserve the current state */
 477		state = sfp->state;
 478	}
 479
 480	return state & sfp->state_soft_mask;
 481}
 482
 483static void sfp_soft_set_state(struct sfp *sfp, unsigned int state)
 
 484{
 485	u8 status;
 
 
 
 
 
 
 486
 487	if (sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status)) ==
 488		     sizeof(status)) {
 489		if (state & SFP_F_TX_DISABLE)
 490			status |= SFP_STATUS_TX_DISABLE_FORCE;
 491		else
 492			status &= ~SFP_STATUS_TX_DISABLE_FORCE;
 
 
 
 
 
 
 
 493
 494		sfp_write(sfp, true, SFP_STATUS, &status, sizeof(status));
 495	}
 496}
 497
 498static void sfp_soft_start_poll(struct sfp *sfp)
 499{
 500	const struct sfp_eeprom_id *id = &sfp->id;
 
 
 
 
 
 
 
 
 
 
 501
 502	sfp->state_soft_mask = 0;
 503	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE &&
 504	    !sfp->gpio[GPIO_TX_DISABLE])
 505		sfp->state_soft_mask |= SFP_F_TX_DISABLE;
 506	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT &&
 507	    !sfp->gpio[GPIO_TX_FAULT])
 508		sfp->state_soft_mask |= SFP_F_TX_FAULT;
 509	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS &&
 510	    !sfp->gpio[GPIO_LOS])
 511		sfp->state_soft_mask |= SFP_F_LOS;
 512
 513	if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) &&
 514	    !sfp->need_poll)
 515		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
 
 516}
 517
 518static void sfp_soft_stop_poll(struct sfp *sfp)
 519{
 
 520	sfp->state_soft_mask = 0;
 
 521}
 522
 
 
 
 523static unsigned int sfp_get_state(struct sfp *sfp)
 524{
 525	unsigned int state = sfp->get_state(sfp);
 
 526
 527	if (state & SFP_F_PRESENT &&
 528	    sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT))
 529		state |= sfp_soft_get_state(sfp);
 530
 531	return state;
 532}
 533
 
 
 
 534static void sfp_set_state(struct sfp *sfp, unsigned int state)
 535{
 
 
 536	sfp->set_state(sfp, state);
 537
 538	if (state & SFP_F_PRESENT &&
 539	    sfp->state_soft_mask & SFP_F_TX_DISABLE)
 540		sfp_soft_set_state(sfp, state);
 
 
 
 
 
 
 
 
 541}
 542
 543static unsigned int sfp_check(void *buf, size_t len)
 544{
 545	u8 *p, check;
 546
 547	for (p = buf, check = 0; len; p++, len--)
 548		check += *p;
 549
 550	return check;
 551}
 552
 553/* hwmon */
 554#if IS_ENABLED(CONFIG_HWMON)
 555static umode_t sfp_hwmon_is_visible(const void *data,
 556				    enum hwmon_sensor_types type,
 557				    u32 attr, int channel)
 558{
 559	const struct sfp *sfp = data;
 560
 561	switch (type) {
 562	case hwmon_temp:
 563		switch (attr) {
 564		case hwmon_temp_min_alarm:
 565		case hwmon_temp_max_alarm:
 566		case hwmon_temp_lcrit_alarm:
 567		case hwmon_temp_crit_alarm:
 568		case hwmon_temp_min:
 569		case hwmon_temp_max:
 570		case hwmon_temp_lcrit:
 571		case hwmon_temp_crit:
 572			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
 573				return 0;
 574			fallthrough;
 575		case hwmon_temp_input:
 576		case hwmon_temp_label:
 577			return 0444;
 578		default:
 579			return 0;
 580		}
 581	case hwmon_in:
 582		switch (attr) {
 583		case hwmon_in_min_alarm:
 584		case hwmon_in_max_alarm:
 585		case hwmon_in_lcrit_alarm:
 586		case hwmon_in_crit_alarm:
 587		case hwmon_in_min:
 588		case hwmon_in_max:
 589		case hwmon_in_lcrit:
 590		case hwmon_in_crit:
 591			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
 592				return 0;
 593			fallthrough;
 594		case hwmon_in_input:
 595		case hwmon_in_label:
 596			return 0444;
 597		default:
 598			return 0;
 599		}
 600	case hwmon_curr:
 601		switch (attr) {
 602		case hwmon_curr_min_alarm:
 603		case hwmon_curr_max_alarm:
 604		case hwmon_curr_lcrit_alarm:
 605		case hwmon_curr_crit_alarm:
 606		case hwmon_curr_min:
 607		case hwmon_curr_max:
 608		case hwmon_curr_lcrit:
 609		case hwmon_curr_crit:
 610			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
 611				return 0;
 612			fallthrough;
 613		case hwmon_curr_input:
 614		case hwmon_curr_label:
 615			return 0444;
 616		default:
 617			return 0;
 618		}
 619	case hwmon_power:
 620		/* External calibration of receive power requires
 621		 * floating point arithmetic. Doing that in the kernel
 622		 * is not easy, so just skip it. If the module does
 623		 * not require external calibration, we can however
 624		 * show receiver power, since FP is then not needed.
 625		 */
 626		if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
 627		    channel == 1)
 628			return 0;
 629		switch (attr) {
 630		case hwmon_power_min_alarm:
 631		case hwmon_power_max_alarm:
 632		case hwmon_power_lcrit_alarm:
 633		case hwmon_power_crit_alarm:
 634		case hwmon_power_min:
 635		case hwmon_power_max:
 636		case hwmon_power_lcrit:
 637		case hwmon_power_crit:
 638			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
 639				return 0;
 640			fallthrough;
 641		case hwmon_power_input:
 642		case hwmon_power_label:
 643			return 0444;
 644		default:
 645			return 0;
 646		}
 647	default:
 648		return 0;
 649	}
 650}
 651
 652static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
 653{
 654	__be16 val;
 655	int err;
 656
 657	err = sfp_read(sfp, true, reg, &val, sizeof(val));
 658	if (err < 0)
 659		return err;
 660
 661	*value = be16_to_cpu(val);
 662
 663	return 0;
 664}
 665
 666static void sfp_hwmon_to_rx_power(long *value)
 667{
 668	*value = DIV_ROUND_CLOSEST(*value, 10);
 669}
 670
 671static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
 672				long *value)
 673{
 674	if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
 675		*value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
 676}
 677
 678static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
 679{
 680	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
 681			    be16_to_cpu(sfp->diag.cal_t_offset), value);
 682
 683	if (*value >= 0x8000)
 684		*value -= 0x10000;
 685
 686	*value = DIV_ROUND_CLOSEST(*value * 1000, 256);
 687}
 688
 689static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
 690{
 691	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
 692			    be16_to_cpu(sfp->diag.cal_v_offset), value);
 693
 694	*value = DIV_ROUND_CLOSEST(*value, 10);
 695}
 696
 697static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
 698{
 699	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
 700			    be16_to_cpu(sfp->diag.cal_txi_offset), value);
 701
 702	*value = DIV_ROUND_CLOSEST(*value, 500);
 703}
 704
 705static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
 706{
 707	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
 708			    be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
 709
 710	*value = DIV_ROUND_CLOSEST(*value, 10);
 711}
 712
 713static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
 714{
 715	int err;
 716
 717	err = sfp_hwmon_read_sensor(sfp, reg, value);
 718	if (err < 0)
 719		return err;
 720
 721	sfp_hwmon_calibrate_temp(sfp, value);
 722
 723	return 0;
 724}
 725
 726static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
 727{
 728	int err;
 729
 730	err = sfp_hwmon_read_sensor(sfp, reg, value);
 731	if (err < 0)
 732		return err;
 733
 734	sfp_hwmon_calibrate_vcc(sfp, value);
 735
 736	return 0;
 737}
 738
 739static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
 740{
 741	int err;
 742
 743	err = sfp_hwmon_read_sensor(sfp, reg, value);
 744	if (err < 0)
 745		return err;
 746
 747	sfp_hwmon_calibrate_bias(sfp, value);
 748
 749	return 0;
 750}
 751
 752static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
 753{
 754	int err;
 755
 756	err = sfp_hwmon_read_sensor(sfp, reg, value);
 757	if (err < 0)
 758		return err;
 759
 760	sfp_hwmon_calibrate_tx_power(sfp, value);
 761
 762	return 0;
 763}
 764
 765static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
 766{
 767	int err;
 768
 769	err = sfp_hwmon_read_sensor(sfp, reg, value);
 770	if (err < 0)
 771		return err;
 772
 773	sfp_hwmon_to_rx_power(value);
 774
 775	return 0;
 776}
 777
 778static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
 779{
 780	u8 status;
 781	int err;
 782
 783	switch (attr) {
 784	case hwmon_temp_input:
 785		return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
 786
 787	case hwmon_temp_lcrit:
 788		*value = be16_to_cpu(sfp->diag.temp_low_alarm);
 789		sfp_hwmon_calibrate_temp(sfp, value);
 790		return 0;
 791
 792	case hwmon_temp_min:
 793		*value = be16_to_cpu(sfp->diag.temp_low_warn);
 794		sfp_hwmon_calibrate_temp(sfp, value);
 795		return 0;
 796	case hwmon_temp_max:
 797		*value = be16_to_cpu(sfp->diag.temp_high_warn);
 798		sfp_hwmon_calibrate_temp(sfp, value);
 799		return 0;
 800
 801	case hwmon_temp_crit:
 802		*value = be16_to_cpu(sfp->diag.temp_high_alarm);
 803		sfp_hwmon_calibrate_temp(sfp, value);
 804		return 0;
 805
 806	case hwmon_temp_lcrit_alarm:
 807		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
 808		if (err < 0)
 809			return err;
 810
 811		*value = !!(status & SFP_ALARM0_TEMP_LOW);
 812		return 0;
 813
 814	case hwmon_temp_min_alarm:
 815		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
 816		if (err < 0)
 817			return err;
 818
 819		*value = !!(status & SFP_WARN0_TEMP_LOW);
 820		return 0;
 821
 822	case hwmon_temp_max_alarm:
 823		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
 824		if (err < 0)
 825			return err;
 826
 827		*value = !!(status & SFP_WARN0_TEMP_HIGH);
 828		return 0;
 829
 830	case hwmon_temp_crit_alarm:
 831		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
 832		if (err < 0)
 833			return err;
 834
 835		*value = !!(status & SFP_ALARM0_TEMP_HIGH);
 836		return 0;
 837	default:
 838		return -EOPNOTSUPP;
 839	}
 840
 841	return -EOPNOTSUPP;
 842}
 843
 844static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
 845{
 846	u8 status;
 847	int err;
 848
 849	switch (attr) {
 850	case hwmon_in_input:
 851		return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
 852
 853	case hwmon_in_lcrit:
 854		*value = be16_to_cpu(sfp->diag.volt_low_alarm);
 855		sfp_hwmon_calibrate_vcc(sfp, value);
 856		return 0;
 857
 858	case hwmon_in_min:
 859		*value = be16_to_cpu(sfp->diag.volt_low_warn);
 860		sfp_hwmon_calibrate_vcc(sfp, value);
 861		return 0;
 862
 863	case hwmon_in_max:
 864		*value = be16_to_cpu(sfp->diag.volt_high_warn);
 865		sfp_hwmon_calibrate_vcc(sfp, value);
 866		return 0;
 867
 868	case hwmon_in_crit:
 869		*value = be16_to_cpu(sfp->diag.volt_high_alarm);
 870		sfp_hwmon_calibrate_vcc(sfp, value);
 871		return 0;
 872
 873	case hwmon_in_lcrit_alarm:
 874		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
 875		if (err < 0)
 876			return err;
 877
 878		*value = !!(status & SFP_ALARM0_VCC_LOW);
 879		return 0;
 880
 881	case hwmon_in_min_alarm:
 882		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
 883		if (err < 0)
 884			return err;
 885
 886		*value = !!(status & SFP_WARN0_VCC_LOW);
 887		return 0;
 888
 889	case hwmon_in_max_alarm:
 890		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
 891		if (err < 0)
 892			return err;
 893
 894		*value = !!(status & SFP_WARN0_VCC_HIGH);
 895		return 0;
 896
 897	case hwmon_in_crit_alarm:
 898		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
 899		if (err < 0)
 900			return err;
 901
 902		*value = !!(status & SFP_ALARM0_VCC_HIGH);
 903		return 0;
 904	default:
 905		return -EOPNOTSUPP;
 906	}
 907
 908	return -EOPNOTSUPP;
 909}
 910
 911static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
 912{
 913	u8 status;
 914	int err;
 915
 916	switch (attr) {
 917	case hwmon_curr_input:
 918		return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
 919
 920	case hwmon_curr_lcrit:
 921		*value = be16_to_cpu(sfp->diag.bias_low_alarm);
 922		sfp_hwmon_calibrate_bias(sfp, value);
 923		return 0;
 924
 925	case hwmon_curr_min:
 926		*value = be16_to_cpu(sfp->diag.bias_low_warn);
 927		sfp_hwmon_calibrate_bias(sfp, value);
 928		return 0;
 929
 930	case hwmon_curr_max:
 931		*value = be16_to_cpu(sfp->diag.bias_high_warn);
 932		sfp_hwmon_calibrate_bias(sfp, value);
 933		return 0;
 934
 935	case hwmon_curr_crit:
 936		*value = be16_to_cpu(sfp->diag.bias_high_alarm);
 937		sfp_hwmon_calibrate_bias(sfp, value);
 938		return 0;
 939
 940	case hwmon_curr_lcrit_alarm:
 941		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
 942		if (err < 0)
 943			return err;
 944
 945		*value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
 946		return 0;
 947
 948	case hwmon_curr_min_alarm:
 949		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
 950		if (err < 0)
 951			return err;
 952
 953		*value = !!(status & SFP_WARN0_TX_BIAS_LOW);
 954		return 0;
 955
 956	case hwmon_curr_max_alarm:
 957		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
 958		if (err < 0)
 959			return err;
 960
 961		*value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
 962		return 0;
 963
 964	case hwmon_curr_crit_alarm:
 965		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
 966		if (err < 0)
 967			return err;
 968
 969		*value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
 970		return 0;
 971	default:
 972		return -EOPNOTSUPP;
 973	}
 974
 975	return -EOPNOTSUPP;
 976}
 977
 978static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
 979{
 980	u8 status;
 981	int err;
 982
 983	switch (attr) {
 984	case hwmon_power_input:
 985		return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
 986
 987	case hwmon_power_lcrit:
 988		*value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
 989		sfp_hwmon_calibrate_tx_power(sfp, value);
 990		return 0;
 991
 992	case hwmon_power_min:
 993		*value = be16_to_cpu(sfp->diag.txpwr_low_warn);
 994		sfp_hwmon_calibrate_tx_power(sfp, value);
 995		return 0;
 996
 997	case hwmon_power_max:
 998		*value = be16_to_cpu(sfp->diag.txpwr_high_warn);
 999		sfp_hwmon_calibrate_tx_power(sfp, value);
1000		return 0;
1001
1002	case hwmon_power_crit:
1003		*value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
1004		sfp_hwmon_calibrate_tx_power(sfp, value);
1005		return 0;
1006
1007	case hwmon_power_lcrit_alarm:
1008		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1009		if (err < 0)
1010			return err;
1011
1012		*value = !!(status & SFP_ALARM0_TXPWR_LOW);
1013		return 0;
1014
1015	case hwmon_power_min_alarm:
1016		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1017		if (err < 0)
1018			return err;
1019
1020		*value = !!(status & SFP_WARN0_TXPWR_LOW);
1021		return 0;
1022
1023	case hwmon_power_max_alarm:
1024		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1025		if (err < 0)
1026			return err;
1027
1028		*value = !!(status & SFP_WARN0_TXPWR_HIGH);
1029		return 0;
1030
1031	case hwmon_power_crit_alarm:
1032		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1033		if (err < 0)
1034			return err;
1035
1036		*value = !!(status & SFP_ALARM0_TXPWR_HIGH);
1037		return 0;
1038	default:
1039		return -EOPNOTSUPP;
1040	}
1041
1042	return -EOPNOTSUPP;
1043}
1044
1045static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
1046{
1047	u8 status;
1048	int err;
1049
1050	switch (attr) {
1051	case hwmon_power_input:
1052		return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
1053
1054	case hwmon_power_lcrit:
1055		*value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
1056		sfp_hwmon_to_rx_power(value);
1057		return 0;
1058
1059	case hwmon_power_min:
1060		*value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
1061		sfp_hwmon_to_rx_power(value);
1062		return 0;
1063
1064	case hwmon_power_max:
1065		*value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
1066		sfp_hwmon_to_rx_power(value);
1067		return 0;
1068
1069	case hwmon_power_crit:
1070		*value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
1071		sfp_hwmon_to_rx_power(value);
1072		return 0;
1073
1074	case hwmon_power_lcrit_alarm:
1075		err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1076		if (err < 0)
1077			return err;
1078
1079		*value = !!(status & SFP_ALARM1_RXPWR_LOW);
1080		return 0;
1081
1082	case hwmon_power_min_alarm:
1083		err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1084		if (err < 0)
1085			return err;
1086
1087		*value = !!(status & SFP_WARN1_RXPWR_LOW);
1088		return 0;
1089
1090	case hwmon_power_max_alarm:
1091		err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1092		if (err < 0)
1093			return err;
1094
1095		*value = !!(status & SFP_WARN1_RXPWR_HIGH);
1096		return 0;
1097
1098	case hwmon_power_crit_alarm:
1099		err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1100		if (err < 0)
1101			return err;
1102
1103		*value = !!(status & SFP_ALARM1_RXPWR_HIGH);
1104		return 0;
1105	default:
1106		return -EOPNOTSUPP;
1107	}
1108
1109	return -EOPNOTSUPP;
1110}
1111
1112static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
1113			  u32 attr, int channel, long *value)
1114{
1115	struct sfp *sfp = dev_get_drvdata(dev);
1116
1117	switch (type) {
1118	case hwmon_temp:
1119		return sfp_hwmon_temp(sfp, attr, value);
1120	case hwmon_in:
1121		return sfp_hwmon_vcc(sfp, attr, value);
1122	case hwmon_curr:
1123		return sfp_hwmon_bias(sfp, attr, value);
1124	case hwmon_power:
1125		switch (channel) {
1126		case 0:
1127			return sfp_hwmon_tx_power(sfp, attr, value);
1128		case 1:
1129			return sfp_hwmon_rx_power(sfp, attr, value);
1130		default:
1131			return -EOPNOTSUPP;
1132		}
1133	default:
1134		return -EOPNOTSUPP;
1135	}
1136}
1137
1138static const char *const sfp_hwmon_power_labels[] = {
1139	"TX_power",
1140	"RX_power",
1141};
1142
1143static int sfp_hwmon_read_string(struct device *dev,
1144				 enum hwmon_sensor_types type,
1145				 u32 attr, int channel, const char **str)
1146{
1147	switch (type) {
1148	case hwmon_curr:
1149		switch (attr) {
1150		case hwmon_curr_label:
1151			*str = "bias";
1152			return 0;
1153		default:
1154			return -EOPNOTSUPP;
1155		}
1156		break;
1157	case hwmon_temp:
1158		switch (attr) {
1159		case hwmon_temp_label:
1160			*str = "temperature";
1161			return 0;
1162		default:
1163			return -EOPNOTSUPP;
1164		}
1165		break;
1166	case hwmon_in:
1167		switch (attr) {
1168		case hwmon_in_label:
1169			*str = "VCC";
1170			return 0;
1171		default:
1172			return -EOPNOTSUPP;
1173		}
1174		break;
1175	case hwmon_power:
1176		switch (attr) {
1177		case hwmon_power_label:
1178			*str = sfp_hwmon_power_labels[channel];
1179			return 0;
1180		default:
1181			return -EOPNOTSUPP;
1182		}
1183		break;
1184	default:
1185		return -EOPNOTSUPP;
1186	}
1187
1188	return -EOPNOTSUPP;
1189}
1190
1191static const struct hwmon_ops sfp_hwmon_ops = {
1192	.is_visible = sfp_hwmon_is_visible,
1193	.read = sfp_hwmon_read,
1194	.read_string = sfp_hwmon_read_string,
1195};
1196
1197static u32 sfp_hwmon_chip_config[] = {
1198	HWMON_C_REGISTER_TZ,
1199	0,
1200};
1201
1202static const struct hwmon_channel_info sfp_hwmon_chip = {
1203	.type = hwmon_chip,
1204	.config = sfp_hwmon_chip_config,
1205};
1206
1207static u32 sfp_hwmon_temp_config[] = {
1208	HWMON_T_INPUT |
1209	HWMON_T_MAX | HWMON_T_MIN |
1210	HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
1211	HWMON_T_CRIT | HWMON_T_LCRIT |
1212	HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM |
1213	HWMON_T_LABEL,
1214	0,
1215};
1216
1217static const struct hwmon_channel_info sfp_hwmon_temp_channel_info = {
1218	.type = hwmon_temp,
1219	.config = sfp_hwmon_temp_config,
1220};
1221
1222static u32 sfp_hwmon_vcc_config[] = {
1223	HWMON_I_INPUT |
1224	HWMON_I_MAX | HWMON_I_MIN |
1225	HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1226	HWMON_I_CRIT | HWMON_I_LCRIT |
1227	HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM |
1228	HWMON_I_LABEL,
1229	0,
1230};
1231
1232static const struct hwmon_channel_info sfp_hwmon_vcc_channel_info = {
1233	.type = hwmon_in,
1234	.config = sfp_hwmon_vcc_config,
1235};
1236
1237static u32 sfp_hwmon_bias_config[] = {
1238	HWMON_C_INPUT |
1239	HWMON_C_MAX | HWMON_C_MIN |
1240	HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1241	HWMON_C_CRIT | HWMON_C_LCRIT |
1242	HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM |
1243	HWMON_C_LABEL,
1244	0,
1245};
1246
1247static const struct hwmon_channel_info sfp_hwmon_bias_channel_info = {
1248	.type = hwmon_curr,
1249	.config = sfp_hwmon_bias_config,
1250};
1251
1252static u32 sfp_hwmon_power_config[] = {
1253	/* Transmit power */
1254	HWMON_P_INPUT |
1255	HWMON_P_MAX | HWMON_P_MIN |
1256	HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1257	HWMON_P_CRIT | HWMON_P_LCRIT |
1258	HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1259	HWMON_P_LABEL,
1260	/* Receive power */
1261	HWMON_P_INPUT |
1262	HWMON_P_MAX | HWMON_P_MIN |
1263	HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1264	HWMON_P_CRIT | HWMON_P_LCRIT |
1265	HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1266	HWMON_P_LABEL,
1267	0,
1268};
1269
1270static const struct hwmon_channel_info sfp_hwmon_power_channel_info = {
1271	.type = hwmon_power,
1272	.config = sfp_hwmon_power_config,
1273};
1274
1275static const struct hwmon_channel_info *sfp_hwmon_info[] = {
1276	&sfp_hwmon_chip,
1277	&sfp_hwmon_vcc_channel_info,
1278	&sfp_hwmon_temp_channel_info,
1279	&sfp_hwmon_bias_channel_info,
1280	&sfp_hwmon_power_channel_info,
1281	NULL,
1282};
1283
1284static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1285	.ops = &sfp_hwmon_ops,
1286	.info = sfp_hwmon_info,
1287};
1288
1289static void sfp_hwmon_probe(struct work_struct *work)
1290{
1291	struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work);
1292	int err, i;
1293
1294	/* hwmon interface needs to access 16bit registers in atomic way to
1295	 * guarantee coherency of the diagnostic monitoring data. If it is not
1296	 * possible to guarantee coherency because EEPROM is broken in such way
1297	 * that does not support atomic 16bit read operation then we have to
1298	 * skip registration of hwmon device.
1299	 */
1300	if (sfp->i2c_block_size < 2) {
1301		dev_info(sfp->dev,
1302			 "skipping hwmon device registration due to broken EEPROM\n");
1303		dev_info(sfp->dev,
1304			 "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n");
1305		return;
1306	}
1307
1308	err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1309	if (err < 0) {
1310		if (sfp->hwmon_tries--) {
1311			mod_delayed_work(system_wq, &sfp->hwmon_probe,
1312					 T_PROBE_RETRY_SLOW);
1313		} else {
1314			dev_warn(sfp->dev, "hwmon probe failed: %d\n", err);
 
1315		}
1316		return;
1317	}
1318
1319	sfp->hwmon_name = kstrdup(dev_name(sfp->dev), GFP_KERNEL);
1320	if (!sfp->hwmon_name) {
1321		dev_err(sfp->dev, "out of memory for hwmon name\n");
1322		return;
1323	}
1324
1325	for (i = 0; sfp->hwmon_name[i]; i++)
1326		if (hwmon_is_bad_char(sfp->hwmon_name[i]))
1327			sfp->hwmon_name[i] = '_';
1328
1329	sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1330							 sfp->hwmon_name, sfp,
1331							 &sfp_hwmon_chip_info,
1332							 NULL);
1333	if (IS_ERR(sfp->hwmon_dev))
1334		dev_err(sfp->dev, "failed to register hwmon device: %ld\n",
1335			PTR_ERR(sfp->hwmon_dev));
1336}
1337
1338static int sfp_hwmon_insert(struct sfp *sfp)
1339{
1340	if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE)
1341		return 0;
1342
1343	if (!(sfp->id.ext.diagmon & SFP_DIAGMON_DDM))
1344		return 0;
1345
1346	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1347		/* This driver in general does not support address
1348		 * change.
1349		 */
1350		return 0;
1351
1352	mod_delayed_work(system_wq, &sfp->hwmon_probe, 1);
1353	sfp->hwmon_tries = R_PROBE_RETRY_SLOW;
1354
1355	return 0;
1356}
1357
1358static void sfp_hwmon_remove(struct sfp *sfp)
1359{
1360	cancel_delayed_work_sync(&sfp->hwmon_probe);
1361	if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1362		hwmon_device_unregister(sfp->hwmon_dev);
1363		sfp->hwmon_dev = NULL;
1364		kfree(sfp->hwmon_name);
1365	}
1366}
1367
1368static int sfp_hwmon_init(struct sfp *sfp)
1369{
1370	INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe);
1371
1372	return 0;
1373}
1374
1375static void sfp_hwmon_exit(struct sfp *sfp)
1376{
1377	cancel_delayed_work_sync(&sfp->hwmon_probe);
1378}
1379#else
1380static int sfp_hwmon_insert(struct sfp *sfp)
1381{
1382	return 0;
1383}
1384
1385static void sfp_hwmon_remove(struct sfp *sfp)
1386{
1387}
1388
1389static int sfp_hwmon_init(struct sfp *sfp)
1390{
1391	return 0;
1392}
1393
1394static void sfp_hwmon_exit(struct sfp *sfp)
1395{
1396}
1397#endif
1398
1399/* Helpers */
1400static void sfp_module_tx_disable(struct sfp *sfp)
1401{
1402	dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1403		sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1404	sfp->state |= SFP_F_TX_DISABLE;
1405	sfp_set_state(sfp, sfp->state);
1406}
1407
1408static void sfp_module_tx_enable(struct sfp *sfp)
1409{
1410	dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1411		sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1412	sfp->state &= ~SFP_F_TX_DISABLE;
1413	sfp_set_state(sfp, sfp->state);
1414}
1415
1416#if IS_ENABLED(CONFIG_DEBUG_FS)
1417static int sfp_debug_state_show(struct seq_file *s, void *data)
1418{
1419	struct sfp *sfp = s->private;
1420
1421	seq_printf(s, "Module state: %s\n",
1422		   mod_state_to_str(sfp->sm_mod_state));
1423	seq_printf(s, "Module probe attempts: %d %d\n",
1424		   R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init,
1425		   R_PROBE_RETRY_SLOW - sfp->sm_mod_tries);
1426	seq_printf(s, "Device state: %s\n",
1427		   dev_state_to_str(sfp->sm_dev_state));
1428	seq_printf(s, "Main state: %s\n",
1429		   sm_state_to_str(sfp->sm_state));
1430	seq_printf(s, "Fault recovery remaining retries: %d\n",
1431		   sfp->sm_fault_retries);
1432	seq_printf(s, "PHY probe remaining retries: %d\n",
1433		   sfp->sm_phy_retries);
 
 
 
1434	seq_printf(s, "moddef0: %d\n", !!(sfp->state & SFP_F_PRESENT));
1435	seq_printf(s, "rx_los: %d\n", !!(sfp->state & SFP_F_LOS));
1436	seq_printf(s, "tx_fault: %d\n", !!(sfp->state & SFP_F_TX_FAULT));
1437	seq_printf(s, "tx_disable: %d\n", !!(sfp->state & SFP_F_TX_DISABLE));
 
 
1438	return 0;
1439}
1440DEFINE_SHOW_ATTRIBUTE(sfp_debug_state);
1441
1442static void sfp_debugfs_init(struct sfp *sfp)
1443{
1444	sfp->debugfs_dir = debugfs_create_dir(dev_name(sfp->dev), NULL);
1445
1446	debugfs_create_file("state", 0600, sfp->debugfs_dir, sfp,
1447			    &sfp_debug_state_fops);
1448}
1449
1450static void sfp_debugfs_exit(struct sfp *sfp)
1451{
1452	debugfs_remove_recursive(sfp->debugfs_dir);
1453}
1454#else
1455static void sfp_debugfs_init(struct sfp *sfp)
1456{
1457}
1458
1459static void sfp_debugfs_exit(struct sfp *sfp)
1460{
1461}
1462#endif
1463
1464static void sfp_module_tx_fault_reset(struct sfp *sfp)
1465{
1466	unsigned int state = sfp->state;
1467
1468	if (state & SFP_F_TX_DISABLE)
1469		return;
 
 
1470
1471	sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1472
1473	udelay(T_RESET_US);
1474
1475	sfp_set_state(sfp, state);
1476}
1477
1478/* SFP state machine */
1479static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1480{
1481	if (timeout)
1482		mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1483				 timeout);
1484	else
1485		cancel_delayed_work(&sfp->timeout);
1486}
1487
1488static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1489			unsigned int timeout)
1490{
1491	sfp->sm_state = state;
1492	sfp_sm_set_timer(sfp, timeout);
1493}
1494
1495static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state,
1496			    unsigned int timeout)
1497{
1498	sfp->sm_mod_state = state;
1499	sfp_sm_set_timer(sfp, timeout);
1500}
1501
1502static void sfp_sm_phy_detach(struct sfp *sfp)
1503{
1504	sfp_remove_phy(sfp->sfp_bus);
1505	phy_device_remove(sfp->mod_phy);
1506	phy_device_free(sfp->mod_phy);
1507	sfp->mod_phy = NULL;
1508}
1509
1510static int sfp_sm_probe_phy(struct sfp *sfp, bool is_c45)
1511{
1512	struct phy_device *phy;
1513	int err;
1514
1515	phy = get_phy_device(sfp->i2c_mii, SFP_PHY_ADDR, is_c45);
1516	if (phy == ERR_PTR(-ENODEV))
1517		return PTR_ERR(phy);
1518	if (IS_ERR(phy)) {
1519		dev_err(sfp->dev, "mdiobus scan returned %ld\n", PTR_ERR(phy));
1520		return PTR_ERR(phy);
1521	}
1522
 
 
 
1523	err = phy_device_register(phy);
1524	if (err) {
1525		phy_device_free(phy);
1526		dev_err(sfp->dev, "phy_device_register failed: %d\n", err);
 
1527		return err;
1528	}
1529
1530	err = sfp_add_phy(sfp->sfp_bus, phy);
1531	if (err) {
1532		phy_device_remove(phy);
1533		phy_device_free(phy);
1534		dev_err(sfp->dev, "sfp_add_phy failed: %d\n", err);
1535		return err;
1536	}
1537
1538	sfp->mod_phy = phy;
1539
1540	return 0;
1541}
1542
1543static void sfp_sm_link_up(struct sfp *sfp)
1544{
1545	sfp_link_up(sfp->sfp_bus);
1546	sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1547}
1548
1549static void sfp_sm_link_down(struct sfp *sfp)
1550{
1551	sfp_link_down(sfp->sfp_bus);
1552}
1553
1554static void sfp_sm_link_check_los(struct sfp *sfp)
1555{
1556	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1557	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1558	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1559	bool los = false;
1560
1561	/* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
1562	 * are set, we assume that no LOS signal is available. If both are
1563	 * set, we assume LOS is not implemented (and is meaningless.)
1564	 */
1565	if (los_options == los_inverted)
1566		los = !(sfp->state & SFP_F_LOS);
1567	else if (los_options == los_normal)
1568		los = !!(sfp->state & SFP_F_LOS);
1569
1570	if (los)
1571		sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1572	else
1573		sfp_sm_link_up(sfp);
1574}
1575
1576static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1577{
1578	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1579	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1580	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1581
1582	return (los_options == los_inverted && event == SFP_E_LOS_LOW) ||
1583	       (los_options == los_normal && event == SFP_E_LOS_HIGH);
1584}
1585
1586static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1587{
1588	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1589	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1590	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1591
1592	return (los_options == los_inverted && event == SFP_E_LOS_HIGH) ||
1593	       (los_options == los_normal && event == SFP_E_LOS_LOW);
1594}
1595
1596static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn)
1597{
1598	if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) {
1599		dev_err(sfp->dev,
1600			"module persistently indicates fault, disabling\n");
1601		sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1602	} else {
1603		if (warn)
1604			dev_err(sfp->dev, "module transmit fault indicated\n");
1605
1606		sfp_sm_next(sfp, next_state, T_FAULT_RECOVER);
1607	}
1608}
1609
 
 
 
 
 
 
 
 
1610/* Probe a SFP for a PHY device if the module supports copper - the PHY
1611 * normally sits at I2C bus address 0x56, and may either be a clause 22
1612 * or clause 45 PHY.
1613 *
1614 * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with
1615 * negotiation enabled, but some may be in 1000base-X - which is for the
1616 * PHY driver to determine.
1617 *
1618 * Clause 45 copper SFP+ modules (10G) appear to switch their interface
1619 * mode according to the negotiated line speed.
1620 */
1621static int sfp_sm_probe_for_phy(struct sfp *sfp)
1622{
1623	int err = 0;
1624
1625	switch (sfp->id.base.extended_cc) {
1626	case SFF8024_ECC_10GBASE_T_SFI:
1627	case SFF8024_ECC_10GBASE_T_SR:
1628	case SFF8024_ECC_5GBASE_T:
1629	case SFF8024_ECC_2_5GBASE_T:
1630		err = sfp_sm_probe_phy(sfp, true);
1631		break;
1632
1633	default:
1634		if (sfp->id.base.e1000_base_t)
1635			err = sfp_sm_probe_phy(sfp, false);
 
 
 
 
 
 
 
1636		break;
1637	}
 
1638	return err;
1639}
1640
1641static int sfp_module_parse_power(struct sfp *sfp)
1642{
1643	u32 power_mW = 1000;
 
1644
1645	if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
 
1646		power_mW = 1500;
1647	if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
 
 
1648		power_mW = 2000;
1649
 
 
 
 
 
 
 
 
 
 
1650	if (power_mW > sfp->max_power_mW) {
1651		/* Module power specification exceeds the allowed maximum. */
1652		if (sfp->id.ext.sff8472_compliance ==
1653			SFP_SFF8472_COMPLIANCE_NONE &&
1654		    !(sfp->id.ext.diagmon & SFP_DIAGMON_DDM)) {
1655			/* The module appears not to implement bus address
1656			 * 0xa2, so assume that the module powers up in the
1657			 * indicated mode.
1658			 */
1659			dev_err(sfp->dev,
1660				"Host does not support %u.%uW modules\n",
1661				power_mW / 1000, (power_mW / 100) % 10);
1662			return -EINVAL;
1663		} else {
1664			dev_warn(sfp->dev,
1665				 "Host does not support %u.%uW modules, module left in power mode 1\n",
1666				 power_mW / 1000, (power_mW / 100) % 10);
1667			return 0;
1668		}
1669	}
1670
 
 
 
 
 
 
 
 
1671	/* If the module requires a higher power mode, but also requires
1672	 * an address change sequence, warn the user that the module may
1673	 * not be functional.
1674	 */
1675	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE && power_mW > 1000) {
1676		dev_warn(sfp->dev,
1677			 "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n",
1678			 power_mW / 1000, (power_mW / 100) % 10);
1679		return 0;
1680	}
1681
1682	sfp->module_power_mW = power_mW;
1683
1684	return 0;
1685}
1686
1687static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable)
1688{
1689	u8 val;
1690	int err;
1691
1692	err = sfp_read(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1693	if (err != sizeof(val)) {
1694		dev_err(sfp->dev, "Failed to read EEPROM: %d\n", err);
 
 
 
1695		return -EAGAIN;
1696	}
1697
1698	/* DM7052 reports as a high power module, responds to reads (with
1699	 * all bytes 0xff) at 0x51 but does not accept writes.  In any case,
1700	 * if the bit is already set, we're already in high power mode.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1701	 */
1702	if (!!(val & BIT(0)) == enable)
1703		return 0;
1704
1705	if (enable)
1706		val |= BIT(0);
1707	else
1708		val &= ~BIT(0);
 
 
 
 
 
 
 
 
1709
1710	err = sfp_write(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1711	if (err != sizeof(val)) {
1712		dev_err(sfp->dev, "Failed to write EEPROM: %d\n", err);
1713		return -EAGAIN;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1714	}
1715
1716	if (enable)
1717		dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
1718			 sfp->module_power_mW / 1000,
1719			 (sfp->module_power_mW / 100) % 10);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1720
1721	return 0;
 
 
 
 
1722}
1723
1724/* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL
1725 * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do
1726 * not support multibyte reads from the EEPROM. Each multi-byte read
1727 * operation returns just one byte of EEPROM followed by zeros. There is
1728 * no way to identify which modules are using Realtek RTL8672 and RTL9601C
1729 * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor
1730 * name and vendor id into EEPROM, so there is even no way to detect if
1731 * module is V-SOL V2801F. Therefore check for those zeros in the read
1732 * data and then based on check switch to reading EEPROM to one byte
1733 * at a time.
1734 */
1735static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len)
1736{
1737	size_t i, block_size = sfp->i2c_block_size;
1738
1739	/* Already using byte IO */
1740	if (block_size == 1)
1741		return false;
1742
1743	for (i = 1; i < len; i += block_size) {
1744		if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i)))
1745			return false;
1746	}
1747	return true;
1748}
1749
1750static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id)
1751{
1752	u8 check;
1753	int err;
1754
1755	if (id->base.phys_id != SFF8024_ID_SFF_8472 ||
1756	    id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP ||
1757	    id->base.connector != SFF8024_CONNECTOR_LC) {
1758		dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n");
1759		id->base.phys_id = SFF8024_ID_SFF_8472;
1760		id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP;
1761		id->base.connector = SFF8024_CONNECTOR_LC;
1762		err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3);
1763		if (err != 3) {
1764			dev_err(sfp->dev, "Failed to rewrite module EEPROM: %d\n", err);
 
 
1765			return err;
1766		}
1767
1768		/* Cotsworks modules have been found to require a delay between write operations. */
1769		mdelay(50);
1770
1771		/* Update base structure checksum */
1772		check = sfp_check(&id->base, sizeof(id->base) - 1);
1773		err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1);
1774		if (err != 1) {
1775			dev_err(sfp->dev, "Failed to update base structure checksum in fiber module EEPROM: %d\n", err);
 
 
1776			return err;
1777		}
1778	}
1779	return 0;
1780}
1781
 
 
 
 
 
 
 
 
 
 
 
 
1782static int sfp_sm_mod_probe(struct sfp *sfp, bool report)
1783{
1784	/* SFP module inserted - read I2C data */
1785	struct sfp_eeprom_id id;
1786	bool cotsworks_sfbg;
 
1787	bool cotsworks;
1788	u8 check;
1789	int ret;
1790
1791	/* Some SFP modules and also some Linux I2C drivers do not like reads
1792	 * longer than 16 bytes, so read the EEPROM in chunks of 16 bytes at
1793	 * a time.
1794	 */
1795	sfp->i2c_block_size = 16;
1796
1797	ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
1798	if (ret < 0) {
1799		if (report)
1800			dev_err(sfp->dev, "failed to read EEPROM: %d\n", ret);
 
1801		return -EAGAIN;
1802	}
1803
1804	if (ret != sizeof(id.base)) {
1805		dev_err(sfp->dev, "EEPROM short read: %d\n", ret);
1806		return -EAGAIN;
1807	}
1808
1809	/* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from
1810	 * address 0x51 is just one byte at a time. Also SFF-8472 requires
1811	 * that EEPROM supports atomic 16bit read operation for diagnostic
1812	 * fields, so do not switch to one byte reading at a time unless it
1813	 * is really required and we have no other option.
1814	 */
1815	if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) {
1816		dev_info(sfp->dev,
1817			 "Detected broken RTL8672/RTL9601C emulated EEPROM\n");
1818		dev_info(sfp->dev,
1819			 "Switching to reading EEPROM to one byte at a time\n");
1820		sfp->i2c_block_size = 1;
1821
1822		ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
1823		if (ret < 0) {
1824			if (report)
1825				dev_err(sfp->dev, "failed to read EEPROM: %d\n",
1826					ret);
 
1827			return -EAGAIN;
1828		}
1829
1830		if (ret != sizeof(id.base)) {
1831			dev_err(sfp->dev, "EEPROM short read: %d\n", ret);
 
1832			return -EAGAIN;
1833		}
1834	}
1835
1836	/* Cotsworks do not seem to update the checksums when they
1837	 * do the final programming with the final module part number,
1838	 * serial number and date code.
1839	 */
1840	cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS       ", 16);
1841	cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4);
1842
1843	/* Cotsworks SFF module EEPROM do not always have valid phys_id,
1844	 * phys_ext_id, and connector bytes.  Rewrite SFF EEPROM bytes if
1845	 * Cotsworks PN matches and bytes are not correct.
1846	 */
1847	if (cotsworks && cotsworks_sfbg) {
1848		ret = sfp_cotsworks_fixup_check(sfp, &id);
1849		if (ret < 0)
1850			return ret;
1851	}
1852
1853	/* Validate the checksum over the base structure */
1854	check = sfp_check(&id.base, sizeof(id.base) - 1);
1855	if (check != id.base.cc_base) {
1856		if (cotsworks) {
1857			dev_warn(sfp->dev,
1858				 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
1859				 check, id.base.cc_base);
1860		} else {
1861			dev_err(sfp->dev,
1862				"EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
1863				check, id.base.cc_base);
1864			print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1865				       16, 1, &id, sizeof(id), true);
1866			return -EINVAL;
1867		}
1868	}
1869
1870	ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext));
1871	if (ret < 0) {
1872		if (report)
1873			dev_err(sfp->dev, "failed to read EEPROM: %d\n", ret);
 
1874		return -EAGAIN;
1875	}
1876
1877	if (ret != sizeof(id.ext)) {
1878		dev_err(sfp->dev, "EEPROM short read: %d\n", ret);
1879		return -EAGAIN;
1880	}
1881
1882	check = sfp_check(&id.ext, sizeof(id.ext) - 1);
1883	if (check != id.ext.cc_ext) {
1884		if (cotsworks) {
1885			dev_warn(sfp->dev,
1886				 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
1887				 check, id.ext.cc_ext);
1888		} else {
1889			dev_err(sfp->dev,
1890				"EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
1891				check, id.ext.cc_ext);
1892			print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1893				       16, 1, &id, sizeof(id), true);
1894			memset(&id.ext, 0, sizeof(id.ext));
1895		}
1896	}
1897
1898	sfp->id = id;
1899
1900	dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
1901		 (int)sizeof(id.base.vendor_name), id.base.vendor_name,
1902		 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
1903		 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
1904		 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
1905		 (int)sizeof(id.ext.datecode), id.ext.datecode);
1906
1907	/* Check whether we support this module */
1908	if (!sfp->type->module_supported(&id)) {
1909		dev_err(sfp->dev,
1910			"module is not supported - phys id 0x%02x 0x%02x\n",
1911			sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
1912		return -EINVAL;
1913	}
1914
1915	/* If the module requires address swap mode, warn about it */
1916	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1917		dev_warn(sfp->dev,
1918			 "module address swap to access page 0xA2 is not supported.\n");
 
1919
1920	/* Parse the module power requirement */
1921	ret = sfp_module_parse_power(sfp);
1922	if (ret < 0)
1923		return ret;
1924
1925	if (!memcmp(id.base.vendor_name, "ALCATELLUCENT   ", 16) &&
1926	    !memcmp(id.base.vendor_pn, "3FE46541AA      ", 16))
1927		sfp->module_t_start_up = T_START_UP_BAD_GPON;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1928	else
1929		sfp->module_t_start_up = T_START_UP;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1930
1931	return 0;
1932}
1933
1934static void sfp_sm_mod_remove(struct sfp *sfp)
1935{
1936	if (sfp->sm_mod_state > SFP_MOD_WAITDEV)
1937		sfp_module_remove(sfp->sfp_bus);
1938
1939	sfp_hwmon_remove(sfp);
1940
1941	memset(&sfp->id, 0, sizeof(sfp->id));
1942	sfp->module_power_mW = 0;
 
 
1943
1944	dev_info(sfp->dev, "module removed\n");
1945}
1946
1947/* This state machine tracks the upstream's state */
1948static void sfp_sm_device(struct sfp *sfp, unsigned int event)
1949{
1950	switch (sfp->sm_dev_state) {
1951	default:
1952		if (event == SFP_E_DEV_ATTACH)
1953			sfp->sm_dev_state = SFP_DEV_DOWN;
1954		break;
1955
1956	case SFP_DEV_DOWN:
1957		if (event == SFP_E_DEV_DETACH)
1958			sfp->sm_dev_state = SFP_DEV_DETACHED;
1959		else if (event == SFP_E_DEV_UP)
1960			sfp->sm_dev_state = SFP_DEV_UP;
1961		break;
1962
1963	case SFP_DEV_UP:
1964		if (event == SFP_E_DEV_DETACH)
1965			sfp->sm_dev_state = SFP_DEV_DETACHED;
1966		else if (event == SFP_E_DEV_DOWN)
1967			sfp->sm_dev_state = SFP_DEV_DOWN;
1968		break;
1969	}
1970}
1971
1972/* This state machine tracks the insert/remove state of the module, probes
1973 * the on-board EEPROM, and sets up the power level.
1974 */
1975static void sfp_sm_module(struct sfp *sfp, unsigned int event)
1976{
1977	int err;
1978
1979	/* Handle remove event globally, it resets this state machine */
1980	if (event == SFP_E_REMOVE) {
1981		if (sfp->sm_mod_state > SFP_MOD_PROBE)
1982			sfp_sm_mod_remove(sfp);
1983		sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0);
1984		return;
1985	}
1986
1987	/* Handle device detach globally */
1988	if (sfp->sm_dev_state < SFP_DEV_DOWN &&
1989	    sfp->sm_mod_state > SFP_MOD_WAITDEV) {
1990		if (sfp->module_power_mW > 1000 &&
1991		    sfp->sm_mod_state > SFP_MOD_HPOWER)
1992			sfp_sm_mod_hpower(sfp, false);
1993		sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
1994		return;
1995	}
1996
1997	switch (sfp->sm_mod_state) {
1998	default:
1999		if (event == SFP_E_INSERT) {
2000			sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL);
2001			sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT;
2002			sfp->sm_mod_tries = R_PROBE_RETRY_SLOW;
2003		}
2004		break;
2005
2006	case SFP_MOD_PROBE:
2007		/* Wait for T_PROBE_INIT to time out */
2008		if (event != SFP_E_TIMEOUT)
2009			break;
2010
2011		err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1);
2012		if (err == -EAGAIN) {
2013			if (sfp->sm_mod_tries_init &&
2014			   --sfp->sm_mod_tries_init) {
2015				sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2016				break;
2017			} else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) {
2018				if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1)
2019					dev_warn(sfp->dev,
2020						 "please wait, module slow to respond\n");
2021				sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW);
2022				break;
2023			}
2024		}
2025		if (err < 0) {
2026			sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2027			break;
2028		}
2029
 
 
 
 
 
2030		err = sfp_hwmon_insert(sfp);
2031		if (err)
2032			dev_warn(sfp->dev, "hwmon probe failed: %d\n", err);
 
2033
2034		sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2035		fallthrough;
2036	case SFP_MOD_WAITDEV:
2037		/* Ensure that the device is attached before proceeding */
2038		if (sfp->sm_dev_state < SFP_DEV_DOWN)
2039			break;
2040
2041		/* Report the module insertion to the upstream device */
2042		err = sfp_module_insert(sfp->sfp_bus, &sfp->id);
 
2043		if (err < 0) {
2044			sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2045			break;
2046		}
2047
2048		/* If this is a power level 1 module, we are done */
2049		if (sfp->module_power_mW <= 1000)
2050			goto insert;
2051
2052		sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0);
2053		fallthrough;
2054	case SFP_MOD_HPOWER:
2055		/* Enable high power mode */
2056		err = sfp_sm_mod_hpower(sfp, true);
2057		if (err < 0) {
2058			if (err != -EAGAIN) {
2059				sfp_module_remove(sfp->sfp_bus);
2060				sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2061			} else {
2062				sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2063			}
2064			break;
2065		}
2066
2067		sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL);
2068		break;
2069
2070	case SFP_MOD_WAITPWR:
2071		/* Wait for T_HPOWER_LEVEL to time out */
2072		if (event != SFP_E_TIMEOUT)
2073			break;
2074
2075	insert:
2076		sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0);
2077		break;
2078
2079	case SFP_MOD_PRESENT:
2080	case SFP_MOD_ERROR:
2081		break;
2082	}
2083}
2084
2085static void sfp_sm_main(struct sfp *sfp, unsigned int event)
2086{
2087	unsigned long timeout;
2088	int ret;
2089
2090	/* Some events are global */
2091	if (sfp->sm_state != SFP_S_DOWN &&
2092	    (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2093	     sfp->sm_dev_state != SFP_DEV_UP)) {
2094		if (sfp->sm_state == SFP_S_LINK_UP &&
2095		    sfp->sm_dev_state == SFP_DEV_UP)
2096			sfp_sm_link_down(sfp);
2097		if (sfp->sm_state > SFP_S_INIT)
2098			sfp_module_stop(sfp->sfp_bus);
2099		if (sfp->mod_phy)
2100			sfp_sm_phy_detach(sfp);
 
 
2101		sfp_module_tx_disable(sfp);
2102		sfp_soft_stop_poll(sfp);
2103		sfp_sm_next(sfp, SFP_S_DOWN, 0);
2104		return;
2105	}
2106
2107	/* The main state machine */
2108	switch (sfp->sm_state) {
2109	case SFP_S_DOWN:
2110		if (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2111		    sfp->sm_dev_state != SFP_DEV_UP)
2112			break;
2113
2114		if (!(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE))
 
 
 
 
2115			sfp_soft_start_poll(sfp);
2116
2117		sfp_module_tx_enable(sfp);
2118
2119		/* Initialise the fault clearance retries */
2120		sfp->sm_fault_retries = N_FAULT_INIT;
2121
2122		/* We need to check the TX_FAULT state, which is not defined
2123		 * while TX_DISABLE is asserted. The earliest we want to do
2124		 * anything (such as probe for a PHY) is 50ms.
 
2125		 */
2126		sfp_sm_next(sfp, SFP_S_WAIT, T_WAIT);
2127		break;
2128
2129	case SFP_S_WAIT:
2130		if (event != SFP_E_TIMEOUT)
2131			break;
2132
2133		if (sfp->state & SFP_F_TX_FAULT) {
2134			/* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431)
2135			 * from the TX_DISABLE deassertion for the module to
2136			 * initialise, which is indicated by TX_FAULT
2137			 * deasserting.
2138			 */
2139			timeout = sfp->module_t_start_up;
2140			if (timeout > T_WAIT)
2141				timeout -= T_WAIT;
2142			else
2143				timeout = 1;
2144
2145			sfp_sm_next(sfp, SFP_S_INIT, timeout);
2146		} else {
2147			/* TX_FAULT is not asserted, assume the module has
2148			 * finished initialising.
2149			 */
2150			goto init_done;
2151		}
2152		break;
2153
2154	case SFP_S_INIT:
2155		if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2156			/* TX_FAULT is still asserted after t_init
2157			 * or t_start_up, so assume there is a fault.
2158			 */
2159			sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT,
2160				     sfp->sm_fault_retries == N_FAULT_INIT);
2161		} else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2162	init_done:
 
 
 
 
 
 
2163			sfp->sm_phy_retries = R_PHY_RETRY;
2164			goto phy_probe;
2165		}
2166		break;
2167
2168	case SFP_S_INIT_PHY:
2169		if (event != SFP_E_TIMEOUT)
2170			break;
2171	phy_probe:
2172		/* TX_FAULT deasserted or we timed out with TX_FAULT
2173		 * clear.  Probe for the PHY and check the LOS state.
2174		 */
2175		ret = sfp_sm_probe_for_phy(sfp);
2176		if (ret == -ENODEV) {
2177			if (--sfp->sm_phy_retries) {
2178				sfp_sm_next(sfp, SFP_S_INIT_PHY, T_PHY_RETRY);
 
 
 
 
2179				break;
2180			} else {
2181				dev_info(sfp->dev, "no PHY detected\n");
2182			}
2183		} else if (ret) {
2184			sfp_sm_next(sfp, SFP_S_FAIL, 0);
2185			break;
2186		}
2187		if (sfp_module_start(sfp->sfp_bus)) {
2188			sfp_sm_next(sfp, SFP_S_FAIL, 0);
2189			break;
2190		}
2191		sfp_sm_link_check_los(sfp);
2192
2193		/* Reset the fault retry count */
2194		sfp->sm_fault_retries = N_FAULT;
2195		break;
2196
2197	case SFP_S_INIT_TX_FAULT:
2198		if (event == SFP_E_TIMEOUT) {
2199			sfp_module_tx_fault_reset(sfp);
2200			sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up);
2201		}
2202		break;
2203
2204	case SFP_S_WAIT_LOS:
2205		if (event == SFP_E_TX_FAULT)
2206			sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2207		else if (sfp_los_event_inactive(sfp, event))
2208			sfp_sm_link_up(sfp);
2209		break;
2210
2211	case SFP_S_LINK_UP:
2212		if (event == SFP_E_TX_FAULT) {
2213			sfp_sm_link_down(sfp);
2214			sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2215		} else if (sfp_los_event_active(sfp, event)) {
2216			sfp_sm_link_down(sfp);
2217			sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
2218		}
2219		break;
2220
2221	case SFP_S_TX_FAULT:
2222		if (event == SFP_E_TIMEOUT) {
2223			sfp_module_tx_fault_reset(sfp);
2224			sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up);
2225		}
2226		break;
2227
2228	case SFP_S_REINIT:
2229		if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2230			sfp_sm_fault(sfp, SFP_S_TX_FAULT, false);
2231		} else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2232			dev_info(sfp->dev, "module transmit fault recovered\n");
2233			sfp_sm_link_check_los(sfp);
2234		}
2235		break;
2236
2237	case SFP_S_TX_DISABLE:
2238		break;
2239	}
2240}
2241
2242static void sfp_sm_event(struct sfp *sfp, unsigned int event)
2243{
2244	mutex_lock(&sfp->sm_mutex);
2245
2246	dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
2247		mod_state_to_str(sfp->sm_mod_state),
2248		dev_state_to_str(sfp->sm_dev_state),
2249		sm_state_to_str(sfp->sm_state),
2250		event_to_str(event));
2251
2252	sfp_sm_device(sfp, event);
2253	sfp_sm_module(sfp, event);
2254	sfp_sm_main(sfp, event);
2255
2256	dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
2257		mod_state_to_str(sfp->sm_mod_state),
2258		dev_state_to_str(sfp->sm_dev_state),
2259		sm_state_to_str(sfp->sm_state));
 
2260
 
 
 
 
2261	mutex_unlock(&sfp->sm_mutex);
2262}
2263
2264static void sfp_attach(struct sfp *sfp)
2265{
2266	sfp_sm_event(sfp, SFP_E_DEV_ATTACH);
2267}
2268
2269static void sfp_detach(struct sfp *sfp)
2270{
2271	sfp_sm_event(sfp, SFP_E_DEV_DETACH);
2272}
2273
2274static void sfp_start(struct sfp *sfp)
2275{
2276	sfp_sm_event(sfp, SFP_E_DEV_UP);
2277}
2278
2279static void sfp_stop(struct sfp *sfp)
2280{
2281	sfp_sm_event(sfp, SFP_E_DEV_DOWN);
2282}
2283
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2284static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
2285{
2286	/* locking... and check module is present */
2287
2288	if (sfp->id.ext.sff8472_compliance &&
2289	    !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
2290		modinfo->type = ETH_MODULE_SFF_8472;
2291		modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2292	} else {
2293		modinfo->type = ETH_MODULE_SFF_8079;
2294		modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2295	}
2296	return 0;
2297}
2298
2299static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
2300			     u8 *data)
2301{
2302	unsigned int first, last, len;
2303	int ret;
2304
 
 
 
2305	if (ee->len == 0)
2306		return -EINVAL;
2307
2308	first = ee->offset;
2309	last = ee->offset + ee->len;
2310	if (first < ETH_MODULE_SFF_8079_LEN) {
2311		len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
2312		len -= first;
2313
2314		ret = sfp_read(sfp, false, first, data, len);
2315		if (ret < 0)
2316			return ret;
2317
2318		first += len;
2319		data += len;
2320	}
2321	if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
2322		len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
2323		len -= first;
2324		first -= ETH_MODULE_SFF_8079_LEN;
2325
2326		ret = sfp_read(sfp, true, first, data, len);
2327		if (ret < 0)
2328			return ret;
2329	}
2330	return 0;
2331}
2332
2333static int sfp_module_eeprom_by_page(struct sfp *sfp,
2334				     const struct ethtool_module_eeprom *page,
2335				     struct netlink_ext_ack *extack)
2336{
 
 
 
2337	if (page->bank) {
2338		NL_SET_ERR_MSG(extack, "Banks not supported");
2339		return -EOPNOTSUPP;
2340	}
2341
2342	if (page->page) {
2343		NL_SET_ERR_MSG(extack, "Only page 0 supported");
2344		return -EOPNOTSUPP;
2345	}
2346
2347	if (page->i2c_address != 0x50 &&
2348	    page->i2c_address != 0x51) {
2349		NL_SET_ERR_MSG(extack, "Only address 0x50 and 0x51 supported");
2350		return -EOPNOTSUPP;
2351	}
2352
2353	return sfp_read(sfp, page->i2c_address == 0x51, page->offset,
2354			page->data, page->length);
2355};
2356
2357static const struct sfp_socket_ops sfp_module_ops = {
2358	.attach = sfp_attach,
2359	.detach = sfp_detach,
2360	.start = sfp_start,
2361	.stop = sfp_stop,
 
2362	.module_info = sfp_module_info,
2363	.module_eeprom = sfp_module_eeprom,
2364	.module_eeprom_by_page = sfp_module_eeprom_by_page,
2365};
2366
2367static void sfp_timeout(struct work_struct *work)
2368{
2369	struct sfp *sfp = container_of(work, struct sfp, timeout.work);
2370
2371	rtnl_lock();
2372	sfp_sm_event(sfp, SFP_E_TIMEOUT);
2373	rtnl_unlock();
2374}
2375
2376static void sfp_check_state(struct sfp *sfp)
2377{
2378	unsigned int state, i, changed;
2379
 
2380	mutex_lock(&sfp->st_mutex);
2381	state = sfp_get_state(sfp);
2382	changed = state ^ sfp->state;
2383	changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
2384
2385	for (i = 0; i < GPIO_MAX; i++)
2386		if (changed & BIT(i))
2387			dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_of_names[i],
2388				!!(sfp->state & BIT(i)), !!(state & BIT(i)));
2389
2390	state |= sfp->state & (SFP_F_TX_DISABLE | SFP_F_RATE_SELECT);
2391	sfp->state = state;
 
2392
2393	rtnl_lock();
2394	if (changed & SFP_F_PRESENT)
2395		sfp_sm_event(sfp, state & SFP_F_PRESENT ?
2396				SFP_E_INSERT : SFP_E_REMOVE);
2397
2398	if (changed & SFP_F_TX_FAULT)
2399		sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
2400				SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
2401
2402	if (changed & SFP_F_LOS)
2403		sfp_sm_event(sfp, state & SFP_F_LOS ?
2404				SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
 
2405	rtnl_unlock();
2406	mutex_unlock(&sfp->st_mutex);
2407}
2408
2409static irqreturn_t sfp_irq(int irq, void *data)
2410{
2411	struct sfp *sfp = data;
2412
2413	sfp_check_state(sfp);
2414
2415	return IRQ_HANDLED;
2416}
2417
2418static void sfp_poll(struct work_struct *work)
2419{
2420	struct sfp *sfp = container_of(work, struct sfp, poll.work);
2421
2422	sfp_check_state(sfp);
2423
 
 
2424	if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) ||
2425	    sfp->need_poll)
2426		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2427}
2428
2429static struct sfp *sfp_alloc(struct device *dev)
2430{
2431	struct sfp *sfp;
2432
2433	sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
2434	if (!sfp)
2435		return ERR_PTR(-ENOMEM);
2436
2437	sfp->dev = dev;
 
2438
2439	mutex_init(&sfp->sm_mutex);
2440	mutex_init(&sfp->st_mutex);
2441	INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
2442	INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
2443
2444	sfp_hwmon_init(sfp);
2445
2446	return sfp;
2447}
2448
2449static void sfp_cleanup(void *data)
2450{
2451	struct sfp *sfp = data;
2452
2453	sfp_hwmon_exit(sfp);
2454
2455	cancel_delayed_work_sync(&sfp->poll);
2456	cancel_delayed_work_sync(&sfp->timeout);
2457	if (sfp->i2c_mii) {
2458		mdiobus_unregister(sfp->i2c_mii);
2459		mdiobus_free(sfp->i2c_mii);
2460	}
2461	if (sfp->i2c)
2462		i2c_put_adapter(sfp->i2c);
2463	kfree(sfp);
2464}
2465
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2466static int sfp_probe(struct platform_device *pdev)
2467{
2468	const struct sff_data *sff;
2469	struct i2c_adapter *i2c;
2470	char *sfp_irq_name;
2471	struct sfp *sfp;
2472	int err, i;
2473
2474	sfp = sfp_alloc(&pdev->dev);
2475	if (IS_ERR(sfp))
2476		return PTR_ERR(sfp);
2477
2478	platform_set_drvdata(pdev, sfp);
2479
2480	err = devm_add_action(sfp->dev, sfp_cleanup, sfp);
2481	if (err < 0)
2482		return err;
2483
2484	sff = sfp->type = &sfp_data;
2485
2486	if (pdev->dev.of_node) {
2487		struct device_node *node = pdev->dev.of_node;
2488		const struct of_device_id *id;
2489		struct device_node *np;
2490
2491		id = of_match_node(sfp_of_match, node);
2492		if (WARN_ON(!id))
2493			return -EINVAL;
2494
2495		sff = sfp->type = id->data;
2496
2497		np = of_parse_phandle(node, "i2c-bus", 0);
2498		if (!np) {
2499			dev_err(sfp->dev, "missing 'i2c-bus' property\n");
2500			return -ENODEV;
2501		}
2502
2503		i2c = of_find_i2c_adapter_by_node(np);
2504		of_node_put(np);
2505	} else if (has_acpi_companion(&pdev->dev)) {
2506		struct acpi_device *adev = ACPI_COMPANION(&pdev->dev);
2507		struct fwnode_handle *fw = acpi_fwnode_handle(adev);
2508		struct fwnode_reference_args args;
2509		struct acpi_handle *acpi_handle;
2510		int ret;
2511
2512		ret = acpi_node_get_property_reference(fw, "i2c-bus", 0, &args);
2513		if (ret || !is_acpi_device_node(args.fwnode)) {
2514			dev_err(&pdev->dev, "missing 'i2c-bus' property\n");
2515			return -ENODEV;
2516		}
2517
2518		acpi_handle = ACPI_HANDLE_FWNODE(args.fwnode);
2519		i2c = i2c_acpi_find_adapter_by_handle(acpi_handle);
2520	} else {
2521		return -EINVAL;
2522	}
2523
2524	if (!i2c)
2525		return -EPROBE_DEFER;
2526
2527	err = sfp_i2c_configure(sfp, i2c);
2528	if (err < 0) {
2529		i2c_put_adapter(i2c);
2530		return err;
2531	}
2532
2533	for (i = 0; i < GPIO_MAX; i++)
2534		if (sff->gpios & BIT(i)) {
2535			sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
2536					   gpio_of_names[i], gpio_flags[i]);
2537			if (IS_ERR(sfp->gpio[i]))
2538				return PTR_ERR(sfp->gpio[i]);
2539		}
2540
 
 
 
2541	sfp->get_state = sfp_gpio_get_state;
2542	sfp->set_state = sfp_gpio_set_state;
2543
2544	/* Modules that have no detect signal are always present */
2545	if (!(sfp->gpio[GPIO_MODDEF0]))
2546		sfp->get_state = sff_gpio_get_state;
2547
2548	device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
2549				 &sfp->max_power_mW);
2550	if (!sfp->max_power_mW)
 
 
 
2551		sfp->max_power_mW = 1000;
 
2552
2553	dev_info(sfp->dev, "Host maximum power %u.%uW\n",
2554		 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
2555
2556	/* Get the initial state, and always signal TX disable,
2557	 * since the network interface will not be up.
2558	 */
2559	sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
2560
2561	if (sfp->gpio[GPIO_RATE_SELECT] &&
2562	    gpiod_get_value_cansleep(sfp->gpio[GPIO_RATE_SELECT]))
2563		sfp->state |= SFP_F_RATE_SELECT;
2564	sfp_set_state(sfp, sfp->state);
2565	sfp_module_tx_disable(sfp);
2566	if (sfp->state & SFP_F_PRESENT) {
2567		rtnl_lock();
2568		sfp_sm_event(sfp, SFP_E_INSERT);
2569		rtnl_unlock();
2570	}
2571
2572	for (i = 0; i < GPIO_MAX; i++) {
2573		if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
2574			continue;
2575
2576		sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]);
2577		if (sfp->gpio_irq[i] < 0) {
2578			sfp->gpio_irq[i] = 0;
2579			sfp->need_poll = true;
2580			continue;
2581		}
2582
2583		sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL,
2584					      "%s-%s", dev_name(sfp->dev),
2585					      gpio_of_names[i]);
2586
2587		if (!sfp_irq_name)
2588			return -ENOMEM;
2589
2590		err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i],
2591						NULL, sfp_irq,
2592						IRQF_ONESHOT |
2593						IRQF_TRIGGER_RISING |
2594						IRQF_TRIGGER_FALLING,
2595						sfp_irq_name, sfp);
2596		if (err) {
2597			sfp->gpio_irq[i] = 0;
2598			sfp->need_poll = true;
2599		}
2600	}
2601
2602	if (sfp->need_poll)
2603		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2604
2605	/* We could have an issue in cases no Tx disable pin is available or
2606	 * wired as modules using a laser as their light source will continue to
2607	 * be active when the fiber is removed. This could be a safety issue and
2608	 * we should at least warn the user about that.
2609	 */
2610	if (!sfp->gpio[GPIO_TX_DISABLE])
2611		dev_warn(sfp->dev,
2612			 "No tx_disable pin: SFP modules will always be emitting.\n");
2613
2614	sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
2615	if (!sfp->sfp_bus)
2616		return -ENOMEM;
2617
2618	sfp_debugfs_init(sfp);
2619
2620	return 0;
2621}
2622
2623static int sfp_remove(struct platform_device *pdev)
2624{
2625	struct sfp *sfp = platform_get_drvdata(pdev);
2626
2627	sfp_debugfs_exit(sfp);
2628	sfp_unregister_socket(sfp->sfp_bus);
2629
2630	rtnl_lock();
2631	sfp_sm_event(sfp, SFP_E_REMOVE);
2632	rtnl_unlock();
2633
2634	return 0;
2635}
2636
2637static void sfp_shutdown(struct platform_device *pdev)
2638{
2639	struct sfp *sfp = platform_get_drvdata(pdev);
2640	int i;
2641
2642	for (i = 0; i < GPIO_MAX; i++) {
2643		if (!sfp->gpio_irq[i])
2644			continue;
2645
2646		devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp);
2647	}
2648
2649	cancel_delayed_work_sync(&sfp->poll);
2650	cancel_delayed_work_sync(&sfp->timeout);
2651}
2652
2653static struct platform_driver sfp_driver = {
2654	.probe = sfp_probe,
2655	.remove = sfp_remove,
2656	.shutdown = sfp_shutdown,
2657	.driver = {
2658		.name = "sfp",
2659		.of_match_table = sfp_of_match,
2660	},
2661};
2662
2663static int sfp_init(void)
2664{
2665	poll_jiffies = msecs_to_jiffies(100);
2666
2667	return platform_driver_register(&sfp_driver);
2668}
2669module_init(sfp_init);
2670
2671static void sfp_exit(void)
2672{
2673	platform_driver_unregister(&sfp_driver);
2674}
2675module_exit(sfp_exit);
2676
2677MODULE_ALIAS("platform:sfp");
2678MODULE_AUTHOR("Russell King");
2679MODULE_LICENSE("GPL v2");