Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Copyright (C) 2005-2007 Red Hat GmbH
  4 *
  5 * A target that delays reads and/or writes and can send
  6 * them to different devices.
  7 *
  8 * This file is released under the GPL.
  9 */
 10
 11#include <linux/module.h>
 12#include <linux/init.h>
 13#include <linux/blkdev.h>
 14#include <linux/bio.h>
 15#include <linux/slab.h>
 16#include <linux/kthread.h>
 17
 18#include <linux/device-mapper.h>
 19
 20#define DM_MSG_PREFIX "delay"
 21
 22struct delay_class {
 23	struct dm_dev *dev;
 24	sector_t start;
 25	unsigned int delay;
 26	unsigned int ops;
 27};
 28
 29struct delay_c {
 30	struct timer_list delay_timer;
 31	struct mutex timer_lock;
 
 32	struct workqueue_struct *kdelayd_wq;
 33	struct work_struct flush_expired_bios;
 34	struct list_head delayed_bios;
 35	struct task_struct *worker;
 36	bool may_delay;
 37
 38	struct delay_class read;
 39	struct delay_class write;
 40	struct delay_class flush;
 41
 42	int argc;
 43};
 44
 45struct dm_delay_info {
 46	struct delay_c *context;
 47	struct delay_class *class;
 48	struct list_head list;
 49	unsigned long expires;
 50};
 51
 52static DEFINE_MUTEX(delayed_bios_lock);
 53
 54static void handle_delayed_timer(struct timer_list *t)
 55{
 56	struct delay_c *dc = from_timer(dc, t, delay_timer);
 57
 58	queue_work(dc->kdelayd_wq, &dc->flush_expired_bios);
 59}
 60
 61static void queue_timeout(struct delay_c *dc, unsigned long expires)
 62{
 63	mutex_lock(&dc->timer_lock);
 64
 65	if (!timer_pending(&dc->delay_timer) || expires < dc->delay_timer.expires)
 66		mod_timer(&dc->delay_timer, expires);
 67
 68	mutex_unlock(&dc->timer_lock);
 69}
 70
 71static inline bool delay_is_fast(struct delay_c *dc)
 72{
 73	return !!dc->worker;
 74}
 75
 76static void flush_bios(struct bio *bio)
 77{
 78	struct bio *n;
 79
 80	while (bio) {
 81		n = bio->bi_next;
 82		bio->bi_next = NULL;
 83		dm_submit_bio_remap(bio, NULL);
 84		bio = n;
 85	}
 86}
 87
 88static void flush_delayed_bios(struct delay_c *dc, bool flush_all)
 89{
 90	struct dm_delay_info *delayed, *next;
 91	struct bio_list flush_bio_list;
 
 92	unsigned long next_expires = 0;
 93	bool start_timer = false;
 94	bio_list_init(&flush_bio_list);
 95
 96	mutex_lock(&delayed_bios_lock);
 97	list_for_each_entry_safe(delayed, next, &dc->delayed_bios, list) {
 
 
 
 98		cond_resched();
 99		if (flush_all || time_after_eq(jiffies, delayed->expires)) {
100			struct bio *bio = dm_bio_from_per_bio_data(delayed,
101						sizeof(struct dm_delay_info));
102			list_del(&delayed->list);
103			bio_list_add(&flush_bio_list, bio);
104			delayed->class->ops--;
105			continue;
106		}
107
108		if (!delay_is_fast(dc)) {
109			if (!start_timer) {
110				start_timer = true;
111				next_expires = delayed->expires;
112			} else {
113				next_expires = min(next_expires, delayed->expires);
114			}
115		}
116	}
117	mutex_unlock(&delayed_bios_lock);
 
 
 
118
119	if (start_timer)
120		queue_timeout(dc, next_expires);
121
122	flush_bios(bio_list_get(&flush_bio_list));
123}
124
125static int flush_worker_fn(void *data)
126{
127	struct delay_c *dc = data;
128
129	while (!kthread_should_stop()) {
130		flush_delayed_bios(dc, false);
131		mutex_lock(&delayed_bios_lock);
132		if (unlikely(list_empty(&dc->delayed_bios))) {
133			set_current_state(TASK_INTERRUPTIBLE);
134			mutex_unlock(&delayed_bios_lock);
135			schedule();
136		} else {
137			mutex_unlock(&delayed_bios_lock);
138			cond_resched();
139		}
140	}
141
142	return 0;
143}
144
145static void flush_expired_bios(struct work_struct *work)
146{
147	struct delay_c *dc;
148
149	dc = container_of(work, struct delay_c, flush_expired_bios);
150	flush_delayed_bios(dc, false);
151}
152
153static void delay_dtr(struct dm_target *ti)
154{
155	struct delay_c *dc = ti->private;
156
157	if (dc->kdelayd_wq)
 
158		destroy_workqueue(dc->kdelayd_wq);
 
159
160	if (dc->read.dev)
161		dm_put_device(ti, dc->read.dev);
162	if (dc->write.dev)
163		dm_put_device(ti, dc->write.dev);
164	if (dc->flush.dev)
165		dm_put_device(ti, dc->flush.dev);
166	if (dc->worker)
167		kthread_stop(dc->worker);
168
169	mutex_destroy(&dc->timer_lock);
170
171	kfree(dc);
172}
173
174static int delay_class_ctr(struct dm_target *ti, struct delay_class *c, char **argv)
175{
176	int ret;
177	unsigned long long tmpll;
178	char dummy;
179
180	if (sscanf(argv[1], "%llu%c", &tmpll, &dummy) != 1 || tmpll != (sector_t)tmpll) {
181		ti->error = "Invalid device sector";
182		return -EINVAL;
183	}
184	c->start = tmpll;
185
186	if (sscanf(argv[2], "%u%c", &c->delay, &dummy) != 1) {
187		ti->error = "Invalid delay";
188		return -EINVAL;
189	}
190
191	ret = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &c->dev);
192	if (ret) {
193		ti->error = "Device lookup failed";
194		return ret;
195	}
196
197	return 0;
198}
199
200/*
201 * Mapping parameters:
202 *    <device> <offset> <delay> [<write_device> <write_offset> <write_delay>]
203 *
204 * With separate write parameters, the first set is only used for reads.
205 * Offsets are specified in sectors.
206 * Delays are specified in milliseconds.
207 */
208static int delay_ctr(struct dm_target *ti, unsigned int argc, char **argv)
209{
210	struct delay_c *dc;
211	int ret;
212	unsigned int max_delay;
213
214	if (argc != 3 && argc != 6 && argc != 9) {
215		ti->error = "Requires exactly 3, 6 or 9 arguments";
216		return -EINVAL;
217	}
218
219	dc = kzalloc(sizeof(*dc), GFP_KERNEL);
220	if (!dc) {
221		ti->error = "Cannot allocate context";
222		return -ENOMEM;
223	}
224
225	ti->private = dc;
226	INIT_LIST_HEAD(&dc->delayed_bios);
227	mutex_init(&dc->timer_lock);
 
228	dc->may_delay = true;
229	dc->argc = argc;
230
231	ret = delay_class_ctr(ti, &dc->read, argv);
232	if (ret)
233		goto bad;
234	max_delay = dc->read.delay;
235
236	if (argc == 3) {
237		ret = delay_class_ctr(ti, &dc->write, argv);
238		if (ret)
239			goto bad;
240		ret = delay_class_ctr(ti, &dc->flush, argv);
241		if (ret)
242			goto bad;
243		max_delay = max(max_delay, dc->write.delay);
244		max_delay = max(max_delay, dc->flush.delay);
245		goto out;
246	}
247
248	ret = delay_class_ctr(ti, &dc->write, argv + 3);
249	if (ret)
250		goto bad;
 
 
251	if (argc == 6) {
252		ret = delay_class_ctr(ti, &dc->flush, argv + 3);
253		if (ret)
254			goto bad;
255		max_delay = max(max_delay, dc->flush.delay);
256		goto out;
257	}
258
259	ret = delay_class_ctr(ti, &dc->flush, argv + 6);
260	if (ret)
261		goto bad;
262	max_delay = max(max_delay, dc->flush.delay);
263
264out:
265	if (max_delay < 50) {
266		/*
267		 * In case of small requested delays, use kthread instead of
268		 * timers and workqueue to achieve better latency.
269		 */
270		dc->worker = kthread_create(&flush_worker_fn, dc,
271					    "dm-delay-flush-worker");
272		if (IS_ERR(dc->worker)) {
273			ret = PTR_ERR(dc->worker);
274			dc->worker = NULL;
275			goto bad;
276		}
277	} else {
278		timer_setup(&dc->delay_timer, handle_delayed_timer, 0);
279		INIT_WORK(&dc->flush_expired_bios, flush_expired_bios);
280		dc->kdelayd_wq = alloc_workqueue("kdelayd", WQ_MEM_RECLAIM, 0);
281		if (!dc->kdelayd_wq) {
282			ret = -EINVAL;
283			DMERR("Couldn't start kdelayd");
284			goto bad;
285		}
286	}
287
288	ti->num_flush_bios = 1;
289	ti->num_discard_bios = 1;
290	ti->accounts_remapped_io = true;
291	ti->per_io_data_size = sizeof(struct dm_delay_info);
292	return 0;
293
294bad:
295	delay_dtr(ti);
296	return ret;
297}
298
299static int delay_bio(struct delay_c *dc, struct delay_class *c, struct bio *bio)
300{
301	struct dm_delay_info *delayed;
302	unsigned long expires = 0;
303
304	if (!c->delay)
305		return DM_MAPIO_REMAPPED;
306
307	delayed = dm_per_bio_data(bio, sizeof(struct dm_delay_info));
308
309	delayed->context = dc;
310	delayed->expires = expires = jiffies + msecs_to_jiffies(c->delay);
311
312	mutex_lock(&delayed_bios_lock);
313	if (unlikely(!dc->may_delay)) {
314		mutex_unlock(&delayed_bios_lock);
315		return DM_MAPIO_REMAPPED;
316	}
317	c->ops++;
318	list_add_tail(&delayed->list, &dc->delayed_bios);
319	mutex_unlock(&delayed_bios_lock);
320
321	if (delay_is_fast(dc))
322		wake_up_process(dc->worker);
323	else
324		queue_timeout(dc, expires);
325
326	return DM_MAPIO_SUBMITTED;
327}
328
329static void delay_presuspend(struct dm_target *ti)
330{
331	struct delay_c *dc = ti->private;
332
333	mutex_lock(&delayed_bios_lock);
334	dc->may_delay = false;
335	mutex_unlock(&delayed_bios_lock);
336
337	if (!delay_is_fast(dc))
338		del_timer_sync(&dc->delay_timer);
339	flush_delayed_bios(dc, true);
340}
341
342static void delay_resume(struct dm_target *ti)
343{
344	struct delay_c *dc = ti->private;
345
346	dc->may_delay = true;
347}
348
349static int delay_map(struct dm_target *ti, struct bio *bio)
350{
351	struct delay_c *dc = ti->private;
352	struct delay_class *c;
353	struct dm_delay_info *delayed = dm_per_bio_data(bio, sizeof(struct dm_delay_info));
354
355	if (bio_data_dir(bio) == WRITE) {
356		if (unlikely(bio->bi_opf & REQ_PREFLUSH))
357			c = &dc->flush;
358		else
359			c = &dc->write;
360	} else {
361		c = &dc->read;
362	}
363	delayed->class = c;
364	bio_set_dev(bio, c->dev->bdev);
365	bio->bi_iter.bi_sector = c->start + dm_target_offset(ti, bio->bi_iter.bi_sector);
366
367	return delay_bio(dc, c, bio);
368}
369
370#define DMEMIT_DELAY_CLASS(c) \
371	DMEMIT("%s %llu %u", (c)->dev->name, (unsigned long long)(c)->start, (c)->delay)
372
373static void delay_status(struct dm_target *ti, status_type_t type,
374			 unsigned int status_flags, char *result, unsigned int maxlen)
375{
376	struct delay_c *dc = ti->private;
377	int sz = 0;
378
379	switch (type) {
380	case STATUSTYPE_INFO:
381		DMEMIT("%u %u %u", dc->read.ops, dc->write.ops, dc->flush.ops);
382		break;
383
384	case STATUSTYPE_TABLE:
385		DMEMIT_DELAY_CLASS(&dc->read);
386		if (dc->argc >= 6) {
387			DMEMIT(" ");
388			DMEMIT_DELAY_CLASS(&dc->write);
389		}
390		if (dc->argc >= 9) {
391			DMEMIT(" ");
392			DMEMIT_DELAY_CLASS(&dc->flush);
393		}
394		break;
395
396	case STATUSTYPE_IMA:
397		*result = '\0';
398		break;
399	}
400}
401
402static int delay_iterate_devices(struct dm_target *ti,
403				 iterate_devices_callout_fn fn, void *data)
404{
405	struct delay_c *dc = ti->private;
406	int ret = 0;
407
408	ret = fn(ti, dc->read.dev, dc->read.start, ti->len, data);
409	if (ret)
410		goto out;
411	ret = fn(ti, dc->write.dev, dc->write.start, ti->len, data);
412	if (ret)
413		goto out;
414	ret = fn(ti, dc->flush.dev, dc->flush.start, ti->len, data);
415	if (ret)
416		goto out;
417
418out:
419	return ret;
420}
421
422static struct target_type delay_target = {
423	.name	     = "delay",
424	.version     = {1, 4, 0},
425	.features    = DM_TARGET_PASSES_INTEGRITY,
426	.module      = THIS_MODULE,
427	.ctr	     = delay_ctr,
428	.dtr	     = delay_dtr,
429	.map	     = delay_map,
430	.presuspend  = delay_presuspend,
431	.resume	     = delay_resume,
432	.status	     = delay_status,
433	.iterate_devices = delay_iterate_devices,
434};
435module_dm(delay);
436
437MODULE_DESCRIPTION(DM_NAME " delay target");
438MODULE_AUTHOR("Heinz Mauelshagen <mauelshagen@redhat.com>");
439MODULE_LICENSE("GPL");
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Copyright (C) 2005-2007 Red Hat GmbH
  4 *
  5 * A target that delays reads and/or writes and can send
  6 * them to different devices.
  7 *
  8 * This file is released under the GPL.
  9 */
 10
 11#include <linux/module.h>
 12#include <linux/init.h>
 13#include <linux/blkdev.h>
 14#include <linux/bio.h>
 15#include <linux/slab.h>
 16#include <linux/kthread.h>
 17
 18#include <linux/device-mapper.h>
 19
 20#define DM_MSG_PREFIX "delay"
 21
 22struct delay_class {
 23	struct dm_dev *dev;
 24	sector_t start;
 25	unsigned int delay;
 26	unsigned int ops;
 27};
 28
 29struct delay_c {
 30	struct timer_list delay_timer;
 31	struct mutex process_bios_lock; /* hold while removing bios to be processed from list */
 32	spinlock_t delayed_bios_lock; /* hold on all accesses to delayed_bios list */
 33	struct workqueue_struct *kdelayd_wq;
 34	struct work_struct flush_expired_bios;
 35	struct list_head delayed_bios;
 36	struct task_struct *worker;
 37	bool may_delay;
 38
 39	struct delay_class read;
 40	struct delay_class write;
 41	struct delay_class flush;
 42
 43	int argc;
 44};
 45
 46struct dm_delay_info {
 47	struct delay_c *context;
 48	struct delay_class *class;
 49	struct list_head list;
 50	unsigned long expires;
 51};
 52
 
 
 53static void handle_delayed_timer(struct timer_list *t)
 54{
 55	struct delay_c *dc = from_timer(dc, t, delay_timer);
 56
 57	queue_work(dc->kdelayd_wq, &dc->flush_expired_bios);
 58}
 59
 60static void queue_timeout(struct delay_c *dc, unsigned long expires)
 61{
 62	timer_reduce(&dc->delay_timer, expires);
 
 
 
 
 
 63}
 64
 65static inline bool delay_is_fast(struct delay_c *dc)
 66{
 67	return !!dc->worker;
 68}
 69
 70static void flush_bios(struct bio *bio)
 71{
 72	struct bio *n;
 73
 74	while (bio) {
 75		n = bio->bi_next;
 76		bio->bi_next = NULL;
 77		dm_submit_bio_remap(bio, NULL);
 78		bio = n;
 79	}
 80}
 81
 82static void flush_delayed_bios(struct delay_c *dc, bool flush_all)
 83{
 84	struct dm_delay_info *delayed, *next;
 85	struct bio_list flush_bio_list;
 86	LIST_HEAD(local_list);
 87	unsigned long next_expires = 0;
 88	bool start_timer = false;
 89	bio_list_init(&flush_bio_list);
 90
 91	mutex_lock(&dc->process_bios_lock);
 92	spin_lock(&dc->delayed_bios_lock);
 93	list_replace_init(&dc->delayed_bios, &local_list);
 94	spin_unlock(&dc->delayed_bios_lock);
 95	list_for_each_entry_safe(delayed, next, &local_list, list) {
 96		cond_resched();
 97		if (flush_all || time_after_eq(jiffies, delayed->expires)) {
 98			struct bio *bio = dm_bio_from_per_bio_data(delayed,
 99						sizeof(struct dm_delay_info));
100			list_del(&delayed->list);
101			bio_list_add(&flush_bio_list, bio);
102			delayed->class->ops--;
103			continue;
104		}
105
106		if (!delay_is_fast(dc)) {
107			if (!start_timer) {
108				start_timer = true;
109				next_expires = delayed->expires;
110			} else {
111				next_expires = min(next_expires, delayed->expires);
112			}
113		}
114	}
115	spin_lock(&dc->delayed_bios_lock);
116	list_splice(&local_list, &dc->delayed_bios);
117	spin_unlock(&dc->delayed_bios_lock);
118	mutex_unlock(&dc->process_bios_lock);
119
120	if (start_timer)
121		queue_timeout(dc, next_expires);
122
123	flush_bios(bio_list_get(&flush_bio_list));
124}
125
126static int flush_worker_fn(void *data)
127{
128	struct delay_c *dc = data;
129
130	while (!kthread_should_stop()) {
131		flush_delayed_bios(dc, false);
132		spin_lock(&dc->delayed_bios_lock);
133		if (unlikely(list_empty(&dc->delayed_bios))) {
134			set_current_state(TASK_INTERRUPTIBLE);
135			spin_unlock(&dc->delayed_bios_lock);
136			schedule();
137		} else {
138			spin_unlock(&dc->delayed_bios_lock);
139			cond_resched();
140		}
141	}
142
143	return 0;
144}
145
146static void flush_expired_bios(struct work_struct *work)
147{
148	struct delay_c *dc;
149
150	dc = container_of(work, struct delay_c, flush_expired_bios);
151	flush_delayed_bios(dc, false);
152}
153
154static void delay_dtr(struct dm_target *ti)
155{
156	struct delay_c *dc = ti->private;
157
158	if (dc->kdelayd_wq) {
159		timer_shutdown_sync(&dc->delay_timer);
160		destroy_workqueue(dc->kdelayd_wq);
161	}
162
163	if (dc->read.dev)
164		dm_put_device(ti, dc->read.dev);
165	if (dc->write.dev)
166		dm_put_device(ti, dc->write.dev);
167	if (dc->flush.dev)
168		dm_put_device(ti, dc->flush.dev);
169	if (dc->worker)
170		kthread_stop(dc->worker);
171
172	mutex_destroy(&dc->process_bios_lock);
173
174	kfree(dc);
175}
176
177static int delay_class_ctr(struct dm_target *ti, struct delay_class *c, char **argv)
178{
179	int ret;
180	unsigned long long tmpll;
181	char dummy;
182
183	if (sscanf(argv[1], "%llu%c", &tmpll, &dummy) != 1 || tmpll != (sector_t)tmpll) {
184		ti->error = "Invalid device sector";
185		return -EINVAL;
186	}
187	c->start = tmpll;
188
189	if (sscanf(argv[2], "%u%c", &c->delay, &dummy) != 1) {
190		ti->error = "Invalid delay";
191		return -EINVAL;
192	}
193
194	ret = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &c->dev);
195	if (ret) {
196		ti->error = "Device lookup failed";
197		return ret;
198	}
199
200	return 0;
201}
202
203/*
204 * Mapping parameters:
205 *    <device> <offset> <delay> [<write_device> <write_offset> <write_delay>]
206 *
207 * With separate write parameters, the first set is only used for reads.
208 * Offsets are specified in sectors.
209 * Delays are specified in milliseconds.
210 */
211static int delay_ctr(struct dm_target *ti, unsigned int argc, char **argv)
212{
213	struct delay_c *dc;
214	int ret;
215	unsigned int max_delay;
216
217	if (argc != 3 && argc != 6 && argc != 9) {
218		ti->error = "Requires exactly 3, 6 or 9 arguments";
219		return -EINVAL;
220	}
221
222	dc = kzalloc(sizeof(*dc), GFP_KERNEL);
223	if (!dc) {
224		ti->error = "Cannot allocate context";
225		return -ENOMEM;
226	}
227
228	ti->private = dc;
229	INIT_LIST_HEAD(&dc->delayed_bios);
230	mutex_init(&dc->process_bios_lock);
231	spin_lock_init(&dc->delayed_bios_lock);
232	dc->may_delay = true;
233	dc->argc = argc;
234
235	ret = delay_class_ctr(ti, &dc->read, argv);
236	if (ret)
237		goto bad;
238	max_delay = dc->read.delay;
239
240	if (argc == 3) {
241		ret = delay_class_ctr(ti, &dc->write, argv);
242		if (ret)
243			goto bad;
244		ret = delay_class_ctr(ti, &dc->flush, argv);
245		if (ret)
246			goto bad;
 
 
247		goto out;
248	}
249
250	ret = delay_class_ctr(ti, &dc->write, argv + 3);
251	if (ret)
252		goto bad;
253	max_delay = max(max_delay, dc->write.delay);
254
255	if (argc == 6) {
256		ret = delay_class_ctr(ti, &dc->flush, argv + 3);
257		if (ret)
258			goto bad;
 
259		goto out;
260	}
261
262	ret = delay_class_ctr(ti, &dc->flush, argv + 6);
263	if (ret)
264		goto bad;
265	max_delay = max(max_delay, dc->flush.delay);
266
267out:
268	if (max_delay < 50) {
269		/*
270		 * In case of small requested delays, use kthread instead of
271		 * timers and workqueue to achieve better latency.
272		 */
273		dc->worker = kthread_run(&flush_worker_fn, dc, "dm-delay-flush-worker");
 
274		if (IS_ERR(dc->worker)) {
275			ret = PTR_ERR(dc->worker);
276			dc->worker = NULL;
277			goto bad;
278		}
279	} else {
280		timer_setup(&dc->delay_timer, handle_delayed_timer, 0);
281		INIT_WORK(&dc->flush_expired_bios, flush_expired_bios);
282		dc->kdelayd_wq = alloc_workqueue("kdelayd", WQ_MEM_RECLAIM, 0);
283		if (!dc->kdelayd_wq) {
284			ret = -EINVAL;
285			DMERR("Couldn't start kdelayd");
286			goto bad;
287		}
288	}
289
290	ti->num_flush_bios = 1;
291	ti->num_discard_bios = 1;
292	ti->accounts_remapped_io = true;
293	ti->per_io_data_size = sizeof(struct dm_delay_info);
294	return 0;
295
296bad:
297	delay_dtr(ti);
298	return ret;
299}
300
301static int delay_bio(struct delay_c *dc, struct delay_class *c, struct bio *bio)
302{
303	struct dm_delay_info *delayed;
304	unsigned long expires = 0;
305
306	if (!c->delay)
307		return DM_MAPIO_REMAPPED;
308
309	delayed = dm_per_bio_data(bio, sizeof(struct dm_delay_info));
310
311	delayed->context = dc;
312	delayed->expires = expires = jiffies + msecs_to_jiffies(c->delay);
313
314	spin_lock(&dc->delayed_bios_lock);
315	if (unlikely(!dc->may_delay)) {
316		spin_unlock(&dc->delayed_bios_lock);
317		return DM_MAPIO_REMAPPED;
318	}
319	c->ops++;
320	list_add_tail(&delayed->list, &dc->delayed_bios);
321	spin_unlock(&dc->delayed_bios_lock);
322
323	if (delay_is_fast(dc))
324		wake_up_process(dc->worker);
325	else
326		queue_timeout(dc, expires);
327
328	return DM_MAPIO_SUBMITTED;
329}
330
331static void delay_presuspend(struct dm_target *ti)
332{
333	struct delay_c *dc = ti->private;
334
335	spin_lock(&dc->delayed_bios_lock);
336	dc->may_delay = false;
337	spin_unlock(&dc->delayed_bios_lock);
338
339	if (!delay_is_fast(dc))
340		timer_delete(&dc->delay_timer);
341	flush_delayed_bios(dc, true);
342}
343
344static void delay_resume(struct dm_target *ti)
345{
346	struct delay_c *dc = ti->private;
347
348	dc->may_delay = true;
349}
350
351static int delay_map(struct dm_target *ti, struct bio *bio)
352{
353	struct delay_c *dc = ti->private;
354	struct delay_class *c;
355	struct dm_delay_info *delayed = dm_per_bio_data(bio, sizeof(struct dm_delay_info));
356
357	if (bio_data_dir(bio) == WRITE) {
358		if (unlikely(bio->bi_opf & REQ_PREFLUSH))
359			c = &dc->flush;
360		else
361			c = &dc->write;
362	} else {
363		c = &dc->read;
364	}
365	delayed->class = c;
366	bio_set_dev(bio, c->dev->bdev);
367	bio->bi_iter.bi_sector = c->start + dm_target_offset(ti, bio->bi_iter.bi_sector);
368
369	return delay_bio(dc, c, bio);
370}
371
372#define DMEMIT_DELAY_CLASS(c) \
373	DMEMIT("%s %llu %u", (c)->dev->name, (unsigned long long)(c)->start, (c)->delay)
374
375static void delay_status(struct dm_target *ti, status_type_t type,
376			 unsigned int status_flags, char *result, unsigned int maxlen)
377{
378	struct delay_c *dc = ti->private;
379	int sz = 0;
380
381	switch (type) {
382	case STATUSTYPE_INFO:
383		DMEMIT("%u %u %u", dc->read.ops, dc->write.ops, dc->flush.ops);
384		break;
385
386	case STATUSTYPE_TABLE:
387		DMEMIT_DELAY_CLASS(&dc->read);
388		if (dc->argc >= 6) {
389			DMEMIT(" ");
390			DMEMIT_DELAY_CLASS(&dc->write);
391		}
392		if (dc->argc >= 9) {
393			DMEMIT(" ");
394			DMEMIT_DELAY_CLASS(&dc->flush);
395		}
396		break;
397
398	case STATUSTYPE_IMA:
399		*result = '\0';
400		break;
401	}
402}
403
404static int delay_iterate_devices(struct dm_target *ti,
405				 iterate_devices_callout_fn fn, void *data)
406{
407	struct delay_c *dc = ti->private;
408	int ret = 0;
409
410	ret = fn(ti, dc->read.dev, dc->read.start, ti->len, data);
411	if (ret)
412		goto out;
413	ret = fn(ti, dc->write.dev, dc->write.start, ti->len, data);
414	if (ret)
415		goto out;
416	ret = fn(ti, dc->flush.dev, dc->flush.start, ti->len, data);
417	if (ret)
418		goto out;
419
420out:
421	return ret;
422}
423
424static struct target_type delay_target = {
425	.name	     = "delay",
426	.version     = {1, 4, 0},
427	.features    = DM_TARGET_PASSES_INTEGRITY,
428	.module      = THIS_MODULE,
429	.ctr	     = delay_ctr,
430	.dtr	     = delay_dtr,
431	.map	     = delay_map,
432	.presuspend  = delay_presuspend,
433	.resume	     = delay_resume,
434	.status	     = delay_status,
435	.iterate_devices = delay_iterate_devices,
436};
437module_dm(delay);
438
439MODULE_DESCRIPTION(DM_NAME " delay target");
440MODULE_AUTHOR("Heinz Mauelshagen <mauelshagen@redhat.com>");
441MODULE_LICENSE("GPL");